WorldWideScience

Sample records for windsat polarimetric microwave

  1. WindSat Space Borne Polarimetric Microwave Radiometer: Data Products and System Performance

    Science.gov (United States)

    Truesdale, D.; Gaiser, P.; Bettenhausen, M. H.; Li, L.; Twarog, E.

    2017-12-01

    WindSat, a satellite-based multi-frequency polarimetric microwave radiometer developed by the Naval Research Laboratory for the U.S. Navy and the NPOESS Integrated Program Office (IPO), has collected over 14 years of fully-polarimetric microwave measurements from space since its launch in 2003. The primary WindSat mission was to demonstrate the capability to retrieve the ocean surface wind vector from a space-based microwave radiometer. The WindSat data is now being used to produce near-real-time products for the ocean surface wind vector, sea surface temperature (SST) and atmospheric columnar water vapor and cloud liquid water over the ocean at the U.S. Navy's Fleet Numerical Meteorological and Oceanographic Center (FNMOC). Several groups are assimilating WindSat data products into numerical weather models with positive results. In addition to providing environmental products over the ocean, the WindSat data set has been exploited for retrievals over land and ice. In particular, the WindSat channel set is well suited to retrieving soil moisture and land surface temperature. We have also built on heritage algorithms to derive sea ice concentration. This paper will provide highlights of WindSat environmental products. The success of the WindSat mission is directly traceable to the on-orbit sensor calibration. WindSat was designed with a one-year mission requirement and three year goal. Now in WindSat's fifteenth year on orbit, we continue to monitor the instrument performance and the calibration stability. Key system performance and calibration parameters include the receiver gains and NEDTs. These parameters are susceptible to component aging and changes in the payload thermal behavior. We will present trends in NEDT and receiver gains over the life of the mission. In addition to its primary mission, the long life of WindSat enables it to provide many forms of risk reduction and lessons learned for future microwave imagers.

  2. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  3. An Anisotropic Ocean Surface Emissivity Model Based on WindSat Polarimetric Brightness Observations

    Science.gov (United States)

    Smith, D. F.; Gasiewski, A. J.; Sandeep, S.; Weber, B. L.

    2012-12-01

    The goal of this research has been to develop a standardized fast full-Stokes ocean surface emissivity model with Jacobian for a wind-driven ocean surface applicable at arbitrary microwave frequencies, polarizations, and incidence angles. The model is based on the Ohio State University (OSU) two-scale code for surface emission developed by Johnson (2006, IEEE TGRS, 44, 560) but modified as follows: (1) the Meissner-Wentz dielectric permittivity (2012, IEEE TGRS, 50, 3004) replaces the original permittivity, (2) the Elfouhaily sea surface spectrum (1997, JGR, 102, C7,15781) replaces the Durden-Vesecky spectrum (1985, IEEE TGRS, OE-10, 445), but the Durden-Vesecky angular spreading function is retained, (3) the high-frequency portion of the Elfouhaily spectrum is multiplied by the Pierson-Moskowitz shape spectrum to correct an error in the original paper, (4) the generalized Phillips-Kitaigorodskii equilibrium range parameter for short waves is modeled as a continuous function of the friction velocity at the water surface to eliminate a discontinuous jump in the original paper. A total of five physical tuning parameters were identified, including the spectral strength and the hydrodynamic modulation factor. The short wave part of the spectrum is also allowed to have an arbitrary ratio relative to the long wave part. The foam fraction is multiplied by a variable correction factor, and also modulated to allow an anisotropic foam fraction with more foam on the leeward side of a wave. The model is being tuned against multi-year sequences of WindSat and Special Sensor Microwave/Imager (SSMI) data as analyzed by Meissner and Wentz (2012, IEEE TGRS, 50, 3004) for up to four Stokes brightnesses and in all angular harmonics up to two in twenty five wind bins from 0.5-25.5 m/s and of 1 m/s width. As a result there are 40 brightnesses per wind bin, for a total of 1000 brightnesses used to constrain the modified model. A chi-squared tuning criterion based on error standard

  4. The WindSat Spaceborne Polarimetric Microwave Radiometer: Sensor Description and Early Orbit Performance

    Science.gov (United States)

    2004-11-01

    Sensor Description and Early Orbit Performance Peter W. Gaiser, Senior Member, IEEE, Karen M. St. Germain, Senior Member, IEEE, Elizabeth M. Twarog , Gene...Integrated Pro- gram Office. P. W. Gaiser, K. M. St. Germain, E. M. Twarog , W. Purdy, D. Spencer, G. Golba, J. Cleveland, L. Choy, and R. M. Bevilacqua...Radio Frequencies (CORF). Elizabeth M. Twarog received the B.S. degree from the University of Massa- chusetts, Amherst, in 1992, and the M.S. and Ph.D

  5. Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements

    Science.gov (United States)

    Gong, Jie; Wu, Dong L.

    2017-02-01

    Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166 GHz channels. It is the first study on frozen particle microphysical properties on a global scale that uses the dual-frequency microwave polarimetric signals.From the ice cloud scenes identified by the 183.3 ± 3 GHz channel brightness temperature (Tb), we find that the scattering by frozen particles is highly polarized, with V-H polarimetric differences (PDs) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166 GHz TBs, as well as the PD at 640 GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow regions (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would easily result in as large as 30 % error in ice water path retrievals. There is a universal bell curve in the PD-TBV relationship, where the PD amplitude peaks at ˜ 10 K for all three channels in the tropics and increases slightly with latitude (2-4 K). Moreover, the 166 GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89 GHz PD is less sensitive than 166 GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors.Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, turbulent mixing within deep convective cores inevitably promotes the random

  6. Synergy of optical and polarimetric microwave data for forest resource assessment

    International Nuclear Information System (INIS)

    Miguel-Ayanz, J.S.

    1997-01-01

    Data acquired during the Mac-Europe 91 campaign over the Black Forest ( Germany) are used to study the synergy of optical imaging spectrometer data ( AVIRIS) and polarimetric microwave data ( AIRSAR) for forest resource assessment. Original and new derived bands from AIRSAR and AVIRIS data are used to predict age and biomass. The best predictors ( bands) are selected through a multivariate stepwise regression analysis of each of the datasets separately. Then the joint AIRSAR-AVIRIS dataset is analysed. This study shows how the synergistic use of AIRSAR and AVIRIS data improves significantly the predictions obtained from the individual datasets for both age and biomass over the test site. In the analysis of AVIRIS data a new approach for processing large datasets as those provided by imaging spectrometers is presented, so that maximum likelihood classification of these datasets becomes feasible. (author)

  7. Diurnal Variation of Tropical Ice Cloud Microphysics: Evidence from Global Precipitation Measurement Microwave Imager Polarimetric Measurements

    Science.gov (United States)

    Gong, Jie; Zeng, Xiping; Wu, Dong L.; Li, Xiaowen

    2018-01-01

    The diurnal variation of tropical ice clouds has been well observed and examined in terms of the occurring frequency and total mass but rarely from the viewpoint of ice microphysical parameters. It accounts for a large portion of uncertainties in evaluating ice clouds' role on global radiation and hydrological budgets. Owing to the advantage of precession orbit design and paired polarized observations at a high-frequency microwave band that is particularly sensitive to ice particle microphysical properties, 3 years of polarimetric difference (PD) measurements using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) are compiled to reveal a strong diurnal cycle over tropical land (30°S-30°N) with peak amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud occurring frequency and total ice mass by about 2 h, which strongly implies that understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and precipitation processes.

  8. Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band

    Directory of Open Access Journals (Sweden)

    Nuria Duffo

    2009-06-01

    Full Text Available Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Windsat mission, very limited studies have been conducted on the polarimetric emission of rain cells or other natural surfaces. In this work, the polarimetric emission (four Stokes elements of a rain cell is computed using the polarimetric radiative transfer equation assuming that raindrops are described by Pruppacher-Pitter shapes and that their size distribution follows the Laws-Parsons law. The Boundary Element Method (BEM is used to compute the exact bistatic scattering coefficients for each raindrop shape and different canting angles. Numerical results are compared to the Rayleigh or Mie scattering coefficients, and to Oguchi’s ones, showing that above 1-2 mm raindrop size the exact formulation is required to model properly the scattering. Simulation results using BEM are then compared to the experimental data gathered with a X-band polarimetric radiometer. It is found that the depolarization of the radiation caused by the scattering of non-spherical raindrops induces a non-zero third Stokes parameter, and the differential phase of the scattering coefficients induces a non-zero fourth Stokes parameter.

  9. Hurricane Wind Vector Estimates from WindSat Polarimetric Radiometer

    National Research Council Canada - National Science Library

    Adams, Ian S; Hennon, Christopther C; Jones, W. L; Ahmad, Khalil

    2005-01-01

    .... In late 2004, the first preliminary oceanic wind vector results were released, and this paper presents the first evaluation of this product for several Atlantic hurricanes during the 2003 season...

  10. Electronic Correlated Noise Calibration Standard for Interferometric and Polarimetric Microwave Radiometers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of calibration standard is proposed which produces a pair of microwave noise signals to aid in the characterization and calibration of correlating...

  11. Design and development of a microwave multifrequency polarimetric scatterometer for biosphere remote sensing

    International Nuclear Information System (INIS)

    Stjernman, A.

    1995-05-01

    The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab

  12. Design and development of a microwave multifrequency polarimetric scatterometer for biosphere remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Stjernman, A.

    1995-05-01

    The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab.

  13. SMEX02 Aircraft Polarimetric Scanning Radiometer (PSR) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is an airborne microwave imaging radiometer developed and operated by the National Oceanic and Atmospheric Administration...

  14. CAMEX-3 POLARIMETRIC SCANNING RADIOMETER (PSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is a versatile airborne microwave imaging radiometer developed by the Georgia Institute of Technology and the NOAA...

  15. Hurricane Wind Speed Estimation Using WindSat 6 and 10 GHz Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-08-01

    Full Text Available The realistic and accurate estimation of hurricane intensity is highly desired in many scientific and operational applications. With the advance of passive microwave polarimetry, an alternative opportunity for retrieving wind speed in hurricanes has become available. A wind speed retrieval algorithm for wind speeds above 20 m/s in hurricanes has been developed by using the 6.8 and 10.7 GHz vertically and horizontally polarized brightness temperatures of WindSat. The WindSat measurements for 15 category 4 and category 5 hurricanes from 2003 to 2010 and the corresponding H*wind analysis data are used to develop and validate the retrieval model. In addition, the retrieved wind speeds are also compared to the Remote Sensing Systems (RSS global all-weather product and stepped-frequency microwave radiometer (SFMR measurements. The statistical results show that the mean bias and the overall root-mean-square (RMS difference of the retrieved wind speeds with respect to the H*wind analysis data are 0.04 and 2.75 m/s, respectively, which provides an encouraging result for retrieving hurricane wind speeds over the ocean surface. The retrieved wind speeds show good agreement with the SFMR measurements. Two case studies demonstrate that the mean bias and RMS difference are 0.79 m/s and 1.79 m/s for hurricane Rita-1 and 0.63 m/s and 2.38 m/s for hurricane Rita-2, respectively. In general, the wind speed retrieval accuracy of the new model in hurricanes ranges from 2.0 m/s in light rain to 3.9 m/s in heavy rain.

