WorldWideScience

Sample records for wine alcoholic fermentation

  1. Sequential fermentation using non-Saccharomyces yeasts for the reduction of alcohol content in wine

    Directory of Open Access Journals (Sweden)

    Ciani Maurizio

    2014-01-01

    Full Text Available Over the last few decades there has been a progressive increase in wine ethanol content due to global climate change and modified wine styles that involved viticulture and oenology practices. Among the different approaches and strategies to reduce alcohol content in wine we propose a sequential fermentation using immobilized non-Saccharomyces wine yeasts. Preliminary results showed that sequential fermentations with Hanseniaspora osmophila, Hanseniaspora uvarum, Metschnikowia pulcherrima, Starmerella bombicola and Saccharomyces cerevisiae strains showed an ethanol reduction when compared with pure S. cerevisiae fermentation trials.

  2. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum.

    Science.gov (United States)

    Varela, C; Barker, A; Tran, T; Borneman, A; Curtin, C

    2017-07-03

    Strategies for production of wines containing lower alcohol concentrations are in strong demand, for reasons of quality, health, and taxation. Development and application of wine yeasts that are less efficient at transforming grape sugars into ethanol has the potential to allow winemakers the freedom to make lower alcohol wines from grapes harvested at optimal ripeness, without the need for post-fermentation processes aimed at removing ethanol. We have recently shown that two non-conventional wine yeast species Metschnikowia pulcherrima and Saccharomyces uvarum were both able to produce wine with reduced alcohol concentration. Both species produced laboratory-scale wines with markedly different volatile aroma compound composition relative to Saccharomyces cerevisiae. This work describes the volatile composition and sensory profiles of reduced-alcohol pilot-scale Merlot wines produced with M. pulcherrima and S. uvarum. Wines fermented with M. pulcherrima contained 1.0% v/v less ethanol than S. cerevisiae fermented wines, while those fermented with S. uvarum showed a 1.7% v/v reduction in ethanol. Compared to S. cerevisiae ferments, wines produced with M. pulcherrima showed higher concentrations of ethyl acetate, total esters, total higher alcohols and total sulfur compounds, while wines fermented with S. uvarum were characterised by the highest total concentration of higher alcohols. Sensorially, M. pulcherrima wines received relatively high scores for sensory descriptors such as red fruit and fruit flavour and overall exhibited a sensory profile similar to that of wine made with S. cerevisiae, whereas the main sensory descriptors associated with wines fermented with S. uvarum were barnyard and meat. This work demonstrates the successful application of M. pulcherrima AWRI3050 for the production of pilot-scale red wines with reduced alcohol concentration and highlights the need for rigorous evaluation of non-conventional yeasts with regard to their sensory impacts

  3. 27 CFR 24.212 - High fermentation wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false High fermentation wine. 24.212 Section 24.212 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.212 High fermentation wine. High fermentation wine is wine made...

  4. The Effect of Proanthocyanidins on Growth and Alcoholic Fermentation of Wine Yeast under Copper Stress.

    Science.gov (United States)

    Jia, Bo; Liu, Xingyan; Zhan, Jicheng; Li, Jingyuan; Huang, Weidong

    2015-06-01

    Proanthocyanidins (PAs) derived from the grape skin, as well as from grape seeds, grape stems, are an important group of polyphenols in wine. The aim of this study was to understand the effect of PAs (0.1, 1.0 g/L) on growth and alcoholic fermentation of 2 strains of Saccharomyces cerevisiae (commercial strain FREDDO and newly selected strain BH8) during copper-stress fermentation, using a simple model fermentation system. Our results showed that both PAs and Cu(2+) could pose significant inhibition effects on the growth of yeast cells, CO2 release, sugar consumption, and ethanol production during the initial phase of the fermentation. Compared to PAs, Cu(2+) performed more obvious inhibition on the yeast growth and fermentation. However, adding 1.0 g/L PAs increased in the vitality and metabolism activity of yeast cells at the mid-exponential phase of fermentation in the mediums with no copper and 0.1 mM Cu(2+) added, shortened the period of wine fermentation, and decreased the copper residues. It indicated that PAs could improve the ability of wine yeast to resist detrimental effects under copper-stress fermentation condition, maintaining cells metabolic activity, and fermentation could be controlled by manipulating PAs supplementation. © 2015 Institute of Food Technologists®

  5. Selection of an autochthonous Saccharomyces strain starter for alcoholic fermentation of Sherry base wines.

    Science.gov (United States)

    Rodríguez-Palero, María Jesús; Fierro-Risco, Jesús; Codón, Antonio C; Benítez, Tahía; Valcárcel, Manuel J

    2013-06-01

    Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of "Fino". This base wine was selected for "Fino" Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called "flor" yeasts. The "flor" velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a

  6. Association between modification of phenolic profiling and development of wine color during alcohol fermentation.

    Science.gov (United States)

    Li, Si-Yu; Liu, Pei-Tong; Pan, Qiu-Hong; Shi, Ying; Duan, Chang-Qing

    2015-04-01

    To solve the problem of wine color instability in western China, different additives (the maceration enzymes Vinozym G and Ex-color, yeasts VR5 and Red Star, and commercial tannins) were added during alcoholic fermentation of Syrah (Vitis vinifera L.). The phenolic profile and color characteristics of wine were examined using high performance liquid chromatography mass spectrometry and CIELAB, respectively. The results showed that the combination of the enzyme Ex-color with the Red Star yeast eased the release of non-anthocyanins from grape berries into wine, whereas the use of enzyme Vinozym G and VR5 yeast enhanced the concentration of anthocyanins and achieved a higher red hue (a* value) and a lower yellow hue (b* value) in the wine. The addition of commercial tannins greatly promoted the level of gallic acid in the wine and led to a relatively higher concentration of anthocyanins. Partial least-squares regression analysis was used to find out the major phenolics, which were in close relation with color parameters; principal component analysis was used to evaluate the contribution of different winemaking techniques to wine color. The combination of these 2 analytic methods indicated that Vinozym G and VR5 yeast together with commercial tannins should be an appropriate combination to enhance the stability of wine color during alcohol fermentation, which was related to a significant increase in cyanidin-3-O-(6-O-acetyl)-glucoside, cyanidin-3-O-(6-O-coumaryl)-glucoside, trans-peonidin-3-O-(6-O-coumaryl)-glucoside, trans-malvidin-3-O-(6-O-coumaryl)-glucoside, and malvidin-3-O-(6-O-acetyl)-glucoside-pyruvic acid, all of which played an important role in stabilizing wine color. © 2015 Institute of Food Technologists®

  7. Accumulation of Biogenic Amines in Wine: Role of Alcoholic and Malolactic Fermentation

    Directory of Open Access Journals (Sweden)

    Donatella Restuccia

    2018-01-01

    Full Text Available Biogenic amines (BAs are detrimental to health and originate in foods mainly from decarboxylation of the corresponding amino acid by the activity of exogenous enzymes released by various microorganisms. BAs can be generated at different stages of the wine production. Some of them are formed in the vineyard and are normal constituents of grapes with amounts varying with variety, soil type and composition, fertilization and climatic conditions during growth and degree of maturation. BAs can be also formed by the yeasts during the alcoholic fermentation (AF, as well as by the action of bacteria involved in the malolactic fermentation (MLF. As aminogenesis is a complex and multifactorial phenomenon, the studies carried out to identify the main vinification stage of BAs production yielded contradictory results. In particular, there is not a general consensus yet on which fermentation supports mostly the accumulation of BAs in wine. In this context, the aim of the present paper deals with the most recent results related with the influence of alcoholic and malolactic fermentation parameters on BAs-producer microorganism in wine.

  8. Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni.

    Science.gov (United States)

    Lu, Yuyun; Chua, Jian-Yong; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan

    2016-10-01

    This work represents the first study on the biotransformation of chemical constituents of durian wine via simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) with non-Saccharomyces yeast and lactic acid bacteria (LAB), namely, Torulaspora delbrueckii Biodiva and Oenococcus oeni PN4. The presence of PN4 improved the utilization of sugars but did not affect ethanol production. MLF resulted in the significant degradation of malic acid with corresponding increases in pH and lactic acid. The final concentrations of acetic acid (1.29 g/L) and succinic acid (3.70 g/L) in simultaneous AF and MLF were significantly higher than that in AF (1.05 and 1.31 g/L) only. Compared with AF, simultaneous AF and MLF significantly elevated the levels of aroma compounds with higher levels of higher alcohols (isoamyl alcohol, active amyl alcohol, isobutyl alcohol, and 2-phenylethyl alcohol), acetate esters (ethyl acetate, isoamyl acetate), and ethyl esters (ethyl octanoate, ethyl dodecanoate). All the endogenous volatile sulfur compounds decreased to trace or undetectable levels at the end of fermentation. MLF accentuated the reduction of acetaldehyde and sulfides. The initially absent dipropyl disulfide was formed, then catabolized, especially in simultaneous AF and MLF. This study suggested that the simultaneous AF and MLF of non-Saccharomyces and LAB could modify the volatile compositions and potentially modulate the organoleptic properties of durian wine.

  9. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Science.gov (United States)

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  11. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Directory of Open Access Journals (Sweden)

    Milanovic Vesna

    2012-02-01

    Full Text Available Abstract Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1 and alcohol dehydrogenase (Adh1 were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation

  12. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation.

    Science.gov (United States)

    Milanovic, Vesna; Ciani, Maurizio; Oro, Lucia; Comitini, Francesca

    2012-02-03

    The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene expression and enzymatic

  13. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of Bat aminotransferases.

    Science.gov (United States)

    Zhang, Cui-Ying; Qi, Ya-Nan; Ma, Hong-Xia; Li, Wei; Dai, Long-Hai; Xiao, Dong-Guang

    2015-04-01

    An appropriate level of higher alcohols produced by yeast during the fermentation is one of the most important factors influencing Chinese rice wine quality. In this study, BAT1 and BAT2 single- and double-gene-deletion mutant strains were constructed from an industrial yeast strain RY1 to decrease higher alcohols during Chinese rice wine fermentation. The results showed that the BAT2 single-gene-deletion mutant strain produced best improvement in the production of higher alcohols while remaining showed normal growth and fermentation characteristics. Furthermore, a BAT2 single-gene-deletion diploid engineered strain RY1-Δbat2 was constructed and produced low levels of isobutanol and isoamylol (isoamyl alcohol and active amyl alcohol) in simulated fermentation of Chinese rice wine, 92.40 and 303.31 mg/L, respectively, which were 33.00 and 14.20 % lower than those of the parental strain RY1. The differences in fermentation performance between RY1-Δbat2 and RY1 were minor. Therefore, construction of this yeast strain is important in future development in Chinese wine industry and provides insights on generating yeast strains for other fermented alcoholic beverages.

  14. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation.

    Science.gov (United States)

    Kemsawasd, Varongsiri; Viana, Tiago; Ardö, Ylva; Arneborg, Nils

    2015-12-01

    In this study, the influence of twenty different single (i.e. 19 amino acids and ammonium sulphate) and two multiple nitrogen sources (N-sources) on growth and fermentation (i.e. glucose consumption and ethanol production) performance of Saccharomyces cerevisiae and of four wine-related non-Saccharomyces yeast species (Lachancea thermotolerans, Metschnikowia pulcherrima, Hanseniaspora uvarum and Torulaspora delbrueckii) was investigated during alcoholic fermentation. Briefly, the N-sources with beneficial effects on all performance parameters (or for the majority of them) for each yeast species were alanine, arginine, asparagine, aspartic acid, glutamine, isoleucine, ammonium sulphate, serine, valine and mixtures of 19 amino acids and of 19 amino acids plus ammonium sulphate (for S. cerevisiae), serine (for L. thermotolerans), alanine (for H. uvarum), alanine and asparagine (for M. pulcherrima), arginine, asparagine, glutamine, isoleucine and mixture of 19 amino acids (for T. delbrueckii). Furthermore, our results showed a clear positive effect of complex mixtures of N-sources on S. cerevisiae and on T. delbrueckii (although to a lesser extent) as to all performance parameters studied, whereas for L. thermotolerans, H. uvarum and M. pulcherrima, single amino acids affected growth and fermentation performance to the same extent as the mixtures. Moreover, we found groups of N-sources with similar effects on the growth and/or fermentation performance of two or more yeast species. Finally, the influences of N-sources observed for T. delbrueckii and H. uvarum resembled those of S. cerevisiae the most and the least, respectively. Overall, this work contributes to an improved understanding of how different N-sources affect growth, glucose consumption and ethanol production of wine-related yeast species under oxygen-limited conditions, which, in turn, may be used to, e.g. optimize growth and fermentation performance of the given yeast upon N-source supplementation during

  15. Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation.

    Science.gov (United States)

    Tesnière, Catherine; Brice, Claire; Blondin, Bruno

    2015-09-01

    Nitrogen is an important nutrient in alcoholic fermentation because its starvation affects both fermentation kinetics and the formation of yeast metabolites. In most alcoholic fermentations, yeasts have to ferment in nitrogen-starved conditions, which requires modifications of cell functions to maintain a high sugar flux and enable cell survival for long periods in stressful conditions. In this review, we present an overview of our current understanding of the responses of the wine yeast Saccharomyces cerevisiae to variations of nitrogen availability. Adaptation to nitrogen starvation involves changes in the activity of signaling pathways such as target of rapamycin (TOR) and nitrogen catabolite repression (NCR), which are important for the remodeling of gene expression and the establishment of stress responses. Upon starvation, protein degradation pathways involving autophagy and the proteasome play a major role in nitrogen recycling and the adjustment of cellular activity. Recent progress in the understanding of the role of these mechanisms should enable advances in fermentation management and the design of novel targets for the selection or improvement of yeast strains.

  16. Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Jaime Moreno-García

    2018-02-01

    Full Text Available Yeast immobilization is defined as the physical confinement of intact cells to a region of space with conservation of biological activity. The use of these methodologies for alcoholic fermentation (AF offers many advantages over the use of the conventional free yeast cell method and different immobilization systems have been proposed so far for different applications, like winemaking. The most studied methods for yeast immobilization include the use of natural supports (e.g., fruit pieces, organic supports (e.g., alginate, inorganic (e.g., porous ceramics, membrane systems, and multi-functional agents. Some advantages of the yeast-immobilization systems include: high cell densities, product yield improvement, lowered risk of microbial contamination, better control and reproducibility of the processes, as well as reuse of the immobilization system for batch fermentations and continuous fermentation technologies. However, these methods have some consequences on the behavior of the yeasts, affecting the final products of the fermentative metabolism. This review compiles current information about cell immobilizer requirements for winemaking purposes, the immobilization methods applied to the production of fermented beverages to date, and yeast physiological consequences of immobilization strategies. Finally, a recent inter-species immobilization methodology has been revised, where yeast cells are attached to the hyphae of a Generally Recognized As Safe fungus and remain adhered following loss of viability of the fungus. The bio-capsules formed with this method open new and promising strategies for alcoholic beverage production (wine and low ethanol content beverages.

  17. Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives

    Science.gov (United States)

    Moreno-García, Jaime; García-Martínez, Teresa; Mauricio, Juan C.; Moreno, Juan

    2018-01-01

    Yeast immobilization is defined as the physical confinement of intact cells to a region of space with conservation of biological activity. The use of these methodologies for alcoholic fermentation (AF) offers many advantages over the use of the conventional free yeast cell method and different immobilization systems have been proposed so far for different applications, like winemaking. The most studied methods for yeast immobilization include the use of natural supports (e.g., fruit pieces), organic supports (e.g., alginate), inorganic (e.g., porous ceramics), membrane systems, and multi-functional agents. Some advantages of the yeast-immobilization systems include: high cell densities, product yield improvement, lowered risk of microbial contamination, better control and reproducibility of the processes, as well as reuse of the immobilization system for batch fermentations and continuous fermentation technologies. However, these methods have some consequences on the behavior of the yeasts, affecting the final products of the fermentative metabolism. This review compiles current information about cell immobilizer requirements for winemaking purposes, the immobilization methods applied to the production of fermented beverages to date, and yeast physiological consequences of immobilization strategies. Finally, a recent inter-species immobilization methodology has been revised, where yeast cells are attached to the hyphae of a Generally Recognized As Safe fungus and remain adhered following loss of viability of the fungus. The bio-capsules formed with this method open new and promising strategies for alcoholic beverage production (wine and low ethanol content beverages). PMID:29497415

  18. Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives.

    Science.gov (United States)

    Moreno-García, Jaime; García-Martínez, Teresa; Mauricio, Juan C; Moreno, Juan

    2018-01-01

    Yeast immobilization is defined as the physical confinement of intact cells to a region of space with conservation of biological activity. The use of these methodologies for alcoholic fermentation (AF) offers many advantages over the use of the conventional free yeast cell method and different immobilization systems have been proposed so far for different applications, like winemaking. The most studied methods for yeast immobilization include the use of natural supports (e.g., fruit pieces), organic supports (e.g., alginate), inorganic (e.g., porous ceramics), membrane systems, and multi-functional agents. Some advantages of the yeast-immobilization systems include: high cell densities, product yield improvement, lowered risk of microbial contamination, better control and reproducibility of the processes, as well as reuse of the immobilization system for batch fermentations and continuous fermentation technologies. However, these methods have some consequences on the behavior of the yeasts, affecting the final products of the fermentative metabolism. This review compiles current information about cell immobilizer requirements for winemaking purposes, the immobilization methods applied to the production of fermented beverages to date, and yeast physiological consequences of immobilization strategies. Finally, a recent inter-species immobilization methodology has been revised, where yeast cells are attached to the hyphae of a Generally Recognized As Safe fungus and remain adhered following loss of viability of the fungus. The bio-capsules formed with this method open new and promising strategies for alcoholic beverage production (wine and low ethanol content beverages).

  19. Amino acid content in red wines obtained from grapevine nitrogen foliar treatments: consumption during the alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Javier Portu

    2014-12-01

    Full Text Available Nitrogen is an important element for grapevine and winemaking which affects the development of the plant and yeast, and therefore it is important for wine quality. The aim of this work was to study the influence of foliar application to vineyard of proline, phenylalanine and urea and two commercial nitrogen fertilizers, without and with amino acids in their formulation, on the wine amino acid content and their consumption during the alcoholic fermentation. The results showed that these treatments did not affect the amino acid composition in wines. The differences observed for certain amino acids were so small that the concentration of total amino acids was not significantly different among wines. Moreover, it was observed that the higher the content of amino acids in the medium, the greater their consumption during the alcoholic fermentation.

  20. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature

    Directory of Open Access Journals (Sweden)

    María López-Malo

    2014-10-01

    Full Text Available Wine produced by low-temperature fermentation is mostly considered to have improved sensory qualities. However few commercial wine strains available on the market are well-adapted to ferment at low temperature (10 – 15°C. The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. One strategy to modify lipid composition is to alter transcriptional activity by deleting or overexpressing the key genes of lipid metabolism. In a previous study, we identified the genes of the phospholipid, sterol and sphingolipid pathways, which impacted on growth capacity at low temperature. In the present study, we aimed to determine the influence of these genes on fermentation performance and growth during low-temperature wine fermentations. We analyzed the phenotype during fermentation at the low and optimal temperature of the lipid mutant and overexpressing strains in the background of a derivative commercial wine strain. The increase in the gene dosage of some of these lipid genes, e.g., PSD1, LCB3, DPL1 and OLE1, improved fermentation activity during low-temperature fermentations, thus confirming their positive role during wine yeast adaptation to cold. Genes whose overexpression improved fermentation activity at 12°C were overexpressed by chromosomal integration into commercial wine yeast QA23. Fermentations in synthetic and natural grape must were carried out by this new set of overexpressing strains. The strains overexpressing OLE1 and DPL1 were able to finish fermentation before commercial wine yeast QA23. Only the OLE1 gene overexpression produced a specific aroma profile in the wines produced with natural grape must.

  1. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature

    OpenAIRE

    L?pez-Malo, Mar?a; Garc?a-R?os, Est?fani; Chiva, Rosana; Guillamon, Jos? M.

    2014-01-01

    Wine produced by low-temperature fermentation is mostly considered to have improved sensory qualities. However few commercial wine strains available on the market are well-adapted to ferment at low temperature (10 – 15°C). The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. One strategy to modify lipid composition is to alter transcriptional activity by deleting or overexpressing the key genes of lipid metabolism. In a previous study, we identi...

  2. Immobilization of Microbial Cells for Alcoholic and Malolactic Fermentation of Wine and Cider

    Science.gov (United States)

    Kourkoutas, Yiannis; Manojlović, Verica; Nedović, Viktor A.

    Wine- or cider-making is highly associated with biotechnology owing to the traditional nature of must fermentation.. Nowadays, there have been considerable developments in wine- or cider-making techniques affecting all phases of wine or cider production, but more importantly, the fermentation process. It is well-known that the transformation of grape must by microbial activity results in the production of wine, and the fermentation of apples (or sometimes pears) in the production of cider. In this process, a variety of compounds affecting the organoleptic profile of wine or cider are synthesized. It is also common sense that in wine- or cider-making, the main objective is to achieve an adequate quality of the product. The technological progress and the improved quality of the wines or ciders have been associated with the control of technical parameters. Herein, cell immobilization offers numerous advantages, such as enhanced fermentation productivity, ability for cell recycling, application of continuous configurations, enhanced cell stability and viability, and improvement of quality (Margaritis and Merchant 1984; Stewart and Russel 1986; Kourkoutas et al. 2004a).

  3. Wine fermentation microbiome: a landscape from different Portuguese wine appellations

    Directory of Open Access Journals (Sweden)

    Cátia ePinto

    2015-09-01

    Full Text Available Grapes and wine musts harbour a complex microbiome, which plays a crucial role in wine fermentation as it impacts on wine flavour and, consequently, on its final quality and value. Unveiling the microbiome and its dynamics, and understanding the ecological factors that explain such biodiversity, has been a challenge to oenology. In this work, we tackle this using a metagenomics approach to describe the natural microbial communities, both fungal and bacterial microorganisms, associated with spontaneous wine fermentations. For this, the wine microbiome, from six Portuguese wine appellations, was fully characterized as regards to three stages of fermentation – Initial Must (IM, and Start and End of alcoholic fermentation (SF and EF, respectively.The wine fermentation process revealed a higher impact on fungal populations when compared with bacterial communities, and the fermentation evolution clearly caused a loss of the environmental microorganisms. Furthermore, significant differences (p<0.05 were found in the fungal populations between IM, SF and EF, and in the bacterial population between MI and SF. Fungal communities were characterized by either the presence of environmental microorganisms and phytopathogens in the initial musts, or yeasts associated with alcoholic fermentations in wine must samples as Saccharomyces and non-Saccharomyces yeasts (as Lachancea, Metschnikowia, Hanseniaspora, Hyphopichia, Sporothrix, Candida and Schizosaccharomyces. Among bacterial communities, the most abundant family was Enterobacteriaceae; though families of species associated with the production of lactic acid (Lactobacillaceae, Leuconostocaceae and acetic acid (Acetobacteriaceae were also detected. Interestingly, a biogeographical correlation for both fungal and bacterial communities was identified between wine appellations at IM suggesting that each wine region contains specific and embedded microbial communities which may contribute to the uniqueness of

  4. Wine fermentation microbiome: a landscape from different Portuguese wine appellations.

    Science.gov (United States)

    Pinto, Cátia; Pinho, Diogo; Cardoso, Remy; Custódio, Valéria; Fernandes, Joana; Sousa, Susana; Pinheiro, Miguel; Egas, Conceição; Gomes, Ana C

    2015-01-01

    Grapes and wine musts harbor a complex microbiome, which plays a crucial role in wine fermentation as it impacts on wine flavour and, consequently, on its final quality and value. Unveiling the microbiome and its dynamics, and understanding the ecological factors that explain such biodiversity, has been a challenge to oenology. In this work, we tackle this using a metagenomics approach to describe the natural microbial communities, both fungal and bacterial microorganisms, associated with spontaneous wine fermentations. For this, the wine microbiome, from six Portuguese wine appellations, was fully characterized as regards to three stages of fermentation - Initial Musts (IM), and Start and End of alcoholic fermentations (SF and EF, respectively). The wine fermentation process revealed a higher impact on fungal populations when compared with bacterial communities, and the fermentation evolution clearly caused a loss of the environmental microorganisms. Furthermore, significant differences (p < 0.05) were found in the fungal populations between IM, SF, and EF, and in the bacterial population between IM and SF. Fungal communities were characterized by either the presence of environmental microorganisms and phytopathogens in the IM, or yeasts associated with alcoholic fermentations in wine must samples as Saccharomyces and non-Saccharomyces yeasts (as Lachancea, Metschnikowia, Hanseniaspora, Hyphopichia, Sporothrix, Candida, and Schizosaccharomyces). Among bacterial communities, the most abundant family was Enterobacteriaceae; though families of species associated with the production of lactic acid (Lactobacillaceae, Leuconostocaceae) and acetic acid (Acetobacteriaceae) were also detected. Interestingly, a biogeographical correlation for both fungal and bacterial communities was identified between wine appellations at IM suggesting that each wine region contains specific and embedded microbial communities which may contribute to the uniqueness of regional wines.

  5. The Effect of DL-Malic Acid on the Metabolism of L-Malic Acid during Wine Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Fabio Coloretti

    2002-01-01

    Full Text Available Insufficient wine acidity can affect wine quality and stability. To overcome this problem, DL-malic acid can be added to the grape juice prior to fermentation. We have investigated the effect of DL-malic acid on wine fermentations and its influence on the final concentration of L-malic acid, naturally present in grape juice. To this end yeast strains that metabolise L-malic acid in different ways were tested and compared; namely, Schizosaccharomyces pombe (efficient L-malic acid degrader, Saccharomyces cerevisiae (non-degrader, hybrid strain S. cerevisiae x S. uvarum (intermediate degrader and Saccharomyces uvarum (promoting L-malic acid synthesis. In all cases, D-malic acid passively entered the yeast cells and did not undergo malo-alcoholic fermentation. However, its presence in the juice, as a component of the mixture of D- and L- malic acid (DL-malic acid, reduced the amount of L-malic acid that can be degraded or synthesised by yeasts during malo-alcoholic fermentation.

  6. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri; Monteiro Lomba Viana, Tiago; Ardö, Ylva

    2015-01-01

    In this study, the influence of twenty different single (i.e. 19 amino acids and ammonium sulphate) and two multiple nitrogen sources (N-sources) on growth and fermentation (i.e. glucose consumption and ethanol production) performance of Saccharomyces cerevisiae and of four wine-related non-Sacch...

  7. Analysis of low temperature-induced genes (LTIG) in wine yeast during alcoholic fermentation.

    Science.gov (United States)

    Chiva, Rosana; López-Malo, Maria; Salvadó, Zoel; Mas, Albert; Guillamón, Jósé Manuel

    2012-11-01

    Fermentations carried out at low temperatures, that is, 10-15 °C, not only enhance the production and retention of flavor volatiles, but also increase the chances of slowing or arresting the process. In this study, we determined the transcriptional activity of 10 genes that were previously reported as induced by low temperatures and involved in cold adaptation, during fermentation with the commercial wine yeast strain QA23. Mutant and overexpressing strains of these genes were constructed in a haploid derivative of this strain to determine the importance of these genes in growth and fermentation at low temperature. In general, the deletion and overexpression of these genes did affect fermentation performance at low temperature. Most of the mutants were unable to complete fermentation, while overexpression of CSF1, HSP104, and TIR2 decreased the lag phase, increased the fermentation rate, and reached higher populations than that of the control strain. Another set of overexpressing strains were constructed by integrating copies of these genes in the delta regions of the commercial wine strain QA23. These new stable overexpressing strains again showed improved fermentation performance at low temperature, especially during the lag and exponential phases. Our results demonstrate the convenience of carrying out functional analysis in commercial strains and in an experimental set-up close to industrial conditions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Impact of alternative technique to ageing using oak chips in alcoholic or in malolactic fermentation on volatile and sensory composition of red wines.

    Science.gov (United States)

    Gómez García-Carpintero, E; Gómez Gallego, M A; Sánchez-Palomo, E; González Viñas, M A

    2012-09-15

    This paper reports on a complete study of the effect of wood, in the form of oak chips, on the volatile composition and sensory characteristics of Moravia Agria wines added at different stages of the fermentation process. Aroma compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Sensory profile was evaluated by experienced wine-testers. Oak chips were added to wines in two dose rates at different stages of the winemaking process: during alcoholic fermentation (AF), during malolactic fermentation (MLF) and in young, red Moravia Agria wine. Wines fermented with oak chips during AF showed higher concentrations of the ethyl esters of straight-chain fatty acids, ethyl, hexyl, isoamyl acetates and superior alcohols than the control wines. The higher concentrations of benzene compound, oak lactones and furanic compounds were found in wines in contact with oak chips during MLF. The use of oak chips gives rise to a different sensorial profile of wines depending of the point of addition. Higher intensities of woody, coconut, vanilla and sweet spices descriptors were obtained when a large dose rate of chips was employed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content.

    Science.gov (United States)

    Contreras, A; Hidalgo, C; Schmidt, S; Henschke, P A; Curtin, C; Varela, C

    2015-07-16

    High alcohol concentrations reduce the complexity of wine sensory properties. In addition, health and economic drivers have the wine industry actively seeking technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol, however commercially available wine yeasts produce very similar ethanol yields. Non-conventional yeast, in particular non-Saccharomyces species, have shown potential for producing wines with lower alcohol content. These yeasts are naturally present in the early stages of fermentation but in general are not capable of completing alcoholic fermentation. We have evaluated 48 non-Saccharomyces isolates to identify strains that, with limited aeration and in sequential inoculation regimes with S. cerevisiae, could be used for the production of wine with lower ethanol concentration. Two of these, Torulaspora delbrueckii AWRI1152 and Zygosaccharomyces bailii AWRI1578, enabled the production of wine with reduced ethanol concentration under limited aerobic conditions. Depending on the aeration regime T. delbrueckii AWRI1152 and Z. bailii AWRI1578 showed a reduction in ethanol concentration of 1.5% (v/v) and 2.0% (v/v) respectively, compared to the S. cerevisiae anaerobic control. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Microbiological diversity and prevalence of spoilage and pathogenic bacteria in commercial fermented alcoholic beverages (beer, fruit wine, refined rice wine, and yakju).

    Science.gov (United States)

    Jeon, Se Hui; Kim, Nam Hee; Shim, Moon Bo; Jeon, Young Wook; Ahn, Ji Hye; Lee, Soon Ho; Hwang, In Gyun; Rhee, Min Suk

    2015-04-01

    The present study examined 469 commercially available fermented alcoholic beverages (FABs), including beer (draft, microbrewed, and pasteurized), fruit wine (grape and others), refined rice wine, and yakju (raw and pasteurized). Samples were screened for Escherichia coli and eight foodborne pathogens (Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Yersinia enterocolitica), and the aerobic plate count, lactic acid bacteria, acetic acid bacteria, fungi, and total coliforms were also enumerated. Microbrewed beer contained the highest number of microorganisms (average aerobic plate count, 3.5; lactic acid bacteria, 2.1; acetic acid bacteria, 2.0; and fungi, 3.6 log CFU/ml), followed by draft beer and yakju (P coliforms (detected in 23.8% of microbrewed beer samples) and B. cereus (detected in all FABs) were present in some products. B. cereus was detected most frequently in microbrewed beer (54.8% of samples) and nonpasteurized yakju (50.0%), followed by pasteurized yakju (28.8%), refined rice wine (25.0%), other fruit wines (12.3%), grape wine (8.6%), draft beer (5.6%), and pasteurized beer (2.2%) (P coliform bacteria can survive the harsh conditions present in alcoholic beverages should be taken into account (alongside traditional quality indicators such as the presence of lactic acid-producing bacteria, acetic acid-producing bacteria, or both) when developing manufacturing systems and methods to prolong the shelf life of high-quality FAB products. New strategic quality management plans for various FABs are needed.

  11. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation.

    Directory of Open Access Journals (Sweden)

    Camille Duc

    Full Text Available Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.

  12. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation.

    Science.gov (United States)

    Duc, Camille; Pradal, Martine; Sanchez, Isabelle; Noble, Jessica; Tesnière, Catherine; Blondin, Bruno

    2017-01-01

    Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.

  13. Impact of nutrient imbalance on wine alcoholic fermentations: nitrogen excess enhances yeast cell death in lipid-limited must.

    Directory of Open Access Journals (Sweden)

    Catherine Tesnière

    Full Text Available We evaluated the consequences of nutritional imbalances, particularly lipid/nitrogen imbalances, on wine yeast survival during alcoholic fermentation. We report that lipid limitation (ergosterol limitation in our model led to a rapid loss of viability during the stationary phase of fermentation and that the cell death rate is strongly modulated by nitrogen availability and nature. Yeast survival was reduced in the presence of excess nitrogen in lipid-limited fermentations. The rapidly dying yeast cells in fermentations in high nitrogen and lipid-limited conditions displayed a lower storage of the carbohydrates trehalose and glycogen than observed in nitrogen-limited cells. We studied the cell stress response using HSP12 promoter-driven GFP expression as a marker, and found that lipid limitation triggered a weaker stress response than nitrogen limitation. We used a SCH9-deleted strain to assess the involvement of nitrogen signalling pathways in the triggering of cell death. Deletion of SCH9 increased yeast viability in the presence of excess nitrogen, indicating that a signalling pathway acting through Sch9p is involved in this nitrogen-triggered cell death. We also show that various nitrogen sources, but not histidine or proline, provoked cell death. Our various findings indicate that lipid limitation does not elicit a transcriptional programme that leads to a stress response protecting yeast cells and that nitrogen excess triggers cell death by modulating this stress response, but not through HSP12. These results reveal a possibly negative role of nitrogen in fermentation, with reported effects referring to ergosterol limitation conditions. These effects should be taken into account in the management of alcoholic fermentations.

  14. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture.

    Science.gov (United States)

    Morales, Pilar; Rojas, Virginia; Quirós, Manuel; Gonzalez, Ramon

    2015-05-01

    We have developed a wine fermentation procedure that takes advantage of the metabolic features of a previously characterized Metschnikowia pulcherrima strain in order to reduce ethanol production. It involves the use of M. pulcherrima/Saccharomyces cerevisiae mixed cultures, controlled oxygenation conditions during the first 48 h of fermentation, and anaerobic conditions thereafter. The influence of different oxygenation regimes and initial inoculum composition on yeast physiology and final ethanol content was studied. The impact of oxygenation on yeast physiology goes beyond the first aerated step and influences yields and survival rates during the anaerobic stage. The activity of M. pulcherrima in mixed oxygenated cultures resulted in a clear reduction in ethanol yield, as compared to S. cerevisiae. Despite relatively low initial cell numbers, S. cerevisiae always predominated in mixed cultures by the end of the fermentation process. Strain replacement was faster under low oxygenation levels. M. pulcherrima confers an additional advantage in terms of dissolved oxygen, which drops to zero after a few hours of culture, even under highly aerated conditions, and this holds true for mixed cultures. Alcohol reduction values about 3.7 % (v/v) were obtained for mixed cultures under high aeration, but they were associated to unacceptable volatile acidity levels. In contrast, under optimized conditions, only 0.35 g/L acetic acid was produced, for an alcohol reduction of 2.2 % (v/v), and almost null dissolved oxygen during the process.

  15. Melatonin and derived l-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains.

    Science.gov (United States)

    Fernández-Cruz, E; Álvarez-Fernández, M A; Valero, E; Troncoso, A M; García-Parrilla, M C

    2017-02-15

    Melatonin is a neurohormone involved in the regulation of circadian rhythms in humans. Evidence has recently been found of its occurrence in wines and its role in the winemaking process. The yeast Saccharomyces cerevisiae is consequently thought to be important in Melatonin synthesis, but limited data and reference texts are available on this synthetic pathway. This paper aims to elucidate whether the synthetic pathway of Melatonin in Saccharomyces and non-Saccharomyces strains involves these intermediates. To this end, seven commercial strains comprising Saccharomyces cerevisiae (Red Fruit, ES488, Lalvin QA23, Uvaferm BC, and Lalvin ICV GRE) and non-Saccharomyces (Torulaspora delbrueckii and Metschnikowia pulcherrima) were monitored, under controlled fermentation conditions, in synthetic must, for seven days. Samples were analysed using a UHPLC-HRMS system (Qexactive). Five out of the seven strains formed Melatonin during the fermentation process: three S. cerevisiae strains and the two non-Saccharomyces. Additionally, other compounds derived from l-tryptophan occurred during fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Assessing the mechanisms responsible for differences between nitrogen requirements of saccharomyces cerevisiae wine yeasts in alcoholic fermentation.

    Science.gov (United States)

    Brice, Claire; Sanchez, Isabelle; Tesnière, Catherine; Blondin, Bruno

    2014-02-01

    Nitrogen is an essential nutrient for Saccharomyces cerevisiae wine yeasts during alcoholic fermentation, and its abundance determines the fermentation rate and duration. The capacity to ferment under conditions of nitrogen deficiency differs between yeasts. A characterization of the nitrogen requirements of a set of 23 strains revealed large differences in their fermentative performances under nitrogen deficiency, and these differences reflect the nitrogen requirements of the strains. We selected and compared two groups of strains, one with low nitrogen requirements (LNRs) and the other with high nitrogen requirements (HNRs). A comparison of various physiological traits indicated that the differences are not related to the ability to store nitrogen or the protein content. No differences in protein synthesis activity were detected between strains with different nitrogen requirements. Transcriptomic analysis revealed expression patterns specific to each of the two groups of strains, with an overexpression of stress genes in HNR strains and a stronger expression of biosynthetic genes in LNR strains. Our data suggest that differences in glycolytic flux may originate from variations in nitrogen sensing and signaling under conditions of starvation.

  17. Effect of pulsed electric field treatment during cold maceration and alcoholic fermentation on major red wine qualitative and quantitative parameters.

    Science.gov (United States)

    El Darra, Nada; Rajha, Hiba N; Ducasse, Marie-Agnès; Turk, Mohammad F; Grimi, Nabil; Maroun, Richard G; Louka, Nicolas; Vorobiev, Eugène

    2016-12-15

    This work studies the effect of pulsed electric field (PEF) treatment at moderate and high field strengths (E=0.8kV/cm & 5kV/cm) prior and during alcoholic fermentation (AF) of red grapes on improving different parameters of pre-treated extracts: pH, °Brix, colour intensity (CI), total polyphenols content (TPI) of Cabernet Sauvignon red wine. Similar trends were observed for treating grapes using moderate and high electric field strength on the enhancement of CI and TPI of the wine after AF. The application of PEF using moderate strengths at different times during cold maceration (CM) (0, 2 and 4days) was more efficient for treatment during CM. The treatment during AF showed lower extraction rate compared to treating during CM and prior to AF. Our results clearly show that the best time for applying the PEF-treatment through the red fermentation is during the CM step. Copyright © 2016. Published by Elsevier Ltd.

  18. A Feasibility Study on Monitoring Residual Sugar and Alcohol Strength in Kiwi Wine Fermentation Using a Fiber-Optic FT-NIR Spectrometry and PLS Regression.

    Science.gov (United States)

    Wang, Bingqian; Peng, Bangzhu

    2017-02-01

    This work aims to investigate the potential of fiber-optic Fourier transform-near-infrared (FT-NIR) spectrometry associated with chemometric analysis, which will be applied to monitor time-related changes in residual sugar and alcohol strength during kiwi wine fermentation. NIR calibration models for residual sugar and alcohol strength during kiwi wine fermentation were established on the FT-NIR spectra of 98 samples scanned in a fiber-optic FT-NIR spectrometer, and partial least squares regression method. The results showed that R 2 and root mean square error of cross-validation could achieve 0.982 and 3.81 g/L for residual sugar, and 0.984 and 0.34% for alcohol strength, respectively. Furthermore, crucial process information on kiwi must and wine fermentations provided by fiber-optic FT-NIR spectrometry was found to agree with those obtained from traditional chemical methods, and therefore this fiber-optic FT-NIR spectrometry can be applied as an effective and suitable alternative for analyses and monitoring of those processes. The overall results suggested that fiber-optic FT-NIR spectrometry is a promising tool for monitoring and controlling the kiwi wine fermentation process. © 2017 Institute of Food Technologists®.

  19. Chemical Assessment of White Wine during Fermentation Process

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-05-01

    Full Text Available There were investigated chemical properties of indigenous white wine varieties (Fetească albă, Fetească regală and Galbenă de Odobeşti during fermentation. The white wine making process took place at Wine Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. We aimed to monitorize the evolution of fermentation process parameters (temperature, alcohol content, and real extract and the quality of the bottled white wine (total acidity, alcohol content, total sulfur dioxide, total dry extract. The results obtained were in accordance to Romanian Legislation.

  20. Fermentation and Characterization of Pitaya Wine

    Science.gov (United States)

    Gong, Xiao; Yang, Yaxuan; Ma, Lina; Peng, Shaodan; Lin, Mao

    2017-12-01

    Juice was extracted from pitaya pulp. After fermentation, the wine produced contained 11.2% vol (v/v) alcohol, total sugar content is 7.3g/L, 7.8% °Brix, the content of titratable acid and amino acid nitrogen are 2.34 g/L and 0.46 g/L, respectively. Dragon fruit wine of the communist party of detect aroma components is 56 kinds, content is more than 0.5%, 17 kinds, 9 esters are among those kinds, 5 kinds alcohol, there are 2 kinds of acids, one kind of alkanes. The physicochemical characteristics of wines produced from pitaya is attractive, with unique flavor and rich nutritional value, which makes it widely accepted and even liked.

  1. Nitrogen compounds in must and volatile profile of white wine: Influence of clarification process before alcoholic fermentation.

    Science.gov (United States)

    Burin, Vívian Maria; Caliari, Vinícius; Bordignon-Luiz, Marilde T

    2016-07-01

    The aim of this study was to investigate the effect of adding a fining agent to the must in relation to the fermentation kinetics and the volatile composition of the wine produced. Three fining agents, bentonite, pectinolytic enzyme and silica were applied, separately, to samples of Chardonnay must. It was observed that the addition of a fining agent had a significant influence on the must and wine composition. The must clarified with bentonite showed the lowest nitrogen content and the enzyme addition led to the highest nitrogen content. During the fermentation process, a difference in the consumption rate was observed for each amino acid in relation to the fining agent used in the process. In relation to the volatile composition, the wine produced had different characteristics according to the fining agent added to the must, which was confirmed by separation of the samples using principal component analysis. Copyright © 2016. Published by Elsevier Ltd.

  2. Reduced Production of Higher Alcohols by Saccharomyces cerevisiae in Red Wine Fermentation by Simultaneously Overexpressing BAT1 and Deleting BAT2.

    Science.gov (United States)

    Ma, Lijuan; Huang, Shiyong; Du, Liping; Tang, Ping; Xiao, Dongguang

    2017-08-16

    In red wine, the contents of higher alcohols and ethyl carbamate (EC) are two significant health concerns. To reduce the production of higher alcohols by wine yeast YZ22 with low production of EC, one BAT2 was replaced by a BAT1 expression cassette first and then another BAT2 was deleted to obtain the mutant SYBB3. Real-time quantitative PCR showed that the relative expression level of BAT1 in SYBB3 improved 28 times compared with that in YZ22. The yields of isobutanol and 3-methyl-1-butanol produced by mutant SYBB3 reduced by 39.41% and 37.18% compared to those by the original strain YZ22, and the total production of higher alcohols decreased from 463.82 mg/L to 292.83 mg/L in must fermentation of Cabernet Sauvignon. Meanwhile, there were no obvious differences on fermentation characteristics of the mutant and parental strain. This research has suggested an effective strategy for decreasing production of higher alcohols in Saccharomyces cerevisiae.

  3. From Sugar of Grape to Alcohol of Wine: Sensorial Impact of Alcohol in Wine

    Directory of Open Access Journals (Sweden)

    António M. Jordão

    2015-11-01

    Full Text Available The quality of grapes, as well as wine quality, flavor, stability, and sensorial characteristics depends on the content and composition of several different groups of compounds from grapes. One of these groups of compounds are sugars and consequently the alcohol content quantified in wines after alcoholic fermentation. During grape berry ripening, sucrose transported from the leaves is accumulated in the berry vacuoles as glucose and fructose. The wine alcohol content continues to be a challenge in oenology, as it is also the study of the role of chemosensory factors in alcohol intake and consumer preferences. Several technical and scientific advances have occurred in recent years, such as identification of receptors and other important molecules involved in the transduction mechanisms of flavor. In addition, consumers know that wines with high alcohol content can causes a gustatory disequilibrium affecting wine sensory perceptions leading to unbalanced wines. Hence, the object of this review is to enhance the knowledge on wine grape sugar composition, the alcohol perception on a sensorial level, as well as several technological practices that can be applied to reduce the wine alcohol content.

  4. Transcription profiling of sparkling wine second fermentation

    OpenAIRE

    Penacho, Vanessa; Valero, Eva; González García, Ramón

    2012-01-01

    There is a specific set of stress factors that yeast cells must overcome under second fermentation conditions, during the production of sparkling wines by the traditional (Champenoise) method. Some of them are the same as those of the primary fermentation of still wines, although perhaps with a different intensity (high ethanol concentration, low pH, nitrogen starvation) while others are more specific to second fermentation (low temperature, CO 2 overpressure). The transcription profile of Sa...

  5. Identification of the potential inhibitors of malolactic fermentation in wines

    Directory of Open Access Journals (Sweden)

    Renata Vieira da MOTA

    2017-10-01

    Full Text Available Abstract This exploratory work aims to identify the potential inhibitors of lactic bacterial growth and to propose enological practices to guarantee the occurrence of spontaneous malolactic fermentation (MLF in wines from traditional and double-pruning management harvests in southeast Brazil. One white wine from a summer harvest and one red wine from a winter harvest that failed to complete MLF were utilized as comparative models to identify inhibitor compounds to lactic bacteria. Wine composition, alcoholic-fermentation temperature and bacterial strain contribute to the success or failure of MLF. Temperatures below 12 °C during alcoholic fermentation decrease lactic bacterial metabolism and may impair the bacteria’s growth after yeast cells lysis. A must pH below 3.2 in a summer harvest impairs bacterial growth, and the association of low pH with a free-SO2 concentration above 10 mg L-1 may inhibit MLF. For grapes with a high sugar content, harvested in the winter cycle, enologists should keep the alcohol content below 15% and control the alcoholic-fermentation temperature.

  6. Alcohol, Wine and Platelet Function

    Directory of Open Access Journals (Sweden)

    JEAN-CLAUDE RUF

    2004-01-01

    Full Text Available Epidemiological studies have demonstrated an inverse correlation between moderate wine and alcohol consumption and morbidity and mortality from coronary heart disease. The protective effect has been associated with an increase in the plasma level of HDL cholesterol, as it is well recognized that plasma HDL is inversely correlated with CHD. In addition, it has become evident that blood platelets contribute to the rate of development of atherosclerosis and CHD through several mechanisms. In recent studies it has been shown that the level of HDL cholesterol can explain only 50 % of the protective effect of alcoholic beverages; the other 50 % may be partly related to a decrease in platelet activity. This anti-platelet activity of wine is explained by ethanol but also by the polyphenolic components with which red wines are richly endowed. Several studies carried out on humans and animals have shown that wine phenolics could exert their effects by reducing prostanoid synthesis from arachidonate. In addition, it has been suggested that wine phenolics could reduce platelet activity mediated by nitric oxide. Moreover, wine phenolics increase vitamin E levels while decreasing the oxidation of platelets submitted to oxidative stress. However, a rebound phenomenon of hyperaggregability is observed after an acute alcohol consumption which is not observed with wine consumption. This protection afforded by wine has been duplicated in animals with grape phenolics added to alcohol. The rebound phenomenon may explain ischemic strokes or sudden deaths known to occur after episodes of drunkenness. It appears that wine, and wine phenolics in particular, could have a more significant inhibitory effect on platelet aggregation and could explain, in part, the hypothesis that red wine is more protective against atherosclerosis and coronary heart disease.

  7. Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle.

    Science.gov (United States)

    Martínez-García, Rafael; García-Martínez, Teresa; Puig-Pujol, Anna; Mauricio, Juan Carlos; Moreno, Juan

    2017-12-15

    High quality sparkling wine made by the traditional method requires a second alcoholic fermentation of a base wine in sealed bottles, followed by an aging time in contact with yeast lees. The CO 2 overpressure released during this second fermentation has an important effect on the yeast metabolism and therefore on the wine aroma composition. This study focuses on the changes in chemical composition and 43 aroma compounds released by yeast during this fermentation carried out under two pressure conditions. The data were subjected to statistical analysis allowing differentiating between the base wine and the wine samples taken in the middle and at the end of fermentation. The differentiation among wines obtained to the end of fermentation with or without CO 2 pressure is only achieved by a principal component analysis of 15 selected minor compounds (mainly ethyl dodecanoate, ethyl tetradecanoate, hexyl acetate, ethyl butanoate and ethyl isobutanoate). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. CHANGES IN VOLATILE COMPOSITION OF KRALJEVINA WINES BY CONTROLLED MALOLACTIC FERMENTATION

    Directory of Open Access Journals (Sweden)

    Ana JEROMEL

    2008-11-01

    Full Text Available The effect of malolactic fermentation (MLF on the volatile composition of white wines made from autochtonous grape variety Kraljevina was studied by inoculation with selected lactic acid bacteria. At the end of malolactic fermentation, after the decomposition of the malic acid present in wine the non volatile compounds were analyzed by HPLC, while volatile compounds were analyzed by gas chromatography. All wines were also sensory analyzed. Results showed changes in acetaldehyde, some higher alcohols, ethyl esters, free and bound monoterpenes and some organic acids that contribute to enhance the sensory properties and quality of Kraljevina wines that underwent malolactic fermentation.

  9. Transcription profiling of sparkling wine second fermentation.

    Science.gov (United States)

    Penacho, Vanessa; Valero, Eva; Gonzalez, Ramon

    2012-02-01

    There is a specific set of stress factors that yeast cells must overcome under second fermentation conditions, during the production of sparkling wines by the traditional (Champenoise) method. Some of them are the same as those of the primary fermentation of still wines, although perhaps with a different intensity (high ethanol concentration, low pH, nitrogen starvation) while others are more specific to second fermentation (low temperature, CO(2) overpressure). The transcription profile of Saccharomyces cerevisiae during primary wine fermentation has been studied by several research groups, but this is the first report on yeast transcriptome under second fermentation conditions. Our results indicate that the main pathways affected by these particular conditions are related to aerobic respiration, but genes related to vacuolar and peroxisomal functions were also highlighted in this study. A parallelism between the transcription profile of wine yeast during primary and second fermentation is appreciated, with ethanol appearing as the main factor driving gene transcription during second fermentation. Low temperature seems to also influence yeast transcription profile under these particular winemaking conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties.

    Science.gov (United States)

    Schelezki, Olaf J; Šuklje, Katja; Boss, Paul K; Jeffery, David W

    2018-09-01

    This study extends previous work on Cabernet Sauvignon wines of lowered alcohol concentrations produced by pre-fermentatively substituting proportions of juice from an overripe crop with "green harvest wine" or water to adjust initial sugar concentrations. Resulting wines were assessed for their volatile compositions and sensory characteristics to evaluate the suitability of this winemaking approach to managing wine alcohol concentrations in warm viticulture regions. Wines from water or green harvest wine substitution were also compared to wines of similar alcohol content produced from earlier harvested grapes. Implementation of water substitution in particular resulted in minor alterations of wine volatile composition compared to the control, and positive aroma and flavour characteristics were preserved. However, overripe sensory attributes such as 'hotness' and 'port wine' were conserved whereas they were absent in wines of similar alcohol level made from earlier harvested grapes, thereby emphasising the relevance of grape (over)maturity when producing lower alcohol wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Prediction of problematic wine fermentations using artificial neural networks.

    Science.gov (United States)

    Román, R César; Hernández, O Gonzalo; Urtubia, U Alejandra

    2011-11-01

    Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.

  12. ORGANIC ACIDS CONCENTRATION IN WINE STOCKS AFTER Saccharomyces cerevisiae FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. N. Bayraktar

    2013-04-01

    Full Text Available The biochemical constituents in wine stocks that influence the flavor and quality of wine are investigated in the paper. The tested parameters consist of volume fraction of ethanol, residual sugar, phenolic compounds, tartaric, malic, citric, lactic, acetic acids, titratable acidity and volatile acids. The wine stocks that were received from white and red grape varieties Tairov`s selection were tested. There was a correlation between titratable acidity and volatile acids in the wine stocks from white and red grape varieties. High correlation was also found between lactic and acetic acids, between volatile acids, acetic acid and sugar. It was determined that wine stocks with a high concentration of ethanol originated from those yeast strains of Saccharomyces cerevisiae, in a fermented grape must of high speed of enzyme activity. The taste of wine stocks correlated with the ratio of tartaric to malic acid. Analysis showed significant differences between the varieties of white and red wine stocks in concentrations of organic acids, phenolic compounds, residual sugar, and volume fraction of ethanol. Positive correlation was indicated for both studied groups for volatile acids and acetic acid, tartaric, malic, lactic acids and total sugar. Prospective yeast cultures with high productivity of alcohol (ethanol were selected for winemaking biotechnology.

  13. Fermentative alcohol production

    Science.gov (United States)

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  14. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters.

    Science.gov (United States)

    Cai, Jian; Zhu, Bao-Qing; Wang, Yun-He; Lu, Lin; Lan, Yi-Bin; Reeves, Malcolm J; Duan, Chang-Qing

    2014-07-01

    The influence of pre-fermentation cold maceration (CM) on Cabernet Sauvignon wines fermented in two different industrial-scale fermenters was studied. CM treatment had different effects on wine aroma depending on the types of fermenter, being more effective for automatic pumping-over tank (PO-tank) than automatic punching-down tank (PD-tank). When PO-tank was used, CM-treated wine showed a decrease in some fusel alcohols (isobutanol and isopentanol) and an increase in some esters (especially acetate esters). However, no significant changes were detected in these compounds when PD-tank was used. Ethyl 2-hexenoate and diethyl succinate were decreased, while geranylacetone was increased by the CM treatment in both fermenters. β-Damascenone was increased by the CM treatment in PO-tank fermented wines but decreased in PD-tank fermented wines. The fruity, caramel and floral aroma series were enhanced while chemical series were decreased by the CM treatment in PO-tank fermented wines. The content of (Z)-6-nonen-1-ol in the final wines was positively correlated to CM treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine

    Science.gov (United States)

    Contreras, A.; Hidalgo, C.; Henschke, P. A.; Chambers, P. J.; Curtin, C.

    2014-01-01

    Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in

  16. Yeast interactions in inoculated wine fermentation

    Directory of Open Access Journals (Sweden)

    Maurizio eCiani

    2016-04-01

    Full Text Available The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process.

  17. Effect of Saccharomyces, Non-Saccharomyces Yeasts and Malolactic Fermentation Strategies on Fermentation Kinetics and Flavor of Shiraz Wines

    Directory of Open Access Journals (Sweden)

    Heinrich du Plessis

    2017-12-01

    Full Text Available The use of non-Saccharomyces yeasts to improve complexity and diversify wine style is increasing; however, the interactions between non-Saccharomyces yeasts and lactic acid bacteria (LAB have not received much attention. This study investigated the interactions of seven non-Saccharomyces yeast strains of the genera Candida, Hanseniaspora, Lachancea, Metschnikowia and Torulaspora in combination with S. cerevisiae and three malolactic fermentation (MLF strategies in a Shiraz winemaking trial. Standard oenological parameters, volatile composition and sensory profiles of wines were investigated. Wines produced with non-Saccharomyces yeasts had lower alcohol and glycerol levels than wines produced with S. cerevisiae only. Malolactic fermentation also completed faster in these wines. Wines produced with non-Saccharomyces yeasts differed chemically and sensorially from wines produced with S. cerevisiae only. The Candida zemplinina and the one L. thermotolerans isolate slightly inhibited LAB growth in wines that underwent simultaneous MLF. Malolactic fermentation strategy had a greater impact on sensory profiles than yeast treatment. Both yeast selection and MLF strategy had a significant effect on berry aroma, but MLF strategy also had a significant effect on acid balance and astringency of wines. Winemakers should apply the optimal yeast combination and MLF strategy to ensure fast completion of MLF and improve wine complexity.

  18. Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine).

