WorldWideScience

Sample records for windy atmospheric environments

  1. Evaluating the Coda Phase Delay Method for Determining Temperature Ratios in Windy Environments

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Sarah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bowman, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Arthur [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seastrand, Douglas [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States)

    2017-07-01

    We evaluate the acoustic coda phase delay method for estimating changes in atmospheric phenomena in realistic environments. Previous studies verifying the method took place in an environment with negligible wind. The equation for effective sound speed, which the method is based upon, shows that the influence of wind is equal to the square of temperature. Under normal conditions, wind is significant and therefore cannot be ignored. Results from this study con rm the previous statement. The acoustic coda phase delay method breaks down in non-ideal environments, namely those where wind speed and direction varies across small distances. We suggest that future studies make use of gradiometry to better understand the effect of wind on the acoustic coda and subsequent phase delays.

  2. 2015 Big Windy, Oregon 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are LiDAR orthorectified aerial photographs (8-bit GeoTIFF format) within the Oregon Lidar Consortium Big Windy project area. The imagery coverage is...

  3. 2015 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Big Windy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Big Windy 2015 study area. This study area is located near...

  4. 2013 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Big Windy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July of 2013, lightning strikes ignited three wildfires in southwest Oregon that became known as the Big Windy Complex. The fires were fully contained by the end...

  5. The bibliometrics of atmospheric environment

    Science.gov (United States)

    Brimblecombe, Peter; Grossi, Carlota M.

    Bibliometric analysis is an important tool in the management of a journal. SCOPUS output is used to assess the increase in the quantity of material in Atmospheric Environment and stylistic changes in the way authors choose words and punctuation in titles and assemble their reference lists. Citation analysis is used to consider the impact factor of the journal, but perhaps more importantly the way in which it reflects the importance authors give to papers published in Atmospheric Environment. The impact factor of Atmospheric Environment (2.549 for 2007) from the Journal Citation Reports suggests it performs well within the atmospheric sciences, but it conceals the long term value authors place on papers appearing in the journal. Reference lists show that a fifth come through citing papers more than a decade old.

  6. Atmospheric pollution in our environment

    International Nuclear Information System (INIS)

    Tanvir, G.

    1986-01-01

    Air pollution is associated with all the activities of humans. It is becoming a serious problem in coming years so it is relevant to find out how seriously our atmosphere is being polluted and how this pollution affects human and plant life in our environment. Not only the human activities are the source of our pollution but nature causes more pollution. Air pollution that is due to the pressure of foreign substances in air, effects the quality and concentration of air substances. It is not only injurious to property, but also to vegetation and animal life. Air pollution is one of our most serious environmental problems. The sources vary from smoke-stacks and automobiles to noise and foreon containing aerosols. (orig./A.B.)

  7. Bayesian hierarchical modelling of North Atlantic windiness

    Science.gov (United States)

    Vanem, E.; Breivik, O. N.

    2013-03-01

    Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  8. Bayesian hierarchical modelling of North Atlantic windiness

    Directory of Open Access Journals (Sweden)

    E. Vanem

    2013-03-01

    Full Text Available Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  9. The Electrostatic Environments of Mars: Atmospheric Discharges

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  10. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  11. White dwarf atmospheres and circumstellar environments

    CERN Document Server

    Hoard, Donald W

    2012-01-01

    Written by selected astronomers at the forefront of their fields, this timely and novel book compiles the latest results from research on white dwarf stars, complementing existing literature by focusing on fascinating new developments in our understanding of the atmospheric and circumstellar environments of these stellar remnants. Complete with a thorough refresher on the observational characteristics and physical basis for white dwarf classification, this is a must-have resource for researchers interested in the late stages of stellar evolution, circumstellar dust and nebulae, and the future

  12. Severe Weather Environments in Atmospheric Reanalyses

    Science.gov (United States)

    King, A. T.; Kennedy, A. D.

    2017-12-01

    Atmospheric reanalyses combine historical observation data using a fixed assimilation scheme to achieve a dynamically coherent representation of the atmosphere. How well these reanalyses represent severe weather environments via proxies is poorly defined. To quantify the performance of reanalyses, a database of proximity soundings near severe storms from the Rapid Update Cycle 2 (RUC-2) model will be compared to a suite of reanalyses including: North American Reanalysis (NARR), European Interim Reanalysis (ERA-Interim), 2nd Modern-Era Retrospective Reanalysis for Research and Applications (MERRA-2), Japanese 55-year Reanalysis (JRA-55), 20th Century Reanalysis (20CR), and Climate Forecast System Reanalysis (CFSR). A variety of severe weather parameters will be calculated from these soundings including: convective available potential energy (CAPE), storm relative helicity (SRH), supercell composite parameter (SCP), and significant tornado parameter (STP). These soundings will be generated using the SHARPpy python module, which is an open source tool used to calculate severe weather parameters. Preliminary results indicate that the NARR and JRA55 are significantly more skilled at producing accurate severe weather environments than the other reanalyses. The primary difference between these two reanalyses and the remaining reanalyses is a significant negative bias for thermodynamic parameters. To facilitate climatological studies, the scope of work will be expanded to compute these parameters for the entire domain and duration of select renalyses. Preliminary results from this effort will be presented and compared to observations at select locations. This dataset will be made pubically available to the larger scientific community, and details of this product will be provided.

  13. Single event phenomena in atmospheric neutron environments

    International Nuclear Information System (INIS)

    Gossett, C.A.; Hughlock, B.W.; Katoozi, M.; LaRue, G.S.; Wender, S.A.

    1993-01-01

    As integrated circuit technology achieves higher density through smaller feature sizes and as the airplane manufacturing industry integrates more sophisticated electronic components into the design of new aircraft, it has become increasingly important to evaluate the contribution of single event effects, primarily Single Event Upset (SEU), to the safety and reliability of commercial aircraft. In contrast to the effects of radiation on electronic systems in space applications for which protons and heavy ions are of major concern, in commercial aircraft applications the interactions of high energy neutrons are the dominant cause of single event effects. These high energy neutrons are produced by the interaction of solar and galactic cosmic rays, principally protons and heavy ions, in the upper atmosphere. This paper will describe direct experimental measurements of neutron-induced Single Event Effect (SEE) rates in commercial high density static random access memories in a neutron environment characteristic of that at commercial airplane altitudes. The first experimental measurements testing current models for neutron-silicon burst generation rates will be presented, as well as measurements of charge collection in silicon test structures as a function of neutron energy. These are the first laboratory SEE and charge collection measurements using a particle beam having a continuum energy spectrum and with a shape nearly identical to that observed during flight

  14. [Regional atmospheric environment risk source identification and assessment].

    Science.gov (United States)

    Zhang, Xiao-Chun; Chen, Wei-Ping; Ma, Chun; Zhan, Shui-Fen; Jiao, Wen-Tao

    2012-12-01

    Identification and assessment for atmospheric environment risk source plays an important role in regional atmospheric risk assessment and regional atmospheric pollution prevention and control. The likelihood exposure and consequence assessment method (LEC method) and the Delphi method were employed to build a fast and effective method for identification and assessment of regional atmospheric environment risk sources. This method was applied to the case study of a large coal transportation port in North China. The assessment results showed that the risk characteristics and the harm degree of regional atmospheric environment risk source were in line with the actual situation. Fast and effective identification and assessment of risk source has laid an important foundation for the regional atmospheric environmental risk assessment and regional atmospheric pollution prevention and control.

  15. The changing winds of atmospheric environment policy

    International Nuclear Information System (INIS)

    Murray, Frank

    2013-01-01

    Highlights: ► Changes in atmosphere policies over several decades are analysed. ► Direct regulation is less effective and been complemented by other instruments. ► Policy approaches are more complex and integrated and the scale of the issues has evolved. ► The role of stakeholders has grown and the corporate sector has assumed increased responsibility. ► Governance arrangements have become more complex, multilevel and polycentric. -- Abstract: Atmospheric environmental policies have changed considerably over the last several decades. Clearly the relative importance of the various issues has changed over half a century, for example from smoke, sulphur dioxide and photochemical smog being the top priorities to greenhouse gases being the major priority. The traditional policy instrument to control emissions to the atmosphere has been command and control regulation. In many countries this was successful in reducing emissions from point sources, the first generation issues, and to a lesser extent, emissions from mobile and area sources, the second generation issues, although challenges remain in many jurisdictions. However once the simpler, easier, cheaper and obvious targets had been at least partially controlled this form of regulation became less effective. It has been complemented by other instruments including economic instruments, self-regulation, voluntarism and information instruments to address more complex issues including climate change, a third generation issue. Policy approaches to atmospheric environmental issues have become more complex. Policies that directly focus on atmospheric issues have been partially replaced by more integrated approaches that consider multimedia (water, land, etc.) and sustainability issues. Pressures from stakeholders for inclusion, greater transparency and better communication have grown and non-government stakeholders have become increasingly important participants in governance. The scale of the issues has evolved

  16. Response to subcommittee on environment and atmosphere

    International Nuclear Information System (INIS)

    MacCracken, M.C.

    1975-10-01

    The potential effects of chronic release of pollutants on climatic changes are discussed with regard to dose-response characteristics, ambiguities in prediction of climatic effects, ambiguities in measuring climatic effects, research approaches, and approaches to standard setting. A table is presented to show potential atmospheric effects of the following pollutants: CO 2 from fossil fuels, fluorocarbons, nitrogen oxides, 85 K from nuclear power plants, sulfur compounds, dusts, heat and water releases from energy generation processes, and oceanic oil slicks

  17. The global atmospheric environment for the next generation

    NARCIS (Netherlands)

    Dentener, F.; Stevenson, D.; Ellingsen, K.; Noije, van T.; Schultz, M.; Amann, M.; Atherton, C.; Bell, N.; Bergmann, D.; Bey, I.; Bouwman, L.; Butler, T.; Cofala, J.; Collins, B.; Drevet, J.; Doherty, R.; Eickhout, B.; Eskes, H.; Fiore, A.; Gauss, M.; Hauglustaine, D.; Horowitz, L.; Isaksen, I.S.A.; Josse, B.; Lawrence, M.; Krol, M.C.; Lamarque, J.F.; Montanaro, V.; Müller, J.F.; Peuch, V.H.; Pitari, G.; Pyle, J.; Rast, S.; Rodriguez, J.; Sanderson, M.; Savage, N.H.; Shindell, D.; Strahan, S.; Szopa, S.; Sudo, K.; Dingenen, van R.; Wild, O.; Zeng, G.

    2006-01-01

    Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first

  18. 1988 activity report of the Atmospheric and Aquatic Environment Department

    International Nuclear Information System (INIS)

    Mery, P.

    1988-01-01

    The 1988 activity report of the Atmospheric and Aquatic Environment Department of EDF (Electricity of France) is presented. The activities are focused on the following subjects: development studies in the fields of hydraulic, hydrobiology, meteorology and atmospheric polluants physico-chemistry; application studies involving data analysis from operating or under development power systems; actions concerning cooperation with the Minister of the Environment and the Minister of the Industry. The investigations related to water and atmosphere are reported, as well as congress communications and papers [fr

  19. Vulnerability assessment of atmospheric environment driven by human impacts.

    Science.gov (United States)

    Zhang, Yang; Shen, Jing; Ding, Feng; Li, Yu; He, Li

    2016-11-15

    Atmospheric environment quality worsening is a substantial threat to public health worldwide, and in many places, air pollution due to the intensification of the human activity is increasing dramatically. However, no studies have been investigated the integration of vulnerability assessment and atmospheric environment driven by human impacts. The objective of this study was to identify and prioritize the undesirable environmental changes as an early warning system for environment managers and decision makers in term of human, atmospheric environment, and social economic elements. We conduct a vulnerability assessment method of atmospheric environment associated with human impact, this method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators under the Exposure-Sensitivity- Adaptive Capacity (ESA) framework. Decision makers can find out relevant vulnerability assessment results with different vulnerable attitudes. In the Beijing-Tianjin-Hebei (BTH) region, China, we further applied this developed method and proved it to be reliable and consistent with the China Environmental Status Bulletin. Results indicate that the vulnerability of atmospheric environment in the BTH region is not optimistic, and environment managers should do more about air pollution. Thus, the most appropriate strategic decision and development program of city or state can be picked out assisting by the vulnerable results. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    Science.gov (United States)

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  1. Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project

    Science.gov (United States)

    Colantonio, Ron

    2011-01-01

    Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena

  2. Subterranean karst environments as a global sink for atmospheric methane

    Science.gov (United States)

    Webster, Kevin D.; Drobniak, Agnieszka; Etiope, Giuseppe; Mastalerz, Maria; Sauer, Peter E.; Schimmelmann, Arndt

    2018-03-01

    The air in subterranean karst cavities is often depleted in methane (CH4) relative to the atmosphere. Karst is considered a potential sink for the atmospheric greenhouse gas CH4 because its subsurface drainage networks and solution-enlarged fractures facilitate atmospheric exchange. Karst landscapes cover about 14% of earth's continental surface, but observations of CH4 concentrations in cave air are limited to localized studies in Gibraltar, Spain, Indiana (USA), Vietnam, Australia, and by incomplete isotopic data. To test if karst is acting as a global CH4 sink, we measured the CH4 concentrations, δ13CCH4, and δ2HCH4 values of cave air from 33 caves in the USA and three caves in New Zealand. We also measured CO2 concentrations, δ13CCO2, and radon (Rn) concentrations to support CH4 data interpretation by assessing cave air residence times and mixing processes. Among these caves, 35 exhibited subatmospheric CH4 concentrations in at least one location compared to their local atmospheric backgrounds. CH4 concentrations, δ13CCH4, and δ2HCH4 values suggest that microbial methanotrophy within caves is the primary CH4 consumption mechanism. Only 5 locations from 3 caves showed elevated CH4 concentrations compared to the atmospheric background and could be ascribed to local CH4 sources from sewage and outgassing swamp water. Several associated δ13CCH4 and δ2HCH4 values point to carbonate reduction and acetate fermentation as biochemical pathways of limited methanogenesis in karst environments and suggest that these pathways occur in the environment over large spatial scales. Our data show that karst environments function as a global CH4 sink.

  3. Monitoring of contamination of atmospheric environment by radiation

    International Nuclear Information System (INIS)

    Ise, Hiroaki

    1995-01-01

    Atmospheric pollution has become a worldwide problem regardless of developed industrial nations and developing countries. In particular, the pollution due to automobile exhaust gas, the carcinogenic particles in diesel exhaust and their relation to various respiratory diseases are the problems. Nitrogen oxides and sulfur oxides in exhaust gas become the cause of acid rain. Radiation began to be utilized for the measurement of the concentration of floating particles and the amount of fallout dust, the forecast of the generation and diffusion of pollutants, the elucidation of the contribution of generation sources in wide areas and so on. In this report, the circumstances that radiation became to be utilized for monitoring atmospheric environment and the present status and the perspective of the radiation utilization in the field of the preservation of atmospheric environment are described. The progress of the method of measuring floating particles in Japan is explained. The automatic measurement of floating particles by β-ray absorption method and the application of β-ray absorption method to the measurement of the amount of fallout dust, generation source particles and the exposure to floating particles of individuals for health control are described. The utilization of radiation for real time monitoring, the investigation of the generation of blown-up dust, atmospheric diffusion experiment and the elucidation of the contribution of generation sources by PIXE radioactivation analysis are reported. (K.I.)

  4. Optical intensity scintillation in the simulated atmospherical environment

    Science.gov (United States)

    Hajek, Lukas; Latal, Jan; Vanderka, Ales; Vitasek, Jan; Bojko, Marian; Bednarek, Lukas; Vasinek, Vladimir

    2016-09-01

    There are several parameters of the atmospheric environment which have an effect on the optical wireless connection. Effects like fog, snow or rain are ones of the effects which appears tendentiously and which are bound by season, geographic location, etc. One of the effects that appear with various intensity for the whole time is airflow. The airflow changes the local refractive index of the air and areas with lower or higher refractive index form. The light going through these areas refracts and due to the optical intensity scintillates on the detector of the receiver. The airflow forms on the basis of two effects in the atmosphere. The first is wind cut and flowing over barriers. The other is thermal flow when warm air rises to the higher layers of the atmosphere. The heart of this article is creation such an environment that will form airflow and the refractive index will scintillate. For the experiment, we used special laboratory box with high-speed ventilators and heating units to simulate atmospheric turbulence. We monitor the impact of ventilator arrangement and air temperature on the scintillation of the gas laser with wavelength 633 nm/15 mW. In the experiment, there is watched the difference in behavior between real measurement and flow simulation with the same peripheral conditions of the airflow in the area of 500 x 500 cm.

  5. Atmospheric corrosion of metals in industrial city environment

    OpenAIRE

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the s...

  6. Exploration of Venus' Deep Atmosphere and Surface Environment

    Science.gov (United States)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.

    2017-01-01

    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  7. Calculation and simulation of atmospheric refraction effects in maritime environments

    Science.gov (United States)

    Dion, Denis, Jr.; Gardenal, Lionel; Lahaie, P.; Forand, J. Luc

    2001-01-01

    Near the sea surface, atmospheric refraction and turbulence affect both IR transmission and image quality. This produces an impact on both the detection and classification/identification of targets. With the financial participation of the U.S. Office of Naval Research (ONR), Canada's Defence Research Establishment Valcartier (DREV) is developing PRIME (Propagation Resources In the Maritime Environment), a computer model aimed at describing the overall atmospheric effects on IR imagery systems in the marine surface layer. PRIME can be used as a complement to MODTRAN to compute the effective transmittance in the marine surface layer, taking into account the lens effects caused by refraction. It also provides information on image degradation caused by both refraction and turbulence. This paper reviews the refraction phenomena that take place in the surface layer and discusses their effects on target detection and identification. We then show how PRIME can benefit detection studies and image degradation simulations.

  8. Atmospheric corrosion of metals in industrial city environment

    Directory of Open Access Journals (Sweden)

    Elzbieta Kusmierek

    2015-06-01

    Full Text Available Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  9. Atmospheric corrosion of metals in industrial city environment.

    Science.gov (United States)

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  10. The Dynamics of the Atmospheric Radiation Environment at Aviation Altitudes

    Science.gov (United States)

    Stassinopoulos, Epaminondas G.

    2004-01-01

    Single Event Effects vulnerability of on-board computers that regulate the: navigational, flight control, communication, and life support systems has become an issue in advanced modern aircraft, especially those that may be equipped with new technology devices in terabit memory banks (low voltage, nanometer feature size, gigabit integration). To address this concern, radiation spectrometers need to fly continually on a multitude of carriers over long periods of time so as to accumulate sufficient information that will broaden our understanding of the very dynamic and complex nature of the atmospheric radiation environment regarding: composition, spectral distribution, intensity, temporal variation, and spatial variation.

  11. Late Holocene dune mobilizations in the northwestern Negev dunefield, Israel: A response to combined anthropogenic activity and short-term intensified windiness

    Science.gov (United States)

    Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.

    2013-04-01

    dune chronostratigraphy. Because they were short lived, the dune mobilization events, corresponding windiness, and probable dustiness which were examined affected the northern Negev landscape differentially. However, they cannot be proved to have affected the environment sufficiently to influence the decline of the late Byzantine and Early Islam agricultural establishment. This study demonstrates the sensitivity of dunes in arid and semi-arid regions to a combination of local and short-term fluctuations in windiness at times of widespread grazing (anthropogenic activity). The results remind us that in similar future scenarios, sand mobilization may be similarly retriggered to varying degrees.

  12. 76 FR 74074 - Final Environmental Impact Statement for the Windy Gap Firming Project, Colorado

    Science.gov (United States)

    2011-11-30

    ... to an electric power line that would be affected by the project, while Grand County is involved... Firming Project and discuss the factors, including C-BT water rights, considered in making that decision... Windy Gap Firming Project, Colorado AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of...

  13. Windiness spells in SW Europe since the last glacial maximum

    NARCIS (Netherlands)

    Costas, S.; Naugthon, P.; Goble, R.; Renssen, H.

    2016-01-01

    Dunefields have a great potential to unravel past regimes of atmospheric circulation as they record direct traces of this component of the climate system. Along the Portuguese coast, transgressive dunefields represent relict features originated by intense and frequent westerly winds that largely

  14. Time evolution of artificial plasma cloud in atmospheric environment

    International Nuclear Information System (INIS)

    Lu Qiming; Yang Weihong; Liu Wandong

    2004-01-01

    By analyzing the time evolution of artificial plasma cloud in the high altitude of atmospheric environment, the authors found that there are two zones, an exponential attenuation zone and a linearly attenuating zone, existing in the spatial distribution of electron density of the artificial plasma clouds. The plasma generator's particle flux density only contributes to the exponential attenuation zone, and has no effect on the linear attenuation zone. The average electron density in the linear attenuation zone is about 10 -5 of neutral particle density, and can diffuse over a wider area. The conclusion will supply some valuable references to the research of electromagnetic wave and artificial plasma interaction, the plasma invisibleness research of missile and special aerocraft, and the design of artificial plasma source. (authors)

  15. Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments

    Science.gov (United States)

    Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas

    2016-04-01

    1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of

  16. Mercury in the atmospheric and coastal environments of Mexico.

    Science.gov (United States)

    Ruelas-Inzunza, Jorge; Delgado-Alvarez, Carolina; Frías-Espericueta, Martín; Páez-Osuna, Federico

    2013-01-01

    In Mexico, published studies relating to the occurrence of Hg in the environment are limited. Among the main sources of Hg in Mexico are mining and refining of Auand Hg, chloralkali plants, Cu smelting, residential combustion of wood, carbo electric plants, and oil refineries. Hg levels are highly variable in the atmospheric compartment because of the atmospheric dynamics and ongoing metal exchange with the terrestrial surface. In atmospheric studies, Hg levels are usually reported as total gaseous Hg (TGM). In Mexico, TGM values ranged from 1.32 ng m-3 in Hidalgo state (a rural agricultural area) to 71.82 ng m-3 in Zacatecas state (an area where brick manufacturers use mining wastes as a raw material).Published information on mercury levels in the coastal environment comprise 21 studies, representing 21 areas, in which sediments constituted the substrate that was analyzed for Hg. In addition, water samples were analyzed for Hg in nine studies.Few studies exist on Hg levels in the Caribbean and in the southwest of the country where tourism is rapidly increasing. Hence, there is a need for establishing baseline levels of mercury in these increasingly visited areas. In regions where studies have been undertaken, Hg levels in sediments were highly variable. Variations in Hg sediment levels mainly result from geological factors and the varying degree of anthropogenic impacts in the studied areas. In areas that still have pristine or nearly pristine environments (e.g., coast, Baja California, Todos Santos Bay, and La Paz lagoon), sediment Hg levels ranged from Mexico, it is clear that Hg fluxes to sediments have increased from2- to 15-fold in recent years. Since the 1940s, historical increases of Hg fluxes have resulted from higher agricultural waste releases and exhaust from the thermo electric plants. The levels of Hg in water reveal a moderate to elevated contamination of some Mexican coastal sites. In Urias lagoon (NW Mexico), moderate to high levels were found in

  17. Flight Load Assessment for Light Aircraft Landing Trajectories in Windy Atmosphere and Near Wind Farms

    Directory of Open Access Journals (Sweden)

    Carmine Varriale

    2018-04-01

    Full Text Available This work focuses on the wake encounter problem occurring when a light, or very light, aircraft flies through or nearby a wind turbine wake. The dependency of the aircraft normal load factor on the distance from the turbine rotor in various flight and environmental conditions is quantified. For this research, a framework of software applications has been developed for generating and controlling a population of flight simulation scenarios in presence of assigned wind and turbulence fields. The JSBSim flight dynamics model makes use of several autopilot systems for simulating a realistic pilot behavior during navigation. The wind distribution, calculated with OpenFOAM, is a separate input for the dynamic model and is considered frozen during each flight simulation. The aircraft normal load factor during wake encounters is monitored at different distances from the rotor, aircraft speeds, rates of descent and crossing angles. Based on these figures, some preliminary guidelines and recommendations on safe encounter distances are provided for general aviation aircraft, with considerations on pilot comfort and flight safety. These are needed, for instance, when an accident risk assessment study is required for flight in proximity of aeolic parks. A link to the GitHub code repository is provided.

  18. Measurement of atmospheric MTF in a littoral environment

    CSIR Research Space (South Africa)

    Griffith, DJ

    2008-09-01

    Full Text Available Measurement of atmospheric modulation transfer function (MTF) derived from the point spread function is an alternative to the use of scintillometry in characterizing the effects of turbulence as well as optical scattering. This experiment involved...

  19. An atmospheric vulnerability assessment framework for environment management and protection based on CAMx.

    Science.gov (United States)

    Zhang, Yang; Shen, Jing; Li, Yu

    2018-02-01

    This paper presents an atmospheric vulnerability assessment framework based on CAMx that should be helpful to assess potential impacts of changes in human, atmospheric environment, and social economic elements of atmospheric vulnerability. It is also a useful and effective tool that can provide policy-guidance for environmental protection and management to reduce the atmospheric vulnerability. The developed framework was applied to evaluate the atmospheric environment vulnerability of 13 cities in the Beijing-Tianjin-Hebei (BTH) region for verification. The results indicated that regional disparity of the atmospheric vulnerability existed in the study site. More specifically, the central and southern regions show more atmospheric environment vulnerability than the northern regions. The impact factors of atmospheric environment vulnerability in the BTH region mainly derived from increasing population press, frequently unfavorable meteorological conditions, extensive economic growth of secondary industry, increased environmental pollution, and accelerating population aging. The framework shown in this paper is an interpretative and heuristic tool for a better understanding of atmospheric vulnerability. This framework can also be replicated at different spatial and temporal scales using context-specific datasets to straightly support environmental managers with decision-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  1. The lunar atmosphere and dust environment explorer mission (LADEE)

    CERN Document Server

    Russell, Christopher

    2015-01-01

    This volume contains five articles describing the mission and its instruments.  The first paper, by the project scientist Richard C. Elphic and his colleagues, describes the mission objectives, the launch vehicle, spacecraft and the mission itself.  This is followed by a description of LADEE’s Neutral Mass Spectrometer by Paul Mahaffy and company.  This paper describes the investigation that directly targets the lunar exosphere, which can also be explored optically in the ultraviolet.  In the following article Anthony Colaprete describes LADEE’s Ultraviolet and Visible Spectrometer that operated from 230 nm to 810 nm scanning the atmosphere just above the surface.  Not only is there atmosphere but there is also dust that putatively can be levitated above the surface, possibly by electric fields on the Moon’s surface.  Mihaly Horanyi leads this investigation, called the Lunar Dust Experiment, aimed at understanding the purported observations of levitated dust.  This experiment was also very succes...

  2. Atmospheric pollution and melanic moths in Manchester and its environs

    Energy Technology Data Exchange (ETDEWEB)

    Askew, R R; Cook, L M; Bishop, J A

    1971-01-01

    Samples of moths have been taken in the Manchester area at sites in localities with moderate to extreme atmospheric pollution. The majority of species collected are dark in color, many typically pale species being represented by dark variants. Four species polymorphic for melanic and non-melanic morphs have been examined in more detail. In Biston betularia the melanic frequency is over 93% at all stations, but the frequency of typicals appears to have increased over the past 15 years. This coincides with a period of extensive smoke control zonation. Gondontis bidentata has a higher frequency of melanics than has been recorded elsewhere in the country. There is significant variation between sites, the higher frequencies occurring in the more polluted localities. Non-melanics segregate into a pale and a dark category. In reared samples males exhibit a greater frequency of melanics than females.

  3. Quantitative and creative design tools for urban design in cold and windy climates

    DEFF Research Database (Denmark)

    Koss, Holger; Jensen, Lotte Bjerregaard; Nielsen, Thomas Alexander Sick

    2014-01-01

    between the design processes and the academic knowledge available is a focus area. The effects of climate change and a general higher demand for quantitative assessment of urban planning proposals in hard climatic locations have created a demand for research based design advice. The paper will present......In cold and windy climates, the quality of the urban spaces is severely challenged. A design process with a very high level of information regarding wind, sun, daylight and water from the earliest of the design process will help create the most optimized design. For the last couple of years...... in academic ‘silos’ where little attention has been made in regards to architectural design processes. Simulation tools were developed that can render a larger amount of information available in a short time and thus can keep pace with an ongoing design process in an architectural studio. Bridging the gap...

  4. Atmospheric Environment Vulnerability Cause Analysis for the Beijing-Tianjin-Hebei Metropolitan Region.

    Science.gov (United States)

    Zhang, Yang; Shen, Jing; Li, Yu

    2018-01-13

    Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management.

  5. Precipitation measurement and derivation of precipitation inclination in a windy mountainous area in northern Costa Rica. Scientific Briefing.

    NARCIS (Netherlands)

    Frumau, K.F.A.; Bruijnzeel, L.A.; Tobón, C.

    2011-01-01

    Over small-scale topography in windy areas, precipitation tends to be redistributed by wind through the modification of precipitation inclination. The latter is often derived from wind speed and conventional rain gauge records by application of relations-derived mainly for convective rainfall

  6. Thoron (220Rn) in the indoor atmospheric environment

    International Nuclear Information System (INIS)

    Ramachandran, T.V.

    2006-01-01

    Naturally occurring background radiation is a topic, which has evoked curiosity and concern between the scientist and layman alike in recent years due to the shift in focus of health effects due to exposure of radiation from acute high level to chronic low level. Many locations around the world have higher levels of natural background radiation due to elevated levels of primordial radio nuclides in the soil and their decay products like radon ( 222 Rn), and thoron ( 220 Rn) in the environment. Of late, technologically enhanced naturally occurring radioactive material has also contributed to the burden of background radiation. It has been estimated that inhalation of 222 Rn, 2 20 Rn and their short lived progenies contribute more than 54% of the total natural background radiation dose received by the general population. In the Indian context, in an earlier national survey, the external gamma radiation dose rates have been more or less well mapped using thermo luminescent dosimeters covering more than 214 locations, which has yielded a national average of 775 mGy/y. Of this, nearly 48.7% contribution of the dose rate is from 40 K and the rest from the uranium (33.6%) and thorium (17.7%) series. A good database pertaining to the country wide levels of uranium, thorium and potassium in geological materials also exists. Thus, there exists a good database on the total external gamma radiation level across the country. Since the contribution from inhalation of 222 Rn, 220 Rn and their short lived progenies contributes more than 54% of the total background radiation dose, it was necessary to supplement the external component with inhalation component. This component is not adequately estimated for the country so far on national level. With this in mind, a national survey has been executed by this center involving a large number of universities and other allied research institutions from different parts of the country for the estimation of inhalation component of the dose

  7. Atmospheric radiation environment analyses based-on CCD camera at various mountain altitudes and underground sites

    Directory of Open Access Journals (Sweden)

    Li Cavoli Pierre

    2016-01-01

    Full Text Available The purpose of this paper is to discriminate secondary atmospheric particles and identify muons by measuring the natural radiative environment in atmospheric and underground locations. A CCD camera has been used as a cosmic ray sensor. The Low Noise Underground Laboratory of Rustrel (LSBB, France gives the access to a unique low-noise scientific environment deep enough to ensure the screening from the neutron and proton radiative components. Analyses of the charge levels in pixels of the CCD camera induced by radiation events and cartographies of the charge events versus the hit pixel are proposed.

  8. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    Science.gov (United States)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  9. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Science.gov (United States)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  10. Application of numerical environment system to regional atmospheric radioactivity transport simulations

    International Nuclear Information System (INIS)

    Yamazawa, H.; Ohkura, T.; Iida, T.; Chino, M.; Nagai, H.

    2003-01-01

    Main functions of the Numerical Environment System (NES), as a part of the Information Technology Based Laboratory (ITBL) project implemented by Japan Atomic Energy Research Institute, became available for test use purposes although the development of the system is still underway. This system consists of numerical models of meteorology and atmospheric dispersion, database necessary for model simulations, post- and pre-processors such as data conversion and visualization, and a suite of system software which provide the users with system functions through a web page access. The system utilizes calculation servers such as vector- and scalar-parallel processors for numerical model execution, a EWS which serves as a hub of the system. This system provides users in the field of nuclear emergency preparedness and atmospheric environment with easy-to-use functions of atmospheric dispersion simulations including input meteorological data preparation and visualization of simulation results. The performance of numerical models in the system was examined with observation data of long-range transported radon-222. The models in the system reproduced quite well temporal variations in the observed radon-222 concentrations in air which were caused by changes in the meteorological field in the synoptic scale. By applying the NES models in combination with the idea of backward-in-time atmospheric dispersion simulation, seasonal shift of source areas of radon-222 in the eastern Asian regions affecting the concentrations in Japan was quantitatively illustrated. (authors)

  11. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, G. E-mail: gianni.deangelis@iol.it; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A

    2001-06-01

    A study of radiation exposures in the ionizing radiation environment of the atmosphere is currently in progress for the Italian civil aviation flight personnel. After a description of the considered data sources/ the philosophy of the study is presented/ and an overview is given of the data processing with regard to flight routes/ the computational techniques for radiation dose evaluation along the flight paths and for the exposure matrix building/ along with an indication of the results that the study should provide.

  12. CorTen steel: a solution to atmospheric degradation in acid and marine environments

    OpenAIRE

    Ruiz Galende, Patricia

    2018-01-01

    35 p.: il. [EN] Weathering steel has a special resistance against the atmospheric corrosion through the formation of a protective layer. This layer is formed, among others, due to the reaction of some alloy elements present in the steel with reactive species, such as sulphur and nitrogen oxides and/or chlorides, which are present in the environment. For that reason, it is a widely used material in outdoor structures (facades, bridges) and it is in vogue among modern sculptors because this ...

  13. The upper atmosphere and solar-terrestrial relations - An introduction to the aerospace environment

    International Nuclear Information System (INIS)

    Hargreaves, J.K.

    1979-01-01

    A theoretical and observational overview of earth's aerospace environment is presented in this book. Emphasis is placed on the principles and observed phenomena of the neutral upper atmosphere, particularly in relation to solar activity. Topics include the structure of the ionosphere and magnetosphere, waves in the magnetosphere, solar flares and solar protons, and storms and other disturbance phenomena, while applications to communications, navigation and space technology are also discussed

  14. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    International Nuclear Information System (INIS)

    Cupini, E.

    1999-01-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed [it

  15. Gas and aerosol radionuclide transfers in complex environments: experimental studies of atmospheric dispersion and interfaces exchanges

    International Nuclear Information System (INIS)

    Maro, Denis

    2011-01-01

    In situations of chronic or accidental releases, the atmosphere is the main pathway of radioactive releases from nuclear facilities to the environment and, consequently, to humans. It is therefore necessary to have sufficient information on this pathway to accurately assess the radiological impact on man and his environment. Institute for Radioprotection and Nuclear Safety develops its own tools of dispersion and atmospheric transfer for its expertise, under normal operation conditions of a facility, but especially in crisis or post-accident. These tools must have a national and international recognition in particular through scientific validation against benchmark experiments performed internationally, nationally or within the IRSN. The Radioecology Laboratory of Cherbourg-Octeville provides, and will increasingly make, a significant contribution to the scientific influence of the Institute in this field. The work presented in this report has contributed to the development or improvement of experimental techniques in the fields of atmospheric dispersion of radionuclides and transfer at interfaces, in complex environments (complex topography, urban area). These experimental techniques, applied during field campaigns, have allowed to acquire new data in order to get a better understanding of radionuclide transfers in the form of gases and aerosols. (author)

  16. Development of Rotary-Wing UAS for Use in Atmospheric Sensing of Near-Storm Environments

    Science.gov (United States)

    Greene, B. R.; Chilson, P. B.; Salazar-Cerreno, J.; Duthoit, S.; Doyle, B.; Wolf, B.; Segales, A.; Fiebrich, C. A.; Waugh, S.; Fredrickson, S.; Oncley, S.; Tudor, L.; Semmer, S.

    2017-12-01

    The capabilities of small unmanned aircraft systems (sUAS) to make atmospheric observations is rapidly being realized as a means to collect previously unobtainable observations in the lowest part of Earth's atmosphere. However, in order for these systems to provide meaningful kinematic and thermodynamic data, it is imperative to establish an understanding of the strengths and limitations of the sensors and retrieval algorithms implemented in both controlled and realistic conditions. This initial objective is comprised of two experimental stages, the first of which is calibration of thermodynamic sensors against references from the Oklahoma Mesonet and the National Center for Atmospheric Research in order to understand their quasi-ideal response characteristics. Furthermore, efforts have been made to calculate horizontal wind fields using Euler angles derived from the sUAS's autopilot. The second stage is validation of these sensor performances once mounted onto a rotary-wing sUAS by comparing measurements with instrumented towers, radiosondes, and other sUAS. It appears that these measurements are robust provided that instrument packages are mounted such that they receive adequate air flow and proper solar shielding. Moreover, experiments to locate this optimal location have been performed, and involved systematically displacing the sensors and wind probe underneath the rotor wash in an isolated chamber using a linear actuator. Once a platform's atmospheric sensing capabilities are optimized, its utility has been proven in applications from turbulence to providing forecasters with quasi-real time profiles in convective environments deemed by the Storm Prediction Center to be of highest risk for severe thunderstorms. After addressing the development of platforms operated by the University of Oklahoma, results from recent field campaigns, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD-MAP) and Environmental Profiling

  17. Gas-to-particle conversion in the atmospheric environment by radiation-induced and photochemical reactions

    International Nuclear Information System (INIS)

    Vohra, K.G.

    1975-01-01

    During the last few years a fascinating new area of research involving ionizing radiations and photochemistry in gas-to-particle conversion in the atmosphere has been developing at a rapid pace. Two problems of major interest and concern in which this is of paramount importance are: (1) radiation induced and photochemical aerosol formation in the stratosphere and, (2) role of radiations and photochemistry in smog formation. The peak in cosmic ray intensity and significant solar UV flux in the stratosphere lead to complex variety of reactions involving major and trace constituents in this region of the atmosphere, and some of these reactions are of vital importance in aerosol formation. The problem is of great current interest because the pollutant gases from industrial sources and future SST operations entering the stratosphere could increase the aerosol burden in the stratosphere and affect the solar energy input of the troposphere with consequent ecological and climatic changes. On the other hand, in the nuclear era, the atmospheric releases from reactors and processing plants could lead to changes in the cloud nucleation behaviour of the environment and possible increase in smog formation in the areas with significant levels of radiations and conventional pollutants. A review of the earlier work, current status of the problem, and conventional pollutants. A review of the earlier work, current status of the problem, and some recent results of the experiments conducted in the author's laboratory are presented. The possible mechanisms of gas-to-particle conversion in the atmosphere have been explained

  18. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?

    Science.gov (United States)

    Dris, Rachid; Gasperi, Johnny; Saad, Mohamed; Mirande, Cécile; Tassin, Bruno

    2016-03-15

    Sources, pathways and reservoirs of microplastics, plastic particles smaller than 5mm, remain poorly documented in an urban context. While some studies pointed out wastewater treatment plants as a potential pathway of microplastics, none have focused on the atmospheric compartment. In this work, the atmospheric fallout of microplastics was investigated in two different urban and sub-urban sites. Microplastics were collected continuously with a stainless steel funnel. Samples were then filtered and observed with a stereomicroscope. Fibers accounted for almost all the microplastics collected. An atmospheric fallout between 2 and 355 particles/m(2)/day was highlighted. Registered fluxes were systematically higher at the urban than at the sub-urban site. Chemical characterization allowed to estimate at 29% the proportion of these fibers being all synthetic (made with petrochemicals), or a mixture of natural and synthetic material. Extrapolation using weight and volume estimates of the collected fibers, allowed a rough estimation showing that between 3 and 10 tons of fibers are deposited by atmospheric fallout at the scale of the Parisian agglomeration every year (2500 km(2)). These results could serve the scientific community working on the different sources of microplastic in both continental and marine environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Single Event Upset in Static Random Access Memories in Atmospheric Neutron Environments

    Science.gov (United States)

    Arita, Yutaka; Takai, Mikio; Ogawa, Izumi; Kishimoto, Tadafumi

    2003-07-01

    Single-event upsets (SEUs) in a 0.4 μm 4 Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476 m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using 252Cf.

  20. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    Science.gov (United States)

    Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; hide

    2014-01-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  1. Single event upset in static random access memories in atmospheric neutron environments

    CERN Document Server

    Arita, Y; Ogawa, I; Kishimoto, T

    2003-01-01

    Single-event upsets (SEUs) in a 0.4 mu m 4Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using sup 2 sup 5 sup 2 Cf. (author)

  2. Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment

    Directory of Open Access Journals (Sweden)

    Zhongyu Cui

    2015-01-01

    Full Text Available Atmospheric corrosion behavior of 2A12 aluminum alloy exposed to a tropical marine environment for 4 years was investigated. Weight loss of 2A12 alloy in the log-log coordinates can be well fitted with two linear segments, attributing to the evolution of the corrosion products. EIS results indicate that the corrosion product layer formed on the specimens exposed for 12 months or longer presents a good barrier effect. Corrosion morphology changes from pitting corrosion to severe intergranular corrosion with the extension of exposure time, resulting in the reduction of the mechanical properties.

  3. Measurements of gaseous mercury exchanges at the sediment-water, water-atmosphere and sediment-atmosphere interfaces of a tidal environment (Arcachon Bay, France).