  16. Analysis of the WindSat Receiver Frequency Passbands

    Science.gov (United States)

    2014-09-12

    The receiver frequency passband response is primarily determined by the band pass filter in the REU. The characteristics of the frequency passband ...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/7220--14-9558 Analysis of the WindSat Receiver Frequency Passbands September 12, 2014...Receiver Frequency Passbands Michael H. Bettenhausen and Peter W. Gaiser Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5350

  17. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    Science.gov (United States)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for

  18. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  19. Polarimetric imagery collection experiment

    Science.gov (United States)

    Romano, Joao M.; Felton, Melvin; Chenault, David; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL that is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives in an open field. The database will allow for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  20. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    Science.gov (United States)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  1. Polarimetric Multispectral Imaging Technology

    Science.gov (United States)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  2. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    Science.gov (United States)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  3. Bird Migration Echoes Observed by Polarimetric Radar

    OpenAIRE

    MINDA, Haruya; FURUZAWA, Fumie A.; SATOH, Shinsuke; NAKAMURA, Kenji

    2008-01-01

    A C-band polarimetric radar on Okinawa Island successfully observed large-scale bird migrations over the western Pacific Ocean. The birds generated interesting polarimetric signatures. This paper describes the signatures and speculates bird behavior.

  4. CLEAN Technique for Polarimetric ISAR

    Directory of Open Access Journals (Sweden)

    M. Martorella

    2008-01-01

    Full Text Available Inverse synthetic aperture radar (ISAR images are often used for classifying and recognising targets. To reduce the amount of data processed by the classifier, scattering centres are extracted from the ISAR image and used for classifying and recognising targets. This paper addresses the problem of estimating the position and the scattering vector of target scattering centres from polarimetric ISAR images. The proposed technique is obtained by extending the CLEAN technique, which was introduced in radar imaging for extracting scattering centres from single-polarisation ISAR images. The effectiveness of the proposed algorithm, namely, the Polarimetric CLEAN (Pol-CLEAN is tested on simulated and real data.

  5. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  6. Polarimetric optimization for clutter suppression in spectral polarimetric weather radar

    NARCIS (Netherlands)

    Yin, J.; Unal, C.M.H.; Russchenberg, H.W.J.

    2017-01-01

    For the polarimetric-Doppler weather radar, sometimes there are artifacts caused by radar system itself or external sources displaying in the radar plan position indicator (PPI). These artifacts are not confined to specific range bins and also they are non-stationary when observed in the Doppler

  7. Polarimetric signatures of sea ice. 1: Theoretical model

    Science.gov (United States)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structral, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarmetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies to interpretation of sea ice polarimetric signatures.

  8. Continuity of Climate Data Records derived from Microwave Observations

    Science.gov (United States)

    Mears, C. A.; Wentz, F. J.; Brewer, M.; Meissner, T.; Ricciardulli, L.

    2017-12-01

    Remote Sensing Systems (www.remss.com) has been producing and distributing microwave climate data products from microwave imagers (SSMI, TMI, AMSR, WindSat, GMI, Aquarius, SMAP) over the global oceans since the launch of the first SSMI in 1987. Interest in these data products has been significant as researchers around the world have downloaded the approximate equivalent of 1 million satellite years of processed data. Users, including NASA, NOAA, US National Laboratories, US Navy, UK Met, ECMWF, JAXA, JMA, CMC, the Australian Bureau of Meteorology, as well as many hundreds of other agencies and universities routinely access these microwave data products. The quality of these data records has increased as more observations have become available and inter-calibration techniques have improved. The impending end of missions for WindSat, AMSR-2, and the remaining SSMIs will have significant impact on the quality and continuity of long term microwave climate data records. In addition to the problem of reduced numbers of observations, there is a real danger of losing overlapping observations. Simultaneous operation of satellites, especially when the observations are at similar local crossing times, provides a significant benefit in the effort to inter-calibrate satellites to yield accurate and stable long-term records. The end of WindSat and AMSR-2 will leave us without microwave SSTs in cold water, as there will be no microwave imagers with C-band channels. Microwave SSTs have a crucial advantage over IR SSTs, which is not able to measure SST in clouds or if aerosols are present. The gap in ocean wind vectors will be somewhat mitigated as the European ASCAT C-band scatterometer mission on MetOp is continuing. Nonetheless, the anticipated cease of several microwave satellite radiometers retrieving ocean winds in the coming years will lead to a significant gap in temporal coverage. Atmospheric water vapor, cloud liquid water, and rain rate are all important climate

  9. Polarimetric Segmentation Using Wishart Test Statistic

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2002-01-01

    ) approach, which is a merging algorithm for single channel SAR images. The polarimetric version described in this paper uses the above-mentioned test statistic for merging. The segmentation algorithm has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR......A newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic has been used in a segmentation algorithm. The segmentation algorithm is based on the MUM (merge using moments....... The results show clearly an improved segmentation performance for the full polarimetric algorithm compared to single channel approaches....

  10. ASTEROID POLARIMETRIC DATABASE V3.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  11. ASTEROID POLARIMETRIC DATABASE V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  12. ASTEROID POLARIMETRIC DATABASE V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  13. ASTEROID POLARIMETRIC DATABASE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  14. Science Drivers for Polarimetric Exploration

    Science.gov (United States)

    Yanamandra-Fisher, Padma

    2017-04-01

    The versatility of polarimetric exploration is exploited to address: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Polarized light occurs in three states: unpolarized, linear and circularized. Each mode of polarized light provides information about the scattering medium, from atmospheres to search for signatures of habitability. Spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Linear polarization of reflected light by solar system objects provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality (or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. Atmospheric phenomena such as rainbows, clouds and haloes exhibit polarimetric signatures that can be used as diagnostics to probe the atmosphere and may be possible to extend this approach to other planets and exoplanets. Biological molecules exhibit an inherent handedness or circular polarization or chirality, assisting in search for the identification of astrobiological material in the solar system. Polarimetry is also utilized in the exploration of comets, asteroids, dust/regoliths. Renewed efforts for ground-based polarimetry are emerging, from probing planetary atmospheres to the study of magnetic field lines and taxonomy of asteroids. While imaging and spectroscopy are routinely performed by amateurs, there is growing interest and progress in developing polarimetric exploration amongst the amateur community, with encouraging results.I will present a review of these efforts and the goal to create a global " PACA* Polarimetry Network" of observers, modelers and instrument experts to fully

  15. Target detection and recognition with polarimetric SAR

    NARCIS (Netherlands)

    Dekker, R.J.; Broek, A.C. van den

    2000-01-01

    Target detection and recognition using polarimetric SAR data has been studied by using PHARUS and RAMSES data collected during the MIMEX campaign. Additionally very high-resolution ISAR data was used. A basic detection and recognition scheme has been developed, which includes polarimetric

  16. Enhancement of Passive Microwave Soil Moisture Retrievals using Visible/Infrared Imager

    Science.gov (United States)

    Truesdale, D.; Li, L.; Bowles, J. H.; Gao, B. C.; Lamela, G.

    2015-12-01

    Passive microwave (PM) observations of soil moisture (SM), like those produced from data observed by the AMSR-E, WindSat, AMSR2, and SMOS instruments, provide global soil moisture data sets with moderate resolution (~25km), reasonable accuracy (±10%), and short revisit times (2-3 days). A principal source of the current error in these SM data sets is due to heterogeneous topography below the native resolution of the PM instrument. A single PM antenna footprint may encompass surface water, dense and/or sparse vegetation, and bare soil. We show that by using high resolution (~250m) visible/infrared (VIS/IR) observations to estimate the fractions of water, vegetation, and bare soil in each PM footprint, we can deconvolve the brightness temperatures from each individual component. This allows for greatly increased accuracy in the remotely sensed soil moisture content. We will present our results in applying this technique to the WindSat soil moisture algorithm using WindSat PM data and vegetation and water fraction estimates derived from MODIS VIS/IR data.

  17. Polarimetric microlensing of circumstellar discs

    Science.gov (United States)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  18. Forest mapping using bi-aspect polarimetric SAR data in southwest China

    Science.gov (United States)

    Zhang, Fengli; Xu, Maosong; Xia, Zhongsheng; Wan, Zi; Li, Kun; Li, Xiaofang

    2009-10-01

    Synthetic aperture radar (SAR) provides a powerful tool for forestry inventory because of its all-weather and all-day capabilities. In this paper forest mapping method using bi-aspect polarimetric SAR data acquired from ascending and descending path has been studied. Zhazuo forest farm in Guizhou province was selected as test site and an 8-temporal field experiment was designed to obtain bio-physical parameters and spatial structure parameters of the 12 sample plots. Then the Michigan Microwave Canopy Scattering model (MIMICS) was employed to analyze the seasonal variation of these 4 types of managed forests. Using polarimetric Radarsat 2 data, scattering mechanisms of each forest type were determined and polarimetric variables were extracted and analyzed for forest discrimination. Considering the inherent geometric distortion of SAR imaging in hilly areas, a geometric correction strategy using bi-aspect SAR images and high resolution DEM was proposed. Then support vector machines method was adopted for classification of the whole test area. Experiments show that the bi-aspect geometric strategy is useful for hilly areas especially for shadow elimination in SAR image, and polarimetric SAR data is helpful to forest mapping.

  19. ASTEROID POLARIMETRIC DATABASE V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  20. ASTEROID POLARIMETRIC DATABASE V7.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  1. ASTEROID POLARIMETRIC DATABASE V8.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine....