    Science.gov (United States)

    Kim, S A; Kim, N H; Lee, S H; Hwang, I G; Rhee, M S

    2014-03-01

    Only limited information is available on the microbiological safety of fermented alcoholic beverages because it is still a common belief that such beverages do not provide a favorable environment for bacterial growth and survival. Thus, in this study, we examined the survival of major foodborne pathogens and spores in fermented alcoholic beverages. Foodborne pathogens (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus) and B. cereus spores (initial population, 3 to 4 log CFU/ml) were inoculated separately into three types of beer and refined rice wine, which were then stored at 5 and 22°C. Bacterial counts were assayed periodically for up to 28 days. Vegetative B. cereus counts decreased rapidly, whereas B. cereus spore counts remained constant (P > 0.05) for a long period of time in all beverages. Vegetative B. cereus cells formed spores in beer at 5 and 22°C, and the spores survived for long periods. Among vegetative cells, E. coli O157:H7 had the highest survival (only 1.49 to 1.56 log reduction during 28 days in beer at 5°C). Beer and refined rice wine supported microbial survival from several days to several weeks. Our results appear to contradict the common belief that pathogens cannot survive in alcoholic beverages. Long-term survival of pathogens (especially B. cereus and E. coli O157:H7) in beer and refined rice wine should be taken into consideration by the manufacturers of these beverages. This study provides basic information that should help further research into microbial survival in alcoholic beverages and increase the microbiological safety regulation of fermented alcoholic beverages.

  19. Fermentative Alcohol Production

    DEFF Research Database (Denmark)

    Martín, Mariano; Sánchez, Antonio; Woodley, John M.

    2018-01-01

    In this chapter we present some of key principles of bioreactor design for the production of alcohols by fermentation of sugar and syngas . Due to the different feedstocks, a detailed analysis of the hydrodynamics inside the units , bubble columns or stirred tank reactors , the gas-liquid mass...

  20. Optimization of the alcoholic fermentation of blueberry juice by AS ...

    African Journals Online (AJOL)

    Optimization of the alcoholic fermentation of blueberry juice by AS 2.316 Saccharomyces cerevisiae wine yeast. ... Central composite experimental design together with response surface methodology (RSM) was employed to optimize the fermentation temperature, pH and inoculums size for maximum production of ethanol ...

  1. Glycolytic Functions Are Conserved in the Genome of the Wine Yeast Hanseniaspora uvarum, and Pyruvate Kinase Limits Its Capacity for Alcoholic Fermentation.

    Science.gov (United States)

    Langenberg, Anne-Kathrin; Bink, Frauke J; Wolff, Lena; Walter, Stefan; von Wallbrunn, Christian; Grossmann, Manfred; Heinisch, Jürgen J; Schmitz, Hans-Peter

    2017-11-15

    Hanseniaspora uvarum (anamorph Kloeckera apiculata ) is a predominant yeast on wine grapes and other fruits and has a strong influence on wine quality, even when Saccharomyces cerevisiae starter cultures are employed. In this work, we sequenced and annotated approximately 93% of the H. uvarum genome. Southern and synteny analyses were employed to construct a map of the seven chromosomes present in a type strain. Comparative determinations of specific enzyme activities within the fermentative pathway in H. uvarum and S. cerevisiae indicated that the reduced capacity of the former yeast for ethanol production is caused primarily by an ∼10-fold-lower activity of the key glycolytic enzyme pyruvate kinase. The heterologous expression of the encoding gene, H. uvarum PYK1 ( HuPYK1 ), and two genes encoding the phosphofructokinase subunits, HuPFK1 and HuPFK2 , in the respective deletion mutants of S. cerevisiae confirmed their functional homology. IMPORTANCE Hanseniaspora uvarum is a predominant yeast species on grapes and other fruits. It contributes significantly to the production of desired as well as unfavorable aroma compounds and thus determines the quality of the final product, especially wine. Despite this obvious importance, knowledge on its genetics is scarce. As a basis for targeted metabolic modifications, here we provide the results of a genomic sequencing approach, including the annotation of 3,010 protein-encoding genes, e.g., those encoding the entire sugar fermentation pathway, key components of stress response signaling pathways, and enzymes catalyzing the production of aroma compounds. Comparative analyses suggest that the low fermentative capacity of H. uvarum compared to that of Saccharomyces cerevisiae can be attributed to low pyruvate kinase activity. The data reported here are expected to aid in establishing H. uvarum as a non- Saccharomyces yeast in starter cultures for wine and cider fermentations. Copyright © 2017 American Society for

  2. Minor Volatile Compounds Profiles of ‘Aligoté’ Wines Fermented with Different Yeast Strains

    Directory of Open Access Journals (Sweden)

    Florin VARARU

    2015-03-01

    Full Text Available The aroma of wine can be classified accordingly to its origin, in varietal aroma, pre-fermentative aroma, fermentative aroma and post-fermentative aroma. Although a number of flavor components are found in the original grape, the dominant and major compounds contributing to white wines are formed during alcoholic fermentation, in concordance with the yeast strain used. In order to highlight the influence of the yeast strain to the aroma composition of wines, wine samples from ‘Aligoté’ grape variety made with 8 different yeast strains were subjected to stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS analyses. Also, a sensorial analysis of the studied wines was performed by a tasting panel consisting of 15 tasters. 38 minor volatile compounds were quantified by SBSE-GC-MS technique. Different concentration of the same compound and different aroma compounds were identified and quantified in wines obtained with different yeast strains. A wine finger printing was obtained by multivariate data analyses of aroma compounds grouped by chemical families. The analytical and sensorial analysis of the wine samples confirms that there are differences in aroma composition of the wines made with different yeast strains.

  3. Early versus late leaf removal strategies for Pinot Noir (Vitis vinifera L.): effect on colour-related phenolics in young wines following alcoholic fermentation.

    Science.gov (United States)

    Sternad Lemut, Melita; Trost, Kajetan; Sivilotti, Paolo; Arapitsas, Panagiotis; Vrhovsek, Urska

    2013-12-01

    The widely adopted viticultural practice of late (véraison) leaf removal is now losing many of its advantages as a result of today's warmer vineyard conditions. With the aim of seeking a good alternative, the influence of earlier leaf removals (at pre-flowering and berry-set) on colour-related phenolics in young Pinot Noir wines was investigated in the years 2009 and 2010. Total flavonols in 2009 wines were 71 and 52% higher in case of véraison and berry-set treatments respectively as compared with untreated controls, while in 2010 the average content of flavonols was highest with pre-flowering leaf removal (75% higher than controls). The anthocyanin content in 2009 wines was 18 and 11% higher in case of véraison and berry-set treatments respectively and was favoured by early leaf removals in 2010 (50 and 43% higher in case of berry-set and pre-flowering treatments respectively) as compared with controls. Changes in hydroxycinnamic acid profiles were shown to be greatest in 2010 wines resulting from early leaf removal treatments. Promoted formation of vitisin A-like pigments in 2010 leaf removal treatments was observed during fermentation. The phenolic profiles of grapes/wines were affected by leaf removal timing, although differently in two (extremely different) seasons. Earlier leaf removal strategies showed some promising results, with good proportions mainly of flavonols and anthocyanins, retained also in young wines. Vitisins A in wines were positively affected by all leaf removals. © 2013 Society of Chemical Industry.

  4. Quality and Composition of Red Wine Fermented with Schizosaccharomyces pombe as Sole Fermentative Yeast, and in Mixed and Sequential Fermentations with Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Felipe Palomero

    2014-01-01

    Full Text Available This work examines the physiology of Schizosaccharomyces pombe (represented by strain 938 in the production of red wine, as the sole fermentative yeast, and in mixed and sequential fermentations with Saccharomyces cerevisiae 796. For further comparison, fermentations in which Saccharomyces cerevisiae was the sole fermentative yeast were also performed; in these fermentations a commercial lactic acid bacterium was used to perform malolactic fermentation once alcoholic fermentation was complete (unlike S. cerevisiae, the Sc. pombe performs maloalcoholic fermentation and therefore removes malic acid without such help. Relative density, acetic, malic and pyruvic acid concentrations, primary amino nitrogen and urea concentrations, and pH of the musts were measured over the entire fermentation period. In all fermentations in which Sc. pombe 938 was involved, nearly all the malic acid was consumed from an initial concentration of 5.5 g/L, and moderate acetic acid concentrations below 0.4 g/L were formed. The urea content of these wines was notably lower, showing a tenfold reduction when compared with those that were made with S. cerevisiae 796 alone. The sensorial properties of the different final wines varied widely. The wines fermented with Sc. pombe 938 had maximum aroma intensity and quality, and they were preferred by the tasters.

  5. Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics

    Science.gov (United States)

    Bokulich, Nicholas A.; Collins, Thomas S.; Masarweh, Chad; Allen, Greg; Heymann, Hildegarde; Ebeler, Susan E.

    2016-01-01

    ABSTRACT Regionally distinct wine characteristics (terroir) are an important aspect of wine production and consumer appreciation. Microbial activity is an integral part of wine production, and grape and wine microbiota present regionally defined patterns associated with vineyard and climatic conditions, but the degree to which these microbial patterns associate with the chemical composition of wine is unclear. Through a longitudinal survey of over 200 commercial wine fermentations, we demonstrate that both grape microbiota and wine metabolite profiles distinguish viticultural area designations and individual vineyards within Napa and Sonoma Counties, California. Associations among wine microbiota and fermentation characteristics suggest new links between microbiota, fermentation performance, and wine properties. The bacterial and fungal consortia of wine fermentations, composed from vineyard and winery sources, correlate with the chemical composition of the finished wines and predict metabolite abundances in finished wines using machine learning models. The use of postharvest microbiota as an early predictor of wine chemical composition is unprecedented and potentially poses a new paradigm for quality control of agricultural products. These findings add further evidence that microbial activity is associated with wine terroir. PMID:27302757

  6. Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics

    Directory of Open Access Journals (Sweden)

    Nicholas A. Bokulich

    2016-06-01

    Full Text Available Regionally distinct wine characteristics (terroir are an important aspect of wine production and consumer appreciation. Microbial activity is an integral part of wine production, and grape and wine microbiota present regionally defined patterns associated with vineyard and climatic conditions, but the degree to which these microbial patterns associate with the chemical composition of wine is unclear. Through a longitudinal survey of over 200 commercial wine fermentations, we demonstrate that both grape microbiota and wine metabolite profiles distinguish viticultural area designations and individual vineyards within Napa and Sonoma Counties, California. Associations among wine microbiota and fermentation characteristics suggest new links between microbiota, fermentation performance, and wine properties. The bacterial and fungal consortia of wine fermentations, composed from vineyard and winery sources, correlate with the chemical composition of the finished wines and predict metabolite abundances in finished wines using machine learning models. The use of postharvest microbiota as an early predictor of wine chemical composition is unprecedented and potentially poses a new paradigm for quality control of agricultural products. These findings add further evidence that microbial activity is associated with wine terroir.

  7. Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines.

    Science.gov (United States)

    Deed, Rebecca C; Fedrizzi, Bruno; Gardner, Richard C

    2017-10-11

    Sauvignon blanc wine, balanced by herbaceous and tropical aromas, is fermented at low temperatures (10-15 °C). Anecdotal accounts from winemakers suggest that cold fermentations produce and retain more "fruity" aroma compounds; nonetheless, studies have not confirmed why low temperatures are optimal for Sauvignon blanc. Thirty-two aroma compounds were quantitated from two Marlborough Sauvignon blanc juices fermented at 12.5 and 25 °C, using Saccharomyces cerevisiae strains EC1118, L-1528, M2, and X5. Fourteen compounds were responsible for driving differences in aroma chemistry. The 12.5 °C-fermented wines had lower 3-mercaptohexan-1-ol (3MH) and higher alcohols but increased fruity acetate esters. However, a sensory panel did not find a significant difference between fruitiness in 75% of wine pairs based on fermentation temperature, in spite of chemical differences. For wine pairs with significant differences (25%), the 25 °C-fermented wines were fruitier than the 12.5 °C-fermented wines, with high fruitiness associated with 3MH. We propose that the benefits of low fermentation temperatures are not derived from increased fruitiness but a better balance between fruitiness and greenness. Even so, since 75% of wines showed no significant difference, higher fermentation temperatures could be utilized without detriment, lowering costs for the wine industry.

  8. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.

    Science.gov (United States)

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-09-10

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer

    Science.gov (United States)

    Arranz, Sara; Chiva-Blanch, Gemma; Valderas-Martínez, Palmira; Medina-Remón, Alex; Lamuela-Raventós, Rosa M.; Estruch, Ramón

    2012-01-01

    Since ancient times, people have attributed a variety of health benefits to moderate consumption of fermented beverages such as wine and beer, often without any scientific basis. There is evidence that excessive or binge alcohol consumption is associated with increased morbidity and mortality, as well as with work related and traffic accidents. On the contrary, at the moment, several epidemiological studies have suggested that moderate consumption of alcohol reduces overall mortality, mainly from coronary diseases. However, there are discrepancies regarding the specific effects of different types of beverages (wine, beer and spirits) on the cardiovascular system and cancer, and also whether the possible protective effects of alcoholic beverages are due to their alcoholic content (ethanol) or to their non-alcoholic components (mainly polyphenols). Epidemiological and clinical studies have pointed out that regular and moderate wine consumption (one to two glasses a day) is associated with decreased incidence of cardiovascular disease (CVD), hypertension, diabetes, and certain types of cancer, including colon, basal cell, ovarian, and prostate carcinoma. Moderate beer consumption has also been associated with these effects, but to a lesser degree, probably because of beer’s lower phenolic content. These health benefits have mainly been attributed to an increase in antioxidant capacity, changes in lipid profiles, and the anti-inflammatory effects produced by these alcoholic beverages. This review summarizes the main protective effects on the cardiovascular system and cancer resulting from moderate wine and beer intake due mainly to their common components, alcohol and polyphenols. PMID:22852062

  10. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer.

    Science.gov (United States)

    Arranz, Sara; Chiva-Blanch, Gemma; Valderas-Martínez, Palmira; Medina-Remón, Alex; Lamuela-Raventós, Rosa M; Estruch, Ramón

    2012-07-01

    Since ancient times, people have attributed a variety of health benefits to moderate consumption of fermented beverages such as wine and beer, often without any scientific basis. There is evidence that excessive or binge alcohol consumption is associated with increased morbidity and mortality, as well as with work related and traffic accidents. On the contrary, at the moment, several epidemiological studies have suggested that moderate consumption of alcohol reduces overall mortality, mainly from coronary diseases. However, there are discrepancies regarding the specific effects of different types of beverages (wine, beer and spirits) on the cardiovascular system and cancer, and also whether the possible protective effects of alcoholic beverages are due to their alcoholic content (ethanol) or to their non-alcoholic components (mainly polyphenols). Epidemiological and clinical studies have pointed out that regular and moderate wine consumption (one to two glasses a day) is associated with decreased incidence of cardiovascular disease (CVD), hypertension, diabetes, and certain types of cancer, including colon, basal cell, ovarian, and prostate carcinoma. Moderate beer consumption has also been associated with these effects, but to a lesser degree, probably because of beer's lower phenolic content. These health benefits have mainly been attributed to an increase in antioxidant capacity, changes in lipid profiles, and the anti-inflammatory effects produced by these alcoholic beverages. This review summarizes the main protective effects on the cardiovascular system and cancer resulting from moderate wine and beer intake due mainly to their common components, alcohol and polyphenols.

  11. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer

    Directory of Open Access Journals (Sweden)

    Sara Arranz

    2012-07-01

    Full Text Available Since ancient times, people have attributed a variety of health benefits to moderate consumption of fermented beverages such as wine and beer, often without any scientific basis. There is evidence that excessive or binge alcohol consumption is associated with increased morbidity and mortality, as well as with work related and traffic accidents. On the contrary, at the moment, several epidemiological studies have suggested that moderate consumption of alcohol reduces overall mortality, mainly from coronary diseases. However, there are discrepancies regarding the specific effects of different types of beverages (wine, beer and spirits on the cardiovascular system and cancer, and also whether the possible protective effects of alcoholic beverages are due to their alcoholic content (ethanol or to their non-alcoholic components (mainly polyphenols. Epidemiological and clinical studies have pointed out that regular and moderate wine consumption (one to two glasses a day is associated with decreased incidence of cardiovascular disease (CVD, hypertension, diabetes, and certain types of cancer, including colon, basal cell, ovarian, and prostate carcinoma. Moderate beer consumption has also been associated with these effects, but to a lesser degree, probably because of beer’s lower phenolic content. These health benefits have mainly been attributed to an increase in antioxidant capacity, changes in lipid profiles, and the anti-inflammatory effects produced by these alcoholic beverages. This review summarizes the main protective effects on the cardiovascular system and cancer resulting from moderate wine and beer intake due mainly to their common components, alcohol and polyphenols.

  12. Effect of sequential fermentations and grape cultivars on volatile compounds and sensory profiles of Danish wines

    DEFF Research Database (Denmark)

    Liu, Jing; Arneborg, Nils; Toldam-Andersen, Torben

    2017-01-01

    in Denmark were used in sequential fermentations with S. cerevisiae on three cool-climate grape cultivars, Bolero, Rondo and Regent. During the fermentations, the yeast growth was determined as well as key oenological parameters, volatile compounds and sensory properties of finished rosé wines. RESULTS......: The different non-Saccharomyces strains and cool-climate grape cultivars produced wines with a distinctive aromatic profile. A total of 67 volatile compounds were identified, including 43 esters, 14 alcohols, five acids, two ketones, a C13-norisoprenoid, a lactone and a sulfur compound. The use of M. viticola...... in sequential fermentation with S. cerevisiae resulted in richer berry and fruity flavours in wines. The sensory plot showed a more clear separation among wine samples by grape cultivars compared with yeast strains. CONCLUSION: Knowledge on the influence of indigenous non-Saccharomyces strains and grape...

  13. Fortification and Elevated Alcohol Concentration Affect the Concentration of Rotundone and Volatiles in Vitis vinifera cv. Shiraz Wine

    Directory of Open Access Journals (Sweden)

    Pangzhen Zhang

    2017-06-01

    Full Text Available Rotundone is a key aromatic compound for cool-climate Shiraz. This compound is produced in the skin of grape berries and extracted into wine during fermentation. This project investigated the influence of fermentation techniques on the concentration of rotundone in the resultant wine. Wine was fortified with ethanol and sucrose on the 1st and 5th days of fermentation and rotundone, volatile aroma compounds and colour were assessed in the resultant wine. The relationship between the concentration of rotundone and alcoholic strength during fermentation process was also investigated. Wine alcoholic strength and skin–wine contact time were two factors affecting rotundone extraction rate from grapes into wine. Fortification significantly enhanced rotundone extraction rate, and improved wine colour and phenolics and affects the concentration of ethyl acetate, 3-methylbutyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, methyl nonanoate, isopentanol and phenylethyl alcohol in the resultant wine. Understanding how ethanol produced during fermentation can change the extraction of skin-bound aroma compounds and the colour and flavour of wine allows greater control of fermentation parameters to produce quality wine.

  14. Alcohol by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tamoki, H.

    1973-08-22

    Alcohol was obtained by culturing Saccharomyces diastaticus and S. cerevisiae on a medium containing saccharified starch as the main carbon source. Starch was saccharified with either acid or enzyme. Thus, 185 ml fermented mash (10.52% EtOH) was obtained by culturing yeast starter on 200 ml saccharified solution containing yeast extract 2 and peptone 2 g for 94 hours at 30 degrees; the saccharified solution was prepared by adding 0.006 mole NaCl, 0.001 mole CaCl2, and 40 mg bacterial dextrinogenic amylase to 20% potato starch suspension and allowed to react for 30 minutes at 75 degrees.

  15. OXYGEN MANAGEMENT DURING ALCOHOLIC FERMENTATION

    OpenAIRE

    MOENNE VARGAS, MARÍA ISABE

    2013-01-01

    Oxygen additions are a common practice in winemaking, as oxygen has a positive effect in fermentative kinetics, biomass synthesis and improvement of color, structure and :flavor in treated wines. However, most oxygen additions are carried out heuristically through pump-over operations solely on a know-how basis, which is difficult to manage in terms of the exact quantity of oxygen transferred to the fermenting must. It is important to estímate the amount of oxygen added because...

  16. WINE AND WINE TOURISM IN MACEDONIA

    OpenAIRE

    Cane Koteski; Zlatko Jakovlev; Dragana Soltirovska

    2016-01-01

    Wine (Latin: vinum) is an alcoholic beverage obtained by the fermentation of the grapes, the fruit of the vine plant. In Europe, according to legal regulations, the wine is the product obtained exclusively by full or partial fermentation of fresh grapes, clove or not, or of grape must. The transformation of grapes into wine is called vinification. The science of wine is called oenology. In some other parts of the world, the word wine can be true of alcohol obtained ...

  17. Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation

    Science.gov (United States)

    Singh, Rajendra; Kunkee, Ralph E.

    1976-01-01

    Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested. PMID:16345179

  18. Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation.

    Science.gov (United States)

    Crépin, Lucie; Sanchez, Isabelle; Nidelet, Thibault; Dequin, Sylvie; Camarasa, Carole

    2014-08-19

    Under N-limiting conditions, Saccharomyces cerevisiae strains display a substantial variability in their biomass yield from consumed nitrogen -in particular wine yeasts exhibit high growth abilities- that is correlated with their capacity to complete alcoholic fermentation, a trait of interest for fermented beverages industries. The aim of the present work was to assess the contribution of nitrogen availability to the strain-specific differences in the ability to efficiently use N-resource for growth and to identify the underlying mechanisms. We compared the profiles of assimilation of several nitrogen sources (mostly ammonium, glutamine, and arginine) for high and low biomass-producing strains in various conditions of nitrogen availability. We also analyzed the intracellular fate of nitrogen compounds. Strains clustered into two groups at initial nitrogen concentrations between 85 and 385 mg N.L(-1): high biomass producers that included wine strains, were able to complete fermentation of 240 g.L(-1) glucose and quickly consume nitrogen, in contrast to low biomass producers. The two classes of strains exhibited distinctive characteristics that contributed to their differential capacity to produce biomass. The contribution of each characteristic varied according to nitrogen availability. In high biomass producers, the high rate of ammonium uptake resulted in an important consumption of this preferred nitrogen source that promoted the growth of these yeasts when nitrogen was provided in excess. Both classes of yeast accumulated poor nitrogen sources, mostly arginine, in vacuoles during the first stages of growth. However, at end of the growth phase when nitrogen had become limiting, high biomass producers more efficiently used this vacuolar nitrogen fraction for protein synthesis and further biomass formation than low biomass producers. Overall, we demonstrate that the efficient management of the nitrogen resource, including efficient ammonium uptake and efficient

  19. RESEARCHES CONCERNING THE EVOLUTION OF WINE MICROBIOTA DURING THE SPONTANEOUS FERMENTATION OF RED GRAPES JUICES

    Directory of Open Access Journals (Sweden)

    Ionica Deliu

    2010-01-01

    Full Text Available In order to keep its place on the wine international market, Romania should produce typical wines starting from localgrape varieties and conducting the alcoholic fermentation by starter cultures obtained from local isolated wine yeast.The present study was initiated due to the fact that there are few informations regarding the evolution of winemicrorganisms in plantations and in the fermentations process for quantitative point of view.The population dynamics of microbiota in Valea Calugareasca vineyard was analysed during the alcoholicfermentation. No yeast starter cultures had been used in order to investigate the dynamics of grape-related indigenousmicroorganisms population. Classical works and methods for alcoholic fermentation monitoring have been employed atthis level.At the beginning of fermentation the total number of yeasts found is doubling, while the number of bacteria is stabilizedat a value of 103 CFU/ml. During the alcoholic fermentation the yeasts become predominant (107–108 cfu/ml andcontinue the fermentation until its completion. Significant differences regarding the evolution of yeast microbiota forquantitative point of view between varieties have been recorded.

  20. The influence of Wickerhamomyces anomalus killer yeast on the fermentation and chemical composition of apple wines.

    Science.gov (United States)

    Satora, Pawel; Tarko, Tomasz; Sroka, Pawel; Blaszczyk, Urszula

    2014-08-01

    The aim of this study was to determine the influence of two different Wickerhamomyces anomalus strains, CBS 1982 and CBS 5759, on the chemical composition and sensory characteristics of Gloster apple wines. They were inoculated into unpasteurized as well as pasteurized apple musts together with a S. cerevisiae strain as a mixed culture. Fermentation kinetics, basic enological parameters, antioxidant properties as well as selected polyphenol, volatile compound, and organic acid contents were analyzed during the experiments. Apple wines obtained after spontaneous fermentation were characterized by high volatile acidity, increased concentrations of acetaldehyde, and volatile esters, as well as the lowest amounts of ethyl alcohol and higher alcohols compared with other samples. Addition of 0.05 g L(-1) W. anomalus killer strains to the unpasteurized must significantly changed the fermentation kinetics and chemical composition of apple wines. The value of volatile acidity was highly decreased, while the amount of higher alcohols and titratable acidity increased. Pasteurization of must improved the fermentation efficiency. Higher amounts of polyphenol compounds and lower amounts of malic acid were also detected. Application of W. anomalus strains together with S. cerevisiae yeast as a mixed culture positively influenced the chemical composition and sensory features of produced apple wines. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Fermentation of an Aromatized Wine-Based Beverage with Sambucus nigra L. Syrup (after Champenoise Method

    Directory of Open Access Journals (Sweden)

    Teodora Emilia Coldea

    2015-11-01

    Full Text Available The sparkling wine based beverage with elderflower (Sambucus nigra L. syrup presented improved sensorial characteristics. White wine used was Fetească regală variety, obtained in Micro winery of University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca. Elderflower syrup was prepared without thermal treatment, but was pasteurised before its addition to wine. Elderflower have many health benefits, such as diuretic, diaphoretic, or antioxidant activity. In this study it was used elderflower syrup both to improve the product s sensorial properties, and for their multiple benefits to health. The sparkling wine based beverage with elderflower syrup was produced by fermentation in the bottle (after Champenoise method, with the addition of wine yeast. The novelty brought by this paper is the use of elderflower syrup in alcoholic-beverage industry.

  2. Torulaspora delbrueckii for secondary fermentation in sparkling wine production.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Ciani, Maurizio

    2018-09-01

    In the search for the desired oenological features and flavour complexity of wines, there is growing interest in the potential use of non-Saccharomyces yeast that are naturally present in the winemaking environment. Torulaspora delbrueckii is one such yeast that has seen profitable use in mixed fermentations with Saccharomyces cerevisiae and with different grape varieties. T. delbrueckii can have positive and distinctive impacts on the overall aroma of wines, and has also been used at an industrial level. Here, T. delbrueckii was successfully used in pure and mixed secondary fermentations for sparkling wine. The two selected T. delbrueckii strains used completed the secondary fermentation 'prise de mousse' in these pure and mixed fermentations. The sparkling wines obtained with T. delbrueckii showed different aromatic compositions and sensory profiles to those of S. cerevisiae. T. delbrueckii strain DiSVA 130 showed high esters production and significantly high scores for some of the aromatic descriptors that positively influence the sensory profile of sparkling wine. Thus, the use of T. delbrueckii in pure and mixed fermentations is a suitable strategy to further develop the flavour complexity during secondary fermentation of sparkling wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effect of Protectants on the Fermentation Performance of Wine Yeasts Subjected to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    Andrea Caridi

    2003-01-01

    Full Text Available During alcoholic fermentation of must from dried grapes, yeasts are subjected to very high sugar concentrations, besides other environmental stresses, and they modify their metabolic behaviour giving low ethanol yield and abnormally high acetic acid production. To investigate the protective effect of catechin, inositol, and SO2 on wine yeasts, three thermotolerant strains of Saccharomyces cerevisiae, selected for wine making of must from dried grapes, and three strains of Saccharomyces selected for the production of wine, were inoculated in a sample of must at very high osmotic strength. A significant (p<0.01 or p<0.05 relationship between the addition of 100 mg/L of catechin, inositol or SO2 to the grape must and the change in the metabolic behaviour of the yeasts was observed. Compared to the control and depending on strain and protectant, the fermentation rate after 3 days increased up to 55 %, the ethanol content of the wines increased up to 16 %, the unitary succinic acid production increased up to 55 %, the unitary acetic acid production decreased up to 53 %, and the unitary glycerol production decreased up to 69 %. So by adding catechin, inositol or SO2 to the grape must it is possible to minimise the abnormal fermentation performance that wine yeasts exhibit in wine making of must from dried grapes.

  4. Effect of Increased Yeast Alcohol Acetyltransferase Activity on Flavor Profiles of Wine and Distillates

    OpenAIRE

    Lilly, M.; Lambrechts, M. G.; Pretorius, I. S.

    2000-01-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to in...

  5. Evidence for S. cerevisiae fermentation in ancient wine.

    Science.gov (United States)

    Cavalieri, Duccio; McGovern, Patrick E; Hartl, Daniel L; Mortimer, Robert; Polsinelli, Mario

    2003-01-01

    Saccharomyces cerevisiae is the principal yeast used in modern fermentation processes, including winemaking, breadmaking, and brewing. From residue present inside one of the earliest known wine jars from Egypt, we have extracted, amplified, and sequenced ribosomal DNA from S. cerevisiae. These results indicate that this organism was probably responsible for wine fermentation by at least 3150 B.C. This inference has major implications for the evolution of bread and beer yeasts, since it suggests that S. cerevisiae yeast, which occurs naturally on the surface bloom of grapes, was also used as an inoculum to ferment cereal products.

  6. Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation.

    Science.gov (United States)

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2015-08-03

    During wine fermentation, Saccharomyces clearly dominate over non-Saccharomyces wine yeasts, and several factors could be related to this dominance. However, the main factor causing the reduction of cultivable non-Saccharomyces populations has not yet been fully established. In the present study, various single and mixed fermentations were performed to evaluate some of the factors likely responsible for the interaction between Saccharomyces cerevisiae and Hanseniaspora uvarum. Alcoholic fermentation was performed in compartmented experimental set ups with ratios of 1:1 and 1:9 and the cultivable population of both species was followed. The cultivable H. uvarum population decreased sharply at late stages when S. cerevisiae was present in the other compartment, similarly to alcoholic fermentations in non-compartmented vessels. Thus, cell-to-cell contact did not seem to be the main cause for the lack of cultivability of H. uvarum. Other compounds related to fermentation performance (such as sugar and ethanol) and/or certain metabolites secreted by S. cerevisiae could be related to the sharp decrease in H. uvarum cultivability. When these factors were analyzed, it was confirmed that metabolites from S. cerevisiae induced lack of cultivability in H. uvarum, however ethanol and other possible compounds did not seem to induce this effect but played some role during the process. This study contributes to a new understanding of the lack of cultivability of H. uvarum populations during the late stages of wine fermentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine.

    Science.gov (United States)

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Benito, Santiago; Suárez-Lepe, Jose Antonio

    2016-10-31

    Today in the wine industry, oenological tannins are widely used to improve wine quality and prevent oxidation in wine aging. With the development of tannin products, new oenological tannins are developed with many specific functions, such as modifying antioxidant effect, colour stabilization and aroma modifications. The aim of this work is to investigate effects of pre-fermentative addition of oenological tannins on wine colour, anthocyanins, volatile compounds and sensorial properties. In this case, Syrah juice was extracted with classic flash thermovinification from fresh must in order to release more colour and tannins. Three types of oenological tannins, which are, respectively, derived from grape skin, seed ( Vitis vinifera ) and French oak ( Quercus robur and Querrus petraea ), were selected to carry out the experiments with seven treatments. Results indicated that tannin treatments significantly improved wine aroma complexity and sensorial properties. However, the concentration of some stable pigments such as Vitisin A, Vitisin A-Ac and Vitisin B was negatively affected by tannin additions. Nevertheless, by means of cluster analysis and principal component analysis, it was observed that higher alcohols were significantly promoted by grape seed tannin while most anthocyanins can be improved by addition of grape tannins. In conclusion, low amount of oenological tannin derived from grape seed is a promising method to be applied especially for young red wine making.

  8. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2016-10-01

    Full Text Available Today in the wine industry, oenological tannins are widely used to improve wine quality and prevent oxidation in wine aging. With the development of tannin products, new oenological tannins are developed with many specific functions, such as modifying antioxidant effect, colour stabilization and aroma modifications. The aim of this work is to investigate effects of pre-fermentative addition of oenological tannins on wine colour, anthocyanins, volatile compounds and sensorial properties. In this case, Syrah juice was extracted with classic flash thermovinification from fresh must in order to release more colour and tannins. Three types of oenological tannins, which are, respectively, derived from grape skin, seed (Vitis vinifera and French oak (Quercus robur and Querrus petraea, were selected to carry out the experiments with seven treatments. Results indicated that tannin treatments significantly improved wine aroma complexity and sensorial properties. However, the concentration of some stable pigments such as Vitisin A, Vitisin A-Ac and Vitisin B was negatively affected by tannin additions. Nevertheless, by means of cluster analysis and principal component analysis, it was observed that higher alcohols were significantly promoted by grape seed tannin while most anthocyanins can be improved by addition of grape tannins. In conclusion, low amount of oenological tannin derived from grape seed is a promising method to be applied especially for young red wine making.

  9. Influence of choice of yeasts on volatile fermentation-derived compounds, colour and phenolics composition in Cabernet Sauvignon wine.

    Science.gov (United States)

    Blazquez Rojas, Inmaculada; Smith, Paul A; Bartowsky, Eveline J

    2012-12-01

    Wine colour, phenolics and volatile fermentation-derived composition are the quintessential elements of a red wine. Many viticultural and winemaking factors contribute to wine aroma and colour with choice of yeast strain being a crucial factor. Besides the traditional Saccharomyces species S. cerevisiae, S. bayanus and several Saccharomyces interspecific hybrids are able to ferment grape juice to completion. This study examined the diversity in chemical composition, including phenolics and fermentation-derived volatile compounds, of an Australian Cabernet Sauvignon due to the use of different Saccharomyces strains. Eleven commercially available Saccharomyces strains were used in this study; S. cerevisiae (7), S. bayanus (2) and interspecific Saccharomyces hybrids (2). The eleven Cabernet Sauvignon wines varied greatly in their chemical composition. Nine yeast strains completed alcoholic fermentation in 19 days; S. bayanus AWRI 1375 in 26 days, and S. cerevisiae AWRI 1554 required 32 days. Ethanol concentrations varied in the final wines (12.7-14.2 %). The two S. bayanus strains produced the most distinct wines, with the ability to metabolise malic acid, generate high glycerol concentrations and distinctive phenolic composition. Saccharomyces hybrid AWRI 1501 and S. cerevisiae AWRI 1554 and AWRI 1493 also generated distinctive wines. This work demonstrates that the style of a Cabernet Sauvignon can be clearly modulated by choice of commercially available wine yeast.

  10. Impact of yeast starter formulations on the production of volatile compounds during wine fermentation.

    Science.gov (United States)

    Romano, Patrizia; Pietrafesa, Rocchina; Romaniello, Rossana; Zambuto, Marianna; Calabretti, Antonella; Capece, Angela

    2015-01-01

    The most diffused starter formulation in winemaking is actually represented by active dry yeast (ADY). Spray-drying has been reported as an appropriate preservation method for yeast and other micro-organisms. Despite the numerous advantages of this method, the high air temperatures used can negatively affect cell viability and the fermentative performance of dried cells. In the present study, 11 wine S. cerevisiae strains (both indigenous and commercial) were submitted to spray-drying; different process conditions were tested in order to select the conditions allowing the highest strain survival. The strains exhibited high variability for tolerance to spray-drying treatment. Selected strains were tested in fermentation at laboratory scale in different formulations (free fresh cells, free dried cells, immobilized fresh cells and immobilized dried cells), in order to assess the influence of starter formulation on fermentative fitness of strains and aromatic quality of wine. The analysis of volatile fraction in the experimental wines produced by selected strains in different formulations allowed identification of > 50 aromatic compounds (alcohols, esters, ketones, aldehydes and terpenes). The results obtained showed that the starter formulation significantly influenced the content of volatile compounds. In particular, the wines obtained by strains in dried forms (as both free and immobilized cells) contained higher numbers of volatile compounds than wines obtained from fresh cells. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    Science.gov (United States)

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Alcoholic beverages produced by alcoholic fermentation but not by distillation are powerful stimulants of gastric acid secretion in humans.

    OpenAIRE

    Teyssen, S; Lenzing, T; González-Calero, G; Korn, A; Riepl, R L; Singer, M V

    1997-01-01

    BACKGROUND: The effect of commonly ingested alcoholic beverages on gastric acid output and release of gastrin in humans is unknown. AIM AND METHODS: In 16 healthy humans the effect of some commonly ingested alcoholic beverages produced by fermentation plus distillation (for example, whisky, cognac, calvados, armagnac, and rum) or by alcoholic fermentation (beer, wine, champagne, martini, and sherry) on gastric acid output and release of gastrin was studied. Gastric acid output was determined ...

  13. Effect of method of secondary fermentation and type of base wine on physico-chemical and sensory qualities of sparkling plum wine

    Directory of Open Access Journals (Sweden)

    Vinod K Joshi

    1999-01-01

    Full Text Available Plum base wines prepared with potassium metabisulphite or sodium benzoate were converted into sparkling wine, either by `Methode Champenoise' or tank method with artificially carbonated wine serving as a control. In both the secondary fermentation methods ethanol and low temperature acclimatized yeast; Saccharomyces cerevisiae UCD-595 with optimized sugar (1.5% and di-ammonium hydrogen phosphate (0.2% were used. Both methods of sparkling wine production and the type of base wine affected the physico-chemical and sensory characteristics of the sparkling wine produced. In the secondary fermented wines, most of the physico-chemical characteristics were altered compared to that of artificially carbonated wines except volatile acidity, methanol, propanol and ethanol. Furthermore, these wines contained lower proteins, minerals and amyl alcohol than the base wine. In general, the sparkling wines produced by either of the secondary fermentation method had lower sugar, more alcohol, higher macro elements but lower Fe and Cu contents than the artificially carbonated wines. An overview of the changes occurring in the sparkling wine in comparison to artificially carbonated wine revealed that most of the changes took place due to secondary fermentation. The bottle fermented wine recorded the highest pressure, low TSS and sugars. The secondary bottle fermented wine was the best in most of the sensory qualities but needed proper acid-sugar blend of the base wine before conducting secondary fermentation. Sparkling wine made from base wine with sodium benzoate was preferred to that prepared with potassium metabisulphite. The studies showed the potential of plum fruits for production of sparkling wine.Os vinhos a base de ameixa preparado com metabisulfito de potássio ou benzoato de sódio foram convertidos em vinhos espumantes pelo método "Champenoise" ou método de tanque, usando vinho carbonatado artificialmente como controle. Em ambos métodos a fermenta

  14. Study of changes organic acids in red wines during malolactic fermentation

    Directory of Open Access Journals (Sweden)

    Jindřiška Kučerová

    2011-01-01

    Full Text Available The aim of this contribution is to be able to describe the movement of organic acids in red wine during malolactic fermentation. Wines from Znojmo wine region were represented by varieties of Svatovavřinecké (Saint Laurent, Rulandské modré (Pinot Noir, Zweigeltrebe, Frankovka (Lemberger and Dornfelder. The grapes went through the same way of wine making and after completion of alcoholic fermentation were inoculated with pure culture of lactic acid bacteria Oenococcus oeni. Samples were taken for chemical analysis during biodegradation of acids within the range of 2 to 4 days and they were measured using a device WineScan FT 120. Chemical analysis detected changes in the concentrations of the following parameters: total acidity, lactic, malic, tartaric and citric acids. The total content of acids statistically significantly (P = 0.05 differed only between samples of Svatovavřinecké T 66 and Zweigeltrebe T 2.The differences of average mass concentrations of lactic, malic and citric acids were not statistically relevant. Nevertheless, statistically relevant difference in the concentration of tartaric acid from all other wines was detected in a sample of SV T 66 which also reached the highest average value (5.18 g/l.

  15. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.

    Science.gov (United States)

    Chen, Shuang; Xu, Yan

    2014-08-01

    High tolerance towards ethanol is a desirable property for the Saccharomyces cerevisiae strains used in the alcoholic beverage industry. To improve the ethanol tolerance of an industrial Chinese rice wine yeast, a sequential batch fermentation strategy was used to adaptively evolve a chemically mutagenized Chinese rice wine G85 strain. The high level of ethanol produced under Chinese rice wine-like fermentation conditions was used as the selective pressure. After adaptive evolution of approximately 200 generations, mutant G85X-8 was isolated and shown to have markedly increased ethanol tolerance. The evolved strain also showed higher osmotic and temperature tolerances than the parental strain. Laboratory Chinese rice wine fermentation showed that the evolved G85X-8 strain was able to catabolize sugars more completely than the parental G85 strain. A higher level of yeast cell activity was found in the fermentation mash produced by the evolved strain, but the aroma profiles were similar between the evolved and parental strains. The improved ethanol tolerance in the evolved strain might be ascribed to the altered fatty acids composition of the cell membrane and higher intracellular trehalose concentrations. These results suggest that adaptive evolution is an efficient approach for the non-recombinant modification of industrial yeast strains.

  16. Amino acids and volatile compounds in wines from Cabernet Sauvignon and Tempranillo varieties subjected to malolactic fermentation in barrels.

    Science.gov (United States)

    Hernández-Orte, P; Peña, A; Pardo, I; Cacho, J; Ferreira, V

    2012-04-01

    The aim of the present paper is to compare the behaviour of industrial lactic bacteria and indigenous bacteria of the cellar when malolactic fermentation was carried out in barrels. The effects of these bacteria on the concentration of metabolised amino acids during malolactic fermentation and on the composition of volatile compounds both before and after malolactic fermentation are studied. The experiment was performed with wines of the Tempranillo and Cabernet Sauvignon varieties. An analysis has been made of the easily extractable volatile compounds of the wood and the compounds from the grapes, and the action of the yeasts during the alcoholic fermentation. Acetoin and diacetyl decreased during the malolactic fermentation in barrels and the concentrations of furfural and its derivatives were up to 100 times higher in wines not subjected to malolactic fermentation. Most of the volatile phenols increased during the malolactic fermentation in wines of the Tempranillo variety, while only guaiacol (p < 0.05) and t-isoeugenol increased in the Cabernet Sauvignon wines. The decrease in amino acids during the malolactic fermentation depends much more on the variety than on the bacterial strain which carries out the malolactic fermentation.

  17. Influence of Williopsis saturnus yeasts in combination with Saccharomyces cerevisiae on wine fermentation.

    Science.gov (United States)

    Erten, H; Tanguler, H

    2010-05-01

    To examine the growth and survival of Williopsis saturnus strains along with wine yeast Saccharomyces cerevisiae in grape must. For this study, fermentations were performed in sterilized grape must at 18 degrees C. Inoculum level was 5 x 10(6) cells per ml for each yeast. The results showed that W. saturnus yeasts exhibited slight growth and survival depending on the strain, but they died off by day 5. Saccharomyces cerevisiae, however, dominated the fermentation, reaching the population of about 8 log CFU ml(-1). It was observed that ethanol formation was not affected. The concentrations of acetic acid, ethyl acetate and isoamyl acetate were found higher in mixed culture experiments compared to control fermentation. The results also revealed that higher alcohols production was unaffected in general. Fermentations did not form undesirable concentrations of flavour compounds, but production of higher levels of acetic acid in mixed culture fermentations may unfavour the usage of W. saturnus in wine making. This study provides information on the behaviour of W. saturnus together with S. cerevisiae during the alcoholic fermentation.

  18. Effect of Temperature on the Prevalence ofSaccharomycesNoncerevisiaeSpecies against aS. cerevisiaeWine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition.

    Science.gov (United States)

    Alonso-Del-Real, Javier; Lairón-Peris, María; Barrio, Eladio; Querol, Amparo

    2017-01-01

    Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii ) or their hybrids ( S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii ) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S . cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non- cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum , seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus , deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae , there were

  19. Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations

    Science.gov (United States)

    Mills, David A.; Johannsen, Eric A.; Cocolin, Luca

    2002-01-01

    Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (∼30°C) and ambient (∼20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations. PMID:12324335

  20. Different techniques for reducing alcohol levels in wine: A review⋆

    Directory of Open Access Journals (Sweden)

    Ozturk Burcu

    2014-01-01

    The aim of this review is to provide technical and practical information covering the outstanding techniques that may be used to adjust elevated alcohol concentration in wine and their effects on wine from the point of organoleptic characteristics view.

  1. Biological effect of magnetic field on the fermentation of wine

    Directory of Open Access Journals (Sweden)

    Jakub Dobšinský

    2017-01-01

    Full Text Available During the transformation process of matter is produced energy, which afterwards interacts with matter itself, and other forms of energy. Energy induced electromagnetic appliances may affect the processes occurring in biological systems. In our study we have evaluated the wine fermentation process of the magnetic field with different amplitudes of electromagnetic induction, the constant exposure of 30 minutes a day for 10 days. The device for inducing magnetism was constructed at the Department of Fruit Growing, Viticulture and Enology at Slovak University of Agriculture in Nitra for research purposes. Essence of the device lies in the way of the management of direct current, which flows through the coil. Volume of direct current is regulated by network auto-transformer. Output of network autotransformer is rectified by two-way bridge rectifier. The coil is powered by a direct current voltage pulse. This device has a maximum value of the magnetic induction at 150 mT. At full power it must be supplied from three-phase socket with a rated current of 32 A. For our experiment, we chose wine grape variety of Hibernal, from Nitra wine region. The magnetic field induced by the electromagnetic device has an impact on the process of fermentation and sensory characteristics of a young wine. As part of the sensory profile, we noticed higher levels of residual sugar and speed up of the fermentation process and the process of purifying of the young wine. The influence of magnetic field on grape juice during the entire fermentation process and production of wine is a convenient way to improve the quality of wine without side effects or any chemical additives.

  2. Ethanol and sugar tolerance of wine yeasts isolated from fermenting ...

    African Journals Online (AJOL)

    Seventeen wine yeasts isolated from fermenting cashew apple juice were screened for ethanol and sugar tolerance. Two species of Saccharomyces comprising of three strains of S. cerevisiae and one S. uvarum showed measurable growth in medium containing 9% (v/v) ethanol. They were equally sugar-tolerant having ...

  3. Managing Your Wine Fermentation to Reduce the Risk of Biogenic Amine Formation

    Science.gov (United States)

    Smit, Anita Yolandi; Engelbrecht, Lynn; du Toit, Maret

    2012-01-01

    Biogenic amines are nitrogenous organic compounds produced in wine from amino acid precursors mainly by microbial decarboxylation. The concentration of biogenic amines that can potentially be produced is dependent on the amount of amino acid precursors in the medium, the presence of decarboxylase positive microorganisms and conditions that enable microbial or biochemical activity such as the addition of nutrients to support the inoculated starter cultures for alcoholic and malolactic fermentation (MLF). MLF can be conducted using co-inoculation or an inoculation after the completion of alcoholic fermentation that may also affect the level of biogenic amines in wine. This study focused on the impact of the addition of complex commercial yeast and bacterial nutrients and the use of different MLF inoculation scenarios on the production of biogenic amines in wine. Results showed that the addition of complex nutrients to real grape must could potentially increase histamine concentrations in wine. The same experiment in synthetic grape must showed a similar trend for putrescine and cadaverine. The effect of different MLF inoculation scenarios was examined in two cultivars, Pinotage and Shiraz. Conflicting results was obtained. In the Shiraz, co-inoculation resulted in lower biogenic amine concentrations after MLF compared to before MLF, while the concentration was higher in the Pinotage. However, the production of biogenic amines was affected more by the presence of decarboxylase positive lactic acid bacteria than by the addition of complex nutrients or the inoculation scenario. PMID:22419915

  4. Managing your wine fermentation to reduce the risk of biogenic amine formation

    Directory of Open Access Journals (Sweden)

    Anita Yolandi Smit

    2012-03-01

    Full Text Available Biogenic amines are nitrogenous organic compounds produced in wine from amino acid precursors mainly by microbial decarboxylation. The concentration of biogenic amines that can potentially be produced is dependent on the amount of amino acid precursors in the medium, the presence of decarboxylase positive microorganisms and conditions that enable microbial or biochemical activity such as the addition of nutrients to support the alcoholic and malolactic fermentation (MLF inoculated starter cultures. MLF can be conducted using co-inoculation or inoculated after the completion of alcoholic fermentation (AF that may also affect the level of biogenic amine in the wine. This study focussed on the impact the addition of complex commercial yeast and bacterial nutrients and the use of different MLF inoculation scenarios could have on the production of biogenic amine in the wine. Results obtained with wine showed that in this study the amine that was influenced by nutrient addition was histamine. In the synthetic winemaking using 12 different treatments no clear tendencies were observed. It was shown that in certain conditions co-inoculation could reduce the amount of biogenic amines produced.

  5. Identification of pOENI-1 and Related Plasmids in Oenococcus oeni Strains Performing the Malolactic Fermentation in Wine

    Science.gov (United States)

    Favier, Marion; Bilhère, Eric; Lonvaud-Funel, Aline; Moine, Virginie; Lucas, Patrick M.

    2012-01-01

    Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly

  6. Effect of Increased Yeast Alcohol Acetyltransferase Activity on Flavor Profiles of Wine and Distillates

    Science.gov (United States)

    Lilly, M.; Lambrechts, M. G.; Pretorius, I. S.

    2000-01-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  7. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates.

    Science.gov (United States)

    Lilly, M; Lambrechts, M G; Pretorius, I S

    2000-02-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  8. Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations.

    Science.gov (United States)

    Quirós, Manuel; Martínez-Moreno, Rubén; Albiol, Joan; Morales, Pilar; Vázquez-Lima, Felícitas; Barreiro-Vázquez, Antonio; Ferrer, Pau; Gonzalez, Ramon

    2013-01-01

    As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations.

  9. Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations.

    Directory of Open Access Journals (Sweden)

    Manuel Quirós

    Full Text Available As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations.

  10. Yeast Population Dynamics in Spontaneous and Inoculated Alcoholic Fermentations of Zametovka Must

    Directory of Open Access Journals (Sweden)

    Franc Cus

    2002-01-01

    Full Text Available Inoculated fermentations, which are more rapid and more reliable than spontaneous fermentations, and assure predictable wine quality, are nowadays prevalent in Slovenia’s large-scale wine production. However, spontaneous fermentation strengthens local characteristics of wine and offers opportunities for technological innovation. In the 1999 vintage, spontaneous and inoculated fermentations of Zametovka (Vitis vinifera grape must were studied. Zametovka is the main red variety in production of traditional Slovene red blend wine, Cvicek. The diversity of yeast species and strains in both of the investigated fermentations was determined by molecular and traditional identification methods. The outset of alcoholic fermentation, yeast growth kinetics, and yeast population dynamics presents the main differences between the examined fermentations. Yeast population diversity was higher in the spontaneous process. Dominant yeast isolates from spontaneous fermentation were identified as Candida stellata, Hanseniaspora uvarum and Saccharomyces cerevisiae; whereas Saccharomyces bayanus, Pichia kluyveri, Pichia membranifaciens and Torulaspora delbrueckiim were found less frequently. Dominant species in the inoculated fermentation was Saccharomyces cerevisiae; other species found in smaller numbers were Candida stellata, Hanseniaspora uvarum and Debaryomyces hansenii var. hansenii. Using PFGE, we were able to distinguish among 15 different Saccharomyces cerevisiae strains and three different Saccharomyces bayanus strains isolated from spontaneous fermentation, whereas, in the case of inoculated fermentation, only two Saccharomyces cerevisiae strains were found. Their chromosomal patterns coincide with the chromosomal patterns of the starter culture strains.

  11. Fermentative Aroma Compounds and Sensory Descriptors of Traditional Croatian Dessert Wine Prošek from Plavac mali cv.

    Directory of Open Access Journals (Sweden)

    Goran Zdunić

    2010-01-01

    Full Text Available Prošek is a traditional dessert wine from the coastal region of Croatia made from partially dried grapes. There is very little literature data about the chemical composition and sensory properties of Prošek, so an experimental production from the dried grapes of Plavac mali cultivar has been done using native and induced alcoholic fermentations. To determine the volatile compounds, gas chromatography with flame ionisation detector (GC/FID was used on the samples prepared with solid phase microextraction (SPME. Higher alcohols, esters, carbonyl compounds and volatile acids were determined in the wine samples. Wines were grouped according to the production method using principal component analysis (PCA. It was found that Prošek wines produced with native and induced alcoholic fermentation differ in their volatile compounds. Descriptive sensory analysis was applied to show the sensory properties of Prošek wine, whose characteristic aromas include those of dried fruit (raisins, red berries, honey, chocolate and vanilla. A significant difference depending on the type of fermentation was determined in two sensory attributes, strawberry jam aroma and fullness.

  12. Sequential culture with Torulaspora delbrueckii and Saccharomyces cerevisiae and management of fermentation temperature to improve cherry wine quality.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Zhao, Yu Ping; Liu, Wen Li; Jin, Cheng Wu

    2016-04-01

    There has been limited research on the use of non-Saccharomyces yeasts for the production of cherry wines. This work used an autochthonous Torulaspora delbrueckii strain 49 (TD49) in association with a commercial S. cerevisiae RC212 yeast, to investigate the effect of multi-starter culture (sequential inoculation and simultaneous inoculation) and fermentation temperature on the quality of cherry wines. Both TD49 and RC212 proliferated during alcoholic fermentation (AF) under sequential inoculation conditions, whereas in the case of simultaneous inoculation, TD49 increased slowly at first and then declined sharply near the fermentation end. The analytical profile showed that both mixed fermentations produced lower levels of volatile acidy and higher levels of aromatic compounds than those from RC212 mono-culture. During sensory analysis, wines from sequential fermentation obtained the highest score, mainly due to the higher intensity in 'fruity' and 'floral' characters. As for the influence of temperature, a low temperature (20 °C) enhanced TD49 persistence during AF, but the sensory quality decreased anyway; 30 °C resulted in decreases in most measured descriptors. Therefore, 25 °C was selected as the best culture temperature. TD49/RC212 sequential inoculation and fermentation at 25 °C significantly enhanced the cherry wine quality. © 2015 Society of Chemical Industry.

  13. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile.

    Science.gov (United States)

    Zhang, Bo-Qin; Luan, Yu; Duan, Chang-Qing; Yan, Guo-Liang

    2018-01-01

    The use of selected Saccharomyces and non- Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii ( TD 12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC 45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC 45/ TD 12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/ TD 12 generated more C 6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non- Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which

  14. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile

    Directory of Open Access Journals (Sweden)

    Bo-Qin Zhang

    2018-04-01

    Full Text Available The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12, simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol, ethyl esters (ethyl decanoate and ethyl butanoate, terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol and acetate esters (ethyl acetate and isoamyl acetate. Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which

  15. Influence of sodium chloride on wine yeast fermentation performance

    Directory of Open Access Journals (Sweden)

    Stilianos Logothetis

    2010-06-01

    Full Text Available Stilianos Logothetis1, Elias T Nerantzis2, Anna Gioulioti3, Tasos Kanelis2, Tataridis Panagiotis2, Graeme Walker11University of Abertay Dundee, School of Contemporary Sciences, Dundee, Scotland; 2TEI of Athens Department of Oenology and Spirit Technology, Biotechnology and Industrial Fermentations Lab Agiou Spiridonos, Athens, Greece; 3Ampeloiniki SA Industrial Park Thermi, Thessaloniki, GreeceAbstract: This paper concerns research into the influence of salt (sodium chloride on growth, viability and fermentation performance in a winemaking strain of the yeast, Saccharomyces cerevisiae. Experimental fermentations were conducted in both laboratory-scale and industrial-scale experiments. Preculturing yeasts in elevated levels of sodium chloride, or salt “preconditioning” led to improved fermentation performance. This was manifest by preconditioned yeasts having an improved capability to ferment high-sugar containing media with increased cell viability and with elevated levels of produced ethanol. Salt-preconditioning most likely influenced the stress-tolerance of yeasts by inducing the synthesis of key metabolites such as trehalose and glycerol. These compounds may act to improve cells’ ability to withstand osmostress and ethanol toxicity during fermentations of grape must. Industrial-scale trials using salt-preconditioned yeasts verified the benefit of this novel physiological cell engineering approach to practical winemaking fermentations.Keywords: salt, preconditioning, fermentation performance, Saccharomyces cerevisiae, wine

  16. Biocontrol ability and action mechanismof Starmerella bacillaris (synonym Candida zemplinina) isolated from wine musts against grey mold disease agent Botrytis cinerea on grape and their effects on alcoholic fermentation

    OpenAIRE

    Wilson Josè Fernandes Lemos; Barbara Bovo; Chiara Nadai; Giulia Crosato; Milena Carlot; Francesco Favaron; Alessio Giacomini; Viviana Corich

    2016-01-01

    Gray mold is one of the most important diseases of grapevine in temperate climates. This plant pathogen affects plant growth and reduces wine quality. The use of yeasts as biocontrol agents to apply in the vineyard have been investigated in recent years as an alternative to agrochemicals. In this work, fermenting musts obtained from overripe grape berries, therefore more susceptible to infection by fungal pathogens such as Botrytis cinerea, were considered for the selection of yeasts carrying...