    Science.gov (United States)

    Bouchet, Sylvain; Tessier, Emmanuel; Monperrus, Mathilde; Bridou, Romain; Clavier, Jacques; Thouzeau, Gerard; Amouroux, David

    2011-05-01

    The elemental mercury evasion from non-impacted natural areas is of significant importance in the global Hg cycle due to their large spatial coverage. Intertidal areas represent a dynamic environment promoting the transformations of Hg species and their subsequent redistribution. A major challenge remains in providing reliable data on Hg species variability and fluxes under typical transient tidal conditions found in such environment. Field experiments were thus carried out to allow the assessment and comparison of the magnitude of the gaseous Hg fluxes at the three interfaces, sediment-water, sediment-atmosphere and water-atmosphere of a mesotidal temperate lagoon (Arcachon Bay, Aquitaine, France) over three distinct seasonal conditions. The fluxes between the sediment-water and the sediment-atmosphere interfaces were directly evaluated with field flux chambers, respectively static or dynamic. Water-atmosphere fluxes were evaluated from ambient concentrations using a gas exchange model. The fluxes at the sediment-water interface ranged from -5.0 to 5.1 ng m(-2) h(-1) and appeared mainly controlled by diffusion. The occurrence of macrophytic covers (i.e.Zostera noltii sp.) enhanced the fluxes under light radiations. The first direct measurements of sediment-atmosphere fluxes are reported here. The exchanges were more intense and variable than the two other interfaces, ranging between -78 and 40 ng m(-2) h(-1) and were mostly driven by the overlying atmospheric Hg concentrations and superficial sediment temperature. The exchanges between the water column and the atmosphere, computed as a function of wind speed and gaseous mercury saturation ranged from 0.4 to 14.5 ng m(-2) h(-1). The flux intensities recorded over the intertidal sediments periodically exposed to the atmosphere were roughly 2 to 3 times higher than the fluxes of the other interfaces. The evasion of elemental mercury from emerged intertidal sediments is probably a significant pathway for Hg evasion in

  4. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  5. Growth Process of Passive Films Formed on Austenitic Stainless Steels under Atmospheric Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Rock-Hoon [Samsung Heavy Industries Co.,Ltd, Seoul (Korea, Republic of); Fujimoto, Shinji [Osaka University, Osaka (Japan)

    2014-06-15

    The excellent protection ability of stainless steel derives from the highly Cr enriched passive film which is formed as a result of selective dissolution of Fe into the bulk solution. On the other hand, the passive films formed under atmospheric conditions do not necessarily exhibit Cr enrichment, because the amount of the solution on a stainless steel as an adsorbed thin water layer is not sufficient for selective dissolution of Fe. Therefore, the modification of passive films may occur as tiny mass transfer between hydroxide layer and oxide layer of the passive films, and/or occasional replace of the adsorbed thin water layer. In the present work, in order to discuss atmospheric corrosion, passive films on stainless steels formed under humid atmospheric environments were characterized using X-ray photoelectron spectroscopy. Optimal conditions for the pulse anodizing were a duty ratio of 91%, a frequency of 0.09 Hz, and an anodizing time of 600 s. Pulse anodizing caused a remarkable decrease in the surface porosity (11-fold) and an increase in the film thickness (1.6-fold) from those obtained under a constant potential of 10 V{sub Ag/AgCl}. Furthermore, an Al-enriched oxide layer was formed on the outer surface of MgO.

  6. Atmospheric mixing ratios of methyl ethyl ketone (2-butanone in tropical, boreal, temperate and marine environments

    Directory of Open Access Journals (Sweden)

    A. M. Yáñez-Serrano

    2016-09-01

    Full Text Available Methyl ethyl ketone (MEK enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia. Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere.

  7. Study of different atmospheric environments associated to storms development in the Madeira Island

    Science.gov (United States)

    Couto, Flavio Tiago do

    The study aims to improve the understanding about different atmospheric environments leading to the development of storms associated with heavy precipitation in Madeira Island. For this purpose, four main goals have been considered: 1) To document the synoptic and mesoscale environments associated with heavy precipitation. 2) To characterize surface precipitation patterns that affected the island during some periods of significant accumulated precipitation using numerical modelling. 3) To study the relationship between surface precipitation patterns and mesoscale environments. 4) To highlight how the PhD findings obtained in the first three goals can be translated into an operational forecast context. Concerning the large scale environment, precipitation over the island was favoured by weather systems (e.g, mesoscale convective systems and low pressure systems), as well as by the meridional transport of high amount of moisture from a structure denominated as “Atmospheric River”. The tropical origin of this moisture is underscored, however, their impact on the precipitation in Madeira was not so high during the 10 winter seasons [2002 - 2012] studied. The main factor triggering heavy precipitation events over the island is related to the local orography. The steep terrain favours orographically-induced stationary precipitation over the highlands, although maximum of precipitation at coastal region may be produced by localized blocking effect. These orographic precipitating systems presented different structures, associated with shallow and deep convection. Essentially, the study shows that the combination of airflow dynamics, moist content, and orography is the major mechanism that produces precipitation over the island. These factors together with the event duration act to define the regions of excessive precipitation. Finally, the study highlights two useful points for the operational sector, regarding the meridional water vapour transport and local effects

  8. The System of the Calibration for Visibility Measurement Instrument Under the Atmospheric Aerosol Simulation Environment

    Directory of Open Access Journals (Sweden)

    Shu Zhifeng

    2016-01-01

    formula, then it been divided by 3 is MOR. The aerosol concentration in chamber can be changed by adjusting aerosol generator that producing variety of visibility atmospherical environment. The experiment has been carried out and the measurement accuracy of atmospheric transmittance is 0.3‰ Corresponding to the accuracy of MOR 4.9% at the 2km visibility environment. So this system can be calibrated and validated the other visibility measuring devices.

  9. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    Science.gov (United States)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    Earth's radiation budget is directly influenced by aerosols through the absorption of solar radiation and subsequent heating of the atmosphere. Aerosols modulate the hydrological cycle indirectly by modifying cloud properties, precipitation and ocean heat storage. In addition, polluting aerosols impose health risks in local, regional and global scales. In spite of recent advances in the study of aerosols variability, uncertainty in their spatio-temporal distributions still presents a challenge in the understanding of climate variability. For example, aerosol loading varies not only from year to year but also on higher frequency intraseasonal time scales producing strong variability on local and regional scales. An assessment of the impact of aerosol variability requires long period measurements of aerosols at both regional and global scales. The present dissertation compiles a large database of remotely sensed aerosol loading in order to analyze its spatio-temporal variability, and how this load interacts with different variables that characterize the dynamic and thermodynamic states of the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic satellite observations, and reanalysis datasets is used in the analysis to investigate aerosol-environment interactions. A diagnostic study is conducted to produce global and regional aerosol satellite climatologies, and to analyze and compare the validity of aerosol retrievals. We find similarities and differences between the aerosol distributions over various regions of the globe when comparing the different satellite retrievals. A nonparametric approach is also used to examine the spatial distribution of the recent trends in aerosol concentration. A significant positive trend was found over the Middle East, Arabian Sea and South Asian regions strongly influenced by increases in dust events. Spectral and composite analyses

  10. Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis.

    Science.gov (United States)

    Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René

    2012-03-01

    Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The effects of radionuclides in the atmosphere on weather, climate and environment

    International Nuclear Information System (INIS)

    Jager, D. de.

    1992-10-01

    A literature study on the effects of the released radionuclides in the atmosphere on weather, climate and environment are reported. In this report a science outlook of these effects is presented. The emissions generated by the electricity are the central issue. For the global effects the released krypton-85 (half-life time 10,78 years) which are caused by reprocessing factories would take an important role, but for local effects the releasing of short-living isotopes as xenon-133 and xenon-135 produced by nuclear reactors and radon-222 produced by mining activities must be taken into account. The production, emission and distribution of these related important isotopes are discussed, just like air-electric circuits (global), the chemistry of the atmosphere (local) and the consequences of it for the weather, climate and environment on earth. Radionuclides could affect on the development of the thunderstorm, rainfall, cloud formation, air dampness, acid- and aerosol formations and also indirect, for example, for the greenhouse effect and acid rainfall. (author). 133 refs., 22 figs., 11 tabs

  12. Land-Atmosphere Interactions in Cold Environments (LATICE): The role of Atmosphere - Biosphere - Cryosphere - Hydrosphere interactions in a changing climate

    Science.gov (United States)

    Burkhart, J. F.; Tallaksen, L. M.; Stordal, F.; Berntsen, T.; Westermann, S.; Kristjansson, J. E.; Etzelmuller, B.; Hagen, J. O.; Schuler, T.; Hamran, S. E.; Lande, T. S.; Bryn, A.

    2015-12-01

    Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reducing snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. Assessing the influence of climate and land cover changes on water and energy fluxes. Integrating remote earth observations with in-situ data and

  13. Atmospheric pollution assessment from a mountainous environment in Southern Ghana: case study of Abetifi

    International Nuclear Information System (INIS)

    Palm, Linda Maud Naa-Dedei

    2016-07-01

    In the pursuit to improve man’s livelihood, human activities which include emission of heavy metals from various industries and sectors, as well as the past use of chemicals such as pesticides, polychlorinated biphenyls and flame retardants have often mobilized and redistributed natural substances and anthropogenic pollutants into the atmosphere, predisposing it to relatively high concentrations of such pollutants even in pristine areas in the environment. This study assessed the level of atmospheric pollution, contributing sources and human health exposure risk of persistent organic pollutants (POPs) along with selected heavy metals with focus on Abetifi, one of the highest altitude environments in Ghana. Passive sampling with polyurethane foam (PUF) as adsorbent was employed. Samplers were deployed every 84 days for two years. A total of 65 polyurethane foams were deployed and twelve (12) groups of analytes were considered together with their various isomers. High resolution gas chromatographic technique coupled with high resolution mass spectrometry (HRGC-HRMS) and electron capture detectors (ECD) were used in the analysis of the POPs. Besides, high performance liquid chromatography (HPLC) coupled with MS was employed in analysing the perfluorinated compounds (PFCs) while the heavy metals were analysed using Atomic Absorption Spectrometer (AAS). Principal Component Analysis (PCA) and UNMIX model were used to group pollution source contribution of all analytes (POPs and heavy metals) in this study. Diagnostic isomer and other predictive ratios were also employed for source apportionment of various individual analyte groups. Results revealed that polychlorinated dibenzo-furans gave with the least total mean concentration (0.074 pg/m"3) for the sampling period and polybrominated biphenyls gave the highest (55 pg/m"3). The pesticide group gave values in the order of DRINs (53 pg/m"3) > DDT (41 pg/m"3) > HCHs (28 pg/m"3). Data for perflourinated compounds (PFCs) in

  14. Multi-scale dynamic modeling of atmospheric pollution in urban environment

    International Nuclear Information System (INIS)

    Thouron, Laetitia

    2017-01-01

    Urban air pollution has been identified as an important cause of health impacts, including premature deaths. In particular, ambient concentrations of gaseous pollutants such as nitrogen dioxide (NO 2 ) and particulate matter (PM10 and PM2.5) are regulated, which means that emission reduction strategies must be put in place to reduce these concentrations in places where the corresponding regulations are not respected. Besides, air pollution can contribute to the contamination of other media, for example through the contribution of atmospheric deposition to runoff contamination. The multifactorial and multi-scale aspects of urban make the pollution sources difficult to identify. Indeed, the urban environment is a heterogeneous space characterized by complex architectural structures (old buildings alongside a more modern building, residential, commercial, industrial zones, roads, etc.), non-uniform atmospheric pollutant emissions and therefore the population exposure to pollution is variable in space and time. The modeling of urban air pollution aims to understand the origin of pollutants, their spatial extent and their concentration/deposition levels. Some pollutants have long residence times and can stay several weeks in the atmosphere (PM2.5) and therefore be transported over long distances, while others are more local (NO x in the vicinity of traffic). The spatial distribution of a pollutant will therefore depend on several factors, and in particular on the surfaces encountered. Air quality depends strongly on weather, buildings (canyon-street) and emissions. The aim of this thesis is to address some of these aspects by modeling: (1) urban background pollution with a transport-chemical model (Polyphemus / POLAIR3D), which makes it possible to estimate atmospheric pollutants by type of urban surfaces (roofs, walls and roadways), (2) street-level pollution by explicitly integrating the effects of the building in a three-dimensional way with a multi-scale model of

  15. An investigation into perception-altering lighting concepts for supporting game designers in setting certain atmospheres within a videogame environment

    NARCIS (Netherlands)

    Nieuwdorp, H.J.; Beresford, M.; Khan, J.V.; Aarts, E.; de Ruyter, B.; Markopoulos, P.; van Loenen, E.; Wichert, R.; Schouten, B.

    2014-01-01

    Lighting in video games is used to set moods and atmosphere, or can serve as a gameplay tool. This paper examines the effects lighting concepts can have on a virtual game environment on the players’ navigation within the game. Previously known lighting concepts were tested in a virtual environment

  16. Linked Environments for Atmospheric Discovery (LEAD): A Cyberinfrastructure for Mesoscale Meteorology Research and Education

    Science.gov (United States)

    Droegemeier, K.

    2004-12-01

    A new National Science Foundation Large Information Technology Research (ITR) grant - known as Linked Environments for Atmospheric Discovery (LEAD) - has been funded to facilitate the identification, access, preparation, assimilation, prediction, management, analysis, mining, and visualization of a broad array of meteorological data and model output, independent of format and physical location. A transforming element of LEAD is dynamic workflow orchestration and data management, which will allow use of analysis tools, forecast models, and data repositories as dynamically adaptive, on-demand systems that can a) change configuration rapidly and automatically in response to weather; b) continually be steered by new data; c) respond to decision-driven inputs from users; d) initiate other processes automatically; and e) steer remote observing technologies to optimize data collection for the problem at hand. Having been in operation for slightly more than a year, LEAD has created a technology roadmap and architecture for developing its capabilities and placing them within the academic and research environment. Further, much of the LEAD infrastructure being developed for the WRF model, particularly workflow orchestration, will play a significant role in the nascent WRF Developmental Test Bed Center located at NCAR. This paper updates the status of LEAD (e.g., the topics noted above), its ties with other community activities (e.g., CONDUIT, THREDDS, MADIS, NOMADS), and the manner in which LEAD technologies will be made available for general use. Each component LEAD application is being created as a standards-based Web service that can be run in stand-alone configuration or chained together to build an end-to-end environment for on-demand, real time NWP. We describe in this paper the concepts, implementation plans, and expected impacts of LEAD, the underpinning of which will be a series of interconnected, heterogeneous virtual IT "Grid environments" designed to provide a

  17. Localized Corrosion Behavior of Type 304SS with a Silica Layer Under Atmospheric Corrosion Environments

    International Nuclear Information System (INIS)

    E. Tada; G.S. Frankel

    2006-01-01

    The U.S. Department of Energy (DOE) has proposed a potential repository for spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nevada. [I] The temperature could be high on the waste packages, and it is possible that dripping water or humidity could interact with rock dust particulate to form a thin electrolyte layer with concentrated ionic species. Under these conditions, it is possible that highly corrosion-resistant alloys (CRAs) used as packages to dispose the nuclear waste could suffer localized corrosion. Therefore, to better understand long-term corrosion performance of CRAs in the repository, it is important to investigate localized corrosion under a simulated repository environment. We measured open circuit potential (OCP) and galvanic current (i g ) for silica-coated Type 304SS during drying of salt solutions under controlled RH environments to clarify the effect of silica layer as a dust layer simulant on localized corrosion under atmospheric environments. Type 304SS was used as a relatively susceptible model CRA instead of the much more corrosion resistant alloys, such as Alloy 22, that are being considered as, waste package materials

  18. A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar

    Science.gov (United States)

    Fröhlich, Dominik; Matzarakis, Andreas

    2016-04-01

    Human thermal perception is best described through thermal indices. The most popular thermal indices applied in human bioclimatology are the perceived temperature (PT), the Universal Thermal Climate Index (UTCI), and the physiologically equivalent temperature (PET). They are analysed focusing on their sensitivity to single meteorological input parameters under the hot and windy meteorological conditions observed in Doha, Qatar. It can be noted, that the results for the three indices are distributed quite differently. Furthermore, they respond quite differently to modifications in the input conditions. All of them show particular limitations and shortcomings that have to be considered and discussed. While the results for PT are unevenly distributed, UTCI shows limitations concerning the input data accepted. PET seems to respond insufficiently to changes in vapour pressure. The indices should therefore be improved to be valid for several kinds of climates.

  19. Measurement and simulation of the radiation environment in the lower atmosphere for dose assessment

    International Nuclear Information System (INIS)

    Pioch, Christian Dieter

    2012-01-01

    Flying personnel is occupationally exposed to rather high radiation levels due to secondary cosmic radiation. Therefore, the radiation environment induced in the lower atmosphere by galactic and solar cosmic radiation was characterized by means of particle transport calculations using GEANT4. These calculations were validated with continuous measurements of the energy spectra of secondary neutrons with Bonner sphere spectrometers at the Zugspitze mountain and near the North Pole. The response of these instruments was determined with GEANT4 and for the first time experimentally verified at high neutron energies (244 and 387 MeV). Route doses for aircrews along typical long-haul flights were determined for galactic and solar cosmic radiation using most recent data on the magnetospheric field and primary cosmic radiation.

  20. The Lunar Atmosphere and Dust Environment Explorer (LADEE): Initial Science Results

    Science.gov (United States)

    Elphic, R. C.; Hine, B.; Delory, G. T.; Salute, J. S.; Noble, S.; Colaprete, A.; Horanyi, M.; Mahaffy, P.

    2014-01-01

    On September 6, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. LADEE arrived at the Moon on October 6, 2013, dur-ing the government shutdown. The spacecraft impact-ed the lunar surface on April 18, 2014, following a completely successful mission. LADEE's science objectives were twofold: (1) De-termine the composition and variability of the lunar atmosphere; (2) Characterize the lunar exospheric dust environment, and its variability. The LADEE science payload consisted of the Lunar Dust Experiment (LDEX), which sensed dust impacts in situ, for parti-cles between 100 nm and 5 micrometers; a neutral mass spectrometer (NMS), which sampled lunar exo-spheric gases in situ, over the 2-150 Dalton mass range; an ultraviolet/visible spectrometer (UVS) ac-quired spectra of atmospheric emissions and scattered light from tenuous dust, spanning a 250-800 nm wave-length range. UVS also performed dust extinction measurements via a separate solar viewer optic. The following are preliminary results for the lunar exosphere: (1) The helium exosphere of the Moon, first observed during Apollo, is clearly dominated by the delivery of solar wind He++. (2) Neon 20 is clearly seen as an important constituent of the exosphere. (3) Argon 40, also observed during Apollo and arising from interior outgassing, exhibits variations related to surface temperature-driven condensation and release, and is also enhanced over specific selenographic longi-tudes. (4) The sodium abundance varies with both lu-nar phase and with meteoroid influx, implicating both solar wind sputtering and impact vaporization process-es. (5) Potassium was also routinely monitored and exhibits some of the same properties as sodium. (6) Other candidate species were seen by both NMS and UVS, and await confirmation. Dust measurements have revealed a persistent "shroud" of small dust particles

  1. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    Science.gov (United States)

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  2. The ward atmosphere important for the psychosocial work environment of nursing staff in psychiatric in-patient care.

    Science.gov (United States)

    Tuvesson, Hanna; Wann-Hansson, Christine; Eklund, Mona

    2011-06-16

    The nursing staff working in psychiatric care have a demanding work situation, which may be reflected in how they view their psychosocial work environment and the ward atmosphere. The aims of the present study were to investigate in what way different aspects of the ward atmosphere were related to the psychosocial work environment, as perceived by nursing staff working in psychiatric in-patient care, and possible differences between nurses and nurse assistants. 93 nursing staff working at 12 general psychiatric in-patient wards in Sweden completed two questionnaires, the Ward Atmosphere Scale and the QPSNordic 34+. Data analyses included descriptive statistics, the Mann-Whitney U-test, Spearman rank correlations and forward stepwise conditional logistic regression analyses. The data revealed that there were no differences between nurses and nurse assistants concerning perceptions of the psychosocial work environment and the ward atmosphere. The ward atmosphere subscales Personal Problem Orientation and Program Clarity were associated with a psychosocial work environment characterized by Empowering Leadership. Program Clarity was related to the staff's perceived Role Clarity, and Practical Orientation and Order and Organization were positively related to staff perceptions of the Organizational Climate. The results from the present study indicate that several ward atmosphere subscales were related to the nursing staff's perceptions of the psychosocial work environment in terms of Empowering Leadership, Role Clarity and Organizational Climate. Improvements in the ward atmosphere could be another way to accomplish improvements in the working conditions of the staff, and such improvements would affect nurses and nurse assistants in similar ways.

  3. The ward atmosphere important for the psychosocial work environment of nursing staff in psychiatric in-patient care

    Directory of Open Access Journals (Sweden)

    Wann-Hansson Christine

    2011-06-01

    Full Text Available Abstract Background The nursing staff working in psychiatric care have a demanding work situation, which may be reflected in how they view their psychosocial work environment and the ward atmosphere. The aims of the present study were to investigate in what way different aspects of the ward atmosphere were related to the psychosocial work environment, as perceived by nursing staff working in psychiatric in-patient care, and possible differences between nurses and nurse assistants. Methods 93 nursing staff working at 12 general psychiatric in-patient wards in Sweden completed two questionnaires, the Ward Atmosphere Scale and the QPSNordic 34+. Data analyses included descriptive statistics, the Mann-Whitney U-test, Spearman rank correlations and forward stepwise conditional logistic regression analyses. Results The data revealed that there were no differences between nurses and nurse assistants concerning perceptions of the psychosocial work environment and the ward atmosphere. The ward atmosphere subscales Personal Problem Orientation and Program Clarity were associated with a psychosocial work environment characterized by Empowering Leadership. Program Clarity was related to the staff's perceived Role Clarity, and Practical Orientation and Order and Organization were positively related to staff perceptions of the Organizational Climate. Conclusions The results from the present study indicate that several ward atmosphere subscales were related to the nursing staff's perceptions of the psychosocial work environment in terms of Empowering Leadership, Role Clarity and Organizational Climate. Improvements in the ward atmosphere could be another way to accomplish improvements in the working conditions of the staff, and such improvements would affect nurses and nurse assistants in similar ways.

  4. Tritium distribution in the environment in the vicinity of a chronic atmospheric source-assessment of the steady state hypothesis

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Bauer, L.R.; Zeigler, C.C.

    1990-01-01

    The Savannah River Site (SRS) is a major radionuclide production center. Tritium has been released to the atmosphere over the 36 year period of operation. The tritiated water concentration of the atmosphere, rain, vegetation and food have been routinely monitored during this period. Special studies have been made of tritium in soils and in the organic fractions of these same materials. The available data suggest that the average tritium concentration in the components of the terrestrial environment have approached a steady state with the two main sources of tritium, rainfall and atmospheric water vapor

  5. Atmospheric temporal variations in the pre-landfall environment of typhoon Nangka (2015) observed by the Himawari-8 AHI

    Science.gov (United States)

    Lee, Yong-Keun; Li, Jun; Li, Zhenglong; Schmit, Timothy

    2017-11-01

    The next generation Geostationary Operational Environmental Satellite-R series (GOES-R) Advanced Baseline Imager (ABI) legacy atmospheric profile (LAP) retrieval algorithm is applied to the Advanced Himawari Imager (AHI) radiance measurements from the Himawari-8 satellite. Derived products included atmospheric temperature/moisture profiles, total precipitable water (TPW), and atmospheric stability indices. Since both AHI and ABI have 9 similar infrared bands, the GOES-R ABI LAP retrieval algorithm can be applied to the AHI measurements with minimal modifications. With the capability of frequent (10-min interval) full disk observations over the East Asia and Western Pacific regions, the AHI measurements are used to investigate the atmospheric temporal variation in the pre-landfall environment for typhoon Nangka (2015). Before its landfall over Japan, heavy rainfalls from Nangka occurred over the southern region of Honshu Island. During the pre-landfall period, the trends of the AHI LAP products indicated the development of the atmospheric environment favorable for heavy rainfall. Even though, the AHI LAP products are generated only in the clear skies, the 10-minute interval AHI measurements provide detailed information on the pre-landfall environment for typhoon Nangka. This study shows the capability of the AHI radiance measurements, together with the derived products, for depicting the detailed temporal features of the pre-landfall environment of a typhoon, which may also be possible for hurricanes and storms with ABI on the GOES-R satellite.

  6. Atmospheric Constraints on the Surface UV Environment of Mars at 3.9 Ga Relevant to Prebiotic Chemistry

    Science.gov (United States)

    Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D.

    2017-08-01

    Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO2-H2O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τcloud ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO2. On the other hand, absorption from SO2, H2S, and dust is nondegenerate with CO2, meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively.

  7. A landscape-scale approach to examining the fate of atmospherically derived industrial metals in the surficial environment.

    Science.gov (United States)

    Stromsoe, Nicola; Marx, Samuel K; McGowan, Hamish A; Callow, Nikolaus; Heijnis, Henk; Zawadzki, Atun

    2015-02-01

    Industrial metals are now ubiquitous within the atmosphere and their deposition represents a potential source of contamination to surficial environments. Few studies, however, have examined the environmental fate of atmospheric industrial metals within different surface environments. In this study, patterns of accumulation of atmospherically transported industrial metals were investigated within the surface environments of the Snowy Mountains, Australia. Metals, including Pb, Sb, Cr and Mo, were enriched in aerosols collected in the Snowy Mountains by 3.5-50 times pre-industrial concentrations. In sedimentary environments (soils, lakes and reservoirs) metals showed varying degrees of enrichment. Differences were attributed to the relative degree of atmospheric input, metal sensitivity to enrichment, catchment area and metal behaviour following deposition. In settings where atmospheric deposition dominated (ombrotrophic peat mires in the upper parts of catchments), metal enrichment patterns most closely resembled those in collected aerosols. However, even in these environments significant dilution (by 5-7 times) occurred. The most sensitive industrial metals (those with the lowest natural concentration; Cd, Ag, Sb and Mo) were enriched throughout the studied environments. However, in alpine tarn-lakes no other metals were enriched, due to the dilution of pollutant-metals by catchment derived sediment. In reservoirs, which were located lower within catchments, industrial metals exhibited more complex patterns. Particle reactive metals (e.g. Pb) displayed little enrichment, implying that they were retained up catchment, whereas more soluble metals (e.g., Cu and Zn) showed evidence of concentration. These same metals (Cu and Zn) were depleted in soils, implying that they are preferentially transported through catchments. Enrichment of other metals (e.g. Cd) varied between reservoirs as a function of contributing catchment area. Overall this study showed that the fate

  8. The abundance and diversity of antibiotic resistance genes in the atmospheric environment of composting plants.

    Science.gov (United States)

    Gao, Min; Qiu, Tianlei; Sun, Yanmei; Wang, Xuming

    2018-07-01

    Composting is considered to reduce the introduction of antimicrobial resistance genes (ARGs) into the environment through land application of manure; however, the possible pollution of ARGs in the atmospheric environment of composting plants is unknown. In this study, 29 air samples including up- and downwind, composting, packaging, and office areas from 4 composting plants were collected. Dynamic concentrations of 22 subtypes of ARGs, class 1 integron (intl1), and 2 potential human pathogenic bacteria (HPB), and bacterial communities were investigated using droplet digital PCR and 16S rRNA gene sequencing, respectively. In this study, intl1 and 22 subtypes of ARGs (except tetQ) were detected in air of composting, packaging, office, and downwind areas. The highest concentration of 15 out of 22 subtypes of ARGs was detected in the packaging areas, and intl1 also had the maximum average concentration of 10 4  copies/m 3 , with up to (1.78 ± 0.49) × 10 -2 copies/16S rRNA copy. Non-metric multi-dimensional scaling of ARGs, potential HPBs, and bacterial components all indicated that the bioaerosol pollutant pattern in packaging areas was most similar to that in composting areas, followed by office, downwind, and upwind areas. The co-occurrence between ARGs and bacterial taxa assessed by Procrustes test, mantel test, and network analysis implied that aerosolized ARG fragments from composting and packaging areas contributed to the compositions of ARG aerosols in office and downwind areas. The results presented here show that atmoshperic environments of composting plants harbor abundant and diverse ARGs, which highlight the urgent need for comprehensive evaluation of potential human health and ecological risks of composts during both production as well as land application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    International Nuclear Information System (INIS)

    Angelis, G. De; Ballard, T.; Lagorio, S.; Verdecchia, A.

    2000-01-01

    All risk assessment techniques for possible health effects from low dose rate radiation exposure should combine knowledge both of the radiation environment and of the biological response, whose effects (e.g. carcinogenesis) are usually evaluated through mathematical models and/or animal and cell experiments. Data on human exposure to low dose rate radiation exposure and its effects are not readily available, especially with regards to stochastic effects, related to carcinogenesis and therefore to cancer risks, for which the event probability increases with increasing radiation exposure. The largest source of such data might be airline flight personnel, if enrolled for studies on health effects induced by the cosmic-ray generated atmospheric ionizing radiation, whose total dose, increasing over the years, might cause delayed radiation-induced health effects, with the high-LET and highly ionizing neutron component typical of atmospheric radiation. In 1990 flight personnel has been given the status of 'occupationally exposed to radiation' by the International Commission for Radiation Protection (ICRP), with a received radiation dose that is at least twice larger than that of the general population. The studies performed until now were limited in scope and cohort size, and moreover no information whatsoever on radiation occupational exposure (e.g. dose, flight hours, route haul, etc.) was used in the analysis, so no correlation has been until now possible between atmospheric ionizing radiation and (possibly radiation-induced) observed health effects. Our study addresses the issues, by considering all Italian civilian airline flight personnel, both cockpit and cabin crew members, with about 10,000 people selected, whose records on work history and actual flights (route, aircraft type, date, etc. for each individual flight for each person where possible) are considered. Data on actual flight routes and profiles have been obtained for the whole time frame. The actual dose

  10. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E. [ENEA, Centro Ricerche Ezio Clementel, Bologna, (Italy). Dipt. Innovazione

    1999-07-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed. [Italian] Nel presente rapporto vengono descritte le principali caratteristiche del codice di calcolo PREMAR-2, che esegue la simulazione Montecarlo del trasporto della radiazione elettromagnetica nell'atmosfera, nell'intervallo di frequenza che va dall'infrarosso all'ultravioletto. Rispetto al codice PREMAR precedentemente sviluppato, il codice

  11. Windy Prospects: An approach to strategic foresight in the global wind turbine industry

    OpenAIRE

    Wied, Morten

    2007-01-01

    This report explores the forces of change which will influence the competitive environment of the wind turbine industry over the coming decade. It further explores the strategic consequences of such change for wind turbine manufacturers and investigates possibilities for adaptation, pre-emption and early warning. This report explores the forces of change which will influence the competitive environment of the wind turbine industry over the coming decade. It further explores the strategic c...

  12. A Description of the Framework of the Atmospheric Boundary Layer Environment (ABLE) Model

    Science.gov (United States)

    2012-09-01

    between soil, urban, vegetation , and/or surface water and the atmosphere and radiation. We seek to fill a gap in Army capabilities by developing a...the Atmosphere; Cambridge Univ. Press, 393 pp, 2010. Wyngaard, J. C. Toward Numerical Modeling in the “ Terra Incognita.” Journal of Atmospheric

  13. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    International Nuclear Information System (INIS)

    Poellaenen, R.

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has been higher

  14. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has

  15. Testimony presented to the Committee on Science and Technology's Subcommittee on Environment and the Atmosphere

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1976-03-01

    This report contains the basis for oral testimony to the House Committee on Science and Technology's Subcommittee on Environment and the Atmosphere in November 1975. The subject of the hearings was ''Effects and Costs of Long-term Exposure to Low Levels of Manmade Pollutants'' and the purpose of the hearings was to increase the awareness of low-level pollution and its impacts on human health, agriculture and climate. This report contains information related to impacts of low-level pollutants on human health. I have attempted to point out the major adverse health effects (e.g., carcinogenic, mutagenic and teratogenic) that may result from chronic exposure to low-level pollutants. Also addressed are important questions such as what do we know about dose-response relations for chronic exposure to pollutants and how can we establish comparisons with knowledge obtained from exposure to ionizing radiations. The report also considers the wisdom of extrapolating from health effects data obtained from acute, high-level exposures to chronic, low-level exposure conditions. Lastly, a few examples of the societal costs related to low-level pollutant exposure are presented

  16. Metal Contamination of the Natural Environment in Norway from Long Range Atmospheric Transport

    International Nuclear Information System (INIS)

    Steinnes, E.

    2001-01-01

    Long range atmospheric transport is the most important source of contamination to the natural environment in Norway with many heavy metals. Investigations based on aerosol studies, bulk deposition measurements and moss analysis show that airborne transport from other parts of Europe is the major mode for supply of vanadium, zinc, arsenic, selenium, molybdenum, cadmium, tin,antimony, tellurium, thallium, lead, and bismuth, whereas metals such as chromium, nickel, and copper are mainly derived from point sources within Norway and in northwestern Russia close to the Norwegian border. Elements associated with long range transport show substantial enrichment in the humus horizon of natural soils in southern Norway, sometimes to levels suspected to cause effects on soil microbial processes. E.g. lead concentration values of 150-200 ppm are observed in the most contaminated areas in the south as compared to about 5 ppm in the far north. Elements such as lead and cadmium also show enrichment in some terrestrial food chains. These elements also show considerably elevated levels over background concentrations in the water and sediment of small lakes in the southern part of the country. Retrospective studies based on ombrogenous peatcores indicate that long range transport has been a significant source of heavy metal contamination in southern Norway for the last couple of centuries. The deposition of most heavy metals in Norway has been considerably reduced over the last 20 yr, with the exception of contributions in the north from Russian smelters

  17. An estimate of intensity of windy resuspension during imitation of agricultural work

    International Nuclear Information System (INIS)

    Drugachenok, M.A.; Kudryashov, V.P.; Mironov, V.P.

    1996-01-01

    Estimation of intensity of wind rising at imitation of agricultural works. During special experiment for imitation of the agricultural activity which has been carried out in the summer of 1993, the characteristics of radioactive contamination of a surface of ground, density of radioactive fallout, concentration of radionuclides and their distribution on height of surface layer of atmosphere are measured. The value of intensity of secondary wind rising in conditions of dry weather are received. At mechanical influence on ground the intensity of wind rising exceeds on 3-4 order a background value of this parameter which are (4-6)*10 -11 1/c. The received numerical value of intensity of wind rising can be used for forecasting of inhalation intake of radionuclides in organism of the person during agricultural works. 3 tabs., 10 refs

  18. Overview of the atmospheric ionizing radiation environment monitoring by Bulgarian build instruments

    Science.gov (United States)

    Dachev, Tsvetan; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen; Spurny, Frantisek; Ploc, Ondrej; Uchihori, Yukio; Flueckiger, Erwin; Kudela, Karel; Benton, Eric

    2012-10-01

    Humans are exposed to ionizing radiation all the time, and it is known that it can induce a variety of harmful biological effects. Consequently, it is necessary to quantitatively assess the level of exposure to this radiation as the basis for estimating risks for their health. Spacecraft and aircraft crews are exposed to elevated levels of cosmic radiation of galactic and solar origin and to secondary radiation produced in the atmosphere, the vehicle structure and its contents. The aircraft crew monitoring is required by the following recommendations of the International Commission on Radiological Protection (ICRP) (ICRP 1990), the European Union (EU) introduced a revised Basic Safety Standards Directive (EC 1997) which, inter alia, included the exposure to cosmic radiation. This approach has been also adopted in other official documents (NCRP 2002). In this overview we present the results of ground based, mountain peaks, aircraft, balloon and rocket radiation environment monitoring by means of a Si-diode energy deposition spectrometer Liulin type developed first in Bulgarian Academy of Sciences (BAS) for the purposes of the space radiation monitoring at MIR and International Space Station (ISS). These spectrometers-dosemeters are further developed, calibrated and used by scientific groups in different countries. Calibration procedures of them are performed at different accelerators including runs in the CERN high-energy reference field, simulating the radiation field at 10 km altitude in the atmosphere and with heavy ions in Chiba, Japan HIMAC accelerator were performed also. The long term aircraft data base were accumulated using specially developed battery operated instrument in 2001-2009 years onboard of A310-300 aircrafts of Czech Air Lines, during 24 about 2 months runs with more than 2000 flights and 13500 flight hours on routes over the Atlantic Ocean mainly. The obtained experimental data are compared with computational models like CARI and EPCARD. The

  19. A Dropsonde UAV for Atmospheric Sensing in a Turbulent Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Dropsondes are one of the primary atmospheric measurement tools available to researchers. Current dropsondes are deployed with a free fall parachute trajectory,...

  20. First Results from NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)

    Science.gov (United States)

    Elphic, R. C.; Colaprete, A.; Horanyi, M.; Mahaffy, P. R.; Delory, G. T.; Noble, S. K.; Boroson, D.; Hine, B.; Salute, J.

    2013-12-01

    As of early August, 2013, the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is scheduled for launch on a Minotaur V rocket from Wallops Flight Facility during a five-day launch period that opens on Sept. 6, 2013 (early Sept. 7 UTC). LADEE will address 40 year-old mysteries of the lunar atmosphere and the question of levitated lunar dust. It will also pioneer the next generation of optical space communications. LADEE will assess the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes occurring at many objects throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. Following a successful launch, LADEE will enter a series of phasing orbits, which allows the spacecraft to arrive at the Moon at the proper time and phase. This approach accommodates any dispersion in the Minotaur V launch injection. LADEE's arrival at the moon depends on the launch date, but with the Sept. 6 launch date it should arrive at the Moon in early October. The spacecraft will approach the moon from its leading edge, travel behind the Moon out of sight of the Earth, and then re-emerge and execute a three-minute Lunar Orbit Insertion maneuver. This will place LADEE in an elliptical retrograde equatorial orbit with an orbital period of approximately 24 hours. A series of maneuvers is then performed to reduce the orbit to become nearly circular with a 156-mile (250-kilometer) altitude. Spacecraft checkout and science instrument commissioning will commence in early-October and will nominally span 30 days but can be extended for an additional 30

  1. An improved criterion for new particle formation in diverse atmospheric environments

    Directory of Open Access Journals (Sweden)

    C. Kuang

    2010-09-01

    Full Text Available A dimensionless theory for new particle formation (NPF was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter LΓ, characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO, Atlanta (ANARChE, Boulder, and Hyytiälä (QUEST II, QUEST IV, and EUCAARI were used to test the validity of LΓ as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to seventy-seven NPF events and nineteen non-events (characterized by growth of pre-existing aerosol without NPF measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude. Across this diverse data set, a nominal value of LΓ=0.7 was found to determine the boundary for the occurrence of NPF, with NPF occurring when LΓ<0.7 and being suppressed when LΓ>0.7. Moreover, nearly 45% of measured LΓ values associated with NPF fell in the relatively narrow range of 0.1<LΓ<0.3.

  2. Creating a store environment that encourages buying: A study on sight atmospherics

    Directory of Open Access Journals (Sweden)

    Yolande Hefer

    2015-11-01

    Full Text Available More than ever, consumers respond to more than just the physical product when making a decision to purchase a product. One of the most noteworthy features of a product is the atmosphere of the place in which the product is bought. From time to time, the store atmosphere is more powerful than the product itself. This study focused specifically on the most important atmospheric element – sight. The main research question explored the effect of sight atmospherics on consumer perceptions. Explorative research was conducted together with qualitative research by means of focus groups. Purposive sampling was deemed the most appropriate sampling method for this study. The findings indicated that sight atmospherics can influence consumers’ perceptions either subconsciously or consciously, and have a direct influence on the amount of time consumers spend in a specific store. Consumers perceived sight atmospherics as a tool to establish a ‘purchasing’ atmosphere and as a means of communication to represent the brand of the store. It was established that sight atmospherics create visual attraction and stimulation with consumers, and that they contribute to the image and the character of the store.

  3. Atmospheric refraction effects on optical-infrared sensor performance in a littoral-maritime environment

    NARCIS (Netherlands)

    Fritz, P.; Moerman, M.M.; Jong, A.N.; Leeuw, G. de; Winkel, H.

    2004-01-01

    During a number of transmission experiments over littoral waters, quantitative measurements of atmospheric refraction phenomena were carried out to determine the range performance of optical–IR sensors. Examples of distortion and intensity gain generated by spatial variations of the atmospheric

  4. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    Science.gov (United States)

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  5. Effects of atmospheric pressure trends on calling, mate-seeking, and phototaxis of Diaphorina citri (Hemiptera: Liviidae)

    Science.gov (United States)

    Insects and other animals sometimes modify behavior in response to changes in atmospheric pressure, an environmental cue that can provide warning of potentially injurious windy and rainy weather. To determine if Diaphorina citri (Hemiptera: Liviidae) calling, mate-seeking, and phototaxis behaviors w...

  6. Atmospheric contamination

    International Nuclear Information System (INIS)

    Gruetter, Juerg

    1997-01-01

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  7. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  8. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts.

    Science.gov (United States)

    Tsai, Wen-Tien

    2017-09-21

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH₃Cl; methylene chloride, CH₂Cl₂; chloroform, CHCl₃; and carbon tetrachloride, CCl₄) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl₂), formyl chloride (HCOCl), carbonyl chloride (COCl₂), and hydrogen peroxide (H₂O₂). Among them, COCl₂ (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride.

  9. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts

    Science.gov (United States)

    Tsai, Wen-Tien

    2017-01-01

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH3Cl; methylene chloride, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl2), formyl chloride (HCOCl), carbonyl chloride (COCl2), and hydrogen peroxide (H2O2). Among them, COCl2 (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride. PMID:29051455

  10. Plutonium in the environment: key factors related to impact assessment in case of an accidental atmospheric release

    Energy Technology Data Exchange (ETDEWEB)

    Guetat, P. [CEA Valduc, 21 - Is-sur-Tille (France); Moulin, V.; Reiller, P. [CEA Saclay, 91 (FR)] (and others)

    2009-07-01

    This paper deals with plutonium and key factors related to impact assessment. It is based on recent work performed by CEA which summarize the main features of plutonium behaviour from sources inside installations to the environment and man, and to report current knowledge on the different parameters used in models for environmental and radiological impact assessment. These key factors are illustrated through a case study based on an accidental atmospheric release of Pu in a nuclear facility. (orig.)

  11. Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment.