  2. ASTEROID POLARIMETRIC DATABASE V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine....

  3. Novel Polarimetric SAR Interferometry Algorithms, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  4. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  5. The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations

    Directory of Open Access Journals (Sweden)

    R. M. Parinussa

    2011-10-01

    Full Text Available For several years passive microwave observations have been used to retrieve soil moisture from the Earth's surface. Low frequency observations have the most sensitivity to soil moisture, therefore the current Soil Moisture and Ocean Salinity (SMOS and future Soil Moisture Active and Passive (SMAP satellite missions observe the Earth's surface in the L-band frequency. In the past, several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E and WindSat have been used to retrieve surface soil moisture using multi-channel observations obtained at higher microwave frequencies. While AMSR-E and WindSat lack an L-band channel, they are able to leverage multi-channel microwave observations to estimate additional land surface parameters. In particular, the availability of Ka-band observations allows AMSR-E and WindSat to obtain coincident surface temperature estimates required for the retrieval of surface soil moisture. In contrast, SMOS and SMAP carry only a single frequency radiometer and therefore lack an instrument suited to estimate the physical temperature of the Earth. Instead, soil moisture algorithms from these new generation satellites rely on ancillary sources of surface temperature (e.g. re-analysis or near real time data from weather prediction centres. A consequence of relying on such ancillary data is the need for temporal and spatial interpolation, which may introduce uncertainties. Here, two newly-developed, large-scale soil moisture evaluation techniques, the triple collocation (TC approach and the Rvalue data assimilation approach, are applied to quantify the global-scale impact of replacing Ka-band based surface temperature retrievals with Modern Era Retrospective-analysis for Research and Applications (MERRA surface temperature output on the accuracy of WindSat and AMSR-E based surface soil moisture retrievals. Results demonstrate that under sparsely vegetated conditions, the use of

  6. Some OFDM waveforms for a fully polarimetric weather radar

    NARCIS (Netherlands)

    Van Genderen, P.; Krasnov, O.A.; Wang, Z.; Tigrek, R.F.

    2012-01-01

    Retrieval of cloud parameters in weather radar benefits from polarimetric measurements. Most polarimetric radars measure the full backscatter matrix (BSM) using a few alternating polarized sounding signals. Using specially encoded orthogonal frequency division multiplexing (OFDM) signals however,

  7. The impact of passband characteristics on imaging microwave radiometer brightness temperatures over the ocean

    Science.gov (United States)

    Bettenhausen, Michael H.; Adams, Ian S.

    2013-05-01

    Radiative transfer modeling is used to estimate the effects of nonideal receiver frequency passband characteristics on the measured brightness temperatures from imaging microwave radiometers over the ocean. The analysis includes microwave frequencies from 6 to 40 GHz and applies to the lower frequency channels of conically scanning, space-based radiometers such as AMSR-E, SSMI, SSMIS, and WindSat. The analysis demonstrates that frequency passband characteristics can have significant effects on the brightness temperatures for microwave imaging channels. The largest effects are due to shifts in the center frequency of the passband. The imaging channels near the water vapor resonance at 22.235 GHz are most sensitive to passband characteristics. The effects for these channels depend on the water vapor in the scene.

  8. Science data collection with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Woelders, Kim; Madsen, Søren Nørvang

    1996-01-01

    Discusses examples on the use of polarimetric SAR in a number of Earth science studies. The studies are presently being conducted by the Danish Center for Remote Sensing. A few studies of the European Space Agency's EMAC programme are also discussed. The Earth science objectives are presented......, and the potential of polarimetric SAR is discussed and illustrated with data collected by the Danish airborne EMISAR system during a number of experiments in 1994 and 1995. The presentation will include samples of data acquired for the different studies...

  9. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  10. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  11. IHW COMET HALLEY POLARIMETRIC OBSERVATIONS, V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the polarimetric results reported to the International Halley Watch (IHW) Photometry and Polarimetry Network (PPN) by the various...

  12. Polarimetric studies of polyethylene terephtalate flexible substrates

    Science.gov (United States)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  13. Polarimetric Signatures from a Crop Covered Land Surface Measured by an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...... out in order to identify an eventual dependence of the Stokes vector on the look-direction. Results indicate a clear signature, for bare soil as well as for the crop-covered surface, and variations of more than 10 K are observed....

  14. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  15. Polarimetric Edge Detector Based on the Complex Wishart Distribution

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2001-01-01

    A new edge detector for polarimetric SAR data has been developed. The edge detector is based on a newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic. The new...... for the full polarimetric detector compared to single channel approaches....

  16. Masses of Negative Multinomial Distributions: Application to Polarimetric Image Processing

    Directory of Open Access Journals (Sweden)

    Philippe Bernardoff

    2013-01-01

    Full Text Available This paper derives new closed-form expressions for the masses of negative multinomial distributions. These masses can be maximized to determine the maximum likelihood estimator of its unknown parameters. An application to polarimetric image processing is investigated. We study the maximum likelihood estimators of the polarization degree of polarimetric images using different combinations of images.

  17. Target detection with polarimetric C-band SAR

    NARCIS (Netherlands)

    Broek, A.C. van den; Dekker, R.J.; Smith, A.J.E.; Vries, F.P.P. de

    1999-01-01

    We have studied an optimal target detection procedure for polarimetric SAR data by using PHARUS data collected during the MIMEX campaign. The detection method is especially suitable when no a priory knowledge of the target is available. We have found that polarimetric whitening filtering preceding

  18. The CASLEO Polarimetric Survey of Main Belt Asteroids: Updated results

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Cañada-Assandri, M.

    2011-10-01

    We present updated results of the polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina, using the 2.15 m telescope and the Torino and CASPROF polarimeters. The goals of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids belonging to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. The survey began in 2003, and data for a sample of more than 170 asteroids have been obtained, most of them having been polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for several taxonomic classes.

  19. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  20. Microwave Irradiation

    Indian Academy of Sciences (India)

    Microwave Irradiation. Way to Eco-friendly, Green Chemistry. Rashmi Sanghi. This article highlights with examples, the usefulness of microwaves for carrying out a'variety of organic transfor- mations. Introduction and Background. The rapid heating of food in the kitchen using microwave ovens prompted a number of ...

  1. Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in Northeastern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available For successful applications of microwave remote sensing endeavors it is essential to understand how surface targets respond to changing synthetic aperture radar (SAR parameters. The purpose of the study is to examine how two particular parameters, acquisition time and incidence angle, influences the response from various land use/land cover types (forests, urban infrastructure, surface water and marsh wetland targets using nine RADARSAT-2 C-band fine-beam (FQ7 and FQ21 fully polarimetric SAR data acquired during the 2011 growing season over northern Ontario, Canada. The results indicate that backscatter from steep incidence angle acquisitions was typically higher than shallow angles. Wetlands showed an increase in HH and HV intensity due to the growth of emergent vegetation over the course of the summer. The forest and urban targets displayed little variation in backscatter over time. The surface water target showed the greatest difference with respect to incidence angle, but was also determined to be the most affected by wind conditions. Analysis of the co-polarized phase difference revealed the urban target as greatly influenced by the incidence angle. The observed phase differences of the wetland target for all acquisitions also suggested evidence of double-bounce interactions, while the forest and surface water targets showed little to no phase difference. In addition, Cloude-Pottier and Freeman-Durden decompositions, when analyzed in conjunction with polarimetric response plots, provided supporting information to confidently identify the various targets and their scattering mechanisms.

  2. Characterization and performance of a LWIR polarimetric imager

    Science.gov (United States)

    Eriksson, Johan; Bergström, David; Renhorn, Ingmar

    2017-10-01

    Polarimetric information has been shown to provide means for potentially enhancing the capacity of electro-optical sensors in areas such as target detection, recognition and identification. The potential benefit must be weighed against the added complexity of the sensor and the occurrence and robustness of polarimetric signatures. While progress in the design of novel systems for snapshot polarimetry may result in compact and lightweight polarimetric sensors, the aim of this work is to report on the design, characterization and performance of a polarimetric imager, primarily designed for polarimetric signature assessment of static scenes in the long wave thermal infrared. The system utilizes the division-of-time principle and is based on an uncooled microbolometer camera and a rotating polarizing filter. Methods for radiometric and polarimetric calibrations are discussed. A significant intrinsic polarization dependency of the microbolometer camera is demonstrated and it is shown that the ability to characterize, model and compensate for various instrument effects play a crucial role for polarimetric signature assessment.

  3. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  4. Evaluation of the Wishart test statistics for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2003-01-01

    A test statistic for equality of two covariance matrices following the complex Wishart distribution has previously been used in new algorithms for change detection, edge detection and segmentation in polarimetric SAR images. Previously, the results for change detection and edge detection have been...... quantitatively evaluated. This paper deals with the evaluation of segmentation. A segmentation performance measure originally developed for single-channel SAR images has been extended to polarimetric SAR images, and used to evaluate segmentation for a merge-using-moment algorithm for polarimetric SAR data....

  5. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  6. C- and L-band multi-temporal polarimetric signatures of crops

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Flemming; Thomsen, Anton

    1996-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric SAR (EMISAR) during a number of missions at the Danish test site Foulum during 1994 and 1995. EMISAR has operated in a fully polarimetric mode at C-band since the fall of 1993 and at L-band since the beginn......Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric SAR (EMISAR) during a number of missions at the Danish test site Foulum during 1994 and 1995. EMISAR has operated in a fully polarimetric mode at C-band since the fall of 1993 and at L-band since...... the beginning of 1995. The SAR system is installed on a Danish Air Force Gulfstream aircraft, and a significant amount of polarimetric SAR data have been acquired on various missions. Polarimetric parameters for a number of different agricultural crops are shown, and the advantage of having polarimetric, multi...

  7. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    Science.gov (United States)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical

  8. CLPX-Airborne: Polarimetric Ku-Band Scatterometer (POLSCAT) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Ku-band polarimetric scatterometer (POLSCAT) data collected as part of the Cold Land Processes Field Experiment (CLPX) to enable the...

  9. Change detection in polarimetric SAR data over several time points

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points....

  10. NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Polarimetric Radar (NPOL), developed by a research team from Wallops Flight Facility, is a fully transportable and self-contained S-band research radar that...

  11. CLPX-Airborne: Multiband Polarimetric Scanning Radiometer (PSR) Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides multiband polarimetric brightness temperature images over three 25 x 25 km Meso-cell Study Areas (MSAs) in Northern Colorado. The purpose of...

  12. NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA NASA Polarimetric Doppler Weather Radar (NPOL) dataset used the NPOL, developed by a research team from Wallops Flight Facility, is a fully transportable...

  13. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    Science.gov (United States)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  14. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  15. Polarimetric Coherence Optimization for Multibaseline SAR Data

    Science.gov (United States)

    Neumann, M.; Ferro-Famil, L.; Reigber, A.

    2007-03-01

    This paper analyzes different approaches for polarimetric optimization of multibaseline interferometric coherences. Two general methods are developed which simultaneously optimize coherences for more than two datasets. The first method is based on multiset canonical correlation analysis, and it provides every dataset with a distinguished dominant scattering mechanism. The second optimization method is constrained to the use of an identical scattering mechanism for every dataset. A framework for a multibaseline orthogonal optimal scattering mechanisms decomposition is presented. The both methods are evaluated on real data acquired by DLR's ESAR sensor at L-band. As experimental results indicate, preferring simultaneous multibaseline coherence optimization to single-baseline optimization improves the estimation of the dominant scattering mechanisms and their interferometric phases.