  17. Fermentation Characteristics and Aromatic Profile of Plum Wines Produced with Indigenous Microbiota and Pure Cultures of Selected Yeast.

    Science.gov (United States)

    Miljić, Uroš; Puškaš, Vladimir; Vučurović, Vesna; Muzalevski, Ana

    2017-06-01

    The aim of this study was to assess and compare fermentation characteristics and aromatic profile of plum wines produced with indigenous microbiota and pure cultures of different selected yeast. Experiments were carried out with plum (Prunus domestica L.) varieties of different fruit ripening times (Čačanska rana, Čačanska lepotica, and Požegača). Wine fermentations were conducted by the activity of indigenous microbiota, commercially available Saccharomyces cerevisiae and Saccharomyces bayanus yeast strains and joint activity of Schizosaccharomyces pombe and S. cerevisiae (sequential inoculation). Statistically significant differences in fermentative characteristics and the content of certain volatile compounds were observed as a result of metabolic activity of various indigenous and/or selected yeasts during fermentation of plum pomace. Minimal duration of fermentation (4 to 5 d) and fastest ethanol production rate (from 12.3 to 15.5 g/L/d) were the characteristics of the studied S. cerevisiae strains. Isobutanol, 3-methyl-1-butanol, 1-heptanol, and 1-octanol were the most prevalent higher alcohols in the tested plum wine samples. The predominant ester in plum wines was ethyl acetate, ethyl lactate, amyl acetate, isoamyl acetate, and ethyl palmitate, esters responsible for the floral and fruity olfactory tones, were also present in large amounts. Also, the use of S. cerevisiae strains resulted in the production of plum wines with better sensory characteristics than ones produced with other investigated yeasts. Obtained results are significant since there is limited data on the compounds responsible for the unique flavor of plum wine, as well as on the impact of different yeast starter cultures application on the overall quality of fruit wines. © 2017 Institute of Food Technologists®.

  18. Alcoholic beverages produced by alcoholic fermentation but not by distillation are powerful stimulants of gastric acid secretion in humans.

    Science.gov (United States)

    Teyssen, S; Lenzing, T; González-Calero, G; Korn, A; Riepl, R L; Singer, M V

    1997-01-01

    The effect of commonly ingested alcoholic beverages on gastric acid output and release of gastrin in humans is unknown. In 16 healthy humans the effect of some commonly ingested alcoholic beverages produced by fermentation plus distillation (for example, whisky, cognac, calvados, armagnac, and rum) or by alcoholic fermentation (beer, wine, champagne, martini, and sherry) on gastric acid output and release of gastrin was studied. Gastric acid output was determined by the method of intragastric titration. Plasma gastrin was measured using a specific radioimmunoassay. None of the alcoholic beverages produced by fermentation plus distillation had any significant effect on gastric acid output and release of gastrin compared with control (isotonic glucose and distilled water). Alcoholic beverages produced only by fermentation significantly (p beer, wine, and sherry were distilled, only their remaining parts increased gastric acid output by 53% to 76% of MAO and increased release of gastrin up to 4.3-fold compared with control. (1) Alcoholic beverages produced by fermentation but not by distillation are powerful stimulants of gastric acid output and release of gastrin; (2) the alcoholic beverage constituents that stimulate gastric acid output and release of gastrin are most probably produced during the process of fermentation and removed during the following process of distillation.

  19. Biocontrol ability and action mechanismof Starmerella bacillaris (synonym Candida zemplinina isolated from wine musts against grey mold disease agent Botrytis cinerea on grape and their effects on alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Wilson Josè Fernandes Lemos

    2016-08-01

    Full Text Available Gray mold is one of the most important diseases of grapevine in temperate climates. This plant pathogen affects plant growth and reduces wine quality. The use of yeasts as biocontrol agents to apply in the vineyard have been investigated in recent years as an alternative to agrochemicals. In this work, fermenting musts obtained from overripe grape berries, therefore more susceptible to infection by fungal pathogens such as Botrytis cinerea, were considered for the selection of yeasts carrying antifungal activity. Thirty-six isolates were identified as Starmerella bacillaris, a species recently proven to be of enological interest. Among them 14 different strains were studied and antifungal activity against B. cinerea was demonstrated, for the first time, to be present in S. bacillaris species. The production of volatile organic compounds (VOCs, tested in vitro, was found to be the main responsible of S. bacillaris antifungal effects. All the strains were able to reduce B. cinerea decay on wounded grape berries artificially inoculated with gray mold. The colonization level of wound was very high reaching, after five days, a concentration of 106 cells per ml of grape juice obtained after berry crushing. At this cell concentration S. bacillaris strains were used to ferment synthetic and natural musts. The sequential yeast inoculation, performed by adding S. cerevisiae 48 h after S. bacillaris, was needed to complete sugar consumption and determined a significant increase in glycerol content and a reduction of ethanol and acetic acid concentrations.The high wound colonization ability, found in this work, together with the propensity to colonize grape berry and the interesting enological traits possessed by the selected S. bacillaris strains allow the use of this yeast as biocontrol agent on vine and grape berries with possible positive effects on must fermentation, although the presence of S. cerevisiae is needed to complete the fermentation process

  20. Comparison of biochemical changes during alcoholic fermentation ...

    African Journals Online (AJOL)

    Whatever the type of fermentation, yields of ethanol was highest at 30°C. Fermentation conducted with controlled yeast gave a better yield of ethanol with 8.4 % than spontaneous fermentation that yielded only 4.3 %. There were significant differences (p<0.05) between both alcohol productivity and yield at spontaneous and ...

  1. Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Berenguer, María; Vegara, Salud; Barrajón, Enrique; Saura, Domingo; Valero, Manuel; Martí, Nuria

    2016-01-01

    Three commercial Saccharomyces cerevisiae yeast strains: Viniferm Revelación, Viniferm SV and Viniferm PDM were evaluated for the production of pomegranate wine from a juice coupage of the two well-known varieties Mollar and Wonderfull. Further malolactic fermentation was carried out spontaneously. The same fermentation patterns were observed for pH, titratable acidity, density, sugar consumption, and ethanol and glycerol production. Glucose was exhausted while fructose residues remained at the end of alcoholic fermentation. A high ethanol concentration (10.91 ± 0.27% v/v) in combination with 1.49 g/L glycerol was achieved. Citric acid concentration increased rapidly a 31.7%, malic acid disappeared as result of malolactic fermentation and the lactic acid levels reached values between 0.40 and 0.96 g/L. The analysis of CIEa parameter and total anthocyanin content highlights a lower degradation of monomeric anthocyanins during winemaking with Viniferm PDM yeast. The resulting wine retains a 34.5% of total anthocyanin content of pomegranate juice blend. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Novel Wine Yeast for Improved Utilisation of Proline during Fermentation

    Directory of Open Access Journals (Sweden)

    Danfeng Long

    2018-02-01

    Full Text Available Proline is the predominant amino acid in grape juice, but it is poorly assimilated by wine yeast under the anaerobic conditions typical of most fermentations. Exploiting the abundance of this naturally occurring nitrogen source to overcome the need for nitrogen supplementation and/or the risk of stuck or sluggish fermentations would be most beneficial. This study describes the isolation and evaluation of a novel wine yeast isolate, Q7, obtained through ethyl methanesulfonate (EMS mutagenesis. The utilisation of proline by the EMS isolate was markedly higher than by the QA23 wild type strain, with approximately 700 and 300 mg/L more consumed under aerobic and self-anaerobic fermentation conditions, respectively, in the presence of preferred nitrogen sources. Higher intracellular proline contents in the wild type strain implied a lesser rate of proline catabolism or incorporation by this strain, but with higher cell viability after freezing treatment. The expression of key genes (PUT1, PUT2, PUT3, PUT4, GAP1 and URE2 involved in proline degradation, transport and repression were compared between the parent strain and the isolate, revealing key differences. The application of these strains for efficient conduct for nitrogen-limited fermentations is a possibility.

  3. Effect of alcoholic fermentation on the quality of grape brandies

    Directory of Open Access Journals (Sweden)

    Vukosavljević Vera

    2015-01-01

    Full Text Available Grape brandy is a product obtained by fermentation and distillation of crushed grapes of cultivated grapevine Vitis vinifera. Grape brandy quality depends on many factors such as: grapevine varieties, climate, soil, time and method of distillation, storage methods and other distillates. The grapevine variety 'Neoplanta' grown in the experimental field of the PD 'Center for Viticulture and Enology' in Niš was used in the experiment. Tests were performed in the laboratory of the Centre. Healthy grapes of harvest maturity were squashed by a stalk-removing electric crusher. Fermentation was performed in plastic containers in the presence of the indigenous microflora of wine yeasts. This paper presents the influence of pH and inorganic nitrogen added to the fermentation medium on the content of volatile components and concentrations of higher alcohols.

  4. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    in completion of anaerobic alcoholic fermentation. For both S. cerevisiae and non-Saccharomyces yeasts, some 22 different nitrogenous sources were evaluated for effects on growth and fermentation ability during anaerobic alcoholic fermentation. The data revealed that nitrogen preference is a trait...... that is species-specific; as well, growth enhancement is also dependent upon the type of nitrogen supplementation for each yeast species. This work provides the first detailed analysis of appropriate nitrogen supplementation to improve yeast growth and alcoholic fermentative activity (i.e., glucose consumption......The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However...

  5. WINE AND WINE TOURISM IN MACEDONIA

    Directory of Open Access Journals (Sweden)

    Cane Koteski

    2016-07-01

    Full Text Available Wine (Latin: vinum is an alcoholic beverage obtained by the fermentation of the grapes, the fruit of the vine plant. In Europe, according to legal regulations, the wine is the product obtained exclusively by full or partial fermentation of fresh grapes, clove or not, or of grape must. The transformation of grapes into wine is called vinification. The science of wine is called oenology. In some other parts of the world, the word wine can be true of alcohol obtained from other types of fruit. These wines are referred to as fruit wines, or wear a name by which the fruit is used for obtaining them (for example apple wine. Wine tourism is a type of tourism that involves visiting wineries, tasting, consumption and purchase of wine, usually directly from the manufacturer. This type of tourism includes visits to wineries, vineyards and restaurants famous for special local wines, as well as organized wine tours, visits to wine festivals and other special events. Many wine regions around the world to promote this tourism because it affects very positively to the local economy. In these regions, viticulture and hospitality organizations have spent significant resources over the years for the promotion of wine tourism. Wine tourism in my country is respected, but strong growth.

  6. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Rollero, Stéphanie; Bloem, Audrey; Camarasa, Carole; Sanchez, Isabelle; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie; Mouret, Jean-Roch

    2015-03-01

    Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box-Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas-liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.

  7. Effect of Precursors on Volatile Compounds in Papaya Wine Fermented by Mixed Yeasts

    Directory of Open Access Journals (Sweden)

    Pin-Rou Lee

    2013-01-01

    Full Text Available The impact of the addition of fusel oil or amino acids on the volatile compounds in papaya wine fermented with a mixed culture of Saccharomyces cerevisiae var. bayanus R2 and Williopsis saturnus var. mrakii NCYC 2251 at a ratio of 1:1000 was studied. Fusel oil addition increased the fraction of alcohols and promoted the production of isoamyl octanoate, isoamyl decanoate and isobutyl decanoate, while decreased the fraction of ethyl acetate and 2-phenylethyl acetate. The addition of amino acids enhanced the formation of total volatile fatty acids, 2-phenylethanol and some ethyl esters. The papaya wine with added amino acids possessed more acidic and buttery notes than the control, while that with added fusel oil had an overall aroma profile comparable to that of the control. This study suggests that papaya juice fermentation with mixed yeasts in conjunction with the added fusel oil or selected amino acids may be another method of modulating the flavour of papaya wine.

  8. Quantitative 13 C-isotope labelling-based analysis to elucidate the influence of environmental parameters on the production of fermentative aromas during wine fermentation

    OpenAIRE

    Rollero, Stéphanie; Mouret, Jean-Roch; Bloem, Audrey; Sanchez, Isabelle; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie

    2017-01-01

    Summary Nitrogen and lipids are key nutrients of grape must that influence the production of fermentative aromas by wine yeast, and we have previously shown that a strong interaction exists between these two nutrients. However, more than 90% of the acids and higher alcohols (and their acetate ester derivatives) were derived from intermediates produced by the carbon central metabolism (CCM). The objective of this study was to determine how variations in nitrogen and lipid resources can modulat...

  9. Lower risk for alcohol-induced cirrhosis in wine drinkers

    DEFF Research Database (Denmark)

    Becker, Ulrik; Grønbaek, Morten; Johansen, Ditte

    2002-01-01

    Although there is a well-known relationship between total alcohol intake and future risk for cirrhosis, other factors such as the type of alcohol consumed are sparsely studied. The aim of this study was to assess the effects of wine compared with other types of alcoholic beverages on risk...... for alcohol-induced cirrhosis. In 3 prospective studies, 30,630 participants from the Copenhagen area were followed-up for a total observation time of 417,325 person-years. Information on weekly intake of beer, wine, and spirits, and sex, age, body mass index, smoking habits, and education was obtained from...... with increasing alcohol intake. Individuals who drank more than 5 drinks per day had a relative risk of 14 to 20 for developing cirrhosis compared with non- or light drinkers. However, compared with individuals who drank no wine (relative risk set at 1.0), individuals drinking 16% to 30% wine of their total...

  10. Effects of Variety and Fermentation Time on the Quality of Rice Wine ...

    African Journals Online (AJOL)

    A study was conducted to investigate the effect of variety and fermentation time on rice wine quality. Two rice varieties, X- Jigna and Gomera, and three fermentation times, 5, 6 and 7 days were used to study the physicochemical and sensory qualities of wine. Significant difference was observed at P<0.05 among the rice ...

  11. Phage-host interactions analysis of newly characterized Oenococcus oeni bacteriophages: Implications for malolactic fermentation in wine.

    Science.gov (United States)

    Costantini, Antonella; Doria, Francesca; Saiz, Juan-Carlos; Garcia-Moruno, Emilia

    2017-04-04

    Nowadays, only few phages infecting Oenococcus oeni, the principal lactic acid bacteria (LAB) species responsible for malolactic fermentation (MLF) in wine, have been characterized. In the present study, to better understanding the factors affecting the lytic activity of Oenococcus phages, fifteen O. oeni bacteriophages have been studied in detail, both with molecular and microbiological methods. No correlations were found between genome sizes, type of integrase genes, or morphology and the lytic activity of the 15 tested phages. Interestingly, though phage attack in a wine at the end of alcoholic fermentation seems not to be a problem, it can indeed represent a risk factor for MLF when the alcohol content is low, feature that may be a key point for choosing the appropriate time for malolactic starter inoculation. Additionally, it was observed that some phages genomes bear 2 or 3 types of integrase genes, which point to horizontal gene transfer between O. oeni bacteriophages. Copyright © 2017. Published by Elsevier B.V.

  12. The effect of nitrogen addition on the fermentative performance during sparkling wine production

    OpenAIRE

    Martí-Raga, M.; Sancho, M.; Guillamón, J.M.; Mas, A.; Beltran, G.

    2015-01-01

    10.1016/j.foodres.2014.10.033 The transformation of must to wine is influenced by several factors, including the nitrogen composition of the grape must, which has an important impact on yeast growth, fermentation kinetics and the organoleptic properties of the final product. In the production of sparkling wine by the traditional method, a second fermentation takes place inside the bottle, followed by yeast autolysis. Before their inoculation, yeasts cells must be adapted to the wine by th...

  13. Flavour Characters of Wines from Cool-Climate Grape Cultivars in Relation to Different Fermentation Approaches

    DEFF Research Database (Denmark)

    Liu, Jing

    -fermentations. Such systematic studies on the flavour characters of wines can contribute to a rational development of local wine styles. The flavour characters of commercial young mono-varietal Danish white wines from the Solaris cultivar were firstly studied. Conventional descriptive sensory analysis showed that several wines...... for evaluating sensory properties of wines, different variations of Napping and Flash Profile methods were tested using model wines. It turned out that conducting Napping with panel training on either the method (training on how to arrange samples on the sheet) or the product (familiarization with the sensory...... based segregation with respected to produced wine flavour. In summary, this PhD project increased knowledge on the flavour characters of wines in relation to cool-climate grape cultivars and different fermentation approaches, as well as contributed to sensory methodology advances...

  14. 27 CFR 19.372 - Receipt of spirits, wines and alcoholic flavoring materials for processing.

    Science.gov (United States)

    2010-04-01

    ... which received until used. Spirits and wines received by pipeline shall be deposited in tanks, gauged by... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Receipt of spirits, wines... Spirits, Wines and Alcoholic Flavoring Materials § 19.372 Receipt of spirits, wines and alcoholic...

  15. On the effects of higher alcohols on red wine aroma.

    Science.gov (United States)

    de-la-Fuente-Blanco, Arancha; Sáenz-Navajas, María-Pilar; Ferreira, Vicente

    2016-11-01

    This work aims to assess the aromatic sensory contribution of the four most relevant wine higher alcohols (isobutanol, isoamyl alcohol, methionol and β-phenylethanol) on red wine aroma. The four alcohols were added at two levels of concentration, within the natural range of occurrence, to eight different wine models (WM), close reconstitutions of red wines differing in levels of fruity (F), woody (W), animal (A) or humidity (H) notes. Samples were submitted to discriminant and descriptive sensory analysis. Results showed that the contribution of methionol and β-phenylethanol to wine aroma was negligible and confirmed the sensory importance of the pair isobutanol-isoamyl alcohol. Sensory effects were only evident in WM containing intense aromas, demonstrating a strong dependence on the aromatic context. Higher alcohols significantly suppress strawberry/lactic/red fruity, coconut/wood/vanilla and humidity/TCA notes, but not the leather/animal/ink note. The spirit/alcoholic/solvent character generated by higher alcohols has been shown to be wine dependent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Fermentation process for alcoholic beverage production from mahua ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-09-25

    Sep 25, 2013 ... content of blueberry wine and suggested that the maximum ethanol content and minimum volatile acid production of blueberry wine fermentation with. Saccharomyces cerevisiae AS2.316 commercial wine yeast could reach 7.63% and 0.34 g l-1 under the optimal condition of temperature, 22.65°C; pH, 3.53 ...

  17. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    in completion of anaerobic alcoholic fermentation. For both S. cerevisiae and non-Saccharomyces yeasts, some 22 different nitrogenous sources were evaluated for effects on growth and fermentation ability during anaerobic alcoholic fermentation. The data revealed that nitrogen preference is a trait......The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However......, other yeast-yeast interactions, such as cell-cell contact mediated growth arrest and/or toxininduced death may also be a significant factor in the relative fragility of these non-Saccharomyces yeasts in mixed culture fermentation. In the present work we evaluate the combined roles of cell-cell contact...

  18. Country-wine making from Eembe fruit (Berchemia discolor) of ...

    African Journals Online (AJOL)

    Country-wine was made from dried Eembe fruit purchased from Katima Mulilo open market using commercial wine yeast. The fruit produced a wine with 8.6% alcohol content when no sugar was added. Fermentation to produce the wine was carried out at 22ºC. The clarity, aroma, colour and acceptability of the wine was ...

  19. Effect of biofilm formation by Oenococcus oeni on malolactic fermentation and the release of aromatic compounds in wine

    Directory of Open Access Journals (Sweden)

    Alexandre eBastard

    2016-04-01

    Full Text Available The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation. The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine’s organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol The results indicated that the biofilm culture of O. oeni conferred (i increased tolerance to wine stress, and (ii functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance.As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during malolactic fermentation and aging by decreasing furfural, gaiacol and eugenol in

  20. Effect of Saccharomyces cerevisiae inoculum size on wine fermentation aroma compounds and its relation with assimilable nitrogen content.

    Science.gov (United States)

    Carrau, Francisco; Medina, Karina; Fariña, Laura; Boido, Eduardo; Dellacassa, Eduardo

    2010-09-30

    Different commercial Saccharomyces cerevisiae strains have been applied at the winemaking level, trying to establish a dominant population of selected strains from the start of fermentation and ensuring the complete consumption of sugars. Although a large population of active yeast cells can be introduced in the inoculated wines, resulting in a complete fermentation, this does not necessarily mean an improvement of the sensory characteristics of the wines. The impact of the size of the inocula in wine quality parameters has been very little studied, and in no case the nutrient balance of the grape must utilized was taken into account. In this work we present results obtained for wine aroma compounds at three inoculum levels (10(4), 10(5) and 10(6)cells/mL), and two different yeast assimilable nitrogen (YAN) in a white grape must, using two S. cerevisiae strains commonly used for winemaking. A significant effect in the final concentrations of higher alcohols, esters, fatty acids, free monoterpenes and lactones was attributed to the size of inoculum in both strains but not in an easily predictable way. However, a consistent increase of desired aroma compounds (esters, lactones and free monoterpenes), and a decrease of less desired compounds for white wine (higher alcohols and medium chain fatty acids), was shown at inoculum sizes of 10(5)cells/mL for both strains in real winemaking conditions. In a discriminant analysis six aroma compounds discriminate the three inoculum sizes for all wine samples: 1,8-terpine, hodiol I (trans-3,7-dimethyl-1,5-octadiene-3,7-diol), isobutyl alcohol, iso C4 acid, ethyl C6 ester and C8 acid. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Effects of Fermentation Temperature on Key Aroma Compounds and Sensory Properties of Apple Wine.

    Science.gov (United States)

    Peng, Bangzhu; Li, Fuling; Cui, Lu; Guo, Yaodong

    2015-12-01

    Fermentation temperature strongly affects yeast metabolism during apple wine making and thus aromatic and quality profiles. In this study, the temperature effect during apple wine making on both the key aroma compounds and sensory properties of apple wine were investigated. The concentration of nine key aroma compounds (ethyl acetate, isobutyl acetate, isopentylacetate, ethyl caprylate, ethyl 4-hydroxybutanoate, isobutylalcohol, isopentylalcohol, 3-methylthio-1-propanol, and benzeneethanol) in apple wine significantly increased with the increase of fermentation temperature from 17 to 20 °C, and then eight out of the nine key aroma compounds with an exception of ethyl 4-hydroxybutanoate, decreased when the temperature goes up 20 to 26 °C. Sensory analysis showed that the apple wine fermented at 20 °C had the highest acceptance for consumers. Fermentation at the temperature of 20 °C was therefore considered to be the most suitable condition using the selected yeast strain (Saccharomyces cerevisiae AP05) for apple wine making. Changes in the fermentation temperature can considerably affect the production of key aroma compounds and sensory profiles of apple wine. These results could help apple wine producers make better quality production for consumers at the optimal fermentation temperature. © 2015 Institute of Food Technologists®

  2. A novel methodology independent of fermentation rate for assessment of the fructophilic character of wine yeast strains.

    Science.gov (United States)

    Liccioli, T; Chambers, P J; Jiranek, V

    2011-07-01

    The yeast Saccharomyces cerevisiae has a fundamental role in fermenting grape juice to wine. During alcoholic fermentation its catabolic activity converts sugars (which in grape juice are a near equal ratio of glucose and fructose) and other grape compounds into ethanol, carbon dioxide and sensorily important metabolites. However, S. cerevisiae typically utilises glucose and fructose with different efficiency: glucose is preferred and is consumed at a higher rate than fructose. This results in an increasing difference between the concentrations of glucose and fructose during fermentation. In this study 20 commercially available strains were investigated to determine their relative abilities to utilise glucose and fructose. Parameters measured included fermentation duration and the kinetics of utilisation of fructose when supplied as sole carbon source or in an equimolar mix with glucose. The data were then analysed using mathematical calculations in an effort to identify fermentation attributes which were indicative of overall fructose utilisation and fermentation performance. Fermentation durations ranged from 74.6 to over 150 h, with clear differences in the degree to which glucose utilisation was preferential. Given this variability we sought to gain a more holistic indication of strain performance that was independent of fermentation rate and therefore utilized the area under the curve (AUC) of fermentation of individual or combined sugars. In this way it was possible to rank the 20 strains for their ability to consume fructose relative to glucose. Moreover, it was shown that fermentations performed in media containing fructose as sole carbon source did not predict the fructophilicity of strains in wine-like conditions (equimolar mixture of glucose and fructose). This work provides important information for programs which seek to generate strains that are faster or more reliable fermenters.

  3. Influence of Different Fermentation Strategies on the Phenolic Profile of Bilberry Wine (Vaccinium myrtillus L.).

    Science.gov (United States)

    Behrends, Annika; Weber, Fabian

    2017-08-30

    Polyphenol rich and especially anthocyanin rich berries like bilberries (Vaccinium myrtillus L.) and derived products such as wine have enjoyed increasing popularity. During winemaking and aging, the phenolic profile undergoes distinct changes, a phenomenon that has been well investigated in grape wine but not in bilberry wine. The present study determined the influence of different fermentation strategies including various pre- and postfermentative heating and cooling concepts on the phenolic profile of bilberry wine. Besides significant differences in total anthocyanin and tannin concentrations, the different fermentation strategies resulted in distinguishable anthocyanin profiles. A very fast aging manifested by a rapid decrease in monomeric anthocyanins of up to 98% during a 12 week storage and a coincident formation of polymeric pigments and pyranoanthocyanins was observed. Several well-known processes associated with production and aging of wine were much more pronounced in bilberry wine compared to grape wine.

  4. Improved fermentative alcohol production. [Patent application

    Science.gov (United States)

    Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  5. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae

    Science.gov (United States)

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-01-01

    Summary The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W. saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W. saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W. saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. PMID:23171032

  6. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-07-01

    The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W.saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W.saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W.saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. © 2012 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Use of Native Yeast Strains for In-Bottle Fermentation to Face the Uniformity in Sparkling Wine Production.

    Science.gov (United States)

    Vigentini, Ileana; Barrera Cardenas, Shirley; Valdetara, Federica; Faccincani, Monica; Panont, Carlo A; Picozzi, Claudia; Foschino, Roberto

    2017-01-01

    The in-bottle fermentation of sparkling wines is currently triggered by few commercialized Saccharomyces cerevisiae strains. This lack of diversity in tirage yeast cultures leads to a prevalent uniformity in sensory profiles of the end products. The aim of this study has been to exploit the natural multiplicity of yeast populations in order to introduce variability in sparkling wines throughout the re-fermentation step. A collection of 133 S. cerevisiae strains were screened on the basis of technological criteria (fermenting power and vigor, SO 2 tolerance, alcohol tolerance, flocculence) and qualitative features (acetic acid, glycerol and H 2 S productions). These activities allowed the selection of yeasts capable of dominating the in-bottle fermentation in actual cellar conditions: in particular, the performances of FX and FY strains (isolated in Franciacorta area), and OX and OY strains (isolated in Oltrepò Pavese area), were compared to those of habitually used starter cultures (IOC18-2007, EC1118, Lalvin DV10), by involving nine wineries belonging to the two Consortia of Appellation of Origin. The microbiological analyses of samples have revealed that the indigenous strains showed an increased latency period and a higher cultivability along the aging time than the commercial starter cultures do. Results of chemical analyses and sensory evaluation of the samples after 18 months sur lies have shown that significant differences ( p enology," where the wine is designed on specific vine cultivars and microorganisms, this work underlines that exploring yeast biodiversity is a strategic activity to improve the production.

  8. Assessment of volatile and non-volatile compounds in durian wines fermented with four commercial non-Saccharomyces yeasts.

    Science.gov (United States)

    Lu, Yuyun; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan

    2016-03-30

    Chemical compositions of durian wines fermented with Metschnikowia pulcherrima Flavia, Torulaspora delbrueckii Biodiva, Pichia kluyveri FrootZen and Kluyveromyces thermotolerans Concerto were investigated. Sucrose was not utilized by M. pulcherrima and P. kluyveri, resulting in little formation of ethanol (0.3-0.5%, v/v), while about 7% ethanol was produced by the other two yeasts. Volatiles such as esters and sulfur-containing compounds were synthesized or catabolized and distinctive differences existed among yeasts. Larger amounts of higher alcohols and ethyl esters were detected in wines fermented by T. delbrueckii and K. thermotolerans, whereas M. pulcherrima and P. kluyveri produced more acetate esters such as ethyl acetate (1034.43 and 131.05 mg L(-1) respectively) and isoamyl acetate (0.56 and 27.68 mg L(-1) respectively). Most endogenous sulfur volatiles such as disulfides declined to trace levels, but new ones such as thioesters were formed. Sulfur volatiles in wines fermented by T. delbrueckii accounted for 0.20% relative peak area (RPA), followed by K. thermotolerans (0.23% RPA), P. kluyveri (1.43% RPA) and M. pulcherrima (4.16% RPA). The findings showed that a more complex flavor could result from fermentation with different non-Saccharomyces yeasts and the typical durian odor would still remain. © 2015 Society of Chemical Industry.

  9. Sweet Little Gabonese Palm Wine: A Neglected Alcohol | Mavioga ...

    African Journals Online (AJOL)

    BACKGROUND: During the last ten years, consumption of palm wine, a popular traditional alcoholic beverage, seriously increases in Gabon. This sweet beverage seems to be the main alcohol and the most drunken in low socioeconomic population. OBJECTIVE: To have an idea of it composition and toxicity, 21 samples of ...

  10. Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae.

    Science.gov (United States)

    Varela, C; Torrea, D; Schmidt, S A; Ancin-Azpilicueta, C; Henschke, P A

    2012-12-15

    Oxygen or lipids are required to complete stressful alcoholic fermentation. Lack of these nutrients can inhibit sugar uptake and growth, which leads to incomplete or 'stuck' fermentation. Oxygen or lipids supplementation not only restores yeast fermentative activity and also affects formation of yeast volatile metabolites. To clarify the effect of oxygen and lipid supplementation on the formation of flavour active metabolites during wine fermentation, we evaluated the addition of these two nutrients to chemically defined grape juice and filter clarified Chardonnay must. Lipid addition increased the concentration of esters, higher alcohols and volatile acids, whereas oxygen increased the concentration of higher alcohols and altered the proportion of acetate to ethyl esters and the proportion of branch-chain acids to medium-chain fatty acids. Combined addition of lipids and oxygen showed an additive effect on concentration of higher alcohols whereas oxygen suppressed the enhancing effect of lipids on formation of esters and volatile acids. Our results demonstrate the potential of lipid and oxygen supplementation for the manipulation of wine aroma in white wine fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comparative study of phenolic compounds in Cabernet Sauvignon wines made in traditional and Ganimede fermenters.

    Science.gov (United States)

    Bai, Bianxia; He, Fei; Yang, Lili; Chen, Feng; Reeves, Malcolm J; Li, Jingming

    2013-12-15

    Chemical profiles of anthocyanin and non-anthocyanin phenolics of Cabernet Sauvignon wine made by two different winemaking techniques (traditional vinification and Ganimede method) were determined by high performance liquid chromatography-mass spectrometry (HPLC-MS). Particularly, effect of extraction on and subsequent stability of the phenolic compounds from the end of fermentation to bottling were investigated. The results showed that the total anthocyanin content was higher in the young wines produced in the Ganimede fermenter. The anthocyanin contents in these wines subsequently decreased significantly after two years of ageing. By contrast, the traditional vinification was slightly better than the Ganimede to yield the non-anthocyanin phenolics. This indicates that the Ganimede fermenter might be suitable for the production of brightly coloured red wines for early consumption, which could save time and labour cost for industrial production of highquality wines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Self-reported consumption of wine and other alcoholic beverages in a German wine area

    Directory of Open Access Journals (Sweden)

    Fronk P

    2013-06-01

    Full Text Available Petra Fronk,1 Maria Blettner,2 Heinz Decker1 1Institute for Molecular Biophysics, Johannes Gutenberg University of Mainz, Mainz, Germany; 2Institute for Medical Biostatistics, Epidemiology and Informatics, Johannes Gutenberg University of Mainz, Mainz, Germany Purpose: To describe the consumption of alcoholic beverages in a German wine area, with special attention to the number of people drinking more than the tolerable upper alcohol intake level (TUAL. Methods: A cross-sectional study was conducted using a mailed questionnaire, to investigate the weekly consumption of wine, beer, and spirits during the preceding 12 months in Mainz, the state capital of Rhineland-Palatinate, Germany. The analysis included 948 responders aged 20–69 years. Results: A total of 948 respondents, with a mean age of 43.7 years, were included in the analysis. About 85% of the respondents consumed alcoholic beverages, with an average of about 13.5 g alcohol/day. Men drank about twice as much as women. In total, 30% of women and 24% of men reported drinking more than the TUAL, and 9.2% of women and 7.2% of men reported drinking more than twice as much as the TUAL. The highest proportion of persons drinking more than the TUAL was found among elderly people. The preferred beverage was wine, which contributed 74% (for women and 54% (for men to the total alcohol intake. On average, the respondents drank 2.8 glasses of wine per week, 1.4 bottles beer, and negligible amounts of spirits. Conclusion: Wine was the preferred alcoholic beverage in Mainz, which was expected for people living in a wine area. A rather large number of people, especially among the elderly, consumed alcohol in an amount higher than the TUAL which may be harmful to health. Keywords: beer, spirits, TUAL, Mainz

  13. Fermentation process optimization and chemical constituent analysis on longan (Dimocarpus longan Lour.) wine.

    Science.gov (United States)

    Liu, Guoming; Sun, Jian; He, Xuemei; Tang, Yayuan; Li, Jiemin; Ling, Dongning; Li, Changbao; Li, Li; Zheng, Fengjin; Sheng, Jingfeng; Wei, Ping; Xin, Ming

    2018-08-01

    Based on single factor and orthogonal experiments, optimal fermentation conditions for longan wine were Saccharomyces cerevisiae strain of Lalvin K D , juice content of 70% and alcohol content of 10°. Sixteen amino acids were detected. Proline, alanine, glutamic acid and aspartic acid contents were relatively high. Sixty-three volatile aroma compounds were identified using solid-phase micro extraction and gas chromatography (SPME-GC). Ethyl lactate content was the highest, followed by octanoic acid ethyl ester, isoamyl alcohol and decanoic acid ethyl ester. Main functional components were polysaccharides. Longan wine polysaccharide (LWP) with molecular weight 10-30 kDa exhibited the highest hypoglycemic and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activities. 10-30 kDa polysaccharides mainly consisted of glucose, mannose, galactose, arabinose, galacturonic acid and glucuronic acid in molar ratio of 167.72:3.38:3.13:3.46:2.33:1. Infrared and nuclear magnetic resonance spectra confirmed that the sugar ring of 10-30 kDa polysaccharides was in the 〈beta〉-configuration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine.

    Science.gov (United States)

    Bastard, Alexandre; Coelho, Christian; Briandet, Romain; Canette, Alexis; Gougeon, Régis; Alexandre, Hervé; Guzzo, Jean; Weidmann, Stéphanie

    2016-01-01

    The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation (MLF). The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine's organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol) The results indicated that the biofilm culture of O. oeni conferred (i) increased tolerance to wine stress, and (ii) functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance. As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones, and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during MLF and aging by decreasing furfural, gaiacol, and eugenol in particular. This work showed that O

  15. Use of Schizosaccharomyces strains for wine fermentation-Effect on the wine composition and food safety.

    Science.gov (United States)

    Mylona, A E; Del Fresno, J M; Palomero, F; Loira, I; Bañuelos, M A; Morata, A; Calderón, F; Benito, S; Suárez-Lepe, J A

    2016-09-02

    Schizosaccharomyces was initially considered as a spoilage yeast because of the production of undesirable metabolites such as acetic acid, hydrogen sulfide, or acetaldehyde, but it currently seems to be of great value in enology.o ced Nevertheless, Schizosaccharomyces can reduce all of the malic acid in must, leading to malolactic fermentation. Malolactic fermentation is a highly complicated process in enology and leads to a higher concentration of biogenic amines, so the use of Schizosaccharomyces pombe can be an excellent tool for assuring wine safety. Schizosaccharomyces also has much more potential than only reducing the malic acid content, such as increasing the level of pyruvic acid and thus the vinylphenolic pyranoanthocyanin content. Until now, few commercial strains have been available and little research on the selection of appropriate yeast strains with such potential has been conducted. In this study, selected and wild Sc. pombe strains were used along with a Saccharomyces cerevisiae strain to ferment red grape must. The results showed significant differences in several parameters including non-volatile and volatile compounds, anthocyanins, biogenic amines and sensory parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Maleic acid and succinic acid in fermented alcoholic beverages are the stimulants of gastric acid secretion.

    Science.gov (United States)

    Teyssen, S; González-Calero, G; Schimiczek, M; Singer, M V

    1999-03-01

    Alcoholic beverages produced by fermentation (e.g., beer and wine) are powerful stimulants of gastric acid output and gastrin release in humans. The aim of this study was to separate and specify the gastric acid stimulatory ingredients in alcoholic beverages produced by fermentation. Yeast-fermented glucose was used as a simple model of fermented alcoholic beverages; it was stepwise separated by different methods of liquid chromatography, and each separated solution was tested in human volunteers for its stimulatory action on gastric acid output and gastrin release. Five substances were detected by high-performance liquid chromatography and were analyzed by mass spectrometry and 1H-13C nuclear magnetic resonance spectroscopy. At the end of the separation process of the five identified substances, only the two dicarboxylic acids, maleic acid and succinic acid, had a significant (P fermented glucose, respectively), but not on gastrin release. When given together, they increased gastric acid output by 100% of fermented glucose and by 95% of maximal acid output. We therefore conclude that maleic acid and succinic acid are the powerful stimulants of gastric acid output in fermented glucose and alcoholic beverages produced by fermentation, and that gastrin is not their mediator of action.

  17. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions.

    Science.gov (United States)

    Peter, Josephine J; Watson, Tommaso L; Walker, Michelle E; Gardner, Jennifer M; Lang, Tom A; Borneman, Anthony; Forgan, Angus; Tran, Tina; Jiranek, Vladimir

    2018-05-01

    A deficiency of nitrogenous nutrients in grape juice can cause stuck and sluggish alcoholic fermentation, which has long been a problem in winemaking. Nitrogen requirements vary between wine yeast strains, and the ability of yeast to assimilate nitrogen depends on the nature and concentration of nitrogen present in the medium. In this study, a wine yeast gene deletion collection (1844 deletants in the haploid AWRI1631 background) was screened to identify genes whose deletion resulted in a reduction in the time taken to utilise all sugars when grown in a chemically defined grape juice medium supplemented with limited nitrogen (75 mg L-1 as a free amino acid mixture). Through micro-scale and laboratory-scale fermentations, 15 deletants were identified that completed fermentation in a shorter time than the wildtype (c.a. 15%-59% time reduction). This group of genes was annotated to biological processes including protein modification, transport, metabolism and ubiquitination (UBC13, MMS2, UBP7, UBI4, BRO1, TPK2, EAR1, MRP17, MFA2 and MVB12), signalling (MFA2) and amino acid metabolism (AAT2). Deletion of MFA2, encoding mating factor-a, resulted in a 55% decrease in fermentation duration. Mfa2Δ was chosen for further investigation to understand how this gene deletion conferred fermentation efficiency in limited nitrogen conditions.

  18. Determination of 14C content in fermentation alcohols

    International Nuclear Information System (INIS)

    Martiniere, Pierre; Severac, Jean

    1976-01-01

    The measuring of activity in 14 C of ethylic alcohol permits to distinguish fermentation alcohol from synthetic alcohol. This activity is used to determine the corresponding percentages of these alcohols in cases of mixture [fr

  19. Fermentation kinetics and chemical characterisation of vino tostado, a traditional sweet wine from Galicia (NW Spain).

    Science.gov (United States)

    Cortés, Sandra; Salgado, José M; Rivas, Beatriz; Torrado, Ana M; Domínguez, José M

    2010-01-15

    Grapes after harvesting are air dried and pressed in order to concentrate sugars, acids and flavour compounds to produce vino tostado (toasted wine), a wine with intense aroma and flavour notes and high residual sugar concentration. In order to get a better knowledge of the difficulties involved, several fermentations were conducted at 12 and 28 degrees C using 0, 15 and 30 g hL(-1) ammonium sulfate and 0, 25 and 50 g hL(-1) exogenous commercial yeast (Saccharomyces cerevisiae var. bayanus) to study the kinetics of sugar consumption and ethanol, acetic acid and glycerol production. Fermentation kinetic parameters were calculated and metal concentrations and antioxidant activity were analysed. The spontaneous fermentation at 12 degrees C and all fermentations conducted with the commercial yeast gave vino tostado of adequate quality, while the spontaneous fermentation at 28 degrees C was sluggish. High-temperature fermentations led to sweeter wines with higher volumetric productivities, although low-temperature fermentations produced better wines in terms of higher glycerol and lower acetic acid levels. Fructose was the only sugar to be consumed during spontaneous fermentations, while both glucose and fructose were consumed during fermentations of the inoculated musts, with preference for each monosaccharide depending on temperature. Copyright (c) 2009 Society of Chemical Industry.

  20. Evaluation of Gene Modification Strategies for the Development of Low-Alcohol-Wine Yeasts

    Science.gov (United States)

    Kutyna, D. R.; Solomon, M. R.; Black, C. A.; Borneman, A.; Henschke, P. A.; Pretorius, I. S.; Chambers, P. J.

    2012-01-01

    Saccharomyces cerevisiae has evolved a highly efficient strategy for energy generation which maximizes ATP energy production from sugar. This adaptation enables efficient energy generation under anaerobic conditions and limits competition from other microorganisms by producing toxic metabolites, such as ethanol and CO2. Yeast fermentative and flavor capacity forms the biotechnological basis of a wide range of alcohol-containing beverages. Largely as a result of consumer demand for improved flavor, the alcohol content of some beverages like wine has increased. However, a global trend has recently emerged toward lowering the ethanol content of alcoholic beverages. One option for decreasing ethanol concentration is to use yeast strains able to divert some carbon away from ethanol production. In the case of wine, we have generated and evaluated a large number of gene modifications that were predicted, or known, to impact ethanol formation. Using the same yeast genetic background, 41 modifications were assessed. Enhancing glycerol production by increasing expression of the glyceraldehyde-3-phosphate dehydrogenase gene, GPD1, was the most efficient strategy to lower ethanol concentration. However, additional modifications were needed to avoid negatively affecting wine quality. Two strains carrying several stable, chromosomally integrated modifications showed significantly lower ethanol production in fermenting grape juice. Strain AWRI2531 was able to decrease ethanol concentrations from 15.6% (vol/vol) to 13.2% (vol/vol), whereas AWRI2532 lowered ethanol content from 15.6% (vol/vol) to 12% (vol/vol) in both Chardonnay and Cabernet Sauvignon juices. Both strains, however, produced high concentrations of acetaldehyde and acetoin, which negatively affect wine flavor. Further modifications of these strains allowed reduction of these metabolites. PMID:22729542

  1. Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts.

    Science.gov (United States)

    Varela, C; Kutyna, D R; Solomon, M R; Black, C A; Borneman, A; Henschke, P A; Pretorius, I S; Chambers, P J

    2012-09-01

    Saccharomyces cerevisiae has evolved a highly efficient strategy for energy generation which maximizes ATP energy production from sugar. This adaptation enables efficient energy generation under anaerobic conditions and limits competition from other microorganisms by producing toxic metabolites, such as ethanol and CO(2). Yeast fermentative and flavor capacity forms the biotechnological basis of a wide range of alcohol-containing beverages. Largely as a result of consumer demand for improved flavor, the alcohol content of some beverages like wine has increased. However, a global trend has recently emerged toward lowering the ethanol content of alcoholic beverages. One option for decreasing ethanol concentration is to use yeast strains able to divert some carbon away from ethanol production. In the case of wine, we have generated and evaluated a large number of gene modifications that were predicted, or known, to impact ethanol formation. Using the same yeast genetic background, 41 modifications were assessed. Enhancing glycerol production by increasing expression of the glyceraldehyde-3-phosphate dehydrogenase gene, GPD1, was the most efficient strategy to lower ethanol concentration. However, additional modifications were needed to avoid negatively affecting wine quality. Two strains carrying several stable, chromosomally integrated modifications showed significantly lower ethanol production in fermenting grape juice. Strain AWRI2531 was able to decrease ethanol concentrations from 15.6% (vol/vol) to 13.2% (vol/vol), whereas AWRI2532 lowered ethanol content from 15.6% (vol/vol) to 12% (vol/vol) in both Chardonnay and Cabernet Sauvignon juices. Both strains, however, produced high concentrations of acetaldehyde and acetoin, which negatively affect wine flavor. Further modifications of these strains allowed reduction of these metabolites.

  2. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Buratti, S., E-mail: susanna.buratti@unimi.it [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Ballabio, D. [Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Giovanelli, G. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Dominguez, C.M. Zuluanga [Instituto de Ciencia y Tecnologia de Alimentos, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia); Moles, A.; Benedetti, S.; Sinelli, N. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2011-07-04

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: > We monitored time-related changes in red wine fermentation process. > NIR and MIR spectroscopies, electronic nose and tongue were applied. > Data were kinetically modelled to identify critical points during fermentation. > NIR, MIR electronic nose and tongue were able to follow the fermentation process. > The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that NIR and MIR

  3. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    International Nuclear Information System (INIS)

    Buratti, S.; Ballabio, D.; Giovanelli, G.; Dominguez, C.M. Zuluanga; Moles, A.; Benedetti, S.; Sinelli, N.

    2011-01-01

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: → We monitored time-related changes in red wine fermentation process. → NIR and MIR spectroscopies, electronic nose and tongue were applied. → Data were kinetically modelled to identify critical points during fermentation. → NIR, MIR electronic nose and tongue were able to follow the fermentation process. → The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that

  4. Insights into the bacterial community and its temporal succession during the fermentation of wine grapes

    Directory of Open Access Journals (Sweden)

    Hailan ePiao

    2015-08-01

    Full Text Available Grapes harbor complex microbial communities. It is well known that yeasts, typically Saccharomyces cerevisiae, and bacteria, commonly the lactic acid fermenting Oenococcus oeni, work sequentially during primary and secondary wine fermentation. In addition to these main players, several microbes, often with undesirable effects on wine quality, have been found in grapes and during wine fermentation. However, still little is known about the dynamics of the microbial community during the fermentation process. In previous studies culture dependent methods were applied to detect and identify microbial organisms associated with grapes and grape products, which resulted in a picture that neglected the non-culturable fraction of the microbes. To obtain a more complete picture of how microbial communities change during grape fermentation and how different fermentation techniques might affect the microbial community composition, we employed next-generation sequencing (NGS. A better understanding of the microbial dynamics and their effect on the final product is of great importance to help winemakers produce wine styles of consistent and high quality. In this study, we focused on the bacterial community dynamics during wine vinification by amplifying and sequencing the hypervariable V1–V3 region of the 16S rRNA gene – a phylogenetic marker gene that is ubiquitous within prokaryotes. Bacterial communities and their temporal succession was observed for communities associated with organically and conventionally produced wines. In addition, we analyzed the chemical characteristics of the grape musts during the organic and conventional fermentation process. These analyses revealed distinct bacterial population with specific temporal changes as well as different chemical profiles for the organically and conventionally produced wines. In summary these results suggest a possible correlation between the temporal succession of the bacterial population and the

  5. IMPROVEMENT OF BORASSUS AKEASSII WINES QUALITY BY CONTROLLED FERMENTATION USING SACCHAROMYCES CEREVISIAE STRAINS

    Directory of Open Access Journals (Sweden)

    TAPSOBA François

    2016-06-01

    Full Text Available Palm wine produced traditionally and consumed by many people around the world and specifically in Burkina Faso posed health risks because of questionable quality of wine produced by mix culture fermentation and the use of antiseptics for the stabilization. In order to improve its quality, Saccharomyces cerevisiae strains isolated from Borassus akeassii wines and identified by amplification and RFLP analysis of the 5-8S-ITS region were used for in vitro fermentation of unfermented palm sap. The physicochemical characteristics of the sap were measured before and after fermentation process by High-Performance Liquid Chromatography (HPLC and the microbiological quality were also performed. HPLC analysis showed that glucose and fructose concentration in palm sap were 37.0 and 27.6 g/L respectively, ethanol content was ranged between 2.76 and 5.31 % (g/mL for controlled fermentation and 2.20 % (g/mL for spontaneous fermentation. Lactic and acetic acids were ranged between 0.1 and 0.3 g/L and 1.5 and 1.6 g/L for controlled fermentation versus 2.5 and 3.1 g/L and the spontaneous fermentation respectively. Coliforms and Staphylococcus aureus were detected only in the unfermented palm sap and the wine fermented spontaneously. Principal component analysis showed a good separation between spontaneous and controlled fermentation. Sterilization and controlled fermentation of the unfermented sap with palm wine Saccharomyces cerevisiae strains led to the improvement of palm wine quality.

  6. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  7. Non-SaccharomycesYeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile.

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non- Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non- Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non- Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non- Saccharomyces yeasts ( Starmerella bacillaris, Metschnikowia pulcherrima , and Pichia membranifaciens ) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae , to assess the impact of the non- Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae . Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae . We report here, for the first time, that non- Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris , aspartic acid was assimilated very slowly by M. pulcherrima , and glutamine was not assimilated by P. membranifaciens . By contrast, cysteine appeared to be a preferred nitrogen source for all non- Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non- Saccharomyces yeasts may account for

  8. Pre-fermentative cold maceration, saignée, and various thermal treatments as options for modulating volatile aroma and phenol profiles of red wine.

    Science.gov (United States)

    Lukić, Igor; Budić-Leto, Irena; Bubola, Marijan; Damijanić, Kristijan; Staver, Mario

    2017-06-01

    The effects of six maceration treatments on volatile aroma and phenol composition of Teran red wine were studied: standard maceration (control C), cold pre-fermentation maceration (CPM), saignée (S), pre-fermentation heating with extended maceration (PHT) or juice fermentation (PHP), and post-fermentation heating (POH). PHP wine contained the highest amounts of esters, fatty acids and anthocyanins, and the lowest content of other phenols. Alternative treatments decreased higher alcohols in relation to control C. CPM treatment lowered the extraction of seed tannins, exhibited the highest acetaldehyde, ethyl acetate and C 6 -compounds levels, and had increased ester levels in relation to control C. POH wine contained the highest concentration of total phenols, flavonoids, monomeric, oligomeric and polymeric flavanols, and color intensity and hue. S and PHT wines contained lower amount of total phenols, but higher than in C and CPM wines. The calculated Odor Activity Values were used to establish significant differences between the treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Extensive Copy Number Variation in Fermentation-Related Genes Among Saccharomyces cerevisiae Wine Strains

    Directory of Open Access Journals (Sweden)

    Jacob Steenwyk

    2017-05-01

    Full Text Available Due to the importance of Saccharomyces cerevisiae in wine-making, the genomic variation of wine yeast strains has been extensively studied. One of the major insights stemming from these studies is that wine yeast strains harbor low levels of genetic diversity in the form of single nucleotide polymorphisms (SNPs. Genomic structural variants, such as copy number (CN variants, are another major type of variation segregating in natural populations. To test whether genetic diversity in CN variation is also low across wine yeast strains, we examined genome-wide levels of CN variation in 132 whole-genome sequences of S. cerevisiae wine strains. We found an average of 97.8 CN variable regions (CNVRs affecting ∼4% of the genome per strain. Using two different measures of CN diversity, we found that gene families involved in fermentation-related processes such as copper resistance (CUP, flocculation (FLO, and glucose metabolism (HXT, as well as the SNO gene family whose members are expressed before or during the diauxic shift, showed substantial CN diversity across the 132 strains examined. Importantly, these same gene families have been shown, through comparative transcriptomic and functional assays, to be associated with adaptation to the wine fermentation environment. Our results suggest that CN variation is a substantial contributor to the genomic diversity of wine yeast strains, and identify several candidate loci whose levels of CN variation may affect the adaptation and performance of wine yeast strains during fermentation.

  10. Extensive Copy Number Variation in Fermentation-Related Genes AmongSaccharomyces cerevisiaeWine Strains.

    Science.gov (United States)

    Steenwyk, Jacob; Rokas, Antonis

    2017-05-05

    Due to the importance of Saccharomyces cerevisiae in wine-making, the genomic variation of wine yeast strains has been extensively studied. One of the major insights stemming from these studies is that wine yeast strains harbor low levels of genetic diversity in the form of single nucleotide polymorphisms (SNPs). Genomic structural variants, such as copy number (CN) variants, are another major type of variation segregating in natural populations. To test whether genetic diversity in CN variation is also low across wine yeast strains, we examined genome-wide levels of CN variation in 132 whole-genome sequences of S. cerevisiae wine strains. We found an average of 97.8 CN variable regions (CNVRs) affecting ∼4% of the genome per strain. Using two different measures of CN diversity, we found that gene families involved in fermentation-related processes such as copper resistance ( CUP ), flocculation ( FLO ), and glucose metabolism ( HXT ), as well as the SNO gene family whose members are expressed before or during the diauxic shift, showed substantial CN diversity across the 132 strains examined. Importantly, these same gene families have been shown, through comparative transcriptomic and functional assays, to be associated with adaptation to the wine fermentation environment. Our results suggest that CN variation is a substantial contributor to the genomic diversity of wine yeast strains, and identify several candidate loci whose levels of CN variation may affect the adaptation and performance of wine yeast strains during fermentation. Copyright © 2017 Steenwyk and Rokas.

  11. Major phenolic and volatile compounds and their influence on sensorial aspects in stem-contact fermentation winemaking of Primitivo red wines.

    Science.gov (United States)

    Suriano, S; Alba, V; Di Gennaro, D; Basile, T; Tamborra, M; Tarricone, L

    2016-08-01

    In red winemaking de-stemming is crucial since the stems contain polymeric phenolic compounds responsible for the astringency of wine. Wine such as Primitivo has low phenolic constituents and tannins and stems affect aroma, taste body and olfactory characteristics. The aim of the study was to evaluate the effects of presence of stems during fermentation on polyphenolic, volatile compounds and sensory characteristics of wine. Primitivo grapes vinified in presence of different percentage of stems: 100 % de-stemmed (D100), 75 % de-stemmed (D75) and 50 % de-stemmed (D50). Results confirmed that the wines vinified in presence of stems were higher in tannins, flavans, to vanillin and proanthocyanidins, colour intensity with lower anthocyanins. The presence of stems during fermentation conferred more structure and flavour to wines. They facilitated must aeration thus promoting synthesis of higher alcohols and ethyl esters by yeast. In particular, a higher content of hexan-1-ol, hex-3-en-1-ol and 2-phenyl ethanol in D50 and D75 gave the wines that suggest green grass, herb and floral. Wine from D75 seemed to be better than D50 in terms of volatile compounds as well as fruity, floral and balsamic components preserved, without any unpleasant taste of long chain fatty acids found in D50.

  12. Pre-fermentation addition of grape tannin increases the varietal thiols content in wine.

    Science.gov (United States)

    Larcher, Roberto; Tonidandel, Loris; Román Villegas, Tomás; Nardin, Tiziana; Fedrizzi, Bruno; Nicolini, Giorgio

    2015-01-01

    The recent finding that grape tannin may contain significant amount of S-glutathionylated (GSH-3MH) and S-cysteinylated (Cys-3MH) precursors of the varietal thiols 3-mercapto-1-hexanol and 3-mercaptohexyl acetate, characteristic of Sauvignon blanc wines, offers new opportunities for enhancing the tropical aroma in fermented beverages. In this study this new hypothesis was investigated: Müller Thurgau (17 samples) and Sauvignon blanc (15 samples) grapes were fermented with and without addition of a selected grape tannin. As expected, the tannin-added juices were higher in precursors, and they produced wines with increased free thiols. Preliminary informal sensory tests confirmed that in particular the Sauvignon wines produced with the tannin addition were often richer with increased "fruity/green" notes than the corresponding reference wines. This outcome confirms that grape tannin addition prior to fermentation can fortify the level of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Measurement of yeast invertase during alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, O.; Boudarel, M.J.; Ramirez, A.

    1986-01-01

    In continuous alcoholic fermentation of molasses by Saccharomyces cerevisiae, it is important but difficult to know the variation of yeast physiological state with time, so as to maintain maximum yeast productivity. We decided to quantify invertase activity, for which there are few if any appropriate methods (Vitolo and Borzani, Analytical Biochemistry 130, 469-470, 1983). 1 reference.

  14. Comparative studies on the alcohol types presence in Gracilaria sp. and rice fermentation using Sasad

    Science.gov (United States)

    Mansa, R.; Mansuit, H.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.