    Science.gov (United States)

    Offenthaler, I; Jakobi, G; Kaiser, A; Kirchner, M; Kräuchi, N; Niedermoser, B; Schramm, K-W; Sedivy, I; Staudinger, M; Thanner, G; Weiss, P; Moche, W

    2009-12-01

    High- and low-volume active air samplers as well as bulk deposition samplers were developed to sample atmospheric SOCs under the adverse conditions of a mountain environment. Active sampling employed separate filters for different European source regions. Filters were switched depending on daily trajectory forecasts, whose accuracy was evaluated post hoc. The sampling continued on three alpine summits over five periods of four months. The prevailing trajectories varied stronger between sampling periods than between stations. The sampling equipment (active and bulk deposition) proved dependable for operation in a mountain environment, with idle times being mainly due to non-routine manipulations and connectivity.

  12. Processing of atmospheric polycyclic aromatic hydrocarbons by fog in an urban environment.

    Science.gov (United States)

    Ehrenhauser, Franz S; Khadapkar, Kalindi; Wang, Youliang; Hutchings, James W; Delhomme, Olivier; Kommalapati, Raghava R; Herckes, Pierre; Wornat, Mary J; Valsaraj, Kalliat T

    2012-10-26

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous pollutants in the atmosphere, predominantly known for their toxicity. Although there has been substantial work on the atmospheric degradation of PAH, little is known about how the presence of atmospheric droplets (e.g., a fog cloud) affects the fate of PAH. In order to assess the processing of PAH and their corresponding oxidation products during a fog event, two field-sampling campaigns in Fresno, CA and Davis, CA were conducted. The simultaneous evaluation of concentrations of the PAH and oxygenated polycyclic aromatic compounds (OPAC) in the gas phase, particulate matter and fog water droplets before, during and after fog allows for the characterization of transformative and transport processes in a fog cloud. By tracking the ratio of OPAC to PAH in the individual atmospheric phases, two major polycyclic aromatic compounds-processing pathways can be identified: (i) the dissolution of OPAC from particulate matter and (ii) the uptake and oxidation of PAH in the fog water droplets. Wet deposition steadily decreases the pollutant concentration in the fog cloud droplets during a fog event; however, uptake and concentration via evaporative water loss upon the dissipation of a fog cloud cause an increase in the atmospheric pollutant concentration.

  13. Space Based Measurements for Atmospheric Carbon Dioxide: a New Tool for Monitoring Our Environment

    Science.gov (United States)

    Crisp, David

    2015-01-01

    Fossil fuel combustion, deforestation, and other human activities are now adding almost 40 billion tons of carbon dioxide (CO2) to the atmosphere each year. Interestingly, as these emissions have increased over time, natural "sinks" in land biosphere and oceans have absorbed roughly half of this CO2, reducing the rate of atmospheric buildup by a half. Measurements of the increasing acidity (pH) of seawater indicate that the ocean absorbs one quarter of this CO2. Another quarter is apparently being absorbed by the land biosphere, but the identity and location of these natural land CO2 "sinks" are still unknown. The existing ground-based greenhouse gas monitoring network provides an accurate record of the atmospheric buildup, but still does not have the spatial resolution or coverage needed to identify or quantify CO2 sources and sinks.

  14. The Shoreline Environment Atmospheric Dispersion Experiment (SEADEX): Meteorological and gas tracer data

    International Nuclear Information System (INIS)

    Johnson, W.B.; Cantrell, B.K.; Morley, B.M.; Uthe, E.E.; Nitz, K.C.

    1987-10-01

    The SEADEX atmospheric dispersion field study was conducted during the period May 28 to June 8, 1982, in northeastern Wisconsin, the vicinity of the Kewaunee Power Plant on the western shore of Lake Michigan. The specific objectives of SEADEX were to characterize (1) the atmospheric dispersion and (2) the meteorological conditions influencing this dispersion as completely as possible during the test period. This field study included a series of controlled tracer tests utilizing state-of-the-art tracer measurement technology to determine horizontal and vertical dispersion over both land and water. Extensive meteorological measurements were obtained to thoroughly characterize the three-dimensional structure of the atmospheric boundary controlling the dispersion process. This volume presents the meteorological and gas tracer data collected during the field study. 391 figs., 32 tabs

  15. Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments

    Science.gov (United States)

    Hagler, Gayle S. W.

    Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.

  16. Comparison of atmosphere/aquatic environment concentration ratio of volatile chlorinated hydrocarbons between temperate regions and Antarctica.

    Science.gov (United States)

    Zoccolillo, Lelio; Amendola, Luca; Insogna, Susanna

    2009-09-01

    For the purpose of understanding the transport and deposition mechanisms and the air-water distribution of some volatile chlorinated hydrocarbons (VCHCs), their atmosphere/aquatic environment concentration ratio was evaluated. In addition, for the purpose of differentiating VCHC behaviour in a temperate climate from its behaviour in a polar climate, the atmosphere/aquatic environment concentration ratio evaluated in matrices from temperate zones was compared with the concentration ratio evaluated in Antarctic matrices. In order to perform air samplings also at rigid Antarctic temperatures, the sampling apparatus, consisting of a diaphragm pump and canisters, was suitably modified. Chloroform, 1,1,1-trichloroethane, tetrachloromethane, 1,1,2-trichloroethylene and tetrachloroethylene were measured in air, water and snow using specific techniques composed of a purpose-made cryofocusing-trap-injector (for air samples) and a modified purge-and-trap injector (for aqueous samples) coupled to a gas chromatograph with mass spectrometric detection operating in selected ion monitoring mode. The VCHCs were retrieved in all the investigated matrices, both Italian and Antarctic, with concentrations varying from tens to thousands of ng m(-3) in air and from digits to hundreds of ng kg(-1) in water and snow. The atmosphere/aquatic environment concentration ratios were always found to be lower than 1. In particular, the Italian air/water concentration ratios were smaller than the Antarctic ones, by reason of the higher atmospheric photochemical activity in temperate zones. On the other hand, the Antarctic air/snow concentration ratios proved to be largely in favour of snow with respect to the Italian ratios, thus corroborating the hypothesis of a more efficient VCHC deposition mechanism and accumulation on Antarctic snow.

  17. The effect of external electron injection and the environment composition on development of atmospheric discharge investigation

    International Nuclear Information System (INIS)

    Bogachenkov, V.A.; Oginov, A.V.; Chajkovskij, S.A.; Shpakov, K.V.

    2012-01-01

    The effect of external electron injection (with energy about 150 keV) on initial phase development of the high-voltage (1.0-1.2 MV) long (500-700 mm) gas discharge is investigated. The experiments were conducted in atmospheric pressure air and in a mixture of air and water droplet phase [ru

  18. Anthropogenic atmospheric precipitation and quality of environment in Ivano-Frankivsk oblast

    OpenAIRE

    Ганжа, Дмитро Дмитрович; Ганжа, Дмитро Дмитрович

    2016-01-01

    It is studied anthropogenic atmospheric precipitation by the content of soluble salts, macroelements and dust in snow water. Total air pollution index was calculated by the measured parameters of precipitation. It was established statistical connections between total pollution index, on the one hand, and the population growth, mortality from tumors and vascular lesions at diseases of the circulatory system, on the other hand

  19. The Polluted Atmosphere of the White Dwarf NLTT 25792 and the Diversity of Circumstellar Environments

    Czech Academy of Sciences Publication Activity Database

    Vennes, Stephane; Kawka, Adela

    2013-01-01

    Roč. 779, č. 1 (2013), 70/1-70/10 ISSN 0004-637X R&D Projects: GA ČR GA13-14581S; GA ČR GAP209/12/0217 Institutional support: RVO:67985815 Keywords : stars * abundances * atmospheres Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.280, year: 2013

  20. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Science.gov (United States)

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  1. Overview of the Atmosphere and Environment within Gale Crater on Mars

    Science.gov (United States)

    Vasavada, A. R.; Grotzinger, J. P.; Crisp, J. A.; Gomez-Elvira, J.; Mahaffy, P. R.; Webster, C. R.

    2012-12-01

    Curiosity's mission at Gale Crater places a number of highly capable atmospheric and environmental sensors within a dynamic setting: next to a 5-km mountain within a 150-km diameter impact crater whose floor is -4.5 km. Curiosity's scientific payload was chosen primarily to allow a geologic and geochemical investigation of Mars' environmental history and habitability, as preserved in the layered sediments on the crater floor and mound. Atmospheric and environmental sensors will contribute by measuring the bulk atmospheric chemical and isotopic composition, the flux of high-energy particle and ultraviolet radiation after modification by the atmosphere, and modern processes related to meteorology and climate over at least one Mars year. The Sample Analysis at Mars instrument will analyze the atmosphere with its mass spectrometer and tunable laser spectrometer. The former is capable of providing bulk composition and isotopic ratios of relevance to planetary evolution, such as nitrogen and noble gases. The latter is designed to acquire high-precision measurements of atmospheric species including CH4, CO2, and H2O, and key isotope ratios in H, C, and O. An important goal will be to compare CH4 abundance and time variability over the mission with the reported detections from the Mars Express orbiter and ground-based observations. The Radiation Assessment Detector (RAD) measures a broad spectrum of high-energy radiation incident at the surface, including secondary particles created via interactions of galactic cosmic rays and solar protons with Mars' atmospheric constituents. Curiosity's Rover Environmental Monitoring Station (REMS) carries six ultraviolet sensors, spanning 200-380 nm. For the first time, both the high-energy and ultraviolet radiation measured at the surface can be compared with measurements above the atmosphere, acquired by other platforms. Modern meteorology and the climatology of dust and water will be studied using the rover's cameras and REMS

  2. Source apportionment and environmental fate of lead chromates in atmospheric dust in arid environments.

    Science.gov (United States)

    Meza-Figueroa, Diana; González-Grijalva, Belem; Romero, Francisco; Ruiz, Joaquin; Pedroza-Montero, Martín; Rivero, Carlos Ibañez-Del; Acosta-Elías, Mónica; Ochoa-Landin, Lucas; Navarro-Espinoza, Sofía

    2018-03-07

    The environmental fate of lead derived from traffic paint has been poorly studied in developing countries, mainly in arid zones. For this purpose, a developing city located in the Sonoran desert (Hermosillo, Mexico), was chosen to conduct a study. In this paper the lead chromate (crocoite) sources in atmospheric dust were addressed using a combination of Raman microspectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and Pb isotope measurements. A high concentration of Pb and Cr as micro- and nanostructured pigments of crocoite is reported in yellow traffic paint (n=80), road dust (n=146), settled dust in roofs (n=21), and atmospheric dust (n=20) from a developing city located in the Sonoran Desert. 10 samples of peri-urban soils were collected for local geochemical background. The paint photodegradation and erosion of the asphaltic cover are enhanced by the climate, and the presence of the mineral crocoite (PbCrO 4 ) in road dust with an aerodynamic diameter ranging from 100nm to 2μm suggests its integration into the atmosphere by wind resuspension processes. A positive PbCr correlation (R 2 =0.977) was found for all studied samples, suggesting a common source. The Pb-isotope data show signatures in atmospheric dust as a product of the mixing of two end members: i) local soils and ii) crocoite crystals as pigments in paint. The presence of lead chromates in atmospheric dust has not been previously documented in Latin America, and it represents an unknown health risk to the exposed population because the identified size of crystals can reach the deepest part of lungs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment

    Science.gov (United States)

    Wu, Wei; Zeng, Zhongping; Cheng, Xuequn; Li, Xiaogang; Liu, Bo

    2017-12-01

    Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl-, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.

  4. Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment

    Science.gov (United States)

    Ma, Jianzhong; Zhu, Chengzhu; Lu, Jun; Lei, Yu; Wang, Jizhong; Chen, Tianhu

    2017-05-01

    Nitrous acid (HONO) is an important tropospheric pollutant and a major source of hydroxyl radical in the atmospheric gas phase. However, studies on the role of HONO in atmospheric aqueous phase chemistry processes are relatively few. The present work investigated the photochemical reaction of HONO with triclosan (TCS), which is an emerging contaminant, using a combination of laser flash photolysis spectrometry and gas chromatography mass spectrometry. With these techniques, the reaction pathway of HONO with TCS was proposed by directly monitoring the transient species and detecting the stable products. ·OH was generated from the photodissociation of the HONO aqueous solution and attacked TCS molecules on different sites to produce the TCS-OH adducts with a second-order rate constant of 1.11 × 109 L mol-1 s-1. The ·OH added a C atom adjacent to the ether bond in the aromatic ring of TCS and self-decayed when the ether bond broke. The intermediates generated from the addition of ·OH to the benzene ring of the TCS molecular structure were immediately nitrated by HONO, which played a key role in the formation process of nitrocompounds. An atmospheric model suggests that the aqueous oxidation of TCS by ·OH is a major reaction at high liquid water concentrations, and the photolysis of TCS dominates under low-humidity conditions.

  5. Special Analysis: Atmospheric Dose Resulting from the Release of C14 from Reactor Moderator Deionizers in a Disposal Environment

    International Nuclear Information System (INIS)

    Hiergesell, Robert A.; Swingle, Robert F.

    2005-01-01

    The proposed action of disposing of 52 moderator deionizer vessels within the ILV was evaluated in this SA. In particular, a detailed analysis of the release of 14 C via the atmospheric pathway was conducted for these vessels since the major concern has been the nearly 20 Ci of 14 C that is associated with each vessel. The more rigorous evaluation of the atmospheric pathway for 14 C included incorporation of new information about the chemical availability of 14 C when disposed in a grout/cement encapsulation environment, as will be the case in the ILV. This information was utilized to establish the source term for a 1-D numerical model to simulate the diffusion of 14 CO 2 from the ILV Waste Zone to the land surface. The results indicate a peak surface emanation rate from the entire ILV of 1.42E-08 Ci/yr with an associated dose of only 3.83E-05 mrem/yr to the Maximally Exposed Individual (MEI) at 100m. The fact that the atmospheric pathway exposure for 14 C is controlled by chemical solubility limits for 14 C between the solid waste, pore water and pore vapor within the disposal environment rather than the absolute inventory suggests that the establishment of specific facility limits is inappropriate. With the relaxation of the atmospheric pathway restriction, the groundwater pathway becomes the more restrictive in terms of disposing 14 C or 14 C KB within the ILV. Since the resin-based 14 C of the 52 moderator deionizer vessels is highly similar to the 14 C KB waste form, the inventory from the 52 deionizer vessels is compared against the groundwater limits for that waste form. The small groundwater pathway fraction (1.14E-05) calculated for the proposed inventory of the 52 moderator deionizer vessels indicates that the proposed action will have an insignificant impact with respect to possible exposures via the groundwater pathway. This investigation recommends that there be no ILV Atmospheric pathway limit for 14 C and 14 C KB . Further, in the absence of an

  6. Impact of Atmospheric Long Range Transport of Lead, Mercury and Cadmium on the Swedish Forest Environment

    International Nuclear Information System (INIS)

    Johansson, K.; Bergbaeck, B.; Tyler, G.

    2001-01-01

    Emissions of Hg, Pb, and Cd to air are transported over wide areas in Europe and deposited far away from their sources. About 80% of the atmospheric deposition of these metals in south Sweden originate from emissions in other countries. As a result of the increased anthropogenic deposition the concentrations of Hg, Pb, and Cd in the morlayer of forest soils have increased considerably, mainly during the 20th century. Although the atmospheric deposition of these elements has declined during the most recent decades, the reduction of the input of Hg and Pb is not sufficient to prevent a further accumulation. The concentrations of Hg and Pb are still increasing by ca. 0.5and ca. 0.2% annually in the surface layer of forest soils.In contrast, the Cd concentration is currently decreasing in a large part of Sweden as a result of both deposition decreases and enhanced leaching induced by soil acidification. The accumulation factors of Hg and Pb, especially in the forest topsoils of south Sweden, are already above those at which adverse effects on soil biological processes and organisms have been demonstrated in studies of gradients from local emission sources and laboratory assessment. There are also indications of such effects at the current regional concentrations of Hg and Pbin mor layers from south Sweden, judging from observations in field and laboratory studies. There is an apparent risk of Pb induced reduction in microbial activity over parts of south Sweden. This might cause increased accumulation of organic matter and a reduced availability of soil nutrients. At current concentrations of Hg in Swedish forest soils,effects similar to those of Pb are likely. Increased concentrations of these elements in organs of mammals and birds have also been measured, though decreases have been demonstrated in recent years, related to changes in atmospheric deposition rates. As a result of current and past deposition in south Sweden, concentrations of Hg in fish have increased

  7. Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment

    Energy Technology Data Exchange (ETDEWEB)

    Offenthaler, I. [Umweltbundesamt GmbH (Austria); Jakobi, G. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Kaiser, A. [ZAMG-Zentralanstalt fuer Meteorologie und Geo-dynamik (Austria); Kirchner, M. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Kraeuchi, N. [WSL-Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Niedermoser, B. [ZAMG-Zentralanstalt fuer Meteorologie und Geo-dynamik (Austria); Schramm, K.-W. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Sedivy, I. [WSL-Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Staudinger, M. [ZAMG-Zentralanstalt fuer Meteorologie und Geo-dynamik (Austria); Thanner, G.; Weiss, P. [Umweltbundesamt GmbH (Austria); Moche, W., E-mail: wolfgang.moche@umweltbundesamt.a [Umweltbundesamt GmbH (Austria)

    2009-12-15

    High- and low-volume active air samplers as well as bulk deposition samplers were developed to sample atmospheric SOCs under the adverse conditions of a mountain environment. Active sampling employed separate filters for different European source regions. Filters were switched depending on daily trajectory forecasts, whose accuracy was evaluated post hoc. The sampling continued on three alpine summits over five periods of four months. The prevailing trajectories varied stronger between sampling periods than between stations. The sampling equipment (active and bulk deposition) proved dependable for operation in a mountain environment, with idle times being mainly due to non-routine manipulations and connectivity. - Equipment for direction-specific air sampling and bulk deposition sampling in mountains was developed and tested.

  8. Exposure to the atmospheric ionizing radiation environment: a study on Italian civilian aviation flight personnel

    International Nuclear Information System (INIS)

    De Angelis, G.; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A.

    2003-01-01

    A study of the effects of high-LET, low-dose and low-dose-rate ionizing radiation and associated risk analysis is underway. This study involves analyzing the atmospheric ionizing radiation exposure (including high-energy neutrons) and associated effects for members of civilian aviation flight personnel, in an attempt to better understand low-dose long-term radiation effects on human subjects. The study population includes all Italian civilian airline flight personnel, both cockpit and cabin crew members, whose work history records and actual flights (route, aircraft type, and date for each individual flight for each person where possible) are available. The dose calculations are performed along specific flight legs, taking into account the actual flight profiles for all different routes and the variations with time of solar and geomagnetic parameters. Dose values for each flight are applied to the flight history of study participants in order to estimate the individual annual and lifetime occupational radiation dose. An update of the study of the physical atmospheric ionizing radiation exposure is given here, in terms of environmental modeling, flight routes, radiation dose evaluation along different flight paths, and exposure matrix construction. The exposure analysis is still in progress, and the first results are expected soon

  9. Impact of urban atmospheric environment on hospital admissions in the elderly

    Directory of Open Access Journals (Sweden)

    Edelci Nunes da Silva

    2012-08-01

    Full Text Available OBJECTIVE: To analyze the impact of intra-urban atmospheric conditions on circulatory and respiratory diseases in elder adults. METHODS: Cross-sectional study based on data from 33,212 hospital admissions in adults over 60 years in the city of São Paulo, southeastern Brazil, from 2003 to 2007. The association between atmospheric variables from Congonhas airport and bioclimatic index, Physiological Equivalent Temperature, was analyzed according to the district's socioenvironmental profile. Descriptive statistical analysis and regression models were used. RESULTS: There was an increase in hospital admissions due to circulatory diseases as average and lowest temperatures decreased. The likelihood of being admitted to the hospital increased by 12% with 1ºC decrease in the bioclimatic index and with 1ºC increase in the highest temperatures in the group with lower socioenvironmental conditions. The risk of admission due to respiratory diseases increased with inadequate air quality in districts with higher socioenvironmental conditions. CONCLUSIONS: The associations between morbidity and climate variables and the comfort index varied in different groups and diseases. Lower and higher temperatures increased the risk of hospital admission in the elderly. Districts with lower socioenvironmental conditions showed greater adverse health impacts.

  10. Atmospheric depositions around a heavily industrialized area in a seasonally dry tropical environment of India

    International Nuclear Information System (INIS)

    Singh, Raj Kumar; Agrawal, Madhoolika

    2005-01-01

    Clear and throughfall bulk depositions were collected in the downwind of a highly industrialized region in Sonbhadra district of India to estimate the influence of anthropogenic activities on chemical composition of depositions. Significant spatial and temporal variations in depositions of cations and anions were observed. Depositions were higher near the thermal power stations and coalmines as compared to distantly situated site. Seasonally summer samples showed maximum cation and anion depositions followed by winter and minimum in rainy season. The mean pH of the depositions indicates that rainfall in the area is alkaline. Among the anions, maximum deposition was recorded for SO 4 2- followed by NO 3 - and minimum for Cl - . Among the cations, Ca 2+ deposition was maximum followed by NH 4 + . Na + , K + and Mg 2+ deposition rates showed more or less similar values. The depositions of cations and anions as well as pH were higher in throughfall than clearfall samples. Results of the present study suggest that atmospheric depositions are strongly modified due to thermal power stations and coal mines in the area. - Atmospheric abundance of cations have neutralized the acidity of depositions around a heavily industrialized area in India

  11. ATMOSPHERIC DYNAMICS OF AIR POLLUTION DISPERSION AND SUSTAINABLE ENVIRONMENT IN JOS-NIGERIA

    Directory of Open Access Journals (Sweden)

    Moses Eterigho Emetere

    2017-01-01

    Full Text Available The basic properties of chlorine were used to determine the dis persion patterns of the recent Jos explosion. The dynamic aerosols content model was us ed to affirm the eight kinds of dispersion patterns discussed in this text. The locati on of the victims showed that the dispersion at Jos was either linear or polynomial disp ersion. The dispersions are influenced by atmospheric ventilation, stagnation and recir culation. The last chlorine gas explosion follows the linear or polynomial dispers ion because of the current state of aerosol loadings in Jos. The aftermath effect of this kind of dispersion may be more threatening than the initial danger due to the chem ical formation of more dangerous compounds. The atmosphe ric conditions for the formati on of toxic compound were investigated using twelve years MERRA satellite o bservation. The degree of freedom of methane, carbon oxide and ozone was nearly uniform for the past five years. This means the next five years or more may be threa tening for life forms within the region. The installation of gas tracers within major locations in Jos was suggested to monitor the formation of dioxins in the atmosphere.

  12. The influence of bubble populations generated under windy conditions on the blue-green light transmission in the upper ocean: An exploratory approach

    Science.gov (United States)

    Wang, Chengan; Tan, Jianyu; Lai, Qingzhi

    2016-12-01

    The “blue-green window” in the ocean plays an important role in functions such as communication between vessels, underwater target identification, and remote sensing. In this study, the transmission process of blue-green light in the upper ocean is analyzed numerically using the Monte Carlo method. First, the effect of total number of photons on the numerical results is evaluated, and the most favorable number is chosen to ensure accuracy without excessive costs for calculation. Then, the physical and mathematical models are constructed. The rough sea surface is generated under windy conditions and the transmission signals are measured in the far field. Therefore, it can be conceptualized as a 1D slab with a rough boundary surface. Under windy conditions, these bubbles form layers that are horizontally homogeneous and decay exponentially with depth under the influence of gravity. The effects of bubble populations on the process of blue-green light transmission at different wind speeds, wavelengths, angle of incidence and chlorophyll-a concentrations are studied for both air-incident and water-incident cases. The results of this study indicate that the transmission process of blue-green light is significantly influenced by bubbles under high wind-speed conditions.

  13. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Akata, Naofumi; Kakiuchi, Hideki; Shima, Nagayoshi; Iyogi, Takashi; Momoshima, Noriyuki; Hisamatsu, Shun'ichi

    2011-01-01

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH 3 T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH 3 T concentrations. The HT and CH 3 T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Ostlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH 3 T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH 4 to estimate global warming in its 2007 report. The longer environmental half-life of CH 3 T suggested its supply from other sources than past nuclear weapon testing in the atmosphere. - Highlights: → We observed background tritium concentrations in atmospheric environment at Rokkasho, Japan. → Tritium concentration in precipitation was high in spring and low in summer. → The atmospheric HT

  14. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Akata, Naofumi, E-mail: nao@ies.or.jp [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Kakiuchi, Hideki [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Shima, Nagayoshi [Entex Inc., 1-2-8 Asahi, Kashiwa, Chiba 277-0852 (Japan); Iyogi, Takashi [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Momoshima, Noriyuki [Radioisotope Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Hisamatsu, Shun' ichi [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2011-09-15

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH{sub 3}T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH{sub 3}T concentrations. The HT and CH{sub 3}T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Ostlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH{sub 3}T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH{sub 4} to estimate global warming in its 2007 report. The longer environmental half-life of CH{sub 3}T suggested its supply from other sources than past nuclear weapon testing in the atmosphere. - Highlights: > We observed background tritium concentrations in atmospheric environment at Rokkasho, Japan. > Tritium concentration in precipitation was high in spring and low in summer. > The

  15. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    Science.gov (United States)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and

  16. Natural radionuclides from the coal in atmospheric environment of the coal fired power plants

    International Nuclear Information System (INIS)

    Antic, D.; Kostic-Soskic, M.; Milovanovic, S.; Telenta, B.

    1995-01-01

    The inhalation radiation exposure of the public in the vicinity of the selected coal fired power plants near from Belgrade (30-50 km) has been studied, using a set of data for natural radionuclides from the analysed power plants. A generalised model for analysis of radiological impact of an energy source, that includes the two-dimensional version of the cloud model, has been used for simulation of the transport of radionuclides released to the atmosphere. The inhalation dose rates for an adult are assessed and analysed during fast changeable meteorological conditions. A set of realistic meteorological conditions (wind, radiosonde sounding temperature, pressure, and humidity data) has been used for the numerical simulations. (author)

  17. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment.

    Science.gov (United States)

    Krauss, Martin; Wilcke, Wolfgang; Martius, Christopher; Bandeira, Adelmar G; Garcia, Marcos V B; Amelung, Wulf

    2005-05-01

    To distinguish between pyrogenic and biological sources of PAHs in a tropical rain forest near Manaus, Brazil, we determined the concentrations of 21 PAHs in leaves, bark, twigs, and stem wood of forest trees, dead wood, mineral topsoil, litter layer, air, and Nasutitermes termite nest compartments. Naphthalene (NAPH) was the most abundant PAH with concentrations of 35 ng m(-3) in air (>85% of the sum of 21PAHs concentration), up to 1000 microg kg(-1) in plants (>90%), 477 microg kg(-1) in litter (>90%), 32 microg kg(-1) in topsoil (>90%), and 160 microg kg(-1) (>55%) in termite nests. In plants, the concentrations of PAHs in general decreased in the order leaves > bark > twigs > stem wood. The concentrations of most low-molecular weight PAHs in leaves and bark were near equilibrium with air, but those of NAPH were up to 50 times higher. Thus, the atmosphere seemed to be the major source of all PAHs in plants except for NAPH. Additionally, phenanthrene (PHEN) had elevated concentrations in bark and twigs of Vismia cayennensis trees (12-60 microg kg(-1)), which might have produced PHEN. In the mineral soil, perylene (PERY) was more abundant than in the litter layer, probably because of in situ biological production. Nasutitermes nests had the highest concentrations of most PAHs in exterior compartments (on average 8 and 15 microg kg(-1) compared to atmosphere controls the concentrations of most PAHs. However, the occurrence of NAPH, PHEN, and PERY in plants, termite nests, and soils at elevated concentrations supports the assumption of their biological origin.

  18. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment

    International Nuclear Information System (INIS)

    Krauss, Martin; Wilcke, Wolfgang; Martius, Christopher; Bandeira, Adelmar G.; Garcia, Marcos V.B.; Amelung, Wulf

    2005-01-01

    To distinguish between pyrogenic and biological sources of PAHs in a tropical rain forest near Manaus, Brazil, we determined the concentrations of 21 PAHs in leaves, bark, twigs, and stem wood of forest trees, dead wood, mineral topsoil, litter layer, air, and Nasutitermes termite nest compartments. Naphthalene (NAPH) was the most abundant PAH with concentrations of 35 ng m -3 in air (>85% of the Σ21PAHs concentration), up to 1000 μg kg -1 in plants (>90%), 477 μg kg -1 in litter (>90%), 32 μg kg -1 in topsoil (>90%), and 160 μg kg -1 (>55%) in termite nests. In plants, the concentrations of PAHs in general decreased in the order leaves > bark > twigs > stem wood. The concentrations of most low-molecular weight PAHs in leaves and bark were near equilibrium with air, but those of NAPH were up to 50 times higher. Thus, the atmosphere seemed to be the major source of all PAHs in plants except for NAPH. Additionally, phenanthrene (PHEN) had elevated concentrations in bark and twigs of Vismia cayennensis trees (12-60 μg kg -1 ), which might have produced PHEN. In the mineral soil, perylene (PERY) was more abundant than in the litter layer, probably because of in situ biological production. Nasutitermes nests had the highest concentrations of most PAHs in exterior compartments (on average 8 and 15 μg kg -1 compared to -1 in interior parts) and high PERY concentrations in all compartments (12-86 μg kg -1 ), indicating an in situ production of PERY in the nests. Our results demonstrate that the deposition of pyrolytic PAHs from the atmosphere controls the concentrations of most PAHs. However, the occurrence of NAPH, PHEN, and PERY in plants, termite nests, and soils at elevated concentrations supports the assumption of their biological origin. - Evidence of non-pyrolytic, biogenic production of PAHs is provided

  19. 222Rn and short live progeny in atmospheric environment. Origin and measurement techniques

    International Nuclear Information System (INIS)

    Charuau, J.; Labed, V.; Robe, M.C.; Thevenin, J.C.; Fazileabasse, J.; Klein, D.; Heleschewitz, H.; Tymen, G.; Aubert, C.; Gibaud, C.

    1996-01-01

    Radon is the main source of man's exposure to natural ionizing radiation. This document summarizes the general knowledge of the origin of radon 222 and its development in various air environments. It presents several methods for measuring radon activity concentration and the potential alpha energy from its short life daughters. It has been prepared by the commission M60-3, of the Office for the standardization of nuclear equipments (BNEN in French) under the French association for standardization (AFNOR in French). (author)

  20. Transpiration of shrub species, Alnus firma under changing atmospheric environments in montane area, Japan

    Science.gov (United States)

    Miyazawa, Y.; Maruyama, A.; Inoue, A.

    2014-12-01

    In the large caldera of Mt. Aso in Japan, grasslands have been traditionally managed by the farmers. Due to changes in the social structure of the region, a large area of the grassland has been abandoned and was invaded by the shrubs with different hydrological and ecophysiological traits. Ecophysiological traits and their responses to seasonally changing environments are fundamental to project the transpiration rates under changing air and soil water environments, but less is understood. We measured the tree- and leaf-level ecophysiological traits of a shrub, Alnus firma in montane region where both rainfall and soil water content drastically changes seasonally. Sap flux reached the annual peak in evaporative summer (July-August) both in 2013 and 2014, although the duration was limited within a short period due to the prolonged rainy season before summer (2014) and rapid decrease in the air vapor pressure deficit (D) in late summer. Leaf ecophysiological traits in close relationship with gas exchange showed modest seasonal changes and the values were kept at relatively high levels typical in plants with nitrogen fixation under nutrient-poor environments. Stomatal conductance, which was measured at leaf-level measurements and sap flux measurements, showed responses to D, which coincided with the theoretical response for isohydric leaves. A multilayer model, which estimates stand-level transpiration by scaling up the leaf-level data, successfully captured the temporal trends in sap flux, suggesting that major processes were incorporated. Thus, ecophysiological traits of A. firma were characterized by the absence of responses to seasonally changing environments and the transpiration rate was the function of the interannually variable environmental conditions.

  1. EntrySat: A 3U CubeStat to study the reentry atmospheric environment

    Science.gov (United States)

    Anthony, Sournac; Raphael, Garcia; David, Mimoun; Jeremie, Chaix

    2016-04-01

    ISAE France Entrysat has for main scientific objective the study of uncontrolled atmospheric re-entry. This project, is developed by ISAE in collaboration with ONERA and University of Toulouse, is funded by CNES, in the overall frame of the QB50 project. This nano-satellite is a 3U Cubesat measuring 34*10*10 cm3, similar to secondary debris produced during the break up of a spacecraft. EntrySat will collect the external and internal temperatures, pressure, heat flux, attitude variations and drag force of the satellite between ≈150 and 90 km before its destruction in the atmosphere, and transmit them during the re-entry using the IRIDIUM satellite network. The result will be compared with the computations of MUSIC/FAST, a new 6-degree of freedom code developed by ONERA to predict the trajectory of space debris. In order to fulfil the scientific objectives, the satellite will acquire 18 re-entry sensors signals, convert them and compress them, thanks to an electronic board developed by ISAE students in cooperation with EREMS. In order to transmit these data every second during the re-entry phase, the satellite will use an IRIDIUM connection. In order to keep a stable enough attitudes during this phase, a simple attitude orbit and control system using magnetotorquers and an inertial measurement unit (IMU) is developed at ISAE by students. A commercial GPS board is also integrated in the satellite into Entry Sat to determine its position and velocity which are necessary during the re-entry phase. This GPS will also be used to synchronize the on-board clock with the real-time UTC data. During the orbital phase (≈2 year) EntrySat measurements will be recorded transmitted through a more classical "UHF/VHF" connection. Preference for presentation: Poster Most suitable session: Author for correspondence: Dr Raphael F. Garcia ISAE 10, ave E. Belin, 31400 Toulouse, France Raphael.GARCIA@isae.fr +33 5 61 33 81 14

  2. Aleppo pine bark as a biomonitor of atmospheric pollution in the arid environment of Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Al-Alawi, Mu' taz M.; Jiries, Anwar [Prince Faisal Center for Dead Sea, Environmental and Energy Research, Mu' tah University, Al-Karak (Jordan); Carreras, Hebe [University of Cordoba, FCEFyN, Cordoba (Argentina); Alawi, Mahmoud [Chemistry Department, University of Jordan, Amman (Jordan); Charlesworth, Susanne M. [Geography, Environment and Disaster Management, Coventry University, Coventry (United Kingdom); Batarseh, Mufeed I.

    2007-11-15

    Monitoring of atmospheric pollution using Aleppo bark as a bioindicator was carried out in the industrial area surrounding the Al-Hussein thermal power station and the oil refinery at Al-Hashimyeh town, Jordan. The concentrations of heavy metals (copper, lead, cadmium, manganese, cobalt, nickel, zinc, iron, and chromium) were analyzed in bark samples collected from the study area during July 2004. The results showed that high levels of heavy metals were found in tree bark samples retrieved from all studied sites compared with the remote reference site. This is, essentially, due to the fact that the oil refinery and the thermal power plant still use low-quality fuel oil from the by-products of oil refining. Automobile emissions are another source of pollution since the study area is located along a major heavy-traffic highway. It was found that the area around the study sites (Al-Hashimyeh town, Zarqa) is polluted with high levels of heavy metals. Pine bark was found to be a suitable bioindicator of aerial fallout of heavy metals in arid regions. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  3. Atmospheric Nitrogen Deposition at Two Sites in an Arid Environment of Central Asia.

    Science.gov (United States)

    Li, Kaihui; Liu, Xuejun; Song, Wei; Chang, Yunhua; Hu, Yukun; Tian, Changyan

    2013-01-01

    Arid areas play a significant role in the global nitrogen cycle. Dry and wet deposition of inorganic nitrogen (N) species were monitored at one urban (SDS) and one suburban (TFS) site at Urumqi in a semi-arid region of central Asia. Atmospheric concentrations of NH3, NO2, HNO3, particulate ammonium and nitrate (pNH4 (+) and pNO3 (-)) concentrations and NH4-N and NO3-N concentrations in precipitation showed large monthly variations and averaged 7.1, 26.6, 2.4, 6.6, 2.7 µg N m(-3) and 1.3, 1.0 mg N L(-1) at both SDS and TFS. Nitrogen dry deposition fluxes were 40.7 and 36.0 kg N ha(-1) yr(-1) while wet deposition of N fluxes were 6.0 and 8.8 kg N ha(-1) yr(-1) at SDS and TFS, respectively. Total N deposition averaged 45.8 kg N ha(-1) yr(-1)at both sites. Our results indicate that N dry deposition has been a major part of total N deposition (83.8% on average) in an arid region of central Asia. Such high N deposition implies heavy environmental pollution and an important nutrient resource in arid regions.

  4. Testing FSO WDM communication system in simulation software optiwave OptiSystem in different atmospheric environments

    Science.gov (United States)

    Vanderka, Ales; Hajek, Lukas; Bednarek, Lukas; Latal, Jan; Vitasek, Jan; Hejduk, Stanislav; Vasinek, Vladimir

    2016-09-01

    In this article the author's team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.

  5. Radiation protection instrumentation. Monitoring equipment. Atmospheric radioactive iodine in the environment

    International Nuclear Information System (INIS)

    1995-01-01

    This international standard applies to portable or installed equipment for the monitoring of radioactive iodine (such as I-131 or I-125) in air in the environment of nuclear installations during normal operation, during design basis events, and in emergency situations. The monitoring involves continuous sample trapping and, where adequate, automatic start of sampling. The document deals with radioactive iodine monitor design, testing procedures, and documentation. Appended tables refer to the reference and normal testing conditions, tests in normal testing conditions, tests during changes of the affecting quantities, and tests of changes in the air circuit. (P.A.)

  6. A Controlled-Environment Chamber for Atmospheric Chemistry Studies Using FT-IR Spectroscopy

    Science.gov (United States)

    1990-06-01

    necessary and identify by block number) FELD GROUP SUB-GROUP i >Chamber, controlled environment; long-path cell ; 07 04 FT-IR; Hydrazine decay...modification doubles the useable path length of the original multipass cell described by White (Reference 8). The pattern of images formed on the nesting...system is shown in Figure 13. 24 z C C02, Ibm, El4 944 C3 ta) caC E-4- 252 14 $4 41) 41) 0. 0 04 04 4 41) ~0 to 0.0 V-4 (A q14 0~ 1% 4-r4 $4 0 u P416 4 4

  7. Effect of Ground Surface Roughness on Atmospheric Dispersion and Dry Deposition of Cs-137 in the UAE Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungyeop; Beeley, Philip A. [Khalifa Univ. of Science, Abu Dhabi (United Arab Emirates); Kim, Sungyeop; Chang, Soonheung; Lee, Kunjai [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The site of nuclear power plant (NPP) in the UAE has several unique characteristics as a NPP on the desert environment near coastal region. Those characteristics are represented like below: · Arid ground surface · Low ground surface roughness length · Relatively simple (flat) terrain · Extremely low precipitation · Intense solar radiation and high temperature in day time · Sea breeze · Relatively high humidity of atmosphere · Etc. From the review of this desert environment in the UAE, low ground surface roughness is regarded as one of definitively different characteristics from that of other NPP sites. In this context, surface roughness is selected as independent variables for the sensitivity analyses in this research. Another important reason of this selection is that this parameters is less dependent on the day and night change than other parameters. With ground level concentration, dry deposition rate has been chosen as a dependent variable to be considered rather than wet deposition because UAE shows almost zero rainfall especially in summer. Lower ground level concentration of Cs-137 near the site and extremely lower dry deposition of Cs-137 are predicted in the UAE environment because of the lower ground surface roughness of the desert.

  8. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka.

    Science.gov (United States)

    Weerasundara, Lakshika; Amarasekara, R W K; Magana-Arachchi, D N; Ziyath, Abdul M; Karunaratne, D G G P; Goonetilleke, Ashantha; Vithanage, Meththika

    2017-04-15

    The presence of bacteria and heavy metals in atmospheric deposition were investigated in Kandy, Sri Lanka, which is a typical city in the developing world with significant traffic congestion. Atmospheric deposition samples were analyzed for Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb which are heavy metals common to urban environments. Al and Fe were found in high concentrations due to the presence of natural sources, but may also be re-suspended by vehicular traffic. Relatively high concentrations of toxic metals such as Cr and Pb in dissolved form were also found. High Zn loads can be attributed to vehicular emissions and the wide use of Zn coated roofing materials. The metal loads in wet deposition showed higher concentrations compared to dry deposition. The metal concentrations among the different sampling sites significantly differ from each other depending on the traffic conditions. Industrial activities are not significant in Kandy City. Consequently, the traffic exerts high influence on heavy metal loadings. As part of the bacterial investigations, nine species of culturable bacteria, namely; Sphingomonas sp., Pseudomonas aeruginosa, Pseudomonas monteilii, Klebsiella pneumonia, Ochrobactrum intermedium, Leclercia adecarboxylata, Exiguobacterium sp., Bacillus pumilus and Kocuria kristinae, which are opportunistic pathogens, were identified. This is the first time Pseudomonas monteilii and Ochrobactrum intermedium has been reported from a country in Asia. The culturable fraction constituted ~0.01 to 10%. Pigmented bacteria and endospore forming bacteria were copious in the atmospheric depositions due to their capability to withstand harsh environmental conditions. The presence of pathogenic bacteria and heavy metals creates potential human and ecosystem health risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Horizontal Advection and Mixing of Pollutants in the Urban Atmospheric Environment

    Science.gov (United States)

    Magnusson, S. P.; Entekhabi, D.; Britter, R.; Norford, L.; Fernando, H. J.