  16. Forest biomass estimation from polarimetric SAR interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Mette, T.

    2007-07-01

    Polarimetric SAR interferometry (Pol-InSAR) is a radar remote sensing technique that allows extracting forest heights by means of model-based inversions. Forest biomass is closely related to forest height, and can be derived from it with allometric relations. This work investigates the combination of the two methods to estimate forest biomass from Pol-InSAR. It develops a concept for the use of height-biomass allometry, and outlines the Pol-InSAR height inversion. The methodology is validated against a set of forest inventory data and Pol-InSAR data at L-band of the test site Traunstein. The results allow drawing conclusions on the potential of Pol-InSAR forest biomass missions. (orig.)

  17. Polarimetric ISAR: Simulation and image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    In polarimetric ISAR the illumination platform, typically airborne, carries a pair of antennas that are directed toward a fixed point on the surface as the platform moves. During platform motion, the antennas maintain their gaze on the point, creating an effective aperture for imaging any targets near that point. The interaction between the transmitted fields and targets (e.g. ships) is complicated since the targets are typically many wavelengths in size. Calculation of the field scattered from the target typically requires solving Maxwell’s equations on a large three-dimensional numerical grid. This is prohibitive to use in any real-world imaging algorithm, so the scattering process is typically simplified by assuming the target consists of a cloud of independent, non-interacting, scattering points (centers). Imaging algorithms based on this scattering model perform well in many applications. Since polarimetric radar is not very common, the scattering model is often derived for a scalar field (single polarization) where the individual scatterers are assumed to be small spheres. However, when polarization is important, we must generalize the model to explicitly account for the vector nature of the electromagnetic fields and its interaction with objects. In this note, we present a scattering model that explicitly includes the vector nature of the fields but retains the assumption that the individual scatterers are small. The response of the scatterers is described by electric and magnetic dipole moments induced by the incident fields. We show that the received voltages in the antennas are linearly related to the transmitting currents through a scattering impedance matrix that depends on the overall geometry of the problem and the nature of the scatterers.

  18. Moving towards more intuitive display strategies for polarimetric image data

    Science.gov (United States)

    Ratliff, Bradley M.; Tyo, J. Scott

    2017-09-01

    The display of polarimetric imaging data has been a subject of considerable debate. Display strategies range from direct display of the Stokes vector images (or their derivatives) to false color representations. In many cases, direct interpretation of polarimetric image data using traditional display strategies is not intuitive and can at times result in confusion as to what benefit polarimetric information is actually providing. Here we investigate approaches that attempt to augment the s0 image with polarimetric information, rather than directly display it, as a means of enhancing the baseband s0 image. The benefit is that the polarization-enhanced visible or infrared image maintains a familiar look without the need for complex interpretation of the meaning of the polarimetric data, thus keeping the incorporation of polarimetric information transparent to the end user. The method can be applied to monochromatic or multi-band data, which allows color to be used for representing spectral data in multi- or hyper-spectropolarimetric applications. We take a more subjective approach to image enhancement than current techniques employ by simply seeking to improve contrast and shape information for polarized objects within a scene. We find that such approaches provide clear enhancement to the imagery when polarized objects are contained within the scene without the need for complex interpretation of polarization phenomenology.

  19. Microwave undulator

    International Nuclear Information System (INIS)

    Batchelor, K.

    1986-03-01

    The theory of a microwave undulator utilizing a plane rectangular waveguide operating in the TE/sub 10n/ mode and other higher order modes is presented. Based on this, a possible undulator configuration is analyzed, leading to the conclusion that the microwave undulator represents a viable option for undulator wavelength down to about 1 cm where peak voltage and available microwave power considerations limit effectiveness. 4 refs., 4 figs

  20. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  1. Microwave detector

    Science.gov (United States)

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  2. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    Science.gov (United States)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  3. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 Mobile X-Band Polarimetric Weather Radar dataset was collected by the Mobile X-band Polarimetric Weather Radar on Wheels (X-POW), which is a Doppler...

  4. USING MULTI-DIMENSIONAL MICROWAVE REMOTE SENSING INFORMATION FOR THE RETRIEVAL OF SOIL SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    P. Marzahn

    2016-06-01

    Full Text Available In this Paper the potential of multi parametric polarimetric SAR (PolSAR data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.

  5. Polarimetric C-Band SAR Observations of Sea Ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Thomsen, Bjørn Bavnehøj; Nghiem, S.V.; Kwok, R.

    1998-01-01

    The fully polarimetric EMISAR acquired C-band radar signatures of sea ice in the Greenland Sea during a campaign in March 1995. The authors present maps of polarimetric signatures over an area containing various kinds of ice and discuss the use of polarimetric SAR for identification of ice types...

  6. Observations on the polarimetric imagery collection experiment database

    Science.gov (United States)

    Woolley, Mark; Michalson, Jacob; Romano, Joao

    2011-10-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is an ongoing collaborative effort that commenced in February 2010 between the US Army ARDEC and Army Research Laboratory (ARL). SPICE is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The overall objective of SPICE is to collect a comprehensive database of the different modalities spanning multiple years to capture sensor performance encompassing a wide variety of meteorological (MET) conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Utilizing the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors are autonomously collecting the desired data around the clock at multiple ranges containing surrogate 2S3 Self-Propelled Howitzer targets positioned at different orientations in an open woodland field. This database allows for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will revisit the SPICE data collection objectives and the sensors deployed. We will present, in a statistical sense, the integrity of the data in the long-wave infrared (LWIR) polarimetric database collected from February through September 2010 and issues and lessons learned associated with a fully autonomous, around the clock data collection. We will also demonstrate sample LWIR polarimetric imagery and the performance of the Stokes parameters under adverse weather conditions.

  7. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  8. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  9. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  10. Knowledge-based sea ice classification by polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Dierking, Wolfgang

    2004-01-01

    Polarimetric SAR images acquired at C- and L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne...... systems. A hierarchical classification scheme was chosen for sea ice because our knowledge about magnitudes, variations, and dependences of sea ice signatures can be directly considered. The optimal sequence of classification rules and the rules themselves depend on the ice conditions/regimes. The use...... of the polarimetric phase information improves the classification only in the case of thin ice types but is not necessary for thicker ice (above about 30 cm thickness)...

  11. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order......This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...

  12. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  13. Radar Measurement of Human Polarimetric Micro-Doppler

    Directory of Open Access Journals (Sweden)

    David Tahmoush

    2013-01-01

    Full Text Available We use polarimetric micro-Doppler for the detection of arm motion, especially for the classification of whether someone has their arms swinging and is thus unloaded. The arm is often bent at the elbow, providing a surface somewhat similar to a dihedral. This is distinct from the more planar surfaces of the body which allows us to isolate the signals of the arm (and knee. The dihedral produces a double bounce that can be seen in polarimetric radar data by measuring the phase difference between HH and VV. This measurement can then be used to determine whether the subject is unloaded.

  14. Compact polarimetric SAR product and calibration considerations for target analysis

    Science.gov (United States)

    Sabry, Ramin

    2016-10-01

    Compact polarimetric (CP) data exploitation is currently of growing interest considering the new generation of such Synthetic Aperture Radar (SAR) systems. These systems offer target detection and classification capabilities comparable to those of polarimetric SARs (PolSAR) with less stringent requirements. A good example is the RADARSAT Constellation Mission (RCM). In this paper, some characteristic CP products are described and effects of CP mode deviation from ideal circular polarization transmit on classifications are modeled. The latter is important for operation of typical CP modes (e.g., RCM). The developed model can be used to estimate the ellipticity variation from CP measured data, and hence, calibrate the classification products.

  15. Authentication of gold nanoparticle encoded pharmaceutical tablets using polarimetric signatures.

    Science.gov (United States)

    Carnicer, Artur; Arteaga, Oriol; Suñé-Negre, Josep M; Javidi, Bahram

    2016-10-01

    The counterfeiting of pharmaceutical products represents concerns for both industry and the safety of the general public. Falsification produces losses to companies and poses health risks for patients. In order to detect fake pharmaceutical tablets, we propose producing film-coated tablets with gold nanoparticle encoding. These coated tablets contain unique polarimetric signatures. We present experiments to show that ellipsometric optical techniques, in combination with machine learning algorithms, can be used to distinguish genuine and fake samples. To the best of our knowledge, this is the first report using gold nanoparticles encoded with optical polarimetric classifiers to prevent the counterfeiting of pharmaceutical products.

  16. POLARIMETRIC OBSERVATIONS OF {sigma} ORIONIS E

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, A. C.; Faes, D. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Townsend, R. H. D. [Department of Astronomy, University of Wisconsin-Madison, Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States); Bjorkman, J. E., E-mail: carciofi@usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2013-03-20

    Some massive stars possess strong magnetic fields that confine plasma in the circumstellar environment. These magnetospheres have been studied spectroscopically, photometrically, and, more recently, interferometrically. Here we report on the first firm detection of a magnetosphere in continuum linear polarization, as a result of monitoring {sigma} Ori E at the Pico dos Dias Observatory. The non-zero intrinsic polarization indicates an asymmetric structure whose minor elongation axis is oriented 150. Degree-Sign 0 east of the celestial north. A modulation of the polarization was observed with a period of half of the rotation period, which supports the theoretical prediction of the presence of two diametrally opposed, corotating blobs of gas. A phase lag of -0.085 was detected between the polarization minimum and the primary minimum of the light curve, suggestive of a complex shape of the plasma clouds. We present a preliminary analysis of the data with the Rigidly Rotating Magnetosphere model, which could not reproduce simultaneously the photometric and polarimetric data. A toy model comprising two spherical corotating blobs joined by a thin disk proved more successful in reproducing the polarization modulation. With this model we were able to determine that the total scattering mass of the thin disk is similar to the mass of the blobs (2M{sub b}/M{sub d} = 1.2) and that the blobs are rotating counterclockwise on the plane of the sky. This result shows that polarimetry can provide a diagnostic of the geometry of clouds, which will serve as an important constraint for improving the Rigidly Rotating Magnetosphere model.

  17. Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Alexander [Spectral Sciences, Inc., Burlington, MA (United States); Hawes, Frederick [Spectral Sciences, Inc., Burlington, MA (United States); Fox, Marsha [Spectral Sciences, Inc., Burlington, MA (United States)

    2016-03-15

    Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development of fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation field

  18. Polarimetric ice sounding at P-band: First results

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2009-01-01

    For polar ice sheets valuable stress and strain information can be deduced from the crystal orientation fabric (COF) and its prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties...