    2016-06-01

    Alternative fuel sources such as biofuels are needed in order to overcome environmental problem caused by fossil fuel consumption. Currently, most biofuel are produced from land based crops and there is a possibility that marine biomass such as macroalgae can be an alternative source for biofuel production. The carbohydrate in macroalgae can be broken down into simple sugar through thermo-chemical hydrolysis and enzymatic hydrolysis. Dilute-acid hydrolysis was believed to be the most available and affordable method. However, the process may release inhibitors which would affect alcohol yield from fermentation. Thus, this work was aimed at investigating if it is possible to avoid this critical pre-treatment step in macroalgae fermentation process by using Sasad, a local Sabahan fermentation agent and to compare the yield with rice wine fermentation. This work hoped to determine and compare the alcohol content from Gracilaria sp. and rice fermentation with Sasad. Rice fermentation was found containing ethanol and 2 - methyl - 1 - propanol. Fermentation of Gracilaria sp. had shown the positive presence of 3 - methyl - 1 - butanol. It was found that Sasad can be used as a fermentation agent for bioalcohol production from Gracilaria sp. without the need for a pretreatment step. However further investigations are needed to determine if pre-treatment would increase the yield of alcohol.

  15. Hybridization of halotolerant yeast for alcohol fermentation

    International Nuclear Information System (INIS)

    Limtong, S.

    1991-01-01

    Attempt have been made to construct a new yeast strain from alcohol fermenting strains and salt tolerant strains. It is anticipated that the new yeast strain will be able to ferment alcohol in molasses mash with high salinity, up to 3% of NaCl. Another characteristics is its ability to tolerate up to 40 C temperature which is desirable for alcohol fermentation in tropical countries. Commercial and wild strains of Saccharomyces cerevisiae were screened for their fermenting ability and strain SC90, 191 TJ3, and AM12 were selected as parental strains for fusion among themselves and with other halo tolerant species. Halo tolerant strains selected at 5% NaCl in molasses mash were tentatively identified as Torulopsis grabrata, T. candida, T. Bovina and S. Rouxii whereas all of those strains selected at 17% NaCl were Citeromyces sp. It was found that fusant TA73 derived from wild strain and sake fermenting strain performed best among 4,087 fusants investigated. This fusant fermented much better than their parental strains when salt concentrations were increased to 5 and 7% NaCl. Experiment was carried out in fermentor, 1.5 liter working volume using molasses mash with 3% NaCl and temperature was controlled at 35 degree C. Fermentation rate of TA73, TJ3 and AM12 were 2.17, 1.50 and 1.87 g/L/hr respectively, Maximum ethanol concentration obtained were 7.6, 6.7 and 7.4% by weight after 60 and 78 hours respectively. Other fusants derived from fusion of Saccharomyces cerevisiae with other halo tolerant species were mostly inferior to their parental strains and only 7 fusants were slightly better than parental strains. (author)

  16. Consumer demand for low-alcohol wine in an Australian sample

    Directory of Open Access Journals (Sweden)

    Saliba AJ

    2013-03-01

    Full Text Available Anthony J Saliba, Linda A Ovington, Carmen C MoranCharles Sturt University, Wagga Wagga, NSW, AustraliaBackground: The aim of this paper is to inform wine producers and marketers of those in the population who are interested in low-alcohol wine by describing the results of an Australian survey.Method: In the present study, 851 adult wine consumers completed an online questionnaire on their purchasing and consumption of wine, demographics, knowledge, and reasons for consuming wine. Reasons for consumption were defined using Brunner and Siegrist’s validated model. Self-reported interest in low-alcohol wine was used to determine the likely maximum possible market size.Results: The majority of respondents considered “low-alcohol wine” to contain around 3%–8% alcohol. Results indicated that those most likely to purchase low-alcohol wine were female and those who drink wine with food. Those who drank wine more frequently showed interest in wine sold in known-dose quantities, such as one standard drink. Reasons for preferring a low-alcohol wine included driving after drinking, to lessen the adverse effects of alcohol, and to consume more without the effects of a higher-alcohol wine. Finally, results pointed to the importance of taste as a driver of consumption.Conclusion: This is the first study to define the opportunity market for low-alcohol wine in Australia agnostic to intervening variables, thus defines the likely upper limit. Further, we showed what consumers currently define as low alcohol. Both of these findings allow wine companies to make a decision on the profitability of the low-alcohol market in Australia.Keywords: consumer demand, low alcohol, wine, consumer preference

  17. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on polysaccharide and tannin content and composition.

    Science.gov (United States)

    Schelezki, Olaf J; Smith, Paul A; Hranilovic, Ana; Bindon, Keren A; Jeffery, David W

    2018-04-01

    A changing climate has led to winegrapes being harvested with increased sugar levels and at greater risk of berry shrivel. A suggested easy-to-adopt strategy to manage the associated rising wine alcohol levels is the pre-fermentative substitution of juice with either "green harvest wine" or water. Our study investigates the effects of this approach on Vitis vinifera L. cv. Cabernet Sauvignon wine quality attributes. Wines were also made from fruit collected at consecutive earlier harvest time points to produce wines comparable in alcohol to the substituted wines. Tannin concentrations and colour did not change significantly in the wines with modified alcohol content even at higher juice substitution rates. Differences in polysaccharide and tannin composition indicated variability in extraction dynamics according to substitution rate and type of blending component. In scenarios where berry shrivel is inevitable, the incorporation of water in particular offers much promise as part of a strategy to manage wine alcohol content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast

    OpenAIRE

    Martí-Raga, M.; Guillamon, J.M.; Chiva, R.; García-Rios, E.; López-Malo, M.

    2014-01-01

    10.1002/btpr.1915 Low-temperature fermentations produce wines with greater aromatic complexity, but the success of these fermentations greatly depends on the adaptation of yeast cells to cold. Tryptophan has been previously reported to be a limiting amino acid during Saccharomyces cerevisiae growth at low temperature. The objective of this study was to determine the influence of the tryptophan metabolism on growth and fermentation performance during low-temperature wine fermentation. To t...

  20. Determination of fungicide pyrimethanil in grapes, must, fermenting must and wine.

    Science.gov (United States)

    Vaquero-Fernández, Luis; Sanz-Asensio, Jesús; Fernández-Zurbano, Purificación; López-Alonso, Miguel; Martínez-Soria, María-Teresa

    2013-06-01

    This study determined the evolution of pyrimethanil, a fungicide commonly used to control Botrytis cinerea, throughout the winemaking process in grapes, must, fermenting must and wine. Tempranillo grapevines were treated with pyrimethanil according to both good Agricultural Practices (GAP) and Critical Agricultural Practices (CAP). Fermentation was carried out in an experimental winery. Grape analysis was based on an ethyl acetate extraction method. Samples from fermentation were analysed by solid phase extraction. The determination was carried out by gas chromatography with nitrogen-phosphorus detection (GC-NPD) and additionally confirmed by gas chromatography/mass spectrometry (GC/MS). Pyrimethanil residues were at least ten times greater in grapes treated 7 days before harvest than in those treated respecting the safety period (21 days). The amount of pyrimethanil in grapes treated under GAP was below the maximum residue limit (5 mg kg(-1)). The level of pyrimethanil decreased during fermentation in both treatments. In the fermentation of grapes treated according to CAP, the pyrimethanil concentration was reduced by over 50% on the first day and then remained constant until the end of the fermentation process. For grapes treated in compliance with GAP, the amount of pyrimethanil decreased to a level below the limit of detection in the bottled wine. The described methods for grapes, must, fermenting must and wine gave good recoveries, linearity, precision and accuracy. They were also highly sensitive in avoiding matrix effects. Pyrimethanil residues found in treated grapes were higher in skin than in pulp. The amount of pyrimethanil decreased during fermentation by degradation and/or adsorption. For grapes treated according to GAP, residues disappeared in the final bottled wine. The decrease observed in the final bottled wine may be caused by diverse oenological practices and technologies such us malolactic fermentation, racking and settling. © 2012 Society of

  1. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Special Beer obtained by Synchronous Alcoholic Fermentation of Two Different Origin Substrates

    Directory of Open Access Journals (Sweden)

    Elena MUDURA

    2016-11-01

    Full Text Available Beer is the most consumed alcoholic beverage worldwide. Both beer and wine are  recognized since ancient times for their health benefits. Nowadays, these beverages are consumed for its sensory, social interaction, and recently even in culinary dishes. In addition, studies showed the benefits of beer moderate consumption on health. Beer is a low-alcohol beverage and also presents many nutritional properties outlined by its nutritional content rich in vitamins, minerals and antioxidants that come from the raw material (malt and hop. Wishing to attract as many niches of consumers, brewers tend to produce every year new and innovative beers. The purpose of this study was to develop the technology for an innovative special beer. The synchronous alcoholic fermentation of two different origin substrates – wort and grape must - was monitored and their composition was assessed in order to obtain special beer with superior sensory properties. Technological process was developed in the Winery Pilot Station of the UASVM Cluj-Napoca. Special beer was obtained by alcoholic fermentation of hopped dark wort with grape must from the autochthonous Feteasca neagra grapes variety. Second fermentation process was followed by the maturation (3 weeks at 5oC in order to harmonize sensory qualities. The entire process was monitored considering fermentation and final products physicochemical parameters. The optimized ratio of the two fermentation substrates was of 2.5:3 on primary raw materials – beer wort and grapes must. The process was monitored on optimizing the fermentation process. The best fermentation yield was obtained when lower fermentation extracts were used. This study demonstrated that the simultaneous fermentation of the two substrates with different glucidic origin may proceed under controlled conditions and may be carried out so as to obtain the desired fermentation products with improved sensorial properties and increased health benefits.

  3. Aroma profile of Montepulciano d’Abruzzo wine fermented by single and co-culture starters of autochthonous Saccharomyces and non-Saccharomyces yeasts

    Directory of Open Access Journals (Sweden)

    Rosanna eTofalo

    2016-04-01

    Full Text Available Montepulciano d’Abruzzo is a native grape variety of Vitis vinifera L., grown in central Italy and used for production of high quality red wines. Limited studies have been carried out to improve its enological characteristics through the use of indigenous strains of Saccharomyces cerevisiae. The main objective of the present work was to test two indigenous strains of S. cerevisiae (SRS1, RT73, a strain of Starm. bacillaris (STS12, one of H. uvarum (STS45 and a co-culture of S. cerevisiae (SRS1 and Starm. bacillaris (STS12, in an experimental cellar to evaluate their role in the sensory characteristic of Montepulciano d’Abruzzo wine. A S. cerevisiae commercial strain was used. Fermentations were conducted under routine Montepulciano d’Abruzzo wine production, in which the main variables were the yeast strains used for fermentation. Basic winemaking parameters, some key chemical analysis and aroma compounds were considered. Saccharomyces cerevisiae strain dynamics during fermentation were determined by molecular methods. The musts inoculated with the co-culture were characterized by a faster fermentation start and a higher content of glycerol after three days of fermentation, as well as the musts added with strains Starm. bacillaris (STS12 and H. uvarum (STS45. At the end of fermentation the parameters studied were quite similar in all the wines. Total biogenic amines (BA content of all the wines was low. Ethanolamine was the predominant BA, with a concentration ranging from 21 to 24 mg/l. Wines were characterized by esters and alcohols. In particular, 2-phenylethanol, 3-methylbut-1-yl methanoate and ethyl ethanoate were the major aroma volatile compounds in all wines. Statistical analysis highlighted the different role played by aroma compounds in the differentiation of wines, even if it was impossible to select a single class as the most important for a specific yeast. The present study represents a further step towards the use of tailored

  4. Production of Star Fruit Alcoholic Fermented Beverage.

    Science.gov (United States)

    Valim, Flávia de Paula; Aguiar-Oliveira, Elizama; Kamimura, Eliana Setsuko; Alves, Vanessa Dias; Maldonado, Rafael Resende

    2016-12-01

    Star fruit ( Averrhoa carambola ) is a nutritious tropical fruit. The aim of this study was to evaluate the production of a star fruit alcoholic fermented beverage utilizing a lyophilized commercial yeast ( Saccharomyces cerevisiae ). The study was conducted utilizing a 2 3 central composite design and the best conditions for the production were: initial soluble solids between 23.8 and 25 °Brix (g 100 g -1 ), initial pH between 4.8 and 5.0 and initial concentration of yeast between 1.6 and 2.5 g L -1 . These conditions yielded a fermented drink with an alcohol content of 11.15 °GL (L 100 L -1 ), pH of 4.13-4.22, final yeast concentration of 89 g L -1 and fermented yield from 82 to 94 %. The fermented drink also presented low levels of total and volatile acidities.

  5. Ultrasonic preliminary measurements of oenological malolactic fermentation parameters in red wine

    International Nuclear Information System (INIS)

    Novoa-Díaz, D F; García-Álvarez, J; Chávez, J A; Turó, A; García-Hernández, M J; Salazar, J; Puig-Pujol, A; Mínguez, S; Bertran, E

    2012-01-01

    In the winemaking process, the malolactic fermentation is an essential process in the production of high quality red wines which concerns the conversion of malate into lactate. In this work, the ultrasonic velocity through wine samples with different concentrations of malate and lactate was measured using the pulse echo technique with 1 MHz tone burst signals. The evolution of these concentrations during malolactic fermentation was taken into account in order to determine the ratio between concentrations of malate and lactate of the different samples. These preliminary results have revealed that the ultrasonic velocity increases during the conversion of malate to lactate. In addition, measurements have been conducted to quantify the influence of variations in turbidity and temperature on test samples. Therefore, these results show the possibility of using ultrasonic velocity measurements for on-line monitoring the malolactic fermentation of red wine and may help to improve and contribute to the development of the winemaking process.

  6. Ultrasonic preliminary measurements of oenological malolactic fermentation parameters in red wine

    Science.gov (United States)

    Novoa-Díaz, D. F.; Puig-Pujol, A.; García-Álvarez, J.; Chávez, J. A.; Turó, A.; Mínguez, S.; García-Hernández, M. J.; Bertran, E.; Salazar, J.

    2012-12-01

    In the winemaking process, the malolactic fermentation is an essential process in the production of high quality red wines which concerns the conversion of malate into lactate. In this work, the ultrasonic velocity through wine samples with different concentrations of malate and lactate was measured using the pulse echo technique with 1 MHz tone burst signals. The evolution of these concentrations during malolactic fermentation was taken into account in order to determine the ratio between concentrations of malate and lactate of the different samples. These preliminary results have revealed that the ultrasonic velocity increases during the conversion of malate to lactate. In addition, measurements have been conducted to quantify the influence of variations in turbidity and temperature on test samples. Therefore, these results show the possibility of using ultrasonic velocity measurements for on-line monitoring the malolactic fermentation of red wine and may help to improve and contribute to the development of the winemaking process.

  7. What is alcoholic fermentation? A study about the alcoholic fermentation conception through the history

    Directory of Open Access Journals (Sweden)

    C.A. F. Cardoso

    2004-05-01

    Full Text Available This work shows the historical development of the alcoholic fermentation conception, based on expe-rimental results obtained from European scientists, from Renascence to the beginning of 20th century(1930. From this, ve concepts were identied for the phenomenon: putrefactive, spiritual, chemical,biological and biochemical. The current conception of alcoholic fermentation was also evaluated. Forthis proposal, three groups of teachers were interviewed through the question? What is alcoholicfermentation? The P group (pilot, n=12 made of professionals that teach on secondary and highschools, group A composed of PhDs from the Center of Technology Education - NUTES (n=9 andgroup B from Department of Medical Biochemistry (called group B, n=41 both of Federal Universityof Rio de Janeiro, respectively. Key words associated with the fermentative process were identiedidentify in the interviewees answers. The group A components mentioned only six key words andpointed out the alcoholic fermentation products. Dierently, subjects from P and B groups cited ahigher number and also more unusual key words (n = 9 and 12, respectively. We also analyzedtheir answers throughout fermentative descriptive words (sugar, alcohol, carbon dioxide, anaerobic,yeast and ATP. These words were established after an evaluation of alcoholic fermentation conceptstated in the Biology/Biochemistry books most adopted in high schools and Universities. Our analysisshowed that group A used only three descriptive words (sugar, alcohol and yeast while componentsof group B used all the selected descriptive words. However, only one interviewee used all the sixwords together. From this analysis, we proposed that the chemical concept of alcoholic fermentationprevailed on the other concepts found on the historical research (spiritual, putrefactive, biological ebiochemical.

  8. Comparison of Fermentation and Wines Produced by Inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae

    Science.gov (United States)

    Lleixà, Jessica; Martín, Valentina; Portillo, María del C.; Carrau, Francisco; Beltran, Gemma; Mas, Albert

    2016-01-01

    Interest in the use of non-Saccharomyces yeasts in winemaking has been increasing due to their positive contributions to wine quality. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good aromatic properties. However, little is known about the fermentation dynamics of H. vineae in natural must and its interaction with autochthonous yeasts. In the present study, we performed semi industrial fermentations of Macabeo and Merlot musts inoculated with either H. vineae or S. cerevisiae. The yeast population dynamics were monitored by plate culturing, PCR-DGGE and massive sequencing techniques. The results obtained with these techniques show that H. vineae was able dominate the autochthonous microbiota in Macabeo must but not in Merlot must, which exhibited a larger, more diverse yeast population. The presence of H. vineae throughout most of the Macabeo fermentation resulted in more fruity and flowery wine, as indicated by the chemical analysis of the final wines, which demonstrated a strong presence of phenyl ethyl acetate at concentrations higher than the threshold of perception and approximately 50 times more than that produced in wines fermented with S. cerevisiae. This compound is associated with fruity, floral and honey aromas. PMID:27014252

  9. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions

    Science.gov (United States)

    Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes. PMID:29351285

  10. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions.

    Science.gov (United States)

    Peltier, Emilien; Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes.

  11. Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation.

    Science.gov (United States)

    Deed, Rebecca C; Deed, Nathan K; Gardner, Richard C

    2015-04-01

    Although the yeast response to low temperature has industrial significance for baking, lager brewing and white wine fermentation, the molecular response of yeast cells to low temperature remains poorly characterised. Transcriptional changes were quantified in a commercial wine yeast, Enoferm M2, fermented at optimal (25 °C) and low temperature (12.5 °C), at two time points during fermentation of Sauvignon blanc grape juice. The transition from early to mid-late fermentation was notably less severe in the cold than at 25 °C, and the Rim15p-Gis1p pathway was involved in effecting this transition. Genes for three key nutrients were strongly influenced by low temperature fermentation: nitrogen, sulfur and iron/copper, along with changes in the cell wall and stress response. Transcriptional analyses during wine fermentation at 12.5 °C in four F1 hybrids of M2 also highlighted the importance of genes involved in nutrient utilisation and the stress response. We identified transcription factors that may be important for these differences between genetic backgrounds. Since low fermentation temperatures cause fundamental changes in membrane kinetics and cellular metabolism, an understanding of the physiological and genetic limitations on cellular performance will assist breeding of improved industrial strains.

  12. The Influence of Some Commercial Saccharomyces cerevisiae Strains on the Quality of Chardonnay Wines

    Directory of Open Access Journals (Sweden)

    Vesna Podgorski

    2003-01-01

    Full Text Available Changes in some aroma compounds and sensory properties caused by different commercial S. cerevisiae strains and by epiphyte microorganisms in Chardonnay wines were investigated. Wines fermented with the Lalvin-71 B strain contained significantly lower concentrations of alcohol, isoamyl alcohol, isobutanol and total acidity than the wines obtained from spontaneous and other inoculated fermentations. The highest concentrations of 2-phenyl ethanol and 2-phenyl ethyl acetate were found in the spontaneously fermented wines, whereas no essential changes in these compounds were found among the wines of other treatments. Compared to the spontaneous fermentation, Lalvin-71 B strain fermented wines had somewhat higher concentrations of butyric and caproic acid and ethyl butyrate. Lalvin-71 B strain fermented wines were assessed as the best whereas the quality of the wines produced with Lalvin aromatic-2056 strain was the most inferior in quality.

  13. Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds.

    Science.gov (United States)

    Beltran, Gemma; Novo, Maite; Guillamón, José M; Mas, Albert; Rozès, Nicolas

    2008-01-31

    The temperature of a wine fermentation strongly affects lipid metabolism and thus, aromatic profiles. Most of the metabolic studies are done in well-controlled laboratory conditions, yet wine is produced in less-reproducible industrial conditions. The aim of this study is to analyse the effect of fermentation temperature (13 degrees C and 25 degrees C) and culture media (synthetic media and grape must) on yeast lipid composition and volatile compounds in wine. Our results show that yeast viability was better at 13 degrees C than at 25 degrees C whichever growth medium is used, but that the complexity of the grape must enabled cells to reach higher viable population size. Viability was also related to the incorporation of linoleic acid and beta-sitosterol, which were present in the grape must. A lower temperature modified the cellular lipid composition of yeast, increasing the degree of unsaturation at the beginning of fermentation and decreasing the chain length as fermentation progressed. We also found that medium-chain fatty acids, mainly dodecanoic acid, were present in the cell phospholipids. Wines produced from grape must were more aromatic and had a lower volatile acidity content than those derived from a synthetic medium. Fermentations that were performed at the lower temperature also emphasized this feature.

  14. Accumulation of non-superoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Mendes-Ferreira, Ana; Sampaio-Marques, Belém; Barbosa, Catarina; Rodrigues, Fernando; Costa, Vítor; Mendes-Faia, Arlete; Ludovico, Paula; Leão, Cecília

    2010-12-01

    Throughout alcoholic fermentation, nitrogen depletion is one of the most important environmental stresses that can negatively affect the yeast metabolic activity and ultimately leads to fermentation arrest. Thus, the identification of the underlying effects and biomarkers of nitrogen limitation is valuable for controlling, and therefore optimizing, alcoholic fermentation. In this study, reactive oxygen species (ROS), plasma membrane integrity, and cell cycle were evaluated in a wine strain of Saccharomyces cerevisiae during alcoholic fermentation in nitrogen-limiting medium under anaerobic conditions. The results indicated that nitrogen limitation leads to an increase in ROS and that the superoxide anion is a minor component of the ROS, but there is increased activity of both Sod2p and Cta1p. Associated with these effects was a decrease in plasma membrane integrity and a persistent cell cycle arrest at G(0)/G(1) phases. Moreover, under these conditions it appears that autophagy, evaluated by ATG8 expression, is induced, suggesting that this mechanism is essential for cell survival but does not prevent the cell cycle arrest observed in slow fermentation. Conversely, nitrogen refeeding allowed cells to reenter cell cycle by decreasing ROS generation and autophagy. Altogether, the results provide new insights on the understanding of wine fermentations under nitrogen-limiting conditions and further indicate that ROS accumulation, evaluated by the MitoTracker Red dye CM-H(2)XRos, and plasma membrane integrity could be useful as predictive markers of fermentation problems.

  15. Use of two osmoethanol tolerant yeast strain to ferment must from Tempranillo dried grapes: effect on wine composition.

    Science.gov (United States)

    López de Lerma, N; Peinado, R A

    2011-01-31

    The must from Tempranillo dried grapes was divided into four batches to produce sweet wine. The first one was fortified with ethanol up to 12% (v/v) to avoid fermentation (traditional way). Other two batches were partially fermented with two osmoethanol tolerant Saccharomyces cerevisiae strains (X4 and X5). The last one was fermented with native yeast by spontaneous fermentation. Wines fermented partially with the strains X4 and X5 show high volatile acidity values (above 2g/L expressed as acetic acid), and a glycerol concentration around 20 g/L. Both strains also produce high amount of carboxylic acids and therefore the wines show a high ethyl ester concentration. Aromatic series were obtained for all the wines by grouping aroma compounds according to their odor descriptors. The series of the fermented wines with higher values in relation with the control wine were fruity, sweet and fatty, emphasizing the fruity series in the samples fermented with the X4 and X5 strains. The sensorial analysis of the wine samples by a tasting panel put in evidence that the musts fermented with the osmoethanol tolerant yeasts were better valued than the rest of the wine samples. The must fermented with the X4 strain obtained the maximum score in terms of aroma and flavour. So, the use of these osmoethanol tolerant S. cerevisiae strains could be a suitable alternative to produce sweet wines from must with high sugar concentration. The wines obtained this way are chemically and organoleptically more complex than those elaborated traditionally. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. The effect of the fungicide captan on Saccharomyces cerevisiae and wine fermentation

    OpenAIRE

    Scariot Fernando J.; Jahn Luciane M.; Delamare Ana Paula L.; Echeverrigaray Sergio

    2016-01-01

    Fungicides, particularly those used during grape maturation, as captan, can affect the natural yeast population of grapes, and can reach grape must affecting wine fermentation. The objective of the present work was to study the effect of captan on the viability and fermentative behavior of S. cerevisiae. S. cerevisiae (BY4741) on exponential phase was treated with captan (0 to 40 μM) for different periods, and their cell viability analyzed. Cell membrane integrity, thiols concentration, and r...

  17. Establishing optimal methods of detecting wines counterfeited by addition of alcohol

    International Nuclear Information System (INIS)

    Ranca, Aurora; Menabit, Nelian; Artem, Victoria; Savin, Costica; Vasile, Ancuta; Pasa, Domnica; Postolache, Elena; Iliescu, Maria

    2008-01-01

    The alcohol is one of the most important parameters characterizing the wine and also, most often a means used to commit forgery. The investigations were made with control wines and wines subject to addition of alcohol of 96% and 50% vol concentration. The wines come from the four wine research stations: SCDVV Murfatlar, SCDVV Iasi, SCDVV Bujoru, and SCDVV Blaj. For checking the addition of alcohol the following methods were used: density measuring, establishing the alcohol / unreduced extract, establishing the glycerol / alcohol ratio and determining the ratios of the isotopic mixtures 18 O/ 16 O, 13 C/ 12 C, D/H. Extensive researches, with high precision equipment are planned to continue in order to exclude any possibility of falsification of wines. (authors)

  18. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    Science.gov (United States)

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  19. The effect of the fungicide captan on Saccharomyces cerevisiae and wine fermentation

    Directory of Open Access Journals (Sweden)

    Scariot Fernando J.

    2016-01-01

    Full Text Available Fungicides, particularly those used during grape maturation, as captan, can affect the natural yeast population of grapes, and can reach grape must affecting wine fermentation. The objective of the present work was to study the effect of captan on the viability and fermentative behavior of S. cerevisiae. S. cerevisiae (BY4741 on exponential phase was treated with captan (0 to 40 μM for different periods, and their cell viability analyzed. Cell membrane integrity, thiols concentration, and reactive oxygen species (ROS accumulation was determined. The fermentation experiments were conducted in synthetic must using wine yeast strain Y904. The results showed that under aerobic conditions, 20 μM of captan reduce 90% of yeast viability in 6 hours. Captan treated cells exhibited alteration of membrane integrity, reduction of thiol compounds and increase in intracellular ROS concentration, suggesting a necrotic and pro-oxidant activity of the fungicide. Fermentative experiments showed that concentrations above 2.5 μM captan completely inhibited fermentation, while a dose dependent fermentation delay associated with the reduction of yeast viability was detected in sub-inhibitory concentrations. Petit mutants increase was also observed. In conclusion, the captan induces yeast necrotic cell death on both aerobic and anaerobic conditions causing fermentation delay and/or sucking fermentations.

  20. Osmoadaptation of wine yeast (Saccharomyces cerevisiae) during Icewine fermentation leads to high levels of acetic acid.

    Science.gov (United States)

    Heit, C; Martin, S J; Yang, F; Inglis, D L

    2018-02-14

    Volatile acidity (VA) production along with gene expression patterns, encoding enzymes involved in both acetic acid production and utilization, were investigated to relate gene expression patterns to the production of undesired VA during Icewine fermentation. Icewine juice and diluted Icewine juice were fermented using the Saccharomyces cerevisiae wine yeast K1-V1116. Acetic acid production increased sixfold during the Icewine fermentation vs the diluted juice condition, while ethyl acetate production increased 2·4-fold in the diluted fermentation relative to the Icewine. Microarray analysis profiled the transcriptional response of K1-V1116 under both conditions. ACS1 and ACS2 were downregulated 19·0-fold and 11·2-fold, respectively, in cells fermenting Icewine juice compared to diluted juice. ALD3 expression was upregulated 14·6-fold, and gene expressions involved in lipid and ergosterol synthesis decreased during Icewine fermentation. Decreased expression of ACS1 and ACS2 together with increased ALD3 expression contributes to the higher acetic acid and lower ethyl acetate levels generated by K1-V1116 fermenting under hyperosmotic stress. This work represents a more comprehensive understanding of how and why commercial wine yeast respond at the transcriptional and metabolic level during fermentation of Icewine juice, and how these responses contribute to increased acetic acid and decreased ethyl acetate production. © 2018 The Society for Applied Microbiology.

  1. Wine, alcohol and atherosclerosis: clinical evidences and mechanisms

    Directory of Open Access Journals (Sweden)

    P.L. da Luz

    2004-09-01

    Full Text Available Atherosclerosis is a chronic inflammatory disease which may cause obstructions of the coronary, cerebral and peripheral arteries. It is typically multifactorial, most often dependent on risk factors such as hypercholesterolemia, diabetes, smoking, hypertension, sedentarism, and obesity. It is the single main cause of death in most developed countries due to myocardial infarction, angina, sudden death, and heart failure. Several epidemiological studies suggest that moderate alcohol intake, especially red wine, decrease cardiac mortality due to atherosclerosis. The alcohol effect is described by a J curve, suggesting that moderate drinkers may benefit while abstainers and heavy drinkers are at higher risk. Experimental studies indicate that most beneficial effects of drinking are attributable to flavonoids that are present in red wine, purple grape juice and several fruits and vegetables. The mechanisms include antiplatelet actions, increases in high-density lipoprotein, antioxidation, reduced endothelin-1 production, and increased endothelial nitric oxide synthase expression which causes augmented nitric oxide production by endothelial cells. These findings lead to the concept that moderate red wine drinking, in the absence of contraindications, may be beneficial to patients who are at risk of atherosclerotic cardiovascular events. Moreover, a diet based on fruits and vegetables containing flavonoids may be even more beneficial.

  2. From Vineyard Soil to Wine Fermentation: Microbiome Approximations to Explain the "terroir" Concept.

    Science.gov (United States)

    Belda, Ignacio; Zarraonaindia, Iratxe; Perisin, Matthew; Palacios, Antonio; Acedo, Alberto

    2017-01-01

    Wine originally emerged as a serendipitous mix of chemistry and biology, where microorganisms played a decisive role. From these ancient fermentations to the current monitored industrial processes, winegrowers and winemakers have been continuously changing their practices according to scientific knowledge and advances. A new enology direction is emerging and aiming to blend the complexity of spontaneous fermentations with industrial safety of monitored fermentations. In this context, wines with distinctive autochthonous peculiarities have a great acceptance among consumers, causing important economic returns. The concept of terroir , far from being a rural term, conceals a wide range of analytical parameters that are the basis of the knowledge-based enology trend. In this sense, the biological aspect of soils has been underestimated for years, when actually it contains a great microbial diversity. This soil-associated microbiota has been described as determinant, not only for the chemistry and nutritional properties of soils, but also for health, yield, and quality of the grapevine. Additionally, recent works describe the soil microbiome as the reservoir of the grapevine associated microbiota, and as a contributor to the final sensory properties of wines. To understand the crucial roles of microorganisms on the entire wine making process, we must understand their ecological niches, population dynamics, and relationships between 'microbiome- vine health' and 'microbiome-wine metabolome.' These are critical steps for designing precision enology practices. For that purpose, current metagenomic techniques are expanding from laboratories, to the food industry. This review focuses on the current knowledge about vine and wine microbiomes, with emphasis on their biological roles and the technical basis of next-generation sequencing pipelines. An overview of molecular and informatics tools is included and new directions are proposed, highlighting the importance of -omics

  3. From Vineyard Soil to Wine Fermentation: Microbiome Approximations to Explain the “terroir” Concept

    Science.gov (United States)

    Belda, Ignacio; Zarraonaindia, Iratxe; Perisin, Matthew; Palacios, Antonio; Acedo, Alberto

    2017-01-01

    Wine originally emerged as a serendipitous mix of chemistry and biology, where microorganisms played a decisive role. From these ancient fermentations to the current monitored industrial processes, winegrowers and winemakers have been continuously changing their practices according to scientific knowledge and advances. A new enology direction is emerging and aiming to blend the complexity of spontaneous fermentations with industrial safety of monitored fermentations. In this context, wines with distinctive autochthonous peculiarities have a great acceptance among consumers, causing important economic returns. The concept of terroir, far from being a rural term, conceals a wide range of analytical parameters that are the basis of the knowledge-based enology trend. In this sense, the biological aspect of soils has been underestimated for years, when actually it contains a great microbial diversity. This soil-associated microbiota has been described as determinant, not only for the chemistry and nutritional properties of soils, but also for health, yield, and quality of the grapevine. Additionally, recent works describe the soil microbiome as the reservoir of the grapevine associated microbiota, and as a contributor to the final sensory properties of wines. To understand the crucial roles of microorganisms on the entire wine making process, we must understand their ecological niches, population dynamics, and relationships between ‘microbiome- vine health’ and ‘microbiome-wine metabolome.’ These are critical steps for designing precision enology practices. For that purpose, current metagenomic techniques are expanding from laboratories, to the food industry. This review focuses on the current knowledge about vine and wine microbiomes, with emphasis on their biological roles and the technical basis of next-generation sequencing pipelines. An overview of molecular and informatics tools is included and new directions are proposed, highlighting the importance of

  4. From Vineyard Soil to Wine Fermentation: Microbiome Approximations to Explain the “terroir” Concept

    Directory of Open Access Journals (Sweden)

    Ignacio Belda

    2017-05-01

    Full Text Available Wine originally emerged as a serendipitous mix of chemistry and biology, where microorganisms played a decisive role. From these ancient fermentations to the current monitored industrial processes, winegrowers and winemakers have been continuously changing their practices according to scientific knowledge and advances. A new enology direction is emerging and aiming to blend the complexity of spontaneous fermentations with industrial safety of monitored fermentations. In this context, wines with distinctive autochthonous peculiarities have a great acceptance among consumers, causing important economic returns. The concept of terroir, far from being a rural term, conceals a wide range of analytical parameters that are the basis of the knowledge-based enology trend. In this sense, the biological aspect of soils has been underestimated for years, when actually it contains a great microbial diversity. This soil-associated microbiota has been described as determinant, not only for the chemistry and nutritional properties of soils, but also for health, yield, and quality of the grapevine. Additionally, recent works describe the soil microbiome as the reservoir of the grapevine associated microbiota, and as a contributor to the final sensory properties of wines. To understand the crucial roles of microorganisms on the entire wine making process, we must understand their ecological niches, population dynamics, and relationships between ‘microbiome- vine health’ and ‘microbiome-wine metabolome.’ These are critical steps for designing precision enology practices. For that purpose, current metagenomic techniques are expanding from laboratories, to the food industry. This review focuses on the current knowledge about vine and wine microbiomes, with emphasis on their biological roles and the technical basis of next-generation sequencing pipelines. An overview of molecular and informatics tools is included and new directions are proposed, highlighting

  5. Relationship of Soluble Grape-Derived Proteins to Condensed Tannin Extractability during Red Wine Fermentation.

    Science.gov (United States)

    Springer, Lindsay F; Chen, Lei-An; Stahlecker, Avery C; Cousins, Peter; Sacks, Gavin L

    2016-11-02

    In red winemaking, the extractability of condensed tannins (CT) can vary considerably even under identical fermentation conditions, and several explanations for this phenomenon have been proposed. Recent work has demonstrated that grape pathogenesis-related proteins (PRPs) may limit retention of CT added to finished wines, but their relevance to CT extractability has not been evaluated. In this work, Vitis vinifera and interspecific hybrids (Vitis ssp.) from both hot and cool climates were vinified under small-scale, controlled conditions. The final CT concentration in wine was well modeled from initial grape tannin and juice protein concentrations using the Freundlich equation (r 2 = 0.686). In follow-up experiments, separation and pretreatment of juice by bentonite, heating, freezing, or exogenous tannin addition reduced protein concentrations in juices from two grape varieties. The bentonite treatment also led to greater wine CT for one of the varieties, indicating that prefermentation removal of grape protein may be a viable approach to increasing wine CT.

  6. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    Science.gov (United States)

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  7. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Science.gov (United States)

    Sun, Xiang-Yu; Zhao, Yu; Liu, Ling-Ling; Jia, Bo; Zhao, Fang; Huang, Wei-Dong; Zhan, Ji-Cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  8. Rapid monitoring of the fermentation process for Korean traditional rice wine 'Makgeolli' using FT-NIR spectroscopy

    Science.gov (United States)

    Kim, Dae-Yong; Cho, Byoung-Kwan

    2015-11-01

    The quality parameters of the Korean traditional rice wine "Makgeolli" were monitored using Fourier transform near-infrared (FT-NIR) spectroscopy with multivariate statistical analysis (MSA) during fermentation. Alcohol, reducing sugar, and titratable acid were the parameters assessed to determine the quality index of fermentation substrates and products. The acquired spectra were analyzed with partial least squares regression (PLSR). The best prediction model for alcohol was obtained with maximum normalization, showing a coefficient of determination (Rp2) of 0.973 and a standard error of prediction (SEP) of 0.760%. In addition, the best prediction model for reducing sugar was obtained with no data preprocessing, with a Rp2 value of 0.945 and a SEP of 1.233%. The prediction of titratable acidity was best with mean normalization, showing a Rp2 value of 0.882 and a SEP of 0.045%. These results demonstrate that FT-NIR spectroscopy can be used for rapid measurements of quality parameters during Makgeolli fermentation.

  9. Fermentative Stability of Wine Yeast Saccharomyces Sensu Stricto Complex and Their Hybrids

    Directory of Open Access Journals (Sweden)

    Katarzyna Rajkowska

    2012-01-01

    Full Text Available The objective of this paper is to investigate the technological usefulness of selected industrial wine yeasts Saccharomyces cerevisiae and Saccharomyces bayanus and their intra- and interspecific hybrids responsible for excessively acidic musts. The stability of yeast fermentation profiles in apple musts was assessed after 90–170 generations, following previous subculturing under aerobic or anaerobic conditions in media with or without L-malic acid. During this study, 35 apple wines produced by wild strains and their segregates were statistically evaluated according to 12 chemical parameters. Although the wines met the official standards for basic chemical parameters, their total acidity was too low. Both the yeasts and their segregates metabolized from 66.3 to 77.0 % of malic acid present in the must. The industrial wine yeasts and their hybrids exhibited marked polymorphism of fermentation profiles in apple must with elevated L-malic acid content. At the same time, the level of demalication activity made it possible to clearly differentiate segregates from the wild strains, which may suggest that malic acid is probably one of the principal factors in the adaptive evolution of yeasts. Our study proves that among industrial wine yeasts, there are both, strains expressing very high stability (Saccharomyces cerevisiae W-13 and labile ones (S. cerevisiae Syrena. The interspecific hybrids S. cerevisiae × S. bayanus showed low stability of technological features, while the intraspecific hybrid of S. cerevisiae preserved its fermentative capacity. The presented results indicate that fermentative stability assessment under environmental stress can help to select the yeast strains best suited for the fermentation of specific musts.

  10. Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must.

    Science.gov (United States)

    Gutiérrez, Alicia; Chiva, Rosana; Sancho, Marta; Beltran, Gemma; Arroyo-López, Francisco Noé; Guillamon, José Manuel

    2012-08-01

    Nitrogen deficiencies in grape musts are one of the main causes of stuck or sluggish wine fermentations. Currently, the most common method for dealing with nitrogen-deficient fermentations is adding supplementary nitrogen (usually ammonium phosphate). However, it is important to know the specific nitrogen requirement of each strain, to avoid excessive addition that can lead to microbial instability and ethyl carbamate accumulation. In this study, we aimed to determine the effect of increasing nitrogen concentrations of three different nitrogen sources on growth and fermentation performance in four industrial wine yeast strains. This task was carried out using statistical modeling techniques. The strains PDM and RVA showed higher growth-rate and maximum population size and consumed nitrogen much more quickly than strains ARM and TTA. Likewise, the strains PDM and RVA were also the greatest nitrogen demanders. Thus, we can conclude that these differences in nitrogen demand positively correlated with higher growth rate and higher nitrogen uptake rate. The most direct effect of employing an adequate nitrogen concentration is the increase in biomass, which involves a higher fermentation rate. However, the impact of nitrogen on fermentation rate is not exclusively due to the increase in biomass because the strain TTA, which showed the worst growth behavior, had the best fermentation activity. Some strains may adapt a strategy whereby fewer cells with higher metabolic activity are produced. Regarding the nitrogen source used, all the strains showed the better and worse fermentation performance with arginine and ammonium, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Rumen fermentation and performance of Hanwoo steers fed total mixed ration with Korean rice wine residue.

    Science.gov (United States)

    Jeong, Chang-Dae; Mamuad, Lovelia L; Ko, Jong Youl; Sung, Ha Guyn; Park, Keun Kyu; Lee, Yoo Kyung; Lee, Sang-Suk

    2016-01-01

    This study was conducted to evaluate the effects of adding Korean rice wine residue (RWR) in total mixed ration (TMR) on in vitro ruminal fermentation and growth performance of growing Hanwoo steers. For in vitro fermentation, the experimental treatments were Control (Con: 0 % RWR + TMR), Treatment 1 (T1: 10 % RWR + TMR), and Treatment 2 (T2: 15 % RWR + TMR). The rumen fluid was collected from three Hanwoo steers and mixed with buffer solution, after which buffered rumen fluid was transferred into serum bottles containing 2 g dry matter (DM) of TMR added with or without RWR. The samples were then incubated for 0 h, 12 h, 24 h, or 48 h at 39 °C and 100 rpm. For the in vivo experiment, 27 Hanwoo steers (6 months old) with an average weight of 196 ± 8.66 kg were subjected to a 24-week feeding trial. The animals were randomly selected and equally distributed into three groups. After which the body weight, feed intake and blood characteristics of each group were investigated. The pH of the treatments decreased significantly relative to the control during the 12 h of incubation. Total gas production and ammonia nitrogen (NH3-N) was not affected by RWR addition. The total volatile fatty acid (VFA) was lower after 24 h of incubation but at other incubation times, the concentration was not affected by treatments. Feed cost was 8 % and 15 % lower in T1 and T2 compared to control. Blood alcohol was not detected and a significant increase in total weight gain and average daily gain were observed in Hanwoo steers fed with RWR. Overall, the results of this study suggest that TMR amended with 15 % RWR can be used as an alternative feed resource for ruminants to reduce feed cost.

  12. Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization.

    Science.gov (United States)

    Wang, Chunxiao; Esteve-Zarzoso, Braulio; Mas, Albert

    2014-11-17

    Various molecular approaches have been applied as culture-independent techniques to monitor wine fermentations over the last decade. Among them, those based on RNA detection have been widely used for yeast cell detection, assuming that RNA only exists in live cells. Fluorescence in situ hybridization (FISH) targeting intracellular rRNA is considered a promising technique for the investigation of wine ecology. For the present study, we applied the FISH technique in combination with epifluorescence microscopy and flow cytometry to directly quantify populations of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris during alcoholic fermentations. A new specific probe that hybridizes with eight species of Hanseniaspora genus and a second probe specific for Starm. bacillaris were designed, and the conditions for their application to pure cultures, mixed cultures, and wine samples were optimized. Single and mixed fermentations were performed with natural, concentrated must at two different temperatures, 15 °C and 25 °C. The population dynamics revealed that the Sacch. cerevisiae population increased to 10(7)-10(8)cells/ml during all fermentations, whereas H. uvarum and Starm. bacillaris tended to increase in single fermentations but remained at levels similar to their inoculations at 10(6)cells/ml in mixed fermentations. Temperature mainly affected the fermentation duration (slower at the lower temperature) but did not affect the population sizes of the different species. The use of these probes in natural wine fermentations has been validated. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Influence of pre-fermentation treatments on wine volatile and sensory profile of the new disease tolerant cultivar Solaris

    DEFF Research Database (Denmark)

    Zhang, Shujuan; Petersen, Mikael Agerlin; Liu, Jing

    2015-01-01

    maceration, and skin fermentation) on the volatile profile, chemical, and sensory properties of Solaris wines were investigated. Cold maceration treatment for 24 h and fermentation on skin led to wines with lower acidity and higher glycerol and total polyphenol indexes. Sensory analysis showed that cold...... maceration enhanced "apricot" and "apple" flavor while skin fermentation gave rise to increased "rose" and "elderflower" flavor. The PLS regression model revealed that fruity flavor of cold macerated wines was related to a combination of esters while β-damascenone and linalool were correlated to the "rose......Solaris is a new disease tolerant cultivar increasingly cultivated in cool climate regions. In order to explore the winemaking processes' potential to make different styles of Solaris wines, the effects of different pre-fermentation treatments (direct press after crushing, whole cluster press, cold...

  14. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. “Vinos de Madrid” Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Margarita García

    2017-12-01

    Full Text Available There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans native yeast strains from D.O. “Vinos de Madrid” at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889.

  15. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. “Vinos de Madrid” Using Real-Time Quantitative PCR

    Science.gov (United States)

    García, Margarita; Esteve-Zarzoso, Braulio; Crespo, Julia; Cabellos, Juan M.; Arroyo, Teresa

    2017-01-01

    There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans) native yeast strains from D.O. “Vinos de Madrid” at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR) combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889. PMID:29326669

  16. 27 CFR 24.197 - Production by fermentation.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production by fermentation. 24.197 Section 24.197 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or...

  17. Yeast diversity in new, still fermenting wine "federweisser"

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2016-01-01

    Full Text Available The aim of this study was to isolate and identify yeasts in different new wine "federweisser" samples. We collected the samples at the end of the August 2015 and in the middle of the September 2015. Used 15 new wine samples in this study (5 white and 10 red were from the local Slovak winemakers. Irsai Oliver (3, Moravian Muscat (2, Agria/Turan (1, Dornfelder (3, Blue Frankish (3, Pinot Noir (1 and Saint Laurent (2. Three cultivation media were used for detection of yeasts in "federweisser" samples. Malt extract agar base (MEA, Wort agar (WA and Wild yeast medium (WYM were used for the cultivation of yeasts. Cultivation was performed by spread plate method. Ethanol/formic acid extraction procedure was used for preparation of samples. MALDI-TOF Mass Spectrometer (Microflex LT/SH (Bruker Daltonics, Germany was used for the identification of yeasts. We identified seven different strains of Saccharomyces cerevisiae (23; 70%, two strains of Kloeckera apiculata [teleomorph Hanseniaspora uvarum] (7; 21%, and one strain of Pichia kluyveri (1; 3%, Pichia occidentalis [anamorph Candida sorbosa] (1; 3% and Metschnikowia pulcherrima (1; 3% in 15 new wine "federweisser" samples. Saccharomyces cerevisiae was dominant species in each new wine sample, and formed creamy convex colonies with circular edge. Metschnikowia pulcherrima formed convex to pulvinate, circular white-pink colored colonies, Kloeckera apiculata formed flat, circular smooth colonies with turquoise center with gray edge, Pichia occidentalis formed irregular pulvinate light-cream colored colonies, and Pichia kluyveri formed turquoise, convex, undulate and smooth colonies on Malt extract agar base with bromocresol green.   Normal 0 21 false false false EN-US X-NONE X-NONE

  18. Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature.

    Directory of Open Access Journals (Sweden)

    María López-Malo

    Full Text Available Temperature is one of the most important parameters affecting the length and rate of alcoholic fermentation and final wine quality. Wine produced at low temperature is often considered to have improved sensory qualities. However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase, and sluggish or stuck fermentations. To investigate the effects of temperature on commercial wine yeast, we compared its metabolome growing at 12 °C and 28 °C in a synthetic must. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae. This is the case of the cryotolerant yeasts Saccharomyces bayanus var. uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the metabolome of these species growing at 12°C, which we compared with the metabolome of S. cerevisiae (not well adapted at low temperature at the same temperature. Our results show that the main differences between the metabolic profiling of S. cerevisiae growing at 12 °C and 28 °C were observed in lipid metabolism and redox homeostasis. Moreover, the global metabolic comparison among the three species revealed that the main differences between the two cryotolerant species and S. cerevisiae were in carbohydrate metabolism, mainly fructose metabolism. However, these two species have developed different strategies for cold resistance. S. bayanus var. uvarum presented elevated shikimate pathway activity, while S. kudriavzevii displayed increased NAD(+ synthesis.

  19. Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature.

    Science.gov (United States)

    López-Malo, María; Querol, Amparo; Guillamon, José Manuel

    2013-01-01

    Temperature is one of the most important parameters affecting the length and rate of alcoholic fermentation and final wine quality. Wine produced at low temperature is often considered to have improved sensory qualities. However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase, and sluggish or stuck fermentations. To investigate the effects of temperature on commercial wine yeast, we compared its metabolome growing at 12 °C and 28 °C in a synthetic must. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae. This is the case of the cryotolerant yeasts Saccharomyces bayanus var. uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the metabolome of these species growing at 12°C, which we compared with the metabolome of S. cerevisiae (not well adapted at low temperature) at the same temperature. Our results show that the main differences between the metabolic profiling of S. cerevisiae growing at 12 °C and 28 °C were observed in lipid metabolism and redox homeostasis. Moreover, the global metabolic comparison among the three species revealed that the main differences between the two cryotolerant species and S. cerevisiae were in carbohydrate metabolism, mainly fructose metabolism. However, these two species have developed different strategies for cold resistance. S. bayanus var. uvarum presented elevated shikimate pathway activity, while S. kudriavzevii displayed increased NAD(+) synthesis.

  20. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    Science.gov (United States)

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. The Effect of Fermentation Temperature on the Growth Kinetics of Wine Yeast Species

    OpenAIRE

    ŞENER, Aysun; CANBAŞ, Ahmet; ÜNAL, M. Ümit

    2014-01-01

    The effect of fermentation temperature (18 and 25 °C) on kinetic and yield parameters of ethanol fermentation by Saccharomyces cerevisiae (Zymaflore VL1) and Saccharomyces cerevisiae (Uvaferm CM) was examined using the white Emir grape that is grown in the Nevşehir-Ürgüp region of Turkey. Growth of both yeast species varied according to temperature. Kinetic and yield parameters were both temperature dependent. Sensory evaluation showed that the taste panel was able to discern the wines fermen...

  2. Cytosolic Redox Status of Wine Yeast (Saccharomyces Cerevisiae under Hyperosmotic Stress during Icewine Fermentation

    Directory of Open Access Journals (Sweden)

    Fei Yang

    2017-11-01

    Full Text Available Acetic acid is undesired in Icewine. It is unclear whether its production by fermenting yeast is linked to the nicotinamide adenine dinucleotide (NAD+/NADH system or the nicotinamide adenine dinucleotide phosphate (NADP+/NADPH system. To answer this question, the redox status of yeast cytosolic NAD(H and NADP(H were analyzed along with yeast metabolites to determine how redox status differs under Icewine versus table wine fermentation. Icewine juice and dilute Icewine juice were inoculated with commercial wine yeast Saccharomyces cerevisiae K1-V1116. Acetic acid was 14.3-fold higher in Icewine fermentation than the dilute juice condition. The ratio of NAD+ to total NAD(H was 24-fold higher in cells in Icewine fermentation than the ratio from the dilute juice condition. Conversely, the ratio of NADP+ to total NADP(H from the dilute fermentation was 2.9-fold higher than that in the Icewine condition. These results support the hypothesis that in Icewine, increased NAD+ triggered the catalysis of NAD+-dependent aldehyde dehydrogenase(s (Aldp(s, which led to the elevated level of acetic acid in Icewine, whereas, in the dilute condition, NADP+ triggered NADP+-dependent Aldp(s, resulting in a lower level of acetic acid. This work, for the first time, analyzed the yeast cytosolic redox status and its correlation to acetic acid production, providing a more comprehensive understanding of the mechanism of acetic acid production in Icewine.

  3. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation.

    Science.gov (United States)

    Le Jeune, Christine; Erny, Claude; Demuyter, Catherine; Lollier, Marc

    2006-12-01

    To determine the grape or winery origin of the Saccharomyces cerevisiae involved in spontaneous fermentation, musts were collected at different stages of wine-making process and fermented. First, grapes were collected in two different vineyards and crushed at the laboratory. Second, musts were collected after crushing and clarification in the cellar. Third, musts collected in the cellar were sterilized and inoculated with tartar deposit collected in the vats. The fourth fermentation was in the cellar. For the two vineyards, two hundred of S. cerevisiae clones were isolated for each of the four fermentations, driving to a library of 1600 clones. All the library was analysed by inter-delta PCR with a basic set of primers and about 20% of the library was further analysed by inter-delta PCR with an improved set of primers. Six, and more than 30 different PCR patterns were obtained from basic- and improved-PCR analysis, respectively. The amounts of each family were analysed at the different stages of wine making. Our study demonstrates that the two vineyards present different S. cerevisiae populations. Moreover the S. cerevisiae strains involved in spontaneous fermentation in the cellar originate partly from the vineyard and partly from the winery, in amounts varying with the must.

  4. Molecular characterization and technological properties of wine yeasts isolated during spontaneous fermentation of Vitis vinifera L.cv. Narince grape must grown in ancient wine making area Tokat, Anatolia

    Directory of Open Access Journals (Sweden)

    Çelik Zeynep Dilan

    2017-01-01

    Full Text Available Narince is a native white grape variety of Vitis vinifera L grown in Tokat and produces rich and balanced wines often with a greenish yellow tint and delicate fruity flavour. Fermentation by indigenous yeasts may produce wines with complex oenological properties that are unique to specific region. In this study yeast population during alcoholic fermentation of Narince was investigated. Yeasts were identified by PCR-RFLP analysis of the 5.8 ITS rRNA region and sequence information for the D1/D2 domains of the 26S gene. Eight different species belonging to nine genera were identified as: Hanseniaspora uvarum, Hansenispora guilliermondii, Pichia kluyveri, Metschnikowiaspp., Pichia occidentalis, Torulaspora delbrueckii, Candida zemplinina, Lachancea thermotolerance and Saccharomyces cerevisiae. Hanseniaspora guilliermondii, Metschnikowiaspp., Pichia occidentalis and Pichia kluyveri were identified only in the early stage of fermentation. Selected yeasts tested for their physiological traits, ethanol, SO2, temperature, pH tolerance, H2S production, killer and enzymatic activity, fermentation rate, flocculation characteristic, foam, volatile acid and volatile compounds production. Among the yeasts, one,Lachancea thermotolerance and four Saccharomyces cerevisiae strain showed remarkable technological properties and results were compared with those obtained by using commercial starter culture.

  5. QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite.

    Directory of Open Access Journals (Sweden)

    Adrien Zimmer

    Full Text Available Quantitative genetics and QTL mapping are efficient strategies for deciphering the genetic polymorphisms that explain the phenotypic differences of individuals within the same species. Since a decade, this approach has been applied to eukaryotic microbes such as Saccharomyces cerevisiae in order to find natural genetic variations conferring adaptation of individuals to their environment. In this work, a QTL responsible for lag phase duration in the alcoholic fermentation of grape juice was dissected by reciprocal hemizygosity analysis. After invalidating the effect of some candidate genes, a chromosomal translocation affecting the lag phase was brought to light using de novo assembly of parental genomes. This newly described translocation (XV-t-XVI involves the promoter region of ADH1 and the gene SSU1 and confers an increased expression of the sulfite pump during the first hours of alcoholic fermentation. This translocation constitutes another adaptation route of wine yeast to sulfites in addition to the translocation VIII-t-XVI previously described. A population survey of both translocation forms in a panel of domesticated yeast strains suggests that the translocation XV-t-XVI has been empirically selected by human activity.

  6. QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite.

    Science.gov (United States)

    Zimmer, Adrien; Durand, Cécile; Loira, Nicolás; Durrens, Pascal; Sherman, David James; Marullo, Philippe

    2014-01-01

    Quantitative genetics and QTL mapping are efficient strategies for deciphering the genetic polymorphisms that explain the phenotypic differences of individuals within the same species. Since a decade, this approach has been applied to eukaryotic microbes such as Saccharomyces cerevisiae in order to find natural genetic variations conferring adaptation of individuals to their environment. In this work, a QTL responsible for lag phase duration in the alcoholic fermentation of grape juice was dissected by reciprocal hemizygosity analysis. After invalidating the effect of some candidate genes, a chromosomal translocation affecting the lag phase was brought to light using de novo assembly of parental genomes. This newly described translocation (XV-t-XVI) involves the promoter region of ADH1 and the gene SSU1 and confers an increased expression of the sulfite pump during the first hours of alcoholic fermentation. This translocation constitutes another adaptation route of wine yeast to sulfites in addition to the translocation VIII-t-XVI previously described. A population survey of both translocation forms in a panel of domesticated yeast strains suggests that the translocation XV-t-XVI has been empirically selected by human activity.

  7. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    OpenAIRE

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact ...

  8. Red wines good, white wines bad?

    International Nuclear Information System (INIS)

    Van Velden, D.P.; Mansvelt, E.P.G.; Troup, G.J.