    2013-12-01

    Although urban air quality and its impacts on the public health have long been studied, the increasing urbanization is raising concerns on how to better control and mitigate these health impacts. A necessary element in predicting exposure levels is fundamental understanding of flow and dispersion in urban canyons. The complex topology of building structures and roads requires the resolution of turbulence phenomena within urban canyons. The use of dense and low porosity construction material can lead to rapid heating in response to direct solar exposure due to large thermal mass. Hence thermal and buoyancy effects may be as important as mechanically-forced or shear-induced flows. In this study, the transport of pollutants within the urban environment, as well as the thermal and advection effects, are investigated. The focus is on the horizontal transport or the advection effects within the urban environment. With increased urbanization and larger and more spread cities, concern about how the upstream air quality situation can affect downstream areas. The study also examines the release and the dispersion of hazardous material. Due to the variety and complexity of urban areas around the world, the urban environment is simplified into adjacent two-dimensional urban street canyons. Pollutants are released inside each canyon. Computational Fluid Dynamics (CFD) simulations are applied to evaluate and quantify the flow rate out of each canyon and also the exchange of pollutants between the canyons. Imagine a row of ten adjacent urban street canyons of aspect ratio 1 with horizontal flow perpendicular to it as shown in the attached figure. C is the concentration of pollutants. The first digit indicates in what canyon the pollutant is released and the second digit indicates the location of that pollutant. For example, C3,4 is the concentration of pollutant released inside canyon 3 measured in canyon 4. The same amount of pollution is released inside the ten street canyons

  10. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment.

    Science.gov (United States)

    Mishra, Nitika; Ayoko, Godwin A; Morawska, Lidia

    2016-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis - Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Reseau Environnement's brief on the project regarding atmospheric regulations : submitted to the Minister of Sustainable Development, Environment and Parks

    International Nuclear Information System (INIS)

    2006-01-01

    Reseau Environnement is a Montreal-based organization that promotes the protection of ecosystems and human health. Their mandate is to extend the existing standards for reducing pollutants and to tap the full potential of Quebec expertise in addressing pollution sources. Reseau Environnement recently appealed to the Quebec Minister of Sustainable Development, Environment and Parks to develop clear, flexible and modern regulations for Quebec, similar to those found in Europe and the United States, to efficiently control atmospheric emissions in an effort to counteract the negative effects they impart on ecosystems and human health. Among the requests was the revision of certain pollution regulation clauses to regulate odor emissions; identify preferred measuring methods for pollutants; apply ambient air quality standards to existing installations; apply standards for particulates; impose requirements for the frequency of pollution sampling and make changes to some components of Montreal's Regulation 90 regarding air pollution from industrial activities. 13 refs

  12. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the Lunar Atmosphere Dust Environment Explorer (LADEE) Spacecraft

    Science.gov (United States)

    Genova, Anthony L.; Loucks, Michael; Carrico, John

    2014-01-01

    The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).

  13. Deposition of radionuclides and their subsequent relocation in the environment following an accidental release to the atmosphere

    International Nuclear Information System (INIS)

    Underwood, B.Y.; Roed, J.; Paretzke, H.G.

    1993-01-01

    The objective of the project is to improve, as necessary, the models and parameterizations used in estimating the intensity and spatial distribution of deposited activity, and the total health/economic impact of such deposits in assessments of the consequences of accidental releases of radioactivity. The study comprises the influence of various weather conditions on deposition; the resuspension of deposited 137 Cs activity; the weathering of deposits in urban and rural environments; the ultimate fate and dosimetric impact of radionuclides carried by urban run-off water; the impact of the atmosphere's dispersion capabilities. Objectives and results of the four contributions to the project for the reporting period are presented. (R.P.) 5 refs., 4 figs., 1 tab

  14. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment

    International Nuclear Information System (INIS)

    Mishra, Nitika; Ayoko, Godwin A.; Morawska, Lidia

    2016-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis – Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas. - Highlights: • PAHs represent a major group of outdoor air pollutants. • Concentration levels of PAHS in urban schools ranged from 1.2 to 38 ng/m"3. • PCA–APCS technique used to identify sources of PAHs and their contributions. • Vehicular emissions (56%) were found to be the prominent sources of PAHs.

  15. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments.

    Science.gov (United States)

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-06-01

    The air we breathe contains microscopic biological particles such as viruses, bacteria, fungi and pollen, some of them with relevant clinic importance. These organisms and/or their propagules have been traditionally studied by different disciplines and diverse methodologies like culture and microscopy. These techniques require time, expertise and also have some important biases. As a consequence, our knowledge on the total diversity and the relationships between the different biological entities present in the air is far from being complete. Currently, metagenomics and next-generation sequencing (NGS) may resolve this shortage of information and have been recently applied to metropolitan areas. Although the procedures and methods are not totally standardized yet, the first studies from urban air samples confirm the previous results obtained by culture and microscopy regarding abundance and variation of these biological particles. However, DNA-sequence analyses call into question some preceding ideas and also provide new interesting insights into diversity and their spatial distribution inside the cities. Here, we review the procedures, results and perspectives of the recent works that apply NGS to study the main biological particles present in the air of urban environments. [Int Microbiol 19(2):69-80(2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  16. Realistic natural atmospheric phenomena and weather effects for interactive virtual environments

    Science.gov (United States)

    McLoughlin, Leigh

    Clouds and the weather are important aspects of any natural outdoor scene, but existing dynamic techniques within computer graphics only offer the simplest of cloud representations. The problem that this work looks to address is how to provide a means of simulating clouds and weather features such as precipitation, that are suitable for virtual environments. Techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems are computationally expensive, give more numerical accuracy than we require for graphics and are restricted to the laws of physics. Within computer graphics, we often need to direct and adjust physical features or to bend reality to meet artistic goals, which is a key difference between the subjects of computer graphics and physical science. Pure physically-based simulations, however, evolve their solutions according to pre-set rules and are notoriously difficult to control. The challenge then is for the solution to be computationally lightweight and able to be directed in some measure while at the same time producing believable results. This work presents a lightweight physically-based cloud simulation scheme that simulates the dynamic properties of cloud formation and weather effects. The system simulates water vapour, cloud water, cloud ice, rain, snow and hail. The water model incorporates control parameters and the cloud model uses an arbitrary vertical temperature profile, with a tool described to allow the user to define this. The result of this work is that clouds can now be simulated in near real-time complete with precipitation. The temperature profile and tool then provide a means of directing the resulting formation..

  17. Quantitative Analysis of Major Factors Affecting Black Carbon Transport and Concentrations in the Unique Atmospheric Structures of Urban Environment

    Science.gov (United States)

    Liang, Marissa Shuang

    combined contribution from both traffic and atmospheric circulation accounted for observed spatiotemporal variability in PM2.5 concentrations. Based on these experimental and quantitative analyses, a three-dimensional model is proposed for contaminant's transport in highly urbanized Cincinnati region. Furthermore this dissertation explored implications on roadside pollutant evaluation, and on the risk analysis of future fuel substitution using biodiesel. The Gaussian-type models are poor in determining the effective emission factor particularly under nocturnal thermal inversion for which the effective emission factor is a function of lapse rate in the morning. The Gaussian models are applicable in daytime after the breakdown of thermal inversion. Lastly, among three types of fuels examined, the proposed butanol-added biodiesel-diesel blend (D80B15Bu5) yielded a good compromise between black carbon and NOx emissions while maintaining proper combustion properties. It is also found that the emission contained less black carbon and had higher organic carbon (OC) and elemental (EC) ratio than tested petroleum diesel. As demonstrated in other parts of this study, the OC-enriched emission will likely affect the black carbon occurrence and PM concentrations in the urban environments. Overall, it is suggested that urban formation and biofuel usage define the environmental impacts of black carbon, and are the focus for climate change mitigation and adaptation.

  18. Development of Experience-based Learning about Atmospheric Environment with Quantitative Viewpoint aimed at Education for Sustainable Development

    Science.gov (United States)

    Saitoh, Y.; Tago, H.

    2014-12-01

    The word "ESD (Education for Sustainable Development)" has spread over the world in UN decade (2005 - 2014), and the momentum of the educational innovation aimed at ESD also has grown in the world. Especially, environmental educations recognized as one of the most important ESD have developed in many countries including Japan, but most of those are still mainly experiences in nature. Those could develop "Respect for Environment" of the educational targets of ESD, however we would have to take a further step in order to enhance "Ability of analysis and thinking logically about the environment" which are also targets of ESD.Thus, we developed experienced-learning program about atmospheric particulate matter (PM2.5), for understanding the state of the environment objectively based on quantitative data. PM2.5 is known for harmful, and various human activities are considered a source of it, therefore environmental standards for PM2.5 have been established in many countries. This program was tested on junior high school students of 13 - 15 years old, and the questionnaire survey also was conducted to them before and after the program for evaluating educational effects. Students experienced to measure the concentration of PM2.5 at 5 places around their school in a practical manner. The measured concentration of PM2.5 ranged from 19 to 41 μg/m3/day, that value at the most crowded roadside exceeded Japan's environmental standard (35 μg/m3/day). Many of them expressed "Value of PM2.5 is high" in their individual discussion notes. As a consistent with that, the answer "Don't know" to the question "What do you think about the state of the air?" markedly decreased after the program, on the other hand the answer "Pollution" to the same question increased instead. From above-mentioned, it was considered that they could judge the state of the air objectively. Consequently, the questionnaire result "Concern about Air Pollution" increased significantly after the program compared

  19. Reliable retrieval of atmospheric and aquatic parameters in coastal and inland environments from polar-orbiting and geostationary platforms: challenges and opportunities

    Science.gov (United States)

    Stamnes, Knut; Li, Wei; Lin, Zhenyi; Fan, Yongzhen; Chen, Nan; Gatebe, Charles; Ahn, Jae-Hyun; Kim, Wonkook; Stamnes, Jakob J.

    2017-04-01

    Simultaneous retrieval of aerosol and surface properties by means of inverse techniques based on a coupled atmosphere-surface radiative transfer model, neural networks, and optimal estimation can yield considerable improvements in retrieval accuracy in complex aquatic environments compared with traditional methods. Remote sensing of such environments represent specific challenges due (i) the complexity of the atmosphere and water inherent optical properties, (ii) unique bidirectional dependencies of the water-leaving radiance, and (iii) the desire to do retrievals for large solar zenith and viewing angles. We will discuss (a) how challenges related to atmospheric gaseous absorption, absorbing aerosols, and turbid waters can be addressed by using a coupled atmosphere-surface radiative transfer (forward) model in the retrieval process, (b) how the need to correct for bidirectional effects can be accommodated in a systematic and reliable manner, (c) how polarization information can be utilized, (d) how the curvature of the atmosphere can be taken into account, and (e) how neural networks and optimal estimation can be used to obtain fast yet accurate retrievals. Special emphasis will be placed on how information from existing and future sensors deployed on polar-orbiting and geostationary platforms can be obtained in a reliable and accurate manner. The need to provide uncertainty assessments and error budgets will also be discussed.

  20. Summary of the results from the Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment (LADEE) Mission

    Science.gov (United States)

    Horanyi, Mihaly

    2016-07-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including

  1. A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment

    Science.gov (United States)

    Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra

    2017-11-01

    Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed ˜ 2 mm h^{-1}, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but

  2. The IAEA Member States' database of discharges of radionuclides to the atmosphere and the aquatic environment (DIRATA)

    International Nuclear Information System (INIS)

    Berkovskyy, Volodymyr; Hood, Graeme

    2008-01-01

    Full text: This paper provides the abstract model for authors. It embodies all the required formats and it is written complying with them. DIRATA is the IAEA Member States' database on discharges of radionuclides to the atmosphere and the aquatic environment (http://dirata.iaea.org/). It is a worldwide centralized repository of data submitted by IAEA Member States on a voluntary basis and each site dataset includes annual discharge and detection limits. Regulatory limits are given by Member States whenever available and a limited amount of information on the location of the site (country, geographical coordinates, water body into which radioactivity is released, number, names and types of installations) is also included. One of important purposes of DIRATA is to assist UNSCEAR in the preparation of the regular reports to the UN General Assembly and to serve Member States as a technical means for reporting and reviewing within the framework of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The on-line version of the DIRATA database was deployed for the pilot application by Member States and the general public in 2006 and provides tools for: 1-)Input of the primary information by IAEA Member States and international organizations in batch or interactive (record by record) modes. The Microsoft Excel template is provided on the DIRATA website for the batch input; 2-) On-line access of Member States and the public to the dataset. The information contained in DIRATA is available for downloading (in CSV format) and interactive review. The new web-based version of DIRATA has inherited all of the important features contained on the previous CD-ROM versions, and has been extended by the number of principally new functionalities. The paper describes the structure, functionalities and content of the DIRATA database. (author)

  3. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  4. An Atmosphere-based Method for Detection and Quantification of Methane Emisions from Natural Gas Infrastructure in an Urban Environment

    Science.gov (United States)

    McKain, K.; Down, A.; Raciti, S. M.; Budney, J.; Hutyra, L.; Floerchinger, C. R.; Herndon, S. C.; Nehrkorn, T.; Zahniser, M. S.; Sargent, M. R.; Jackson, R. B.; Phillips, N. G.; Wofsy, S. C.

    2015-12-01

    Methane emissions from the natural gas supply-chain are highly uncertain and can vary widely among components and processes. We present an atmosphere-based method for detecting and quantifying the area and time-averaged surface flux of methane from natural gas infrastructure, and its application to the case-study of Boston, Massachusetts. Continuous measurements of atmospheric methane at a network of stations, inside and outside the city, are used to quantify the atmospheric methane gradient due to emissions from the urban area. Simultaneous observations of atmospheric ethane, and data on the ethane and methane content of the pipeline gas flowing through the region, are used to trace the atmospheric methane enhancement to the natural gas source. An atmospheric transport model is used to quantitatively relate the observed methane enhancement to a surface flux from the whole urban region. We find that methane emissions from natural gas in the urban region over one year was equal to 2.7 ± 0.6 % of the natural gas delivered to the region. Our findings for Boston suggest natural-gas-consuming regions, generally, may be larger sources of methane to the atmosphere than is current estimated and represent areas of significant resource loss.

  5. Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 3. Atmospheric sciences

    International Nuclear Information System (INIS)

    Elderkin, C.E.

    1981-02-01

    Separate absracts were prepared for the 15 sections of this progress report which is a description of atmospheric research at PNL organized in terms of the following energy technologies: coal, gas and oil; fission and fusion; and oil shale

  6. Growth reponses of eggplant and soybean seedlings to mechanical stress in greenhouse and outdoor environments

    Science.gov (United States)

    Latimer, J. G.; Pappas, T.; Mitchell, C. A.

    1986-01-01

    Eggplant (Solanum melongena L. var. esculentum 'Burpee's Black Beauty') and soybean [Glycine max (L.) Merr. 'Wells II'] seedlings were assigned to a greenhouse or a windless or windy outdoor environment. Plants within each environment received either periodic seismic (shaking) or thigmic (flexing or rubbing) treatment, or were left undisturbed. Productivity (dry weight) and dimensional (leaf area and stem length) growth parameters generally were reduced more by mechanical stress in the greenhouse (soybean) or outdoor-windless environment (eggplant) than in the outdoor windy environment. Outdoor exposure enhanced both stem and leaf specific weights, whereas mechanical stress enhanced only leaf specific weight. Although both forms of controlled mechanical stress tended to reduce node and internode diameters of soybean, outdoor exposure increased stem diameter.

  7. Tritium gas and tritiated water vapour behaviour in the environment from releases into the atmosphere from fusion reactors

    International Nuclear Information System (INIS)

    Velarde, Marta; Perlado, Manuel

    2001-01-01

    The diffusion of tritium from fusion reactors follows different ways according to the present chemical form, tritium gas or tritiated water vapour. The atmospheric conditions, speed and direction of the wind, rain intensity or stability class, are key factors in the dry and wet deposition. The obtained results demonstrate that the wet deposition is critical for the incorporation of the tritiated water vapour to the natural biological chain. However, the dry deposition is the factor that influences in the tritium gas form. The conversion of HT into HTO in the soil is rapid (1-7 days), and 20% of HT deposited in the soil is reemitted to the atmosphere in the form HTO, while the rest incorporates into the biological cycle. The rain factor accelerates the incorporation of tritium to the ground, the superficial waters and the underground waters

  8. Chicago, Illinois: The Windy City

    Science.gov (United States)

    McIntosh, Phyllis

    2008-01-01

    Once famous mainly for stockyards and steel mills, Chicago now boasts more top-rated five-star restaurants than any other city in the United States and has been voted by various publications as one of the "Top 10 U.S. Destinations," one of the "Best Walking Cities" in the United States, and one of the "Ten Best Places to…

  9. Aviation and the Environment: Aviation's Effects on the Global Atmosphere Are Potentially Significant and Expected to Grow

    National Research Council Canada - National Science Library

    2000-01-01

    ... to 1.4 degrees Fahrenheit over the last century. Many experts agree that, in total, greenhouse gases are warming the earth and that this warming could have harmful effects on the environment and human health...

  10. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant.

    Science.gov (United States)

    Akata, Naofumi; Kakiuchi, Hideki; Shima, Nagayoshi; Iyogi, Takashi; Momoshima, Noriyuki; Hisamatsu, Shun'ichi

    2011-09-01

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH(3)T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH(3)T concentrations. The HT and CH(3)T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Östlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH(3)T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH(4) to estimate global warming in its 2007 report. The longer environmental half-life of CH(3)T suggested its supply from other sources than past nuclear weapon testing in the atmosphere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Improved scheme for parametrization of convection in the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME)

    Science.gov (United States)

    Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta

    2015-04-01

    NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of

  12. Assessment of Urbanization on the Integrated Land-Ocean-Atmosphere Environment in Coastal Metropolis in Preparation for HyspIRI

    Science.gov (United States)

    Sequera, Pedro; McDonald, Kyle C.; Gonzalez, Jorge; Arend, Mark; Krakauer, Nir; Bornstein, Robert; Luvll, Jeffrey

    2012-01-01

    The need for comprehensive studies of the relationships between past and projected changes of regional climate and human activity in comple x urban environments has been well established. The HyspIRI preparato ry airborne activities in California, associated science and applicat ions research, and eventually HyspIRI itself provide an unprecedented opportunity for development and implementation of an integrated data and modeling analysis system focused on coastal urban environments. We will utilize HyspIRI preparatory data collections in developing ne w remote sensing-based tools for investigating the integrated urban e nvironment, emphasizing weather, climate, and energy demands in compl ex coastal cities.

  13. Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet

    Science.gov (United States)

    Taylor, Fredric W.; Svedhem, Håkan; Head, James W.

    2018-02-01

    This is a review of current knowledge about Earth's nearest planetary neighbour and near twin, Venus. Such knowledge has recently been extended by the European Venus Express and the Japanese Akatsuki spacecraft in orbit around the planet; these missions and their achievements are concisely described in the first part of the review, along with a summary of previous Venus observations. The scientific discussions which follow are divided into three main sections: on the surface and interior; the atmosphere and climate; and the thermosphere, exosphere and magnetosphere. These reports are intended to provide an overview for the general reader, and also an introduction to the more detailed topical surveys in the following articles in this issue, where full references to original material may be found.

  14. Long-Term Atmospheric Corrosion Behavior of Epoxy Prime Coated Aluminum Alloy 7075-T6 in Coastal Environment

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2018-06-01

    Full Text Available The atmospheric corrosion of epoxy prime coated aluminum alloy 7075-T6 exposed for 7, 12 and 20 years was investigated. The remaining thicknesses of epoxy prime coatings for macroscopically intact coating areas followed a normal distribution and decreased linearly. EIS results demonstrated that the corrosion resistance of the coating decreased with exposure time. After 20 years of exposure, the epoxy coating had lost its protection as cracks existed within the coating and exfoliation corrosion had occurred on the substrate. The substrate was sensitive to exfoliation corrosion through metallographic and TEM analysis. The corrosion products were mainly hydroxides of aluminum. The morphology and chemical compositions of the coating bubbling area and propagation characterizations of exfoliation corrosion were analyzed by SEM, EPMA and EDS. Cracks between the lumps of corrosion products provided the channels for the transmission of corrosion mediums. Furthermore, the mechanical model was proposed to analyze the propagation characterization of exfoliation corrosion.

  15. Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka.

    Science.gov (United States)

    Weerasundara, Lakshika; Magana-Arachchi, D N; Ziyath, Abdul M; Goonetilleke, Ashantha; Vithanage, Meththika

    2018-08-15

    This research study which was undertaken in a congested city environment in a developing country provides a robust approach for the assessment and management of human health risk associated with atmospheric heavy metals. The case study area was Kandy City, which is the second largest city in Sri Lanka and bears the characteristics of a typical city in the developing world such as the urban footprint, high population density and traffic congestion. Atmospheric deposition samples were collected on a weekly basis and analyzed for nine heavy metals common to urban environments, namely, Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb. Health risk was assessed using hazard quotient (HQ) and hazard index (HI), while the cancer risk was evaluated based on life time daily cancer risk. Al and Fe were found to be in relatively high concentrations due to the influence of both, natural and anthropogenic sources. High Zn loads were attributed to vehicular emissions and the wide use of Zn coated building materials. Contamination factor and geo-accumulation index showed that currently, Al and Fe are at uncontaminated levels and other metals are in the range of uncontaminated to contaminated levels, but with the potential to exacerbate in the long-term. The health risk assessment showed that the influence of the three exposure pathways were in the order of ingestion > dermal contact > inhalation. The HQ and HI values for children for the nine heavy metals were higher than that for adults, indicating that children may be subjected to potentially higher health risk than adults. The study methodology and outcomes provide fundamental knowledge to regulatory authorities to determine appropriate mitigation measures in relation to HM pollution in city environments in the developing world, where to-date only very limited research has been undertaken. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Microbial Communities in the Vertical Atmosphere: Effects of Urbanization and the Natural Environment in Four North American Ecosystems

    Science.gov (United States)

    Docherty, K. M.; Lemmer, K. M.; Domingue, K. D.; Spring, A.; Kerber, T. V.; Mooney, M. M.

    2017-12-01

    Airborne transport of microbial communities is a key component of the global ecosystem because it serves as a mechanism for dispersing microbial life between all surface habitats on the planet. However, most of our understanding of airborne microbial distribution is derived from samples collected near the ground. Little is understood about how the vertical layers of the air may act as a habitat filter or how local terrestrial ecosystems contribute to a vast airborne microbial seedbank. Specifically, urbanization may fundamentally alter the terrestrial sources of airborne microbial biodiversity. To address this question, we conducted airborne sampling at minimally disturbed natural sites and paired urban sites in 4 different North American ecosystems: shortgrass steppe, desert scrub, eastern deciduous forest, and northern mesic forest. All natural area sites were co-located with NEON/Ameriflux tower sites collecting atmospheric data. We developed an airborne sampling platform that uses tethered helikites at 3 replicate locations within each ecosystem to launch remote-controlled sampler payloads. We designed sampler payloads to collect airborne bacteria and fungi from 150, 30 and 2 m above the ground. Payload requirements included: ability to be disinfected and remain contaminant-free during transport, remote open/close functionality, payload weight under 6 lbs and automated collection of weather data. After sampling for 6 hours at each location, we extracted DNA collected by the samplers. We also extracted DNA from soil and plant samples collected from each location, and characterized ground vegetation. We conducted bacterial 16S amplicon-based sequencing using Mi-Seq and sequence analysis using QIIME. We used ArcGIS to determine percent land use coverage. Our results demonstrate that terrestrial ecosystem type is the most important factor contributing to differences in airborne bacterial community composition, and that communities differed by ecosystem. The

  17. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    Science.gov (United States)

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  18. Toxic Volatile Organic Compounds (VOCs in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2016-09-01

    Full Text Available In the past decades, hazardous air pollutants (HAPs, so-called air toxics or toxic air pollutants, have been detected in the atmospheric air at low concentration levels, causing public concern about the adverse effect of long-term exposure to HAPs on human health. Most HAPs belong to volatile organic compounds (VOCs. More seriously, most of them are known carcinogens or probably carcinogenic to humans. The objectives of this paper were to report the regulatory aspects and environmental monitoring management of toxic VOCs designated by Japan and Korea under the Air Pollution Control Act, and the Clean Air Conservation Act, respectively. It can be found that the environmental quality standards and environmental monitoring of priority VOCs (i.e., benzene, trichloroethylene, tetrachloroethylene, and dichloromethane have been set and taken by the state and local governments of Japan since the early 2000, but not completely established in Korea. On the other hand, the significant progress in reducing the emissions of some toxic VOCs, including acrylonitrile, benzene, 1,3-butadiene, 1,2-dichloroethane, dichloromethane, chloroform, tetrachloroethylene, and trichloroethylene in Japan was also described as a case study in the brief report paper.

  19. flexCloud: Deployment of the FLEXPART Atmospheric Transport Model as a Cloud SaaS Environment

    Science.gov (United States)

    Morton, Don; Arnold, Dèlia

    2014-05-01

    FLEXPART (FLEXible PARTicle dispersion model) is a Lagrangian transport and dispersion model used by a growing international community. We have used it to simulate and forecast the atmospheric transport of wildfire smoke, volcanic ash and radionuclides. Additionally, FLEXPART may be run in backwards mode to provide information for the determination of emission sources such as nuclear emissions and greenhouse gases. This open source software is distributed in source code form, and has several compiler and library dependencies that users need to address. Although well-documented, getting it compiled, set up, running, and post-processed is often tedious, making it difficult for the inexperienced user. Our interest is in moving scientific modeling and simulation activities from site-specific clusters and supercomputers to a cloud model as a service paradigm. Choosing FLEXPART for our prototyping, our vision is to construct customised IaaS images containing fully-compiled and configured FLEXPART codes, including pre-processing, execution and postprocessing components. In addition, with the inclusion of a small web server in the image, we introduce a web-accessible graphical user interface that drives the system. A further initiative being pursued is the deployment of multiple, simultaneous FLEXPART ensembles in the cloud. A single front-end web interface is used to define the ensemble members, and separate cloud instances are launched, on-demand, to run the individual models and to conglomerate the outputs into a unified display. The outcome of this work is a Software as a Service (Saas) deployment whereby the details of the underlying modeling systems are hidden, allowing modelers to perform their science activities without the burden of considering implementation details.

  20. Environment

    International Nuclear Information System (INIS)

    McIntyre, A.D.; Turnbull, R.G.H.

    1992-01-01

    The development of the hydrocarbon resources of the North Sea has resulted in both offshore and onshore environmental repercussions, involving the existing physical attributes of the sea and seabed, the coastline and adjoining land. The social and economic repercussions of the industry were equally widespread. The dramatic and speedy impact of the exploration and exploitation of the northern North Sea resources in the early 1970s, on the physical resources of Scotland was quickly realised together with the concern that any environmental and social damage to the physical and social fabric should be kept to a minimum. To this end, a wide range of research and other activities by central and local government, and other interested agencies was undertaken to extend existing knowledge on the marine and terrestrial environments that might be affected by the oil and gas industry. The outcome of these activities is summarized in this paper. The topics covered include a survey of the marine ecosystems of the North Sea, the fishing industry, the impact of oil pollution on seabirds and fish stocks, the ecology of the Scottish coastline and the impact of the petroleum industry on a selection of particular sites. (author)

  1. Estimating Tritium Fluxes from the Shallow Unsaturated Zone to the Atmosphere in an Arid Environment Dominated by Creosote Bush (USGS-ADRS)

    Science.gov (United States)

    Garcia, C. A.; Andraski, B. J.; Wheatcraft, S. W.; Johnson, M. J.; Michel, R. L.; Stonestrom, D. A.

    2006-12-01

    Understanding the transport and fate of tritium is essential when evaluating options for low-level radioactive waste (LLRW) isolation. The magnitude and spatio-temporal variability of tritium transport from the shallow unsaturated zone to the atmosphere are being investigated adjacent to a LLRW facility at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in Southern Nevada. Site and community-scale tritium fluxes from the subsurface to the atmosphere were quantified using a simple gas-phase diffusive loading approach combining evaporation and transpiration fluxes with mass fractions of gas-phase tritium concentrations. A Priestly-Taylor model, calibrated with quarterly bare-soil evaporation measurements, was used to estimate continuous bare-soil evaporation from measured continuous eddy-covariance evapotransporation. Continuous transpiration was computed as the difference between measured evapotranspiration and estimated bare-soil evaporation. Tritium concentrations in plant water and soil-water vapor were measured along two transects perpendicular to the LLRW using azeotropic distillation of creosote bush (Larrea tridentata) foliage and soil vapor extraction from 0.5 and 1.5 m depths below land surface. A preliminary daily tritium flux estimate at a single plant site was 1.66 × 10-11 gm-2. Spatio- temporal variability over a 75-ha area and 2-yr period will be quantified using a combination of tritium concentration maps and continuous evaporation and transpiration flux estimates. Quantifying tritium fluxes from the shallow unsaturated zone to the atmosphere on a site and community-scale will improve knowledge and understanding of vertical contaminant transport in arid environments.

  2. Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment

    Directory of Open Access Journals (Sweden)

    L. Laakso

    2008-08-01

    Full Text Available We have analyzed one year (July 2006–July 2007 of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 μg m−3, and the annual median total particle number concentration in the size range 10–840 nm was 2340 cm−3. During Easterly winds, influence of industrial sources approximately 150 km away from the measurement site was clearly visible, especially in SO2 and NOx concentrations. Of gases, NOx and CO had a clear annual, and SO2, NOx and O3 clear diurnal cycle. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1–28 cm−3 s−1 (median 1.9 cm−3 s−1 and nucleation mode particle growth rates were in the range 3–21 nm h−1 (median 8.5 nm h−1. Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.

  3. Date palm (Phoenix dactylifera L.) leaves as biomonitors of atmospheric metal pollution in arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khashman, Omar Ali, E-mail: omarkhashman@yahoo.com [Department of Environmental Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, P.O. Box (20), Ma' an-Jordan (Jordan); Al-Muhtaseb, Ala' a H.; Ibrahim, Khalid A. [Department of Chemical Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, P.O. Box (20), Ma' an-Jordan (Jordan)

    2011-06-15

    The leaves of date palms were evaluated as a possible biomonitor of heavy metal contamination in Ma'an city, Jordan. Concentrations of (Fe), (Pb), (Zn), (Cu), (Ni), and (Cr) were determined in washed and unwashed leaves and soil samples collected from different sites with different degrees of metal contamination (urban, suburban, industrial, highway and rural sites); separate leaves were taken from outside the city to be used as a control sample. Samples collected from industrial sites were found to have high concentrations of all metals except those of Cu, Ni and Pb, which were found at high levels in the highway site samples which is associated with the road traffic. The difference between unwashed and washed samples showed that metal pollutants exist as contaminants, particularly Pb, Zn and Ni, which varied in concentration, depending on the source of the metal. - Highlights: > High metal concentration in plant samples and roadside soil was due to the heavy traffic. > The mean concentrations (C) were in the order: C{sub Fe} > C{sub Pb} > C{sub Zn} > C{sub Ni} > C{sub Cu} > C{sub Cr}. > Difference between unwashed and washed samples showed that pollutants exist as contaminants. - Date palm (Phoenix dactylifera L.) leaves can be used as an inexpensive biomonitor of the deposition, accumulation and distribution of heavy metal contamination in arid environments.

  4. Date palm (Phoenix dactylifera L.) leaves as biomonitors of atmospheric metal pollution in arid and semi-arid environments

    International Nuclear Information System (INIS)

    Al-Khashman, Omar Ali; Al-Muhtaseb, Ala'a H.; Ibrahim, Khalid A.

    2011-01-01

    The leaves of date palms were evaluated as a possible biomonitor of heavy metal contamination in Ma'an city, Jordan. Concentrations of (Fe), (Pb), (Zn), (Cu), (Ni), and (Cr) were determined in washed and unwashed leaves and soil samples collected from different sites with different degrees of metal contamination (urban, suburban, industrial, highway and rural sites); separate leaves were taken from outside the city to be used as a control sample. Samples collected from industrial sites were found to have high concentrations of all metals except those of Cu, Ni and Pb, which were found at high levels in the highway site samples which is associated with the road traffic. The difference between unwashed and washed samples showed that metal pollutants exist as contaminants, particularly Pb, Zn and Ni, which varied in concentration, depending on the source of the metal. - Highlights: → High metal concentration in plant samples and roadside soil was due to the heavy traffic. → The mean concentrations (C) were in the order: C Fe > C Pb > C Zn > C Ni > C Cu > C Cr . → Difference between unwashed and washed samples showed that pollutants exist as contaminants. - Date palm (Phoenix dactylifera L.) leaves can be used as an inexpensive biomonitor of the deposition, accumulation and distribution of heavy metal contamination in arid environments.

  5. Aviation and the atmospheric environment. Present regulations; L`aviation et l`environnement atmospherique la reglementation actuelle

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, Ch [Direction Generale de l` Aviation Civile (France)

    1994-12-31

    The two main environmental impacts of air transport are caused by noise and emissions. The International Civil Aviation Organization (ICAO) decided to address environmental issues in the early seventies and started establishing an action programme regarding the environment. Emissions standards were adopted in 1981 and introduced in ICAO Annex 16 as Volume II. Contracting States are required to include ICAO standards in their national regulations or to notify any differences. VOLUME II contains standards relating to the control of fuel venting, smoke and gaseous emissions (namely hydrocarbons, carbon monoxide and nitrogen oxides) from turbo-jet and turbofan engines intended for subsonic and supersonic propulsion. The stringency of NO{sub x} emissions limits was increased as from 1993. An ICAO Council committee, known as the Committee on Aviation Environmental Protection (CAEP), is in charge of proposing amendments to Annex 16. One of its working groups is assessing the need to modify current Volume II provisions and studying possible evolution of emissions standards. As a result of its work programme, it will submit several proposals for amendments of Annex 16 - Volume II at the next Committee meeting scheduled in late 1995 or early 1996. (author)

  6. Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area

    International Nuclear Information System (INIS)

    Callén, M.S.; López, J.M.; Iturmendi, A.; Mastral, A.M.

    2013-01-01

    The total PAH associated to the airborne particulate matter (PM10) was apportioned by one receptor model based on positive matrix factorization (PMF) in an urban environment (Zaragoza city, Spain) during February 2010–January 2011. Four sources associated with coal combustion, gasoline, vehicular and stationary emissions were identified, allowing a good modelling of the total PAH (R 2 = 0.99). A seasonal behaviour of the four factors was obtained with higher concentrations in the cold season. The NE direction was one of the predominant directions showing the negative impact of industrial parks, a paper factory and a highway located in that direction. Samples were classified according to hierarchical cluster analysis obtaining that, episodes with the most negative impact on human health (the highest lifetime cancer risk concentrations), were produced by a higher contribution of stationary and vehicular emissions in winter season favoured by high relative humidity, low temperature and low wind speed. -- Highlights: ► PMF receptor model apportioned four sources associated to the total PAH in Zaragoza. ► The sources were: vehicular, coal combustion, gasoline and stationary emissions. ► Samples were additionally classified according to hierarchical cluster analysis. ► The stationary and vehicular emissions factors showed higher risk for human health. ► Low temperature, wind speed and high relative humidity favoured this negative impact. -- Episodes with the most negative impact on human health regarding PAH were produced by a higher contribution of stationary and vehicular emissions in winter season

  7. Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan D.; Wang, Lixin; Chambers, Scott; Ershadi, Ali; Williams, Alastair G.; Strauss, Josiah; Element, Adrian

    2017-01-01

    The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (d =δH-8× δO) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (d). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (d) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime d values. The low d observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime d and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime d variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of d values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d can generally be expected to show large spatial and temporal variability and to depend on the soil moisture state. For long periods between rain events, common in semi-arid environments, ET would be expected to impose negative forcing on the surface d. Spatial and temporal variability of D-excess in ET fluxes therefore needs to be considered when using d to study

  8. Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen

    2017-01-27

    The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (d =δH-8× δO) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (d). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (d) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime d values. The low d observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime d and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime d variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of d values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d can generally be expected to show large spatial and temporal variability and to depend on the soil moisture state. For long periods between rain events, common in semi-arid environments, ET would be expected to impose negative forcing on the surface d. Spatial and temporal variability of D-excess in ET fluxes therefore needs to be considered when using d to study

  9. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  10. On the Response of the Special Sensor Microwave/Imager to the Marine Environment: Implications for Atmospheric Parameter Retrievals. Ph.D. Thesis

    Science.gov (United States)

    Petty, Grant W.

    1990-01-01

    A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively

  11. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)

  12. Jovian atmospheres

    International Nuclear Information System (INIS)

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers

  13. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  14. Climate change effects on environment (marine, atmospheric and terrestrial) and human perception in an Italian Region (Marche) and the nearby northern Adriatic Sea.

    Science.gov (United States)

    Appiotti, F.; Krzelj, M.; Marincioni, F.; Russo, A.

    2012-04-01

    An integrated analysis of recent climate change, including atmosphere, sea and land, as well as some of the impacts on society, has been conducted on the Marche Region in central Italy and the northern portion of the Adriatic Sea. The Marche Region is one of the 20 administrative divisions of Italy, located at a latitude approximately 43° North, with a total surface area of 9,366 km2 and 1,565,000 residents. The northern Adriatic Sea is the northernmost area of the Mediterranean Sea, and it has peculiar relevance for several aspects (environment, tourism, fisheries, economy). The collected environmental data included meteorological stations (daily maximum and minimum air temperature, daily precipitation), oceanographic stations (sea temperature, salinity, dissolved oxygen, nutrient salts concentration, chlorophyll) and river flows, over the last 50 years. The collected social data include 800 questionnaires and interviews carried out on selected samples of residents, decision-makers and emergency managers. These questionnaires and interviews aimed at highlighting the perception of climate change risks. The trend analysis of air temperature and precipitation data detailed an overall temperature increase in all seasons and rainfall decreases in Winter, Spring and Summer with Autumn increases, influencing river flow changes. Marine data showed a relevant warming of the water column in the period after 1990 in comparison with the previous period, particularly in the cold season. Surface salinity increased in Spring and Summer and strongly decreased in Autumn and Winter (according with the precipitation and river flow changes). These last mentioned changes, combined with anthropogenic effects, also influenced the marine ecosystems, with changes of nutrient salts, chlorophyll and dissolved oxygen. Changes in nutrient discharge from rivers influenced the average marine chlorophyll concentration reduction and the consequent average reduction of warm season hypoxic

  15. Setting up an atmospheric-hydrologic model for seasonal forecasts of water flow into dams in a mountainous semi-arid environment (Cyprus)

    Science.gov (United States)

    Camera, Corrado; Bruggeman, Adriana; Zittis, Georgios; Hadjinicolaou, Panos

    2017-04-01

    partitioning of deep percolation between losses and baseflow contribution (LOSS_BASE), water retention depth (RETDEPRTFAC), overland roughness (OVROUGHRTFAC), and channel manning coefficients (MANN). The calibrated WRF-Hydro shows a good ability to reproduce annual total streamflow (-19% error) and total peak discharge volumes (+3% error), although very high values of MANN were used to match the timing of the peak and get positive values of Nash-Sutcliffe efficiency coefficient (0.13). The two most sensitive parameters for the modeled seasonal flow were REFKDT and LOSS_BASE. Simulations of the calibrated WRF-Hydro with WRF modelled atmospheric forcing showed high errors in comparison with those forced with observations, which can be corrected only by modifying the most sensitive parameters by at least one order of magnitude. This study has received funding from the EU H2020 BINGO Project (GA 641739). Camera C., Bruggeman A., Hadjinicolaou P., Pashiardis S., Lange M.A., 2016. Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980-2010. J Geophys Res Atmos 119, 693-712, DOI:10.1002/2013JD020611 Camera C., Bruggeman A., Hadjinicolaou P., Michaelides S., Lange M.A., 2016. Evaluation of a spatial rainfall generator for generating high resolution precipitation projections over orographically complex terrain. Stoch Environ Res Risk Assess, DOI 10.1007/s00477-016-1239-1

  16. Physical profile data collected during the calendar year 2003 for the Tropical Atmosphere Ocean Project by NOAA's Pacific Marine Environment Lab (NODC Accession 0001364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical profile data were collected using meteorological sensors and CTD casts in the Northeast Pacific Ocean from NOAA Ship KA'IMIMOANA and NOAA Ship RONALD H....

  17. Contaminated lead environments of man: reviewing the lead isotopic evidence in sediments, peat, and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden.

    Science.gov (United States)

    Bindler, Richard

    2011-08-01

    Clair Patterson and colleagues demonstrated already four decades ago that the lead cycle was greatly altered on a global scale by humans. Moreover, this change occurred long before the implementation of monitoring programs designed to study lead and other trace metals. Patterson and colleagues also developed stable lead isotope analyses as a tool to differentiate between natural and pollution-derived lead. Since then, stable isotope analyses of sediment, peat, herbaria collections, soils, and forest plants have given us new insights into lead biogeochemical cycling in space and time. Three important conclusions from our studies of lead in the Swedish environment conducted over the past 15 years, which are well supported by extensive results from elsewhere in Europe and in North America, are: (1) lead deposition rates at sites removed from major point sources during the twentieth century were about 1,000 times higher than natural background deposition rates a few thousand years ago (~10 mg Pb m(-2) year(-1) vs. 0.01 mg Pb m(-2) year(-1)), and even today (~1 mg Pb m(-2) year(-1)) are still almost 100 times greater than natural rates. This increase from natural background to maximum fluxes is similar to estimated changes in body burdens of lead from ancient times to the twentieth century. (2) Stable lead isotopes ((206)Pb/(207)Pb ratios shown in this paper) are an effective tool to distinguish anthropogenic lead from the natural lead present in sediments, peat, and soils for both the majority of sites receiving diffuse inputs from long range and regional sources and for sites in close proximity to point sources. In sediments >3,500 years and in the parent soil material of the C-horizon, (206)Pb/(207)Pb ratios are higher, 1.3 to >2.0, whereas pollution sources and surface soils and peat have lower ratios that have been in the range 1.14-1.18. (3) Using stable lead isotopes, we have estimated that in southern Sweden the cumulative anthropogenic burden of

  18. Effects of chronic exposure to low-level pollutants in the environment. Prepared for the Subcommittee on the Environment and the Atmosphere of the Committee on Science and Technology, US House of Representatives, Ninety-Fourth Congress, First Session by the Congressional Research Service, Library of Congress, Serial 0

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    This report was prepared for the Subcommittee on the Environment and the Atmosphere of the US House of Representatives Committee on Science and Technology. It describes the effects of low-level, persistent pollutants on human health, fish and wildlife, agriculture, and climate.