  19. Investigation of Polarimetric SAR Data Acquired at Multiple Incidence Angles

    DEFF Research Database (Denmark)

    Svendsen, Morten Thougaard; Skriver, Henning; Thomsen, A.

    1998-01-01

    The dependence of different polarimetric parameters on the incidence angles in the range of 30° to 60° is investigated for a number of different crops using airborne SAR data. The purpose of the investigation is to determine the effect of the variation of incidence angle within a SAR image when...

  20. Polarimetric synthetic aperture radar data and the complex Wishart distribution

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2003-01-01

    When working with multi-look fully polarimetric synthetic aperture radar (SAR) data an appropriate way of representing the backscattered signal consists of the so-called covariance matrix. For each pixel this is a 3 by 3 Hermitian, positive definite matrix which follows a complex Wishart distribu...

  1. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  2. L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling

    DEFF Research Database (Denmark)

    Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels

    2001-01-01

    A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...

  3. Project PHARUS: Towards a polarimetric C-band airborne SAR

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Otten, M.P.G.; Pouwels, H.; Snoeij, P.

    1989-01-01

    A few years ago three institutes in the Netherlands developed a plan to design and build a polarimetric C-band aircraft SAR system of a novel design, called PHARUS (PHased Array Universal SAR), meant as a replacement for our current digital SLAR system. These institutes are the Physics and

  4. Ice sheet anisotropy measured with polarimetric ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  5. The Danish polarimetric SAR for remote sensing applications

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Madsen, Søren Nørvang; Dall, Jørgen

    1994-01-01

    Presents the Danish polarimetric SAR system, EMISAR, and the approach taken in the system design to achieve a reliable high performance system. The design and implementation of the antenna system as well as the analog and digital hardware are discussed. The SAR utilises a dual polarised microstri...

  6. A novel L-band polarimetric radiometer featuring subharmonic sampling

    DEFF Research Database (Denmark)

    Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...

  7. VLBA polarimetric monitoring of 3C 111

    Science.gov (United States)

    Beuchert, T.; Kadler, M.; Perucho, M.; Großberger, C.; Schulz, R.; Agudo, I.; Casadio, C.; Gómez, J. L.; Gurwell, M.; Homan, D.; Kovalev, Y. Y.; Lister, M. L.; Markoff, S.; Molina, S. N.; Pushkarev, A. B.; Ros, E.; Savolainen, T.; Steinbring, T.; Thum, C.; Wilms, J.

    2018-02-01

    Context. While studies of large samples of jets of active galactic nuclei (AGN) are important in order to establish a global picture, dedicated single-source studies are an invaluable tool for probing crucial processes within jets on parsec scales. These processes involve in particular the formation and geometry of the jet magnetic field as well as the flow itself. Aims: We aim to better understand the dynamics within relativistic magneto-hydrodynamical flows in the extreme environment and close vicinity of supermassive black holes. Methods: We analyze the peculiar radio galaxy 3C 111, for which long-term polarimetric observations are available. We make use of the high spatial resolution of the VLBA network and the MOJAVE monitoring program, which provides high data quality also for single sources and allows us to study jet dynamics on parsec scales in full polarization with an evenly sampled time-domain. While electric vectors can probe the underlying magnetic field, other properties of the jet such as the variable (polarized) flux density, feature size, and brightness temperature, can give valuable insights into the flow itself. We complement the VLBA data with data from the IRAM 30-m Telescope as well as the SMA. Results: We observe a complex evolution of the polarized jet. The electric vector position angles (EVPAs) of features traveling down the jet perform a large rotation of ≳180∘ across a distance of about 20 pc. As opposed to this smooth swing, the EVPAs are strongly variable within the first parsecs of the jet. We find an overall tendency towards transverse EVPAs across the jet with a local anomaly of aligned vectors in between. The polarized flux density increases rapidly at that distance and eventually saturates towards the outermost observable regions. The transverse extent of the flow suddenly decreases simultaneously to a jump in brightness temperature around where we observe the EVPAs to turn into alignment with the jet flow. Also the gradient

  8. The Looming Potential Gap in Microwave Imagery - How did we get here and what can we do about it?

    Science.gov (United States)

    Wilson, W. S.; Gallaher, D. W.

    2017-12-01

    The Air Force's Special Sensor Microwave Imager (SSMI), the Japanese Advanced Microwave Scanning Radiometer (AMSR), and the Navy's Windsat have provided a steady and reliable stream of microwave imagery that has served the Earth science community very well. Derived products include sea ice cover, snow cover on land, all-weather sea surface temperature, columnar water vapor, rain rate, and cloud liquid water. Such products are used both in operational weather forecasting, as well as in establishing and maintaining climate data records. When these sources of microwave imagery each reach the end of their life, there is the potential for a gap in coverage to occur prior to the launch of new Air Force, European and Japanese sources. Additionally, the Chinese and Russians have been flying microwave imagers that might be useful in spanning this potential gap, but users in the U.S. have not assessed the reliability and quality of their data. This presentation will set the stage for the session and provide a context for the individual papers. Two papers will address the needs and associated requirements for microwave imagery, as well as how derived products are currently being used - both for maintaining climate records and for operational use. One or two will address the performance of existing systems that are currently contributing imagery. A half-dozen will address the projected performance of future satellite systems that represent potential sources of imagery. One will address the challenges associated with the use of microwave imagery from different satellites in the maintenance of climate data records. Finally, we will plan to have some remaining time available for a general discussion about how we might work together in the future to minimize prospects for such a potential gap in to recur in the future.

  9. Four Decades of Microwave Satellite Soil Moisture Observations: Product validation and inter-satellite comparisons

    Science.gov (United States)

    Lanka, K.; Pan, M.; Wanders, N.; Kumar, D. N.; Wood, E. F.

    2017-12-01

    The satellite based passive and active microwave sensors enhanced our ability to retrieve soil moisture at global scales. It has been almost four decades since the first passive microwave satellite sensor was launched in 1978. Since then soil moisture has gained considerable attention in hydro-meteorological, climate, and agricultural research resulting in the deployment of two dedicated missions in the last decade, SMOS and SMAP. Signifying the four decades of microwave remote sensing of soil moisture, this work aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy of retrieving soil moisture. We considered daily coverage, temporal performance, and spatial performance to assess the accuracy of products corresponding to eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product), using 1058 ISMN in-situ stations and the VIC LSM soil moisture simulations (VICSM) over the CONUS. Our analysis indicated that the daily coverage has increased from 30 % during 1980s to 85 % (during non-winter months) with the launch of dedicated soil moisture missions SMOS and SMAP. The temporal validation of passive and active soil moisture products with the ISMN data place the range of median RMSE as 0.06-0.10 m3/m3 and median correlation as 0.20-0.68. When TMI, AMSR-E and WindSAT are evaluated, the AMSR-E sensor is found to have produced the brightness temperatures with better quality, given that these sensors are paired with same retrieval algorithm (LPRM). The ASCAT product shows a significant improvement during the temporal validation of retrievals compared to its predecessor ERS, thanks to enhanced sensor configuration. The SMAP mission, through its improved sensor design and RFI handling, shows a high retrieval accuracy under all-topography conditions

  10. Microwave Irradiation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 3. Microwave Irradiation - Way to Eco-friendly, Green Chemistry. Rashmi Sanghi. General Article Volume 5 Issue 3 March 2000 pp 77-81. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. A Common Calibration Source Framework for Fully-Polarimetric and Interferometric Radiometers

    Science.gov (United States)

    Kim, Edward J.; Davis, Brynmor; Piepmeier, Jeff; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Two types of microwave radiometry--synthetic thinned array radiometry (STAR) and fully-polarimetric (FP) radiometry--have received increasing attention during the last several years. STAR radiometers offer a technological solution to achieving high spatial resolution imaging from orbit without requiring a filled aperture or a moving antenna, and FP radiometers measure extra polarization state information upon which entirely new or more robust geophysical retrieval algorithms can be based. Radiometer configurations used for both STAR and FP instruments share one fundamental feature that distinguishes them from more 'standard' radiometers, namely, they measure correlations between pairs of microwave signals. The calibration requirements for correlation radiometers are broader than those for standard radiometers. Quantities of interest include total powers, complex correlation coefficients, various offsets, and possible nonlinearities. A candidate for an ideal calibration source would be one that injects test signals with precisely controllable correlation coefficients and absolute powers simultaneously into a pair of receivers, permitting all of these calibration quantities to be measured. The complex nature of correlation radiometer calibration, coupled with certain inherent similarities between STAR and FP instruments, suggests significant leverage in addressing both problems together. Recognizing this, a project was recently begun at NASA Goddard Space Flight Center to develop a compact low-power subsystem for spaceflight STAR or FP receiver calibration. We present a common theoretical framework for the design of signals for a controlled correlation calibration source. A statistical model is described, along with temporal and spectral constraints on such signals. Finally, a method for realizing these signals is demonstrated using a Matlab-based implementation.

  12. AirMOSS: L1 S-0 Polarimetric Data from AirMOSS P-band SAR, La Selva, 2012-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides level 1 (L1) polarimetric radar backscattering coefficient (sigma-0), multilook complex, polarimetrically calibrated, and georeferenced data...

  13. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  14. Multispectral and polarimetric photodetection using a plasmonic metasurface

    Science.gov (United States)

    Pelzman, Charles; Cho, Sang-Yeon

    2018-01-01

    We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.

  15. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    -destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...

  16. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    . The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry....... Thermal control and several calibration loops have been built into the system to ensure system stability and absolute calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key......EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry...

  17. Retrieval of ice thickness from polarimetric SAR data

    Science.gov (United States)

    Kwok, R.; Yueh, S. H.; Nghiem, S. V.; Huynh, D. D.

    1993-01-01

    We describe a potential procedure for retrieving ice thickness from multi-frequency polarimetric SAR data for thin ice. This procedure includes first masking out the thicker ice types with a simple classifier and then deriving the thickness of the remaining pixels using a model-inversion technique. The technique used to derive ice thickness from polarimetric observations is provided by a numerical estimator or neural network. A three-layer perceptron implemented with the backpropagation algorithm is used in this investigation with several improved aspects for a faster convergence rate and a better accuracy of the neural network. These improvements include weight initialization, normalization of the output range, the selection of offset constant, and a heuristic learning algorithm. The performance of the neural network is demonstrated by using training data generated by a theoretical scattering model for sea ice matched to the database of interest. The training data are comprised of the polarimetric backscattering coefficients of thin ice and the corresponding input ice parameters to the scattering model. The retrieved ice thickness from the theoretical backscattering coefficients is compare with the input ice thickness to the scattering model to illustrate the accuracy of the inversion method. Results indicate that the network convergence rate and accuracy are higher when multi-frequency training sets are presented. In addition, the dominant backscattering coefficients in retrieving ice thickness are found by comparing the behavior of the network trained backscattering data at various incidence angels. After the neural network is trained with the theoretical backscattering data at various incidence anges, the interconnection weights between nodes are saved and applied to the experimental data to be investigated. In this paper, we illustrate the effectiveness of this technique using polarimetric SAR data collected by the JPL DC-8 radar over a sea ice scene.