    2002-01-01

    Full text: In 1994, free radicals were discovered in red wines, but only in whites exposed to skins and seeds, and/or oak. The radicals are on the phenolics, and therefore a measure of phenolic content. In 1995, Fuhrman, Levy and Aviram published a study showing antioxidant effects of red wine in the standard Israeli diet, but pro-oxidant effects of the white wine used. No phenolic analysis was done, but low or no phenolics were suspected. Letters to the winery used by Aviram proved fruitless. In 2001, Aviram admits that to see a significant antioxidant effect from white wine, he must make his own, giving it skin and seed contact, and adding alcohol to the fermenting stage, to leach out more tannin from the seeds. This would be unsaleable as a table wine, but not as a 'fortified' or 'dessert' wine. A completely independent study by van Velden in South Africa, with phenol analysis of wines, shows pro- oxidant behaviour of white wines low or lacking in phenolic content. This will be summarised. A Japanese study of the antioxidant properties of some wines shows none for wines low or lacking in catechin content. In the 1950's, two similar but independent studies on different laboratory animals showed no ill effects from 10% alcohol red wine in their diet, but serious effects from 10% pure alcohol - water mix. Conclusion. Drinking only of white wines lacking in phenols, either due to 'fining', or to deliberate avoidance in making, at the recommended 'moderate' drinking level, may be deleterious to cardiovascular health, because of their pro-oxidant action, now established

  9. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment.

    Science.gov (United States)

    Jiang, Jiao; Sumby, Krista M; Sundstrom, Joanna F; Grbin, Paul R; Jiranek, Vladimir

    2018-08-01

    High concentrations of ethanol, low pH, the presence of sulfur dioxide and some polyphenols have been reported to inhibit Oenococcus oeni growth, thereby negatively affecting malolactic fermentation (MLF) of wine. In order to generate superior O. oeni strains that can conduct more efficient MLF, despite these multiple stressors, a continuous culture approach was designed to directly evolve an existing ethanol tolerant O. oeni strain, A90. The strain was grown for ∼350 generations in a red wine-like environment with increasing levels of stressors. Three strains were selected from screening experiments based on their completion of fermentation in a synthetic wine/wine blend with 15.1% (v/v) ethanol, 26 mg/L SO 2 at pH 3.35 within 160 h, while the parent strain fermented no more than two thirds of l-malic acid in this medium. These superior strains also fermented faster and/or had a larger population in four different wines. A reduced or equivalent amount of the undesirable volatile, acetic acid, was produced by the optimised strains compared to a commercial strain in Mouvedre and Merlot wines. These findings demonstrate the feasibility of using directed evolution as a tool to generate more efficient MLF starters tailored for wines with multiple stressors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Modeling and simulation of the bubble-induced flow in wine fermentation vessels

    Directory of Open Access Journals (Sweden)

    Schmidt Dominik

    2015-01-01

    Full Text Available Detailed flow pattern analyses regarding wine fermentations conducted without mechanical agitation are limited to lab-scale investigations, as industrial size measurements are expensive and difficult to realize. Computational fluid dynamic (CFD methods can offer an alternative and more flexible approach to gain insight into such bubble induced fluid flows. Therefore, the aim of this study was to transfer the findings of existing research onto a CFD model capable of capturing the three- dimensional flow pattern in industrial scale wine fermentation vessels. First results were obtained by using an extended version of the OpenFOAM® (v.2.2.x solver multiphaseEulerFoam for modeling the gas-liquid two phase system. With parameters from the most vigorous phase of wine fermentation a fully developed, unsteady flow regime could be established after approx. 120 s of real time. Thereby the groundwork for further evaluations of e.g. mixing efficiency or cooling equipment optimizations with CFD methods is laid.

  11. Population size drives industrial Saccharomyces cerevisiae alcoholic fermentation and is under genetic control.

    Science.gov (United States)

    Albertin, Warren; Marullo, Philippe; Aigle, Michel; Dillmann, Christine; de Vienne, Dominique; Bely, Marina; Sicard, Delphine

    2011-04-01

    Alcoholic fermentation (AF) conducted by Saccharomyces cerevisiae has been exploited for millennia in three important human food processes: beer and wine production and bread leavening. Most of the efforts to understand and improve AF have been made separately for each process, with strains that are supposedly well adapted. In this work, we propose a first comparison of yeast AFs in three synthetic media mimicking the dough/wort/grape must found in baking, brewing, and wine making. The fermentative behaviors of nine food-processing strains were evaluated in these media, at the cellular, populational, and biotechnological levels. A large variation in the measured traits was observed, with medium effects usually being greater than the strain effects. The results suggest that human selection targeted the ability to complete fermentation for wine strains and trehalose content for beer strains. Apart from these features, the food origin of the strains did not significantly affect AF, suggesting that an improvement program for a specific food processing industry could exploit the variability of strains used in other industries. Glucose utilization was analyzed, revealing plastic but also genetic variation in fermentation products and indicating that artificial selection could be used to modify the production of glycerol, acetate, etc. The major result was that the overall maximum CO(2) production rate (V(max)) was not related to the maximum CO(2) production rate per cell. Instead, a highly significant correlation between V(max) and the maximum population size was observed in all three media, indicating that human selection targeted the efficiency of cellular reproduction rather than metabolic efficiency. This result opens the way to new strategies for yeast improvement.

  12. Population Size Drives Industrial Saccharomyces cerevisiae Alcoholic Fermentation and Is under Genetic Control▿†‡

    Science.gov (United States)

    Albertin, Warren; Marullo, Philippe; Aigle, Michel; Dillmann, Christine; de Vienne, Dominique; Bely, Marina; Sicard, Delphine

    2011-01-01

    Alcoholic fermentation (AF) conducted by Saccharomyces cerevisiae has been exploited for millennia in three important human food processes: beer and wine production and bread leavening. Most of the efforts to understand and improve AF have been made separately for each process, with strains that are supposedly well adapted. In this work, we propose a first comparison of yeast AFs in three synthetic media mimicking the dough/wort/grape must found in baking, brewing, and wine making. The fermentative behaviors of nine food-processing strains were evaluated in these media, at the cellular, populational, and biotechnological levels. A large variation in the measured traits was observed, with medium effects usually being greater than the strain effects. The results suggest that human selection targeted the ability to complete fermentation for wine strains and trehalose content for beer strains. Apart from these features, the food origin of the strains did not significantly affect AF, suggesting that an improvement program for a specific food processing industry could exploit the variability of strains used in other industries. Glucose utilization was analyzed, revealing plastic but also genetic variation in fermentation products and indicating that artificial selection could be used to modify the production of glycerol, acetate, etc. The major result was that the overall maximum CO2 production rate (Vmax) was not related to the maximum CO2 production rate per cell. Instead, a highly significant correlation between Vmax and the maximum population size was observed in all three media, indicating that human selection targeted the efficiency of cellular reproduction rather than metabolic efficiency. This result opens the way to new strategies for yeast improvement. PMID:21357433

  13. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    Science.gov (United States)

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  14. Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast.

    Science.gov (United States)

    López-Malo, María; García-Rios, Estefani; Chiva, Rosana; Guillamon, José Manuel; Martí-Raga, María

    2014-01-01

    Low-temperature fermentations produce wines with greater aromatic complexity, but the success of these fermentations greatly depends on the adaptation of yeast cells to cold. Tryptophan has been previously reported to be a limiting amino acid during Saccharomyces cerevisiae growth at low temperature. The objective of this study was to determine the influence of the tryptophan metabolism on growth and fermentation performance during low-temperature wine fermentation. To this end, we constructed the deletion mutants of the TRP1 and TAT2 genes in a derivative haploid of a commercial wine strain, and the TAT2 gene was overexpressed in the prototroph and auxotroph (Δtrp1) backgrounds. Then we characterized growth and fermentation activity during wine fermentation at low and optimum temperatures. Our results partially support the role of this amino acid in cold yeast growth. Although deletion of TRP1 impaired amino acid uptake and the growth rate at low temperature in synthetic must, this growth impairment did not affect the fermentation rate. Deletion of TAT2 endorsed this strain with the highest nitrogen consumption capacity and the greatest fermentation activity at low temperature. Our results also evidenced reduced ammonium consumption in all the strains at low temperature. © 2014 American Institute of Chemical Engineers.

  15. Metabolism of SO₂ binding compounds by Oenococcus oeni during and after malolactic fermentation in white wine.

    Science.gov (United States)

    Jackowetz, J N; Mira de Orduña, R

    2012-04-16

    Sulfur dioxide SO₂ is the key additive for the preservation of wines. Carbonyl and keto compounds in wine can bind to SO₂ and decrease its efficacy, resulting in higher total SO₂ requirements. Increased consumer demand for low sulfite and organic wines pose production challenges if SO₂ binders have not been properly managed during vinification. Malolactic fermentation (MLF) has been known to reduce bound SO₂ levels but detailed time course studies are not available. In this work, the kinetics of major SO₂ binding compounds and malic acid were followed during MLF in wine with 12 commercially available strains of Oenococcus oeni. Pyruvic acid, acetaldehyde and α-ketoglutaric acid were degraded to various degrees by O. oeni, but galacturonic acid was not. At the time of malic acid depletion, percent degradation of pyruvate, α-ketoglutaric acid and acetaldehyde was 49%, 14% and 30%, respectively. During MLF, the decrease in average bound SO₂ levels, as calculated from carbonyl metabolism, was 22%. The largest reduction in wine carbonyl content occurred in the week after completion of MLF and was 53% (107 mg/L to 34 mg/L) calculated as bound SO₂. Prolonged activity of bacteria in the wines (up to 3 weeks post malic acid depletion) resulted only in reduced additional reductions in bound SO₂ levels. The results suggest that microbiological wine stabilization one week after malic acid depletion is an effective strategy for maximum removal of SO₂ binders while reducing the risk of possible post-ML spoilage by O. oeni leading to the production acetic acid and biogenic amines. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    Science.gov (United States)

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L.; Hernández, Luis M.; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae. PMID

  17. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    Directory of Open Access Journals (Sweden)

    Rocío eVelázquez

    2015-11-01

    Full Text Available Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by S. cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odour descriptors, including those with the greatest odour activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate, were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odours. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S

  18. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine.

    Science.gov (United States)

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L; Hernández, Luis M; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii-dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae-dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii-dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae.

  19. Characterization and Dynamic Behavior of Wild Yeast during Spontaneous Wine Fermentation in Steel Tanks and Amphorae

    Science.gov (United States)

    Díaz, Cecilia; Molina, Ana María; Nähring, Jörg; Fischer, Rainer

    2013-01-01

    We studied the dynamic behavior of wild yeasts during spontaneous wine fermentation at a winery in the Valais region of Switzerland. Wild yeasts in the winery environment were characterized using a PCR-RFLP method. Up to 11 different yeast species were isolated from the vineyard air, whereas only seven were recovered from the grapes surface. We initially investigated a cultureindependent method in pilot-scale steel fermentation tanks and found a greater diversity of yeasts in the musts from two red grape varieties compared to three white grape varieties. We found that the yeasts Metschnikowia pulcherrima, Rhodotorula mucilaginosa, Pichia kluyveri, P. membranifaciens and Saccharomyces cerevisiae remained active at the end of the fermentation. We also studied the dynamic behavior of yeasts in Qvevris for the first time using a novel, highlysensitive quantitative real-time PCR method. We found that non-Saccharomyces yeasts were present during the entire fermentation process, with R. mucilaginosa and P. anomala the most prominent species. We studied the relationship between the predominance of different species and the output of the fermentation process. We identified so-called spoilage yeasts in all the fermentations, but high levels of acetic acid accumulated only in those fermentations with an extended lag phase. PMID:23738327

  20. Studies On Fermentation, Alcohol Production And Viability In ...

    African Journals Online (AJOL)

    Eighteen mutant yeasts (SCM 01 – SCM 18) selected (after visual examination) were tested for fermentation, alcohol production and viability by acid and gas production, reduction in specific gravity and turbidity respectively, with sugars and delignified sugarcane bagasse. The yeasts had varied fermentation profiles in ...

  1. Effects of wine, alcohol and polyphenols on cardiovascular disease risk factors: evidences from human studies.

    Science.gov (United States)

    Chiva-Blanch, Gemma; Arranz, Sara; Lamuela-Raventos, Rosa M; Estruch, Ramon

    2013-01-01

    The aim of this review was to focus on the knowledge of the cardiovascular benefits of moderate alcohol consumption, as well as to analyze the effects of the different types of alcoholic beverages. Systematic revision of human clinical studies and meta-analyses related to moderate alcohol consumption and cardiovascular disease (CVD) from 2000 to 2012. Heavy or binge alcohol consumption unquestionably leads to increased morbidity and mortality. Nevertheless, moderate alcohol consumption, especially alcoholic beverages rich in polyphenols, such as wine and beer, seems to confer cardiovascular protective effects in patients with documented CVD and even in healthy subjects. In conclusion, wine and beer (but especially red wine) seem to confer greater cardiovascular protection than spirits because of their polyphenolic content. However, caution should be taken when making recommendations related to alcohol consumption.

  2. Production of Table Wine from Processed Tea Bags Using Different ...

    African Journals Online (AJOL)

    Physicochemical analyses and microbial evaluation were undertaken during fermentation. Lipton tea wine produced,. using baker's yeast, pineapple yeast and cocoa yeast had highest alcoholic contents of 7.88%, 6.25% and 7.20%, respectively. Top tea wine produced using the same set of yeasts had highest alcoholic ...

  3. Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae in the first fermentation on the foam properties of sparkling wine (Cava

    Directory of Open Access Journals (Sweden)

    Medina-Trujillo Laura

    2016-01-01

    Full Text Available In a previous study we reported that sequential inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae during the first fermentation increased the protein concentration and improved the foaming properties of a base wine. Since effervescence and foam of sparkling wines are key quality factors, the interest of this practice for sparkling wine industry is obvious. In this paper we study whether the foaming properties of the sparkling wines produced from the base wines obtained by sequential inoculation with T. delbrueckii and S. cerevisiae remains better than those of their controls produced from base wines fermented only with S. cerevisiae. The obtained results confirmed that sequential inoculation in the production of the base wine originated sparkling wines with significantly higher maximum heights of foam than conventional inoculation, probably because autolysis of the T. delbrueckii cells in the base wine released higher amounts of proteins, especially of the low molecular weight fraction.

  4. The Impact ofSaccharomyces cerevisiaeon a Wine Yeast Consortium in Natural and Inoculated Fermentations.

    Science.gov (United States)

    Bagheri, Bahareh; Bauer, Florian F; Setati, Mathabatha E

    2017-01-01

    Natural, also referred to as spontaneous wine fermentations, are carried out by the native microbiota of the grape juice, without inoculation of selected, industrially produced yeast or bacterial strains. Such fermentations are commonly initiated by non- Saccharomyces yeast species that numerically dominate the must. Community composition and numerical dominance of species vary significantly between individual musts, but Saccharomyces cerevisiae will in most cases dominate the late stages of the fermentation and complete the process. Nevertheless, non- Saccharomyces species contribute significantly, positively or negatively, to the character and quality of the final product. The contribution is species and strain dependent and will depend on each species or strain's absolute and relative contribution to total metabolically active biomass, and will therefore, be a function of its relative fitness within the microbial ecosystem. However, the population dynamics of multispecies fermentations are not well understood. Consequently, the oenological potential of the microbiome in any given grape must, can currently not be evaluated or predicted. To better characterize the rules that govern the complex wine microbial ecosystem, a model yeast consortium comprising eight species commonly encountered in South African grape musts and an ARISA based method to monitor their dynamics were developed and validated. The dynamics of these species were evaluated in synthetic must in the presence or absence of S. cerevisiae using direct viable counts and ARISA. The data show that S. cerevisiae specifically suppresses certain species while appearing to favor the persistence of other species. Growth dynamics in Chenin blanc grape must fermentation was monitored only through viable counts. The interactions observed in the synthetic must, were upheld in the natural must fermentations, suggesting the broad applicability of the observed ecosystem dynamics. Importantly, the presence of

  5. Influence of sodium chloride on wine yeast fermentation performance

    OpenAIRE

    Logothetis, Stelios; Walker,Graeme

    2010-01-01

    Stilianos Logothetis1, Elias T Nerantzis2, Anna Gioulioti3, Tasos Kanelis2, Tataridis Panagiotis2, Graeme Walker11University of Abertay Dundee, School of Contemporary Sciences, Dundee, Scotland; 2TEI of Athens Department of Oenology and Spirit Technology, Biotechnology and Industrial Fermentations Lab Agiou Spiridonos, Athens, Greece; 3Ampeloiniki SA Industrial Park Thermi, Thessaloniki, GreeceAbstract: This paper concerns research into the influence of salt (sodium chloride) on growth, viabi...

  6. Estimation of Alcohol Concentration of Red Wine Based on Cole-Cole Plot

    Science.gov (United States)

    Watanabe, Kota; Taka, Yoshinori; Fujiwara, Osamu

    To evaluate the quality of wine, we previously measured the complex relative permittivity of wine in the frequency range from 10 MHz to 6 GHz with a network analyzer, and suggested a possibility that the maturity and alcohol concentration of wine can simultaneously be estimated from the Cole-Cole plot. Although the absolute accuracy has not been examined yet, this method will enable one to estimate the alcohol concentration of alcoholic beverages without any distillation equipment simply. In this study, to investigate the estimation accuracy of the alcohol concentration of wine by its Cole-Cole plots, we measured the complex relative permittivity of pure water and diluted ethanol solution from 100 MHz to 40 GHz, and obtained the dependence of the Cole-Cole plot parameters on alcohol concentration and temperature. By using these results as calibration data, we estimated the alcohol concentration of red wine from the Cole-Cole plots, which was compared with the measured one based on a distillation method. As a result, we have confirmed that the estimated alcohol concentration of red wine agrees with the measured results in an absolute error by less than 1 %.

  7. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor.

    Science.gov (United States)

    Lachenmeier, Dirk W; Godelmann, Rolf; Steiner, Markus; Ansay, Bob; Weigel, Jürgen; Krieg, Gunther

    2010-03-23

    Ever since Gay-Lussac's time, the alcoholic strength by volume (% vol) has been determined by using densimetric measurements. The typical reference procedure involves distillation followed by pycnometry, which is comparably labour-intensive and therefore expensive. At present, infrared (IR) spectroscopy in combination with multivariate regression is widely applied as a screening procedure, which allows one to determine alcoholic strength in less than 2 min without any sample preparation. The disadvantage is the relatively large investment for Fourier transform (FT) IR or near-IR instruments, and the need for matrix-dependent calibration. In this study, we apply a much simpler device consisting of a patented multiple-beam infrared sensor in combination with a flow-through cell for automated alcohol analysis, which is available in a portable version that allows for on-site measurements. During method validation, the precision of the infrared sensor was found to be equal to or better than densimetric or FTIR methods. For example, the average repeatability, as determined in 6 different wine samples, was 0.05% vol and the relative standard deviation was below 0.2%. Accuracy was ensured by analyzing 260 different alcoholic beverages in comparison to densimetric or FTIR results. The correlation was linear over the entire range from alcohol-free beers up to high-proof spirits, and the results were in substantial agreement (R = 0.99981, p unrecorded alcohol (i.e. non-commercial or illicit products). The flow-through infrared device is much easier to handle than typical reference procedures, while time-consuming sample preparation steps such as distillation are not necessary. Therefore, the alcoholic strength can be economically and quickly controlled (requiring less than 60 s per sample). The device also gives the opportunity for mobile on-site control in the context of labelling control of wine, beer and spirits, the process monitoring of fermentations, or the evaluation

  8. Acetaldehyde kinetics of enological yeast during alcoholic fermentation in grape must.

    Science.gov (United States)

    Li, Erhu; Mira de Orduña, Ramón

    2017-02-01

    Acetaldehyde strongly binds to the wine preservative SO 2 and, on average, causes 50-70 mg l -1 of bound SO 2 in red and white wines, respectively. Therefore, a reduction of bound and total SO 2 concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions. Saccharomyces cerevisiae and non-Saccharomyces strains displayed similar metabolic kinetics where acetaldehyde reached an initial peak value at the beginning of fermentations followed by partial reutilization. Quantitatively, the range of values obtained for non-Saccharomyces strains greatly exceeded the variability among the S. cerevisiae strains tested. Non-Saccharomyces strains of the species C. vini, H. anomala, H. uvarum, and M. pulcherrima led to low acetaldehyde residues (<10 mg l -1 ), while C. stellata, Z. bailii, and, especially, a S. pombe strain led to large residues (24-48 mg l -1 ). Acetaldehyde residues in S. cerevisiae cultures were intermediate and less dispersed (14-34 mg l -1 ). Addition of SO 2 to Chardonnay must triggered significant increases in acetaldehyde formation and residual acetaldehyde. On average, 0.33 mg of residual acetaldehyde remained per mg of SO 2 added to must, corresponding to an increase of 0.47 mg of bound SO 2 per mg of SO 2 added. This research demonstrates that certain non-Saccharomyces strains display acetaldehyde kinetics that would be suitable to reduce residual acetaldehyde, and hence, bound-SO 2 levels in grape wines. The acetaldehyde formation potential may be included as strain selection argument in view of reducing preservative SO 2 concentrations.

  9. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chemometric compositional analysis of phenolic compounds in fermenting samples and wines using different infrared spectroscopy techniques.

    Science.gov (United States)

    Aleixandre-Tudo, Jose Luis; Nieuwoudt, Helene; Aleixandre, Jose Luis; du Toit, Wessel

    2018-01-01

    The wine industry requires reliable methods for the quantification of phenolic compounds during the winemaking process. Infrared spectroscopy appears as a suitable technique for process control and monitoring. The ability of Fourier transform near infrared (FT-NIR), attenuated total reflectance mid infrared (ATR-MIR) and Fourier transform infrared (FT-IR) spectroscopies to predict compositional phenolic levels during red wine fermentation and aging was investigated. Prediction models containing a large number of samples collected over two vintages from several industrial fermenting tanks as well as wine samples covering a varying number of vintages were validated. FT-NIR appeared as the most accurate technique to predict the phenolic content. Although slightly less accurate models were observed, ATR-MIR and FT-IR can also be used for the prediction of the majority of phenolic measurements. Additionally, the slope and intercept test indicated a systematic error for the three spectroscopies which seems to be slightly more pronounced for HPLC generated phenolics data than for the spectrophotometric parameters. However, the results also showed that the predictions made with the three instruments are statistically comparable. The robustness of the prediction models was also investigated and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of immobilized polygalacturonase from Mucor circinelloides ITCC-6025 on wine fermentation.

    Science.gov (United States)

    Sharma, Sakshi; Hiteshi, Kalpana; Gupta, Reena

    2013-01-01

    Pectinases are among the most widely distributed enzymes in bacteria, fungi, and plants. Almost all the commercial preparations of pectinases are produced from fungal sources. Mucor circinelloides ITCC-6025 produced polygalacturonase when grown in Riviere's medium containing pectin (methyl ester) as the sole source of carbon. Immobilization of purified polygalacturonase was done on silica gel with 86% efficiency. The enzyme took 60 Min to bind maximally on the support. The immobilized enzyme showed maximum activity at a temperature of 45°C (4.57 U/mg) and pH 5.4. The immobilized enzyme was reused for four cycles as it retained almost 55% of its activity. The immobilized enzyme treatment increased the formation of higher alcohols and phenolics during the course of wine formation from apple and plum juices, whereas there was a decrease in the amount of carbohydrates. The enzyme treatment also resulted in clarification of wine; there was an increase in transmittance at 650 nm (201.78% in the case of apple wine and 223.4% in the case of plum wine) as compared to the control (untreated wine). © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  12. Production and Quality Evaluation of Pineapple Fruit Wine

    Science.gov (United States)

    Qi, Ningli; Ma, Lina; Li, Liuji; Gong, Xiao; Ye, Jianzhi

    2017-12-01

    The fermentation process of pineapple fruit wine was studied. The juice was inoculated with 5% (v/v) active yeast and held at 20 °C for 7 days. Total sugar and pH decreased while the alcoholic strength increased with increasing length of fermentation. The fermented fruit wine contains 2.29 g/L total acid, 10.2 % (v/v) alcohol, 5.4 °Brix soluble solids, pH 3.52. Pineapple wine detected 68 kinds of aroma components, including 34 esters, 13 alcohols. The ester material accounted for 52.25% of the main aroma components. The quality and sensory evaluation results indicated that pineapple fruit wine belongs to a kind of low alcohol wine, so it is easy to be accepted by the public.

  13. Novel insights into microbial community dynamics during the fermentation of Central European ice wine.

    Science.gov (United States)

    Bučková, Mária; Puškárová, Andrea; Ženišová, Katarína; Kraková, Lucia; Piknová, Ľubica; Kuchta, Tomáš; Pangallo, Domenico

    2018-02-02

    Culture-dependent and culture-independent strategies were applied to investigate the microbiota of autumn undamaged and damaged berries, winter berries and ice wine must samples of Grüner Veltliner (Veltlínske zelené) from Small Carpathian wine-producing region. One hundred twenty-six yeasts and 242 bacterial strains isolated from several microbiological media (YPD, PDA, R2A, GYC, MRS and MRS-T) were clustered by ITS-PCR and subsequent Qiaxcel electrophoresis. Representatives of each cluster were identified by sequencing. The extracellular hydrolytic properties and intracellular activities of esterase and β-glucosidase of isolates were assayed. The culture-independent approach permitted the analysis of extracted DNA and RNA coupling DGGE fingerprinting with construction of clone libraries (bacterial and fungal; DGGE-cloning). The combination of the two approaches provided comprehensive data that evidenced the presence of a complex microbiota in each analyzed sample. RNA and DNA analyses facilitated differentiation of living microorganisms from the entire microbiota. Diverse microbial communities colonized the autumn and winter berries. Generally, the combination of results obtained by the methods suggested that the must samples contained mainly Saccharomyces cerevisiae, Metschnikowia spp., Hanseniaspora uvarum, Lactococcus lactis and Leuconostoc spp. The strains exhibited interesting esterase and β-glucosidase properties, which are important for aroma formation in wine. Fermentation strategies utilising these microorganisms, could be attempted in the future in order to modulate the ice wine characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Characterization of volatile fraction of typical Irpinian wines fermented with a new starter yeast.

    Science.gov (United States)

    Calabretti, A; La Cara, F; Sorrentino, A; Di Stasio, M; Santomauro, F; Rastrelli, L; Gabrielli, L; Limone, F; Volpe, M G

    2012-04-01

    Non-Saccharomyces yeasts are microorganisms that play an important role in the fermentation dynamics, compositions and flavour of wine. The aromatic compounds responsible for varietal aroma in wine are mainly terpenes, of which the most important group are the monoterpenes because of their volatility and odour if present in a free form. In fact, some terpenyl-glycosides do not contribute to the aroma unless they are hydrolysed. The glycosylated form of terpenes can be converted by hydrolysis with β-glycosidases produced by yeasts during the winemaking process, into aromatic compounds. In this study we utilized a non-Saccharomyces yeast, with a high extra-cellular glycosidase activity, isolated from grapes of cultivars typical of Irpinia region. This strain, identified as a Rhodotorula mucillaginosa (strain WLR12), was used to carry out an experimental winemaking process and the results were compared with those obtained with a commercial yeast starter. Chemical and sensorial analysis demonstrated that the wines produced with WLR12 strain had a more floral aroma and some sweet and ripened fruit notes compared to those obtained with commercial yeast. The data also showed an increasing of the free terpenes fraction that, however, did not significatively modify the bouquet of the wines.

  15. Biodiversity of autolytic ability in flocculent Saccharomyces cerevisiae strains suitable for traditional sparkling wine fermentation.

    Science.gov (United States)

    Perpetuini, Giorgia; Di Gianvito, Paola; Arfelli, Giuseppe; Schirone, Maria; Corsetti, Aldo; Tofalo, Rosanna; Suzzi, Giovanna

    2016-07-01

    Yeasts involved in secondary fermentation of traditional sparkling wines should show specific characteristics, such as flocculation capacity and autolysis. Recently it has been postulated that autophagy may contribute to the outcome of autolysis. In this study, 28 flocculent wine Saccahromyces cerevisiae strains characterized by different flocculation degrees were studied for their autolytic and autophagic activities. Autolysis was monitored in synthetic medium through the determination of amino acid nitrogen and total proteins released. At the same time, novel primer sets were developed to determine the expression of the genes ATG1, ATG17 and ATG29. Twelve strains were selected on the basis of their autolytic rate and ATG gene expressions in synthetic medium and were inoculated in a base wine. After 30, 60 and 180 days the autolytic process and ATG gene expressions were evaluated. The obtained data showed that autolysis and ATG gene expressions differed among strains and were independent of the degree of flocculation. This biodiversity could be exploited to select new starter stains to improve sparkling wine production. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Alcoholic fermentation process control by high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, J.; Dincer, A.K.; Ivie, K.

    1983-02-01

    In large-scale fermentation for energy production high-performance liquid chromatography (HPLC) provides an accurate method of monitoring the original oligosaccharides and polysaccharides, as well as their hydrolysis to fermentable monosaccharides. Also measuring the saccharide and alcohol content of the fermentation vat allows overseeing of the process, providing the capability of allowing the fermentation to proceed to the most economical level prior to distillation. Another application for HPLC in a large-scale fermentation for energy is to analyze the stillage for its ethanol content during distillation, in order to observe the efficiency of the still. HPLC can separate and detect very low levels, (i.e., 100 parts per million), of ethanol to yield information concerning the distillation process. These capabilities indicate that HPLC is an extremely useful efficient instrument to the fermentation industries. (Refs. 2).

  17. Fermentative conditions modulating sweetness in dry wines: genetics and environmental factors influencing the expression level of the Saccharomyces cerevisiae HSP12 gene.

    Science.gov (United States)

    Marchal, Axel; Marullo, Philippe; Durand, Cécile; Moine, Virginie; Dubourdieu, Denis

    2015-01-14

    Yeast lees influence the organoleptic properties of wines by increasing their sweet taste. This effect is in part due to the protein Hsp12p, which is regulated by different stress response pathways in Saccharomyces cerevisiae. This work investigated the genetics and environmental factors influencing the expression level of the HSP12 gene in an enological context. RT-qPCR confirmed that the HSP12 expression level is regulated by temperature change and ethanol content during the alcoholic fermentation but not by the sugar content. Moreover, this gene shows an important variation according to the yeast strain used. For the first time yeast strain is demonstrated to play an important role in the perception of sweetness in red wine due to post-fermentation lees autolysis. Interestingly, a correlation between the expression level of HSP12 and the sweetness perception was found using yeast strains of different origins. All of the findings provide new insights on the contribution of yeast to wine taste.

  18. Selection of non-Saccharomyces yeasts to be used in grape musts with high alcoholic potential: a strategy to obtain wines with reduced ethanol content.

    Science.gov (United States)

    Mestre Furlani, María Victoria; Maturano, Yolanda Paola; Combina, Mariana; Mercado, Laura Analía; Toro, María Eugenia; Vazquez, Fabio

    2017-03-01

    Ethanol content of wine has increased over the last decades as consequence of searching phenolic maturity, requiring increased grape maturity. This may result in the production of wines with excessive alcohol levels (sometimes more than 15% (v/v)), sluggish and stuck fermentations and excessive volatile acidity. Many strategies to reduce ethanol in wines are being studied, and microbial methods have some additional advantages. However, because of the broad intra- and interspecies variability, new selection criteria should be included. Therefore, the goal of the present work was to design and evaluate a simple and integral procedure for non-Saccharomyces yeast selection. This strategy allowed selection of yeasts that presented successful implantation in grape must with high alcohol potential and their use in co-cultures could reduce the ethanol in wines. A total of 114 native non-Saccharomyces yeasts were assayed to determine their respiratory, fermentative and physiological characteristics of enological interest. Hanseniaspora uvarum BHu9 and BHu11, H. osmophila BHo51, Starmerella bacillaris BSb55 and Candida membranaefaciens BCm71 were selected as candidates to design co-culture starters. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Investigating of yeast species in wine fermentation using terminal restriction fragment length polymorphism method.

    Science.gov (United States)

    Sun, Yue; Liu, Yanlin

    2014-04-01

    The objective of this study was to examine the potential of terminal restriction fragment length polymorphism (T-RFLP) in monitoring yeast communities during wine fermentation and to reveal new information on yeast community of Chinese enology. Firstly, terminal restriction fragment (TRF) lengths database was constructed using 32 pure yeast species. Ten of these species were firstly documented. The species except for Candida vini, Issatchenkia orientalis/Candida krusei, Saccharomyces bayanus, Saccharomyces pastorianus, Saccharomyces cerevisiae, Saccharomyces kudriarzevii and Zygosaccharomyces bisporus could be distinguished by the T-RFLP targeting 5.8S-ITS rDNA. Moreover, the yeast communities in spontaneous fermentation of Chardonnay and Riesling were identified by T-RFLP and traditional methods, including colony morphology on Wallerstein Nutrient (WLN) medium and 5.8S-ITS-RFLP analysis. The result showed that T-RFLP profiles of the yeast community correlated well with that of the results identified by the traditional methods. The TRFs with the highest intensity and present in all the samples corresponded to Saccharomyces sp. Other species detected by both approaches were Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia minuta var. minuta, Saccharomycodes ludwigii/Torulaspora delbrueckii and Candida zemplinina. This study revealed that T-RFLP technique is a rapid and useful tool for monitoring the composition of yeast species during wine fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Fungal diversity in grape must and wine fermentation assessed by massive sequencing, quantitative PCR and DGGE

    Directory of Open Access Journals (Sweden)

    Chunxiao eWang

    2015-10-01

    Full Text Available The diversity of fungi in grape must and during wine fermentation was investigated in this study by culture-dependent and culture-independent techniques. Carignan and Grenache grapes were harvested from three vineyards in the Priorat region (Spain in 2012, and nine samples were selected from the grape must after crushing and during wine fermentation. From culture-dependent techniques, 362 isolates were randomly selected and identified by 5.8S-ITS-RFLP and 26S-D1/D2 sequencing. Meanwhile, genomic DNA was extracted directly from the nine samples and analyzed by qPCR, DGGE and massive sequencing. The results indicated that grape must after crushing harbored a high species richness of fungi with Aspergillus tubingensis, Aureobasidium pullulans or Starmerella bacillaris as the dominant species. As fermentation proceeded, the species richness decreased, and yeasts such as Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae successively occupied the must samples. The terroir characteristics of the fungus population are more related to the location of the vineyard than to grape variety. Sulfur dioxide treatment caused a low effect on yeast diversity by similarity analysis. Because of the existence of large population of fungi on grape berries, massive sequencing was more appropriate to understand the fungal community in grape must after crushing than the other techniques used in this study. Suitable target sequences and databases were necessary for accurate evaluation of the community and the identification of species by the 454 pyrosequencing of amplicons.

  1. Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

    Directory of Open Access Journals (Sweden)

    Yu-hui Shang

    2016-05-01

    Full Text Available The yeast (Saccharomyces cerevisiae strain 2137 involved in lychee wine production was used to investigate acetate metabolism at different temperatures during lychee wine fermentation. Fermentation tests were conducted using lychee juice supplemented with acetic acid. The ability of yeast cells to metabolize acetic acid was stronger at 20 °C than at 25 °C or 30 °C. The addition of acetic acid suppressed the yeast cell growth at the tested temperatures. The viability was higher and the reactive oxygen species concentration was lower at 20 °C than at 30 °C; this result indicated that acid stress adaptation protects S. cerevisiae from acetic-acid-mediated programmed cell death. The acetic acid enhanced the thermal death of yeast at high temperatures. The fermentation temperature modified the metabolism of the yeasts and the activity of related enzymes during deacidification, because less acetaldehyde, less glycerol, more ethanol, more succinic acid and more malic acid were produced, with higher level of acetyl–CoA synthetase and isocitrate lyase activity, at 20 °C.

  2. Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition

    OpenAIRE

    Alonso-del-Real, Javier; Lairón-Peris, María; Barrio, Eladio; Querol, Amparo

    2017-01-01

    Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fer...

  3. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: a randomized clinical trial.

    Science.gov (United States)

    Chiva-Blanch, Gemma; Urpi-Sarda, Mireia; Ros, Emilio; Valderas-Martinez, Palmira; Casas, Rosa; Arranz, Sara; Guillén, Marisa; Lamuela-Raventós, Rosa M; Llorach, Rafael; Andres-Lacueva, Cristina; Estruch, Ramon

    2013-04-01

    Epidemiological data suggest that moderate red wine consumption reduces cardiovascular mortality and the incidence of diabetes. However, whether these effects are due to ethanol or to non-alcoholic components of red wine still remains unknown. The aim of the present study was to compare the effects of moderate consumption of red wine, dealcoholized red wine, and gin on glucose metabolism and the lipid profile. Sixty-seven men at high cardiovascular risk were randomized in a crossover trial. After a run-in period, all received each of red wine (30 g alcohol/d), the equivalent amount of dealcoholized red wine, and gin (30 g alcohol/d) for 4 week periods, in a randomized order. Fasting plasma glucose and insulin, homeostasis model assessment of insulin resistance (HOMA-IR), plasma lipoproteins, apolipoproteins and adipokines were determined at baseline and after each intervention. Fasting glucose remained constant throughout the study, while mean adjusted plasma insulin and HOMA-IR decreased after red wine and dealcoholized red wine. HDL cholesterol, Apolipoprotein A-I and A-II increased after red wine and gin. Lipoprotein(a) decreased after the red wine intervention. These results support a beneficial effect of the non-alcoholic fraction of red wine (mainly polyphenols) on insulin resistance, conferring greater protective effects on cardiovascular disease to red wine than other alcoholic beverages. www.isrctn.org: ISRCTN88720134. Copyright © 2012. Published by Elsevier Ltd.

  4. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor

    Directory of Open Access Journals (Sweden)

    Ansay Bob

    2010-03-01

    Full Text Available Abstract Background Ever since Gay-Lussac's time, the alcoholic strength by volume (% vol has been determined by using densimetric measurements. The typical reference procedure involves distillation followed by pycnometry, which is comparably labour-intensive and therefore expensive. At present, infrared (IR spectroscopy in combination with multivariate regression is widely applied as a screening procedure, which allows one to determine alcoholic strength in less than 2 min without any sample preparation. The disadvantage is the relatively large investment for Fourier transform (FT IR or near-IR instruments, and the need for matrix-dependent calibration. In this study, we apply a much simpler device consisting of a patented multiple-beam infrared sensor in combination with a flow-through cell for automated alcohol analysis, which is available in a portable version that allows for on-site measurements. Results During method validation, the precision of the infrared sensor was found to be equal to or better than densimetric or FTIR methods. For example, the average repeatability, as determined in 6 different wine samples, was 0.05% vol and the relative standard deviation was below 0.2%. Accuracy was ensured by analyzing 260 different alcoholic beverages in comparison to densimetric or FTIR results. The correlation was linear over the entire range from alcohol-free beers up to high-proof spirits, and the results were in substantial agreement (R = 0.99981, p Conclusions The flow-through infrared device is much easier to handle than typical reference procedures, while time-consuming sample preparation steps such as distillation are not necessary. Therefore, the alcoholic strength can be economically and quickly controlled (requiring less than 60 s per sample. The device also gives the opportunity for mobile on-site control in the context of labelling control of wine, beer and spirits, the process monitoring of fermentations, or the evaluation of

  5. Flavour-active wine yeasts

    OpenAIRE

    Cordente, Antonio G.; Curtin, Christopher D.; Varela, Cristian; Pretorius, Isak S.

    2012-01-01

    The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can infl...

  6. Degradation of Aflatoxin B1 during the Fermentation of Alcoholic Beverages

    Directory of Open Access Journals (Sweden)

    Naoki Mochizuki

    2013-06-01

    Full Text Available Aflatoxin B1 (AFB1 is a contaminant of grain and fruit and has one of the highest levels of carcinogenicity of any natural toxin. AFB1 and the fungi that produce it can also contaminate the raw materials used for beer and wine manufacture, such as corn and grapes. Therefore, brewers must ensure strict monitoring to reduce the risk of contamination. In this study, the fate of AFB1 during the fermentation process was investigated using laboratory-scale bottom and top beer fermentation and wine fermentation. During fermentation, cool wort beer samples and wine must samples were artificially spiked with AFB1 and the levels of AFB1 remaining after fermentation were analyzed. AFB1 levels were unchanged during both types of fermentation used for beer but were reduced to 30% of their initial concentration in wine. Differential analysis of the spiked and unspiked wine samples showed that the degradation compound was AFB2a, a hydrated derivative of AFB1. Thus, the results showed that the risk of AFB1 carryover was still present for both types of beer fermentation but was reduced in the case of wine fermentation because of hydration.

  7. Degradation of aflatoxin B1 during the fermentation of alcoholic beverages.

    Science.gov (United States)

    Inoue, Tomonori; Nagatomi, Yasushi; Uyama, Atsuo; Mochizuki, Naoki

    2013-06-28

    Aflatoxin B1 (AFB1) is a contaminant of grain and fruit and has one of the highest levels of carcinogenicity of any natural toxin. AFB1 and the fungi that produce it can also contaminate the raw materials used for beer and wine manufacture, such as corn and grapes. Therefore, brewers must ensure strict monitoring to reduce the risk of contamination. In this study, the fate of AFB1 during the fermentation process was investigated using laboratory-scale bottom and top beer fermentation and wine fermentation. During fermentation, cool wort beer samples and wine must samples were artificially spiked with AFB1 and the levels of AFB1 remaining after fermentation were analyzed. AFB1 levels were unchanged during both types of fermentation used for beer but were reduced to 30% of their initial concentration in wine. Differential analysis of the spiked and unspiked wine samples showed that the degradation compound was AFB2a, a hydrated derivative of AFB1. Thus, the results showed that the risk of AFB1 carryover was still present for both types of beer fermentation but was reduced in the case of wine fermentation because of hydration.

  8. Synthesis of hydrophilic and hydrophobic carbon quantum dots from waste of wine fermentation

    Science.gov (United States)

    Varisco, Massimo; Zufferey, Denis; Ruggi, Albert; Zhang, Yucheng; Erni, Rolf; Mamula, Olimpia

    2017-12-01

    Wine lees are one of the main residues formed in vast quantities during the fermentation of wine. While toxic when applied to plants and wetlands, it is a biodegradable material, and several alternatives have been proposed for its valorization as: dietary supplement in animal feed, source for various yeast extracts and bioconversion feedstock. The implementation of stricter environment protection regulations resulted in increasing costs for wineries as their treatment process constitutes an unavoidable and expensive step in wine production. We propose here an alternative method to reduce waste and add value to wine production by exploiting this rich carbon source and use it as a raw material for producing carbon quantum dots (CQDs). A complete synthetic pathway is discussed, comprising the carbonization of the starting material, the screening of the most suitable solvent for the extraction of CQDs from the carbonized mass and their hydrophobic or hydrophilic functionalization. CQDs synthesized with the reported procedure show a bright blue emission (λmax = 433 ± 13 nm) when irradiated at 366 nm, which is strongly shifted when the wavelength is increased (e.g. emission at around 515 nm when excited at 460 nm). Yields and luminescent properties of CQDs, obtained with two different methods, namely microwave and ultrasound-based extraction, are discussed and compared. This study shows how easy a residue can be converted into an added-value material, thus not only reducing waste and saving costs for the wine-manufacturing industry but also providing a reliable, affordable and sustainable source for valuable materials.

  9. Flavour-active wine yeasts.

    Science.gov (United States)

    Cordente, Antonio G; Curtin, Christopher D; Varela, Cristian; Pretorius, Isak S

    2012-11-01

    The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can influence wine style. This review explores recent progress towards understanding the range of 'flavour phenotypes' that wine yeast exhibit, and how this knowledge has been used to develop novel flavour-active yeasts. In addition, emerging opportunities to augment these phenotypes by engineering yeast to produce so-called grape varietal compounds, such as monoterpenoids, will be discussed.

  10. Evaluation of influence of the locality, the vintage year, wine variety and fermentation process on volume of cooper and lead in wine

    Directory of Open Access Journals (Sweden)

    Jaroslav Jedlička

    2014-11-01

    Full Text Available We have focused on the influence evaluation of the locality, the vintage year and fermentation process on the volume of copper and lead into grape must and wine. First of all copper and lead volume was assessed into fresh grape musts. Subsequently the musts were fermented. During the wines analyses we found great decrease of copper by the fermentation process. Assessed Cu2+ values vary from 0.07 to 0.2 mg.L-1 and represent a decrease of the original copper volume from 90 to 97%. On the copper content into grape has probably the significant influence also the precipitation amount, which falling in the second part of the vegetation half a year. Total rainfall in the period before the grape harvesting (the months of August - September was for the first year 153 mm and for second year 137,5 mm. During both observed vintage years it was concerning to the above average values. Copper is not possible to eliminate totally in the protection of the vine against fungal diseases, because against it does not come into existence resistance into a pathogen. For resolution of this problem it is suitable to combine the copper and organic products. Fermentation affect as a biological filter and influence also lead volume. Into analysed wines we found the decrease of the lead volume from 25 to 94%. Maximal assessed Pb2+ value into wine was 0.09 mg.L-1. The linear relationship between lead and copper into grape must in relationship to the lead and copper into wine was not statistically demonstrated. We found the statistically significant relationship in lead content into grape must by the influence of the vintage year, which as we supposed, it was connected with the atmospheric precipitation quantity and distribution during the vegetation. On the base of the assessed results of the lead and copper volume into wine, we state that by using of the faultless material and appropriate technological equipment during the wine production, it is possible to eliminate almost

  11. Peculiar H⁺ homeostasis of Saccharomyces cerevisiae during the late stages of wine fermentation.

    Science.gov (United States)

    Viana, Tiago; Loureiro-Dias, Maria C; Loureiro, Virgílio; Prista, Catarina

    2012-09-01

    Intracellular pH (pH(in)) is a tightly regulated physiological parameter, which controls cell performance in all living systems. The purpose of this work was to evaluate if and how H(+) homeostasis is accomplished by an industrial wine strain of Saccharomyces cerevisiae while fermenting real must under the harsh winery conditions prevalent in the late stages of the fermentation process, in particular low pH and high ethanol concentrations and temperature. Cells grown at 15, 25, and 30°C were harvested in exponential and early and late stationary phases. Intracellular pH remained in the range of 6.0 to 6.4, decreasing significantly only by the end of glucose fermentation, in particular at lower temperatures (pH(in) 5.2 at 15°C), although the cells remained viable and metabolically active. The cell capability of extruding H(+) via H(+)-ATPase and of keeping H(+) out by means of an impermeable membrane were evaluated as potential mechanisms of H(+) homeostasis. At 30°C, H(+) efflux was higher in all stages. The most striking observation was that cells in late stationary phase became almost impermeable to H(+). Even when these cells were challenged with high ethanol concentrations (up to 20%) added in the assay, their permeability to H(+) remained very low, being almost undetectable at 15°C. Comparatively, ethanol significantly increased the H(+) permeability of cells in exponential phase. Understanding the molecular and physiological events underlying yeast H(+) homeostasis at late stages of fermentations may contribute to the development of more robust strains suitable to efficiently produce a high-quality wine.

  12. Saccharomyces cerevisiae and S. kudriavzevii Synthetic Wine Fermentation Performance Dissected by Predictive Modeling

    Directory of Open Access Journals (Sweden)

    David Henriques

    2018-02-01

    Full Text Available Wineries face unprecedented challenges due to new market demands and climate change effects on wine quality. New yeast starters including non-conventional Saccharomyces species, such as S. kudriavzevii, may contribute to deal with some of these challenges. The design of new fermentations using non-conventional yeasts requires an improved understanding of the physiology and metabolism of these cells. Dynamic modeling brings the potential of exploring the most relevant mechanisms and designing optimal processes more systematically. In this work we explore mechanisms by means of a model selection, reduction and cross-validation pipeline which enables to dissect the most relevant fermentation features for the species under consideration, Saccharomyces cerevisiae T73 and Saccharomyces kudriavzevii CR85. The pipeline involved the comparison of a collection of models which incorporate several alternative mechanisms with emphasis on the inhibitory effects due to temperature and ethanol. We focused on defining a minimal model with the minimum number of parameters, to maximize the identifiability and the quality of cross-validation. The selected model was then used to highlight differences in behavior between species. The analysis of model parameters would indicate that the specific growth rate and the transport of hexoses at initial times are higher for S. cervisiae T73 while S. kudriavzevii CR85 diverts more flux for glycerol production and cellular maintenance. As a result, the fermentations with S. kudriavzevii CR85 are typically slower; produce less ethanol but higher glycerol. Finally, we also explored optimal initial inoculation and process temperature to find the best compromise between final product characteristics and fermentation duration. Results reveal that the production of glycerol is distinctive in S. kudriavzevii CR85, it was not possible to achieve the same production of glycerol with S. cervisiae T73 in any of the conditions tested

  13. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes

    DEFF Research Database (Denmark)

    Albergaria, Helena; Arneborg, Nils

    2016-01-01

    Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and...

  14. ADAPTIVE CONTROL OF FEED LOAD CHANGES IN ALCOHOL FERMENTATION

    Directory of Open Access Journals (Sweden)

    Folly R.

    1997-01-01

    Full Text Available A fed-batch alcohol fermentation on a pilot plant scale with a digital supervisory control system was evaluated as an experimental application case study of an adaptive controller. The verification of intrinsically dynamic variations in the characteristics of the fermentation, observed in previous work, showed the necessity of an adaptive control strategy for controller parameter tuning in order to adjust the changes in the specific rates of consumption, growth and product formation during the process. Satisfactory experimental results were obtained for set-point variations and sugar feed concentration load changes in the manipulated inlet flow to the fermenter

  15. Kinetic study of an alcoholic fermentation, using honey like substrate

    International Nuclear Information System (INIS)

    Gomez, Jose Angel; Castano, Hader Ivan; Arias Mario

    1997-01-01

    The paper describes a kinetic study of an alcoholic fermentation using honey like substrate; for this effect they were carried out nine fermentations in discontinuous process with a volume, of 10 L, following the behavior of the substrate concentrations, biomass and product in the time. It was evaluated the convenience of factors like the agitation and the addition of nutritious, also, it was observed the effect of the initial concentrations of substrate and inoculate and the type of honey looking for the best conditions of the process for the obtaining of an alcoholic drink

  16. THE INFLUENCE OF THIAMINE IN THE FERMENTATION OF THE WINE YEASTS

    Directory of Open Access Journals (Sweden)

    Ovidiu Tita

    2011-12-01

    Full Text Available Due to the enzymatic equipment, the yeast cell produces alcoholic fermentation by the meaning of a zimazic complex which catalyzes in different stages the redox processes of the carbohydrates, which are able to ferment, ultimately leading to ethanol. The fermentation rate is an exponential function being influenced by the cells concentration in the development environment and the starter cultures of micro-organisms. Most of the yeast strains do ferment some substrates rich in hexosanes and oligoglucides: sucrose, maltose, raffinose, lactose and celobiose. The biomass quantity may be increased in various ways. An important aspect in the increasing of the multiplication rate of the yeast cells is the determination of the optimum growing conditions. Some kinetic dependencies, mono and multi-factorial, have been observed; they describe the impact of the concentration of the base components in the nutrient environment, temperature, pH, mixing intensity on the multiplication rate of the yeasts.

  17. Impact of assimilable nitrogen availability in glucose uptake kinetics in Saccharomyces cerevisiae during alcoholic fermentation.

    Science.gov (United States)

    Palma, Margarida; Madeira, Sara Cordeiro; Mendes-Ferreira, Ana; Sá-Correia, Isabel

    2012-07-30

    The expression and activity of the different Saccharomyces cerevisiae hexose uptake systems (Hxt) and the kinetics of glucose uptake are considered essential to industrial alcoholic fermentation performance. However, the dynamics of glucose uptake kinetics during the different stages of fermentation, depending on glucose and nitrogen availability, is very poorly characterized. The objective of the present work was to examine thoroughly the alterations occurring in glucose uptake kinetics during alcoholic fermentation, by the wine strain S. cerevisiae PYCC 4072, of a synthetic grape juice basal medium with either a limiting or non-limiting initial nitrogen concentration and following nitrogen supplementation of the nitrogen-depleted sluggish fermentation. Independently of the initial concentration of the nitrogen source, glucose transport capacity is maximal during the early stages of fermentation and presumably sustained by the low-affinity and high-capacity glucose transporter Hxt1p. During nitrogen-limited sluggish fermentation, glucose uptake capacity was reduced to approximately 20% of its initial values (Vmax = 4.9 ± 0.8 compared to 21.9 ± 1.2 μmol h⁻¹ 10⁻⁸ cells), being presumably sustained by the low-affinity glucose transporter Hxt3p (considering the calculated Km = 39.2 ± 8.6 mM). The supplementation of the sluggish fermentation broth with ammonium led to the increase of glucose transport capacity associated to the expression of different glucose uptake systems with low and high affinities for glucose (Km = 58.2 ± 9.1 and 2.7 ± 0.4 mM). A biclustering analysis carried out using microarray data, previously obtained for this yeast strain transcriptional response to equivalent fermentation conditions, indicates that the activation of the expression of genes encoding the glucose transporters Hxt2p (during the transition period to active fermentation) and Hxt3p, Hxt4p, Hxt6p and Hxt7p (during the period of

  18. Red Wine Tannin Structure-Activity Relationships during Fermentation and Maceration.

    Science.gov (United States)

    Yacco, Ralph S; Watrelot, Aude A; Kennedy, James A

    2016-02-03

    The correlation between tannin structure and corresponding activity was investigated by measuring the thermodynamics of interaction between tannins isolated from commercial red wine fermentations and a polystyrene divinylbenzene HPLC column. Must and/or wine samples were collected throughout fermentation/maceration from five Napa Valley wineries. By varying winery, fruit source, maceration time, and cap management practice, it was considered that a reasonably large variation in commercially relevant tannin structure would result. Tannins were isolated from samples collected using low pressure chromatography and were then characterized by gel permeation chromatography and acid-catalyzed cleavage in the presence of excess phloroglucinol (phloroglucinolysis). Corresponding tannin activity was determined using HPLC by measuring the thermodynamics of interaction between isolated tannin and a polystyrene divinylbenzene HPLC column. This measurement approach was designed to determine the ability of tannins to hydrophobically interact with a hydrophobic surface. The results of this study indicate that tannin activity is primarily driven by molecular size. Compositionally, tannin activity was positively associated with seed tannins and negatively associated with skin and pigmented tannins. Although measured indirectly, the extent of tannin oxidation as determined by phloroglucinolysis conversion yield suggests that tannin oxidation at this stage of production reduces tannin activity. Based upon maceration time, this study indicates that observed increases in perceived astringency quality, if related to tannin chemistry, are driven by tannin molecular mass as opposed to pigmented tannin formation or oxidation. Overall, the results of this study give new insight into tannin structure-activity relationships which dominate during extraction.

  19. QUALITY EVALUATION OF DENDALION WINE

    Directory of Open Access Journals (Sweden)

    Aldona Sugintienė

    2010-01-01

    Full Text Available The world tendencies are pronounced to attach significance to production of natural fermentation alcohol drinks. The fanciers of drinks take interest in the production of homemade drinks, and especially healthy drinks.Production of original and even health friendly drinks has been recently a matter of increased interest among amateur producers and drink manufacturers in Europe as well. Dandelion wine is one of the drinks produced by use of different amounts of various ingredients and available equipment in the fermentation laboratory. The following characteristics are determined upon the main fermentation in the matured and clarified wine:- sensory indicators (color, appearance and clearness; aroma and bouquets, taste and texture, and aftertaste,- analytical indicators (alcoholic strength by volume, determination of sugars, total acidity, volatile acidity.Dandelions wine is most distinguished by its flavor characteristics.

  20. Relationship between Menthiafolic Acid and Wine Lactone in Wine.

    Science.gov (United States)

    Giaccio, Joanne; Curtin, Chris D; Sefton, Mark A; Taylor, Dennis K

    2015-09-23

    Menthiafolic acid (6-hydroxy-2,6-dimethylocta-2,7-dienoic acid, 2a) was quantified by GC-MS in 28 white wines, 4 Shiraz wines, and for the first time in 6 white grape juice samples. Menthiafolic acid was detected in all but one of the wine samples at concentrations ranging from 26 to 342 μg/L and in the juice samples from 16 to 236 μg/L. Various model fermentation experiments showed that some menthiafolic acid in wine could be generated from the grape-derived menthiafolic acid glucose ester (2b) during alcoholic and malolactic fermentation. Samples containing high concentrations of menthiafolic acid were also analyzed by enantioselective GC-MS and were shown to contain this compound in predominantly the (S)-configuration. Enantioselective analysis of wine lactone (1) in one of these samples, a four-year-old Chardonnay wine showed, for the first time, the presence of the 3R,3aR,7aS isomer of wine lactone (1b), which is the enantiomer of the form previously reported as the sole isomer present in young wine samples. The weakly odorous 3R,3aR,7aS 1b form comprised 69% of the total wine lactone in the sample. On the basis of the enantioselectivity of the hydrolytic conversion of menthiafolic acid to wine lactone at pH 3.0 determined previously and the relative proportions of (R)- and (S)-menthiafolic acid in the Chardonnay wine, the predicted ratio of wine lactone enantiomers that would be formed from hydrolysis at ambient temperature of the menthiafolic acid present in this wine was close to the ratio measured, which was consistent with menthiafolic acid being the major or sole precursor to wine lactone in this sample.