  19. Environment | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National Security User Facilities Science Work with Us Environment Atmospheric and Climate Science Ecological

  20. Determination of cosmic ray (CR) ionization path and iono/atmospheric cut-off energy from CR intervals III, IV and V in the planetary environments

    International Nuclear Information System (INIS)

    Velinov, P.

    2001-01-01

    In this paper are determined the ionization path and cut-off energies of the cosmic ray (CR) nuclei in relation to the general interaction model 'CR - ionosphere-middle atmosphere'. Here the ionization path and the iono/atmospheric cut-off energies of the galactic CR, solar CR and anomalous CR are separately considered in each energetic range, without taking into account the particle transfer from one range in another. This more general approach will be the object of a further paper

  1. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  2. Fluxes of Ethanol Between the Atmosphere and Oceanic Surface Waters; Implications for the Fate of Biofuel Ethanol Released into the Environment

    Science.gov (United States)

    Avery, G. B., Jr.; Shimizu, M. S.; Willey, J. D.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Lathrop, T. E.; Felix, J. D. D.

    2017-12-01

    The use of ethanol as a transportation fuel has increased significantly during the past decade in the US. Some ethanol escapes the combustion process in internal combustion engines resulting in its release to the atmosphere. Ethanol can be oxidized photochemically to acetaldehyde and then converted to peroxyacetyl nitrate contributing to air pollution. Therefore it is important to determine the fate ethanol released to the atmosphere. Because of its high water solubility the oceans may act as a sink for ethanol depending on its state of saturation with respect to the gas phase. The purpose of the current study was to determine the relative saturation of oceanic surface waters by making simultaneous measurements of gas phase and surface water concentrations. Data were obtained from four separate cruises ranging from estuarine to open ocean locations in the coast of North Carolina, USA. The majority of estuarine sites were under saturated in ethanol with respect to the gas phase (11-50% saturated) representing a potential sink. Coastal surface waters tended to be supersaturated (135 - 317%) representing a net flux of ethanol to the atmosphere. Open ocean samples were generally at saturation or slightly below saturation (76-99%) indicating equilibrium between the gas and aqueous phases. The results of this study underscore to variable role the oceans play in mitigating the increases in atmospheric ethanol from increased biofuel usage and their impact on air quality.

  3. Contributions of the CEA-Valduc Centre control to the understanding of the transfers of atmospheric tritiated water into the different parts of the environment

    International Nuclear Information System (INIS)

    Guetat, P.; Vichot, L.; Tognelli, A.

    2009-01-01

    After a description of the geological environment of the Valduc Centre dedicated to tritium purification and tritiated waste processing and storage, this document presents the assessment of quantities of tritiated water released by the Valduc Centre and of their evolution in the hydro-geological environment. It provides in situ macroscopically observed data on the transfer mechanisms of water into the different parts of the environment and into the food chain by means. This is made possible by the exceptional traceability of tritiated water. Finally, a comparison between computational models and experimental measurements is given

  4. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Elliot, J.L.; Dunham, E.W.; Bosh, A.S.; Slivan, S.M.; Young, L.A.

    1989-01-01

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  5. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  6. Cl K-edge XANES spectra of atmospheric rust on Fe, Fe-Cr and Fe-Ni alloys exposed to saline environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2004-01-01

    Cl K-edge XANES measurements of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys in chloride pollution have been performed using synchrotron radiation in order to clarify roles of anticorrosive alloying elements and of Cl in the corrosion resistance of weathering steel. The spectra of binary alloys show a shoulder structure near the absorption edge. The intensity of the shoulder peak depends on the kind and amount of the alloying element, whereas the energy position is invariant. This indicates that Cl is not combined directly with alloying elements in the rust. (author)

  7. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...

  8. Atmospheric electrodynamics

    International Nuclear Information System (INIS)

    Volland, H.

    1984-01-01

    The book Atmospheric Electrodynamics, by Hans Voland is reviewed. The book describes a wide variety of electrical phenomena occurring in the upper and lower atmosphere and develops the mathematical models which simulate these processes. The reviewer finds that the book is of interest to researchers with a background in electromagnetic theory but is of only limited use as a reference work

  9. Effect of Aluminum and Silicon on Atmospheric Corrosion of Low-alloying Steel under Containing NaHSO3 Wet/dry Environment

    International Nuclear Information System (INIS)

    Xinhua, Chen; Junhua, Dong; Enhou, Han; Wei, Ke

    2008-01-01

    The atmospheric corrosion performance of Al-alloying Si-alloying and Al-Si-alloying steel were studied by wet/dry cyclic corrosion tests (CCT) at 30 .deg. C and 60% relative humidity (RH). The corrosion electrolyte used for CCT was 0.052 wt% NaHSO 3 (pH∼4) solution. The result of gravimetry demonstrated that Al-Si-bearing steels showed lower corrosion resistance than other rusted steels. But the rusted 0.7%Si-alloying steel showed a better corrosion resistance than rusted mild steel. Polarization curves demonstrated that Al-/Si-alloying and Al-Si-alloying improved the rest potential of steel at the initial stage: and accelerated the cathodic reduction and anodic dissolution after a rust layer formed on the surfaces of steels. XRD results showed that Al-Si-alloying decreased the volume fraction of Fe 3 O 4 and α-FeOOH. The recycle of acid accelerated the corrosion of steel at the initial stage. After the rust layer formed on the steel, the leak of rust destabilized the rust layer due to the dissolution of compound containing Al (such as FeAl 2 O 4 , (Fe, Si) 2 (Fe, Al)O 4 ). Al-Si-alloying is hence not suitable for improving the anti-corrosion resistance of steel in industrial atmosphere

  10. Atmospheric corrosion of low carbon steel in a polar marine environment. Study of the effect of wind regime; Corrosion atmosferica del acero bajo en carbono en un ambiente marino polar. Estudio del efecto del regimen de vientos

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, S.; Chico, B.; Fuente, D. de la; Morcillo, M.

    2007-07-01

    The present work studies the atmospheric corrosion of carbon steel (UNE-EN 10130) in a sub-polar marine environment (Artigas Antarctic Scientific Base (BCAA), Uruguay) as a function of site atmospheric salinity and exposure time. A linear relationship is established between corrosion rate and airborne salinity deposition rate, valid in the deposition range encountered (125-225 mg Cl-l/m{sup 2}.d) and a bi logarithmic relationship established between corrosion and exposure time (1-4 years). Atmospheric salinity is related with the monthly wind speed average, based on the concept of the wind run. chloride ion deposition rates of less than 300 mg Cl-l/m{sup 2}.d are related with remote (oceanic) winds and coastal winds basically of speeds between 1-40 km/h, while higher deposition rates (300-700 mg Cl-/m{sup 2}.d) correspond to coastal marine winds of a certain persistence with speeds of between 41-80 km/h. (Author) 39 refs.

  11. Urban atmospheres.

    Science.gov (United States)

    Gandy, Matthew

    2017-07-01

    What is an urban atmosphere? How can we differentiate an 'atmosphere' from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an 'affective atmosphere' as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres.

  12. Modeling of atmospheric corrosion environments and its application to constant dew-point corrosion test; Yagai taiki fushoku kankyo no modeling to sore ni motozuku teirotengata saikuru fushoku shikenho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Muto, I. [Nippon Steel Corp., Tokyo (Japan)] Sugimoto, K. [Tohoku Univ., Sendai (Japan)

    1998-08-15

    Recently, stainless steel is increasing its demand for corrosion resistant building materials. Then, as it is necessary to develop and accelerating testing method capable of accurately estimating weatherability at sea side area, such testing method has no been developed yet because of difficulty to quantify corrosive environment relating to atmospheric corrosion phenomenon. As air temperature and relative humidity in outdoor change in complex, specific temperature and relative humidity cannot be used for their representative values. And, construction of corrosive factors such as sea salt particles, and so on are also much different at each area. However, at coastal area, a dew water dissolving the sea salt particles, so called droplets of chlorides aqueous solution is formed onto material surface. Then, in this study, on a base of drying and humidity absorption behavior and daily change behavior of temperature and humidity in outdoor, modeling of atmospheric corrosion environment was tried. An accelerating testing method according to this modeling was developed, long-term weathering test was compared with the corrosion behavior of the same steel, and validity of a new accelerating testing method was evaluated. 22 refs., 12 figs., 2 tabs.

  13. Atmospheric Electricity

    Science.gov (United States)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  14. A review of the various techniques of soil rehabilitation in a rural environment following an accidental atmospheric release from a nuclear plant

    International Nuclear Information System (INIS)

    Laylavoix, F.; Madelmont, C.; Fache, P.; Manesse, D.; Camus, H.

    1989-01-01

    A critical survey of the various rehabilitation methods is presented: mechanical cleanup, physico-chemical treatment, new direction of productions. Particular attention has been paid to the qualification of methods: equipment availability, decontamination efficiency, utilization and maintenance conditions. Two appendices are included: the former presents the broad scope of the RESSAC program (Rehabilitation of Soils and Surfaces following an Accident); the latter a review of the information available on the interventions on the CHERNOBYL site environment [fr

  15. Mars: Atmosphere

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2001-07-01

    The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...

  16. Atmosphere beyond Poetics

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    Defined by German philosopher Gernot Böhme as a ‘fundamental concept of a new aesthetics’ (Böhme 2003), the notion of atmosphere has been widely discussed across many disciplinary fields over the last few decades. It has taken a central stage also in architectural debate, leading to both conceptual......, the notion of atmosphere is presented as parallactic for designing experience in architectural fields, since it transgresses formal and material boundaries of bodies, opening a new gap that exposes the orthodox space-body-environment relationships to questions. It leads to the dissolution...

  17. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups.

    Science.gov (United States)

    Agudelo-Castañeda, Dayana M; Teixeira, Elba C; Schneider, Ismael L; Lara, Sheila Rincón; Silva, Luis F O

    2017-05-01

    We investigated the carcinogenic and mutagenic respiratory health risks related to the exposure to atmospheric PAHs in an urban area. Our study focused in the association of these pollutants and their possible effect in human health, principally respiratory and circulatory diseases. Also, we determined a relationship between the inhalation risk of PAHs and meteorological conditions. We validated the hypothesis that in winter PAHs with high molecular weight associated to submicron particles (PM 1 ) may increase exposure risk, especially for respiratory diseases, bronchitis and pneumonia diseases. Moreover, in our study we verified the relationship between diseases and several carcinogenic PAHs (Ind, BbkF, DahA, BaP, and BghiP). These individual PAHs contributed the most to the potential risk of exposure for inhalation of PM 1.0 . Even at lower ambient concentrations of BaP and DahA in comparison with individual concentrations of other PAHs associated to PM 1.0 . Mainly, research suggests to include carcinogenic and mutagenic PAHs in future studies of environmental health risk due to their capacity to associate to PM 10 . Such carcinogenic and mutagenic PAHs are likely to provide the majority of the human exposure, since they originate from dense traffic urban areas were humans congregate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. TIROA/NOAA (Television and Infrared Observation Satellite/National Oceanic and Atmospheric Administration) satellites space environment monitor archive tape documentation: 1988 update. Technical memo

    International Nuclear Information System (INIS)

    Hill, V.J.; Evans, D.S.; Sauer, H.H.

    1988-05-01

    TIROS/NOAA satellite archive tapes containing data obtained with the Medium-Energy Proton and Electron Detector (MEPED), High-Energy Proton and Alpha-Particle Detector (HEPAD), and Total-Energy Detector (TED) are described. Descriptions of the data include orbital and housekeeping details and the information needed to decode and understand the data. Specifications of the data channels are supplied, with the timing information needed to convert the data to usable information. Description of the archive tape format gives the information needed to read the tape and unpack the data. Appendices supply the retrieval routines used by the Space Environment Services Center in Boulder

  19. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  20. Results of induced atmosphere measurements from the Apollo program. [possible effects of the induced environment in the vicinity of manned spacecraft on future manned laboratory experiments

    Science.gov (United States)

    Naumann, R. J.

    1974-01-01

    Experiments on Apollo missions 15, 16, and 17 were utilized in an attempt to learn about the induced environment in the vicinity of manned spacecraft. Photographic sequences were examined to obtain scattered light data from the spacecraft-generated particulates during quiescence periods and after liquid dumps. The results allowed estimates of the obscuration factor and the clearing times after dumps. It was found that the clearing times were substantially longer than anticipated. The mass spectrometer detected a high molecular flux in lunar orbit which was induced by the spacecraft. It is shown that this is most likely caused by small ice crystals being continually produced in lunar orbit. Other data from the ultraviolet spectrometer and the stellar camera are also analyzed, and estimated values or upper limits are placed on the total scattering background, the size and number of particles generated, the velocity range, and the column density.

  1. Assessing atmospheric particulate matter distribution based on Saturation Isothermal Remanent Magnetization of herbaceous and tree leaves in a tropical urban environment.

    Science.gov (United States)

    Barima, Yao Sadaiou Sabas; Angaman, Djédoux Maxime; N'gouran, Kobenan Pierre; Koffi, N'guessan Achille; Kardel, Fatemeh; De Cannière, Charles; Samson, Roeland

    2014-02-01

    Particulate matter (PM) emissions, and the associated human health risks, are likely to continue increasing in urban environments of developing countries like Abidjan (Ivory Cost). This study evaluated the potential of leaves of several herbaceous and tree species as bioindicators of urban particulate matter pollution, and its variation over different land use classes, in a tropical area. Four species well distributed (presence frequencies >90%) over all land use classes, easy to harvest and whose leaves are wide enough to be easily scanned were selected, i.e.: Amaranthus spinosus (Amaranthaceae), Eleusine indica (Poaceae), Panicum maximum (Poaceae) and Ficus benjamina (Moraceae). Leaf sampling of these species was carried out at 3 distances from the road and at 3 height levels. Traffic density was also noted and finally biomagnetic parameters of these leaves were determined. Results showed that Saturation Isothermal Remanent Magnetization (SIRM) of leaves was at least 4 times higher (27.5×10(-6)A) in the vicinity of main roads and industrial areas than in parks and residential areas. The main potential sources of PM pollution were motor vehicles and industries. The slightly hairy leaves of the herbaceous plant A. spinosus and the waxy leaves of the tree F. benjamina showed the highest SIRM (25×10(-6)A). Leaf SIRM increased with distance to road (R(2)>0.40) and declined with sampling height (R(2)=0.17). The distance between 0 and 5m from the road seemed to be the most vulnerable in terms of PM pollution. This study has showed that leaf SIRM of herbaceous and tree species can be used to assess PM exposure in tropical urban environments. © 2013.

  2. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  3. Atmospheric pollution

    International Nuclear Information System (INIS)

    Lambrozo, J.; Guillossou, G.

    2008-01-01

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  4. Development of an operational neutron spectrometry system dedicated to the characterization of the natural atmospheric radiative environment, implemented at the Pic du Midi

    International Nuclear Information System (INIS)

    Cheminet, Adrien

    2013-01-01

    This PhD Thesis has been achieved thanks to the joint effort between two French organizations, the French Institute for Radiological Protection and Nuclear Safety (IRSN/LMDN, Cadarache) and the French Aerospace Lab (ONERA/ DESP, Toulouse). The aim was to develop an operational neutron spectrometer extended to high energies in order to measure the dynamics of the spectral variations of the natural radiative environment at the summit of the Pic du Midi Observatory in the French Pyrenees. Thereby, the fluence responses of each detector were calculated thanks to Monte Carlo simulations. Afterwards, they were validated by means of experimental campaigns up to high energies (≥20 MeV) nearby reference neutron fields. The systematic uncertainties were deduced after detailed studies of the mathematic reconstruction of the spectra (i.e. unfolding procedure). Then, the system was tested under rocks at the LSBB of Rustrel before being installed at respectively +500 m and +1000 m above sea level for the first environmental campaigns. Finally, the spectrometer has been operating for two years after its deployment at the summit of the Pic du Midi (+2885 m). The continuous data were analysed thanks to an innovative method. Some seasonal and spectral variations were observed. Some Forbush decreases were also recorded after strong solar flares. These data were further analysed thanks to Monte Carlo simulations. The data were made more attractive thanks to several practical applications with personnel dosimetry or reliability of submicron electronics components. (author)

  5. The calculated radiological impact on the environment of the Karlsruhe Nuclear Research Center due to radioactive emissions to the atmosphere in the years 1975 and 1976

    International Nuclear Information System (INIS)

    Huebschmann, W.; Nagel, D.; Papadopoulos, D.

    1976-08-01

    The radiological impact by radioactive offgas and exhaust air on the environment of the Karlsruhe Nuclear Research Center (KNRC) is calculated every year and compared with the permissible equivalent doses. This report includes both the forecasted maximum doses from maximum releases scheduled for the year 1976 and the actual doses of 1975 based on the measured releases in 1975. According to the various irradiation mechanisms of the nuclides emitted, the following doses are indicated, each calculated for an adult person: whole body dose by γ-irradiation and tritium inhalation, skin dose by external β-irradiation, lung dose by aerosol inhalation, bone dose by plutonium inhalation, and effective integral dose. The maximum infant thyroid dose due to iodine ingestion via the pasture-cow-milk-pathway is also calculated. The respective maximum doses indicate that the dose limits of 30 mrem/a whole body dose (adult) and 90 mrem/a thyroid dose (Infant) which are to be observed by the KNRC since the year 1975 are not exceeded at any point, provided the emissions remain below the scheduled maximum level. The doses in 1975 were markedly below the dose limits mentioned above. This is even true when partial body and organ doses are integrated in an 'effective dose'. (orig.) [de

  6. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    Nurses working in the Neuro-Intensive Care Unit at Aarhus University Hospital lack the tools to prepare children for the alarming atmosphere they will enter when visiting a hospitalised relative. The complex soundscape dominated by alarms and sounds from equipment is mentioned as the main stressor...

  7. Composition of Estonian atmosphere

    International Nuclear Information System (INIS)

    Punning, J. M.; Karindi, A.

    1996-01-01

    Atmospheric study, particularly that of its chemical composition, has a long tradition in Estonia. Since middle of this century, in addition to meteorological observations, some chemical compounds in precipitations have been regularly measured in many meteorological stations. The main aim was to acquire information about the state and dynamics of the atmosphere. Therefore, main attention was paid to monitoring chemical compounds which have a direct impact on the human environment. As energy production developed intensively and SO 2 and NO x increased drastically in the atmosphere in acidic rock areas, like Scandinavia, the problem of acid rain became the most important environmental problem in Europe and North-America. As a consequence, monitoring the compounds of sulphur in precipitation was organized in Estonia. In the 1970 s, as related to large operating oil shale-based power plants, Estonia became a country , where emissions of sulphur compounds per capita were extremely high. In 1979, Estonia became a participant in the European Monitoring and Evaluation Programme - the network created to study transboundary air pollution. The aims of the precipitation chemistry study and the related problems of the formation and transformation of the atmospheric composition have varied over the years. But monitoring of pollutant (in particular, sulphur compound) loads has been a central issue. Over recent years, an attempt was made to estimate the spatial regularities of atmospheric impurities and their impact on the pH of mean monthly precipitations. Furthermore, calculations were provided to find out the origin of atmospheric impurities washed out in Estonia. Until the 1990 s, CO 2 , and some other greenhouse gas (GHG) emissions were not studied in Estonia. The first inventory of GHG for Estonia was provided in 1995 using the Intergovernmental Panel on Climate Change (IPCC) methodology

  8. Short- and medium-chain chlorinated paraffins in air and soil of subtropical terrestrial environment in the pearl river delta, South China: distribution, composition, atmospheric deposition fluxes, and environmental fate.

    Science.gov (United States)

    Wang, Yan; Li, Jun; Cheng, Zhineng; Li, Qilu; Pan, Xiaohui; Zhang, Ruijie; Liu, Di; Luo, Chunling; Liu, Xiang; Katsoyiannis, Athanasios; Zhang, Gan

    2013-03-19

    Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 μg/sampler (17.69 ng/m(3)) and 4.1 μg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 μg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.

  9. Space Environment Modeling

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes presentation materials and outputs from operational space environment models produced by the NOAA Space Weather Prediction Center (SWPC) and...

  10. Cutaneous water loss and sphingolipids in the stratum corneum of house sparrows, Passer domesticus L., from desert and mesic environments as determined by reversed phase high-performance liquid chromatography coupled with atmospheric pressure photospray ionization mass spectrometry.

    Science.gov (United States)

    Muñoz-Garcia, Agustí; Ro, Jennifer; Brown, Johnie C; Williams, Joseph B

    2008-02-01

    Because cutaneous water loss (CWL) represents half of total water loss in birds, selection to reduce CWL may be strong in desert birds. We previously found that CWL of house sparrows from a desert population was about 25% lower than that of individuals from a mesic environment. The stratum corneum (SC), the outer layer of the epidermis, serves as the primary barrier to water vapor diffusion through the skin. The avian SC is formed by layers of corneocytes embedded in a lipid matrix consisting of cholesterol, free fatty acids and two classes of sphingolipids, ceramides and cerebrosides. The SC of birds also serves a thermoregulatory function; high rates of CWL keep body temperatures under lethal limits in episodes of heat stress. In this study, we used high-performance liquid chromatography coupled with atmospheric pressure photoionization-mass spectrometry (HPLC/APPI-MS) to identify and quantify over 200 sphingolipids in the SC of house sparrows from desert and mesic populations. Principal components analysis (PCA) led to the hypotheses that sphingolipids in the SC of desert sparrows have longer carbon chains in the fatty acid moiety and are more polar than those found in mesic sparrows. We also tested the association between principal components and CWL in both populations. Our study suggested that a reduction in CWL found in desert sparrows was, in part, the result of modifications in chain length and polarity of the sphingolipids, changes that apparently determine the interactions of the lipid molecules within the SC.

  11. Atmospheres in a Test Tube

    Science.gov (United States)

    Claudi, R.; Erculiani, M. S.; Giro, E.; D'Alessandro, M.; Galletta, G.

    2013-09-01

    The "Atmosphere in a Test Tube" project is a laboratory experiment that will be able to reproduce condition of extreme environments by means of a simulator. These conditions span from those existing inside some parts of the human body to combinations of temperatures, pressures, irradiation and atmospheric gases present on other planets. In this latter case the experiments to be performed will be useful as preliminary tests for both simulation of atmosphere of exoplanets and Solar System planets and Astrobiology experiments that should be performed by planetary landers or by instruments to be launched in the next years. In particular at INAF Astronomical Observatory of Padova Laboratory we are approaching the characterization of extrasolar planet atmospheres taking advantage by innovative laboratory experiments with a particular focus on low mass Neptunes and Super earths and low mass M dwarfs primaries.

  12. Atmospheric Smell

    DEFF Research Database (Denmark)

    Stenslund, Anette

    in which it occurs; the significance of smell is never static and even the same odorous compounds may be associated very differently when the context changes. In order to take into account a socio-cultural understanding of the world of odour, this article-based PhD dissertation seeks to expand...... their attention away from smell – as skilled inattentive noses – in order to focus on their more important work. Intruding body odours breaching the uniform ‘scentless silence’ of the environment, however, provoked explicit handlings to avoid discomfort observed in the interaction between nurses and patients...

  13. Atmospheric chemistry and climate

    OpenAIRE

    Satheesh, SK

    2012-01-01

    Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...

  14. Environment control system

    International Nuclear Information System (INIS)

    Sammarone, D.G.

    1978-01-01

    Disclosed is a system for controlling the environment of an enclosed area in nuclear reactor installations. The system permits the changing of the environment from nitrogen to air, or from air to nitrogen, without the release of any radioactivity or process gas to the outside atmosphere

  15. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  16. Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record

    DEFF Research Database (Denmark)

    Møller, Henrik S.; Jensen, Karin G.; Kuijpers, Antoon

    2006-01-01

      Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminifera records of a 3.5 m long gravity core from Ameralik fjord, southern West Greenland, is used for reconstructing late Holocene environmental changes in this area. The changes are linked...... to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core covers the last 4400 years and may include the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4-3.2 ka BP) is characterized by high accumulation rates...... conditions were further characterised by limited sea ice probably related to a mild and relatively windy winter climate. After 3.2 ka BP lower fine-grained sedimentation rates, but a larger input from sea-ice rafted or aeolian coarse material prevailed. This can be related to colder atmospheric conditions...

  17. Solar/Space Environment Data (Satellites)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) monitors the geospace and solar environments using a variety of space weather sensors aboard its fleet of...

  18. Atmospheric Plasma Blade for Surgical Purposes

    Science.gov (United States)

    Oksuz, Lutfi; Yurdabak Karaca, Gozde; Özkaptan, Emir; Uygun, Emre; Uygun Oksuz, Aysegul

    2017-10-01

    Atmospheric plasma cut is a process at the minimum level due to the ions, radicals and free electrons generated by the active electrode and target tissue. Atmospheric plasma cutting devices provide significant advantages as a non-contact electrocautery system that can operate in isotonic environment. During operations where plasma cutting is applied, bleeding is controlled and the side effects that would create the isotonic environment are eliminated. In this study in vivo and in vitro studies will be carried out by producing and optimizing the atmospheric plasma blade. Once the optimum parameters of the instrument are determined, in vivo studies will be performed and the pathology results will be evaluated.

  19. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  20. Atmospheric oxidation of selected alcohols and esters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K H; Cavalli, F

    2001-03-01

    The decision whether it is appropriate and beneficial for the environment to deploy specific oxygenated organic compounds as replacements for traditional solvent types requires a quantitative assessment of their potential atmospheric impacts including tropospheric ozone and other photooxidant formation. This involves developing chemical mechanisms for the gasphase atmospheric oxidation of the compounds which can be reliably used in models to predict their atmospheric reactivity under a variety of environmental conditions. Until this study, there was very little information available concerning the atmospheric fate of alcohols and esters. The objectives of this study were to measure the atmospheric reaction rates and to define atmospheric reaction mechanisms for the following selected oxygenated volatile organic compounds: the alcohols, 1-butanol and 1-pentanol, and the esters, methyl propionate and dimethyl succinate. The study has successfully addressed these objectives. (orig.)

  1. Environmental aspects: - Atmospheric, - aquatic, - terrestrial dispersion of radionuclides

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1982-01-01

    After general introductory remarks the paper deals with the dispersion of radionuclides in the atmosphere and in the aquatic environment as well as with the transfer through the terrestrial environment. (RW)

  2. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  3. Problems in global atmospheric chemistry

    Science.gov (United States)

    Crutzen, Paul J.

    1993-02-01

    The chemistry of the atmosphere is substantially influenced by a wide range of chemical processes which are primarily driven by the action of ultraviolet radiation of wavelengths shorter than 320 nm (UV-B) on ozone and water vapor. This leads to the formation of hydroxyl (OH) radicals which, despite very low tropospheric concentrations, remove most gases that are emitted into the atmosphere by natural and anthropogenic processes. Therefore, although only about 10% of all atmospheric ozone is located in the troposphere, through the formation of OH, it determines the oxidation efficiency of the atmosphere and is, therefore, of the utmost importance for maintaining its chemical composition. Due to a variety of human activities, especially through increasing emissions of CH4, CO, and NOx, the concentrations of tropospheric ozone and hydroxyl are expected to be increasing in polluted and decreasing in clean tropospheric environments. Altogether, this may be leading to an overall decrease in the oxidation efficiency of the atmosphere, contributing to a gradual buildup of several longlived trace gases that are primarily removed by reaction with OH. In the stratosphere, especially due to catalytic reactions of chlorine-containing gases of industrial origin, ozone is being depleted, most drastically noted during the early spring months over Antarctica. Because ozone is the only atmospheric constituent that can significantly absorb solar radiation in the wavelength region 240 - 320 nm, this loss of ozone enhances the penetration of biologically harmful UV-B radiation to the earth's surface with ensuing negative consequences for the biosphere. Several of the aforementioned chemically active trace gases with growing trends in the atmosphere are also efficient greenhouse gases. Together they can exert a warming effect on the earth's climate about equal to that of carbon dioxide.

  4. Components of the environment

    International Nuclear Information System (INIS)

    Klinda, J.; Lieskovska, Z.

    1998-01-01

    This report of the Ministry of the Environment of the Slovak Republic deals with the components of the environment. The results of monitoring of air (emission situation), ambient air quality, atmospheric precipitation, tropospheric ozone, water (surface water, groundwater resources, waste water and drinking water), geological factors (geothermal energy, fuel deposits, ore deposits, non-metallic ore deposits), soil (area statistics, soil contamination. soil reaction and active extractable aluminium, soil erosion), flora and fauna (national strategy of biodiversity protection) are presented

  5. A model of the primordial lunar atmosphere

    Science.gov (United States)

    Saxena, Prabal; Elkins-Tanton, Lindy; Petro, Noah; Mandell, Avi

    2017-09-01

    We create the first quantitative model for the early lunar atmosphere, coupled with a magma ocean crystallization model. Immediately after formation, the moon's surface was subject to a radiative environment that included contributions from the early Sun, a post-impact Earth that radiated like a mid-type M dwarf star, and a cooling global magma ocean. This radiative environment resulted in a largely Earth-side atmosphere on the Moon, ranging from ∼104 to ∼102 pascals, composed of heavy volatiles (Na and SiO). This atmosphere persisted through lid formation and was additionally characterized by supersonic winds that transported significant quantities of moderate volatiles and likely generated magma ocean waves. The existence of this atmosphere may have influenced the distribution of some moderate volatiles and created temperature asymmetries which influenced ocean flow and cooling. Such asymmetries may characterize young, tidally locked rocky bodies with global magma oceans and subject to intense irradiation.

  6. Our shared atmosphere

    Science.gov (United States)

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  7. Peat exploitation - Environment. Effects and measures

    International Nuclear Information System (INIS)

    Stenbeck, G.

    1996-01-01

    This report gives a detailed description of the influence of peat exploitation on the land-, water- and atmospheric environments. Proposals for mitigatory measures to minimize damage to the environment are also given

  8. Effect of Atmospheric Conditions on LIBS Spectra

    OpenAIRE

    Effenberger, Andrew J.; Scott, Jill R.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air.

  9. Effect of Atmospheric Conditions on LIBS Spectra

    Science.gov (United States)

    Effenberger, Andrew J.; Scott, Jill R.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air. PMID:22399914

  10. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of

  11. Propagation environments [Chapter 4

    Science.gov (United States)

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    An understanding of all factors influencing plant growth in a nursery environment is needed for the successful growth and production of high-quality container plants. Propagation structures modify the atmospheric conditions of temperature, light, and relative humidity. Native plant nurseries are different from typical horticultural nurseries because plants must be...

  12. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  13. Atmospheric Sampling of Microorganisms with UAS

    Science.gov (United States)

    Schmale, D. G., III

    2017-12-01

    Many microorganisms relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. A few have crossed continents. New technologies are needed to study the movement of microorganisms in the atmosphere. We have used unmanned aircraft systems (UAS) to study the transport of microorganisms tens to hundreds of meters above the ground. These UAS are equipped with unique devices for collecting microbes in the atmosphere during flight. Autonomous systems enable teams of UAS to perform complex atmospheric sampling tasks, and coordinate flight missions with one another. Data collected with UAS can be used to validate and improve disease forecasting models along highways in the sky, connecting transport scales across farms, states, and continents. Though terrestrial environments are often considered a major contributor to atmospheric microbial aerosols, little is known about aquatic sources of microbial aerosols. Droplets containing microorganisms can aerosolize from the water surface, liberating them into the atmosphere. We are using teams of unmanned surface vehicles (USVs) and UAS to study the aerosolization of microbes from aquatic environments. Controlled flume studies using highspeed video have allowed us to observe unique aerosolization phenomena that can launch microbes out of the water and into the air. Unmanned systems may be used to excite the next generation of biologists and engineers, and raise important ethical considerations about the future of human-robot interactions.

  14. Sources of atmospheric acidity

    International Nuclear Information System (INIS)

    Clarke, A.G.

    1992-01-01

    The emissions of acid gases from anthropogenic sources and their impact on the environment are the main concern of this book. However, that impact can only be assessed if all the naturally occurring sources of these gases are also known and can be quantified. Given the widely dispersed nature of the natural sources and the problems of measurement of trace species at low concentrations, often in remote regions, the quantification is a very difficult task. Nevertheless, considerable progress has been made over the last decade. In this chapter both man-made and natural sources of atmospheric acidity will be reviewed, but the emphasis will be placed not so much on the global balances as on the scale of the natural sources in relation to the man-made sources. This requires that the very uneven geographical distribution of emissions and the lifetime of individual chemical species be taken into account. The emissions considered are sulphur compounds, nitrogen compounds, chlorine compounds and organic acids. The anthropogenic sources discussed are the combustion of fossil fuels and certain industrial processes. Emissions data for anthropogenic sources are given for the United Kingdom, Europe, USA and globally. A list of 95 references is given. (Author)

  15. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  16. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1    Final Report for DARPA project W911NF1010027  Phytoremediation  of Atmospheric

  17. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  18. Nucleation in the atmosphere

    International Nuclear Information System (INIS)

    Hegg, D A; Baker, M B

    2009-01-01

    Small particles play major roles in modulating radiative and hydrological fluxes in the atmosphere and thus they impact both climate (IPCC 2007) and weather. Most atmospheric particles outside clouds are created in situ through nucleation from gas phase precursors and most ice particles within clouds are formed by nucleation, usually from the liquid. Thus, the nucleation process is of great significance in the Earth's atmosphere. The theoretical examination of nucleation in the atmosphere has been based mostly on classical nucleation theory. While diagnostically very useful, the prognostic skill demonstrated by this approach has been marginal. Microscopic approaches such as molecular dynamics and density functional theory have also proven useful in elucidating various aspects of the process but are not yet sufficiently refined to offer a significant prognostic advantage to the classical approach, due primarily to the heteromolecular nature of atmospheric nucleation. An important aspect of the nucleation process in the atmosphere is that the degree of metastability of the parent phase for the nucleation is modulated by a number of atmospheric processes such as condensation onto pre-existing particles, updraft velocities that are the main driving force for supersaturation of water (a major factor in all atmospheric nucleation), and photochemical production rates of nucleation precursors. Hence, atmospheric nucleation is both temporally and spatially inhomogeneous

  19. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  20. Atmospheric Prebiotic Chemistry and Organic Hazes

    Science.gov (United States)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  1. Charge Transfer Scheme for Atmospheric Ice Sensing

    Directory of Open Access Journals (Sweden)

    Umair Najeeb MUGHAL

    2015-01-01

    Full Text Available The atmospheric icing parameters are being measured nowadays with the aid of more customized yet limited commercial equipment. The parameters include atmospheric ice detection, icing load and icing rate. The robustness of such equipment is usually under scrutiny when it comes to cold/harsh environment operations. This phenomenon was experienced consistently by the atmospheric Icing Research Team at Narvik University College during data retrieval exercises from its atmospheric icing stations installed at Fargnesfjellet during 2012-13. In this paper it is aimed to address the potential feasibility to produce a robust hardware addressing the icing measurements signals, which includes instrumentation hardware giving icing indications, icing type and de- icing rate measurements in a single platform (not commercially available till date.

  2. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  3. Deuterium in atmospheric cycle

    International Nuclear Information System (INIS)

    Pontikis, M.C.

    Interest of the study concerning the deuterium content variation (HDO) in the atmospheric water. Standards and measurement methods. Molecule HDO cycle in the atmospheric water. Application to the study of hail-generating cumulus-nimbus and of the mantle of snow [fr

  4. Urban atmospheric contamination

    International Nuclear Information System (INIS)

    Baldasano Jose, M.

    1997-01-01

    The problems of contamination are not only limited to this century, pale pathology evidences of the effects of the contamination of the air exist in interiors in the health of the old ones; the article mention the elements that configure the problem of the atmospheric contamination, atmospheric pollutants and emission sources, orography condition and effects induced by the urbanization process

  5. Controlled Atmosphere Stunning

    NARCIS (Netherlands)

    Lambooij, E.; Gerritzen, M.A.

    2009-01-01

    Controlled atmosphere (CAS) stunning includes several variations of gaseous mixtures given to induce an anaesthetic state before slaughter poultry. One method of multi phase CAS is to unload the birds out of the crate on a conveyor belt and subject the birds to an atmosphere of 30% O2, 40% CO2 and

  6. Atmosphere Impact Losses

    Science.gov (United States)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth's formation. Volatiles were accreted throughout the Earth's formation, but Earth's early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth's formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the {}3He/{}^{22}Ne, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (m_{cap} ≳ √{2

  7. Pluto's surface composition and atmosphere

    Science.gov (United States)

    Young, L. A.; Gladstone, R.; Summers, M. E.; Strobel, D. F.; Kammer, J.; Hinson, D. P.; Grundy, W. M.; Cruikshank, D. P.; Protopapa, S.; Schmitt, B.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2017-12-01

    New Horizons studied Pluto's N2-dominated neutral atmosphere through radio (at 4.2 cm with the REX radio experiment), solar and stellar occultations and airglow (at 52-187 nm with the Alice ultraviolet spectrograph), and imaging (with the LORRI and MVIC visible-wavelength cameras). It studied the plasma environment and solar wind interaction with in situ instruments (PEPPSI and SWAP). Contemporaneous observations of Pluto's atmosphere from Earth included a ground-based stellar occultation and ALMA observations of gaseous CO and HCN. Joint analysis of these datasets reveal a variable boundary layer; a stable lower atmosphere; radiative heating and cooling; haze production and hydrocarbon chemistry; diffusive equilibrium; and slower-than-expected escape. New Horizons studied Pluto's surface composition with the LEISA near-infrared spectral imager from 1.25 to 2.5 micron. Additional compositional information at higher spatial resolution came from the MVIC 4-channel color imager, which included a channel centered at 0.89 micron specifically designed to detect solid CH4. These instruments allow mapping of the volatiles N2, CO, and CH4, the surface expression of the H2O bedrock, and the dark, reddish material presumed to be tholins. These observations reveal a large equatorial basin (informally named Sptunik Planitia), filled with N2 ice with minor amounts of CO and CH4, surrounded by hills of CH4 and H2O ice. Broadly speaking, composition outside of Sptunik Planitia follows latitudinal banding, with dark, mainly volatile free terrains near the equator, with N2, CO, and CH4 at mid-northern latitudes, and mainly CH4 at high northern latitudes. Deviations from these broad trends are seen, and point to complex surface-atmosphere interactions at diurnal, seasonal, perennial, and million-year timescales.

  8. Dynamics of Massive Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Chemke, Rei; Kaspi, Yohai, E-mail: rei.chemke@weizmann.ac.il [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel)

    2017-08-10

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  9. Reference Atmosphere for Mercury

    Science.gov (United States)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  10. ARTEAM - Advanced ray tracing with earth atmospheric models

    NARCIS (Netherlands)

    Kunz, G.J.; Moerman, M.M.; Eijk, A.M.J. van

    2002-01-01

    The Advanced Ray Tracing with Earth Atmospheric Models (ARTEAM) aims at a description of the electro-optical propagation environment in the marine atmospheric surface layer. For given meteorological conditions, the model evaluates height- and range-resolved transmission losses, refraction and

  11. Photochemistry of Planetary Atmospheres

    Science.gov (United States)

    Yung, Y. L.

    2005-12-01

    The Space Age started half a century ago. Today, with the completion of a fairly detailed study of the planets of the Solar System, we have begun studying exoplanets (or extrasolar planets). The overriding question in is to ask whether an exoplanet is habitable and harbors life, and if so, what the biosignatures ought to be. This forces us to confront the fundamental question of what controls the composition of an atmosphere. The composition of a planetary atmosphere reflects a balance between thermodynamic equilibrium chemistry (as in the interior of giant planets) and photochemistry (as in the atmosphere of Mars). The terrestrial atmosphere has additional influence from life (biochemistry). The bulk of photochemistry in planetary atmospheres is driven by UV radiation. Photosynthesis may be considered an extension of photochemistry by inventing a molecule (chlorophyll) that can harvest visible light. Perhaps the most remarkable feature of photochemistry is catalytic chemistry, the ability of trace amounts of gases to profoundly affect the composition of the atmosphere. Notable examples include HOx (H, OH and HO2) chemistry on Mars and chlorine chemistry on Earth and Venus. Another remarkable feature of photochemistry is organic synthesis in the outer solar system. The best example is the atmosphere of Titan. Photolysis of methane results in the synthesis of more complex hydrocarbons. The hydrocarbon chemistry inevitably leads to the formation of high molecular weight products, giving rise to aerosols when the ambient atmosphere is cool enough for them to condense. These results are supported by the findings of the recent Cassini mission. Lastly, photochemistry leaves a distinctive isotopic signature that can be used to trace back the evolutionary history of the atmosphere. Examples include nitrogen isotopes on Mars and sulfur isotopes on Earth. Returning to the question of biosignatures on an exoplanet, our Solar System experience tells us to look for speciation

  12. Atmospheric pollution and its implications in the Eastern Transvaal highveld

    CSIR Research Space (South Africa)

    Tyson, PD

    1988-04-01

    Full Text Available This report is a review of available information on the dispersion climatology, the degree of atmospheric pollution and the various impacts of that pollution on man and environment in the Eastern Transvaal Highveld (ETH) and adjacent regions...

  13. Upper-Atmospheric Space and Earth Weather Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The USEWX project is seeking to monitor, record, and distribute atmospheric measurements of the radiation environment by installing a variety of dosimeters and other...

  14. New atmospheric program

    Science.gov (United States)

    The National Science Foundation's Division of Atmospheric Sciences has established an Upper Atmospheric Facilities program within its Centers and Facilities section. The program will support the operation of and the scientific research that uses the longitudinal chain of incoherent scatter radars. The program also will ensure that the chain is maintained as a state-of-the-art research tool available to all interested and qualified scientists.For additional information, contact Richard A. Behnke, Division of Atmospheric Sciences, National Science Foundation, 1800 G Street, N.W., Washington, DC 20550 (telephone: 202-357-7390).