  18. Change detection in a time series of polarimetric SAR data

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution with an associated probability of finding a smaller value of the test statistic is introduced. Unlike tests based on pairwise comparisons between all temporally consecutive acquisi...... acquisitions the new omnibus test statistic and the probability measure successfully detects change in two short series of L- and C-band polarimetric EMISAR data....

  19. RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    Science.gov (United States)

    Pan, F.; Kang, K.; Duguay, C. R.

    2016-12-01

    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different ice types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying ice and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation, including different ice types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services.

  20. Hydrometeor classification from polarimetric radar measurements: a clustering approach

    Directory of Open Access Journals (Sweden)

    J. Grazioli

    2015-01-01

    Full Text Available A data-driven approach to the classification of hydrometeors from measurements collected with polarimetric weather radars is proposed. In a first step, the optimal number of hydrometeor classes (nopt that can be reliably identified from a large set of polarimetric data is determined. This is done by means of an unsupervised clustering technique guided by criteria related both to data similarity and to spatial smoothness of the classified images. In a second step, the nopt clusters are assigned to the appropriate hydrometeor class by means of human interpretation and comparisons with the output of other classification techniques. The main innovation in the proposed method is the unsupervised part: the hydrometeor classes are not defined a priori, but they are learned from data. The approach is applied to data collected by an X-band polarimetric weather radar during two field campaigns (from which about 50 precipitation events are used in the present study. Seven hydrometeor classes (nopt = 7 have been found in the data set, and they have been identified as light rain (LR, rain (RN, heavy rain (HR, melting snow (MS, ice crystals/small aggregates (CR, aggregates (AG, and rimed-ice particles (RI.

  1. Searching for Jet Emission in LMXBs: A Polarimetric View

    Directory of Open Access Journals (Sweden)

    Maria Cristina Baglio

    2017-10-01

    Full Text Available We present results taken from a study aiming at detecting the emission from relativistic particles jets in neutron star-low mass X-ray binaries using optical polarimetric observations. First, we focus on a polarimetric study performed on the persistent LMXB 4U 0614+091. Once corrected for interstellar effects, we measured an intrinsic linear polarization in the r-band of ~3% at a 3σ confidence level. This is in-line with the observation of an infrared excess in the spectral energy distribution (SED of the source, reported in a previous work, which the authors linked to the optically thin synchrotron emission of a jet. We then present a study performed on the transitional millisecond pulsar PSR J1023+0038 during quiescence. We measured a linear polarization of 1.09 ± 0.27% and 0.90 ± 0.17% in the V and R bands, respectively. The phase-resolved polarimetric curve of the source in the R-band reveals a hint of a sinusoidal modulation at the source orbital period. The NIR -optical SED of the system did not suggest the presence of a jet. We conclude that the optical linear polarization observed for PSR J1023+0038 is possibly due to Thomson scattering with electrons in the disc, as also suggested by the hint of the modulation of the R-band linear polarization at the system orbital period.

  2. Interpulse phase coding for improving accuracy of polarimetric SAR

    Science.gov (United States)

    Giuli, Dino; Facheris, Luca

    1993-02-01

    Polarimetric measurements made by Synthetic Aperture Radar (SAR) may be in some cases, depending on the polarimetric response of distributed targets to be imaged, severely limited in their accuracy due to the joint effect of range ambiguities and weak crosspolarized signal response. Due to the utilization of alternate transmission of pulses at orthogonal polarizations, each ambiguous swath gives rise to one different kind of interference, depending whether its order is even or odd. Interference arising from even-order ambiguous swaths, differently from that arising from odd-order swaths, is generated by pulses transmitted on the same polarization channel of the pulse soliciting the desired echo signal, that they corrupt. Evidently, interference arising from odd-order swaths and affecting crosspolar measurements is most harmful, together with that arising from zones at low incidence angle, which carries a strong reflectivity contribution to the total interference on the desired signal. The paper discusses the utility of appropriate interpulse phase coding strategies, depending on the SAR geometry, than can be devised and utilized in the polarimetric interleaved-pulse measurement technique, with the task to reduce the interference generated by range ambiguities and affecting those target scattering matrix elements, whose measurement is expected to be most critical.

  3. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  4. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  5. Integrating polarimetric synthetic aperture radar and imaging spectrometry for wildland fuel mapping in southern California

    Science.gov (United States)

    P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin

    2000-01-01

    Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...

  6. Spectral Polarimetric Features Analysis of Wind Turbine Clutter in Weather Radar

    NARCIS (Netherlands)

    Yin, J.; Krasnov, O.A.; Unal, C.M.H.; Medagli, S.; Russchenberg, H.W.J.

    2017-01-01

    Wind turbine clutter has gradually become a concern for the radar community for its increasing size and quantity worldwide. Based on the S-band polarimetric Doppler PARSAX radar measurements, this paper demonstrates the micro-Doppler features and spectral-polarimetric characteristic of wind turbine

  7. Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle

    Directory of Open Access Journals (Sweden)

    Takashi Shibayama

    2015-11-01

    Full Text Available This paper addresses the local incidence angle dependence of several polarimetric indices corresponding to landslides in forested areas. Landslide is deeply related to the loss of human lives and their property. Various kinds of remote sensing techniques, including aerial photography, high-resolution optical satellite imagery, LiDAR and SAR interferometry (InSAR, have been available for landslide investigations. SAR polarimetry is potentially an effective measure to investigate landslides because fully-polarimetric SAR (PolSAR data contain more information compared to conventional single- or dual-polarization SAR data. However, research on landslide recognition utilizing polarimetric SAR (PolSAR is quite limited. Polarimetric properties of landslides have not been examined quantitatively so far. Accordingly, we examined the polarimetric scattering properties of landslides by an assessment of how the decomposed scattering power components and the polarimetric correlation coefficient change with the local incidence angle. In the assessment, PolSAR data acquired from different directions with both spaceborne and airborne SARs were utilized. It was found that the surface scattering power and the polarimetric correlation coefficient of landslides significantly decrease with the local incidence angle, while these indices of surrounding forest do not. This fact leads to establishing a method of effective detection of landslide area by polarimetric information.

  8. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    Science.gov (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  9. Polarimetric radar characteristics of storms with and without lightning activity

    Science.gov (United States)

    Mattos, Enrique V.; Machado, Luiz A. T.; Williams, Earle R.; Albrecht, Rachel I.

    2016-12-01

    This paper analyzes the cloud microphysics in different layers of storms as a function of three-dimensional total lightning density. A mobile X-band polarimetric radar and very high frequency (VHF) sources from Lightning Mapping Array (LMA) observations during the 2011/2012 Brazil spring-summer were used to determine the microphysical signatures of radar vertical profiles and lightning density. This study quantified the behavior of 5.3 million vertical profiles of the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and correlation coefficient (ρHV). The principal changes in the polarimetric variables occurred only for VHF source rate density greater than 14 VHF sources per km2 in 4 min. These storms showed an enhanced positive KDP in the mixed 1 layer (from 0 to -15°C) probably associated with supercooled liquid water signatures, whereas regions with negative ZDR and KDP and moderate ZH in the mixed 2 layer (from -15 to -40°C) were possibly associated with the presence of conical graupel. The glaciated (above -40°C) and upper part of the mixed 2 layers showed a significant trend to negative KDP with an increase in lightning density, in agreement with vertical alignment of ice particle by the cloud electric field. A conceptual model that presents the microphysical signatures in storms with and without lightning activity was constructed. The observations documented in this study provide an understanding of how the combinations of polarimetric variables could help to identify storms with different lightning density and vice versa.

  10. Microphysical retrievals from simultaneous polarimetric and profiling radar observations

    Directory of Open Access Journals (Sweden)

    M. P. Morris

    2009-12-01

    Full Text Available The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD. This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009, in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009. Furthermore, the the study presents a method of investigating the time and height structure of DSDs.

  11. Polarimetric purity and the concept of degree of polarization

    Science.gov (United States)

    Gil, José J.; Norrman, Andreas; Friberg, Ari T.; Setälä, Tero

    2018-02-01

    The concept of degree of polarization for electromagnetic waves, in its general three-dimensional version, is revisited in the light of the implications of the recent findings on the structure of polarimetric purity and of the existence of nonregular states of polarization [J. J. Gil et al., Phys Rev. A 95, 053856 (2017), 10.1103/PhysRevA.95.053856]. From the analysis of the characteristic decomposition of a polarization matrix R into an incoherent convex combination of (1) a pure state Rp, (2) a middle state Rm given by an equiprobable mixture of two eigenstates of R, and (3) a fully unpolarized state Ru -3 D, it is found that, in general, Rm exhibits nonzero circular and linear degrees of polarization. Therefore, the degrees of linear and circular polarization of R cannot always be assigned to the single totally polarized component Rp. It is shown that the parameter P3 D proposed formerly by Samson [J. C. Samson, Geophys. J. R. Astron. Soc. 34, 403 (1973), 10.1111/j.1365-246X.1973.tb02404.x] takes into account, in a proper and objective form, all the contributions to polarimetric purity, namely, the contributions to the linear and circular degrees of polarization of R as well as to the stability of the plane containing its polarization ellipse. Consequently, P3 D constitutes a natural representative of the degree of polarimetric purity. Some implications for the common convention for the concept of two-dimensional degree of polarization are also analyzed and discussed.

  12. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  13. Beaconless search and rescue using polarimetric synthetic aperture radar

    Science.gov (United States)

    McCandless, Samuel W.; Huxtable, Barton D.; Mansfield, Arthur W.; Wallace, Ronald; Larsen, Rudolph; Rais, Houra

    1996-03-01

    In developing a beaconless search and rescue capability to quickly locate small aircraft that have crashed in remote areas, NASA's Search and Rescue (S&R) Program brings together advanced polarimetric synthetic aperture radar processing, field and laboratory tests, and state-of-the-art automated target detection algorithms. This paper provides the status of this program, which began with experiments conducted in concert with the JPL DC-8 AirSAR in 1989 at the Duke University Forest. The program is being conducted by NASA's Goddard Space Flight Center (GSFC) under the auspices of the Search and Rescue Office.