  1. Influence of heat shock-treated cells on the production of glycerol and other metabolites in alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Sofoklis Petropoulos

    2010-11-01

    Full Text Available Sofoklis Petropoulos1,2, Paul R Grbin2, Vladimir Jiranek21SEMELI SA, Stamata Attica, Greece; 1,2School of Agriculture, Food and Wine, The University of Adelaide, South Australia, AustraliaAbstract: The impact of heat shock on the formation of sensorily important fermentation metabolites was investigated. Initially the heat tolerance of six commercial Saccharomyces cerevisiae yeast strains was evaluated under various conditions of time and temperature (heat shock at 40°C, 50°C, and 60°C for a duration of 20, 40, and 60 minutes, respectively. A chemically defined grape juice medium was inoculated from the surviving colonies, and microferments were conducted. Two strains were selected for further evaluation due to their heat shock tolerance and enhanced glycerol production. The experiment was repeated in standard laboratory scale fermentations under aerobic and anaerobic conditions, and the medium was inoculated directly after the heat shock treatment and after recovery from the heat shock on yeast peptone dextrose plates. All fermentations were further analyzed for higher alcohol, organic acid, and ethyl ester content using gas chromatography mass spectrometry. Elevated glycerol production (increase of 17% under aerobic conditions and 8% under anaerobic conditions was reported only in one strain and only after direct inoculation of the fermentation medium. With both strains, direct inoculation of the heated cells caused a 2-day delay in the commencement of the fermentation, but after recovery, the fermentation progress was increased. Volatile analysis showed that apart from changes in organic acids, all other volatile compounds analyzed exhibited an alteration mainly due to strain differences and the presence of oxygen.Keywords: heat shock, glycerol, higher alcohols, wine, Saccharomyces

  2. A review on traditional Turkish fermented non-alcoholic beverages: microbiota, fermentation process and quality characteristics.

    Science.gov (United States)

    Altay, Filiz; Karbancıoglu-Güler, Funda; Daskaya-Dikmen, Ceren; Heperkan, Dilek

    2013-10-01

    Shalgam juice, hardaliye, boza, ayran (yoghurt drink) and kefir are the most known traditional Turkish fermented non-alcoholic beverages. The first three are obtained from vegetables, fruits and cereals, and the last two ones are made of milk. Shalgam juice, hardaliye and ayran are produced by lactic acid fermentation. Their microbiota is mainly composed of lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus brevis and Lactobacillus paracasei subsp. paracasei in shalgam fermentation and L. paracasei subsp. paracasei and Lactobacillus casei subsp. pseudoplantarum in hardaliye fermentation are predominant. Ayran is traditionally prepared by mixing yoghurt with water and salt. Yoghurt starter cultures are used in industrial ayran production. On the other hand, both alcohol and lactic acid fermentation occur in boza and kefir. Boza is prepared by using a mixture of maize, wheat and rice or their flours and water. Generally previously produced boza or sourdough/yoghurt are used as starter culture which is rich in Lactobacillus spp. and yeasts. Kefir is prepared by inoculation of raw milk with kefir grains which consists of different species of yeasts, LAB, acetic acid bacteria in a protein and polysaccharide matrix. The microbiota of boza and kefir is affected from raw materials, the origin and the production methods. In this review, physicochemical properties, manufacturing technologies, microbiota and shelf life and spoilage of traditional fermented beverages were summarized along with how fermentation conditions could affect rheological properties of end product which are important during processing and storage. Copyright © 2013. Published by Elsevier B.V.

  3. Determination of Alcohol and Total Dry Extract in Slovenian Wines by Empirical Relations

    Directory of Open Access Journals (Sweden)

    Tatjana Košmerl

    2002-01-01

    Full Text Available The possibility of fast determination of alcohol and total dry extract from given relative density and refractive index in wine was examined on fifty eight samples of Slovenian white and red still wines. Calculated relation values obtained from literature were compared to values determined experimentally using official methods (pycnometry and hydrostatic balance. Determination of alcohol and total dry extract together by means of calculation was the most accurate for the group of white wines (according to the concentration of reducing sugars with up to 5 g L–1 and the least accurate for the group of white wines with over 15 g L–1. For alcohol calculation the standard deviations and coefficients of variation for literature and our relations were different (literature relations: SD = 7.37–8.53, CV = 8.33–9.52 %, our relations: SD = 7.18–13.94, CV = 7.96–16.55 % and they were higher for the total dry extract (literature relations: SD = 16.39 16.76, CV = 45.14–49.49 %; our relations: SD = 13.70–16.73, CV = 42.68–49.16 %. The most accurate relations for separate groups of wines (white wines with different reducing sugars content or red wines have already been published (2–6. Our own relations for calculation of alcohol level and total dry extract were obtained by means of multiple linear regression analysis. The experiment has shown that none of the results are accurate enough to be obtained using only one relation for different wines.

  4. Biological Demalication and Deacetification of Musts and Wines: Can Wine Yeasts Make the Wine Taste Better?

    Directory of Open Access Journals (Sweden)

    Alice Vilela

    2017-10-01

    Full Text Available Grape musts sometimes reveal excess acidity. An excessive amount of organic acids negatively affect wine yeasts and yeast fermentation, and the obtained wines are characterized by an inappropriate balance between sweetness, acidity or sourness, and flavor/aroma components. An appropriate acidity, pleasant to the palate is more difficult to achieve in wines that have high acidity due to an excess of malic acid, because the Saccharomyces species in general, cannot effectively degrade malic acid during alcoholic fermentation. One approach to solving this problem is biological deacidification by lactic acid bacteria or non-Saccharomyces yeasts, like Schizosaccharomyces pombe that show the ability to degrade L-malic acid. Excessive volatile acidity in wine is also a problem in the wine industry. The use of free or immobilized Saccharomyces cells has been studied to solve both these problems since these yeasts are wine yeasts that show a good balance between taste/flavor and aromatic compounds during alcoholic fermentation. The aim of this review is to give some insights into the use of Saccharomyces cerevisiae strains to perform biological demalication (malic acid degradation and deacetification (reduction of volatile acidity of wine in an attempt to better understand their biochemistry and enological features.

  5. Methods for sequestering carbon dioxide into alcohols via gasification fermentation

    Science.gov (United States)

    Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

    2013-11-26

    The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

  6. Effect of Raw Material, Pressing and Glycosidase on the Volatile Compound Composition of Wine Made From Goji Berries

    Directory of Open Access Journals (Sweden)

    Guanshen Yuan

    2016-10-01

    Full Text Available This study investigated the effect of raw material, pressing, and glycosidase on the aromatic profile of goji berry wine. The free-run and the pressed juice of dried and fresh goji berries were used for wine production, whereas glycosidase was applied to wine after fermentation. Dried goji berry fermented wine exhibited much stronger fruity, floral, caramel, and herbaceous odors due to higher levels of esters, β-ionone and methionol. However, fresh berry fermented wine possessed stronger chemical notes due to higher levels of 4-ethylphenol. Pressing treatment reduced the fruity and caramel odors in these fermented wines, and fresh berry free-run juice fermented wine exhibited the least floral aroma. Glycosidase addition did not alter the aromatic composition of wines. The principal component analysis indicated that goji raw material played a primary role in differentiating the aromatic profiles of the wines due to the difference on the content of 20 esters, nine benzenes, eight aldehydes/ketones, three acids, two alcohols and six other volatiles. The content differences on isopentyl alcohol, styrene, benzyl alcohol, 1-octanol, (E-5-decen-1-ol, 1-hexanol, and β-cyclocitral resulted in the segregation of the wines with and without the pressing treatment, especially for fresh berry fermented wine.

  7. Production of Mandioca alcohol by continuous fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Govea, V.deS.

    1973-01-01

    Slurries of cassava meal were saccharified by the action of amylase from Bacillus subtilis and amyloglucosidase from Aspergillus awamori. The resulting glucose medium was fermented continuously on a semi-industrial scale using Saccharomyces cerevisiae without addition of artificial nutrients. A 90.87% yield was obtained in the conversion of glucose to EtOH.

  8. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen.

    Science.gov (United States)

    Brice, Claire; Cubillos, Francisco A; Dequin, Sylvie; Camarasa, Carole; Martínez, Claudio

    2018-01-01

    Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway.

  9. Proteomic evolution of a wine yeast during the first hours of fermentation.

    Science.gov (United States)

    Salvadó, Zoel; Chiva, Rosana; Rodríguez-Vargas, Sonia; Rández-Gil, Francisca; Mas, Albert; Guillamón, José Manuel

    2008-11-01

    The inoculation of active dry wine yeast (ADWY) is one of the most common practices in winemaking. This inoculation exposes the yeast cells to strong osmotic, acidic and thermal stresses, and adaptation to the new medium is crucial for successful fermentation. We have analysed the changes that occur in the ADWY protein profile in the first hours after inoculation under enological-like conditions at a low temperature. Protein changes mainly included enzymes of the nitrogen and carbon metabolism and proteins related to the cellular stress response. Most of the enzymes of the lower part of the glycolysis showed an increase in their concentration 4 and 24 h after inoculation, indicating an increase in glycolytic flux and in ATP production. However, the shift from respiration to fermentation was not immediate in the inoculation because some mitochondrial proteins involved in oxidative metabolism were induced in the first hours after inoculation. Inoculation in this fresh medium also reduced the cellular concentration of stress proteins produced during industrial production of the ADWY. The only exception was Cys3p, which might be involved in glutathione synthesis as a response to oxidative stress. A better understanding of the yeast stress response to rehydration and inoculation will lead to improvements in the handling efficiency of ADWY in winemaking and presumably to better control of fermentation startup.

  10. Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and 'flor' film ageing of dry sherry-type wines.

    Science.gov (United States)

    Guijo, S; Mauricio, J C; Salmon, J M; Ortega, J M

    1997-02-01

    The full chromosomal karyotype of six enological Saccharomyces cerevisiae strains used for fermentation and biological ageing of sherry-type wines was studied. A genetic method based on the analysis of segregation frequencies of auxotrophic markers, among random spore progeny of hybrids, constructed between laboratory and industrial wine strains (Bakalinsky and Snow, 1990) was used. This method was combined with the analysis of strains by pulsed-field gel electrophoresis. The results obtained clearly indicate the presence of two, three or four copies of a chromosome in the industrial strains examined, and thus confirm that aneuploidy/polyploidy is not uncommon in these strains. In all strains examined, chromosome XIII polysomy is observed. This chromosome contains the ADH2 and ADH3 loci, that code for the ADHII and ADHIII isoenzymes of alcohol dehydrogenase, which are involved in ethanol oxidative utilization during biological ageing of wines. Tetrad analysis for the 'flor formation' character suggest two possibilities: this character is either regulated by at least a digenic system, or by only one gene present on a chromosome which is, at least, disomic.

  11. Irradiation effects on the alcohol fermentation ability of saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Sadi, Suharni

    1987-01-01

    Irradiation effects on the alcohol fermentation ability of saccharomyces cerevisiae. S. cerevisiae suspensions of 1.5x10 8 clls/ml were exposed to single and fractionated doses of gamma irradiation, i.e. 0; 0.30; 0.60; 0.90; and 1.20 kGy in aerobic condition at dose rate of 1.63 kGy/hour. The fractionated doses were given with time interval of 15, 30 and 45 minutes. The fermentation was held at 30 0 C for 40 hours. It is seen that an increase of alcohol production was obtained when cells were irradiated at 0.60 kGy, although the result has no significant difference statistically with control. At the dose of 1.20 kGy the alcohol fermentation ability of S. cerevisiae decreased drastically as compared to control. Irradiation using single or fractionated doses with time interval of 15-45 minutes did not influence the alcohol production. Comparing the time interval of 45 minutes at 0.60 kGy and at 1.20 kGy, it appeared that the yield of alcohol was different. (author). 17 refs.; 4 figs

  12. Effect of an excise tax increase on the demand for low alcohol wine

    DEFF Research Database (Denmark)

    Mueller, Simone; Lockshin, Larry; Louviere, Jordan J.

    be taxed to the same extent per litre of alcohol. Even though Australia has somewhat unique circumstances, the quest for moderate alcohol consumption has become of global importance. Reducing or limiting the level of harm from alcohol consumption has been the focus of government intervention, national...... data of low alcohol wine products, a stated preference approach had to be adopted in this study. Methodology: In a discrete choice experiment, based on their last purchase, consumers select one or several different alcoholic beverages into a purchase basket. Consumers could choose from a number...

  13. Changes in aroma composition of blackberry wine during ...

    African Journals Online (AJOL)

    academics

    number of aroma components in raw material (55 in numbers), raw wine (54 in numbers), and aging wine (50 in numbers) were ..... Wang et al. 16509. Table 1. The main aroma compositions in blackberry fruit juice after primary and secondary fermentation. Alcohol. Molecular formula. Molecular weight. Percentage (%). 1#.

  14. The extraction of anthocyanins and proanthocyanidins from grapes to wine during fermentative maceration is affected by the enological technique.

    Science.gov (United States)

    Busse-Valverde, Naiara; Gómez-Plaza, Encarna; López-Roca, Jose M; Gil-Muñoz, Rocio; Bautista-Ortín, Ana B

    2011-05-25

    The effect of three enological techniques (low temperature prefermentative maceration, must freezing with dry ice, and the use of a maceration enzyme) on the extraction of anthocyanins and proanthocyanidins from must to wine during fermentative maceration was studied to determine the extent to which these compounds are extracted and to assess the changes on their qualitative composition due to enological technique applied. The results showed that the dry ice treatment led to wines with high color intensity and high anthocyanin content, the maximum rate of extraction being observed the first 6 days of fermentative maceration. Regarding the effect of the different techniques on the quantitative and qualitative composition of proanthocyanidins, only the dry ice treatment seemed to favor the extraction of high molecular weight skin proanthocyanidins. The low temperature prefermentative maceration treatment led to the highest concentration of proanthocyanidins at the moment of pressing; however, this treatment, contrary to expectations, led to wines with the highest content of seed-derived proanthocyanidins. The use of the maceration enzyme also increased the concentration of proanthocyanidins during all of the fermentative process, as compared to a control wine, although the increase was not only due to skin proanthocyanidins but also seed proanthocyanidins. We have demonstrated in this study that maceration enzymes also facilitate seed phenolic extraction.

  15. Impact of wine technology on the variability of resveratrol and piceids in Saperavi (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    M.A. Surguladze

    2017-03-01

    Full Text Available The biologically active stilbenoids-resveratrol and its glucosides were identified in the dry bulk wines of different types made with red-grape vintage variety of Saperavi (Vitis vinifera L.: cis-resveratrol, trans-resveratrol, cis-piceid and trans-piceid. Red and pink wines were made by different technology: I – dry, pink, of a European type; alcoholic fermentation with natural microflora; II – dry, pink, of a European type; alcoholic fermentation with dry yeast “B2000”. III – red, dry; alcoholic fermentation with no-stem pomace and aging on it for 5 months; IV – dry, red, of a Kakhetian type; alcoholic fermentation with stem pomace with natural microflora and aging on it for 5 months; V – dry, red, of a Kakhetian type, with preliminary fermentation of cluster stems, then, alcoholic fermentation with natural microflora and aging on it for 5 months. The impact of the wine-making technology on the variability of the concentrations of these substances is proved. Kakhetian bulk wines (IV and V also differ from one another. Bulk wine-V made by the fermentation of grappa fermented in advance contains little concentration of study stilbenoids as a result of the oxidation transformations caused by the preliminary treatment. The role of grape juice, stem and seed in the localization of resveratrols and piceids in the bulk wines is identified.

  16. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine.

    Science.gov (United States)

    Gobbi, Mirko; Comitini, Francesca; Domizio, Paola; Romani, Cristina; Lencioni, Livio; Mannazzu, Ilaria; Ciani, Maurizio

    2013-04-01

    In the last few years there is an increasing interest on the use of mixed fermentation of Saccharomyces and non-Saccharomyces wine yeasts for inoculation of wine fermentations to enhance the quality and improve complexity of wines. In the present work Lachancea (Kluyveromyces) thermotolerans and Saccharomyces cerevisiae were evaluated in simultaneous and sequential fermentation with the aim to enhance acidity and improve the quality of wine. In this specific pairing of yeast strains in mixed fermentations (S. cerevisiae EC1118 and L. thermotolerans 101), this non-Saccharomyces yeast showed a high level of competitiveness. Nevertheless the S. cerevisiae strain dominated the fermentation over the spontaneous S. cerevisiae strains also under the industrial fermentation conditions. The different condition tested (modalities of inoculum, temperature of fermentation, different grape juice) influenced the specific interactions and the fermentation behaviour of the co-culture of S. cerevisiae and L. thermotolerans. However, some metabolic behaviours such as pH reduction and enhancement of 2-phenylethanol and glycerol, were shown here under all of the conditions tested. The specific chemical profiles of these wines were confirmed by the sensory analysis test, which expressed these results at the tasting level as significant increases in the spicy notes and in terms of total acidity increases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Functional or emotional? How Dutch and Portuguese conceptualise beer, wine and non-alcoholic beer consumption

    NARCIS (Netherlands)

    Silva, Ana Patricia; Jager, Gerry; Bommel, van Roelien; Zyl, van Hannelize; Voss, Hans Peter; Hogg, Tim; Pintado, Manuela; Graaf, de Kees

    2016-01-01

    Non-alcoholic beer (NAB) may be a healthier alternative to wine and beer consumption, however has little appeal to consumers. Conceptualisations, i.e. functional and emotional associations that consumers have with foods/beverages, were explored to understand how NAB consumption is perceived, and

  18. Determination of alcohols, ethers and organic acids in irradiated sweet potato wine by capillary gas chromatography

    International Nuclear Information System (INIS)

    Zhou Yingcai; Yuan Bihuai; Xu Peishu; Wang Xiuying

    1986-01-01

    Alcohols, ethers and organic acids in irradiated sweet potato wine have been determined with capillary GC. The results show that the contents of some components have changed after irradiation, but no new species are formed. The G values of the changed components have been calculated

  19. Genetic segregation of natural Saccharomyces cerevisiae strains derived from spontaneous fermentation of Aglianico wine.

    Science.gov (United States)

    Sipiczki, M; Romano, P; Capece, A; Paraggio, M

    2004-01-01

    Investigation of the meiotic segregation of karyotypes and physiological traits in indigenous Saccharomyces strains isolated from Aglianico (South Italy) red wine. Segregation was studied in F1 and F2 descendants. Tetrads were isolated from sporulating cultures by micromanipulation. The spore clones were subjected to karyotype analysis by pulse-field gel electrophoresis (Bio-Rad model CHEF-DR II) and to various physiological tests. Certain chromosomes of the isolates showed 2:2 segregation patterns in F1 but proved to be stable in F2. The ability of cells to utilize maltose also segregated in a 2 : 2 manner in F1 and did not segregate in F2. Resistance to CuSO4, SO2 tolerance, the fermentative power and the production of certain metabolites segregated in both F1 and F2 generations and showed patterns indicating the involvement of polygenic regulation. The analysis revealed a high degree of genetic instability and demonstrated that meiosis can improve chromosomal and genetic stability. Winemaking is critically dependent on the physiological properties and genetic stability of the fermenting Saccharomyces yeasts. Selection of clones from F2 or later generations can be a method of reduction of genetic instability.

  20. Changes in the relative abundance of two Saccharomyces species from oak forests to wine fermentations

    Directory of Open Access Journals (Sweden)

    Sofia eDashko

    2016-02-01

    Full Text Available Saccharomyces cerevisiae and its sibling species S. paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1,200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus as well as small number of S. kudriavzevii strains from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance.

  1. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation.

    Science.gov (United States)

    García-Ríos, Estéfani; Querol, Amparo; Guillamón, José Manuel

    2016-09-02

    Temperature is one of the most important parameters to affect the duration and rate of alcoholic fermentation and final wine quality. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae, which was the case of cryotolerant yeasts Saccharomyces uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the proteomic landscape of these cryotolerant species grown at 12°C and 28°C, which we compared with the proteome of S. cerevisiae (poorly adapted at low temperature). Our results showed that the main differences among the proteomic profiling of the three Saccharomyces strains grown at 12°C and 28°C lay in translation, glycolysis and amino acid metabolism. Our data corroborate previous transcriptomic results, which suggest that S. kudriavzevii is better adapted to grow at low temperature as a result of enhanced more efficient translation. Fitter amino acid biosynthetic pathways can also be mechanisms that better explain biomass yield in cryotolerant strains. Yet even at low temperature, S. cerevisiae is the most fermentative competitive species. A higher concentration of glycolytic and alcoholic fermentation enzymes in the S. cerevisiae strain might explain such greater fermentation activity. Temperature is one of the main relevant environmental variables that microorganisms have to cope with and it is also a key factor in some industrial processes that involve microorganisms. However, we are still far from understanding the molecular and physiological mechanisms of adaptation at low temperatures. The results obtained in this study provided a global atlas of the proteome changes triggered by temperature in three different species of the genus Saccharomyces with different degree of cryotolerance. These results would facilitate a better understanding of mechanisms for how yeast could adapt at the low temperature of growth. Copyright © 2016

  2. The behaviour of trace elements and radionuclides in must of grapes during fermentation and usual wine technology

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Fischer, E.

    1985-01-01

    The elements Co(II), Sr(II), Cs(I), Tl(I) and Am(III) were added as their radionuclides to the must of white grapes of one vintage and from that wine was prepared using usual wine technology. The elimination of the elements during the fermentation and as a consequence of the subsequent treatments has been determined. The decrease of the metal contents with time follows approximately an exponential function in the cases of Co, Cs, Tl and Am, whereas the Sr-content remains nearly constant. In the total balance, the following residual values were found in the final wine: Co 8.6+-0.6%, Sr 41+-4%, Cs 0.13+-0.07 resp. 0.031+-0.008%, Tl 1.3+-0.2% and Am 1.0+-0.2% of the initial value. (orig./PW) [de

  3. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization

    Science.gov (United States)

    Domizio, P.; Liu, Y.; Bisson, L.F.; Barile, D.

    2016-01-01

    The present work demonstrates that yeasts belonging to the Schizosaccharomyces genus release a high quantity of polysaccharides of cell wall origin starting from the onset of the alcoholic fermentation. By the end of the alcoholic fermentation, all of the Schizosaccharomyces yeast strains released a quantity of polysaccharides approximately 3-7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the same fermentative conditions of synthetic juice. A higher content of polysaccharide was found in media fermented by Schizosaccharomyces japonicus with respect to that of Schizosaccharomyces pombe. Some of the strains evaluated were also able to produce high levels of pyruvic acid, which has been shown to be an important compound for color stability of wine. The presence of strains with different malic acid consumption patterns along with high polysaccharide release would enable production of naturally modified wines with enhanced mouth feel and reduced acidity. The chemical analysis of the released polysaccharides demonstrated divergence between the two yeast species S. pombe and S. japonicus. A different mannose/galactose ratio and a different percentage of proteins was observed on the polysaccharides released by S. pombe as compared to S. japonicus. Analysis of the proteins released in the media revealed the presence of a glycoprotein with a molecular size around 32-33 kDa only for the species S. japonicus. Mass spectrometry analysis of carbohydrate moieties showed similar proportions among the N-glycan chains released in the media by both yeast species but differences between the two species were also observed. These observations suggest a possible role of rapid MALDI-TOF screening of N-glycans compositional fingerprint as a taxonomic tool for this genus. Polysaccharides release in the media, in particular galactomannoproteins in significant amounts, could make these yeasts particularly interesting also for the industrial

  4. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production.

    Science.gov (United States)

    Tristezza, Mariana; Tufariello, Maria; Capozzi, Vittorio; Spano, Giuseppe; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of non-Saccharomyces in

  5. Evolution of Acetic Acid Bacteria During Fermentation and Storage of Wine

    OpenAIRE

    Joyeux, A.; Lafon-Lafourcade, S.; Ribéreau-Gayon, P.

    1984-01-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH ...

  6. Evaluation of Fermentation Products of Palm Wine Yeasts and Role of Sacoglottis gabonensis Supplement on Products Abundance

    Directory of Open Access Journals (Sweden)

    Ogueri Nwaiwu

    2016-04-01

    Full Text Available A preliminary evaluation of yeast fermented palm wine sourced from Imo State in Nigeria was carried out to establish compounds that contribute to the distinct flavor of the beverage and to determine if the product abundance is affected when the drink is supplemented with Sacoglottis gabonensis. Palm wine samples from two different trees Elaeis sp. and Raphia sp. (pH less than 5 that contain Saccharomyces cerevisiae and other yeast species identified by sequencing the D1/D2 domain of the 26S rRNA genes were used. Evaluation was carried out using high performance liquid chromatography (HPLC, atmospheric pressure chemical ionization-mass spectrometry (APCI-MS and gas chromatography-mass spectrometry (GC-MS. Samples contained 5.9–11.6, 2.2–7.1, 4.2–43.0, and 4.4–43.7 g/L of acetic acid, lactic acid, ethanol and glucose, respectively. Ethyl acetate, acetic acid and ethanol had the most aroma intensity and an assessment on the yeast metabolome database showed that 23 out of the 31 products detected were present in the database. Addition of Sacoglottis gabonensis supplement to a Raphia sp. palm wine sample showed lower abundance of acetoin, acetic acid, methylpropyl lactate, ethyl octanoate and propyl acetate. We conclude that Sacoglottis gabonensis supplementation could suppress specific compounds during palm wine fermentation. This knowledge could be applied in new product development for the beverage.

  7. Genome-Wide Study of the Adaptation of Saccharomyces cerevisiae to the Early Stages of Wine Fermentation

    OpenAIRE

    Novo, Maite; Mangado, Ana; Quir?s, Manuel; Morales, Pilar; Salvad?, Zoel; Gonzalez, Ramon

    2013-01-01

    This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions ...

  8. Occurrence of lactic Acid bacteria during the different stages of vinification and conservation of wines.

    Science.gov (United States)

    Lafon-Lafourcade, S; Carre, E; Ribéreau-Gayon, P

    1983-10-01

    We showed that the growth of lactic acid bacteria during alcoholic fermentation depends on the composition of the must. We illustrated how the addition of sulfur dioxide to the must before fermentation and the temperature of storage both affect the growth of these bacteria in the wine. Whereas species of Lactobacillus and Leuconostoc mesenteroides were isolated from grapes and must, Leuconostoc oenos was the only species isolated after alcoholic fermentation. This organism was responsible for the malolactic fermentation. Isolates of this species varied in their ability to ferment pentoses and hexoses. The survival of Leuconostoc oenos in wines after malolactic fermentation depended on wine pH, alcohol concentration, SO(2) concentration, and temperature of storage.

  9. The effect of alcohol and red wine consumption on clinical and MRI outcomes in multiple sclerosis.

    Science.gov (United States)

    Diaz-Cruz, Camilo; Chua, Alicia S; Malik, Muhammad Taimur; Kaplan, Tamara; Glanz, Bonnie I; Egorova, Svetlana; Guttmann, Charles R G; Bakshi, Rohit; Weiner, Howard L; Healy, Brian C; Chitnis, Tanuja

    2017-10-01

    Alcohol and in particular red wine have both immunomodulatory and neuroprotective properties, and may exert an effect on the disease course of multiple sclerosis (MS). To assess the association between alcohol and red wine consumption and MS course. MS patients enrolled in the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB) who completed a self-administered questionnaire about their past year drinking habits at a single time point were included in the study. Alcohol and red wine consumption were measured as servings/week. The primary outcome was the Expanded Disability Status Scale (EDSS) at the time of the questionnaire. Secondary clinical outcomes were the Multiple Sclerosis Severity Score (MSSS) and number of relapses in the year before the questionnaire. Secondary MRI outcomes included brain parenchymal fraction and T2 hyperintense lesion volume (T2LV). Appropriate regression models were used to test the association of alcohol and red wine intake on clinical and MRI outcomes. All analyses were controlled for sex, age, body mass index, disease phenotype (relapsing vs. progressive), the proportion of time on disease modifying therapy during the previous year, smoking exposure, and disease duration. In the models for the MRI outcomes, analyses were also adjusted for acquisition protocol. 923 patients (74% females, mean age 47 ± 11 years, mean disease duration 14 ± 9 years) were included in the analysis. Compared to abstainers, patients drinking more than 4 drinks per week had a higher likelihood of a lower EDSS score (OR, 0.41; p = 0.0001) and lower MSSS (mean difference, - 1.753; p = 0.002) at the time of the questionnaire. Similarly, patients drinking more than 3 glasses of red wine per week had greater odds of a lower EDSS (OR, 0.49; p = 0.0005) and lower MSSS (mean difference, - 0.705; p = 0.0007) compared to nondrinkers. However, a faster increase in T2LV was observed in patients consuming 1

  10. Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations.

    Science.gov (United States)

    Belda, Ignacio; Ruiz, Javier; Beisert, Beata; Navascués, Eva; Marquina, Domingo; Calderón, Fernando; Rauhut, Doris; Benito, Santiago; Santos, Antonio

    2017-09-18

    In last years, non-Saccharomyces yeasts have emerged as innovative tools to improve wine quality, being able to modify the concentration of sensory-impact compounds. Among them, varietal thiols released by yeasts, play a key role in the distinctive aroma of certain white wines. In this context, Torulaspora delbrueckii is in the spotlight because of its positive contribution to several wine quality parameters. This work studies the physiological properties of an industrial T. delbrueckii strain, for the production of wines with increased thiol concentrations. IRC7 gene, previously described in S. cerevisiae, has been identified in T. delbrueckii, establishing the genetics basis of its thiol-releasing capability. Fermentations involving T. delbrueckii showed improvements on several parameters (such as glycerol content, ethanol index, and major volatile compounds composition), but especially on thiols release. These results confirm the potential of T. delbrueckii on wine improvement, describing new metabolic features regarding the release of cysteinylated aroma precursors. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The alcohol industry lobby and Hong Kong’s zero wine and beer tax policy

    OpenAIRE

    Yoon, Sungwon; Lam, Tai-Hing

    2012-01-01

    Abstract Background Whereas taxation on alcohol is becoming an increasingly common practice in many countries as part of overall public health measures, the Hong Kong Special Administrative Region Government is bucking the trend and lowered its duties on wine and beer by 50 percent in 2007. In 2008, Hong Kong removed all duties on alcohol except for spirits. The aim of this paper is to examine the case of Hong Kong with its history of changes in alcohol taxation to explore the factors that ha...

  12. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation.

    Science.gov (United States)

    Giovani, Giovanna; Rosi, Iolanda; Bertuccioli, Mario

    2012-11-15

    In order to improve knowledge about the oenological characteristics of non-Saccharomyces yeast strains, and to reconsider their contribution to wine quality, we studied the release of polysaccharides by 13 non-Saccharomyces strains of different species (three wine yeasts, six grape yeasts, and three spoilage yeasts) during alcoholic fermentation in synthetic must. Three Saccharomyces cerevisiae strains were included for comparison. All of the non-Saccharomyces strains released polysaccharides into fermentation medium; the amount released depended on the yeast species, the number of cells formed and their physiological conditions. Normalizing the quantity of macromolecules released to the cell biomass revealed that most non-Saccharomyces strains produced a greater quantity of polysaccharides compared to S. cerevisiae strains after 7 and 14days of fermentation. This capacity was particularly expressed in the studied wine spoilage yeasts (Saccharomycodes ludwigii, Zygosaccharomyces bailii, and Brettanomyces bruxellensis). Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 93% for S'codes. ludwigii to 73-74% for Pichia anomala and Starmerella bombicola. Protein contents varied from 9% for P. anomala to 29% for Z. bailii. These compositions were very similar to those of the S. cerevisiae strains, and to the chemical composition of the cell wall mannoproteins of different yeast species. The presence of galactose, in addition to mannose and glucose, in the exocellular polysaccharides released by Schizosaccharomyces pombe, confirmed the parietal nature of the polysaccharides released by non-Saccharomyces yeasts; only this species has a galactomannan located in the outer layer of the cell wall. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Proteomic and metabolomic study of wine yeasts in free and immobilized formats, subjected to different stress conditions

    OpenAIRE

    Moreno-García, Jaime

    2017-01-01

    The aroma of wine is the first sensory perception that affects its quality. The knowledge acquired to date ensures that the unique aroma of a specific wine is the result of the sensation that in our sense of smell cause the molecules of more than 800 volatile compounds present in the hydroalcoholic solution that is the wine.These compounds come from the grapes, the prefermentative treatments, the alcoholic fermentation and the aging or preservation of the wine. It is a...

  14. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  15. Why, when, and how did yeast evolve alcoholic fermentation?

    Science.gov (United States)

    Dashko, Sofia; Zhou, Nerve; Compagno, Concetta; Piškur, Jure

    2014-09-01

    The origin of modern fruits brought to microbial communities an abundant source of rich food based on simple sugars. Yeasts, especially Saccharomyces cerevisiae, usually become the predominant group in these niches. One of the most prominent and unique features and likely a winning trait of these yeasts is their ability to rapidly convert sugars to ethanol at both anaerobic and aerobic conditions. Why, when, and how did yeasts remodel their carbon metabolism to be able to accumulate ethanol under aerobic conditions and at the expense of decreasing biomass production? We hereby review the recent data on the carbon metabolism in Saccharomycetaceae species and attempt to reconstruct the ancient environment, which could promote the evolution of alcoholic fermentation. We speculate that the first step toward the so-called fermentative lifestyle was the exploration of anaerobic niches resulting in an increased metabolic capacity to degrade sugar to ethanol. The strengthened glycolytic flow had in parallel a beneficial effect on the microbial competition outcome and later evolved as a "new" tool promoting the yeast competition ability under aerobic conditions. The basic aerobic alcoholic fermentation ability was subsequently "upgraded" in several lineages by evolving additional regulatory steps, such as glucose repression in the S. cerevisiae clade, to achieve a more precise metabolic control. © 2014 The Authors. FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  16. Optimized determination of calcium in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry.

    Science.gov (United States)

    Olalla, Manuel; González, Maria Cruz; Cabrera, Carmen; Gimenez, Rafael; López, Maria Carmen

    2002-01-01

    This paper describes a study of the different methods of sample preparation for the determination of calcium in grape juice, wines, and other alcoholic beverages by flame atomic absorption spectrometry; results are also reported for the practical application of these methods to the analysis of commercial samples produced in Spain. The methods tested included dealcoholization, dry mineralization, and wet mineralization with heating by using different acids and/or mixtures of acids. The sensitivity, detection limit, accuracy, precision, and selectiviy of each method were established. Such research is necessary because of the better analytical indexes obtained after acid digestion of the sample, as recommended by the European Union, which advocates the direct method. In addition, although high-temperature mineralization with an HNO3-HCIO4 mixture gave the best analytical results, mineralization with nitric acid at 80 degrees C for 15 min gave the most satisfactory results in all cases, including those for wines with high levels of sugar and beverages with high alcoholic content. The results for table wines subjected to the latter treatment had an accuracy of 98.70-99.90%, a relative standard deviation of 2.46%, a detection limit of 19.0 microg/L, and a determination limit of 31.7 microg/L. The method was found to be sufficiently sensitive and selective. It was applied to the determination of Ca in grape juice, different types of wines, and beverages with high alcoholic content, all of which are produced and widely consumed in Spain. The values obtained for Ca were 90.00 +/- 20.40 mg/L in the grape juices, 82.30 +/- 23.80 mg/L in the white wines, 85.00 +/- 30.25 mg/L in the sweet wines, 84.92 +/- 23.11 mg/L in the red wines, 85.75 +/- 27.65 mg/L in the rosé wines, 9.51 +/- 6.65 mg/L in the brandies, 11.53 +/- 6.55 mg/L in the gin, 7.3 +/- 6.32 mg/L in the pacharán, and 8.41 +/- 4.85 mg/L in the anisettes. The method is therefore useful for routine analysis in the

  17. Alcohol intake, wine consumption and the development of depression: the PREDIMED study.

    Science.gov (United States)

    Gea, Alfredo; Beunza, Juan J; Estruch, Ramón; Sánchez-Villegas, Almudena; Salas-Salvadó, Jordi; Buil-Cosiales, Pilar; Gómez-Gracia, Enrique; Covas, María-Isabel; Corella, Dolores; Fiol, Miquel; Arós, Fernando; Lapetra, José; Lamuela-Raventós, Rosa-María; Wärnberg, Julia; Pintó, Xavier; Serra-Majem, Lluis; Martínez-González, Miguel A

    2013-08-30

    Alcoholic beverages are widely consumed. Depression, the most prevalent mental disorder worldwide, has been related to alcohol intake. We aimed to prospectively assess the association between alcohol intake and incident depression using repeated measurements of alcohol intake. We followed-up 5,505 high-risk men and women (55 to 80 y) of the PREDIMED Trial for up to seven years. Participants were initially free of depression or a history of depression, and did not have any history of alcohol-related problems. A 137-item validated food frequency questionnaire administered by a dietician was repeated annually to assess alcohol intake. Participants were classified as incident cases of depression when they reported a new clinical diagnosis of depression, and/or initiated the use of antidepressant drugs. Cox regression analyses were fitted over 23,655 person-years. Moderate alcohol intake within the range of 5 to 15 g/day was significantly associated with lower risk of incident depression (hazard ratio (HR) and 95% confidence interval (95% CI) = 0.72 (0.53 to 0.98) versus abstainers). Specifically, wine consumption in the range of two to seven drinks/week was significantly associated with lower rates of depression (HR (95% CI) = 0.68 (0.47 to 0.98)). Moderate consumption of wine may reduce the incidence of depression, while heavy drinkers seem to be at higher risk.

  18. Degradation of Aflatoxin B1 during the Fermentation of Alcoholic Beverages

    OpenAIRE

    Naoki Mochizuki; Yasushi Nagatomi; Atsuo Uyama; Tomonori Inoue

    2013-01-01

    Aflatoxin B1 (AFB1) is a contaminant of grain and fruit and has one of the highest levels of carcinogenicity of any natural toxin. AFB1 and the fungi that produce it can also contaminate the raw materials used for beer and wine manufacture, such as corn and grapes. Therefore, brewers must ensure strict monitoring to reduce the risk of contamination. In this study, the fate of AFB1 during the fermentation process was investigated using laboratory-scale bottom and top beer fermentation and wine...

  19. Software sensor for primary metabolite production case of alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G.; Dahhou, B.; Queinnec, I. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Goma, G. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1995-12-31

    This paper investigate the application of an observer for state and parameter estimation to batch, continuous and fed batch fermentations for alcohol production taken as model for a primary metabolite production. This observer is provided to palliate the lack of suitable sensors for on-line biomass and ethanol concentrations measurements and to estimate the time varying specific growth rate. Estimates are obtained from an interlaced structure filter based on a `modified extended Kalman filter` by using on-line measurements of carbon dioxide outflow rate and substrate concentration. The filter algorithm was tested during batch, continuous and fed batch fermentation processes. The filter behaviour observed in the experiments gives good results with an agreement theory/practice. (authors) 18 refs.

  20. Quality and Composition of Airén Wines Fermented by Sequential Inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ángel Benito

    2016-01-01

    Full Text Available This study evaluates the influence of Lachancea thermotolerans on low-acidity Airén grape must from the south of Spain. For this purpose, combined fermentations with Lachancea thermotolerans and Saccharomyces cerevisiae were compared to a single fermentation by S. cerevisiae. Results of all developed analyses showed significant differences in several parameters including acidity, population growth kinetics, concentration of amino acids, volatile and non-volatile compounds, and sensorial parameters. The Airén wine quality increased mainly due to the acidification by L. thermotolerans. The acidification process caused a lactic acid increment of 3.18 g/L and a reduction of 0.22 in pH compared to the control fermentation, performed by S. cerevisiae.

  1. Evolution of acetic Acid bacteria during fermentation and storage of wine.

    Science.gov (United States)

    Joyeux, A; Lafon-Lafourcade, S; Ribéreau-Gayon, P

    1984-07-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH favored the development and metabolism of these species.

  2. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.

    Science.gov (United States)

    Wu, Dianhui; Li, Xiaomin; Lu, Jian; Chen, Jian; Zhang, Liang; Xie, Guangfa

    2016-01-01

    Urea and ethanol are the main precursors of ethyl carbamate (EC) in Chinese rice wine. During fermentation, urea is generated from arginine by arginase in Saccharomyces cerevisiae, and subsequently cleaved by urea amidolyase or directly transported out of the cell into the fermentation liquor, where it reacts with ethanol to form EC. To reduce the amount of EC in Chinese rice wine, we metabolically engineered two yeast strains, N85(DUR1,2) and N85(DUR1,2)-c, from the wild-type Chinese rice wine yeast strain N85. Both new strains were capable of constitutively expressing DUR1,2 (encodes urea amidolyase) and thus enhancing urea degradation. The use of N85(DUR1,2) and N85(DUR1,2)-c reduced the concentration of EC in Chinese rice wine fermented on a small-scale by 49.1% and 55.3%, respectively, relative to fermentation with the parental strain. All of the engineered strains showed good genetic stability and minimized the production of urea during fermentation, with no exogenous genes introduced during genetic manipulation, and were therefore suitable for commercialization to increase the safety of Chinese rice wine. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. 27 CFR 24.215 - Wine or wine products not for beverage use.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wine or wine products not... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.215 Wine or wine products not for beverage use. (a) General. Wine, or wine products made from wine...

  4. AUTOMATION OF CHAMPAGNE WINES PROCESS IN SPARKLING WINE PRESSURE TANK

    Directory of Open Access Journals (Sweden)

    E. V. Lukyanchuk

    2016-08-01

    Full Text Available The wine industry is now successfully solved the problem for the implementation of automation receiving points of grapes, crushing and pressing departments installation continuous fermentation work, blend tanks, production lines ordinary Madeira continuously working plants for ethyl alcohol installations champagne wine in continuous flow, etc. With the development of automation of technological progress productivity winemaking process develops in the following areas: organization of complex avtomatization sites grape processing with bulk transportation of the latter; improving the quality and durability of wines by the processing of a wide applying wine cold and heat, as well as technical and microbiological control most powerful automation equipment; the introduction of automated production processes of continuous technical champagne, sherry wine and cognac alcohol madery; the use of complex automation auxiliary production sites (boilers, air conditioners, refrigeration unitsand other.; complex avtomatization creation of enterprises, and sites manufactory bottling wines. In the wine industry developed more sophisticated schemes of automation and devices that enable the transition to integrated production automation, will create, are indicative automated enterprise serving for laboratories to study of the main problems of automation of production processes of winemaking.

  5. Absorption and peak blood alcohol concentration after drinking beer, wine, or spirits.

    Science.gov (United States)

    Mitchell, Mack C; Teigen, Erin L; Ramchandani, Vijay A

    2014-05-01

    Both the amount and the rate of absorption of ethanol (EtOH) from alcoholic beverages are key determinants of the peak blood alcohol concentration (BAC) and exposure of organs other than gut and liver. Previous studies suggest EtOH is absorbed more rapidly in the fasting than in the postprandial state. The concentration of EtOH and the type of beverage may determine gastric emptying/absorption of EtOH. The pharmacokinetics of EtOH were measured in 15 healthy men after consumption of 0.5 g of EtOH/kg body weight. During this 3-session crossover study, subjects consumed in separate sessions, beer (5.1% v/v), white wine (12.5% v/v), or vodka/tonic (20% v/v) over 20 minutes following an overnight fast. BAC was measured by gas chromatography at multiple points after consumption. Peak BAC (Cmax ) was significantly higher (p vodka/tonic (77.4 ± 17.0 mg/dl) than after wine (61.7 ± 10.8 mg/dl) or beer (50.3 ± 9.8 mg/dl) and was significantly higher (p vodka/tonic (36 ± 10 minutes) compared to wine (54 ± 14 minutes) or beer (62 ± 23 minutes). Six subjects exceeded a Cmax of 80 mg/dl after vodka/tonic, but none exceeded this limit after beer or wine. The area under the concentration-time curve (AUC) was significantly greater after drinking vodka/tonic (p vodka/tonic than beer or wine after fasting. A binge pattern is significantly more likely to result in BAC above 80 mg/dl after drinking vodka/tonic than beer or wine. Men drinking on an empty stomach should know BAC will vary depending on beverage type and the rate and amount of EtOH. © 2014 The Authors. Alcoholism: Clinical and Experimental Research published by Wiley Periodicals, Inc. on behalf of Research Society on Alcoholism.

  6. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters

    NARCIS (Netherlands)

    Dung, N.T.P.; Rombouts, F.M.; Nout, M.J.R.

    2006-01-01

    The role of starch-degrading mycelial fungi, and the alcohol production and ethanol tolerance of the yeasts isolated from selected Vietnamese traditional rice wine starters were examined, and optimum conditions for these essential steps in rice wine fermentation were determined. Of pure isolates

  7. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    Science.gov (United States)

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  8. Profile of the alcohols produced in fermentations with malt contaminated with trichothecenes

    Directory of Open Access Journals (Sweden)

    Reinehr Christian Oliveira

    2003-01-01

    Full Text Available In order to study the influence of mycotoxins on the production of alcohols, a fermentative process on a laboratorial scale was simulated. Malt was contaminated with deoxynivalenol and T-2 in different ratios (up to 500 ppb, according to a 3² factorial design, and the alcohols obtained after the fermentation were determined through gas chromatography. The results showed that trichothecenes influenced the profile of the alcohols produced by Saccharomyces cerevisiae during the fermentative process of malt, especially the profile of methyl and isoamyl alcohols.

  9. Extracellular Phytase Production by the Wine Yeast S. cerevisiae (Finarome Strain) during Submerged Fermentation.

    Science.gov (United States)

    Kłosowski, Grzegorz; Mikulski, Dawid; Jankowiak, Oliwia

    2018-04-08

    One of the key steps in the production of phytases of microbial origin is selection of culture parameters, followed by isolation of the enzyme and evaluation of its catalytic activity. It was found that conditions for S. cerevisiae yeast culture, strain Finarome, giving the reduction in phytic acid concentration of more than 98% within 24 h of incubation were as follows: pH 5.5, 32 °C, continuous stirring at 80 rpm, the use of mannose as a carbon source and aspartic acid as a source of nitrogen. The highest catalytic activity of the isolated phytase was observed at 37 °C, pH 4.0 and using phytate as substrate at concentration of 5.0 mM. The presence of ethanol in the medium at a concentration of 12% v / v reduces the catalytic activity to above 60%. Properties of phytase derived from S. cerevisiae yeast culture, strain Finarome, indicate the possibility of its application in the form of a cell's free crude protein isolate for the hydrolysis of phytic acid to improve the efficiency of alcoholic fermentation processes. Our results also suggest a possibility to use the strain under study to obtain a fusant derived with specialized distillery strains, capable of carrying out a highly efficient fermentation process combined with the utilization of phytates.

  10. Impact of sequential co-culture fermentations on flavour characters of Solaris wines

    DEFF Research Database (Denmark)

    Liu, Jing; Arneborg, Nils; Toldam-Andersen, Torben Bo

    2017-01-01

    the cool-climate grape cultivar Solaris in Denmark. The volatile and non-volatile compounds as well as the sensory properties of wines were evaluated. Solaris wines with Hanseniaspora uvarum sequentially inoculated with S. cerevisiae produced a larger amount of glycerol as well as heptyl acetate and 2....... These wines were characterised by several floral and fruity attributes. The Metschnikowia strains turned out to be promising in winemaking from Solaris grapes....

  11. Pre-fermentative cold maceration in presence of non-Saccharomyces strains: Evolution of chromatic characteristics of Sangiovese red wine elaborated by sequential inoculation.

    Science.gov (United States)

    Benucci, Ilaria; Cerreti, Martina; Liburdi, Katia; Nardi, Tiziana; Vagnoli, Paola; Ortiz-Julien, Anne; Esti, Marco

    2018-05-01

    Two different Metschnikowia strains (M. pulcherrima MP 346 or M. fructicola MF 98-3) were applied for the first time, during pre-fermentative cold maceration (PCM) in order to enhance the properties and stability of Sangiovese wine color. During the 2014 and 2015 vintages a total of eight wines were produced with 24 h of cold maceration (PCM 24 h) or 72 h (PCM 72 h), respectively. PCM was carried out in presence of MP 346 or MF 98-3 or pectic enzyme (Cuvée Rouge). The sequential inoculation of S. cerevisiae strain was carried out at the end of PCM. After 12 months in the bottle, the MP 346 and MF 98-3 wines contained much higher levels of total flavonoids than the Control sample for both vintages and regardless PCM duration. Moreover, in both vintages only MF 98-3 showed a higher color intensity than the Control sample after 12 months in the bottle. However, neither PCM duration nor the microbial/enzymatic treatment increased the level of anthocyanins at draining off. Both wines produced by the pre-fermentative inoculum with Metschnikowia strains (MP 346 and MF 98-3) retained their red hue, regardless the duration of pre-fermentative and fermentative macerations, while the Control wines were characterized by faster rates of color loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. 27 CFR 24.65 - Claims for wine or spirits lost or destroyed in bond.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Claims for wine or spirits lost or destroyed in bond. 24.65 Section 24.65 Alcohol, Tobacco Products and Firearms ALCOHOL AND... fermentation in bottles, by artificial carbonation, and by bulk processing; and (3) Claims covering losses of...

  13. The quantitative analysis of thiamin and riboflavin and their respective vitamers in fermented alcoholic beverages.

    Science.gov (United States)

    Hucker, Barry; Wakeling, Lara; Vriesekoop, Frank

    2011-12-14

    This research aimed to develop a simple and effective method for analyzing thiamin (B(1)), riboflavin (B(2)) and their respective vitamers by high performance liquid chromatography (HPLC) in fermented alcoholic beverages. The method developed here employs a phosphate buffer/methanol gradient elution on a single reverse phase column, coupled with independent fluorescent detection regimes. It also employs a precolumn derivatization to convert thiamin to thiochrome via an alkaline potassium ferricyanide solution. The method described here allowed a spike recovery of better than 97%, with a typical linear detection range (R(2) ≥ 0.9997) between ≤ 5 and ≥ 500 μg/L for all vitamers studied. Lager style beers were found to contain significantly (p porters, 104.4 μg/L; wheat beers, 130.7 μg/L), which may be due to the raw material and extensive processing that occurs for this style. There was no statistical difference (p = 0.608) between the riboflavin content of each beer style. Furthermore, wines and ciders contain less thiamin and riboflavin than beer, which is also likely to be due to the base materials used and the differences in processing steps to produce these beverages.

  14. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions.

    Science.gov (United States)

    Albergaria, Helena; Arneborg, Nils

    2016-03-01

    Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and contribute to the sensory properties of end-products, the yeast S. cerevisiae invariably dominates the final stages of fermentation. The ability of S. cerevisiae to outcompete other microbial species during alcoholic fermentation processes, such as winemaking, has traditionally been ascribed to its high fermentative power and capacity to withstand the harsh environmental conditions, i.e. high levels of ethanol and organic acids, low pH values, scarce oxygen availability and depletion of certain nutrients. However, in recent years, several studies have raised evidence that S. cerevisiae, beyond its remarkable fitness for alcoholic fermentation, also uses defensive strategies mediated by different mechanisms, such as cell-to-cell contact and secretion of antimicrobial peptides, to combat other microorganisms. In this paper, we review the main physiological features underlying the special aptitude of S. cerevisiae for alcoholic fermentation and discuss the role of microbial interactions in its dominance during alcoholic fermentation, as well as its relevance for winemaking.

  15. Wine, alcohol and atherosclerosis: clinical evidences and mechanisms

    OpenAIRE

    Luz, P.L. da; Coimbra, S.R.

    2004-01-01

    Atherosclerosis is a chronic inflammatory disease which may cause obstructions of the coronary, cerebral and peripheral arteries. It is typically multifactorial, most often dependent on risk factors such as hypercholesterolemia, diabetes, smoking, hypertension, sedentarism, and obesity. It is the single main cause of death in most developed countries due to myocardial infarction, angina, sudden death, and heart failure. Several epidemiological studies suggest that moderate alcohol intake, esp...

  16. Exposure assessment and risk characterisation of ethyl carbamate from Korean traditional fermented rice wine, Takju and Yakju.

    Science.gov (United States)

    Lee, Joon-Goo; Park, Sung-Kug; Yoon, Hae-Jung; Kang, Dong-Hyun; Kim, Meehye

    2016-01-01

    Ethyl carbamate is one of the most hazardous chemicals naturally occurring in food, and is present in alcoholic beverages. Korean traditional rice wine, Takju and Yakju, is frequently consumed in Korea, but there have been no studies characterising the risks of ethyl carbamate in these products. In order to assess and characterise the exposure risk of ethyl carbamate in Korean traditional rice wines, ethyl carbamate was investigated by means of GC-MS. The analytical methods were optimised and validated through determining linearity, detection limit, quantification limit, recovery and precision. A total of 283 traditional Korean rice wines, including 175 Takju and 108 Yakju samples, were analysed. Exposure assessment was performed by factoring in ethyl carbamate content, daily consumption and body weight. Daily exposures of ethyl carbamate were estimated for adults in four age groups, and risks of ethyl carbamate were characterised by the margin of exposure, which is more than 10 000. Based on this study, the risks of ethyl carbamate in Korean traditional rice wine were shown to be of low concern.