  15. Atmospheric ionisation in Snowdonia

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH UK (United Kingdom); Williams, J H, E-mail: k.aplin1@physics.ox.ac.uk [Envirodata-Eyri, Bryn Goleu, Penmaen Park, Llanfairfechan, Gwynedd LL33 0RL (United Kingdom)

    2011-06-23

    Atmospheric ionisation from natural radioactivity and cosmic rays has been measured at several sites in Snowdonia from 2005-present. The motivation for this project was a combination of public engagement with science, and research into the effects of ionisation on climate. A four-component atmospheric radiometer instrument is co-located with the ionisation detectors and the data is remotely logged and displayed on the Web. Atmospheric ionisation from natural radioactivity varies with local geology, and the cosmic ray ionisation component is modulated by solar activity and altitude. Variations due to all these effects have been identified and are described.

  16. Atmospheres of Brown Dwarfs

    Science.gov (United States)

    Wang, Ruoyan; Seay, Christopher

    2018-01-01

    We construct a grid of brown dwarf model atmospheres spanning a wide range of atmospheric metallicity (0.3x ≤ met ≤ 100x), C/O ratios (0.25x ≤ C/O ≤ 2.5x), and cloud properties, encompassing atmospheres of effective temperatures 200 ≤ Teff ≤ 2400 K and gravities 2.5 ≤ log g ≤ 5.5. We produce the expected temperature-pressure profiles and emergent spectra from an atmosphere in radiative-convective equilibrium. We can then compare our predicted spectra to observations and retrieval results to aid in their predictions and influence future missions and telescopic observations. In our poster we briefly describe our modeling methodology and present our progress on model grid construction, spanning solar and subsolar C/O and metallicity.

  17. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    Africa and South India first detected the natural neutrinos and observed .... lucky coincidences, such as the angular diameter of the moon and sun being ... (where there is some peaking due to longer flight paths for pions in the atmosphere).

  18. Students 'Weigh' Atmospheric Pollution.

    Science.gov (United States)

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  19. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra

  20. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major p...

  1. Origin of atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Marx, Gy [Eotvos Lorand Tudomanyegyetem, Budapest (Hungary). Atomfizikai Tanszek

    1975-01-01

    The evolution of the atmosphere of the Earth is described. Starting from the hot Universe the main steps of the ''cooling-down'' process as the different states of the condensation of the matter are discussed. After this nuclear evolution the chemical evolution could start on the solid Earth's crust. In the reductive primordial atmosphere mainly due to ultraviolet rays the basic molecules for life as sugars and amino acids were formed. The photosynthesis of the plants has later produced the oxygen being present in the recent atmosphere. The question whether pollution could affect the auto-stabilization loop of the atmosphere is also discussed. Finally the possibility of life on the Mars is studied.

  2. The origin of atmosphere

    International Nuclear Information System (INIS)

    Marx, Gy.

    1975-01-01

    The evolution of the atmosphere of the Earth is described. Starting from the hot Universe the main steps of the ''cooling-down'' process as the different states of the condensation of the matter are discussed. After this nuclear evolution the chemical evolution could start on the solid Earth's crust. In the reductive primordial atmosphere mainly due to ultraviolet rays the basic molecules for life as sugars and amino acids were formed. The photosynthesis of the plants has later produced the oxygen being present in the recent atmosphere. The question whether the pollution could affect the auto-stabilization loop of the atmosphere is also discussed. Finally the possibility of life on the Mars is studied. (Sz.Z.)

  3. Bibliografía sobre organismos, ambientes y procesos marinos y atmosféricos en Bahía Culebra, Pacífico norte, Guanacaste, Costa Rica (1922-2012 Bibliography on marine organisms, environments, and oceanographic and atmospheric processes in Bahía Culebra, north Pacific, Costa Rica (1922-2012

    Directory of Open Access Journals (Sweden)

    Jorge Cortés

    2012-04-01

    Full Text Available Bahía Culebra se locoaliza en la parte norte de la costa Pacífica de Costa Rica. Es una región de afloramiento estacional, rica en ambientes y organismos marinos, y además, la zona de mayor desarrollo turístico del país. En este trabajo compilo y analizo una lista de 182 publicaciones en revista científcas y 23 tesis, informes y libros sobre organismos, ambientes y procesos marinos y atmosféricos en Bahía Culebra o donde se menciona la Bahía, se presentan y analizan. La gran mayoría de los trabajos, empezando en 1922 con la descripción de un poliqueto, son sobre biodiversidad y ecología. Faltan trabajos sobre algunos ambientes de la bahía, por ejemplo, el bentos de los fondos blandos, y grupos de organismos, por ejemplo, sobre gusanos planos de vida libre. Faltan investigaciones sobre pesquería y manejo de los organismos y ambientes marinos de la Bahía.Bibliography on marine organisms, environments, and oceanographic and atmospheric processes in Bahía Culebra, north Pacific, Costa Rica (1922-2012. Bahía Culebra is located on the north Pacific coast of Costa Rica. It is a seasonal upwelling area, rich in marine ecosystems and organisms, and the main tourist development area in the country. Here, I compiled and analyzed a list of 182 publications in scientific journals, and 23 thesis, reports and books in which marine organisms, environments and marine and atmospheric processes from Bahía Culebra or in which the Bay are mentioned is presented and analyzed. The majority of the publications, starting with a paper from 1922 on a polychaete worm, are on biodiversity and ecology. The are no publications on some environments, for example the benthonic fauna of soft bottoms, or on some taxa, for example, flat worms. More work is needed on fisheries and management of the organisms and environments of Bahía Culebra.

  4. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  5. Intensifying the Atmospheric

    DEFF Research Database (Denmark)

    Liebst, Lasse Suonperä

    2012-01-01

    The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its under...... sufficiently intense. All things considered, the paper should be read as a sociological contribution to theoretically reconstruct the concept of urban atmospheres in the light of spatial morphology....

  6. Atmospheric release advisory capability

    International Nuclear Information System (INIS)

    Sullivan, T.J.

    1981-01-01

    The ARAC system (Atmospheric Release Advisory Capability) is described. The system is a collection of people, computers, computer models, topographic data and meteorological input data that together permits a calculation of, in a quasi-predictive sense, where effluent from an accident will migrate through the atmosphere, where it will be deposited on the ground, and what instantaneous and integrated dose an exposed individual would receive

  7. Atmospheric pollution in Lisbon urban atmosphere

    Science.gov (United States)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µmwork are expected to cover a lack of reliable information regarding sources of atmospheric pollutants in Portugal and present, for the first time, systematic data of PAHs levels in Lisbon. Acknowledgement: This work was performed under Project PAHLIS (PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia". C. Oliveira thanks Project PAHLIS his scholarship.

  8. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  9. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  10. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  11. VIRTUAL AND PHYSICAL ARCHITECTURAL ATMOSPHERE

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars

    2016-01-01

    This study, of the similarities between the perception of architectural space experienced in physical space conditions and in Virtual Reality, intents to clarify to what extend subjective and objective attributes of architectural space can be conveyed through a direct use of Building Information...... Models in Virtual Reality. 60 test persons experienced a specific test space as either a physical or a virtual environment, while data from their experiences was collected through a quantitative/qualitative questionnaire. The overall conclusion, from this phase of the study, is that even a simple BIM...... model through HMD VR can convey rather precise information about both subjective and objective experiences of architectural space, ambience and atmosphere. Next phase of the study will include eye-tracking data from the two scenarios....

  12. The atmosphere and climate of Mars

    CERN Document Server

    Clancy, R Todd; Forget, François; Smith, Michael D; Zurek, Richard W

    2017-01-01

    Humanity has long been fascinated by the planet Mars. Was its climate ever conducive to life? What is the atmosphere like today and why did it change so dramatically over time? Eleven spacecraft have successfully flown to Mars since the Viking mission of the 1970s and early 1980s. These orbiters, landers and rovers have generated vast amounts of data that now span a Martian decade (roughly eighteen years). This new volume brings together the many new ideas about the atmosphere and climate system that have emerged, including the complex interplay of the volatile and dust cycles, the atmosphere-surface interactions that connect them over time, and the diversity of the planet's environment and its complex history. Including tutorials and explanations of complicated ideas, students, researchers and non-specialists alike are able to use this resource to gain a thorough and up-to-date understanding of this most Earth-like of planetary neighbours.

  13. Radiation environment at Kalpakkam

    International Nuclear Information System (INIS)

    Iyengar, M.A.R.

    1989-01-01

    Nuclear facilities located at Kalpakkam in Tamil Nadu State of India include at present nuclear power reactors, a fast breeder reactor, a nuclear research centre and a waste management facility. Active wastes generated at the site are collected, treated and safely disposed. High-level wastes are stored underground in RCC trenches and tile hole and low-level wastes in the from of liquid effluents are discharged into the sea. Off-gases are dispersed through stacks in the atmosphere. Environmental survey laboratory established at the site in 1974 carries out radiation surveillance of the environment, evaluates radiological impacts on environment and public, and assesses radiation exposure of the population. It is observed that even after five years of operation of the nuclear power station, radioactivity and radiation levels in the environment have virtually remained at the pre-operational levels. (M.G.B.). 14 figs., 4 tabs

  14. Atmospheric ions and pollution

    International Nuclear Information System (INIS)

    Renoux, A.

    1977-01-01

    The various types of atmospheric ions are defined, the main sources of natural atmospheric radioactivity inducing the formation of radioactive ions in the air are then recalled. The basic equations governing the formation of these ions are indicated and the most current experimental methods used for detecting them are described (Zeleny tubes, Erikson tubes). The special properties of these ions are examined, they are particularly emphasized for the smaller ones. The existence of a discret spectrum of mobilities is shown and the presence of big negative radioactive ions is investigated. Indicative information are given on the granulometric distribution of the atmospheric radioactivity in the air, from small positive Ra A ion fixation on aerosols [fr

  15. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  16. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  17. Atmospheric correction of satellite data

    Science.gov (United States)

    Shmirko, Konstantin; Bobrikov, Alexey; Pavlov, Andrey

    2015-11-01

    Atmosphere responses for more than 90% of all radiation measured by satellite. Due to this, atmospheric correction plays an important role in separating water leaving radiance from the signal, evaluating concentration of various water pigments (chlorophyll-A, DOM, CDOM, etc). The elimination of atmospheric intrinsic radiance from remote sensing signal referred to as atmospheric correction.

  18. Natural atmospheric radioactivity

    International Nuclear Information System (INIS)

    Renoux, A.

    1986-01-01

    After having summed up the different old or new units, used in radioactivity and radioprotection, the origins of atmospheric radioactivity are reported. Next the authors deal with the air content in radon, thoron and their radioactive descendants, insisting on the variations of the radon air content and on the radioactive balance between radon and its descendants. Then a few notions concerning the natural radioactive aerosol are developed: electric charge state, granulometric distribution. The possible effects of natural atmospheric radioactivity on man are studied with a distinction between inner irradiation and outer irradiation, an average assessment is shown. Finally the important problem of radon in inhabitations is approached [fr

  19. Global atmospheric changes.

    Science.gov (United States)

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  20. Atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1977-01-01

    The chairman and contributors are members of the Working Group on Atmospheric Dispersion, Deposition, and Resuspension. This group examined the mathematical approaches for determining the direct and indirect pathways to man of releases of pollutants to the atmosphere. The dose-to-man limitations promulgated by the Nuclear Regulatory Commission, the Environmental Protection Agency, and the Energy Research and Development Administration were presented. The present status of research was discussed, and recommendations for future work were made. Particular emphasis was placed on the need for additional experimental work to develop confidence limits leading to acceptable probability statements of critical pathways for determining the dose-to-man

  1. Atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1978-01-01

    The chairman and contributors are members of the Working Group on Atmospheric Dispersion, Deposition, and Resuspension. This group examined the mathematical approaches for determining the direct and indirect pathways to man of releases of pollutants to the atmosphere. The dose-to-man limitations promulgated by the Nuclear Regulatory Commission, the Environmental Protection Agency, and the Energy Research and Development Administration were presented. The present status of research was discussed, and recommendations for future work were made. Particular emphasis was placed on the need for additional experimental work to develop confidence limits leading to acceptable probability statements of critical pathways for determining the dose-to-man

  2. Parameters of atmospheric radioactivity in Bulgaria

    International Nuclear Information System (INIS)

    Yaneva, B.; Todorov, P.; Georgieva, D.

    2006-01-01

    Bulgaria is a country which is located on the Balkan Peninsula, at the Eastern part of Europe. There are a lot of polluting sources, which can affect the environmental parameters and human health. One of these parameters is a radioactivity. It can be as a result from natural and anthropological sources. One of the most important sources of radiological influence to the environment and its components is from atmosphere. Anthropological sources of atmospheric pollution are Nuclear power plants, different kinds of industrial plants, and so on. The systematic control on these parameters is made by the Ministry of environment and water in Bulgaria. The atmospheric radioactivity research is based on collecting of many samples and its examine. The collecting of these aerosol samples on different kind of filters is automatic and it is put into practice by fixed stations located in some of the main towns in Bulgaria - Sofia, Varna, Burgas, Vratza and Montana. The required amount of air for each sample is 1000m 3 . These samples are analyzed by gamma-spectrometry analysis for determination of specifies activity of natural and anthropological radionuclides in them. Monitoring data for the atmospheric radioactivity can be characterized by concentrations of Cs-137, Be-7. The results show that concentrations of Cs-137 are 3 and the concentrations for Be-7 vary from 0.7 to 15.7 mBq/m 3 . Other important radionuclides are Sr-90, Uranium and Ra-226

  3. Photosynthesis in Hydrogen-Dominated Atmospheres

    Science.gov (United States)

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  4. Photosynthesis in Hydrogen-Dominated Atmospheres

    Directory of Open Access Journals (Sweden)

    William Bains

    2014-11-01

    Full Text Available The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  5. Ubiquity of bisphenol A in the atmosphere

    International Nuclear Information System (INIS)

    Fu Pingqing; Kawamura, Kimitaka

    2010-01-01

    Bisphenol A (BPA) is a suspected endocrine disruptor in the environment. However, little is known about its distribution and transport in the atmosphere. Here, the concentrations of BPA in the atmospheric aerosols from urban, rural, marine, and the polar regions were measured using solvent extraction/derivatization and gas chromatography/mass spectrometry technique. The concentrations of BPA (1-17,400 pg m -3 ) ranged over 4 orders of magnitude in the world with a declining trend from the continent (except for the Antarctica) to remote sites. A positive correlation was found between BPA and 1,3,5-triphenylbenzene, a tracer for plastic burning, in urban regions, indicating that the open burning of plastics in domestic waste should be a significant emission source of atmospheric BPA. Our results suggest that the ubiquity of BPA in the atmosphere may raise a requirement for the evaluation of health effects of BPA in order to control its emission sources, for example, from plastic burning. - This study gives first insight into the sources and global distributions of bisphenol A (BPA) in the atmosphere.

  6. The atmosphere and ionosphere of Io

    International Nuclear Information System (INIS)

    McElroy, M.B.; Yung, Y.L.

    1975-01-01

    A variety of models for Io's atmosphere, ionosphere, surface, and environment are developed and discussed in the context of recent observational data. The sodium emission detected by Brown appears to require a collisional excitation process in Io's atmosphere, and the extended sodium emission measured by Trafton et al. may require scattering of the planetary radiation by an extended sodium cloud. The sodium is presumably present initially in bound form on Io's surface and may be released by the sputtering mechanism suggested by Matson et al. The ionosphere detected by the radio occultation experiment on Pioneer 10 could be attributed to photoionization of atmospheric sodium if Io's atmosphere could sustain significant vertical motions, of order 1 s/sup -1/ directed up during the day, down at night. Vertical motions of this magnitude could be driven by condensation of atmospheric NH 3 . The total density of gas at Io's surface appears to lie in the range 10 10 -10 12 molecules cm/sup -3/. Corpuscular ionization could play an additional role for the ionosphere. In this case the sateSe should exhibit an exceedingly bright, approx.10 kR, airglow at Lα. The incomplete hydrogen torus observed by Judge and Carlson in the vicinity of Io requires a large supply of hydrogen from the satellite's atmosphere. The escape flux should be of order 10 11 cm/sup -2/ s/sup -1/ and could be maintained by photolysis of atmospheric NH 3 . The observed geometry of the hydrogen torus appears to require a surprisingly short lifetime, approx.10 5 s, for neutral hydrogen near Io's orbit, and may indicate the presence of a large flux, approx.10 9 cm/sup -2/ s/sup -1/, of low-energy protons in Jupiter's magnetosphere. Implications of the hydrogen torus for the energy and mass balance of Jupiter's magnetosphere are discussed briefly, and observational programs are identified which might illuminate present uncertainties in our understanding of Io

  7. Characterizing stellar and exoplanetary environments

    CERN Document Server

    Khodachenko, Maxim

    2015-01-01

    In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star’s active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of “hot Jupiters” by NASA’s Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes. 
 The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet u...

  8. Seasonal atmospheric extinction

    International Nuclear Information System (INIS)

    Mikhail, J.S.

    1979-01-01

    Mean monochromatic extinction coefficients at various wavelengths at the Kottamia Observatory site have shown the existence of a seasonal variation of atmospheric extinction. The extinction of aerosol compontnts with wavelengths at winter represent exceedingly good conditions. Spring gives the highest extinction due to aerosol. (orig.)

  9. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  10. Atmospheric muons in Hanoi

    International Nuclear Information System (INIS)

    Pham Ngoc Diep; Pham thi Tuyet Nhung; Pierre Darriulat; Nguyen Thi Thao; Dang Quang Thieu; Vo Van Thuan

    2006-01-01

    Recent measurements of the atmospheric muon flux in Hanoi were reviewed. As the measurements were carried out in a region of maximal geomagnetic rigidity cutoff, they provided a sensitive test of air shower models used in the interpretation of neutrino oscillation experiments. The measured data were found to be in a very good agreement with the prediction from the model of M. Honda. (author)

  11. Climate and atmospheric research

    International Nuclear Information System (INIS)

    Kramer, G.; Schumacher, R.

    1992-01-01

    This issue of the scientific journal of the Humboldt university is dedicated to results of research work carried out to the greatest extent at the meteorological institute in the last two years on the area of climate and atmospheric research. The traditional research areas of the institute are climatology and the dynamics of the atmosphere, in particular the atmospherical boundary layer. Considering the high probability of a global climatic fluctuation due to the anthropogenic change of composition of the atmosphere and other climate-relevant factors imminent in the next century, climatological research today is an important part of global and regional environmental research. From the necessity of determination and evaluation of the effect of climatic fluctuations on nature and society the contours of a new interdisciplinary research area are already visible now. This is suitable as hardly any other area to be the supporting idea of environmental research at universities. The contributions contained in the issue already consider, in addition to results on climate diagnosis, also results on aspects of climate effect research. (orig./KW) [de

  12. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  13. Contaminants in the Atmosphere

    DEFF Research Database (Denmark)

    Skov, H.; Bossi, R.; Wåhlin, P.

    This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...

  14. Atmospheric neutrino challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2005-08-15

    We briefly review the improvements in the predictions of atmospheric neutrino fluxes since the NOW2000 workshop. In spite of the great progress of the calculational technique the predictions are still not exact because of the uncertainties in the two major sets of input - cosmic ray flux and hadronic interactions on light nuclei.

  15. Atmosphere as colloid

    International Nuclear Information System (INIS)

    Kutsenogij, K.P.; Kutsenogij, P.K.

    2008-01-01

    In the paper review the results of experimental and theoretical investigations on space-time variability of physical, chemical and biological atmospheric characteristics and its influence on climate, ecology and environmental quality under the impact of natural processes and anthropogenic load is submitted

  16. Atmospheric and aerosol chemistry

    International Nuclear Information System (INIS)

    McNeill, V. Faye; Ariya, Parisa A.; McGill Univ. Montreal, QC

    2014-01-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  17. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Perkins, D.H.

    1984-01-01

    The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)

  18. Atoms and atmosphere

    International Nuclear Information System (INIS)

    Megie, G.

    1994-01-01

    The ozone sources, roles and distribution are reviewed, and the atmosphere dynamic effects on ozone circulation are discussed; chlorine and CFC are the two main perturbative agents of the ozone layer and their effects are described and analyzed; impacts of the limitation of the CFC and chlorine utilization are discussed. 5 figs., 9 tabs

  19. ESA Atmospheric Toolbox

    Science.gov (United States)

    Niemeijer, Sander

    2017-04-01

    The ESA Atmospheric Toolbox (BEAT) is one of the ESA Sentinel Toolboxes. It consists of a set of software components to read, analyze, and visualize a wide range of atmospheric data products. In addition to the upcoming Sentinel-5P mission it supports a wide range of other atmospheric data products, including those of previous ESA missions, ESA Third Party missions, Copernicus Atmosphere Monitoring Service (CAMS), ground based data, etc. The toolbox consists of three main components that are called CODA, HARP and VISAN. CODA provides interfaces for direct reading of data from earth observation data files. These interfaces consist of command line applications, libraries, direct interfaces to scientific applications (IDL and MATLAB), and direct interfaces to programming languages (C, Fortran, Python, and Java). CODA provides a single interface to access data in a wide variety of data formats, including ASCII, binary, XML, netCDF, HDF4, HDF5, CDF, GRIB, RINEX, and SP3. HARP is a toolkit for reading, processing and inter-comparing satellite remote sensing data, model data, in-situ data, and ground based remote sensing data. The main goal of HARP is to assist in the inter-comparison of datasets. By appropriately chaining calls to HARP command line tools one can pre-process datasets such that two datasets that need to be compared end up having the same temporal/spatial grid, same data format/structure, and same physical unit. The toolkit comes with its own data format conventions, the HARP format, which is based on netcdf/HDF. Ingestion routines (based on CODA) allow conversion from a wide variety of atmospheric data products to this common format. In addition, the toolbox provides a wide range of operations to perform conversions on the data such as unit conversions, quantity conversions (e.g. number density to volume mixing ratios), regridding, vertical smoothing using averaging kernels, collocation of two datasets, etc. VISAN is a cross-platform visualization and

  20. Comets, impacts, and atmospheres

    Science.gov (United States)

    Owen, Tobias; Bar-Nun, Akiva

    Studies of element abundances and values of D/H in the atmospheres of the giant planets and Titan have emphasized the important role of icy planetesimals in the formation of these bodies. In these atmospheres, C/H and D/H increase as the relative masses of the 'cores' of the planets increase. N/H appears to deviate from this trend in an interesting way. In the inner solar system, the traditional approach of using carbonaceous chondrites as the source of planetary volatiles is in serious trouble because of the depletion of xenon and the unusual pattern of xenon isotopes found in the atmospheres of Earth and Mars, and because of the solar-type abundance ratios of argon, krypton and xenon and the large amounts of neon and argon on Venus. Recent studies of elemental abundances in comets, especially P/Halley, coupled with laboratory studies of the trapping of gas in ice formed at low temperatures by A. Bar-Nun et al. provide a consistent interpretation of all of these results. This interpretation emphasizes the fundamental importance of icy planetesimals (comets) and the randomness of early impacts in the formation of planetary systems. Cometary delivery by itself will not explain the noble gas abundances on the inner planets. There is good evidence for at least one additional source, which presumably consists of the rocky material making up the bulk of the planets. The existence of this rocky reservoir is manifested in the nucleogenic isotopes and in the neon which is found in all these atmospheres and is also present in the Earth's mantle. This neon may well be a relic of the planets' earliest, accretional atmospheres.

  1. The Changing Atmosphere: UNEP Environment Brief No. 1.

    Science.gov (United States)

    United Nations Environment Programme, Nairobi (Kenya).

    Discussed are the following topics: (1) the greenhouse problem, including the processes involved and some possible resulting scenarios; (2) ozone, the "umbrella" protecting the earth from lethal concentrations of ultraviolet rays and the problem of decreasing ozone levels; (3) what could happen as the earth gets warmer (including…

  2. Lichens and atmospheric pollution

    Energy Technology Data Exchange (ETDEWEB)

    Tallis, J H

    1964-09-01

    The extreme sensitivity of lichens, particularly the larger ones, to industrialization has been recognized for many years. Most people attribute the absence of lichens from urban areas to the atmospheric pollution prevailing, and a few attribute it to climatic dryness, resulting from efficient drainage systems in towns. The two main components of air pollution are solid matter, or soot, and gaseous sulfur dioxide. The main effects of pollution appear to be: a direct reduction of light intensity by smoke haze, a deposit of soot on the plant surface, an acidification of the soil, and direct damage to plants. A body of evidence indicates that SO/sub 2/ may be the main harmful component for lichens. The distribution of lichens thus might be used to determine the limits within which atmospheric pollution is operating. 5 references.

  3. Atmospheric Release Advisory Capability

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

    1983-02-01

    The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years

  4. Outer atmospheric research

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1988-01-01

    The region above the earth from about 90 km to 150 km is a major part of the upper or outer atmosphere. It is relatively unexplored, being too high for balloons or aircraft and too low for persistent orbiting spacecraft. However, the concept of a tethered subsatellite, deployed downward from an orbiting, more massive craft such as the Space Shuttle, opens the possibility of a research capability that could provide global mapping of this region. The need for research in this thick spherical shell above the earth falls into two major categories: (1) scientific data for understanding and modeling the global atmosphere and thereby determining its role in the earth system, and (2) engineering data for the design of future aerospace vehicles that will operate there. This paper presents an overview and synthesis of the currently perceived research needs and the state-of-the-art of the proposed tethered research capability. 16 references

  5. Atmospheric Science Without Borders

    Science.gov (United States)

    Panday, Arnico; Praveen, Ps; Adhikary, Bhupesh; Bhave, Prakash; Surapipith, Vanisa; Pradhan, Bidya; Karki, Anita; Ghimire, Shreta; Thapa, Alpha; Shrestha, Sujan

    2016-04-01

    The Indo-Gangetic Plains (IGP) in northern South Asia are among the most polluted and most densely populated places in the world, and they are upwind of vulnerable ecosystems in the Himalaya mountains. They are also fragmented across 5 countries between which movement of people, data, instruments and scientific understanding have been very limited. ICIMOD's Atmosphere Initiative has for the past three years been working on filling data gaps in the region, while facilitating collaborations across borders. It has established several atmospheric observatories at low and mid elevations in Bhutan and Nepal that provide new data on the inflow of pollutants from the IGP towards the mountains, as well as quantify the effects of local emissions on air quality in mountain cities. EGU will be the first international conference where these data will be presented. ICIMOD is in the process of setting up data servers through which data from the region will be shared with scientists and the general public across borders. Meanwhile, to promote cross-border collaboration among scientists in the region, while addressing an atmospheric phenomenon that affects the lives of the several hundred million people, ICIMOD' Atmosphere Initiative has been coordinating an interdisciplinary multi-year study of persistent winter fog over the Indo-Gangetic Plains, with participation by researchers from Pakistan, India, China, Nepal, Bhutan and Bangladesh. Using a combination of in-situ measurements and sample collection, remote sensing, modeling and community based research, the researchers are studying how changing moisture availability and air pollution have led to increases in fog frequency and duration, as well as the fog's impacts on local communities and energy demand that may affect air pollution emissions. Preliminary results of the Winter 2015-2016 field campaign will be shown.

  6. Atmospheric tides on Neptune

    International Nuclear Information System (INIS)

    Dement'ev, M.S.; Morozhenko, A.V.

    1989-01-01

    The dependence of the equivalent width of the methane absorption band at 619 nm in the Neptune's spectrum upon the Triton's orbital position is discovered. It is assumed that observed changes of the equivalent width of the band and colour index (J - K) (Belton et al., 1981; Brown et al., 1981; Cruikshank, 1978) are due to atmospheric tides (period 2 d .9375) and Neptune's rotation (period 10 h .14)

  7. Dreaming of Atmospheres

    Science.gov (United States)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  8. Atmospheric benzene and toluene

    International Nuclear Information System (INIS)

    Rasmussen, R.A.; Khalil, M.A.K.

    1983-01-01

    Atmospheric concentrations of benzene (C 6 H 6 ) and toluene (C 7 H 8 )have been observed at nine remote locations of the world ranging in latitude from inside the arctic circle to the south pole. The observations span all seasons at each location. In the northern hemisphere it is observed that C 6 H 6 and C 7 H 8 are most abundant during winter and least abundant during summer. Based on the limited data available, such cycles are not observed in the tropics. These findings are consistent with the expected latitudinal and seasonal variations of OH radicals which cause benzene and toluene to be removed from the atmosphere. The latitude distribution shows high concentrations at mid latitude and low levels in the southern hemisphere. This finding is consistent with the present understanding that the sources of benzene and toluene are primarily anthropogenic. The observed concentration distribution and varibility are consistent with the short expected atmospheric lifetime of the order of months for benzene and days for toluene

  9. DREAMING OF ATMOSPHERES

    International Nuclear Information System (INIS)

    Waldmann, I. P.

    2016-01-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process

  10. Atmospheric radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P. [Universidade Federal do ABC (UFABC), SP (Brazil); Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10{sup 17} eV and 10{sup 18} eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < {lambda} < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  11. Atmospheric radiation monitor

    International Nuclear Information System (INIS)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P.; Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A.

    2011-01-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10 17 eV and 10 18 eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < λ < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  12. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  13. DREAMING OF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT (United Kingdom)

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  14. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  15. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T J [Discovery Bay Marine Laboratory, Univ. of the West Indies (JM)

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  16. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  17. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  18. Encapsulated environment

    NARCIS (Netherlands)

    McLellan, Tom M.; Daanen, Hein A M; Cheung, Stephen S.

    2013-01-01

    In many occupational settings, clothing must be worn to protect individuals from hazards in their work environment. However, personal protective clothing (PPC) restricts heat exchange with the environment due to high thermal resistance and low water vapor permeability. As a consequence, individuals

  19. Encapsulated Environment

    NARCIS (Netherlands)

    McLellan, T.M.; Daanen, H.A.M.; Cheung, S.S.

    2013-01-01

    In many occupational settings, clothing must be worn to protect individuals from hazards in their work environment. However, personal protective clothing (PPC) restricts heat exchange with the environment due to high thermal resistance and low water vapor permeability. As a consequence, individuals

  20. Heat transfer in the atmosphere

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it

  1. Atmospheric tritium. Measurement and application

    International Nuclear Information System (INIS)

    Frejaville, Gerard

    1967-02-01

    The possible origins of atmospheric tritium are reviewed and discussed. A description is given of enrichment (electrolysis and thermal diffusion) and counting (gas counters and liquid scintillation counters) processes which can be used for determining atmospheric tritium concentrations. A series of examples illustrates the use of atmospheric tritium for resolving a certain number of hydrological and glaciological problems. (author) [fr

  2. 46 CFR 151.03-19 - Environment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Environment. 151.03-19 Section 151.03-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-19 Environment. This term refers to the atmosphere...

  3. Ubiquity of bisphenol A in the atmosphere.

    Science.gov (United States)

    Fu, Pingqing; Kawamura, Kimitaka

    2010-10-01

    Bisphenol A (BPA) is a suspected endocrine disruptor in the environment. However, little is known about its distribution and transport in the atmosphere. Here, the concentrations of BPA in the atmospheric aerosols from urban, rural, marine, and the polar regions were measured using solvent extraction/derivatization and gas chromatography/mass spectrometry technique. The concentrations of BPA (1-17,400 pg m(-3)) ranged over 4 orders of magnitude in the world with a declining trend from the continent (except for the Antarctica) to remote sites. A positive correlation was found between BPA and 1,3,5-triphenylbenzene, a tracer for plastic burning, in urban regions, indicating that the open burning of plastics in domestic waste should be a significant emission source of atmospheric BPA. Our results suggest that the ubiquity of BPA in the atmosphere may raise a requirement for the evaluation of health effects of BPA in order to control its emission sources, for example, from plastic burning. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Assessment of atmospheric mercury emissions in Finland

    Science.gov (United States)

    Mukherjee; Melanen; Ekqvist; Verta

    2000-10-02

    This paper is part of the study of atmospheric emissions of heavy metals conducted by the Finnish Environment Institute in collaboration with the Technical Research Centre of Finland (VTT) under the umbrella of the Finnish Ministry of the Environment. The scope of our study is limited solely to anthropogenic mercury that is emitted directly to the atmosphere. This article addresses emission factors and trends of atmospheric mercury emissions during the 1990s and is based mainly on the database of the Finnish Environmental Administration. In addition, data based on the measurements taken by the VTT regarding emission factors have been used to estimate emissions of mercury from the incineration of waste. The study indicates that the total emission of mercury has decreased from 1140 kg in 1990 to 620 kg in 1997, while industrial and energy production have been on the increase simultaneously. The 45% emission reduction is due to improved gas cleaning equipment, process changes, automation, the installation of flue gas desulfurization process in coal-fired power plants and strict pollution control laws. In the past, some authors have estimated a higher mercury emission in Finland. In this study, it is also observed that there are no big changes in the quality of raw materials. Estimated emission factors can be of great help to management for estimating mercury emissions and also its risk assessment.

  5. Evaluation of satellites and remote sensors for atmospheric pollution measurements

    Science.gov (United States)

    Carmichael, J.; Eldridge, R.; Friedman, E.; Keitz, E.

    1976-01-01

    An approach to the development of a prioritized list of scientific goals in atmospheric research is provided. The results of the analysis are used to estimate the contribution of various spacecraft/remote sensor combinations for each of several important constituents of the stratosphere. The evaluation of the combinations includes both single-instrument and multiple-instrument payloads. Attention was turned to the physical and chemical features of the atmosphere as well as the performance capability of a number of atmospheric remote sensors. In addition, various orbit considerations were reviewed along with detailed information on stratospheric aerosols and the impact of spacecraft environment on the operation of the sensors.

  6. Radiation in the environment

    International Nuclear Information System (INIS)

    Moeller, D.W.

    1995-01-01

    'Radiation in the environment' includes the natural background, the release and transport of radionuclides within the atmospheric, terrestrial, aquatic and marine environments, understanding the pathways through which radionuclides gain access to humans, and the development of methods for measuring, assessing, and controlling the resulting exposures. Contributions of the Pacific Northwest Laboratory (PNL) to these subjects include early studies of the behaviour of radionuclides in the Columbia River and in the atmosphere and soil in the vicinity of the Hanford site, the development of methods for assessing the accompanying doses to members of the public, and the preparation of guides for the conduct of environmental surveillance activities as well as the clean-up of decommissioned facilities. An integral part of these activities has been the maintenance of close working relationships with the public, prime examples being the landmark Tri-Party Agreement and the designation of a portion of the Hanford site as the Arid Lands Ecology (ALE) Reserve. Through these efforts scientists at PNL have provided leadership in environmental activities at both the national and the international level. (author)

  7. Titan's hydrodynamically escaping atmosphere

    Science.gov (United States)

    Strobel, Darrell F.

    2008-02-01

    The upper atmosphere of Titan is currently losing mass at a rate ˜(4-5)×10 amus, by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH 4 absorption. The hydrodynamic mass loss is essentially CH 4 and H 2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N 2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ˜185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of ˜2×10 CHs and 5×10 Hs, or some other combination with a higher H 2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH 4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH 4 and H 2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].

  8. On the Atmospheric Correction of Antarctic Airborne Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Martin Black

    2014-05-01

    Full Text Available The first airborne hyperspectral campaign in the Antarctic Peninsula region was carried out by the British Antarctic Survey and partners in February 2011. This paper presents an insight into the applicability of currently available radiative transfer modelling and atmospheric correction techniques for processing airborne hyperspectral data in this unique coastal Antarctic environment. Results from the Atmospheric and Topographic Correction version 4 (ATCOR-4 package reveal absolute reflectance values somewhat in line with laboratory measured spectra, with Root Mean Square Error (RMSE values of 5% in the visible near infrared (0.4–1 µm and 8% in the shortwave infrared (1–2.5 µm. Residual noise remains present due to the absorption by atmospheric gases and aerosols, but certain parts of the spectrum match laboratory measured features very well. This study demonstrates that commercially available packages for carrying out atmospheric correction are capable of correcting airborne hyperspectral data in the challenging environment present in Antarctica. However, it is anticipated that future results from atmospheric correction could be improved by measuring in situ atmospheric data to generate atmospheric profiles and aerosol models, or with the use of multiple ground targets for calibration and validation.

  9. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  10. Atmospheric natural radioactivity outdoors

    International Nuclear Information System (INIS)

    Renoux, A.

    1985-01-01

    Following a short account of natural atmospheric radioactivity, radon concentrations are given as well as their variations with time obtained by means of a original apparatus developped in Brest. The radioactive equilibrium of radon and its daughters is then considered, many experiments demonstrating that equilibrium is seldom reached even for 218 Po (RaA). Finally, some characteristics of natural radioactive aerosols are studied: charge, particle size distribution (demonstrating they are fine aerosols since only 30 per cent are made of particles with radii exceeding 0,1 μm) [fr

  11. Atmospheres of central stars

    International Nuclear Information System (INIS)

    Hummer, D.G.

    1978-01-01

    The author presents a brief summary of atmospheric models that are of possible relevance to the central stars of planetary nebulae, and then discusses the extent to which these models accord with the observations of both nebulae and central stars. Particular attention is given to the significance of the very high Zanstra temperature implied by the nebulae He II lambda 4686 A line, and to the discrepancy between the Zanstra He II temperature and the considerably lower temperatures suggested by the appearance of the visual spectrum for some of these objects. (Auth.)

  12. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  13. Rectenna related atmospheric effects

    Science.gov (United States)

    Lee, J.

    1980-01-01

    Possible meteorological effects arising from the existence and operations of a solar power satellite (SPS) system rectenna are examined. Analysis and model simulations in some chosen site situations and meteorological conditions indicate that the meteorological effects of the construction and operation of a rectenna are small, particularly outside the boundary of the structure. From weather and climate points of view, installation of an SPS rectenna seems likely to have effects comparable with those due to other nonindustrial land use changes covering the same area. The absorption and scattering of microwave radiation in the troposphere would have negligible atmospheric effects.

  14. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  15. Performative Environments

    DEFF Research Database (Denmark)

    Thomsen, Bo Stjerne

    2008-01-01

    The paper explores how performative architecture can act as a collective environment localizing urban flows and establishing public domains through the integration of pervasive computing and animation techniques. The NoRA project introduces the concept of ‘performative environments,' focusing on ...... of local interactions and network behaviour, building becomes social infrastructure and prompts an understanding of architectural structures as quasiobjects, which can retain both variation and recognisability in changing social constellations.......The paper explores how performative architecture can act as a collective environment localizing urban flows and establishing public domains through the integration of pervasive computing and animation techniques. The NoRA project introduces the concept of ‘performative environments,' focusing...

  16. Atmospheric mercury footprints of nations.

    Science.gov (United States)

    Liang, Sai; Wang, Yafei; Cinnirella, Sergio; Pirrone, Nicola

    2015-03-17

    The Minamata Convention was established to protect humans and the natural environment from the adverse effects of mercury emissions. A cogent assessment of mercury emissions is required to help implement the Minamata Convention. Here, we use an environmentally extended multi-regional input-output model to calculate atmospheric mercury footprints of nations based on upstream production (meaning direct emissions from the production activities of a nation), downstream production (meaning both direct and indirect emissions caused by the production activities of a nation), and consumption (meaning both direct and indirect emissions caused by final consumption of goods and services in a nation). Results show that nations function differently within global supply chains. Developed nations usually have larger consumption-based emissions than up- and downstream production-based emissions. India, South Korea, and Taiwan have larger downstream production-based emissions than their upstream production- and consumption-based emissions. Developed nations (e.g., United States, Japan, and Germany) are in part responsible for mercury emissions of developing nations (e.g., China, India, and Indonesia). Our findings indicate that global mercury abatement should focus on multiple stages of global supply chains. We propose three initiatives for global mercury abatement, comprising the establishment of mercury control technologies of upstream producers, productivity improvement of downstream producers, and behavior optimization of final consumers.

  17. Atmospheric corrosion of mild steel in Oman

    Energy Technology Data Exchange (ETDEWEB)

    Gismelseed, Abbasher, E-mail: abbasher@squ.edu.om; Al-Harthi, S. H.; Elzain, M.; Al-Rawas, A. D.; Yousif, A.; Al-Saadi, S.; Al-Omari, I.; Widatallah, H.; Bouziane, K. [College of Science, Department of Physics (Oman)

    2006-01-15

    A systematic study has been made of the initial corrosion products which form on mild steel capons exposed near the coastal region of Oman and at some industrial areas. The phases and compositions of the products formed at different periods of exposure were examined by using Moessbauer spectroscopy (295 and 78 K) and X-ray diffraction (XRD) techniques. The results show that lepidocorcite and maghemite are early corrosion products and goethite starts to form after 2 months of metal exposure to the atmosphere. Akaganeite is an early corrosion product but it forms in marine environments only, which reflects the role of chlorine effect in the atmosphere. The 12 months coupons showed the presence of goethite, lepidocorcite and maghemite, but no akaganeite being seen in the products of one of the studied areas.

  18. Atmospheric corrosion of mild steel in Oman

    International Nuclear Information System (INIS)

    Gismelseed, Abbasher; Al-Harthi, S. H.; Elzain, M.; Al-Rawas, A. D.; Yousif, A.; Al-Saadi, S.; Al-Omari, I.; Widatallah, H.; Bouziane, K.

    2006-01-01

    A systematic study has been made of the initial corrosion products which form on mild steel capons exposed near the coastal region of Oman and at some industrial areas. The phases and compositions of the products formed at different periods of exposure were examined by using Moessbauer spectroscopy (295 and 78 K) and X-ray diffraction (XRD) techniques. The results show that lepidocorcite and maghemite are early corrosion products and goethite starts to form after 2 months of metal exposure to the atmosphere. Akaganeite is an early corrosion product but it forms in marine environments only, which reflects the role of chlorine effect in the atmosphere. The 12 months coupons showed the presence of goethite, lepidocorcite and maghemite, but no akaganeite being seen in the products of one of the studied areas.