  14. HAWC+/SOFIA Polarimetric Observations of OMC-1

    Science.gov (United States)

    Chuss, David; Andersson, B.-G.; Bally, John; Dowell, Charles D.; Harper, Doyal; Lazarian, Alex; Michail, Joseph M.; Morris, Mark; Novak, Giles; Siah, Javad; Vaillancourt, John; Werner, Michael; HAWC+ Science Team

    2018-01-01

    Astrophysical dust grains become partially aligned due to magnetic fields that permeate the interstellar medium. Measurements of far-infrared polarized emission provide a tool to characterize magnetic fields and test their effect on star formation in molecular clouds. The HAWC+ camera provides polarimetric imaging capability for SOFIA in four bands between 50 and 300 microns. As part of the science commissioning of the instrument, HAWC+ has obtained more than 1000 independent measurements of polarization in the OMC-1 star forming region. The observations were made at a wavelength of 89 microns with an angular resolution of 8 arcseconds. We present these preliminary data and initial analysis.

  15. Three axis vector atomic magnetometer utilizing polarimetric technique

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094 (India)

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  16. Millimeter Wave Polarimetric Radar Remote Sensing of Ice Clouds.

    Science.gov (United States)

    Tang, Chengxian

    Ice clouds play important roles in many practical and theoretical researches. This thesis investigates the electromagnetic scattering properties of ice crystals at 94 and 220 GHz, and polarimetric radar techniques for ice crystal type discrimination and ice mass content estimation. The scattering amplitude matrix is computed for pristine ice crystals of different sizes and from different incidence directions using the Finite Difference Time Domain method. Hexagonal plates, stellar crystals, and hexagonal columns with empirical aspect ratios are considered. The results show that the co-polarized scattering amplitudes are not sensitive to the azimuthal incidence angle but dependent on the polar incidence angle theta as functions of costheta or sintheta raised to a power which depends on particle size. Cross-polarized scattering amplitudes are negligible when the wave polarization is aligned with respect to the particle symmetry axis. Numerical computations are performed to examine the dependence of polarimetric radar parameters on the parameters in the gamma size and Gaussian canting angle distributions, and on radar elevation angle. The computed Mueller matrix elements related to the cross-correlation of the co-polarized and cross-polarized scattering amplitudes are less than 5% of the total irradiance. The linear depolarization ratio, circular depolarization ratio, and dual-frequency ratio are found depolarization ratio, circular depolarization ratio, and dual-frequency ratio are found useful for differentiating between planar ice crystals and columns. Five relationships between ice mass content and polarimetric radar parameters are derived based on numerical simulations representing various assumed ice mass contents and gamma size distributions. The specific differential phase at incidence angles away from the zenith, and effective reflectivity factor together with dual-frequency ratio can provide reasonable estimates for ice mass content. Simulations based on in

  17. Ship Discrimination Using Polarimetric SAR Data and Coherent Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Canbin Hu

    2013-12-01

    Full Text Available This paper presents a new approach for the discrimination of ship responses using polarimetric SAR (PolSAR data. The PolSAR multidimensional information is analyzed using a linear Time-Frequency (TF decomposition approach, which permits to describe the polarimetric behavior of a ship and its background area for different azimuthal angles of observation and frequencies of illumination. This paper proposes to discriminate ships from their background by using characteristics of their polarimetric TF responses, which may be associated with the intrinsic nature of the observed natural or artificial scattering structures. A statistical descriptor related to polarimetric coherence of the signal in the TF domain is proposed for detecting ships in different complex backgrounds, including SAR azimuth ambiguities, artifacts, and small natural islands, which may induce numerous false alarms. Choices of the TF analysis direction, i.e., along separate azimuth or range axis, or simultaneously in both directions, are investigated and evaluated. TF decomposition modes including range direction perform better in terms of discriminating ships from range focusing artifacts. In comparison with original full-resolution polarimetric indicators, the proposed TF polarimetric coherence descriptor is shown to qualitatively enhance the ship/background contrast and improve discrimination capabilities. Using polarimetric RADARSAT-2 data acquired over complex scenes, experimental results demonstrate the efficiency of this approach in terms of ship location retrieval and response characterization.

  18. Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-07-01

    Full Text Available Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence, normal sparse representation classification cannot be applied to polarimetric SAR directly. This paper proposes a new land cover classification approach for polarimetric SAR. There are two principal novelties in this paper. First, a Stein kernel on a Riemannian manifold instead of Euclidean metrics, combined with sparse representation, is employed for polarimetric SAR land cover classification. This approach is named Stein-sparse representation-based classification (SRC. Second, using simultaneous sparse representation and reasonable assumptions of the correlation of representation among different frequency bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric SAR classification. These classifiers are assessed using polarimetric SAR images from the Airborne Synthetic Aperture Radar (AIRSAR sensor of the Jet Propulsion Laboratory (JPL and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR sensor of the Technical University of Denmark (DTU. Experiments on single-band and multi-band data both show that these approaches acquire more accurate classification results in comparison to many conventional and advanced classifiers.

  19. Polarimetric LIDAR with FRI sampling for target characterization

    Science.gov (United States)

    Wijerathna, Erandi; Creusere, Charles D.; Voelz, David; Castorena, Juan

    2017-09-01

    Polarimetric LIDAR is a significant tool for current remote sensing applications. In addition, measurement of the full waveform of the LIDAR echo provides improved ranging and target discrimination, although, data storage volume in this approach can be problematic. In the work presented here, we investigated the practical issues related to the implementation of a full waveform LIDAR system to identify polarization characteristics of multiple targets within the footprint of the illumination beam. This work was carried out on a laboratory LIDAR testbed that features a flexible arrangement of targets and the ability to change the target polarization characteristics. Targets with different retardance characteristics were illuminated with a linearly polarized laser beam and the return pulse intensities were analyzed by rotating a linear analyzer polarizer in front of a high-speed detector. Additionally, we explored the applicability and the limitations of applying a sparse sampling approach based on Finite Rate of Innovations (FRI) to compress and recover the characteristic parameters of the pulses reflected from the targets. The pulse parameter values extracted by the FRI analysis were accurate and we successfully distinguished the polarimetric characteristics and the range of multiple targets at different depths within the same beam footprint. We also demonstrated the recovery of an unknown target retardance value from the echoes by applying a Mueller matrix system model.

  20. Measurement of impulse current using polarimetric fiber optic sensor

    Science.gov (United States)

    Ginter, Mariusz

    2017-08-01

    In the paper the polarimetric current sensing solution used for measurements of high amplitude currents and short durations is presented. This type of sensor does not introduce additional resistance and inductance into the circuit, which is a desirable phenomenon in this type of measurement. The magneto element is a fiber optic coil made of spun fiber optic. The fiber in which the core is twisted around its axis is characterized by a small effect of interfering magnitudes, ie mechanical vibrations and pressure changes on the polarimeter. The presented polarimetric current sensor is completely fiber optic. Experimental results of a proposed sensor construction solution operating at 1550 nm and methods of elimination of influence values on the fiber optic current sensor were presented. The sensor was used to measure the impulse current. The generated current pulses are characterized by a duration of 23μs and amplitudes ranging from 1 to 3.5 kA. The currents in the discharge circuit are shown. The measurement uncertainty of the amplitude of the electric current in the range of measured impulses was determined and estimated to be no more than 2%.

  1. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  2. Algorithm for wind speed estimate with polarimetric radar

    Directory of Open Access Journals (Sweden)

    Ю. А. Авер’янова

    2013-07-01

    Full Text Available The connection of wind speed and drops behavior is substantiated as well as the drop behavior influence onto the polarization characteristics of electromagnetic waves. The expression to calculate the wind speed taking into account the Weber number for the critical regime of drop deformation is obtained. The critical regime of drop deformation is the regime when drop is divided into two parts. The dependency of critical wind speed on the drop diameter is calculated and shown. The concept o polarization spectrum that is introduced in the previous papers is used to estimate the dynamic processes in the atmosphere. At the moment when the drop is under the influence of the wind that is equal to the critical wind speed the drop will be divided into two parts. This process will be reflected as the appearance of the two equal components of polarization spectra of reflected electromagnetic waves at the orthogonal antennas of Doppler Polarimetric Radar. Owing the information about the correspondence of the polarization component energy level to the drop diameter it is possible to estimate the wind speed with the obtained dependency. The process of the wind speed estimate with polarimetric radar is presented with the developed common algorithm

  3. Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars

    Directory of Open Access Journals (Sweden)

    Roberto Cremonini

    2010-11-01

    Full Text Available Piemonte region, in the north-western Italy, is characterized by complex orography and Mediterranean influence that often causes extreme rainfall event, during the warm season. Although the region is monitored by a dense gauge network (more than one gauge per 100 km2, the ground measurements are often inadequate to properly observe intense and highly variable precipitations. Polarimetric weather radars provide a unique way to monitor rainfall over wide areas, with the required spatial detail and temporal resolution. Nevertheless, most European weather radar networks are operating at C-band, which may seriously limit quantitative precipitation estimation in heavy rainfall due to relevant power signal attenuation. Phase measurements, unlike power measurements, are not affected by signal attenuation. For this reason, polarimetric radars, for which the differential phase shift measurements are available, provide an additional way in which to estimate precipitation, which is immune to signal attenuation. In this work differential phase based rainfall estimation techniques are applied to analyze two flash-floods: the first one occurred on the Ligurian Apennines on 16 August 2006 and the second occurred on 13 September 2008, causing rain accumulations above 270 mm in few hours.

  4. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  5. REMOVAL OF SPECTRO-POLARIMETRIC FRINGES BY TWO-DIMENSIONAL PATTERN RECOGNITION

    International Nuclear Information System (INIS)

    Casini, R.; Judge, P. G.; Schad, T. A.

    2012-01-01

    We present a pattern-recognition-based approach to the problem of the removal of polarized fringes from spectro-polarimetric data. We demonstrate that two-dimensional principal component analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us, in principle, to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.

  6. Towards a climatology of tropical cyclone morphometric structures using a newly standardized passive microwave satellite dataset

    Science.gov (United States)

    Cossuth, J.; Hart, R. E.