  17. Simulation of an alcoholic fermentation, using honey like substrate

    International Nuclear Information System (INIS)

    Gomez, Jose Angel; Castano, Hader Ivan; Arias Mario

    1997-01-01

    The article describes the implementation of a mathematical model for the simulation of an alcoholic fermentation using honey like substrate. To carry out it, the kinetic data were adjusted to equations of curves with which were calculated the derivates of the concentrations in the time, with the objective of calculating the specific speeds of growth and product formation; once fact this, it proceeded to evaluate the adjustment of the different inhibition models, so much of substrate as of product on the kinetics of the process, finding that the pattern that more it was adjusted it was the exponential, also working lineal, parabolic model, etc. with the equations for μ (specific speed of growth of biomass) and v (specific speed of product formation) it proceeded to carry out the balances of mass, with the purpose of outlining the pattern of differential equations of first order and with conditions given initials. This system was solved for numeric methods using the Euler algorithm modified for that which was required to elaborate a computer program and this way, the behavior of the feigned fermentation, for its later confrontation with the experimental data

  18. The alcohol industry lobby and Hong Kong’s zero wine and beer tax policy

    Science.gov (United States)

    2012-01-01

    Background Whereas taxation on alcohol is becoming an increasingly common practice in many countries as part of overall public health measures, the Hong Kong Special Administrative Region Government is bucking the trend and lowered its duties on wine and beer by 50 percent in 2007. In 2008, Hong Kong removed all duties on alcohol except for spirits. The aim of this paper is to examine the case of Hong Kong with its history of changes in alcohol taxation to explore the factors that have driven such an unprecedented policy evolution. Methods The research is based on an analysis of primary documents. Searches of official government documents, alcohol-related industry materials and other media reports on alcohol taxation for the period from 2000 to 2008 were systematically carried out using key terms such as “alcohol tax” and “alcohol industry”. Relevant documents (97) were indexed by date and topic to undertake a chronological and thematic analysis using Nvivo8 software. Results Our analysis demonstrates that whereas the city’s changing financial circumstances and the Hong Kong Special Administrative Region Government’s strong propensity towards economic liberalism had, in part, contributed to such dramatic transformation, the alcohol industry’s lobbying tactics and influence were clearly the main drivers of the policy decision. The alcohol industry’s lobbying tactics were two-fold. The first was to forge a coalition encompassing a range of catering and trade industries related to alcohol as well as industry-friendly lawmakers so that these like-minded actors could find common ground in pursuing changes to the taxation policy. The second was to deliberately promote a blend of ideas to garner support from the general public and to influence the perception of key policy makers. Conclusions Our findings suggest that the success of aggressive industry lobbying coupled with the absence of robust public health advocacy was the main driving force behind the

  19. The alcohol industry lobby and Hong Kong’s zero wine and beer tax policy

    Directory of Open Access Journals (Sweden)

    Yoon Sungwon

    2012-08-01

    Full Text Available Abstract Background Whereas taxation on alcohol is becoming an increasingly common practice in many countries as part of overall public health measures, the Hong Kong Special Administrative Region Government is bucking the trend and lowered its duties on wine and beer by 50 percent in 2007. In 2008, Hong Kong removed all duties on alcohol except for spirits. The aim of this paper is to examine the case of Hong Kong with its history of changes in alcohol taxation to explore the factors that have driven such an unprecedented policy evolution. Methods The research is based on an analysis of primary documents. Searches of official government documents, alcohol-related industry materials and other media reports on alcohol taxation for the period from 2000 to 2008 were systematically carried out using key terms such as “alcohol tax” and “alcohol industry”. Relevant documents (97 were indexed by date and topic to undertake a chronological and thematic analysis using Nvivo8 software. Results Our analysis demonstrates that whereas the city’s changing financial circumstances and the Hong Kong Special Administrative Region Government’s strong propensity towards economic liberalism had, in part, contributed to such dramatic transformation, the alcohol industry’s lobbying tactics and influence were clearly the main drivers of the policy decision. The alcohol industry’s lobbying tactics were two-fold. The first was to forge a coalition encompassing a range of catering and trade industries related to alcohol as well as industry-friendly lawmakers so that these like-minded actors could find common ground in pursuing changes to the taxation policy. The second was to deliberately promote a blend of ideas to garner support from the general public and to influence the perception of key policy makers. Conclusions Our findings suggest that the success of aggressive industry lobbying coupled with the absence of robust public health advocacy was the

  20. The alcohol industry lobby and Hong Kong's zero wine and beer tax policy.

    Science.gov (United States)

    Yoon, Sungwon; Lam, Tai-Hing

    2012-08-30

    Whereas taxation on alcohol is becoming an increasingly common practice in many countries as part of overall public health measures, the Hong Kong Special Administrative Region Government is bucking the trend and lowered its duties on wine and beer by 50 percent in 2007. In 2008, Hong Kong removed all duties on alcohol except for spirits. The aim of this paper is to examine the case of Hong Kong with its history of changes in alcohol taxation to explore the factors that have driven such an unprecedented policy evolution. The research is based on an analysis of primary documents. Searches of official government documents, alcohol-related industry materials and other media reports on alcohol taxation for the period from 2000 to 2008 were systematically carried out using key terms such as "alcohol tax" and "alcohol industry". Relevant documents (97) were indexed by date and topic to undertake a chronological and thematic analysis using Nvivo8 software. Our analysis demonstrates that whereas the city's changing financial circumstances and the Hong Kong Special Administrative Region Government's strong propensity towards economic liberalism had, in part, contributed to such dramatic transformation, the alcohol industry's lobbying tactics and influence were clearly the main drivers of the policy decision. The alcohol industry's lobbying tactics were two-fold. The first was to forge a coalition encompassing a range of catering and trade industries related to alcohol as well as industry-friendly lawmakers so that these like-minded actors could find common ground in pursuing changes to the taxation policy. The second was to deliberately promote a blend of ideas to garner support from the general public and to influence the perception of key policy makers. Our findings suggest that the success of aggressive industry lobbying coupled with the absence of robust public health advocacy was the main driving force behind the unparalleled abolition of wine and beer duties in Hong

  1. Effect of addition of commercial grape seed tannins on phenolic composition, chromatic characteristics, and antioxidant activity of red wine.

    Science.gov (United States)

    Neves, Ana C; Spranger, Maria I; Zhao, Yuqing; Leandro, Maria C; Sun, Baoshan

    2010-11-24

    The effect of addition of grape seed tannins on the phenolic composition, chromatic characteristics, and antioxidant activity of red wine was studied. Two highly pure commercial grape seed tannins (GSE100 and GSE300) were selected, and their phenolic compositions were determined. Two types of red wines were made with Castelão/Tinta Miúda (3/2, w/w) grapevine varieties by fermentation on skin using two different maceration times, which correspond to the wines rich and poor in polyphenols, respectively. Each of these wines was used for experimentation with the addition of GSE100 and GSE300 before and immediately after alcoholic fermentation. Phenolic composition, chromatic characteristics, and antioxidant activity of the finished red wines were analyzed by HPLC-DAD, CIElab 76 convention, and DPPH radical test, respectively. The results showed that the addition of grape seed tannins had obvious effects of increasing color intensity and antioxidant activity only in the wines poor in polyphenols. Although GSE300 contained much higher amounts of di- and trimer procyanidins and a lower amount of polymeric proanthocyanidins, it provided effects of increasing the color intensity and antioxidant activity of the wines poor in polyphenols similar to those of GSE100. Furthermore, GSE100 released more gallic acid to wines than GSE300, although no gallic acid was detected in GSE100. Tannins added after alcoholic fermentation had a better effect on phenolic composition of red wine than tannins added before alcoholic fermentation.

  2. Anesthetic management for magnetic resonance imaging in a pediatric patient addicted to palm wine: An alcoholic beverage

    Science.gov (United States)

    Yadav, Monu; Ram, A. Anand; Srikanth, I.; Gopinath, Ramachandran

    2016-01-01

    The incidence of drug and alcohol abuse is on rise despite increasing awareness and education about health hazards related to it. Anesthesiologist may come across patients with alcohol abuse in elective as well as emergency situations. We report a rare case of excessive requirement of anesthetics in a pediatric patient of only six years for MRI, addicted to palm wine, an alcoholic beverage created from the sap of various species of palm tree. PMID:26957706

  3. Effect of aromatic precursor addition to wine fermentations carried out with different Saccharomyces species and their hybrids.

    Science.gov (United States)

    Gamero, Amparo; Hernández-Orte, Purificación; Querol, Amparo; Ferreira, Vicente

    2011-05-14

    This work explores the ability of different yeast strains from different species of the genus Saccharomyces (S. cerevisiae, S. uvarum and S. kudriavzevii) and hybrids between these species to release or form varietal aroma compounds from fractions of grape odourless precursors. The de novo synthesis by the yeasts of some of the varietal aroma compounds was also evaluated. The study has shown that de novo synthesis affects some lipid derivatives, shikimic derivatives and terpenes in all species and hybrids, with some remarkable differences amongst them. The release or formation of aroma compounds from precursors was found to be strongly linked to the yeast or hybrid used, and the triple hybrid S. cerevisiae × S. bayanus × S. kudriavzevii in particular and secondarily the hybrid S. cerevisiae × S. bayanus were highly efficient in the production of most varietal aroma compounds, including γ-lactones, benzenoids, volatile phenols, vanillin derivatives and terpenols. The presence of precursors in the fermenting media caused a surprising levelling effect on the fermentative aroma composition. Altogether, these results suggest that it is possible to modulate wine aroma by employing different yeast species in order to create new wines with different aromatic notes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. What Is Alcohol? And Why Do People Drink? Pamphlet Series.

    Science.gov (United States)

    Milgram, Gail Gleason

    Alcoholic beverages have been used throughout American history but their use has always been controversial. Ethyl alcohol is one of the few alcohols man is able to drink, although it is never full strength. The fermentation process is used to manufacture alcoholic beverages. Wines are made from a variety of fruits. Beer is made from yeast and a…

  5. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.

  6. Combine Use of Selected Schizosaccharomyces pombe andLachancea thermotolerans Yeast Strains as an Alternative to theTraditional Malolactic Fermentation in Red Wine Production

    Directory of Open Access Journals (Sweden)

    Ángel Benito

    2015-05-01

    Full Text Available Most red wines commercialized in the market use the malolactic fermentationprocess in order to ensure stability from a microbiological point of view. In this secondfermentation, malic acid is converted into L-lactic acid under controlled setups. Howeverthis process is not free from possible collateral effects that on some occasions produceoff-flavors, wine quality loss and human health problems. In warm viticulture regions suchas the south of Spain, the risk of suffering a deviation during the malolactic fermentationprocess increases due to the high must pH. This contributes to produce wines with highvolatile acidity and biogenic amine values. This manuscript develops a new red winemakingmethodology that consists of combining the use of two non-Saccharomyces yeast strains asan alternative to the traditional malolactic fermentation. In this method, malic acid is totallyconsumed by Schizosaccharomyces pombe, thus achieving the microbiological stabilizationobjective, while Lachancea thermotolerans produces lactic acid in order not to reduce andeven increase the acidity of wines produced from low acidity musts. This technique reducesthe risks inherent to the malolactic fermentation process when performed in warm regions.The result is more fruity wines that contain less acetic acid and biogenic amines than thetraditional controls that have undergone the classical malolactic fermentation.

  7. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Walker, Michelle E; Nguyen, Trung D; Liccioli, Tommaso; Schmid, Frank; Kalatzis, Nicholas; Sundstrom, Joanna F; Gardner, Jennifer M; Jiranek, Vladimir

    2014-07-03

    Wine fermentation is a harsh ecological niche to which wine yeast are well adapted. The initial high osmotic pressure and acidity of grape juice is followed by nutrient depletion and increasing concentrations of ethanol as the fermentation progresses. Yeast's adaptation to these and many other environmental stresses, enables successful completion of high-sugar fermentations. Earlier transcriptomic and growth studies have tentatively identified genes important for high-sugar fermentation. Whilst useful, such studies did not consider extended growth (>5 days) in a temporally dynamic multi-stressor environment such as that found in many industrial fermentation processes. Here, we identify genes whose deletion has minimal or no effect on growth, but results in failure to achieve timely completion of the fermentation of a chemically defined grape juice with 200 g L-1 total sugar. Micro- and laboratory-scale experimental fermentations were conducted to identify 72 clones from ~5,100 homozygous diploid single-gene yeast deletants, which exhibited protracted fermentation in a high-sugar medium. Another 21 clones (related by gene function, but initially eliminated from the screen because of possible growth defects) were also included. Clustering and numerical enrichment of genes annotated to specific Gene Ontology (GO) terms highlighted the vacuole's role in ion homeostasis and pH regulation, through vacuole acidification. We have identified 93 genes whose deletion resulted in the duration of fermentation being at least 20% longer than the wild type. An extreme phenotype, 'stuck' fermentation, was also observed when DOA4, NPT1, PLC1, PTK2, SIN3, SSQ1, TPS1, TPS2 or ZAP1 were deleted. These 93 Fermentation Essential Genes (FEG) are required to complete an extended high-sugar (wine-like) fermentation. Their importance is highlighted in our Fermentation Relevant Yeast Genes (FRYG) database, generated from literature and the fermentation-relevant phenotypic characteristics of

  8. Global phenotypic and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations.

    Science.gov (United States)

    García-Ríos, Estéfani; López-Malo, María; Guillamón, José Manuel

    2014-12-03

    The wine industry needs better-adapted yeasts to grow at low temperature because it is interested in fermenting at low temperature to improve wine aroma. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. We followed a global approach by comparing transcriptomic, proteomic and genomic changes in two commercial wine strains, which showed clear differences in their growth and fermentation capacity at low temperature. These strains were selected according to the maximum growth rate in a synthetic grape must during miniaturized batch cultures at different temperatures. The fitness differences of the selected strains were corroborated by directly competing during fermentations at optimum and low temperatures. The up-regulation of the genes of the sulfur assimilation pathway and glutathione biosynthesis suggested a crucial role in better performance at low temperature. The presence of some metabolites of these pathways, such as S-Adenosilmethionine (SAM) and glutathione, counteracted the differences in growth rate at low temperature in both strains. Generally, the proteomic and genomic changes observed in both strains also supported the importance of these metabolic pathways in adaptation at low temperature. This work reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature. We propose that a greater activation of this metabolic route enhances the synthesis of key metabolites, such as glutathione, whose protective effects can contribute to improve the fermentation process.

  9. Cinética e caracterização físico-química do fermentado do pseudofruto do caju (Anacardium occidentale L. Kinetic and physico-chemical characterization of cashew (Anacardium occidentale L. wine

    Directory of Open Access Journals (Sweden)

    Alberto B. Torres Neto

    2006-06-01

    Full Text Available The production of cashew apple wine has the purpose of minimizing the wastage in the Brazilian cashew production. Knowing that the cashew apple fermentation produces a good cashew wine, a study of alcoholic fermentation kinetics of the cashew apple and the physico-chemical characterization of the product were made. The cashew wine was produced in an stirred batch reactor. The results of the physico-chemical analysis of volatiles, residual sugars, total acidity and pH of cashew wine showed that their concentrations were within the standard limits established by the Brazilian legislation for fruit wines.

  10. Substituent effect of phenolic aldehyde inhibition on alcoholic fermentation by Saccharomyces cerevisiae

    Science.gov (United States)

    Rui Xie; Maobing Tu; Thomas Elder

    2016-01-01

    Phenolic compounds significantly inhibit microbial fermentation of biomass hydrolysates. To understand thequantitative structure-inhibition relationship of phenolic aldehydes on alcoholic fermentation, the effect of 11 differentsubstituted benzaldehydes on the final ethanol yield was examined. The results showed that the degree of phenolic...

  11. A multi-phase approach to select new wine yeast strains with enhanced fermentative fitness and glutathione production.

    Science.gov (United States)

    Bonciani, Tommaso; De Vero, Luciana; Mezzetti, Francesco; Fay, Justin C; Giudici, Paolo

    2018-03-01

    The genetic improvement of winemaking yeasts is a virtually infinite process, as the design of new strains must always cope with varied and ever-evolving production contexts. Good wine yeasts must feature both good primary traits, which are related to the overall fermentative fitness of the strain, and secondary traits, which provide accessory features augmenting its technological value. In this context, the superiority of "blind," genetic improvement techniques, as those based on the direct selection of the desired phenotype without prior knowledge of the genotype, was widely proven. Blind techniques such as adaptive evolution strategies were implemented for the enhancement of many traits of interest in the winemaking field. However, these strategies usually focus on single traits: this possibly leads to genetic tradeoff phenomena, where the selection of enhanced secondary traits might lead to sub-optimal primary fermentation traits. To circumvent this phenomenon, we applied a multi-step and strongly directed genetic improvement strategy aimed at combining a strong fermentative aptitude (primary trait) with an enhanced production of glutathione (secondary trait). We exploited the random genetic recombination associated to a library of 69 monosporic clones of strain UMCC 855 (Saccharomyces cerevisiae) to search for new candidates possessing both traits. This was achieved by consecutively applying three directional selective criteria: molybdate resistance (1), fermentative aptitude (2), and glutathione production (3). The strategy brought to the selection of strain 21T2-D58, which produces a high concentration of glutathione, comparable to that of other glutathione high-producers, still with a much greater fermentative aptitude.

  12. Industrial PE-2 strain of Saccharomyces cerevisiae: from alcoholic fermentation to the production of recombinant proteins.

    Science.gov (United States)

    Soares-Costa, Andrea; Nakayama, Darlan Gonçalves; Andrade, Letícia de Freitas; Catelli, Lucas Ferioli; Bassi, Ana Paula Guarnieri; Ceccato-Antonini, Sandra Regina; Henrique-Silva, Flavio

    2014-01-25

    Saccharomyces cerevisiae is the most important microorganism used in the ethanol fermentation process. The PE-2 strain of this yeast is widely used to produce alcohol in Brazil due to its high fermentation capacity. The aim of the present study was to develop an expression system for recombinant proteins using the industrial PE-2 strain of S. cerevisiae during the alcoholic fermentation process. The protein chosen as a model for this system was CaneCPI-1, a cysteine peptidase inhibitor. A plasmid containing the CaneCPI-1 gene was constructed and yeast cells were transformed with the pYADE4_CaneCPI-1 construct. To evaluate the effect on fermentation ability, the transformed strain was used in the fermentation process with cell recycling. During the nine-hour fermentative cycles the transformed strain did not have its viability and fermentation ability affected. In the last cycle, when the fermentation lasted longer, the protein was expressed probably at the expense of ethanol once the sugars were exhausted. The recombinant protein was expressed in yeast cells, purified and submitted to assays of activity that demonstrated its functionality. Thus, the industrial PE-2 strain of S. cerevisiae can be used as a viable system for protein expression and to produce alcohol simultaneously. The findings of the present study demonstrate the possibility of producing recombinant proteins with biotechnological applications during the ethanol fermentation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times

    Directory of Open Access Journals (Sweden)

    Katya Carbone

    2016-07-01

    Full Text Available Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates, bioactive compounds (total polyphenols and flavan-3-ols, HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH• and ABTS+• assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  14. Influence of Saccharomyces uvarum on Volatile Acidity, Aromatic and Sensory Profile of Malvasia delle Lipari Wine

    Directory of Open Access Journals (Sweden)

    Carlo Nicolosi Asmundo

    2007-01-01

    Full Text Available The present study investigated chemical and sensory properties of Malvasia delle Lipari DOC (Denomination of Controlled Origin wine fermented with a cryotolerant strain of Saccharomyces uvarum, characterized by low levels of acetic acid production. In particular, experimental wine was tested for volatile acidity and for aromatic profile by gas chromatography and the results were compared with the same wine produced with a commercial strain of Saccharomyces cerevisiae. Sensory analysis was carried out to assess the identification of experimental wine as Malvasia delle Lipari by defining its sensory profile. Fermentation with S. uvarum gave a final product with lower volatile acidity, lower alcohol content and higher total acidity. Moreover, differences in the aroma profile could be ascribed to different characteristics of the yeasts. Concerning sensorial analysis, the panel assigned higher scores in positive attributes to the wine fermented with S. uvarum.

  15. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.

    Science.gov (United States)

    Medina, Karina; Boido, Eduardo; Fariña, Laura; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Special Beer obtained by Synchronous Alcoholic Fermentation of Two Different Origin Substrates

    OpenAIRE

    Elena MUDURA; Teodora Emilia COLDEA; Victor PLESCA; Anca FARCAS

    2016-01-01

    Beer is the most consumed alcoholic beverage worldwide. Both beer and wine are  recognized since ancient times for their health benefits. Nowadays, these beverages are consumed for its sensory, social interaction, and recently even in culinary dishes. In addition, studies showed the benefits of beer moderate consumption on health. Beer is a low-alcohol beverage and also presents many nutritional properties outlined by its nutritional content rich in vitamins, minerals and antioxidants that co...

  17. Effect of fermentation conditions on content of phenolic compounds in red wine

    Directory of Open Access Journals (Sweden)

    Puškaš Vladimir S.

    2005-01-01

    Full Text Available The evidence of compounds that increase the nutritive value of red wines has been presented in a number of papers. These compounds include catechins and proanthocyanidins among others. Their protective effect on the cardiovascular system and anticarcinogenic properties has been proved. The effect of maceration conditions and increased solid grape parts content, seed in the first place, on the content of phenolic compounds of wine was investigated. Several micro-trials were performed with Cabernet sauvignon sort; in some variants time and temperature of maceration were varied, while the ratio of residual stem and content of seed was increased several times, resulting in a significant change of phenolic compounds content in the obtained wine samples. The presence of ripe stem yielded good results, but only during six days of maceration, while in the case of longer maceration, the change of colour quality was negative. Supplementary quantities of seeds during maceration resulted in an increase of total phenols and catechins. A significant influence on colour of wines was also observed, especially in wines obtained applying shorter maceration.

  18. Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro

    Science.gov (United States)

    Dragoni, Stefania; Gee, Jennifer; Bennett, Richard; Valoti, Massimo; Sgaragli, Giampietro

    2006-01-01

    Moderate consumption of red wine has been associated with beneficial effects on human health, and this has been attributed to the flavonoid content. Factors that influence the bioavailability of this group of polyphenolic compounds are therefore important. Using the rat cannulated everted jejunal sac technique, we have investigated the effect of alcohol on the intestinal absorption of quercetin and its 3-O-glucoside from red wine. Tissue preparations were incubated in whole or dealcoholised red wine, diluted 1 : 1 with Krebs buffer for 20 min at 37°C, after which the mucosa was removed and processed for HPLC analysis. Tissues exposed to red wine had significantly higher amounts of both quercetin (× 3; P<0.001) and quercetin-3-O-glucoside (× 1.5; P<0.01) associated with them, compared with sacs incubated in the dealcoholised equivalent. In addition, both tamarixetin (T) and isorhamnetin (I), in the mucosal tissue from sacs exposed to the whole wine, were significantly elevated approximately two fold (P<0.05; P<0.01, respectively). Similar results were obtained when sacs were incubated in Krebs buffer containing a mixture of pure quercetin and quercetin-3-O-glucoside with or without alcohol, and, although effects on the apparent absorption of Q and Q-3-G were not so marked, concentrations of the metabolites quercetin-3-O-glucuronide and I were significantly increased by the presence of alcohol (P<0.01 and P<0.001, respectively). It is therefore plausible that the moderate alcohol content of red wine contributes to its beneficial health effects in humans by both increasing the absorption of quercetin and quercetin-3-O-glucoside and by channelling their metabolism towards O-methylation to yield compounds (T and I), which have potential protective effects against cancer and cardiovascular diseases. PMID:16444288

  19. The inhibition of Saccharomyces cerevisiae population during alcoholic fermentation of grape must by octanoic, decanoic and dodecanoic acid mixture

    Directory of Open Access Journals (Sweden)

    Baroň Mojmír

    2017-01-01

    Full Text Available The inhibition of alcoholic fermentation by octanoic, decanoic and dodecanoic acid mixture was investigated. Middle chain fatty acids (MCFA mixture contained 10 grams of C8:C10:C12 in a ratio of 2:7:1 was dissolved in 100 ml of 70% ethanol, and in such form, it was subsequently applied into the fermenting must samples. A flow cytometry test showed that the 10 mg/L dose of MCFA mixture had a toxic effect on Saccharomyces cerevisiae (45.9% of viable cells compared with the control variant (74.35%. In combination with 60 mg/L of SO2, it had a higher efficiency (3.1% of viable cells than using a dose of SO2 alone (13.9%. Direct counting of yeast cells confirmed a higher concentration of dead cells with a higher concentration of MCFA. A dose of 10 mg/L of MCFA mixture caused the highest percentage of dead yeast after 24 hours (about 60% compared to the control variant without MCFA dosage (about 24%. The results of residues showed that there is no significant quantitative difference between the treated and untreated musts because of fixing of MCFA inside the yeast cells. This method can effectively reduce the cost of production technology for wines with residual sugar and, in general, reduce the dosage of SO2.

  20. Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Plessas, S.; Bekatorou, A; Koutinas, A.A.; Soupioni, M. [University of Patras (Greece). Department of Chemistry, Food Biotechnology Group; Banat, I.M.; Marchant, R. [University of Ulster, Coleraine, N. Ireland (United Kingdom). School of Biomedical Sciences

    2007-03-15

    A biocatalyst was prepared by immobilizing a commercial Saccharomyces cerevisiae strain (baker's yeast) on orange peel pieces for use in alcoholic fermentation and for fermented food applications. Cell immobilization was shown by electron microscopy and by the efficiency of the immobilized biocatalyst for alcoholic fermentation of various carbohydrate substrates (glucose, molasses, raisin extracts) and at various temperatures (30-15 {sup o}C). Fermentation times in all cases were low (5-15 h) and ethanol productivities were high (av. 150.6 g/ld) showing good operational stability of the biocatalyst and suitability for commercial applications. Reasonable amounts of volatile by-products were produced at all temperatures studied, revealing potential application of the proposed biocatalyst in fermented food applications, to improve productivities and quality. (author)

  1. Ethanol Production and Maximum Cell Growth Are Highly Correlated with Membrane Lipid Composition during Fermentation as Determined by Lipidomic Analysis of 22 Saccharomyces cerevisiae Strains

    OpenAIRE

    Henderson, Clark M.; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L.; Block, David E.

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cere...

  2. Highly Efficient Malolactic Fermentation of Red Wine Using Encapsulated Bacteria in a Robust Biocomposite of Silica-Alginate.

    Science.gov (United States)

    Simó, Guillermo; Vila-Crespo, Josefina; Fernández-Fernández, Encarnación; Ruipérez, Violeta; Rodríguez-Nogales, José Manuel

    2017-06-28

    Bacteria encapsulation to develop malolactic fermentation emerges as a biotechnological strategy that provides significant advantages over the use of free cells. Two encapsulation methods have been proposed embedding Oenococcus oeni, (i) interpenetrated polymer networks of silica and Ca-alginate and (ii) Ca-alginate capsules coated with hydrolyzed 3-aminopropyltriethoxysilane (hAPTES). On the basis of our results, only the first method was suitable for bacteria encapsulation. The optimized silica-alginate capsules exhibited a negligible bacteria release and an increase of 328% and 65% in L-malic acid consumption and mechanical robustness, respectively, compared to untreated alginate capsules. Moreover, studies of capsule stability at different pH and ethanol concentrations in water solutions and in wine indicated a better behavior of silica-alginate capsules than untreated ones. The inclusion of silicates and colloidal silica in alginate capsules containing O. oeni improved markedly their capacity to deplete the levels of L-malic acid in red wines and their mechanical robustness and stability.

  3. Characteristics of some traditional Vietnamese starch-based rice wine fermentation starters (men)

    NARCIS (Netherlands)

    Dung, N.T.P.; Rombouts, F.M.; Nout, M.J.R.

    2007-01-01

    In the Mekong Delta region of South-Vietnam, wine from purple glutinous rice is particularly interesting because of its sherry-like taste and flavour and its attractive brown-red colour. It is manufactured at home or by small cottage industries, using traditional solid-state starters (Men). With the

  4. Development of defined mixed-culture fungal fermentation starter granulate for controlled production of rice wine

    NARCIS (Netherlands)

    Ngo Thi Phuong Dung, N.T.P.; Rombouts, F.M.; Nout, M.J.R.

    2005-01-01

    As a first step in the development of defined fungal starter granules for controlled winemaking from purple glutinous rice, the interaction of moulds and yeasts isolated from Vietnamese rice wine starters and the effect of some representative oriental herbs on the growth of moulds and yeasts were

  5. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  6. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Science.gov (United States)

    Sawada, Kazutaka

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  7. Gas-liquid transfer of aroma compounds during winemaking fermentations

    OpenAIRE

    Mouret, J. R.; Morakul, S.; Nicolle, P.; Athes, V.; Sablayrolles, J. M.

    2012-01-01

    We precisely monitored the production kinetics of 16 volatile carbon compounds corresponding to the predominant higher alcohols and esters produced during the alcoholic fermentation of wine using an online GC system. We studied the gas-liquid partitioning of isobutanol, isoamyl acetate and ethyl hexanoate and showed that CO2 stripping had no impact on the partition coefficient (k(i)). We formulated a predictive model for k(i) changes during the fermentation and calculated the gas-liquid balan...

  8. 27 CFR 24.256 - Bottle aging wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bottle aging wine. 24.256 Section 24.256 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine Bottling, Packing, and Labeling of Wine § 24.256 Bottle aging wine. Wine...

  9. Generation Y, wine and alcohol. A semantic differential approach to consumption analysis in Tuscany.

    Science.gov (United States)

    Marinelli, Nicola; Fabbrizzi, Sara; Alampi Sottini, Veronica; Sacchelli, Sandro; Bernetti, Iacopo; Menghini, Silvio

    2014-04-01

    The aim of the study is the elicitation of the consumer's semantic perception of different alcoholic beverages in order to provide information for the definition of communication strategies for both the private sector (and specifically the wine industry) and the public decision maker. Such information can be seen as the basis of a wider social marketing construct aimed at the promotion of responsible drinking among young consumers. The semantic differential approach was used in this study. The data collection was based on a survey to 430 consumers between 18 and 35years old in Tuscany, Italy. The database was organized in a three-way structure, indexing the data in a multiway matrix. The data were processed using a Multiple Factor Analysis (MFA). Moreover, homogeneous clusters of consumers were identified using a Hierarchical Clustering on Principal Components (HCPC) approach. The results of the study highlight that beer and spirits are mainly perceived as "Young", "Social", "Euphoric", "Happy", "Appealing" and "Trendy" beverages, while wine is associated mostly with terms such as "Pleasure", "Quality" and "Comfortable". Furthermore, the cluster analysis allowed for the identification of three groups of individuals with different approaches to alcohol drinking. The results of the study supply a useful information framework for the elaboration of specific communication strategies that, based on the drinking habits of young consumers and their perception of different beverages, can use a language that is very close to the consumer typologies. Such information can be helpful for both private and public communication strategies. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation.

    Science.gov (United States)

    López-Malo, María; García-Rios, Estéfani; Melgar, Bruno; Sanchez, Monica R; Dunham, Maitreya J; Guillamón, José Manuel

    2015-07-22

    Wine produced at low temperature is often considered to improve sensory qualities. However, there are certain drawbacks to low temperature fermentations: e.g. low growth rate, long lag phase, and sluggish or stuck fermentations. Selection and development of new Saccharomyces cerevisiae strains well adapted at low temperature is interesting for future biotechnological applications. This study aimed to select and develop wine yeast strains that well adapt to ferment at low temperature through evolutionary engineering, and to decipher the process underlying the obtained phenotypes. We used a pool of 27 commercial yeast strains and set up batch serial dilution experiments to mimic wine fermentation conditions at 12 °C. Evolutionary engineering was accomplished by using the natural yeast mutation rate and mutagenesis procedures. One strain (P5) outcompeted the others under both experimental conditions and was able to impose after 200 generations. The evolved strains showed improved growth and low-temperature fermentation performance compared to the ancestral strain. This improvement was acquired only under inositol limitation. The transcriptomic comparison between the evolved and parental strains showed the greatest up-regulation in four mannoprotein coding genes, which belong to the DAN/TIR family (DAN1, TIR1, TIR4 and TIR3). Genome sequencing of the evolved strain revealed the presence of a SNP in the GAA1 gene and the construction of a site-directed mutant (GAA1 (Thr108)) in a derivative haploid of the ancestral strain resulted in improved fermentation performance. GAA1 encodes a GPI transamidase complex subunit that adds GPI, which is required for inositol synthesis, to newly synthesized proteins, including mannoproteins. In this study we demonstrate the importance of inositol and mannoproteins in yeast adaptation at low temperature and the central role of the GAA1 gene by linking both metabolisms.

  11. Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation.

    Directory of Open Access Journals (Sweden)

    Maite Novo

    Full Text Available This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative stages of the fermentation process. Finally, we found

  12. Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation.

    Science.gov (United States)

    Novo, Maite; Mangado, Ana; Quirós, Manuel; Morales, Pilar; Salvadó, Zoel; Gonzalez, Ramon

    2013-01-01

    This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative) stages of the fermentation process. Finally, we found adenine and lysine

  13. Evaluation of Zygosaccharomyces bailii BCV 08 as a co-starter in wine fermentation for the improvement of ethyl esters production.

    Science.gov (United States)

    Garavaglia, Juliano; Schneider, Rosana de Cassia de Souza; Camargo Mendes, Sandra Denise; Welke, Juliane Elisa; Zini, Cláudia Alcaraz; Caramão, Elina Bastos; Valente, Patrícia

    2015-04-01

    Zygosaccharomyces bailii BCV 08, a yeast isolated from red wine barrels in Brazil, was evaluated as co-starter in fermentations with Saccharomyces cerevisiae. Z. bailii BCV 08 was preliminarily shown to produce high levels of esters, and the production was optimized in bench and bioreactor scales using grape must. White wine vinifications were conducted with mixed cultures containing different proportions of Z. bailii BCV 08 and an enological strain of S. cerevisiae. In all trials that contained Z. bailii BCV 08, the production of ethyl esters was enhanced in comparison to the vinification control. Our results clearly show the potential of Z. bailii BCV 08 as a mixed starter with S. cerevisiae in order to increase the aromatic complexity of wine. Copyright © 2015. Published by Elsevier GmbH.

  14. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for the industrial wine production

    Directory of Open Access Journals (Sweden)

    Mariana eTristezza

    2016-05-01

    Full Text Available In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of

  15. Method validation for determination of heavy metals in wine and slightly alcoholic beverages by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Voica, Cezara; Dehelean, Adriana; Pamula, A, E-mail: cezara.voica@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The Organisation International de la Vigne et du Vin (OIV) fixed an uppermost level for some heavy metals in wine. Consequently, the need to determine very low concentration of elements that may be present in wine in trace and ultra trace levels occurred. Inductively coupled plasma mass spectrometry ICP-MS is considered an excellent tool for detailed characterization of the elementary composition of many samples, including samples of drinks. In this study a method of quantitative analysis for the determination of toxic metals (Cr, As, Cd, Ni, Hg, Pb) in wines and slightly alcoholic beverages by ICP-MS was validated. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, the minimum detection limit, the limit of quantification, accuracy and uncertainty.

  16. Method validation for determination of heavy metals in wine and slightly alcoholic beverages by ICP-MS

    International Nuclear Information System (INIS)

    Voica, Cezara; Dehelean, Adriana; Pamula, A

    2009-01-01

    The Organisation International de la Vigne et du Vin (OIV) fixed an uppermost level for some heavy metals in wine. Consequently, the need to determine very low concentration of elements that may be present in wine in trace and ultra trace levels occurred. Inductively coupled plasma mass spectrometry ICP-MS is considered an excellent tool for detailed characterization of the elementary composition of many samples, including samples of drinks. In this study a method of quantitative analysis for the determination of toxic metals (Cr, As, Cd, Ni, Hg, Pb) in wines and slightly alcoholic beverages by ICP-MS was validated. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, the minimum detection limit, the limit of quantification, accuracy and uncertainty.

  17. Overall alcohol intake, beer, wine and systemic markers of inflamation in western europe: results from three MONICA samples (Augsburg, Glasgow, Lille).

    Science.gov (United States)

    Karvaj, M

    2007-11-01

    Anti-inflammatory effects of moderate alcohol consumption have been proposed to explain why moderate alcohol intake lowers coronary heart disease risk. The relationship between overall alcohol, beer or wine consumption and markers of systemic inflammation in three different geographical areas in Europe, was investigated.

  18. Effect of copper stress on growth characteristics and fermentation properties of Saccharomyces cerevisiae and the pathway of copper adsorption during wine fermentation.

    Science.gov (United States)

    Sun, Xiangyu; Liu, Lingling; Zhao, Yu; Ma, Tingting; Zhao, Fang; Huang, Weidong; Zhan, Jicheng

    2016-02-01

    The effect of copper stress on the fermentation performance of Saccharomyces cerevisiae and its copper adsorption pathway during alcoholic fermentation were investigated in this study. At the limits imposed by the regulations of the European Union and South African (⩽ 20 mg/l), copper had no effect on the cell growth of S. cerevisiae, but its fermentation performance was inhibited to a certain extent. Therefore, the regulated limit should be further reduced (⩽ 12.8 mg/l). Under 9.6-19.2 mg/l copper stress, S. cerevisiae could absorb copper; the copper removal ratio and the unit strain adsorption were 60-81% and 2.72-9.65 mg/g, respectively. S. cerevisiae has a non-biological adsorption of copper, but compared with biological (living yeast) adsorption, the non-biological adsorption was very low. The copper adsorption way of S. cerevisiae was primarily via biological (living yeast) adsorption, which was a two-step process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A Traditional Turkish Fermented Non-Alcoholic Grape-Based Beverage, “Hardaliye”

    Directory of Open Access Journals (Sweden)

    Fatma Coskun

    2017-01-01

    Full Text Available Hardaliye is a non-alcoholic fermented beverage produced in a traditional way in Thrace, the European part of Turkey. The nutritional value of hardaliye is derived from the grapes and the fermentation process. Health benefits of hardaliye are also related to etheric oils present in mustard seeds. Hardaliye is a lactic acid fermented traditional beverage produced from grape juice and crushed grapes with the addition of different concentrations of whole/ground or heat-treated mustard seeds and sour cherry leaves. The color of hardaliye reflects the original color of the grapes and has a characteristic aroma. Dark red grape is preferred. Benzoic acid is used as preservative during production. Benzoic acid inhibits or decreases alcohol production by affecting the yeast. Fermentation occurs at room temperature for 7–10 days. If the ambient temperature is low, fermentation process can be extended until 20 days. Once fermented, the hardaliye is stored at 4 °C for three to four months. The hardaliye is consumed either fresh or aged. If it is aged, hardaliye may contain alcohol. The industrial production is just in small-scale and it must be developed. More studies are required to determine characteristic properties of hardaliye. Identification of the product properties will supply improvement for industrial production.

  20. CHANGES IN LIPID CONTENT OF WINE YEASTS DURING FERMENTATION BY IMMOBILIZED CELLS

    Directory of Open Access Journals (Sweden)

    Fedor Malik

    2010-05-01

    Full Text Available Comparison of the lipid composition of immobilised and non-immobilised cells of the wine cell strain Saccharomyces cerevisiae 6C subjected to ethanol stress indicates that the whole impact of the ethanol stress on the fatty acids composition is less influenced with immobilised cells as with non- immobilised ones. The ethanol stress raised in immobilised and free cells occurrence of palmitoleic acid to the detriment of palmitic acid. The character of changes in lipid composition during immobilisation probably has an impact upon slightly increased stress resistance. The immobilised cells are as well resistive against passive membrane fluidisation by ethanol. doi:10.5219/56

  1. Effectiveness of Higher Fatty Acids C8, C10 and C12, Dimethyl Dicarbonate and Sulphur Dioxide for Inhibition of Re-fermentation and Malolactic Activities in Wine

    Directory of Open Access Journals (Sweden)

    Mojmír Baroň

    2014-01-01

    Full Text Available The issue of preventing the re-fermentation and protection against undesirable malolactic fermentation (MLF in order to safe content of acids in wine is very complicated. In this paper the saturated higher fatty acids (HFA – C8, C10 and C12, dimethyldicarbonate (DMDC and sulphur dioxide (SO2 were tested. The re-fermentation test showed the strongest inhibition power at ratio 2:8, 1:9 and 0:10 as C8:C10 acids – 65 days without re-fermentation. MLF experiments confirmed that addition of SO2 into the fermenting media causes rapid inhibition of lactic acid bacteria metabolic activity. Malic acid concentrations were proportionally decreasing during 6 days of experiment and at the end the content of this acid varied between 0.16 and 0.22 g/L, the only exception formed a variant with the addition of SO2 (1.57 g/L of malic acid. After calculation of the average consumption rate of malic acid, the results showed the inhibition power – SO2 (81.05% followed by variant of 40 mg/L mixture of HFA (40.76%, a variant of 200 mg/L of DMDC (31.98% and a variant of 20 mg/L mixture of HFA (12.59%. The addition of HFA can significantly reduce the dosage of other preservatives, especially SO2. Based on results, this method can be recommend in the production of wines with residual sugar and also wines made from over-mature material to prevent undesirable MLF.

  2. Beverage specific alcohol intake in a population-based study: Evidence for a positive association between pulmonary function and wine intake

    Directory of Open Access Journals (Sweden)

    McCann Susan E

    2002-05-01

    Full Text Available Abstract Background Lung function is a strong predictor of cardiovascular and all-cause mortality. Previous studies suggest that alcohol exposure may be linked to impaired pulmonary function through oxidant-antioxidant mechanisms. Alcohol may be an important source of oxidants; however, wine contains several antioxidants. In this study we analyzed the relation of beverage specific alcohol intake with forced expiratory volume in one second (FEV1 and forced vital capacity (FVC in a random sample of 1555 residents of Western New York, USA. Methods We expressed pulmonary function as percent of predicted normal FEV1 (FEV1% and FVC (FVC% after adjustment for height, age, gender and race. To obtain information on alcohol intake we used a questionnaire that reliably queries total alcohol and beverage specific recent (past 30 days and lifetime alcohol consumption. Results: Using multiple linear regression analysis after adjustment for covariates (pack-years of smoking, weight, smoking status, education, nutritional factors and for FEV1%, in addition, eosinophil count, we observed no significant correlation between total alcohol intake and lung function. However, we found positive associations of recent and lifetime wine intake with FEV1% and FVC%. When we analyzed white and red wine intake separately, the association of lung function with red wine was weaker than for white wine. Conclusion While total alcohol intake was not related to lung function, wine intake showed a positive association with lung function. Although we cannot exclude residual confounding by healthier lifestyle in wine drinkers, differential effects of alcoholic beverages on lung health may exist.

  3. Biogenic amines degradation by malolactic bacteria: towards a potential application in wine

    Directory of Open Access Journals (Sweden)

    Vittorio eCapozzi

    2012-04-01

    Full Text Available Biogenic amines in wine represent a toxicological risk for the health of the consumer, with several trade implications. In this study 26 strains of Lactobacillus plantarum were analysed for their ability to degrade biogenic amines commonly found during wine fermentation. Two strains of L. plantarum were selected in reason of their ability to degrade putrescine and tyramine. The degradation was assessed in vitro, both in presence of the biogenic amines and in presence of the specific chemical precursor and of producer bacteria. The two L. plantarum biotypes were found capable to work synergically. In addition, the survival in wine-like medium and the aptitude to degrade malic acid after alcoholic fermentation of the selected L. plantarum strains was analysed. Our results suggest the potential application of wine L. plantarum strains to design malolactic starter cultures able to degrade biogenic amines in wine.

  4. Increasing the efficiency of sulphur dioxide in wine by using of saturated higher fatty acids

    Directory of Open Access Journals (Sweden)

    Petra Bábíková

    2012-01-01

    Full Text Available This work is aimed on stopping of alcoholic fermentation to leave residual sugar and the possibility of sulfur dioxide reduction in wine technology and storage. As a very good opportunity showed mixture of higher saturated fatty acids with a reduced dose of sulfur dioxide. Experiments have confirmed that the concentration of viable yeasts in 1 ml of wine for variants treated with a mixture of fatty acids is significantly lower than in variants treated with sulfur dioxide alone. Then was monitored the influence of fatty acids on stored wine with residual sugar. At this point a dramatically prolongation of interval to secondary fermentation (depreciation of wine in the bottle was confirmed. Finally, attention was paid to influence on the organoleptic characteristics of wine treated this way. In this case, it is possible to consider the recommended concentration of fatty acid below the threshold of susceptibility.

  5. 27 CFR 4.27 - Vintage wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Vintage wine. 4.27 Section 4.27 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Standards of Identity for Wine § 4.27 Vintage wine. (a) General. Vintage wine is wine labeled...

  6. Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group.

    Science.gov (United States)

    Baschali, Aristea; Tsakalidou, Effie; Kyriacou, Adamantini; Karavasiloglou, Nena; Matalas, Antonia-Leda

    2017-06-01

    Fermented beverages hold a long tradition and contribution to the nutrition of many societies and cultures worldwide. Traditional fermentation has been empirically developed in ancient times as a process of raw food preservation and at the same time production of new foods with different sensorial characteristics, such as texture, flavour and aroma, as well as nutritional value. Low-alcoholic fermented beverages (LAFB) and non-alcoholic fermented beverages (NAFB) represent a subgroup of fermented beverages that have received rather little attention by consumers and scientists alike, especially with regard to their types and traditional uses in European societies. A literature review was undertaken and research articles, review papers and textbooks were searched in order to retrieve data regarding the dietary role, nutrient composition, health benefits and other relevant aspects of diverse ethnic LAFB and NAFB consumed by European populations. A variety of traditional LAFB and NAFB consumed in European regions, such as kefir, kvass, kombucha and hardaliye, are presented. Milk-based LAFB and NAFB are also available on the market, often characterised as 'functional' foods on the basis of their probiotic culture content. Future research should focus on elucidating the dietary role and nutritional value of traditional and 'functional' LAFB and NAFB, their potential health benefits and consumption trends in European countries. Such data will allow for LAFB and NAFB to be included in national food composition tables.

  7. The palm wine trade: occupational and health hazards.

    Science.gov (United States)

    Mbuagbaw, L; Noorduyn, S G

    2012-10-01

    The palm wine trade is an important economic activity for many tropical rural areas worldwide. In West Africa, palm wine holds high sociocultural and traditional values. Wine tappers often climb very tall trees with rudimentary equipment to harvest palm sap and risk severe injuries in the event of a fall. Furthermore, the wine quickly ferments beyond the desired taste and alcohol content, reducing the market power of these tappers. Therefore, to maximize benefits or to enhance shelf life, a variety of components are added to the palm tree sap, introducing the possibility of deadly contaminants. This paper highlights the public health implications of uncontrolled palm wine production and the relative neglect of the wine tapper. We draw from the limited published literature and use Cameroon as a case study. The palm wine trade can be more productive and safe if tappers work in cooperatives to improve their market power. Public health authorities need to monitor the quality of this cheap and common source of alcohol and enact regulations to protect wine tappers from the current level of occupational hazards. There are varying levels of progress to control quality and ensure safety in different parts of the world. Legislation and collaboration with traditional structures may offer a framework for change.

  8. 77 FR 21581 - Kootenai Tribe of Idaho: Chapter 11-Alcohol Control Act

    Science.gov (United States)

    2012-04-10

    ...) ``Beer'' means any malt beverage, flavored malt beverage, or malt liquor as these terms are defined in..., wine and beer), and all fermented spirituous, vinous, or malt liquor or combination thereof, and mixed... not, containing alcohol, spirits, wine and beer, and all drinks or drinkable liquids and all...

  9. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation.

    Science.gov (United States)

    Mas, Albert; Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Cerezo, Ana B; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  10. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  11. Aroma formation by immobilized yeast cells in fermentation processes.

    Science.gov (United States)

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must.

    Science.gov (United States)

    Tofalo, Rosanna; Chaves-López, Clemencia; Di Fabio, Federico; Schirone, Maria; Felis, Giovanna E; Torriani, Sandra; Paparella, Antonello; Suzzi, Giovanna

    2009-04-15

    The objective of this study was to examine the Saccharomyces and non-Saccharomyces yeast populations involved in a spontaneous fermentation of a traditional high sugar must (Vino cotto) produced in central Italy. Molecular identification of a total of 78 isolates was achieved by a combination of PCR-RFLP of the 5.8S ITS rRNA region and sequencing of the D1/D2 domain of the 26S rRNA gene. In addition, the isolates were differentiated by RAPD-PCR. Only a restricted number of osmotolerant yeast species, i.e. Candida apicola, Candida zemplinina and Zygosaccharomyces bailii, were found throughout all the fermentation process, while Saccharomyces cerevisiae prevailed after 15 days of fermentation. A physiological characterization of isolates was performed in relation to the resistance to osmotic stress and ethanol concentration. The osmotolerant features of C. apicola, C. zemplinina and Z. bailii were confirmed, while S. cerevisiae strains showed three patterns of growth in response to different glucose concentrations (2%, 20%, 40% and 60% w/v). The ability of some C. apicola and C. zemplinina strains to grow at 14% v/v ethanol is noteworthy. The finding that some yeast biotypes with higher multiple stress tolerance can persist in the entire winemaking process suggests possible future candidates as starter for Vino cotto production.

  13. Non-Alcoholic Beverages from Fermented Cereals with Increased Oligosaccharide Content.

    Science.gov (United States)

    Basinskiene, Loreta; Juodeikiene, Grazina; Vidmantiene, Daiva; Tenkanen, Maija; Makaravicius, Tomas; Bartkiene, Elena

    2016-03-01

    The aim of this study is to develop a new technology for making traditional Lithuanian non-alcoholic beverage kvass from fermented cereals by extending the spectrum of raw materials (extruded rye) and applying new biotechnological resources (xylanolytic enzymes and lactic acid bacteria (LAB)) to improve its functional properties. Arabinoxylans in extruded rye were very efficiently hydrolysed into oligosaccharides by xylanolytic complex Ceremix Plus MG. Using Ceremix Plus MG and LAB fermentation, the yield of arabinoxylooligosaccharides and xylooligosaccharides in beverage was increased to 300 and 1100 mg/L, respectively. Beverages fermented by LAB had lower pH values and ethanol volume fraction compared to the yeast-fermented beverage. The acceptability of the beverage fermented by Lactobacillus sakei was higher than of Pediococcus pentosaceus- or yeast- -fermented beverages and similar to the acceptability of commercial kvass made from malt extract. The results showed that extruded rye, xylanolytic enzymes and LAB can be used for production of novel and safe high-value non-alcoholic beverages.

  14. Non-Alcoholic Beverages from Fermented Cereals with Increased Oligosaccharide Content

    Directory of Open Access Journals (Sweden)

    Grazina Juodeikiene

    2016-01-01

    Full Text Available The aim of this study is to develop a new technology for making traditional Lithuanian non-alcoholic beverage kvass from fermented cereals by extending the spectrum of raw materials (extruded rye and applying new biotechnological resources (xylanolytic enzymes and lactic acid bacteria (LAB to improve its functional properties. Arabinoxylans in extruded rye were very efficiently hydrolysed into oligosaccharides by xylanolytic complex Ceremix Plus MG. Using Ceremix Plus MG and LAB fermentation, the yield of arabinoxylooligosaccharides and xylooligosaccharides in beverage was increased to 300 and 1100 mg/L, respectively. Beverages fermented by LAB had lower pH values and ethanol volume fraction compared to the yeast-fermented beverage. The acceptability of the beverage fermented by Lactobacillus sakei was higher than of Pediococcus pentosaceus- or yeast-fermented beverages and similar to the acceptability of commercial kvass made from malt extract. The results showed that extruded rye, xylanolytic enzymes and LAB can be used for production of novel and safe high-value non-alcoholic beverages.

  15. Indução da fermentação maloláctica em vinho Gewürztraminer Induction of malolactic fermentation in Gewürztraminer wine

    Directory of Open Access Journals (Sweden)

    Larissa Dias de Avila

    1997-06-01

    responsible by the reduction in total acidity and also contributes to the biological stability and a flavor modification of the wines. In normal winery operation it occurs commonly in red wines. However, recently malolactic fermentation had been also used in some white wines, such as Chardonnay. The main aim of this work was to evaluate the behavior of two commercial strains of Leuconostoc oenos in the induction of malolactic fermentation. Gewürztraminer grapes were fermented and inoculated with two lactic cultures, Viniflora Oenos and Vino, in several residual sugar levels: 55.0 - 21.9 - 1.1 e 0.9g/l. The sugar levels were compared with spontaneous malolactic fermentation (control, with two repetitions. Degradation of malic acid was followed by paper chromatography. Organic acids determinations were performed using eficiency high liquid chromatography. Reducing sugars, °Brix, pH, total acidity and alcohol values were evaluated. A low incidence (22.7% of the malolactic fermentation in wines was observed. However, in those wines in which malolactic fermentation occurred it took a long time to reach the end, between 56 and 92 days. Using 1.1 and 0.9g/l of residual sugar the inoculated wines and the control did not undergo the malolactic fermentation. The wild lactic acid bacterias were identified as being as Leuconostoc genus and, due to some physiologic characteristics observed in the inoculated wine isolated, there was a raised suspicius that the cultures had lost the viability. The behaviour of the malic, acetic, lactic, piruvic and tartaric acids were demonstrates by the results.

  16. 27 CFR 24.77 - Experimental wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Experimental wine. 24.77 Section 24.77 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Administrative and Miscellaneous Provisions Tax Exempt Wine § 24.77 Experimental wine. (a) General. Any scientific...

  17. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols.

    Science.gov (United States)

    Liu, Kan; Atiyeh, Hasan K; Stevenson, Bradley S; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L

    2014-01-01

    Higher alcohols such as n-butanol and n-hexanol have higher energy density than ethanol, are more compatible with current fuel infrastructure, and can be upgraded to jet and diesel fuels. Several organisms are known to convert syngas to ethanol, but very few can produce higher alcohols alone. As a potential solution, mixed culture fermentation between the syngas fermenting Alkalibaculum bacchi strain CP15 and propionic acid producer Clostridium propionicum was studied. The monoculture of CP15 produced only ethanol from syngas without initial addition of organic acids to the fermentation medium. However, the mixed culture produced ethanol, n-propanol and n-butanol from syngas. The addition of propionic acid, butyric acid and hexanoic acid to the mixed culture resulted in a 50% higher conversion efficiency of these acids to their respective alcohols compared to CP15 monoculture. These findings illustrate the great potential of mixed culture syngas fermentation in production of higher alcohols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Dibasic Ammonium Phosphate Application Enhances Aromatic Compound Concentration in Bog Bilberry Syrup Wine.

    Science.gov (United States)

    Wang, Shao-Yang; Li, Yi-Qing; Li, Teng; Yang, Hang-Yu; Ren, Jie; Zhang, Bo-Lin; Zhu, Bao-Qing

    2016-12-29

    A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo -2,3-butanediol, 2-phenylethanol, meso -2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.

  19. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Watanabe, Daisuke; Hashimoto, Naoya; Mizuno, Megumi; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2013-01-01

    Sake yeast strains maintain high fermentation rates, even after the stationary growth phase begins. To determine the molecular mechanisms underlying this advantageous brewing property, we compared the gene expression profiles of sake and laboratory yeast strains of Saccharomyces cerevisiae during the stationary growth phase. DNA microarray analysis revealed that the sake yeast strain examined had defects in expression of the genes related to glucose derepression mediated by transcription factors Adr1p and Cat8p. Furthermore, deletion of the ADR1 and CAT8 genes slightly but statistically significantly improved the fermentation rate of a laboratory yeast strain. We also identified two loss-of-function mutations in the ADR1 gene of existing sake yeast strains. Taken together, these results indicate that the gene expression program associated with glucose derepression for yeast acts as an impediment to effective alcoholic fermentation under glucose-rich fermentative conditions.

  20. The Influence of Yeast Strains on the Composition and Sensory Quality of Gewürztraminer Wine

    Directory of Open Access Journals (Sweden)

    Mojca Jenko

    2013-01-01

    Full Text Available The aim of this study is to evaluate the influence of yeast strains on the composition and sensory quality of Gewürztraminer wine. Three different commercial yeast strains were examined on the microvinification scale. In the wines, the chemical parameters and the concentration of free volatile monoterpene alcohols were measured and a descriptive sensory analysis was performed. Significantly more geraniol and nerol were detected in the fermentation conducted with reference Saccharomyces cerevisiae strain and more citronellol was found in the fermentation conducted with a hybrid of S. cerevisiae hybrid and S. paradoxus. However, more α-terpineol and linalool were found in the wine fermented with a combination of Saccharomyces and Torulaspora delbrueckii strains. The best wine flavour of tropical fruits was obtained using a hybrid of S. cerevisiae hybrid and S. paradoxus, and the best wine quality was achieved with a combination of Saccharomyces and T. delbrueckii strains. The selection of yeast strains for the fermentation of Gewürztraminer must significantly influenced the concentration of free volatile monoterpene alcohols and the sensory quality of the wine. With the selected hybrid of S. cerevisiae hybrid and S. paradoxus or the combination of Saccharomyces and T. delbrueckii strains either a better flavour or overall wine quality than with the reference strain can be achieved.

  1. The Energy Relationships of Corn Production and Alcohol Fermentation.

    Science.gov (United States)

    Van Koevering, Thomas E.; And Others

    1987-01-01

    Proposes that the production of alcohol from corn be used as a practical application of scientific principles that deal with energy transformations. Discusses the solar energy available for growth, examining the utilization of solar energy by plants. Describes the conversion of corn to alcohol, with suggestions for classroom and laboratory study.…

  2. CADMIUM, COPPER, LEAD AND ZINC CONCENTRATIONS IN LOW QUALITY WINES AND ALCOHOL CONTAINING DRINKS FROM ITALY, BULGARIA AND POLAND

    Directory of Open Access Journals (Sweden)

    Renata Muchacka

    2012-02-01

    Full Text Available We studied Cu, Cd, Pb and Zn concentrations in low quality wines produced in Bulgaria and Italy and in alcohol containing multi-fruit drinks produced in Poland. All the metals were present in tested products. Cadmium was not detected in Italian and Polish products. In one of the Bulgarian wines cadmium was detected in concentration of 0.004 mg•l-1. Italian wines were not contaminated with Pb. Its concentration was the highest in Polish drinks (0.88±0.52 mg•l-1. The largest and statistically significant differences occurred between Cu and Zn contents. Both metals had the highest concetrations in Italian wines (Cu - 0.13±0.05 mg•l-1; Zn - 0.83±0.56 mg•l-1, and the lowest in Polish products (Cu - 0.04±0.001 mg•l-1; Zn -0.18±0.16 mg•l-1.

  3. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation.

    Science.gov (United States)

    Reis, Vanda Renata; Bassi, Ana Paula Guarnieri; da Silva, Jessica Carolina Gomes; Ceccato-Antonini, Sandra Regina

    2013-12-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains ("52"--rough and "PE-02"--smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.

  4. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Vanda Renata Reis

    2013-12-01

    Full Text Available Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies. The effects of acid treatment at different pH values on the growth of two strains ("52" -rough and "PE-02" smooth as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.

  5. Patterns of alcohol (especially wine) consumption and breast cancer risk: a case-control study among a population in Southern France.