  19. 5th International Conference on Atmospheric Electricity

    CERN Document Server

    Reiter, Reinhold; Landsberg, Helmut

    1976-01-01

    These Proceedings are published to give a full account of the Fifth International Conference on Atmospheric Electricity held in September 1974 in Garmisch-Partenkirchen in the Bavarian Alps in Germany. Traditionally, the Proceedings of these Conferences have served as reference books updating the textbooks and monographs on Atmospheric Electricity. As treated by these Conferences, Atmos­ pheric Electricity covers all aspects of this science, including the processes and problems which reach out into the Earth's environment as well as analogous processes on other planets and on the Moon. A history of these Conferences, an account of their purpose, and an outline of the scope and the preparation is to be found at the end of these Proceedings. There, also the Business Meetings of the involved organizations are mentioned. The Proceedings closely follow the original program and are accordingly organized into "Sessions". The papers printed in each "Session" in this book are the ones which were accepted for the sess...

  20. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    Science.gov (United States)

    Felton, Ryan; Neveu, Marc; Domagal-Goldman, Shawn David; Desch, Steven; Arney, Giada

    2018-01-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  1. Hazardous gas treatment by atmospheric discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, J.

    2005-01-01

    The emissions of NO x ; SO x , CO 2 and volatile organic compounds (VOCs) including fluorocarbons to the atmosphere influence heavily our environment, NO x and SO x emitted to the atmosphere are the major cause of acid rains, while CO 2 and VOCs emissions cause the greenhouse effect which leads to abnormal global heating of the atmosphere and creating in a temperature inversion layer that traps gaseous pollutants. Therefore, there is an increasing interest in controlling these emissions. A new technique, which uses the plasma processes induced by energetic electrons, emerges as one of the most effective methods of reducing concentrations of the emitted gaseous pollutants. Various plasma techniques have been tested for gaseous pollution control. The electron bean irradiation was found to be physically and economically efficient for NO x and SO x reduction in the exhaust gases from electrical and heat power plants. The capability of the non-thermal plasmas, produced in atmospheric pressure electrical discharges, for decomposition of the gaseous pollutants has been widely tested. These atmospheric pressure electrical discharges are dielectric barrier discharges, pulsed and de corona discharges (in the reactors with the point-to-plate, wire-cylinder and wire-plate geometries, in the reactors with flow stabilized corona torch and corona radical shower), gliding discharges, inductively coupled high-frequency discharges, ac surface discharges, ac discharges in the packed bed reactors, and microwave torch discharges. In this paper, after reviewing the methods and devices used for producing the non-thermal plasmas for gaseous pollutant control, some results of the laboratory experiments on the plasmas abatement of NO x ; SO x and various VOCs will be presented, followed by a discussion on the energy efficiency and by-products. Also some results obtained in the pilot-plants will be given. finally other possible applications of the presented plasma devices for controlling

  2. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  3. Atmospheric detritiation system performance

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.

    1989-01-01

    An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10/sup 7/ was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H/sub 2/O to the stream entering the molecular sieve and premoistening of the sieve with H/sub 2/O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled

  4. Atmospheric chemistry of peroxynitrates

    International Nuclear Information System (INIS)

    Hendry, D.G.; Kenley, R.A.

    1979-01-01

    The thermochemistry and kinetics of the various types of peroxy nitrates are discussed, and the influence of these compounds on smog formation is evaluated. The heats of formation and of two dissociation reactions for various peroxyalkyl nitrates are calculated and it is shown that dissociation into nitrogen dioxide is more favorable than into nitrogen trioxide for the peroxyalkyl and peroxyacetyl nitrates (PANs). The atmospheric lifetimes of peroxynitric acid, peroxyalkyl nitrates and peroxyacyl nitrates are estimated as a function of temperature and it is found that PANs can exhibit lifetimes greater than a day at low temperatures, resulting in significant concentrations. In the presence of NO, PANs are shown to be an important source of OH radicals in the early morning and at night. A computer simulation reveals the contribution of PANs to ozone formation by the oxidation of NO to NO2

  5. 13. Atmosphere and climate

    International Nuclear Information System (INIS)

    Mock, G.; Hammond, A.

    1992-01-01

    This chapter reports on past and current trends in the major forms of atmospheric pollution and on the relative contributions of the countries of the world to these emissions. It also reports on emissions of carbon dioxide from industrial processes - principally the combustion of fossil fuels - which is the largest single source of greenhouse gases and an appropriate target for initial efforts to limit emissions. Discussions are presented on the following: urban air pollution - sources, trends and effects (particulates, sulfur dioxide, smog and its precursors, indoor air pollution, carbon monoxide, lead); regional air pollution - sources, trends and effects (acid deposition, ground-level ozone, regional responses and emission trends, acceleration of ozone depletion); solutions (cleaning up stationary sources, corporate responsibility movement, reducing vehicle pollution); global climate treaty talks proceed; greenhouse gas emissions; and targets for limiting emissions

  6. Atmospheric detritiation system performance

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.; Los Alamos National Lab., NM; Princeton Univ., NJ

    1988-01-01

    An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10 7 was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H 2 O to the stream entering the molecular sieve and premoistening of the sieve with H 2 O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled. 13 refs., 4 figs

  7. Habituating alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie

    This paper proposes embodied rhythmic sound habituation as a possible resource when designing contextualized technologies in critical atmospheres. The main contribution is collating the concept of rhythm as presented by Henri Lefebvre with the concept of sound habituation to help operationalize...... functionality for the staff, but are stressful for visitors and patients, as they are designed to demand attention even though they have no direct functional meaning to them. By introducing sounds from the ward, integrated in the furniture as simple sound sample triggers, KidKit invites children to become...... accustomed to the alarming sounds through rhythmic interaction in the waiting room, and bringing the furniture with them afterwards as a secure anchor, when entering the ward. This rhythmic habituation can enable the child to focus her attention on the meeting with the hospitalized relative....

  8. Enacting Environments

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2013-01-01

    Enacting Environments is an ethnography of the midst of the encounter between corporations, sustainable development and climate change. At this intersection 'environmental management' and 'carbon accounting' are put into practice. Purportedly, these practices green capitalism. Drawing on fieldwork...... of day-to-day practices of corporate environmental accountants and managers, Ingmar Lippert reconstructs their work as achieving to produce a reality of environment that is simultaneously stable and flexible enough for a particular corporate project: to stage the company, and in consequence capitalism......, as in control over its relations to an antecedent environment. Not confined to mere texts or meetings between shiny stakeholders co-governing the corporation – among them some of the world's biggest auditing firms, an environmental non-governmental organisation (NGO) and standards – control is found...

  9. Atmospheric turbulence and diffusion research

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1993-01-01

    The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange

  10. Heuristic Environments

    Directory of Open Access Journals (Sweden)

    Ines Giunta

    2011-10-01

    Full Text Available The purpose of this research is the identification of a paradigm which fixes the basic concepts and the type of logical relationships between them, whereby direct, govern and evaluate choises on new technologies. The contribution is based on the assumption that the complexity of knowledge is correlated with the complexity of the learning environment. From the existence of this correlation will descend a series of consequences that contribute to the definition of a theoretical construct in which the logical categories of learning become the guiding criteria on which to design learning environments and, consequently, also the indicators on by which to evaluate its effectiveness.

  11. Stochastic background of atmospheric cascades

    International Nuclear Information System (INIS)

    Wilk, G.; Wlodarczyk, Z.

    1993-01-01

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions

  12. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  13. A glossary of atmospheric science

    International Nuclear Information System (INIS)

    1996-09-01

    This book concentrates on the glossary of atmospheric science, which contains summary, for enactment and deliberation on choosing special glossary on atmospheric science in Korea, examiner for the glossary on atmospheric science, reference, explanatory notes and a lot of glossary on atmospheric science. It also has an appendix on commercial abbreviation, prefix, unit, wavelength and the number o vibrations of electromagnetic waves, ICAO classified catalogue on cloud, list of varietal cloud and list of local wind. It has explanation of the glossary in English, Korea, China and Japan.

  14. Kajian Pustaka Mengenai Restaurant Atmosphere

    Directory of Open Access Journals (Sweden)

    Adeline Agoes

    2015-05-01

    Full Text Available Restaurant is one of the businesses that support tourism development. Restaurants nowadays don’t only provide food, but also the service and atmosphere to their customers. The purpose of this study is to discover theaspects defining restaurant atmosphere and the implications of restaurant atmosphere to other particular aspects related to restaurant business. This article is written based on a study conducted through a literature review. Through the examination, it is found that the atmosphere of a restaurant is one important aspect and can be considered as a competitive advantage as well as one of the determinants of customer satisfaction.

  15. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  16. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    Science.gov (United States)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  17. African Environment

    African Journals Online (AJOL)

    Environmental Studies and Regional Planning Bulletin African Environment is published in French and English, and for some issues, in Arabic. (only the issue below has been received by AJOL). Vol 10, No 3 (1999). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of ...

  18. Architecture & Environment

    Science.gov (United States)

    Erickson, Mary; Delahunt, Michael

    2010-01-01

    Most art teachers would agree that architecture is an important form of visual art, but they do not always include it in their curriculums. In this article, the authors share core ideas from "Architecture and Environment," a teaching resource that they developed out of a long-term interest in teaching architecture and their fascination with the…

  19. Anthropogenous modifications of the atmosphere. The atmospheric ozone threat

    International Nuclear Information System (INIS)

    Aimedieu, P.

    1991-01-01

    Ozone role and atmospheric chemistry are first reviewed: chemical reactions and vertical distribution of ozone in the atmosphere. The origins of chlorofluorocarbon air pollution and the role of the various types of CFC on ozone depletion, greenhouse effect, cancer, etc. are then discussed. The political and environmental discussions concerning these phenomena are also reviewed

  20. Role of natural radiation environment in earth sciences

    International Nuclear Information System (INIS)

    Vohra, K.G.

    1980-01-01

    Natural ionizing radiations play an important role in a wide spectrum of earth sciences, including meteorology, geophysics, hydrology, atmospheric physics, and atmospheric chemistry. The nature and distribution of ionizing radiation sources and natural radionuclides in the atmospheric environment are summarized. The present status of the use of natural radioactive tracers for atmospheric studies is discussed. The effect of ionization produced by natural radiation sources on atmospheric electricity, the relationship of electrical and meteorological variables, and the possible effects of man-made releases of 85 Kr are considered. Experimental evidence is presented for the production of condensation nuclei by the combined effects of radon and sulfur dioxide

  1. Jets in Planetary Atmospheres

    Science.gov (United States)

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  2. Radioiodine in the environment

    International Nuclear Information System (INIS)

    Grauby, A.; Saas, A.

    1979-01-01

    An experimental procedure was developed in order to follow the pathways of radioiodine, 129 I especially, through the various compartments of nuclear plant environment: atmosphere, soil, plants, precipitations, ... A partial evaluation of the results is made. Data are supplied on iodine transfer into soil, iodine distribution one year later, release of iodine at the level of soil and plants. The intake of various forms of iodine in a soil and the evaluation of availability to plants by chemical tests showed that radioactive iodine ( 125 I) reached equilibrium with stable iodine after 120 - 140 days of incubation. During this time, there was a large amount of iodine exchangeable against a KI solution N/10. Equilibrium was reached progressively by iodine transfer on soil organic molecules. According to the origin of contamination, the transfer was more or less fast and differences were especially noticed in volatile iodine release and on chemical mobility. During intake, potential hazard of soil, groundwater, plant and atmospheric contaminations was greater. Iodine-129 is presently one of the chief contributors to air pollution around nuclear installations because of its radioactive half-life (1.72 x 10 7 yr) rather than on account of the amounts released. Just as with iodine-131, it is released into the atmosphere under many chemical forms. However, 129 I reaches man through several food chains and not only through the air-grass-cow-milk food chain. The values of its deposition rate on soil and plants are fairly dispersed because of its changing reactivity due to its chemical instability. On account of this chemical complexity, the transfer of iodine along the air-soil-plant system was studied using 125 I. (author)

  3. Risk based inspection for atmospheric storage tank

    Science.gov (United States)

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  4. Molecular Dications in Planetary Atmospheric Escape

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2016-08-01

    Full Text Available Fundamental properties of multiply charged molecular ions, such as energetics, structure, stability, lifetime and fragmentation dynamics, are relevant to understand and model the behavior of gaseous plasmas as well as ionosphere and astrophysical environments. Experimental determinations of the Kinetic Energy Released (KER for ions originating from dissociations reactions, induced by Coulomb explosion of doubly charged molecular ions (molecular dications produced by double photoionization of CO2, N2O and C2H2 molecules of interest in planetary atmospheres, are reported. The KER measurement as a function of the ultraviolet (UV photon energy in the range of 28–65 eV was extracted from the electron-ion-ion coincidence spectra obtained by using tunable synchrotron radiation coupled with ion imaging techniques at the ELETTRA Synchrotron Light Laboratory Trieste, Italy. These experiments, coupled with a computational analysis based on a Monte Carlo trajectory simulation, allow assessing the probability of escape for simple ionic species in the upper atmosphere of Mars, Venus and Titan. The measured KER in the case of H+, C+, CH+, CH2+, N+, O+, CO+, N2+ and NO+ fragment ions range between 1.0 and 5.5 eV, being large enough to allow these ionic species to participate in the atmospheric escape from such planets into space. In the case of Mars, we suggest a possible explanation for the observed behavior of the O+ and CO22+ ion density profiles.

  5. Measurement of atmospheric pollutants

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Studies of simplified methods of determining various atmospheric pollutants were performed. Measurements with Kitagawa detecting tubes were made in front of Shibuya Station in Tokyo on October 27, 1973. The number of cars that passed the site was counted then the nitrogen dioxide, sulfur dioxide, hydrocarbons and carbon monoxide content was determined. The number of cars was about 7000-12,000 between 9 AM and 6 PM. The heaviest traffic occurred around 10 am, and the least traffic occurred around 1 pm. A simulation experiment of smoking was also performed. A simplified model of smoking indicated that the concentration of CO in the mouth is as high as 10,000-15,000 ppM. The simplified measurement of sulfur dioxide and nitrogen dioxide by the use of a small piece of an alkaline filter was also investigated. A photoelectric colorimeter gave an excellent demonstration of the pollution due to SO/sub 2/ and NO/sub 2/. A simplified determination of NO/sub 2/ by the Saltzman method was also performed.

  6. Chapter 4 Gaseous Elemental Mercury in the Ambient Atmosphere

    DEFF Research Database (Denmark)

    Ariya, Parisa A.; Skov, Henrik; Grage, Mette M L

    2008-01-01

    Understanding the kinetics and mechanisms associated with the atmospheric chemistry of mercury is of great importance to protecting the environment. This review will focus on theoretical calculations to advance understanding of gas phase oxidation of gaseous elemental mercury (GEM) by halogen spe...

  7. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  8. Microwave Atmospheric-Pressure Sensor

    Science.gov (United States)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1986-01-01

    Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.

  9. Geologic data on atmospheric history

    NARCIS (Netherlands)

    Rutten, M.G.

    1966-01-01

    Attention is focussed on the possible existence of an anoxygenic, primeval atmosphere and on the history of atmospheric O2 and CO2. For this purpose, geologic data can be divided into those on fossil remains, on biogenic deposits formed by early life, on “chemicofossils”, and on deposits formed

  10. Remote measurement of atmospheric pollutants

    Science.gov (United States)

    Allario, F.; Hoell, J.; Seals, R. K.

    1979-01-01

    The concentration and vertical distribution of atmospheric ammonia and ozone are remotely sensed, using dual-C02-laser multichannel infrared Heterodyne Spectrometer (1HS). Innovation makes atmospheric pollution measurements possible with nearly-quantum-noise-limited sensitivity and ultrafine spectral resolution.

  11. Pathlength distributions of atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    1999-01-01

    We discuss the distribution of the production heights of atmospheric neutrinos as a function of zenith angle and neutrino energy. The distributions can be used as the input for evaluation of neutrino propagation under various hypotheses for neutrino flavor oscillations. Their use may alter substantially the estimates of the oscillation parameters for almost horizontal atmospheric neutrinos.

  12. Criteria for controlled atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    The criteria for design, construction, and operation of controlled atmosphere chambers intended for service at ORNL are presented. Classification of chambers, materials for construction, design criteria, design, controlled atmosphere chamber systems, and operating procedures are presented. ORNL Safety Manual Procedure 2.1; ORNL Health Physics Procedure Manual Appendix A-7; and Design of Viewing Windows are included in 3 appendices

  13. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  14. The sources and fate of radionuclides emitted to the atmosphere

    International Nuclear Information System (INIS)

    Sandalls, J.

    2001-01-01

    The thesis represents an account of the sources and fate of radionuclides entering the atmosphere, and indicates where the candidate, through his own work, has contributed to the overall picture. The sources of the natural and man-made radionuclides found in the atmosphere are identified. New data on emissions from UK coal-fired power stations and UK steel works are reported. Radionuclides produced in nuclear fission and released to the atmosphere in the detonation of nuclear weapons, in nuclear accidents, and through routine discharges from nuclear sites have added to the atmospheric burden of radioactive materials; both acute and chronic low-level emissions are discussed. The various natural processes which remove radionuclides from the atmosphere are described. Soon after release, many radioactive materials become attached to the atmospheric aerosol, but others undergo gas-phase reactions. Some gases are sufficiently long-lived in the troposphere as to find their way into the stratosphere where their fate may be determined by the short-wave radiation from the sun. The nature of the particles of fuel emitted to the atmosphere in the explosion and fire at the Chernobyl nuclear power plant in 1986 are discussed, together with the associated environmental problems. The ground is the major sink for radionuclides leaving the atmosphere, and the behaviour of the more radiologically important radionuclides following deposition is described with special reference to: (i) fallout in both the urban and living environments; (ii) the pathways which may lead to contamination of the food chain; (iii) how the fuel particle fallout from Chernobyl was unique in nuclear accidents; (iv) soil-to-plant transfer of radioelements and (v) how radiation exposure of man can be mitigated in both the contaminated urban and rural environments. (author)

  15. Plants in alpine environments

    Science.gov (United States)

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  16. Atmospheric Weathering of Historic Monuments and Their Related Conservation Issues

    Directory of Open Access Journals (Sweden)

    Caner-Saltık Emine N.

    2018-01-01

    Full Text Available Atmospheric environment affects the materials of historic monuments and their structure starting from the time of their construction. Daily and seasonal changes in temperature and humidity, wind, snow and rainfall, soluble salts carried by water, biological agents, pollutant gases and particulate matter are some of the agents in atmospheric environment that introduce weathering by physical, chemical and biological processes in the materials of the monuments such as natural building stones, bricks, mortars and plasters, mud brick etc. The weathering processes need to be well diagnosed by identification of main mechanisms of decay and major responsible agents, degree and depth of deterioration expressed with measurable parameters of physical, physicomechanical properties, and micro structural changes together with their distribution on the monument. Success of conservation treatments strongly depend on those diagnostic studies and compatibility of the treatments with the deteriorated and relatively sound parts of the historic materials. Current approach to materials conservation is to be able to make minimum intervention to historic material by targeting the conservation treatment to the deteriorated area for the purpose of controlling the deterioration factors and achieving compatible and durable conservation of historical material. In this presentation, two examples of diagnostic research and conservation treatments based on and guided by the diagnostic results are summarized concerning historic stone monuments exposed to atmospheric environment since more than two thousand years. The first example is on the marble walls of Temple of Augustus in Ankara exposed to polluted urban atmosphere. The second example is on the limestone statues of Nemrut Mount Monument in Adıyaman-Turkey, exposed to rural atmosphere with harsh climatic conditions. Finally, a brief discussion on current research issues related to historic materials conservation in

  17. Atmospheric Research 2012 Technical Highlights

    Science.gov (United States)

    Lau, William K -M.

    2013-01-01

    This annual report, as before, is intended for a broad audience. Our readers include colleagues within NASA, scientists outside the Agency, science graduate students, and members of the general public. Inside are descriptions of atmospheric research science highlights and summaries of our education and outreach accomplishments for calendar year 2012.The report covers research activities from the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office under the Office of Deputy Director for Atmospheres, Earth Sciences Division in the Sciences and Exploration Directorate of NASAs Goddard Space Flight Center. The overall mission of the office is advancing knowledge and understanding of the Earths atmosphere. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential to our continuing research.

  18. Aerosolization and Atmospheric Transformation of Engineered Nanoparticles

    Science.gov (United States)

    Tiwari, Andrea J.

    While research on the environmental impacts of engineered nanoparticles (ENPs) is growing, the potential for them to be chemically transformed in the atmosphere has been largely ignored. The overall objective of this work was to assess the atmospheric transformation of carbonaceous nanoparticles (CNPs). The research focuses on C60 fullerene because it is an important member of the carbonaceous nanoparticle (CNP) family and is used in a wide variety of applications. The first specific objective was to review the potential of atmospheric transformations to alter the environmental impacts of CNPs. We described atmospheric processes that were likely to physically or chemically alter aerosolized CNPs and demonstrated their relevance to CNP behavior and toxicity in the aqueous and terrestrial environment. In order to investigate the transformations of CNP aerosols under controlled conditions, we developed an aerosolization technique that produces nano-scale aerosols without using solvents, which can alter the surface chemistry of the aerosols. We demonstrated the technique with carbonaceous (C60) and metal oxide (TiO2, CeO2) nanoparticle powders. All resulting aerosols exhibited unimodal size distributions and mode particle diameters below 100 nm. We used the new aerosolization technique to investigate the reaction between aerosolized C60 and atmospherically realistic levels of ozone (O3) in terms of reaction products, reaction rate, and oxidative stress potential. We identified C60O, C60O2, and C60O3 as products of the C60-O3 reaction. We demonstrated that the oxidative stress potential of C 60 may be enhanced by exposure to O3. We found the pseudo-first order reaction rate to be 9 x 10-6 to 2 x 10 -5 s-1, which is several orders of magnitude lower than the rate for several PAH species under comparable conditions. This research has demonstrated that a thorough understanding of atmospheric chemistry of ENPs is critical for accurate prediction of their environmental

  19. The nuclear energy for the environment protection

    International Nuclear Information System (INIS)

    Souza, Jair A.M. de.

    1992-01-01

    The environmental question is currently the greater preoccupation all the world, particularly, the atmospheric pollution, generating the acid rains and the heater effect. The transportation, residential, agricultural, industrial and electric sectors contribute for the atmospheric pollution. In this work, the author analyzes important actions in Europe and United States of America in order to reduce this pollution. The paper intends to demystifies that the nuclear energy would be harmful to the environment, demonstrating exactly the contrary - due to the emission cares and controls coming from the nuclear power plants, this source of electric energy generation constitutes is an important factor of environment protection

  20. Modeling the Chemical Complexity in Titan's Atmosphere

    Science.gov (United States)

    Vuitton, Veronique; Yelle, Roger; Klippenstein, Stephen J.; Horst, Sarah; Lavvas, Panayotis

    2018-06-01

    Titan's atmospheric chemistry is extremely complicated because of the multiplicity of chemical as well as physical processes involved. Chemical processes begin with the dissociation and ionization of the most abundant species, N2 and CH4, by a variety of energy sources, i.e. solar UV and X-ray photons, suprathermal electrons (reactions involving radicals as well as positive and negative ions, all possibly in some excited electronic and vibrational state. Heterogeneous chemistry at the surface of the aerosols could also play a significant role. The efficiency and outcome of these reactions depends strongly on the physical characteristics of the atmosphere, namely pressure and temperature, ranging from 1.5×103 to 10-10 mbar and from 70 to 200 K, respectively. Moreover, the distribution of the species is affected by molecular diffusion and winds as well as escape from the top of the atmosphere and condensation in the lower stratosphere.Photochemical and microphysical models are the keystones of our understanding of Titan's atmospheric chemistry. Their main objective is to compute the distribution and nature of minor chemical species (typically containing up to 6 carbon atoms) and haze particles, respectively. Density profiles are compared to the available observations, allowing to identify important processes and to highlight those that remain to be constrained in the laboratory, experimentally and/or theoretically. We argue that positive ion chemistry is at the origin of complex organic molecules, such as benzene, ammonia and hydrogen isocyanide while neutral-neutral radiative association reactions are a significant source of alkanes. We find that negatively charged macromolecules (m/z ~100) attract the abundant positive ions, which ultimately leads to the formation of the aerosols. We also discuss the possibility that an incoming flux of oxygen from Enceladus, another Saturn's satellite, is responsible for the presence of oxygen-bearing species in Titan's reductive

  1. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.; Maltoni, M.; Rojo, J.

    2006-06-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  2. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, Concepcion; Maltoni, Michele; Rojo, Joan

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation

  3. Atmospheric stability and atmospheric circulation in Athens, Greece

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Petrakis, M.; Kassomenos, P.; Lykoudis, S.

    1996-01-01

    In the evaluation and study of atmospheric pollution reference is always made to the stability criteria. These criteria, usually represented as functions of different meteorological data such as wind speed and direction, temperature, solar radiation, etc., play a very important role in the investigation of different parameters that affect the build up of pollution episodes mainly in urban areas. In this paper an attempt is made to evaluate the atmospheric stability criteria based on measurements obtained from two locations in and nearby Athens. The atmospheric stability is then examined along with the other meteorological parameters

  4. Sialyte(TM)-Based Composite Pressure Vessels for Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — While traveling to Venus, electronics and instruments go through enormous pressure, temperature, and atmospheric environment changes. In the past, this has caused...

  5. Environs monitoring

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    There were no releases of gaseous waste from ORNL which were of a level that required an incident report to the ERDA. The average concentration of beta radioactivity in the atmosphere at the perimeter of the ERDA-controlled area was less than one percent of the value appliable to releases to uncontrolled areas. There were no releases of liquid waste from the Laboratory which were of a level that required an incident report to the ERDA. The quantity of radionuclides of primary concern in the Clinch River averaged less than 0.4 percent of the MPC/sub w/. The average background level at the PAM and RAM stations during 1974 was 7.5 μR/hr, or 0.3 μR/hr less than the average for 1973. Nine soil samples were collected and analyzed for plutonium and uranium. Plutonium content ranged from 0.9 x 10 -8 μCi/g to 3.4 x 10 -8 μCi/g, and the uranium content ranged from 43 x 10 -8 /g to 117 x 10 -8 μCi/g. (auth)

  6. Ambiente atmosférico urbano e admissão hospitalar de crianças, na cidade de São Paulo, Brasil Urban atmospheric environment and hospital admission for children in the city of Sao Paulo, Brazil Ambiente atmosférico urbano e ingresos hospitalarios de niños en la ciudad de Sâo Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Edelci Nunes da Silva

    2013-06-01

    bioclimatic index PET (Physiological Equivalent Temperature with hospital admissions. A total of 12,269 admissions of children for respiratory causes were analysed - CID 10, Chapter 10: Respiratory diseases (J00-J32; J40-J47; J80-J99. Daily data about the average, lowest and highest air temperatures (ºC, relative humidity (% and wind speed (m/s were obtained from the meteorological station of Congonhas airport. For control purposes, the air quality indexes were obtained from CETESB (the Sao Paulo State body for transferring technology and monitoring the environment and water quality in Congonhas. Descriptive statistical analysis and regression models were used. Data were organized following a socio-environmental profile. Results indicate a statistical association between atmospheric variables, air pollution, and hospital admissions. There were no significant differences for the group of children with respiratory diseases living in districts with different environmental conditions. Los cambios climáticos constituyen un riesgo para la salud pública. No obstante, pocos estudios han tratado de identificar cómo la dinámica meteorológica afecta a la salud a fin de obtener datos para alimentar modelos de prevención de riesgos. En las ciudades tropicales, estos estudios resultan particularmente escasos. Esta investigación tuvo como objetivo verificar en qué medida las condiciones atmosféricas urbanas afectan a la salud respiratoria de los niños menores de cinco años en el sector sursureste de la ciudad de São Paulo, relacionando las variables meteorológicas y el índice bioclimático PET (Physiological Equivalent Temperature con los ingresos hospitalarios. Se analizaron 12 269 casos de ingresos de niños por enfermedades respiratorias - CIE 10, Capítulo 10 - Enfermedades Respiratorias (J00-J32; J40-J47; J80-J99. Las temperaturas medias, mínima y máxima diarias (ºC, la humedad relativa del aire (% y la velocidad media del viento (m/s fueron obtenidas en la estaci

  7. The GMES Sentinel-5 mission for operational atmospheric monitoring: status and developments

    Science.gov (United States)

    Sierk, Bernd; Bezy, Jean-Loup; Caron, Jerôme; Meynard, Roland; Veihelmann, Ben; Ingmann, Paul

    2017-11-01

    Sentinel-5 is an atmospheric monitoring mission planned in the frame of the joint EU/ESA initiative Global Monitoring for Environment and Security (GMES). The objective of the mission, planned to be launched in 2020, is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications.

  8. Characterization of the Marine Atmosphere for Free-Space Optical Communication

    National Research Council Canada - National Science Library

    Thomas, Linda M. Wasiczko; Moore, Christopher I; Burris, Harris R; Suite, Michele; Stell, Mena; Murphy, James; Gilbreath, G. C; Rabinovich, William; Scharpf, William

    2006-01-01

    The Chesapeake Bay Detachment of the Naval Research Laboratory (NRL-CBD) provides an ideal environment for characterizing the effects of the marine atmosphere on free space optical communication links...

  9. Fetal environment

    International Nuclear Information System (INIS)

    Kinare, Arun

    2008-01-01

    The intrauterine environment has a strong influence on pregnancy outcome. The placenta and the umbilical cord together form the main supply line of the fetus. Amniotic fluid also serves important functions. These three main components decide whether there will be an uneventful pregnancy and the successful birth of a healthy baby. An insult to the intrauterine environment has an impact on the programming of the fetus, which can become evident in later life, mainly in the form of cardiovascular diseases, diabetes, and certain learning disabilities. The past two decades have witnessed major contributions from researchers in this field, who have included ultrasonologists, epidemiologists, neonatologists, and pediatricians. Besides being responsible for these delayed postnatal effects, abnormalities of the placenta, umbilical cord, and amniotic fluid also have associations with structural and chromosomal disorders. Population and race also influence pregnancy outcomes to some extent in certain situations. USG is the most sensitive imaging tool currently available for evaluation of these factors and can offer considerable information in this area. This article aims at reviewing the USG-related developments in this area and the anatomy, physiology, and various pathologies of the placenta, umbilical cord, and the amniotic fluid

  10. Radiation transfer and stellar atmospheres

    Science.gov (United States)

    Swihart, T. L.

    This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.

  11. Atmospheres of the terrestrial planets

    International Nuclear Information System (INIS)

    Kivelson, M.G.; Schubert, G.

    1986-01-01

    Properties of the planets are identified - such as size, spin rate, and distance from the sun - that are important in understanding the characteristics of their atmospheres. Venus, earth and Mars have surface-temperature differences only partly explained by the decrease of solar radiation flux with distance from the sun. More significant effects arise from the variations in the degree to which the atmospheres act as absorbers of planetary thermal reradiation. Atmospheric circulation on a global scale also varies markedly among the three planets. 5 references

  12. Hydrodynamics of oceans and atmospheres

    CERN Document Server

    Eckart, Carl

    1960-01-01

    Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear

  13. FASCODE for the environment (FASE)

    Energy Technology Data Exchange (ETDEWEB)

    Snell, H.E.; Moncet, J.L. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Anderson, G.P.; Chetwynd, J.H. [Phillips Lab., Hanscom AFM, MD (United States)] [and others

    1996-04-01

    The Optical Physics Division of the Phillips Laboratory, with support from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, is developing a state-of-the-art line-by-line atmospheric radiative transfer model as the successor to FASCODE. The goal of this project is to create a computationally efficient model which contains the most up-to-date atmospheric physics. The new model, known as FASCODE for the Environment, or {open_quotes}FASE{close_quotes}, will combine the best features of FASCODE and LBLRTM, the DOE`s standard radiative transfer model. FASE will also contain new features such as new cross-sections for heavy molecules, and improved solar irradiance model, and improvements to the Schumann-Runge bands and continuum. The code will be optimized for vectorized and/or parallel processing. put under configuration control for easy maintenance, and structured into separate modules for each function: atmospheric profiles, layer optical properties, radiative transfer, multiple-scattering, etc. This modular structure will allow for increased flexibility and easy customization of the code for specialized applications, such as a forward model for iterative inversion algorithms. Ease-of-use will be enhanced with improved input control structures and documentation to accommodate the needs of novice and advanced users. This paper addresses changes which have been made to FASCODE and LBLRTM to create FASE, and gives an overview of the modular structure and its capabilities.

  14. Radiation Environment of Phobos

    Science.gov (United States)

    Cooper, John F.; Clark, John H.; Sturner, Steven J.; Stubbs, Timothy; Wang, Yongli; Glenar, David A.; Schwadron, Nathan A.; Joyce, Colin J.; Spence, Harlan E.; Farrell, William M.

    2017-10-01

    The innermost Martian moon Phobos is a potential way station for the human exploration of Mars and the solar system beyond the orbit of Mars. It has a similar radiation environment to that at 1 AU for hot plasma and more energetic particles from solar, heliospheric and galactic sources. In the past two decades there have been many spacecraft measurements at 1 AU, and occasionally in the Mars orbital region around the Sun, that can be used to define a reference model for the time-averaged and time-variable radiation environments at Mars and Phobos. Yearly to hourly variance comes from the eleven-year solar activity cycle and its impact on solar energetic, heliospheric, and solar-modulated galactic cosmic ray particles. We report progress on compilation of the reference model from U.S. and international spacecraft data sources of the NASA Space Physics Data Facility and the Virtual Energetic Particle Observatory (VEPO), and from tissue-equivalent dosage rate measurements by the CRaTER instrument on the Lunar Reconnaissance Observer spacecraft now in lunar orbit. Similar dosage rate data are also available from the Mars surface via the NASA Planetary Data System archive from the Radiation Assessment Detector (RAD) instrument aboard the Mars Science Laboratory (MSL) Curiosity rover. The sub-Mars surface hemisphere of Phobos is slightly blocked from energetic particle irradiation by the body of Mars but there is a greater global variance of interplanetary radiation exposure as we have calculated from the known topography of this irregularly shaped moon. Phobos receives a relatively small flux of secondary radiation from galactic cosmic ray interactions with the Mars surface and atmosphere, and at plasma energies from pickup ions escaping out of the Mars atmosphere. The greater secondary radiation source is from cosmic ray interactions with the moon surface, which we have simulated with the GEANT radiation transport code for various cases of the surface regolith

  15. Evaluation of the Learning and Teaching Environment of the Faculty ...

    African Journals Online (AJOL)

    2017-09-14

    Sep 14, 2017 ... perceptions of atmosphere, and social self-perceptions. Results: The ... to Bloom, the learning environment is a network of physical, social, as well as ..... Medical Licensure Examination in Japan. BMC Med Educ. 2010;10:35.

  16. Characterization of extra-solar planets and their atmospheres (Spectroscopy of transits and atmospheric escape)

    International Nuclear Information System (INIS)

    Bourrier, Vincent

    2014-01-01

    Hot Jupiters are exo-planets so close to their star that their atmosphere can lose gas because of hydrodynamic escape. Transiting gaseous giants are an excellent way to understand this mechanism, but it is necessary to study other types of planets to determine its impact on the exo-planetary population. This thesis aims at using transit spectroscopy to observe the atmosphere of several exo-planets, to study their properties and to contribute to the characterization of hydrodynamic escape. UV lines observed with the Hubble telescope are analyzed with the numerical model of upper atmospheres we developed. Using the Ly-α line we identify energetic and dynamical interactions between the atmospheres of the hot Jupiters HD209458b and HD189733b and their stars. We study the dependence of the escape on the environment of a planet and on its physical properties, through the observation of a super-Earth and a warm Jupiter in the 55 Cnc system. Using observations of HD209458b, we show that magnesium lines are a window on the region of formation of hydrodynamic escape. We study the potential of transit spectroscopy in the near-UV to detect new cases of atmospheric escape. This mechanism is fostered by the proximity of a planet to its star, which makes it even more important to understand the formation and migration processes that can be traced in the alignment of a planetary system. Using measures from the spectrographs HARPS-N and SOPHIE we study the alignments of 55 Cnc e and the Kepler candidate KOI 12.01, whose planetary nature we also seek to validate. (author)

  17. Atmospheric Entry Studies for Uranus

    Science.gov (United States)

    Agrawal, P.; Allen, G. A.; Hwang, H. H.; Marley, M. S.; McGuire, M. K.; Garcia, J. A.; Sklyanskiy, E.; Huynh, L. C.; Moses, R. W.

    2014-07-01

    To better understand the technology requirements for Uranus atmospheric entry probe, Entry Vehicle Technology project funded an internal study with a multidisciplinary team from NASA Ames, Langley and JPL. The results of this study are communicated.

  18. Atmospheric pressure plasma vapour coatings

    NARCIS (Netherlands)

    Sanden, van de M.C.M.; Starostine, S.; Premkumar, P.A.; Creatore, M.; Vries, de H.W.; Kondruweit, S.; Szyszka, B.; Pütz, J.

    2010-01-01

    The dielectric barrier discharge (DBD) is recognized as a promising tool of thin films deposition on various substrates at atmospheric pressure. Emerging applications including encapsulation of flexible solar cells and flexible displays require large scale low costs production cif transparent

  19. (Chemistry of the global atmosphere)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  20. Exploring the Atmosphere with Lidars

    Indian Academy of Sciences (India)

    the source is beyond the control of the observer, e.g. radiometer, photometer ... of the atmosphere, environmental monitoring, measurement of air quality ... able for the development of mobile systems for vehicles, aircraft and spacecraft ...

  1. Atmospheric Research 2014 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2015-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  2. Uranus atmospheric dynamics and circulation

    Science.gov (United States)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  3. Martian Atmospheric and Ionospheric plasma Escape

    Science.gov (United States)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  4. Atmospheric science and power production

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, D. (ed.)

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  5. Radionuclide dispersion in the atmosphere

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Amorim, E.S. do; Panetta, J.

    1979-05-01

    The instantaneous liberation of radionuclides in the atmosphere is studied in three dimensions, according to the formalism of the diffusion theory. The analytical solution, expose to gravitational and an atmospherical effects, is combined with the discretization of space and time in the calculation of levels of exposure. A typical inventory (for a PWR) was considered in the calculation of immersion doses, and the results permitted a comparative analysis among the different existing models. (Author) [pt

  6. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  7. Atmospheric Research 2016 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2017-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  8. Copper patinas formed in different atmospheres and exposure times

    International Nuclear Information System (INIS)

    Lobo, V.M.M.; Almeida, M.E.; Balmayor, M.; Tomas, H.M.L.R.

    1998-01-01

    Atmospheric corrosion products in copper samples, known as patinas, formed in industrial-marine, severe-marine and rural atmospheres exposed for 1,2,3, and 4 years, have been studied. The nature and structure of the products formed, characterized by X-ray diffraction (XRD) and infrared spectrometry (FTIR) depend on the time of exposure and the type of atmosphere. Copper patinas have been extensively mentioned in the literature, but the structural nature of their compounds, which vary according to the time of exposure and types of atmospheres, is still not adequately described in the literature. In order to give a contribution to this area, copper panels were exposed for 1,2,3, and 4 years in different types of atmospheres representing situations commonly observed, and subsequently the patinas were studied by XRD and FTIR 150 mm x 1 mm copper panels from commercial copper were exposed to three different atmospheric conditions in Portugal: industrial-marine (Leixoes, near Oporto, highly industrialized city close to the Ocean, subject to SO 2 from refineries); rural (Pego, small village in rural environment). The panels, attached to the appropriate stands, in accordance with ISO 8565 (1), were exposed for periods of 1,2,3 and 4 years, adequately collected for laboratory analysis by infrared spectrometry (FTIR). (Author)

  9. Clouds in the Martian Atmosphere

    Science.gov (United States)

    Määttänen, Anni; Montmessin, Franck

    2018-01-01

    Although resembling an extremely dry desert, planet Mars hosts clouds in its atmosphere. Every day somewhere on the planet a part of the tiny amount of water vapor held by the atmosphere can condense as ice crystals to form cirrus-type clouds. The existence of water ice clouds has been known for a long time, and they have been studied for decades, leading to the establishment of a well-known climatology and understanding of their formation and properties. Despite their thinness, they have a clear impact on the atmospheric temperatures, thus affecting the Martian climate. Another, more exotic type of clouds forms as well on Mars. The atmospheric temperatures can plunge to such frigid values that the major gaseous component of the atmosphere, CO2, condenses as ice crystals. These clouds form in the cold polar night where they also contribute to the formation of the CO2 ice polar cap, and also in the mesosphere at very high altitudes, near the edge of space, analogously to the noctilucent clouds on Earth. The mesospheric clouds are a fairly recent discovery and have put our understanding of the Martian atmosphere to a test. On Mars, cloud crystals form on ice nuclei, mostly provided by the omnipresent dust. Thus, the clouds link the three major climatic cycles: those of the two major volatiles, H2O and CO2; and that of dust, which is a major climatic agent itself.

  10. Analysis of smoke trailers at individual classes of atmosphere stability

    International Nuclear Information System (INIS)

    Carach, V.; Macala, J.

    2007-01-01

    At the present most endangered element of the environment is currently atmosphere and its pollution that rapidly accrue. Pollutants are emitted from air pollution sources. The output of pollutant from air pollution source is creating so-called smoke screen. Smoke screens can be observed from point sources of air pollution - smokestacks, up-cast. The purpose of this article was to build theoretical models of smoke screens rise from point source at different meteorological conditions characterized with fifth classes of atmosphere stability. (authors)

  11. Using commercial software products for atmospheric remote sensing

    Science.gov (United States)

    Kristl, Joseph A.; Tibaudo, Cheryl; Tang, Kuilian; Schroeder, John W.