    Science.gov (United States)

    Bessaoud, F; Daurès, J P

    2008-06-01

    The association between alcohol consumption and breast cancer has been largely investigated, but few studies have investigated the effects of average intake when the pattern of drinking is taken into account. We sought to examine the association between drinking pattern of alcoholic beverages, particularly wine, and breast cancer using different statistical approaches. Our study included 437 cases of breast cancer, newly diagnosed in the period 2002-2004, and 922 residence- and age-matched controls. Women who had an average consumption of less than 1.5 drinks per day had a lower risk (odds ratio [OR] = 0.58, 95% confidence interval [CI] = 0.34-0.97) when compared with nondrinkers. This protective effect was due substantially to wine consumption since the proportion of regular wine drinkers is predominant in our study population. Furthermore, women who consumed between 10 and 12 g/d of wine had a lower risk (OR = 0.51; 95% CI = 0.30-0.91) when compared with non-wine drinkers. Above 12 g per day of wine consumption, the risk of breast cancer increased, but the association was nonsignificant. Although no association between the pattern of total alcohol consumption and breast cancer was found, the type of alcoholic beverage seemed to play an important role in this association. Our results support the hypothesis that there is a threshold effect that risk decreased or was not modified for consumption under a certain threshold. Above that threshold, risk increased, however. The drinking pattern of each type of specific beverage, especially wine, seems important in terms of alcohol-breast cancer association. Low and regular wine consumption does not increase breast cancer risk.

  6. 27 CFR 19.534 - Withdrawals of spirits for use in production of nonbeverage wine and nonbeverage wine products.

    Science.gov (United States)

    2010-04-01

    ... use in production of nonbeverage wine and nonbeverage wine products. 19.534 Section 19.534 Alcohol... Withdrawals of spirits for use in production of nonbeverage wine and nonbeverage wine products. Spirits... bonded wine cellar for use in the production of nonbeverage wine and nonbeverage wine products. (Sec. 455...

  7. A drink is a drink? Variation in the amount of alcohol contained in beer, wine and spirits drinks in a US methodological sample.

    Science.gov (United States)

    Kerr, William C; Greenfield, Thomas K; Tujague, Jennifer; Brown, Stephan E

    2005-11-01

    Empirically based estimates of the mean alcohol content of beer, wine and spirits drinks from a national sample of US drinkers are not currently available. A sample of 310 drinkers from the 2000 National Alcohol Survey were re-contacted to participate in a telephone survey with specific questions about the drinks they consume. Subjects were instructed to prepare their usual drink of each beverage at home and to measure each alcoholic beverage and other ingredients with a provided beaker. Information on the brand or type of each beverage was used to specify the percentage of alcohol. The weighted mean alcohol content of respondents' drinks was 0.67 ounces overall, 0.56 ounces for beer, 0.66 ounces for wine and 0.89 ounces for spirits. Spirits and wine drink contents were particularly variable with many high-alcohol drinks observed. While the 0.6-ounce of alcohol drink standard appears to be a reasonable single standard, it cannot capture the substantial variation evident in this sample and it underestimates average wine and spirits ethanol content. Direct measurement or beverage-specific mean ethanol content estimates would improve the precision of survey alcohol assessment.

  8. Yeast strain affects phenolic concentration in Pinot noir wines made by microwave maceration with early pressing.

    Science.gov (United States)

    Carew, A L; Close, D C; Dambergs, R G

    2015-06-01

    This study examined the effects of yeast strains in a novel winemaking process that had been designed to optimize phenolic extraction and improve production efficiency for Pinot noir winemaking. Microwave maceration with early pressing and co-inoculation of yeast and malolactic bacteria for simultaneous alcoholic and malolactic fermentation was investigated. Yeast treatments (Saccharomyces cerevisiae RC212 and EC1118, and Saccharomyces bayanus AWRI1176) were co-inoculated with Oenococcus oeni PN4 immediately after must microwave maceration. Alcoholic and malolactic fermentation were complete 17 days postinoculation for all three yeast treatments. At 16-month bottle age, the AWRI1176-treated wines had approximately twice the nonbleachable pigment and colour density of wines fermented by EC1118 and RC212. The novel winemaking process produced Pinot noir wine that was stable 37 days after fruit had been harvested and yeast strain choice significantly impacted the stability and phenolic character of wine. Successful simultaneous alcoholic and malolactic fermentation in 17 days, and a demonstrated lack of inhibition between the yeast strains and malolactic strain applied in this study, provide proof of concept for very rapid red winemaking using the novel winemaking approach described herein. Further investigation would be required to assess strain effects on wine aroma, mouth feel and taste, however, this novel winemaking approach may offer significant industry efficiencies. © 2015 The Society for Applied Microbiology.

  9. 27 CFR 24.193 - Conversion into still wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Conversion into still wine. 24.193 Section 24.193 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Effervescent Wine § 24.193 Conversion into still wine. Sparkling wine or artificially...

  10. 27 CFR 24.213 - Heavy bodied blending wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Heavy bodied blending wine. 24.213 Section 24.213 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine i...

  11. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

    Science.gov (United States)

    Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio

    2011-06-30

    The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. 27 CFR 24.210 - Classes of wine other than standard wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Classes of wine other than standard wine. 24.210 Section 24.210 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.210 Classes of wine other than standard wine....

  13. Aroma profile of Garnacha Tintorera-based sweet wines by chromatographic and sensorial analyses.

    Science.gov (United States)

    Noguerol-Pato, R; González-Álvarez, M; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2012-10-15

    The aroma profiles obtained of three Garnacha Tintorera-based wines were studied: a base wine, a naturally sweet wine, and a mixture of naturally sweet wine with other sweet wine obtained by fortification with spirits. The aroma fingerprint was traced by GC-MS analysis of volatile compounds and by sensorial analysis of odours and tastes. Within the volatiles compounds, sotolon (73 μg/L) and acetoin (122 μg/L) were the two main compounds found in naturally sweet wine. With regards to the odorant series, those most dominant for Garnacha Tintorera base wine were floral, fruity and spicy. Instead, the most marked odorant series affected by off-vine drying of the grapes were floral, caramelized and vegetal-wood. Finally, odorant series affected by the switch-off of alcoholic fermentation with ethanol 96% (v/v) fit for human consumption followed by oak barrel aging were caramelized and vegetal-wood. A partial least square test (PLS-2) was used to detect correlations between sets of sensory data (those obtained with mouth and nose) with the ultimate aim of improving our current understanding of the flavour of Garnacha Tintorera red wines, both base and sweet. Based on the sensory dataset analysis, the descriptors with the highest weight for separating base and sweet wines from Garnacha Tintorera were sweetness, dried fruit and caramel (for sweet wines) vs. bitterness, astringency and geranium (for base wines). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions.

    Science.gov (United States)

    Watanabe, Daisuke; Kaneko, Akie; Sugimoto, Yukiko; Ohnuki, Shinsuke; Takagi, Hiroshi; Ohya, Yoshikazu

    2017-02-01

    A loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-like protein kinase, is one of the major causes of the high alcoholic fermentation rates in Saccharomyces cerevisiae sake strains closely related to Kyokai no. 7 (K7). However, impairment of Rim15p may not be beneficial under more severe fermentation conditions, such as in the late fermentation stage, as it negatively affects stress responses. To balance stress tolerance and fermentation performance, we inserted the promoter of a gluconeogenic gene, PCK1, into the 5'-untranslated region (5'-UTR) of the RIM15 gene in a laboratory strain to achieve repression of RIM15 gene expression in the glucose-rich early stage with its induction in the stressful late stage of alcoholic fermentation. The promoter-engineered strain exhibited a fermentation rate comparable to that of the RIM15-deleted strain with no decrease in cell viability. The engineered strain achieved better alcoholic fermentation performance than the RIM15-deleted strain under repetitive and high-glucose fermentation conditions. These data demonstrated the validity of promoter engineering of the RIM15 gene that governs inhibitory control of alcoholic fermentation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation.

    Science.gov (United States)

    Jeon, Sangjun; Kim, Duk-Ki; Song, Hyohak; Lee, Hee Jong; Park, Sunghoon; Seung, Doyoung; Chang, Yong Keun

    2014-04-01

    This study presents a new and effective downstream process to recover 2,3-butanediol (2,3-BD) from fermentation broth which is produced by a recombinant Klebsiella pneumoniae strain. The ldhA-deficient K. pneumoniae strain yielded about 90 g/L of 2,3-BD, along with a number of by-products, such as organic acids and alcohols, in a 65 h fed-batch fermentation. The pH-adjusted cell-free fermentation broth was firstly concentrated until 2,3-BD reached around 500 g/L by vacuum evaporation at 50°C and 50 mbar vacuum pressure. The concentrated solution was further treated using light alcohols, including methanol, ethanol, and isopropanol, for the precipitation of organic acids and inorganic salts. Isopropanol showed the highest removal efficiency, in which 92.5% and 99.8% of organic acids and inorganic salts were precipitated, respectively. At a final step, a vacuum distillation process enabled the recovery of 76.2% of the treated 2,3-BD, with 96.1% purity, indicating that fermentatively produced 2,3-BD is effectively recovered by a simple alcohol precipitation and vacuum distillation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Influence of different yeasts on the amino acid pattern of rosé wine

    Directory of Open Access Journals (Sweden)

    Mandl Karin

    2017-01-01

    Full Text Available In an experiment with Rosé wine, 27 different commercial yeasts were tested for their influence on the amino acid pattern of the wine. Amino acids are precursors for aromatic substances; therefore a large variation of the amino acid values in the wine was expected. Blaufränkisch grapes with 20° KMW were matured in the cellar with 27 different commercial yeasts. The fermentation was carried out in 34l vessels. The wines were measured for amino acids using an HP 1200 liquid chromatograph and HP-FLD1100 according to Umagat. The wines showed 13.5% alcohol and little residual sugar. The measurement results of the amino acids of the different wines showed large variations. For example, the amount of the amino acid alanine in wine varied from 17 to 138 mg. In particular, the wines of the yeast Pino Type showed the highest amounts of alanine in comparison to the other fermented wines.

  17. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking.

    Science.gov (United States)

    Pretorius, I S

    2000-06-15

    Yeasts are predominant in the ancient and complex process of winemaking. In spontaneous fermentations, there is a progressive growth pattern of indigenous yeasts, with the final stages invariably being dominated by the alcohol-tolerant strains of Saccharomyces cerevisiae. This species is universally known as the 'wine yeast' and is widely preferred for initiating wine fermentations. The primary role of wine yeast is to catalyze the rapid, complete and efficient conversion of grape sugars to ethanol, carbon dioxide and other minor, but important, metabolites without the development of off-flavours. However, due to the demanding nature of modern winemaking practices and sophisticated wine markets, there is an ever-growing quest for specialized wine yeast strains possessing a wide range of optimized, improved or novel oenological properties. This review highlights the wealth of untapped indigenous yeasts with oenological potential, the complexity of wine yeasts' genetic features and the genetic techniques often used in strain development. The current status of genetically improved wine yeasts and potential targets for further strain development are outlined. In light of the limited knowledge of industrial wine yeasts' complex genomes and the daunting challenges to comply with strict statutory regulations and consumer demands regarding the future use of genetically modified strains, this review cautions against unrealistic expectations over the short term. However, the staggering potential advantages of improved wine yeasts to both the winemaker and consumer in the third millennium are pointed out. Copyright 2000 John Wiley & Sons, Ltd.

  18. Non-Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation.

    Science.gov (United States)

    Balmaseda, Aitor; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín

    2018-01-01

    This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB), especially Oenococcus oeni , the main species carrying out the malolactic fermentation (MLF). The emphasis has been placed on non- Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non- Saccharomyces . Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae , but non- Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs) produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non- Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non- Saccharomyces . According to the stimulatory effects, the use of non- Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non- Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.

  19. Non-Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation

    Directory of Open Access Journals (Sweden)

    Aitor Balmaseda

    2018-03-01

    Full Text Available This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB, especially Oenococcus oeni, the main species carrying out the malolactic fermentation (MLF. The emphasis has been placed on non-Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non-Saccharomyces. Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae, but non-Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non-Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non-Saccharomyces. According to the stimulatory effects, the use of non-Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non-Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.

  20. Inhibitory activity of carbonyl compounds on alcoholic fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Cao, Dongxu; Tu, Maobing; Xie, Rui; Li, Jing; Wu, Yonnie; Adhikari, Sushil

    2014-01-29

    Aldehydes and acids play important roles in the fermentation inhibition of biomass hydrolysates. A series of carbonyl compounds (vanillin, syringaldehyde, 4-hydroxybenzaldehyde, pyrogallol aldehyde, and o-phthalaldehyde) were used to examine the quantitative structure-inhibitory activity relationship of carbonyl compounds on alcoholic fermentation, based on the glucose consumption rate and the final ethanol yield. It was observed that pyrogallol aldehyde and o-phthalaldehyde (5.0 mM) reduced the initial glucose consumption rate by 60 and 89%, respectively, and also decreased the final ethanol yield by 60 and 99%, respectively. Correlating the molecular descriptors to inhibition efficiency in yeast fermentation revealed a strong relationship between the energy of the lowest unoccupied molecular orbital (ELUMO) of aldehydes and their inhibitory efficiency in fermentation. On the other hand, vanillin, syringaldehyde, and 4-hydroxybenzaldehyde (5.0 mM) increased the final ethanol yields by 11, 4, and 1%, respectively. Addition of vanillin appeared to favor ethanol formation over glycerol formation and decreased the glycerol yield in yeast fermentation. Furthermore, alcohol dehydrogenase (ADH) activity dropped significantly from 3.85 to 2.72, 1.83, 0.46, and 0.11 U/mg at 6 h of fermentation at vanillin concentrations of 0, 2.5, 5.0, 10.0, and 25.0 mM correspondingly. In addition, fermentation inhibition by acetic acid and benzoic acid was pH-dependent. Addition of acetate, benzoate, and potassium chloride increased the glucose consumption rate, likely because the salts enhanced membrane permeability, thus increasing glucose consumption.

  1. STUDY ON ALCOHOLIC FERMENTATION IN A STATIONARY BASKET BIOREACTOR WITH IMMOBILIZED YEAST CELLS

    Directory of Open Access Journals (Sweden)

    Dan Caşcaval

    2011-02-01

    Full Text Available The use of a stationary basket bioreactor with immobilized S. cerevisiae cells indicated the possibility to extend the number of alcoholic fermentation cycles that can be carried out with the same biocatalysts to over nine. Although the rates of glucose consumption and ethanol production were lower than those recorded for the mobile beds of immobilized yeast cells, the mechanical lysis of the biocatalysts is avoided in the case of basket bed. Due to the substrate and product accumulation inside the basket bed, the fermentation process can be improved by washing out the biocatalysts bed over two or four cycles.

  2. Biological treatment of wine of distilleries

    International Nuclear Information System (INIS)

    Arias Z, Mario; Velez, Luis Fernando; Ospina, Omar

    2001-01-01

    The potential of the yeast Candida tropicalis and Candida guillermondii was evaluated and an isolated partnership of microorganisms of waters of the Medellin River, conformed by two bacteria and one leavening, to degrade the content of organic matter present in wine produced by the factory of Licores and Alcoholes de Antioquia (FLA) in aerobic process with biomass production. For each one of the microorganisms in study this capacity of removal in units of chemical demand of oxygen was quantified (CDO); in addition, parameters were analyzed such as yield of the biomass in relation to the removed CDO and to total reducing sugars (TRS) consumed, time of fermentation and speed of growth different dilutions from wine. Also the possible inhibition was analyzed that the present phenolic compounds in this wine can cause in the biological process of degradation

  3. Ensaio de vinificação: influência da mistura de variedades de uva, sôbre a qualidade do vinho Wine fermentation: the blending of grape varieties to improve wine quality

    Directory of Open Access Journals (Sweden)

    Odette Zardetto de Toledo

    1959-01-01

    Full Text Available Foram realizados ensaios de vinificação, para observar a influência da associação de variedades de uvas cultivadas no Estado de São Paulo, sôbre a melhoria da qualidade do vinho. As uvas empregadas no ensaio foram das variedades Seibel 2 e Seibel 10096. A mistura dos mostos constituída de 70% da var. Seibel 10096 e 30% da var. Seibel 2 foi a que apresentou melhores resultados.The musts of two grape varieties (Seibel 2 and Seibel 10.096 raised in the State of S. Paulo were blended in different percentages to observe their influence on the wine quality. The variety Seibel 2 produces wines of very poor quality. A must composed of 50% Seibel 2 and 50% Seibel 10.096 produced a much better wine. The most remarkable improvement was obtained through the fermentation of a must composed of 70% Seibel 10.096 and 30% Seibel 2.

  4. Content of metals and organic acids from experimental sparkling white wine

    Directory of Open Access Journals (Sweden)

    Focea Mihai Cristian

    2017-01-01

    Full Text Available This work is focused on the study of the influence of different strains of yeasts on the concentration of organic acids, metallic content, and other physical-chemical parameters from experimental sparkling white wines produced by traditional method (bottle fermented. This study was required due to climatic conditions varying from year to year, generating grape harvests with very high alcoholic potential, and very low values for total acidity. In this case, a Muscat Ottonel grape must was used and passed by a reverse osmosis process. The obtained permeate was mixed with a calculated amount of the concentrate to generate a must with a potential of 10.5% (v/v alcohol, in order o to obtain the base wine for the second fermentation. After fermentation, the wine was treated to get tartaric, protein and microbiological stabilization. For the second fermentation four different strains of yeast species Saccharomyces cerevisiae were used. Bottle fermentation and storage was performed at a constant temperature of approximately 12 °C. After six months of storage, sparkling wine samples were analyzed. The metal content was determined using AAS method, and organic acid concentration was determined by a HPLC method. The main physical-chemical characteristics were determined (alcohol concentration, total acidity, volatile acidity, total dry extract, free SO2, total SO2, density, pH, conductivity based on OIV methods. The results obtained indicated significant differences of the analyzed parameters.

  5. Researchers foment better ways to ferment

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    Researchers in Australia and the US are experimenting with Zymomonas mobilis, the bacteria strain used to make tequila. It could reduce fermentation times because it can withstand substantially higher temperatures than yeast. MIT is experimenting with Clostridium thermocellum, a bacteria strain which has the ability to hydrolyze cellulose into glucose sugar and simultaneously ferment the glucose to ethanol. Purdue University is working with Rhizopus, used in the fermentation of certain Chinese wines where alcohol content approaches 18%. Other researchers are looking at enzyme-based processes to improve sugar yields from starch and cellulose, and Purdue is making a major effort to cut distillation energy consumption.

  6. Volatile compounds produced in two traditional fermented foods of ...

    African Journals Online (AJOL)

    Indeed, it was noted: for "nsamba" 86% esters (ethyl caprylate, ethyl decenoate, N-ethyl decanoic, ethyl laurate) and decanoic acid; for "bikedi" 43% terpenes and 37% alcohols: estragol, limonene, linalol, myrcene and menthol. Keywords: Palm wine, dough, cassava, aroma, fermentation. African Journal of Biotechnology, ...

  7. Scopolamine poisoning from homemade 'moon flower' wine.

    Science.gov (United States)

    Smith, E A; Meloan, C E; Pickell, J A; Oehme, F W

    1991-01-01

    LH, a 76-year-old Caucasian male, ingested 3 teaspoons (15 mL) of a homemade wine over a 1-h period and became ill. Approximately 1.5 h later, he was taken to the emergency room of a local hospital with symptoms of respiratory distress and weakness. The plant used in making the wine was Angel's trumpet (Datura suaveolens), which reportedly contains varying amounts of scopolamine and atropine. A sample of the wine was collected and analyzed for these two compounds by reversed-phase HPLC chromatography using 97% methanol-3% deionized water. The filtered wine contained an estimated 29 mg scopolamine/mL, which produced a total ingested dose of 435 mg. No atropine was detected. The scopolamine was confirmed by TLC. An oral dose of 50 mg of atropine sulfate in humans has been reported fatal, but there is no reported fatal dose for scopolamine. The alcohol content and 3.8 pH of the homemade wine may have increased the extraction of this compound from the plant material, and the wine fermentation process may have concentrated the original extract.

  8. Trends in wine microbiology.

    Science.gov (United States)

    Ramón, D

    1997-12-01

    During the last few years many winemakers have started to use pure Saccharomyces cerevisiae strains, frequently isolated from their own geographical regions, to produce wines of more reproductable quality. This microbiological simplification has opened the way for the genetic modification of wine yeast strains. This review concerns the application of molecular techniques in oenology, not only from the point of view of the construction of recombinant strains but also for the study of the population dynamics of wine fermentations.

  9. Interactions Between Industrial Yeasts and Chemical Contaminants in Grape Juice Affect Wine Composition Profile

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2014-01-01

    Full Text Available The interaction between four industrial wine yeast strains and grape juice chemical contaminants during alcoholic fermentation was studied. Industrial strains of Saccharomyces cerevisiae (AWRI 0838, S. cerevisiae mutant with low H2S production phenotype (AWRI 1640, interspecies hybrid of S. cerevisiae and S. kudriavzevii (AWRI 1539 and a hybrid of AWRI 1640 and AWRI 1539 (AWRI 1810 were exposed separately to fungicides pyrimethanil (Pyr, 10 mg/L and fenhexamid (Fhx, 10 mg/L, as well as to the most common toxin produced by moulds on grapes, ochratoxin A (OTA, 5 μg/L, during alcoholic fermentation of Vitis vinifera L. cv. Sauvignon blanc juice. Contaminants were found to strongly impair fermentation performance and metabolic activity of all yeast strains studied. The chemical profile of wine was analyzed by HPLC (volatile acidity, concentrations of ethanol, fructose, glucose, glycerol and organic acids and the aromatic profile was analyzed using a stable isotope dilution technique using GC/MS (ethyl esters, acetates and aromatic alcohols and Kitagawa tubes (H2S. The chemical composition of wine with added contaminants was in all cases significantly different from the control. Of particular note is that the quantity of aromatic compounds produced by yeast was significantly lower. Yeast’s capacity to remove contaminants from wine at the end of the alcoholic fermentation, and after extended contact (7 days was determined. All the strains were able to remove contaminants from the media, moreover, after extended contact, the concentration of contaminants was in most cases lower.

  10. Indigenous Saccharomyces cerevisiae yeasts as a source of biodiversity for the selection of starters for specific fermentations

    Directory of Open Access Journals (Sweden)

    Capece Angela

    2014-01-01

    Full Text Available The long-time studies on wine yeasts have determined a wide diffusion of inoculated fermentations by commercial starters, mainly of Saccharomyces. Although the use of starter cultures has improved the reproducibility of wine quality, the main drawback to this practice is the lack of the typical traits of wines produced by spontaneous fermentation. These findings have stimulated wine-researchers and wine-makers towards the selection of autochthonous strains as starter cultures. The objective of this study was to investigate the biodiversity of 167 S. cerevisiae yeasts, isolated from spontaneous fermentation of grapes. The genetic variability of isolates was evaluated by PCR amplification of inter-δ region with primer pair δ2/δ12. The same isolates were investigated for characteristics of oenological interest, such as resistance to sulphur dioxide, ethanol and copper and hydrogen sulphide production. On the basis of technological and molecular results, 20 strains were chosen and tested into inoculated fermentations at laboratory scale. The experimental wines were analyzed for the content of some by-products correlated to wine aroma, such as higher alcohols, acetaldehyde, ethyl acetate and acetic acid. One selected strain was used as starter culture to perform fermentation at cellar level. The selection program followed during this research project represents an optimal combination between two different trends in modern winemaking: the use of S. cerevisiae as starter cultures and the starter culture selection for specific fermentations.

  11. Inhibition of beet molasses alcoholic fermentation by lactobacilli

    Energy Technology Data Exchange (ETDEWEB)

    Essia Ngang, J.J.; Letourneau, F.; Wolniewicz, E.; Villa, P. (Amiens Univ., 80 (France). Lab. de Chimie Organique et Cinetique)

    1990-08-01

    Alcohol production rate decreases as the concentration of bacterial contaminants increases. In complex medium, such as beet molasses, an alternative mechanism can be used by homofermentative lactic bacteria (Lactobacillus casei). Lactic acid and associated products, especially acetic acid, are liberated into the medium. The inhibition induced by these metabolites was reinforced by the presence of viable lactobacilli. (orig.).

  12. Moderate acute intake of de-alcoholised red wine, but not alcohol, is protective against radiation-induced DNA damage ex vivo-Results of a comparative in vivo intervention study in younger men

    Energy Technology Data Exchange (ETDEWEB)

    Greenrod, W. [CSIRO Health Sciences and Nutrition, Genome Health and Nutrigenomics Laboratory, PO Box 10041, Adelaide BC, SA 5000 (Australia); Department of Clinical and Experimental Pharmacology, University of Adelaide, South Australia (Australia); Stockley, C.S. [Australian Wine Research Institute, South Australia (Australia); Burcham, P. [Department of Clinical and Experimental Pharmacology, University of Adelaide, South Australia (Australia); Abbey, M. [CSIRO Health Sciences and Nutrition, Genome Health and Nutrigenomics Laboratory, PO Box 10041, Adelaide BC, SA 5000 (Australia); Fenech, M. [CSIRO Health Sciences and Nutrition, Genome Health and Nutrigenomics Laboratory, PO Box 10041, Adelaide BC, SA 5000 (Australia)]. E-mail: michael.fenech@hsn.csiro.au

    2005-12-11

    Moderate intake of wine is associated with reduced risk of cardiovascular disease and possibly cancer however it remains unclear whether the potential health benefits of wine intake are due to alcohol or the non-alcoholic fraction of wine. We therefore tested the hypothesis that the non-alcoholic fraction of wine protects against genome damage induced by oxidative stress in a crossover intervention study involving six young adult males aged 21-26 years. The participants adhered to a low plant phenolic compound diet for 48 h prior to consuming 300 mL of complete red wine, dealcoholised red wine or ethanol on separate occasions 1 week apart. Blood samples were collected 0.5, 1.0 and 2.0 h after beverage consumption. Baseline and radiation-induced genome damage was measured using the cytokinesis-block micronucleus assay and total plasma catechin concentration was measured. Consumption of dealcoholised red wine significantly decreased the gamma radiation-induced DNA damage at 1 and 2 h post-consumption by 20%. In contrast alcohol tended to increase radiation-induced genome damage and complete wine protected against radiation-induced genome damage relative to alcohol. The observed effects were only weakly correlated with the concentration of total plasma catechin (R = -0.23). These preliminary data suggest that only the non-alcoholic fraction of red wine protects DNA from oxidative damage but this effect cannot be explained solely by plasma catechin.

  13. Moderate acute intake of de-alcoholised red wine, but not alcohol, is protective against radiation-induced DNA damage ex vivo-Results of a comparative in vivo intervention study in younger men

    International Nuclear Information System (INIS)

    Greenrod, W.; Stockley, C.S.; Burcham, P.; Abbey, M.; Fenech, M.

    2005-01-01

    Moderate intake of wine is associated with reduced risk of cardiovascular disease and possibly cancer however it remains unclear whether the potential health benefits of wine intake are due to alcohol or the non-alcoholic fraction of wine. We therefore tested the hypothesis that the non-alcoholic fraction of wine protects against genome damage induced by oxidative stress in a crossover intervention study involving six young adult males aged 21-26 years. The participants adhered to a low plant phenolic compound diet for 48 h prior to consuming 300 mL of complete red wine, dealcoholised red wine or ethanol on separate occasions 1 week apart. Blood samples were collected 0.5, 1.0 and 2.0 h after beverage consumption. Baseline and radiation-induced genome damage was measured using the cytokinesis-block micronucleus assay and total plasma catechin concentration was measured. Consumption of dealcoholised red wine significantly decreased the gamma radiation-induced DNA damage at 1 and 2 h post-consumption by 20%. In contrast alcohol tended to increase radiation-induced genome damage and complete wine protected against radiation-induced genome damage relative to alcohol. The observed effects were only weakly correlated with the concentration of total plasma catechin (R = -0.23). These preliminary data suggest that only the non-alcoholic fraction of red wine protects DNA from oxidative damage but this effect cannot be explained solely by plasma catechin

  14. New Uses of Hawthorn Fruits in Tonic Wines Technology

    Directory of Open Access Journals (Sweden)

    Andruţa Elena MUREŞAN

    2016-11-01

    Full Text Available Tonic wines are true natural elixirs, having the property to fortify the organism. To achieve a complex product and to supplement the antioxidant properties of the wine, the hawthorn fruits were added. They completed the product by maceration, so that the tonic wine got major active substances which have great medicinal value being effective in treating cardiovascular diseases. The content of polyphenols of tonic wine is about six times higher than in simple wine, the hawthorn representing a product rich in polyphenols (510.2 mg GAE/100g. Antioxidant capacity increased when hawthorn fruits were added, as they have an important contribution in terms of new product antioxidant properties. Hawthorn, honey and rosemary added extra minerals in the total dry extract. The relative density increased due to the substances present in hawthorn. The concentration of alcohol slightly increased due to the fermentation which triggers during maceration. The acidity of the new tonic wine developed here was higher, as compared to the simple wine. Higher acidity also contributed to the palatability, the new tonic wine showing a pleasant refreshing taste.

  15. Climate change trends, grape production, and potential alcohol concentration in wine from the "Romagna Sangiovese" appellation area (Italy)

    Science.gov (United States)

    Teslić, Nemanja; Zinzani, Giordano; Parpinello, Giuseppina P.; Versari, Andrea

    2018-01-01

    The trend of climate change and its effect on grape production and wine composition was evaluated using a real case study of seven wineries located in the "Romagna Sangiovese" appellation area (northern Italy), one of the most important wine producing region of Italy. This preliminary study focused on three key aspects: (i) Assessment of climate change trends by calculating bioclimatic indices over the last 61 years (from 1953 to 2013) in the Romagna Sangiovese area: significant increasing trends were found for the maximum, mean, and minimum daily temperatures, while a decreasing trend was found for precipitation during the growing season period (April-October). Mean growing season temperature was 18.49 °C, considered as warm days in the Romagna Sangiovese area and optimal for vegetative growth of Sangiovese, while nights during the ripening months were cold (13.66 °C). The rise of temperature shifted studied area from the temperate/warm temperate to the warm temperate-/warm grape-growing region (according to the Huglin classification). (ii) Relation between the potential alcohol content from seven wineries and the climate change from 2001 to 2012: dry spell index (DSI) and Huglin index (HI) suggested a large contribution to increasing level of potential alcohol in Sangiovese wines, whereas DSI showed higher correlation with potential alcohol respect to the HI. (iii) Relation between grape production and the climate change from 1982 to 2012: a significant increasing trend was found with little effect of the climate change trends estimated with used bioclimatic indices. Practical implication at viticultural and oenological levels is discussed.

  16. Kinetic study of sulfite ion inhibition during alcoholic fermentation of beet molasses

    Energy Technology Data Exchange (ETDEWEB)

    Glacet, A.; Letourneau, F.; Leveque, P.; Villa, P. (UER des Sciences Exactes et Naturelles, 80 - Amiens (France))

    Alcoholic fermentation cycle has been studied on beet molasses exempt from sulfite ions, and containing added amounts of these ions from 1000 to 3000 ppm. Experimental results show that fermentation duration increasing sulfite concentration in the medium from 8% to 40% if SO/sub 3//sup - -/ added varies from 1000 to 3000 ppm. A detailed kinetic study reveals that this increase occurs only during latency period. Moreover the biomass and the ethanol generation curves drawn after latency period appear to be quite linear, their slopes being independent of initial sulfite concentration. Sulfite evolution during fermentation cycle of artificial wort, under identical experimental conditions to those of wort molasses, indicates that more than 80% of these ions disappear during latency period. We have proved that this phenomenon is due to yeast action and not to any chemical reactions between sulfites ions and wort components.

  17. Procedure of brewing alcohol as a staple food: case study of the fermented cereal liquor "Parshot" as a staple food in Dirashe special woreda, southern Ethiopia.

    Science.gov (United States)

    Sunano, Yui

    2016-07-01

    For most brews, alcohol fermentation and lactic fermentation take place simultaneously during the brewing process, and alcohol fermentation can progress smoothly because the propagation of various microorganisms is prevented by lactic fermentation. It is not necessary to cause lactic fermentation with a thing generated naturally and intentionally. The people living in the Dirashe area in southern Ethiopia drink three types of alcoholic beverages that are prepared from cereals. From these alcoholic beverages, parshot is prepared by the addition of plant leaves for lactic fermentation and nech chaka by adding cereal powder for lactic fermentation before alcohol fermentation. People living in the Dirashe area partake of parshot as part of their staple diet. The brewing process used for parshot and a food culture with alcoholic beverages as parts of the staple diet are rare worldwide. This article discusses the significance of using lactic fermentation before alcoholic fermentation and focuses on lactic fermentation in the brewing methods used for the three kinds of alcoholic beverages consumed in the Dirashe area. We initially observed the brewing process and obtained information about the process from the people in that area. Next, we determined the pH and analyzed the lactic acid (g/100 g) and ethanol (g/100 g) content during lactic fermentation of parshot and nech chaka; the ethyl acetate (mg/100 g) and volatile base nitrogen (mg/100 g) content during this period was also analyzed. In addition, we compared the ethanol (g/100 g) content of all three kinds of alcoholic beverages after completion of brewing. The results showed that it was possible to consume large quantities of these alcoholic beverages because of the use of lactic fermentation before alcoholic fermentation, which improved the safety and preservation characteristics of the beverages by preventing the propagation of various microorganisms, improving flavor, and controlling the alcohol level.

  18. Garnacha Tintorera-based sweet wines: chromatic properties and global phenolic composition by means of UV-Vis spectrophotometry.

    Science.gov (United States)

    Figueiredo-González, M; Cancho-Grande, B; Simal-Gándara, J

    2013-09-01

    Valdeorras (the N.W. corner of Spain) wants to promote the production and marketing of new sweet wines. The present work represents the first study on sweet wines manufactured with red grapes Vitis vinifera L. Garnacha Tintorera, a teinturier cultivar. Two different red sweet wines were elaborated: the first one was made with dried grapes; Vitis vinifera L. Garnacha Tintorera has excellent potential to produce wines from raisined grapes; the second one, a fortified sweet wine aged in oak barrels. Different red Garnacha Tintorera-based wines (a dry base wine, GBW; a naturally sweet wine, GNSW; and a fortified sweet wine, GFSW) were characterized. Chromatic characteristics and phenolic compounds were established by spectrophotometric methods in order to assess the technology of Garnacha Tintorera-based sweet wines. High molecular weight brown polymers, produced during the grape drying process and isolated from sweet wines by the dialysis process, were responsible for the brown colour of sweet wines. As a consequence, yellowness of sweet wines was also higher which was confirmed by colorimetric indexes. With respect to phenolic content, GFSW presented the lowest content because the maceration-alcoholic fermentation was stopped through the addition of alcohol before the diffusion of red pigments from skins to must was complete. GNSW presented the highest phenolic content due to the concentration effect resulting from evaporation of water from the grapes. Anthocyanins of sweet wines were polymerised in great extent. The percentage of polymerised tannins was sufficient to guarantee the aging process of sweet wines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits.

    Science.gov (United States)

    Markoski, Melissa M; Garavaglia, Juliano; Oliveira, Aline; Olivaes, Jessica; Marcadenti, Aline

    2016-01-01

    Wine has been used since the dawn of human civilization. Despite many health benefits, there is still a lot of discussion about the real properties of its components and its actions on cells and molecular interactions. A large part of these issues permeate the fine line between the amount of alcohol that causes problems to organic systems and the amount that could be beneficial for the health. However, even after the process of fermentation, wine conserves different organic compounds from grapes, such as polysaccharides, acids, and phenolic compounds, such as flavonoids and nonflavonoids. These substances have known anti-inflammatory and antioxidant capacities, and are considered as regulatory agents in cardiometabolic process. In this study, the main chemical components present in the wine, its interaction with molecules and biological mechanisms, and their interference with intra- and extracellular signaling are reviewed. Finally, the properties of wine that may benefit cardiovascular system are also revised.

  20. Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits

    Directory of Open Access Journals (Sweden)

    Melissa M. Markoski

    2016-01-01

    Full Text Available Wine has been used since the dawn of human civilization. Despite many health benefits, there is still a lot of discussion about the real properties of its components and its actions on cells and molecular interactions. A large part of these issues permeate the fine line between the amount of alcohol that causes problems to organic systems and the amount that could be beneficial for the health. However, even after the process of fermentation, wine conserves different organic compounds from grapes, such as polysaccharides, acids, and phenolic compounds, such as flavonoids and nonflavonoids. These substances have known anti-inflammatory and antioxidant capacities, and are considered as regulatory agents in cardiometabolic process. In this study, the main chemical components present in the wine, its interaction with molecules and biological mechanisms, and their interference with intra- and extracellular signaling are reviewed. Finally, the properties of wine that may benefit cardiovascular system are also revised.

  1. APPLICATION OF RT-PCR FOR ACETOBACTER SPECIES DETECTION IN RED WINE

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2014-02-01

    Full Text Available Acetic acid bacteria play a negative role in wine making because they increase the volatile acidity of wines. They can survive in the various phases of alcoholic fermentation and it is very important to control their presence and ulterior development. The main objective of the present work is to test fast, sensitive and reliable technique such as real-time PCR (rt-PCR and detecting the presence of Acetobacter aceti, Acetobacter pasteurianus, Gluconobacter oxydans, Gluconacetobacter liquefaciens and Gluconacetobacter hansenii in red wine. The aim of our study was the identification of some species of acetic acid bacteria in red wine during the fermentation process using a classical microbiological method. The changes in different groups of microorganisms were monitored in total counts of bacteria, and Acetobacter cells. Microbiological parameters were observed during the current collection and processing of wine in 2012. Samples (Modry Portugal, MP and Frankovka modra, FM were taken during the fermentation process in wine enterprises and were storage with different conditions. The total counts of bacteria ranged from 4.21 in the wine MP at 4°C of storage to 5.81 log CFU.mL-1 in the wine MP at 25°C of storage, but the total counts of bacteria ranged from 4.85 in the wine FM at 4°C of storage to 5.63 log CFU.mL-1 in the wine FM at 25°C of storage. The higher number of Acetobacter cells was found in wine MP at 25°C.

  2. 27 CFR 24.218 - Other wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Other wine. 24.218 Section 24.218 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.218 Other wine. (a) General. Other than standard wine not included in other...

  3. 27 CFR 24.292 - Exported wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Exported wine. 24.292 Section 24.292 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Removal, Return and Receipt of Wine Removals Without Payment of Tax § 24.292 Exported wine. (a) General. Wine may be...

  4. GC-MS Metabolite Profiling of Extreme Southern Pinot noir Wines: Effects of Vintage, Barrel Maturation, and Fermentation Dominate over Vineyard Site and Clone Selection.

    Science.gov (United States)

    Schueuermann, Claudia; Khakimov, Bekzod; Engelsen, Søren Balling; Bremer, Phil; Silcock, Patrick

    2016-03-23

    Wine is an extremely complex beverage that contains a multitude of volatile and nonvolatile compounds. This study investiged the effect of vineyard site and grapevine clone on the volatile profiles of commercially produced Pinot noir wines from central Otago, New Zealand. Volatile metabolites in Pinot noir wines produced from five grapevine clones grown on six vineyard sites in close proximity, over two consecutive vintages, were surveyed using gas chromatography-mass spectrometry (GC-MS). The raw GC-MS data were processed using parallel factor analysis (PARAFAC2), and final metabolite data were analyzed by principal component analysis (PCA). Winemaking conditions, vintage, and barrel maturation were found to be the most dominant factors. The effects of vineyard site and clone were mostly vintage dependent. Although four compounds including β-citronellol, homovanillyl alcohol, N-(3-methylbutyl)acetamide, and N-(2-phenylethyl)acetamide discriminated the vineyard sites independent of vintage, Pinot noir wines from different clones were only partially discriminated by PCA, and marker compound selection remained challenging.

  5. Elaboration and characterization of Japanese Raisin Tree (Hovenia dulcis Thumb. pseudofruits fermented alcoholic beverage

    Directory of Open Access Journals (Sweden)

    Juliana Tensol PINTO

    Full Text Available Abstract Hovenia dulcis pseudofruits have underexplored properties for food purposes, despite their pleasant sensory characteristics and therapeutic benefits. The aim of this study was the elaboration and chemical characterization of the alcoholic fermented beverage of H. dulcis, using selected strain of Saccharomyces cerevisiae (CCMA 0200. The resulting fermented beverage presented high content of phenolic compounds and antioxidant activity when compared to other fruits and beverages (DPPH and ABTS assay. The alcohol content was 12.9 oGL and total sugars 3.57g/L. By the GC-MS analysis, 39 compounds were identified including metabolites with therapeutic potential such as eugenol, trans-farnesol salicylates. The flavonoid dihidromyricetin was identified and quantified (75.17 mg/L by HPLC-DAD and UPLC-MS/MS. The results reinforce the interest on nutraceutical and functional properties of this beverage and opens perspectives for new studies that value this underexplored pseudofruit.

  6. Green and brown propolis: efficient natural biocides for the control of bacterial contamination of alcoholic fermentation of distilled beverage

    Directory of Open Access Journals (Sweden)

    Márcia Justino Rossini Mutton

    2014-12-01

    Full Text Available This study aimed to evaluate the efficiency of natural biocides, brown and green propolis, for the control of bacterial contamination in the production of sugarcane spirit. The treatments consisted of brown and green propolis extracts, ampicillin, and a control and were assessed at the beginning and end of harvest season in ten fermentation cycles. In the microbiological analyses, the lactic acid bacteria were quantified in the inoculum before and after the treatment with biocides, and the viability of yeast cells during fermentation was evaluated. The levels of acids, glycerol, total residual reducing sugars, and ethanol were analyzed for the wine resulting from each fermentation cycle. A reduction in the number of bacterial contaminants in the inoculum in the treatments with the natural biocides was observed, but it did not affect the viability of yeast cells. The control of the contaminants led to the production of higher levels of ethanol and reduced acidity in the wine produced. The results of the use of brown and green propolis to control the growth microorganisms in the fermentation of sugarcane spirit can be of great importance for using alternative strategies to synthetic antibacterials in fermentation processes including other distilled beverage or spirits.

  7. Theory and modelling of ethanol evaporative losses during batch alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L.A.

    1983-06-01

    Evaporative loss of ethanol during batch alcoholic fermentation has been modeled, employing modern concepts of kinetics and stoichiometry and the best available phase equilibrium thermodynamic data. Theoretical results demonstrate that loss is proportional to the second power of the sugar concentration utilized and that the logarithm of loss is proportional to reciprocal absolute temperature. Good agreement is demonstrated among the theory, the numerical model, and the literature results. A master correlation for predicting ethanol loss is presented.

  8. Role of proteolytic enzymes in increasing malt activity and intensifying alcohol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Rimareva, L.V.; Voinarskii, I.N.

    1981-01-01

    Treatment of malt with Protoorizin G10X, Prototerrizin P10X (from Aspergillus oryzae), or papain increased the activity of amylase by 48% and the activity of dextranase by 81%. The saccharification of malt increased by 72%. The use of activated malt intensified alcohol fermentation 1.5-1.7-fold. The fungal proteases were more effective than papain. The activation is apparently due to the release of bound amylolytic enzymes.

  9. Indução da fermentação maloláctica em vinho tinto com a cultura láctica viniflora oenos Induction of malolactic fermentation in red wine with the starter culture viniflora oenos

    Directory of Open Access Journals (Sweden)

    Larissa Dias de Avila

    1997-06-01

    comportamento dos ácidos málico, acético, láctico, pirúvico e tartárico foi demonstrado.Malolactic fermentation is responsible for the reduction of the total acidity, which usually is too high in young red wines. This fermentation provides a higher biological stability and higher complexity of aroma and flavor. In the State of Rio Grande do Sul, malolactic fermentation becomes a necessity because frequently grapes have high acidity and the induction by bacterial inoculation has not been a common practice. This work had as a main aim to evaluate the lactic culture behavior in the induction of malolactic fermentation in relation to the wild bacteria. A must of Cabernet Sauvignon Vitis vinífera was fermented and inoculated with the commercial culture of Leuconostoc oenos, Viniflora Oenos in several residual sugar levels: 34.1 - 13.8 - 1.7 and 1.5g/l. The inoculations, in duplicate, were compared with spontaneous malolactic fermentation (control. Degradation of malic acid was monitored through paper chromatography. Organic acids were determinated by high performance liquid chromatography (HPLC. Reducing sugars (RS, °Brix, pH, total acidity and alcohol were also analysed. The inoculated wine in the 34.1g/l RS stage fermented in 14 days, while the control took 28.5 days in average. In the 13.8 and 1.7g/l RS stages, Viniflora Oenos completed the malic acid degradation around 13 and 11 days, while the controls took 20.5 and 16.5 days, respectively. In the 1.5g/l RS stage, the inoculated wines and the controls did not demonstrate significative difference and fermented between 8 and 10 days. Viniflora Oenos completed the malolactic fermentation in less time. This demonstrates that the inoculation can be made before the end of alcoholic fermentation with good results. In the majority of the treatments there was not significative difference in the acetic acid production between the culture and the control. The behavior of the malic, acetic, lactic, piruvic and tartaric acids were

  10. Mutation and screening of high-alcoholic-yield yeast by HEPE and optimization of the fermentation condition

    International Nuclear Information System (INIS)

    Han Jingjing; Lu Jiangtao; Zhang Qin; Wang Yan; Fu Yujie; Wang Shilong; Fu Haiying

    2011-01-01

    The Saccharomyces Cerevisiae YE0 was mutated using high-energy-pulse-electron (HEPE) beam. After ethanol stress and determination of the alcohol yield by gas chromatograph, the mutant YF1 with high alcoholic yield was obtained. The results showed that under the optimized fermentation conditions (34 degree C as the fermentation temperature, 72 h as the fermentation time and 30% as the glucose concentration), the alcoholic yield of YF1 was 15.57% which was 58.23% higher than that of the original strain YE0 (9.84%) under the same conditions. The growth rate and lethal temperature of the mutant YF1 were obviously enhanced to the original strain YE0. The mutant YF1 has a great potential application in industrial production of alcohol. And it can also be used as the original strain for further mutagenesis to get the strain of higher alcoholic yield. (authors)

  11. Engineering Saccharomyces cerevisiae To Release 3-Mercaptohexan-1-ol during Fermentation through Overexpression of an S. cerevisiae Gene, STR3, for Improvement of Wine Aroma▿

    Science.gov (United States)

    Holt, Sylvester; Cordente, Antonio G.; Williams, Simon J.; Capone, Dimitra L.; Jitjaroen, Wanphen; Menz, Ian R.; Curtin, Chris; Anderson, Peter A.

    2011-01-01

    Sulfur-containing aroma compounds are key contributors to the flavor of a diverse range of foods and beverages. The tropical fruit characters of Vitis vinifera L. cv. Sauvignon blanc wines are attributed to the presence of the aromatic thiols 3-mercaptohexan-1-ol (3MH), 3-mercaptohexan-1-ol-acetate, and 4-mercapto-4-methylpentan-2-one (4MMP). These volatile thiols are found in small amounts in grape juice and are formed from nonvolatile cysteinylated precursors during fermentation. In this study, we overexpressed a Saccharomyces cerevisiae gene, STR3, which led to an increase in 3MH release during fermentation of a V. vinifera L. cv. Sauvignon blanc juice. Characterization of the enzymatic properties of Str3p confirmed it to be a pyridoxal-5′-phosphate-dependent cystathionine β-lyase, and we demonstrated that this enzyme was able to cleave the cysteinylated precursors of 3MH and 4MMP to release the free thiols. These data provide direct evidence for a yeast enzyme able to release aromatic thiols in vitro that can be applied in the development of self-cloned yeast to enhance wine flavor. PMID:21478306

  12. Effect of selected Saccharomyces cerevisiae yeast strains and different aging techniques on the polysaccharide and polyphenolic composition and sensorial characteristics of Cabernet Sauvignon red wines.

    Science.gov (United States)

    del Barrio-Galán, Rubén; Cáceres-Mella, Alejandro; Medel-Marabolí, Marcela; Peña-Neira, Álvaro

    2015-08-15

    The objective of this work was to study the effect of two Saccharomyces cerevisiae yeast strains with different capabilities of polysaccharide liberation during alcoholic fermentation in addition to subsequent aging on lees with or without oak wood chips as well as aging with commercial inactive dry yeast on the physical, chemical and sensorial characteristics of Cabernet Sauvignon red wines. The HPS (high levels of polysaccharides) yeast strain released higher amounts of polysaccharides (429 g L(-1)) than EC1118 (390 g L(-1)) during alcoholic fermentation, but the concentration equalized during the aging period (424 and 417 g L(-1) respectively). All aging techniques increased the polysaccharide concentration, but the increase was dependent on the technique applied. A higher liberation of polysaccharides reduced the concentration of most of the phenolic families analyzed. Moreover, no clear effect of the different aging techniques used in this study on color stabilization was found. The HPS wines were better valued than the EC1118 wines by the panel of tasters after alcoholic fermentation. In general, the HPS wines showed better physicochemical and sensorial characteristics than the EC1118 wines. According to the results obtained during the aging period, all aging techniques contributed to improve wine quality, but it was difficult to establish the technique that allowed the best wine to be obtained, because it depended on the aging technique used and the period of aging. © 2014 Society of Chemical Industry.

  13. The Combined Use of Schizosaccharomyces pombe and Lachancea thermotolerans—Effect on the Anthocyanin Wine Composition

    Directory of Open Access Journals (Sweden)

    Ángel Benito

    2017-05-01

    Full Text Available The most popular methodology to make red wine is through the combined use of Saccharomyces cerevisiae yeast and lactic acid bacteria, for alcoholic fermentation and malolactic fermentation respectively. This classic winemaking practice produces stable red wines from a microbiological point of view. This study aims to investigate a recent red winemaking biotechnology, which through the combined use of Lachancea thermotolerans and Schizosaccharomyces pombe is used as an alternative to the classic malolactic fermentation. In this new methodology, Schizosaccharomyces pombe totally consumes malic acid, while Lachancea thermotolerans produces lactic acid, avoiding excessive deacidification of musts with low acidity in warm viticulture areas such as Spain. This new methodology has been reported to be a positive alternative to malolactic fermentation in low acidity wines, since it has the advantage to produce wines with a more fruity flavor, less acetic acid, less ethyl carbamate originators and less biogenic amines than the traditional wines produced via conventional fermentation techniques. The study focuses on unexplored facts related to this novel biotechnology such as color and anthocyanin profile.

  14. The effect of different alcoholic beverages on blood alcohol levels, plasma insulin and plasma glucose in humans.

    Science.gov (United States)

    Nogueira, L C; Couri, S; Trugo, N F; Lollo, P C B

    2014-09-01

    In the present work we studied the effects of four alcoholic beverages on blood alcohol levels, plasma insulin concentrations and plasma glucose concentrations in men and women. The volunteers were healthy non-smokers and they were divided according to sex into two groups of ten individuals. The alcoholic beverages used in the study were beer, red wine, whisky and "cachaça". In men, ingestion of the distilled drinks promoted a spike in blood alcohol levels more quickly than ingestion of the fermented drinks. In women, beer promoted the lowest blood alcohol levels over the 6h of the experiment. Whisky promoted highest blood alcohol levels in both sexes. The ingestion of wine promoted a significant difference in relation to the blood alcohol concentration (BAC) as a function of gender. The ingestion of cachaça by women produced BAC levels significantly smaller than those obtained for wine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Environmental potential of the use of CO2 from alcoholic fermentation processes. The CO2-AFP strategy.

    Science.gov (United States)

    Alonso-Moreno, Carlos; García-Yuste, Santiago

    2016-10-15

    A novel Carbon Dioxide Utilization (CDU) approach from a relatively minor CO2 emission source, i.e., alcoholic fermentation processes (AFP), is presented. The CO2 produced as a by-product from the AFP is estimated by examining the EtOH consumed per year reported by the World Health Organization in 2014. It is proposed that the extremely pure CO2 from the AFP is captured in NaOH solutions to produce one of the Top 10 commodities in the chemical industry, Na2CO3, as a good example of an atomic economy process. The novel CDU strategy could yield over 30.6Mt of Na2CO3 in oversaturated aqueous solution on using ca. 12.7Mt of captured CO2 and this process would consume less energy than the synthetic methodology (Solvay ammonia soda process) and would not produce low-value by-products. The quantity of Na2CO3 obtained by this strategy could represent ca. 50% of the world Na2CO3 production in one year. In terms of the green economy, the viability of the strategy is discussed according to the recommendations of the CO2Chem network, and an estimation of the CO2negative emission achieved suggests a capture of around 280.0Mt of CO2 from now to 2020 or ca. 1.9Gt from now to 2050. Finally, the results obtained for this new CDU proposal are discussed by considering different scenarios; the CO2 production in a typical winemaking corporation, the CO2 released in the most relevant wine-producing countries, and the use of CO2 from AFP as an alternative for the top Na2CO3-producing countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Partial Purification and Characterisation of Alcohol Dehydrogenase from Acetobacter aceti Isolated from Palm Wine

    Directory of Open Access Journals (Sweden)

    Donatus Chimaobi ONAH

    2016-06-01

    Full Text Available Palm wine is a very important alcoholic beverage whose consumption is limited because it spoils easily. The study was designed to isolate Acetobacter aceti from palm wine, then extract, purify and characterize alcohol dehydrogenase (AD from the A. aceti. Muller Hilton agar was used as medium for the growth of A. aceti for 48 h. The cells were harvested and subjected to ultrasonication using 500 watt ultrasonicator. Enzyme assay was carried out in both the supernatant and pellet. The enzyme was precipitated by polyethelene glycol 6000 while gel filtration was used for purifying the enzyme. The effects of pH, temperature and substrate concentration on AD were evaluated. The isolated A. aceti was gram negative, rod shaped, catalase positive, oxidase negative and was able to oxidize acetic acid to CO2 and H2O. Triton X-100 (0.3% was the most effective concentration in solubilizing the protein (AD, while 15% polyethelene glycol 6000 was the most effective concentration for the precipitation of AD. An optimal pH of 5 was obtained with an optimal temperature of 50 °C. The most appropriate to solubilize and precipitate AD were 0.3% triton X-100 and 15% polyethelene glycol 6000 respectively, while AD activity was reduced under acidic pH, as well as for low and high temperatures.

  17. Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch process.

    Science.gov (United States)

    Guidini, Carla Zanella; Marquez, Líbia Diniz Santos; de Almeida Silva, Helisângela; de Resende, Miriam Maria; Cardoso, Vicelma Luiz; Ribeiro, Eloízio Júlio

    2014-02-01

    Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40% (v/v), and a filling time of 6 h, which resulted in a 92.20% yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75% and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h(-1), with K(I) and K(s) values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h(-1).

  18. Evaluation of different PCR primers for denaturing gradient gel electrophoresis (DGGE) analysis of fungal community structure in traditional fermentation starters used for Hong Qu glutinous rice wine.

    Science.gov (United States)

    Lv, Xu-Cong; Jiang, Ya-Jun; Liu, Jie; Guo, Wei-Ling; Liu, Zhi-Bin; Zhang, Wen; Rao, Ping-Fan; Ni, Li

    2017-08-16

    Denaturing gradient gel electrophoresis (DGGE) has become a widely used tool to examine microbial community structure. However, when DGGE is applied to evaluate the fungal community of traditional fermentation starters, the choice of hypervariable ribosomal RNA gene regions is still controversial. In the current study, several previously published fungal PCR primer sets were compared and evaluated using PCR-DGGE, with the purpose of screening a suitable primer set to study the fungal community of traditional fermentation starters for Hong Qu glutinous rice wine. Firstly, different primer sets were used to amplify different hypervariable regions from pure fungal cultures. Except NS1/FR1+ and ITS1fGC/ITS4, other primer sets (NL1+/LS2R, NL3A/NL4GC, FF390/FR1+, NS1/GCFung, NS3+/YM951r and ITS1fGC/ITS2r) amplified the target DNA sequences successfully. Secondly, the selected primer sets were further evaluated based on their resolution to distinguish different fungal cultures through DGGE fingerprints. Three primer sets (NL1+/LS2R, NS1/GCFung and ITS1fGC/ITS2r) were finally selected for investigating the fungal community structure of different traditional fermentation starters for Hong Qu glutinous rice wine. The internal transcribed spacer (ITS) region amplified by ITS1fGC/ITS2r, which is more hypervariable than the 18S rRNA gene and 26S rRNA gene, provides an excellent tool to separate amplification products of different fungal species. Results indicated that PCR-DGGE profile using ITS1fGC/ITS2r showed more abundant fungal species than that using NL1+/LS2R and NS1/GCFung. Therefore, ITS1fGC/ITS2r is the most suitable primer set for PCR-DGGE analysis of fungal community structure in traditional fermentation starters for Hong Qu glutinous rice wine. DGGE profiles based on ITS1fGC/ITS2r revealed the presence of twenty-four fungal species in traditional fermentation starter. A significant difference of fungal community can be observed directly from DGGE fingerprints and