    2002-02-01

    The Ontar Corporation (www.Ontar.com) has developed several products for atmospheric remote sensing to calculate radiative transport, atmospheric transmission, and sensor performance in both the normal atmosphere and the atmosphere disturbed by battlefield conditions of smoke, dust, explosives and turbulence. These products include: PcModWin: Uses the USAF standard MODTRAN model to compute the atmospheric transmission and radiance at medium spectral resolution (2 cm-1) from the ultraviolet/visible into the infrared and microwave regions of the spectrum. It can be used for any geometry and atmospheric conditions such as aerosols, clouds and rain. PcLnWin: Uses the USAF standard FASCOD model to compute atmospheric transmission and emission at high (line-by-line) spectral resolution using the HITRAN 2000 database. It can be used over the same spectrum from the UV/visible into the infrared and microwave regions of the spectrum. HitranPC: Computes the absolute high (line-by-line) spectral resolution transmission spectrum of the atmosphere for different temperatures and pressures. HitranPC is a user-friendly program developed by the University of South Florida (USF) and uses the international standard molecular spectroscopic database, HITRAN. LidarPC: A computer program to calculate the Laser Radar/L&n Equation for hard targets and atmospheric backscatter using manual input atmospheric parameters or HitranPC and BETASPEC - transmission and backscatter calculations of the atmosphere. Also developed by the University of South Florida (USF). PcEosael: is a library of programs that mathematically describe aspects of electromagnetic propagation in battlefield environments. 25 modules are connected but can be exercised individually. Covers eight general categories of atmospheric effects, including gases, aerosols and laser propagation. Based on codes developed by the Army Research Lab. NVTherm: NVTherm models parallel scan, serial scan, and staring thermal imagers that operate

  12. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow

    Directory of Open Access Journals (Sweden)

    A. J. Poulain

    2008-03-01

    Full Text Available It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg. This phenomenon is termed atmospheric mercury depletion events (AMDEs and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review Hg research taken place in Polar Regions pertaining to AMDEs, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made but the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the role that the snow pack and the sea ice play in the cycling of Hg is presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does

  13. Environment, pollution and growing health hazards

    International Nuclear Information System (INIS)

    Mehmud, S.

    1987-01-01

    The atmosphere surround the planet like a mantle and compositions of atmosphere also changes. The role of high concentration in the stratosphere is vital in as much as it act as a very effective filter for absorbing ultraviolet rays. Different type of wastes that is industrial waste, domestic waste, etc. are being mixed in the environment. The procedure for monitoring pollution in the atmosphere involves the use of a laser radar (LIDAR). Laser beam is sent out in the atmosphere and point of the laser beam back-scattered by the pollutants. Aerosols to the laser radar which receives and processes it with the help of a high speed digital computer. (A.B.)

  14. Ecology and control of the natural environment

    International Nuclear Information System (INIS)

    Izrael, Y.A.

    1992-01-01

    The book is in three parts: comprehensive analysis and regulation of the environment; the principles of monitoring; and global ecological problems - critical anthropogenic effects. The third part has a section on anthropogenic effects on the atmosphere and climate, which include: the direct impact on the state of the atmosphere; impacts which alter the physical and chemical properties of the atmosphere, and in particular its radiation and electrical characteristics; the impact on the upper atmosphere which alters its characteristics and state; and factors affecting the characteristics of the underlying surface and changing its reflectivity, and also affecting the interaction between the elements of the climatic system. There is also a section on the transport of pollutants over long distances and the ecotoxicology of acid rain. Priority is given to the transport of SO 2 and its transformation products NO x and their transformation products heavy metals, pesticides and radioactive substances. 629 refs., 74 figs., 42 tabs

  15. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  16. Atmosphere-Ionosphere Electrodynamic Coupling

    Science.gov (United States)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  17. The origins of Technetium in the environment

    International Nuclear Information System (INIS)

    Scoppa, P.

    1986-01-01

    The origins of Technetium in the environment are briefly illustrated, taking into account its main sources represented by same plants of nuclear fuel cycle and by fallout fallowing nuclear explosion in atmosphere. An evaluation is also made of the TC-99 quantitees deriving from the production of nuclear power present in radioactive wastes before their final disposal

  18. The speciation of iodine in the environment

    International Nuclear Information System (INIS)

    Bulman, R.A.

    1986-01-01

    The speciation of iodine in the environment is discussed under the following topics: (i) sea surface to atmosphere, (ii) chemistry in bulk seawater, (iii) iodine in rocks, (iv) iodine in soils, (v) iodine in plants and (vi) iodine in solidified wastes. (author)

  19. A novel atmospheric tritium sampling system

    Science.gov (United States)

    Qin, Lailai; Xia, Zhenghai; Gu, Shaozhong; Zhang, Dongxun; Bao, Guangliang; Han, Xingbo; Ma, Yuhua; Deng, Ke; Liu, Jiayu; Zhang, Qin; Ma, Zhaowei; Yang, Guo; Liu, Wei; Liu, Guimin

    2018-06-01

    The health hazard of tritium is related to its chemical form. Sampling different chemical forms of tritium simultaneously becomes significant. Here a novel atmospheric tritium sampling system (TS-212) was developed to collect the tritiated water (HTO), tritiated hydrogen (HT) and tritiated methane (CH3T) simultaneously. It consisted of an air inlet system, three parallel connected sampling channels, a hydrogen supply module, a methane supply module and a remote control system. It worked at air flow rate of 1 L/min to 5 L/min, with temperature of catalyst furnace at 200 °C for HT sampling and 400 °C for CH3T sampling. Conversion rates of both HT and CH3T to HTO were larger than 99%. The collecting efficiency of the two-stage trap sets for HTO was larger than 96% in 12 h working-time without being blocked. Therefore, the collected efficiencies of TS-212 are larger than 95% for tritium with different chemical forms in environment. Besides, the remote control system made sampling more intelligent, reducing the operator's work intensity. Based on the performance parameters described above, the TS-212 can be used to sample atmospheric tritium in different chemical forms.

  20. Reassessing the atmospheric oxidation mechanism of toluene

    Science.gov (United States)

    Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Zhang, Annie L.; Shibuya, Kazuhiko; Molina, Mario J.; Zhang, Renyi

    2017-08-01

    Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmospheric models. Our experimental work indicates a larger-than-expected branching ratio for cresols, but a negligible formation of ring-opening products (e.g., methylglyoxal). Quantum chemical calculations also demonstrate that cresols are much more stable than their corresponding peroxy radicals, and, for the most favorable OH (ortho) addition, the pathway of H extraction by O2 to form the cresol proceeds with a smaller barrier than O2 addition to form the peroxy radical. Our results reveal that phenolic (rather than peroxy radical) formation represents the dominant pathway for toluene oxidation, highlighting the necessity to reassess its role in ozone and SOA formation in the atmosphere.

  1. Atmospheric Ionizing Radiation (AIR) Project Review

    Science.gov (United States)

    Singleterry, R. C., Jr.; Wilson, J. W.; Whitehead, A. H.; Goldhagen, P. E.

    1999-01-01

    The National Council on Radiation Protection and Measurement (NCRP) and the National Academy of Science (NAS) established that the uncertainty in the data and models associated with the high-altitude radiation environment could and should be reduced. In response, the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy Environmental Measurements Laboratory (EML) created the Atmospheric Ionizing Radiation (AIR) Project under the auspices of the High Speed Research (HSR) Program Office at the Langley Research Center. NASA's HSR Program was developed to address the potential of a second-generation supersonic transport. A critical element focussed on the environmental issues, including the threat to crew and passengers posed by atmospheric radiation. Various international investigators were solicited to contribute instruments to fly on an ER-2 aircraft at altitudes similar to those proposed for the High Speed Civil Transport (HSCT). A list of participating investigators, their institutions, and instruments with quantities measured is presented. The flight series took place at solar minimum (radiation maximum) with northern, southern, and east/west flights. The investigators analyzed their data and presented preliminary results at the AIR Workshop in March, 1998. A review of these results are included.

  2. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  3. Hydrodynamic escape from planetary atmospheres

    Science.gov (United States)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  4. Highly resolved measurements of atmospheric turbulence with the new 2d-Atmospheric Laser Cantilever Anemometer

    International Nuclear Information System (INIS)

    Jeromin, A; Schaffarczyk, A P; Puczylowski, J; Peinke, J; Hölling, M

    2014-01-01

    For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales

  5. From Atmospheric Awareness to Active Materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2013-01-01

    ‘Atmosphere’ has recently claimed more attention in architectural discourse and practice leading to the revaluation of embodiment as a basis for the interaction with an environment. In this context, architectural space is understood as a space of engagement that ‘appears’ to us as a result....... In this multifaceted relationship materials are: carriers of effects and phenomena, encoders of our reminiscences and memories, detonators of physical, physiological and emotional contingencies, activators of the aesthetic occurrence. This reading defines materiality as an active and operative force – as a means...... parameters as a data upon which projects develop. Thus, the aim is to illustrate this particular projective genealogy, one that builds upon ‘atmospheric awareness’ where seeking an effect and affect is implicit and foregrounding perceptual and emotional engagement is conscious – i.e. one that defines so...

  6. Lord Kelvin's atmospheric electricity measurements

    Science.gov (United States)

    Aplin, Karen; Harrison, R. Giles; Trainer, Matthew; Hough, James

    2013-04-01

    Lord Kelvin (William Thomson), one of the greatest Victorian scientists, made a substantial but little-recognised contribution to geophysics through his work on atmospheric electricity. He developed sensitive instrumentation for measuring the atmospheric electric field, including invention of a portable electrometer, which made mobile measurements possible for the first time. Kelvin's measurements of the atmospheric electric field in 1859, made during development of the portable electrometer, can be used to deduce the substantial levels of particulate pollution blown over the Scottish island of Arran from the industrial mainland. Kelvin was also testing the electrometer during the largest solar flare ever recorded, the "Carrington event" in the late summer of 1859. Subsequently, Lord Kelvin also developed a water dropper sensor, and employed photographic techniques for "incessant recording" of the atmospheric electric field, which led to the long series of measurements recorded at UK observatories for the remainder of the 19th and much of the 20th century. These data sets have been valuable in both studies of historical pollution and cosmic ray effects on atmospheric processes.

  7. Atmosphere in a Test Tube

    Science.gov (United States)

    Claudi, R.; Pace, E.; Ciaravella, A.; Micela, G.; Piccioni, G.; Billi, D.; Cestelli Guidi, M.; Coccola, L.; Erculiani, M. S.; Fedel, M.; Galletta, G.; Giro, E.; La Rocca, N.; Morosinotto, T.; Poletto, L.; Schierano, D.; Stefani, S.

    The ancestor philosophers' dream of thousand of new world is finally realised: more than 1800 extrasolar planets have been discovered in the neighborhood of our Sun. Most of them are very different from those we used to know in our Solar System. Others orbit the Habitable Zone (HZ) of their parent stars. Space missions, as JWST and the very recently proposed ARIEL, or ground based instruments, like SPHERE@VLT, GPI@GEMINI and EPICS@ELT, have been proposed and built to measure the atmospheric transmission, reflection and emission spectra over a wide wavelength range of these new worlds. In order to interpret the spectra coming out by this new instrumentation, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how those characteristics could be affected by radiation driven photochemical and bio-chemical reaction. Insights in this direction can be achieved from laboratory studies of simulated planetary atmosphere of different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. ''Atmosphere in a Test Tube'' is a collaboration among several Italian astronomical, biological and engineering institutes in order to share their experiencece in performing laboratory experiments on several items concerning extrasolar planet atmospheres.

  8. An assessment of worldwide energy-related atmospheric pollution

    International Nuclear Information System (INIS)

    1989-01-01

    Energy-related emissions of atmospheric pollutants are currently suspected as the source of a number of major environmental problems. Early concerns about local and regional air quality and respiratory health risks, greatly alleviated in the case of sulfur dioxide (SO 2 ) emissions by the use of tall stacks, have been superseded by ''global problems,'' such as acidification of the biosphere, increase in tropospheric ozone (O 3 ), visibility impairment, long-term exposure to toxic pollutants, and buildup of ''greenhouse gases''. Chapter 1 assesses the sources and physical/chemical atmospheric processes of energy-related atmospheric pollution (ERAP). It is not an exhaustive review but rather a documented statement of the state-of-art knowledge on issues critical to effective environmental decision-making. Chapter 2 looks at the effects on man, the environment and materials, and chapter 3 presents an overview and policy options. (author)

  9. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.

    Science.gov (United States)

    Harmens, H; Foan, L; Simon, V; Mills, G

    2013-02-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Atmospheric benzenoid emissions from plants rival those from fossil fuels.

    Science.gov (United States)

    Misztal, P K; Hewitt, C N; Wildt, J; Blande, J D; Eller, A S D; Fares, S; Gentner, D R; Gilman, J B; Graus, M; Greenberg, J; Guenther, A B; Hansel, A; Harley, P; Huang, M; Jardine, K; Karl, T; Kaser, L; Keutsch, F N; Kiendler-Scharr, A; Kleist, E; Lerner, B M; Li, T; Mak, J; Nölscher, A C; Schnitzhofer, R; Sinha, V; Thornton, B; Warneke, C; Wegener, F; Werner, C; Williams, J; Worton, D R; Yassaa, N; Goldstein, A H

    2015-07-13

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y(-1)), pointing to the importance of these natural emissions in atmospheric physics and chemistry.

  11. Impact of TPP on environment

    International Nuclear Information System (INIS)

    Krylov, D.A.

    2002-01-01

    Data on environmental impact and action on people health of enterprises of coal industry, and coal and natural gas TPP were analyzed. Volume of harmful substances discharge to the atmosphere on the replace of 30 billion m 3 of gas by the Kansko-Achinsk and Kuznetsk coal (for three variants of use) was calculated. The calculations presented that the drop of gas supply at TPP with the simultaneous increase of coal consumption could give rise to the significant growth of harmful discharges to the environment [ru

  12. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence.

    Science.gov (United States)

    Cai, Liqi; Wang, Jundong; Peng, Jinping; Tan, Zhi; Zhan, Zhiwei; Tan, Xiangling; Chen, Qiuqiang

    2017-11-01

    Microplastic pollution has exhibited a global distribution, including seas, lakes, rivers, and terrestrial environment in recent years. However, little attention was paid on the atmospheric environment, though the fact that plastic debris can escape as wind-blown debris was previously reported. Thus, characteristics of microplastics in the atmospheric fallout from Dongguan city were preliminarily studied. Microplastics of three different polymers, i.e., PE, PP, and PS, were identified. Diverse shapes of microplastics including fiber, foam, fragment, and film were found, and fiber was the dominant shape of the microplastics. SEM images illustrated that adhering particles, grooves, pits, fractures, and flakes were the common patterns of degradation. The concentrations of non-fibrous microplastics and fibers ranged from 175 to 313 particles/m 2 /day in the atmospheric fallout. Thus, dust emission and deposition between atmosphere, land surface, and aquatic environment were associated with the transportation of microplastics.

  13. Upper atmosphere research at INPE

    International Nuclear Information System (INIS)

    Clemesha, B.R.

    1984-01-01

    Upper atmosphere research at INPE is mainly concerned with the chemistry and dynamics of the stratosphere, upper mesosphere and lower thermosphere, and the middle thermosphere. Experimental work includes lidar observations of the stratospheric aerosol, measurements of stratospheric ozone by Dobson spectrophotometers and by balloon and rocket-borne sondes, lidar measurements of atmospheric sodium, and photometric observations of O, O 2 , OH and Na emissions, including interferrometric measurements of the OI6300 emission for the purpose of determing thermospheric winds and temperature. The airglow observations also include measurements of a number of emissions produced by the precipitation of energetic neutral particles generated by charge exchange in the ring current. Some recent results of INPE's upper atmosphere program are presented. (Author) [pt

  14. An archetype hydrogen atmosphere problem

    Science.gov (United States)

    Athay, R. G.; Mihalas, D.; Shine, R. A.

    1975-01-01

    Populations for the first three bound states and the continuum of hydrogen are determined for an isothermal hydrostatic atmosphere at 20,000 K. The atmosphere is treated as optically thin in the Balmer and Paschen continua and illuminated by continuum radiation at these wavelengths with prescribed radiation temperatures. The atmosphere is optically thick in the 2-1, 3-1, 3-2 and c-1 transitions. Three stages of approximation are treated: (1) radiative detailed balance in the 2-1, 3-1 and 3-2 transitions, (2) radiative detailed balance in the 3-1 and 3-2 transitions, and (3) all transitions out of detailed balance. The solution of this problem is nontrivial and presents sufficient difficulty to have caused the failure of at least one rather standard technique. The problem is thus a good archetype against which new methods or new implementations of old methods may be tested.

  15. An archetype hydrogen atmosphere problem

    International Nuclear Information System (INIS)

    Athay, R.G.; Mihalas, D.; Shine, R.A.

    1975-01-01

    Populations for the first three bound states and the continuum of hydrogen are determined for an isothermal, hydrostatic atmosphere at 20000K. The atmosphere is treated as being optically thin in the Balmer and Paschen continua and illuminated by continuum radiation at these wavelengths with prescribed radiation temperatures. The atmosphere is optically thick in the 2-1,3-1,3-2 and c-1 transitions. Three stages of approximation are treated: (1) radiative detailed balance in the 2-1, 3-1 and 3-2 transitions, (2) radiative detailed balance in the 3-1 and 3-2 transitions, and (3) all transitions out of detailed balance. The solution of this problem is non-trivial, and presents sufficient difficulty to have caused failure of at least one rather standard technique. The problem is thus a good archetype against which new methods, or new implementations of old methods may be tested. (Auth.)

  16. Atmospheres of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1981-01-01

    In this paper the current knowledge of the atmospheres of Jupiter and Saturn are reviewed making use of the extensive telescopic studies, International Ultraviolet Explorer Satellite observations and the measurements made during the recent Pioneer and Voyager flybys which have been supported by detailed theoretical studies. A detailed discussion is given of the composition of these atmospheres and the abundance ratios which provide insight into their original state and their evolution. The Voyager observations indicate a surprisingly close similarity between the weather systems of the Earth and the giant planets. Although both Jupiter and Saturn have internal heat sources, and are therefore star-like in their interiors, they appear to produce terrestrial-style weather systems. A detailed discussion is given of this work, which forms a major study of the Laboratory for Planetary Atmospheres at University College London. (author)

  17. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  18. Chandra Observations of Pluto's Escaping Atmosphere in Support of the New Horizons Mission

    Science.gov (United States)

    McNutt, Ralph, Jr.

    2013-09-01

    Current models of Pluto's extended N2+CH4 atmosphere are still very uncertain, causing numerous difficulties in optimizing the New Horizons fast flyby operations plan for the dwarf planet. Applying knowledge gained from studying cometary X-ray emission, Chandra ACIS-S photometric imaging of X-rays produced by CXE between the solar wind and Pluto's atmosphere will address both the run of atmospheric density and the interaction of the solar wind with the extended Plutonian atmosphere. Determining the atmosphere's extent and amount of free molecular escape will aid the atmospheric sounding measurements of the NH ALICE instrument, while determining the x-ray luminosity will help the NH PEPSI instrument characterize the solar wind particle environment.

  19. Towards a Global Unified Model of Europa's Tenuous Atmosphere

    Science.gov (United States)

    Plainaki, Christina; Cassidy, Tim A.; Shematovich, Valery I.; Milillo, Anna; Wurz, Peter; Vorburger, Audrey; Roth, Lorenz; Galli, André; Rubin, Martin; Blöcker, Aljona; Brandt, Pontus C.; Crary, Frank; Dandouras, Iannis; Jia, Xianzhe; Grassi, Davide; Hartogh, Paul; Lucchetti, Alice; McGrath, Melissa; Mangano, Valeria; Mura, Alessandro; Orsini, Stefano; Paranicas, Chris; Radioti, Aikaterini; Retherford, Kurt D.; Saur, Joachim; Teolis, Ben

    2018-02-01

    Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa's tenuous atmosphere and on the exchange of material between the moon's surface and Jupiter's magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon's icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa's tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA's JUpiter ICy moons Explorer (JUICE) mission, and NASA's Europa Clipper mission). We review the existing models of Europa's tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.

  20. Future of Atmospheric Neutrino Measurements

    International Nuclear Information System (INIS)

    Choubey, Sandhya

    2013-01-01

    Discovery of large θ 13 has opened up the possibility of determining the neutrino mass hierarchy and θ 23 octant through earth matter effects. The atmospheric neutrinos pick up large earth matter effects both in the ν e and ν μ channels, which if observed could lead to the determination of the mass hierarchy and θ 23 octant using this class of experiments in the near future. In this talk I review the status and prospects of future atmospheric neutrino measurements in determining the mass hierarchy and octant of θ 23

  1. Atmospheric-pressure plasma technology

    International Nuclear Information System (INIS)

    Kogelschatz, U

    2004-01-01

    Major industrial plasma processes operating close to atmospheric pressure are discussed. Applications of thermal plasmas include electric arc furnaces and plasma torches for generation of powders, for spraying refractory materials, for cutting and welding and for destruction of hazardous waste. Other applications include miniature circuit breakers and electrical discharge machining. Non-equilibrium cold plasmas at atmospheric pressure are obtained in corona discharges used in electrostatic precipitators and in dielectric-barrier discharges used for generation of ozone, for pollution control and for surface treatment. More recent applications include UV excimer lamps, mercury-free fluorescent lamps and flat plasma displays

  2. Plume spread and atmospheric stability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.

  3. Baseline atmospheric program Australia 1993

    International Nuclear Information System (INIS)

    Francey, R.J.; Dick, A.L.; Derek, N.

    1996-01-01

    This publication reports activities, program summaries and data from the Cape Grim Baseline Air Pollution Station in Tasmania, during the calendar year 1993. These activities represent Australia's main contribution to the Background Air Pollution Monitoring Network (BAPMoN), part of the World Meteorological Organization's Global Atmosphere Watch (GAW). The report includes 5 research reports covering trace gas sampling, ozone and radon interdependence, analysis of atmospheric dimethylsulfide and carbon-disulfide, sampling of trace gas composition of the troposphere, and sulfur aerosol/CCN relationship in marine air. Summaries of program reports for the calendar year 1993 are also included. Tabs., figs., refs

  4. Characterizing Convection in Stellar Atmospheres

    International Nuclear Information System (INIS)

    Tanner, Joel; Basu, Sarbani; Demarque, Pierre; Robinson, Frank

    2011-01-01

    We perform 3D radiative hydrodynamic simulations to study the properties of convection in the superadiabatic layer of stars. The simulations show differences in both the stratification and turbulent quantities for different types of stars. We extract turbulent pressure and eddy sizes, as well as the T-τ relation for different stars and find that they are sensitive to the energy flux and gravity. We also show that contrary to what is usually assumed in the field of stellar atmospheres, the structure and gas dynamics of simulations of turbulent atmospheres cannot be parameterized with T eff and log(g) alone.

  5. Review: the atmospheric boundary layer

    Science.gov (United States)

    Garratt, J. R.

    1994-10-01

    An overview is given of the atmospheric boundary layer (ABL) over both continental and ocean surfaces, mainly from observational and modelling perspectives. Much is known about ABL structure over homogeneous land surfaces, but relatively little so far as the following are concerned, (i) the cloud-topped ABL (over the sea predominantly); (ii) the strongly nonhomogeneous and nonstationary ABL; (iii) the ABL over complex terrain. These three categories present exciting challenges so far as improved understanding of ABL behaviour and improved representation of the ABL in numerical models of the atmosphere are concerned.

  6. Atmospheric environmental implications of propulsion systems

    Science.gov (United States)

    Mcdonald, Allan J.; Bennett, Robert R.

    1995-01-01

    Three independent studies have been conducted for assessing the impact of rocket launches on the earth's environment. These studies have addressed issues of acid rain in the troposphere, ozone depletion in the stratosphere, toxicity of chemical rocket exhaust products, and the potential impact on global warming from carbon dioxide emissions from rocket launches. Local, regional, and global impact assessments were examined and compared with both natural sources and anthropogenic sources of known atmospheric pollutants with the following conclusions: (1) Neither solid nor liquid rocket launches have a significant impact on the earth's global environment, and there is no real significant difference between the two. (2) Regional and local atmospheric impacts are more significant than global impacts, but quickly return to normal background conditions within a few hours after launch. And (3) vastly increased space launch activities equivalent to 50 U.S. Space Shuttles or 50 Russian Energia launches per year would not significantly impact these conclusions. However, these assessments, for the most part, are based upon homogeneous gas phase chemistry analysis; heterogeneous chemistry from exhaust particulates, such as aluminum oxide, ice contrails, soot, etc., and the influence of plume temperature and afterburning of fuel-rich exhaust products, need to be further addressed. It was the consensus of these studies that computer modeling of interactive plume chemistry with the atmosphere needs to be improved and computer models need to be verified with experimental data. Rocket exhaust plume chemistry can be modified with propellant reformulation and changes in operating conditions, but, based upon the current state of knowledge, it does not appear that significant environmental improvements from propellant formulation changes can be made or are warranted. Flight safety, reliability, and cost improvements are paramount for any new rocket system, and these important aspects

  7. Radiations in space and global environment

    International Nuclear Information System (INIS)

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  8. Environment and Medical Sciences Division Progress Report

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1980-06-01

    The 1979 annual progress report of the UKAEA Environmental and Medical Sciences Division covers both radiological and non-nuclear research programmes in the environmental and toxicological fields. The specific topics were 1) 'atmospheric pollution' which included the analysis of atmospheric trace gases by gas chromatography/mass spectrometry, the life cycle of atmospheric sulphur compounds, photochemical pollution, studies on stratospheric reactions, stratospheric ozone and the effects of pollutants, upper air sampling and monitoring gaseous atmospheric pollutants with passive samplers; 2) miscellaneous 'environmental safety projects'; 3) 'radiation physics' projects concerning a) radioactive fallout, b) studies of stable trace elements in the atmospheric environment and studies of radioactivity in the environment, c) various aspects of dosimetry research including radiation biophysics, d) personnel dosimetry, e) applied radiation spectrometry and f) data systems; 5) 'aerosol and metabolic studies' including whole body counting studies; 6) 'inhalation toxicology and radionuclide analysis' studies including actinide inhalation, cytotoxicity and fibrogenicity of non-radioactive dusts, asbestos and glass fibre research, a Qauntimet 720 image analysis service and radionuclide analysis in biological materials; and 7) 'analytical services' used in relation to 'environmental safety and chemical analysis' projects. (U.K.)

  9. Selenium cycling across soil-plant atmosphere interfaces: a critical review

    Science.gov (United States)

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass, and in the atmosphere. Low Se levels in certain terrestrial environments ha...

  10. atmospheric corrosion of mild steel in the niger delta region of ...

    African Journals Online (AJOL)

    xtz

    ABSTRACT. The atmospheric corrosion of Calabar, Cross River State environment has been investigated for 12 months using weight loss technique. The extent of pollution of the environment was also determined via measurements of the precipitation and air quality parameters. Apart from the suspended particulate.

  11. Clouds and Hazes in Exoplanet Atmospheres

    OpenAIRE

    Marley, Mark S.; Ackerman, Andrew S.; Cuzzi, Jeffrey N.; Kitzmann, Daniel

    2013-01-01

    Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmospheric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider t...

  12. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  13. Radiation chemistry and the environment

    International Nuclear Information System (INIS)

    Getoff, F.

    1998-01-01

    The rather strong and many-sided pollution of the environment (atmosphere, water resources, soil) as a consequence of human activities is summarized. The solution of the arised problems by application of radiation chemistry methods and the utilization of modern environmentally ''clean'' and economical technologies, founded on electron beam processing, are mentioned. Some basic environmental problems and their solution are briefly discussed: i) Removal of CO 2 from flue gases and its radiation induced utilization. ii) Principals for degradation of aqueous pollutants by electron beam processing in the presence of ozone (synergistic effect). The radiation chemistry as a modern and manifold discipline with very broad applications can also essentially contribute in the conservation of the environment

  14. Radiation chemistry and the environment

    International Nuclear Information System (INIS)

    Getoff, Nikola

    1999-01-01

    The rather strong and many-sided pollution of the environment (atmosphere, water resources, soil) as a consequence of human activity is summarized. The solution of the arised problems by application of radiation chemistry methods and the utilization of modern environmentally 'clean' and economical technologies, founded on electron beam processing, are mentioned. Some basic environmental problems and their solution are briefly discussed. (i) Removal of CO 2 from flue gases and its radiation induced utilization. (ii) Principals for degradation of aqueous pollutants by electron beam processing in the presence of ozone (synergistic effect). The radiation chemistry as a modern and manifold discipline with very broad applications can also essentially contribute in the conservation of the environment

  15. Application of year-round atmospheric transmission data, collected with the MSRT multiband transmissometer during the FATMOSE trial in the False Bay area

    NARCIS (Netherlands)

    Jong, A.N. de; Eijk, A.M.J. van; Cohen, L.H.; Fritz, P.J.; Gunter, W.H.; Vrahimisb, G.; Faith, J.

    2011-01-01

    The FATMOSE trial (False Bay Atmospheric Experiment) is a continuation of the cooperative work between TNO and IMT on atmospheric propagation and point target detection and identification in a maritime environment (South Africa). The atmospheric transmission, being of major importance for target

  16. Energy and global environment

    International Nuclear Information System (INIS)

    Fyfe, W.S.; Powell, M.A.

    1991-01-01

    At present about 90% of the world's energy consumption is met by the fossil carbon fuel used in the form of coal, oil and natural gas. This results into release of vast amounts of waste gas CO 2 into the atmosphere posing a threat to the global environment. Moreover this energy source is not sustainable (renewable) and its use amounts to spending Earth's capital resources. The options to this energy source are biomass energy, hydro power, solar energy, geothermal energy and nuclear energy. The potentials, limitations, geological impact and environmental dangers, if any, of these sources are discussed in brief. Energy conservation through energy efficient systems is also one more option. Problems and potential for change to sustainable energy systems with respect to India and Canada are examined. Finally it is pointed out that the ultimate solution to the world's energy problem lies in population control and population reduction. This will make possible for the world to have a sustainable energy system primarily based on solar energy. (M.G.B.). 15 refs

  17. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests.

    Science.gov (United States)

    Bennett, Burton G

    2002-05-01

    Radionuclides produced in atmospheric nuclear tests were widely dispersed in the global environment. From the many measurements of the concentrations in air and the deposition amounts, much was learned of atmospheric circulation and environmental processes. Based on these results and the reported fission and total yields of individual tests, it has been possible to devise an empirical model of the movement and residence times of particles in the various atmospheric regions. This model, applied to all atmospheric weapons tests, allows extensive calculations of air concentrations and deposition amounts for the entire range of radionuclides produced throughout the testing period. Especially for the shorter-lived fission radionuclides, for which measurement results at the time of the tests are less extensive, a more complete picture of levels and isotope ratios can be obtained, forming a basis for improved dose estimations. The contributions to worldwide fallout can be inferred from individual tests, from tests at specific sites, or by specific countries. Progress was also made in understanding the global hydrological and carbon cycles from the tritium and 14C measurements. A review of the global measurements and modeling results is presented in this paper. In the future, if injections of materials into the atmosphere occur, their anticipated motions and fates can be predicted from the knowledge gained from the fallout experience.

  18. Observations of atmospheric ammonia from TANSO-FTS/GOSAT

    Science.gov (United States)

    Someya, Yu; Imasu, Ryoichi; Saitoh, Naoko; Shiomi, Kei

    2017-04-01

    Atmospheric ammonia has large impacts on the nitrogen cycles or atmospheric environment such as nucleation of PM2.5 particles. It is reported that ammonia in the atmosphere has been increasing rapidly with the growth of population globally and this trend must continue in the future. Satellite observation is an effective approach to get to know the global perspectives of the gas. Atmospheric ammonia is observable using the thermal infrared (TIR) spectra, and IASI, TES and CrIS had been revealed those distributions. GOSAT also has TIR band including the ammonia absorption bands. GOSAT has the shorter revisit cycle than that of the other hyper-spectral TIR sounders mentioned above, therefore, the shorter time-scale events can be represented. In addition to the importance of the impacts of ammonia itself, the concentration ratio between ammonia and the other trace gases such as CO which is one of the main targets of the GOSAT-2 project is useful as the indicator of their emission sources. In this study, we introduce an algorithm to retrieve the column amount of atmospheric ammonia based on non-linear optimal estimation (Rogers, 2000) from GOSAT spectra in the ammonia absorption band between 960 - 970 cm-1. Temperature and water vapor profiles are estimated in advance of the ammonia retrieval. The preliminary results showed significant high concentrations of ammonia in the Northern India and the Eastern China as pointed out in the previous researches. We will discuss the global distribution of ammonia in the presentation.

  19. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  20. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    Science.gov (United States)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  1. Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres

    Science.gov (United States)

    Gao, Peter; Marley, Mark S.; Ackerman, Andrew S.

    2018-03-01

    Condensation clouds in substellar atmospheres have been widely inferred from spectra and photometric variability. Up until now, their horizontally averaged vertical distribution and mean particle size have been largely characterized using models, one of which is the eddy diffusion–sedimentation model from Ackerman and Marley that relies on a sedimentation efficiency parameter, f sed, to determine the vertical extent of clouds in the atmosphere. However, the physical processes controlling the vertical structure of clouds in substellar atmospheres are not well understood. In this work, we derive trends in f sed across a large range of eddy diffusivities (K zz ), gravities, material properties, and cloud formation pathways by fitting cloud distributions calculated by a more detailed cloud microphysics model. We find that f sed is dependent on K zz , but not gravity, when K zz is held constant. f sed is most sensitive to the nucleation rate of cloud particles, as determined by material properties like surface energy and molecular weight. High surface energy materials form fewer, larger cloud particles, leading to large f sed (>1), and vice versa for materials with low surface energy. For cloud formation via heterogeneous nucleation, f sed is sensitive to the condensation nuclei flux and radius, connecting cloud formation in substellar atmospheres to the objects’ formation environments and other atmospheric aerosols. These insights could lead to improved cloud models that help us better understand substellar atmospheres. For example, we demonstrate that f sed could increase with increasing cloud base depth in an atmosphere, shedding light on the nature of the brown dwarf L/T transition.

  2. Atmospheric sciences division. Annual report, fiscal year 1981

    International Nuclear Information System (INIS)

    Raynor, G.S.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included

  3. Environmental factor atmosphere. Umweltfaktor Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Pogosjan, C P

    1981-01-01

    This book presents chapters on constitution of atmosphere, sun energy, air temperature, ocean-currents and heat transfer, annual specialities of pressure field, low and high pressure areas, hurricanes, formation of clouds and rainfall, climate variations, weather and weather forecast, artificial influence of weather and climate.

  4. Millimeter Wave Atmospheric Radiometry Observations.

    Science.gov (United States)

    1981-03-27

    structure of the atmosphere would be very important. Rufton [20] combined thermal sensor technology for microthermal measurements with radiosonde...fromT2 h n relationships with CT(h) at least for optical effects. Bufton obtained the mean-square temperature difference between two microthermal probes

  5. Exploring the Atmosphere Using Smartphones

    Science.gov (United States)

    Monteiro, Martin; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the…

  6. Atmospheric contamination during ultrasonic scaling

    NARCIS (Netherlands)

    Timmerman, MF; Menso, L; Steinfort, J; van Winkelhoff, AJ; van der Weijden, GA

    Objective: The aim of this study was to determine the microbial atmospheric contamination during initial periodontal treatment using a piezoelectric ultrasonic scaler in combination with either high-volume evacuation (HVE) or conventional dental suction (CDS). Methods: The study included 17

  7. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    . This portion of the atmosphere is extremely important, both scientifically and operationally, because it is the region within which surface lander spacecraft must operate and also determines exchanges of heat, momentum, dust, water, and other tracers between surface and subsurface reservoirs and the free...

  8. Would be the Atmosphere Chaotic?

    Directory of Open Access Journals (Sweden)

    Isimar de Azevedo Santos

    2013-07-01

    Full Text Available The atmosphere has often been considered “chaotic” when in fact the “chaos” is a manifestation of the models that simulate it, which do not include all the physical mechanisms that exist within it. A weather prediction cannot be perfectly verified after a few days of integration due to the inherent nonlinearity of the equations of the hydrodynamic models. The innovative ideas of Lorenz led to the use of the ensemble forecast, with clear improvements in the quality of the numerical weather prediction. The present study addresses the statement that “even with perfect models and perfect observations, the ‘chaotic’ nature of the atmosphere would impose a finite limit of about two weeks to the predictability of the weather” as the atmosphere is not necessarily “chaotic”, but the models used in the simulation of atmospheric processes are. We conclude, therefore, that potential exists for developments to increase the horizon of numerical weather prediction, starting with better models and observations.

  9. Atmospheric Research 2011 Technical Highlights

    Science.gov (United States)

    2012-01-01

    The 2011 Technical Highlights describes the efforts of all members of Atmospheric Research. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  10. Climate of the upper atmosphere

    Czech Academy of Sciences Publication Activity Database

    Bremer, J.; Laštovička, Jan; Mikhailov, A. V.; Altadill, D.; Pal, B.; Burešová, Dalia; Franceschi de, G.; Jacobi, C.; Kouris, S. S.; Perrone, L.; Turunen, E.

    2009-01-01

    Roč. 52, 3/4 (2009), s. 273-299 ISSN 1593-5213 R&D Projects: GA MŠk OC 091 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * trends * atmospheric waves * ionospheric variability * incoherent radar * space weather Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.548, year: 2009

  11. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Directory of Open Access Journals (Sweden)

    S. Dupont

    2012-07-01

    Full Text Available Momentum and scalar (heat and water vapor transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out, and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable. Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft.

    During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable, the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport.

    In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i downward plumes within the canopy correspond to large downward plumes coming from above, and (ii upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar

  12. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    Science.gov (United States)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  13. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  14. Contributions of the CEA-Valduc Centre control to the understanding of the transfers of atmospheric tritiated water into the different parts of the environment; Apports de la surveillance du Centre CEA-Valduc sur la connaissance des transferts de l'eau tritiee atmospherique dans les differents compartiments de l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Guetat, P.; Vichot, L. [CEA Valduc, UMR, 21 - Is-sur-Tille (France); Tognelli, A. [CEA Bruyeres-le-Chatel, 91 (France)

    2009-07-01

    After a description of the geological environment of the Valduc Centre dedicated to tritium purification and tritiated waste processing and storage, this document presents the assessment of quantities of tritiated water released by the Valduc Centre and of their evolution in the hydro-geological environment. It provides in situ macroscopically observed data on the transfer mechanisms of water into the different parts of the environment and into the food chain by means. This is made possible by the exceptional traceability of tritiated water. Finally, a comparison between computational models and experimental measurements is given

  15. Electrostatic purification of uranium mine stope atmospheres

    International Nuclear Information System (INIS)

    Case, G.; Phyper, J.D.; Lowe, L.M.; Chambers, D.B.

    1986-01-01

    Electrostatic precipitators have been and are currently being used to reduce levels of radioactive aerosols in uranium mine stope atmospheres. Historically, while the electrostatic precipitators have been reported to be successful in reducing levels of radioactive aerosols many practical problems have been encountered with their use in the underground mine environment. Electrical short circuiting appears to have been the major problem with the use of precipitators in humid underground environments. On the basis of literature reviewed for this study it seems that the problems encountered in the past can be overcome. The most likely use of a precipitator in an underground uranium mine is to treat some or all of the air immediately upstream of a work station. The possible locations and uses of a precipitator would vary from work station to work station and from mine to mine. The desirability and cost of using elctrostatic precipitators to purify the air entering a work station are application specific. SENES Consultants therefore is not recommending for or against the use of electrostatic precipitators in underground uranium mines. The information provided in this report can be used however to assist in such determinations. 72 refs

  16. Archives of Atmospheric Lead Pollution

    Science.gov (United States)

    Weiss, Dominik; Shotyk, William; Kempf, Oliver

    Environmental archives such as peat bogs, sediments, corals, trees, polar ice, plant material from herbarium collections, and human tissue material have greatly helped to assess both ancient and recent atmospheric lead deposition and its sources on a regional and global scale. In Europe detectable atmospheric lead pollution began as early as 6000years ago due to enhanced soil dust and agricultural activities, as studies of peat bogs reveal. Increased lead emissions during ancient Greek and Roman times have been recorded and identified in many long-term archives such as lake sediments in Sweden, ice cores in Greenland, and peat bogs in Spain, Switzerland, the United Kingdom, and the Netherlands. For the period since the Industrial Revolution, other archives such as corals, trees, and herbarium collections provide similar chronologies of atmospheric lead pollution, with periods of enhanced lead deposition occurring at the turn of the century and since 1950. The main sources have been industry, including coal burning, ferrous and nonferrous smelting, and open waste incineration until c.1950 and leaded gasoline use since 1950. The greatest lead emissions to the atmosphere all over Europe occurred between 1950 and 1980 due to traffic exhaust. A marked drop in atmospheric lead fluxes found in most archives since the 1980s has been attributed to the phasing out of leaded gasoline. The isotope ratios of lead in the various archives show qualitatively similar temporal changes, for example, the immediate response to the introduction and phasing out of leaded gasoline. Isotope studies largely confirm source assessments based on lead emission inventories and allow the contributions of various anthropogenic sources to be calculated.

  17. Finding Atmospheric Composition (AC) Metadata

    Science.gov (United States)

    Strub, Richard F..; Falke, Stefan; Fiakowski, Ed; Kempler, Steve; Lynnes, Chris; Goussev, Oleg

    2015-01-01

    The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all

  18. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    Science.gov (United States)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere

  19. The modern research environment

    DEFF Research Database (Denmark)

    Topsøe, Flemming

    1993-01-01

    Information Technology, research environment, structured documents, networked information retrieval......Information Technology, research environment, structured documents, networked information retrieval...

  20. Atmospheric anomalies in summer 1908: Water in the atmosphere

    Science.gov (United States)

    Gladysheva, O. G.

    2011-10-01

    A gigantic noctilucent cloud field was formed and different solar halos were observed after the Tunguska catastrophe. To explain these anomalous phenomena, it is necessary to assume that a large quantity of water was carried into the atmosphere, which indicates that the Tunguska cosmic body was of a comet origin. According to rough estimates, the quantity of water that is released into the atmosphere as a result of a cosmic body's destruction is more than 1010 kg. The observation of a flying object in an area with a radius of ≥700 km makes it possible to state that the Tunguska cosmic body looked like a luminous coma with a diameter not smaller than ≥10 km and became visible at heights of >500 km. The assumption that the Tunguska cosmic body started disintegrating at a height of ˜1000 km explains the formation of an area where its mater diffused and formed a luminous area above Europe.