    2013-12-01

    The structure of a tropical cyclone (TC) is a spatial representation of its organizational pattern and distribution of energy acquisition and release. Physical processes that react to both the external environment and its own internal dynamics manifest themselves in the TC shape. This structure depicts a specific phase in the TC's meteorological lifecycle, reflecting its past and potentially constraining its future development. For a number of reasons, a thorough objective definition of TC structures and an intercomparison of their varieties have been neglected. This lack of knowledge may be a key reason why TC intensity forecasts, despite numerical model improvements and theoretical advances, have been stagnant in recent years relative to track forecasts. Satellite microwave imagers provide multiple benefits in discerning TC structure, but compiling a research quality data set has been problematic due to several inherent technical and logistical issues. While there are multiple satellite sensors that incorporate microwave frequencies, inter-comparison between such sensors is limited by the different available channels, spatial resolutions, and calibration metrics between satellites, all of which provide inconsistencies in resolving TC structural features. To remedy these difficulties, a global archive of TCs as measured by all available US satellite microwave sensors is compiled and standardized. Using global historical best track data, TC microwave data is retrieved from the Defense Meteorological Satellite Program (DMSP) series (including all SSM/I and SSMIS), TMI, AMSR-E, and WindSat sensors. Standardization between sensors for each TC overpass are performed, including: 1) Recalibration of data from the 'ice scattering' channels to a common frequency (89GHz); 2) Resampling the DMSP series to a higher resolution using the Backus-Gilbert technique; and 3) Re-centering the TC center more precisely using the ARCHER technique (Wimmers and Velden 2010) to analyze the

  7. Meltpond2000 Polarimetric Scanning Radiometer Sea Ice Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Meltpond2000 project was the first in a series of Arctic and Antarctic aircraft campaigns to validate sea ice algorithms developed for the Advanced Microwave...

  8. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  9. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobile X-band Polarimetric Weather Radar on Wheels (X-POW)is a Doppler scanning radar operating at 9.3 GHz.with horizontal and vertical polarization. Used for...

  10. GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar OLYMPEX V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar OLYMPEX V2 dataset consists of rain rate, reflectivity, Doppler velocity, and other...

  11. The Development of Polarimetric and Nonpolarimetric Multiwavelength Focal Plane Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance polarimetric and nonpolarimetric sensing is crucial to upcoming NASA missions, including ACE and CLARREO and the multi-agency VIIRS NPP project. The...

  12. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IFloodS data set was collected from April 30, 2013 to June 16, 2013 near Traer, Iowa as...

  13. GPM GROUND VALIDATION IOWA X-BAND POLARIMETRIC MOBILE DOPPLER WEATHER RADARS IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Iowa X-band Polarimetric Mobile Doppler Weather Radars IFloodS dataset was gathered during the IFloodS campaign from April to June 2013...

  14. Polarimetric Multiwavelength Focal Plane Arrays for ACE and CLARREO, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance polarimetric and nonpolarimetric sensing is crucial to upcoming NASA missions, including ACE and CLARREO and the multi-agency VIIRS NPP project. The...

  15. CLPX-Airborne: Polarimetric Ku-Band Scatterometer (POLSCAT) Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Ku-band polarimetric scatterometer (POLSCAT) data collected as part of the Cold Land Processes Field Experiment (CLPX) to enable the...

  16. An Icon-Based Synoptic Visualization of Fully Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Iain H. Woodhouse

    2012-03-01

    Full Text Available The visualization of fully polarimetric radar data is hindered by traditional remote sensing methodologies for displaying data due to the large number of parameters per pixel in such data, and the non-scalar nature of variables such as phase difference. In this paper, a new method is described that uses icons instead of image pixels to represent the image data so that polarimetric properties and geographic context can be visualized together. The icons are parameterized using the alpha-entropy decomposition of polarimetric data. The resulting image allows the following five variables to be displayed simultaneously: unpolarized power, alpha angle, polarimetric entropy, anisotropy and orientation angle. Examples are given for both airborne and laboratory-based imaging.

  17. GPM Ground Validation NOAA X-band Polarimetric Radar (NOXP) IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA X-band dual-Polarimetric radar (NOXP) IPHEx dataset consists of differential reflectivity, differential phase shift, co-polar cross...

  18. Microwave dielectrics: solid solution, ordering and microwave ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. Microwave dielectrics: solid solution, ordering and microwave dielectric properties of ( 1 − x ) Ba(Mg 1 / 3 Nb 2 / 3 )O 3 − x Ba(Mg 1 / 8 Nb 3 / 4 )O3 ceramics. YOGITA BISHT RICHA TOMAR PULLANCHIYODAN ABHILASH DEEPA RAJENDRAN LEKSHMI M ...

  19. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  20. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    OpenAIRE

    Raupach, Timothy H.; Berne, Alexis

    2016-01-01

    A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observation...

  1. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  2. Estimating soil moisture using the Danish polarimetric SAR

    DEFF Research Database (Denmark)

    Jiankang, Ji; Thomsen, A.; Skriver, Henning

    1995-01-01

    The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...... height from coand cross-polarized ratio, have been examined, but the results are less satisfactory. As soil moisture response to backscattering coefficient σo is mainly coupled to surface roughness effect for bare fields, a bilinear model coupling volumetric soil moisture mv and surface rms height σ...

  3. Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target

    Directory of Open Access Journals (Sweden)

    Wu Jiani

    2016-04-01

    Full Text Available In this paper, we analyze the space polarization and frequency dispersion characteristics of the polarimetric High Resolution Range Profile (HRRP of manmade targets. We integrate these characteristics and propose a novel scheme for scattering mechanism identification. Using a polarization decomposition technique, the scheme first identifies the scattering mechanism of the scattering centers. Specially, it uses an algorithm to compensate for the polarization orientation angle in order to decrease the errors in judgment caused by the varying azimuth. Then, based on the frequency dispersion characteristics, we design threedimensional parameters to discriminate between the scattering centers, in order to decrease the inaccuracy in the discriminations. Finally, we conduct simulations based on electromagnetic data to validate the feasibility of the proposed scheme and to demonstrate that it provides a basis for practical use in target recognition.

  4. Classification of Polarimetric SAR Data Using Dictionary Learning

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg; Dahl, Anders Lindbjerg

    2012-01-01

    This contribution deals with classification of multilook fully polarimetric synthetic aperture radar (SAR) data by learning a dictionary of crop types present in the Foulum test site. The Foulum test site contains a large number of agricultural fields, as well as lakes, forests, natural vegetation......, grasslands and urban areas, which make it ideally suited for evaluation of classification algorithms. Dictionary learning centers around building a collection of image patches typical for the classification problem at hand. This requires initial manual labeling of the classes present in the data and is thus...... a method for supervised classification. Sparse coding of these image patches aims to maintain a proficient number of typical patches and associated labels. Data is consecutively classified by a nearest neighbor search of the dictionary elements and labeled with probabilities of each class. Each dictionary...

  5. Analytical Aspects of Total Starch Polarimetric Determination in Some Cereals

    Directory of Open Access Journals (Sweden)

    Rodica Caprita

    2016-10-01

    Full Text Available Starch is the most important digestible polysaccharide present in foods and feeds. The starch concentration in cereals cannot be determined directly, because the starch is contained within a structurally and chemically complex matrix. Fine grinding and boiling in dilute HCl are preparative steps necessary for complete release of the starch granules from the protein matrix. Starch can be determined using simple and inexpensive physical methods, such as density, refractive index or optical rotation assessment. The polarimetric method allows the determination even of small starch contents due to its extremely high specific rotation. For more accurate results, the contribution of free sugars is eliminated by dissolution in 40% (V/V ethanol. The influence of other optically active substances, which might interfere, is removed by filtration/clarification prior to the optical rotation measurement.

  6. Tropical Mangrove Mapping Using Fully-Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Bambang Trisasongko

    2009-09-01

    Full Text Available Although mangrove is one of important ecosystems in the world, it has been abused and exploited by human for various purposes. Monitoring mangrove is therefore required to maintain a balance between economy and conservation and provides up-to-date information for rehabilitation. Optical remote sensing data have delivered such information, however ever-changing atmospheric disturbance may significantly decrease thematic content. In this research, Synthetic Aperture Radar (SAR fully polarimetric data were evaluated to present an alternative for mangrove mapping. Assessment using three statistical trees was performed on both tonal and textural data. It was noticeable that textural data delivered fairly good improvement which reduced the error rate to around 5-6% at L-band. This suggests that insertion of textural data is more important than any information derived from decomposition algorithm.

  7. Segment-based change detection for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2006-01-01

    single-channel SAR images but multi-channel algorithms have also been described. Different approaches have been used for image segmentation. Edge detection combined with region growing is one approach, where segments are created by growing regions from a previously edge detected and edge thinned image....... This method relies primarily on a robust edge detector, which preferably provides a constant false alarm rate. For single-channel SAR images this is fulfilled by the ratio edge detector, and for polarimetric SAR data, an edge detector based on the above mentioned test statistic fulfils this. Another approach......, wetlands, lakes, and urban areas. Also, other test sites over for instance urban areas have been used to assess the improvement by the segment-based change detection method. In the paper, results from pixel-based change detection, i.e. without segmentation, and from segment-based change detection, where...

  8. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  9. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  10. Polarimetric Exploration of Solar System Small Bodies: Search for Habitability

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.

    2015-08-01

    The overarching goals for the remote sensing and robotic exploration of our solar system and exoplanetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. These goals can be realized with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. Although polarization, in general, is elliptical by nature, special cases such as linear and circular polarimetric signatures provide insight into the various types of scattering media and are valuable tools to be developed. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. The search for habitability can benefit from spectrophotopolarimetry. While linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality) or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. All known life forms on earth are chiral and pre-dominantly left-handed. However, many of these applications suffer from lack of detailed observations, instrumentation, dedicated missions and numerical/retrieval methods. I will present a review of the field, with advances made in instrumentation, measurements and applications to prospective missions.

  11. Polarimetric Radar Retrievals in Southeast Texas During Hurricane Harvey

    Science.gov (United States)

    Wolff, D. B.; Petersen, W. A.; Tokay, A.; Marks, D. A.; Pippitt, J. L.; Kirstetter, P. E.

    2017-12-01

    Hurricane Harvey hit the Texas Gulf Coast as a major hurricane on August 25, 2017 before exiting the state as a tropical storm on September 1, 2017. In its wake, it left a flood of historic proportions, with some areas measuring 60 inches of rain over a five-day period. Although the storm center stayed west of the immediate Houston area training bands of precipitation impacted the Houston area for five full days. The National Weather Service (NWS) WSR88D dual-polarimetric radar (KHGX), located southeast of Houston, maintained operations for the entirety of the event. The Harris County Flood Warning System (HCFWS) had 150 rain gauges deployed in its network and seven NWS Automated Surface Observing Systems (ASOS) rain gauges are also located in the area. In this study, we used the full radar data set to retrieve daily and event-total precipitation estimates within 120 km of the KHGX radar for the period August 25-29, 2017. These estimates were then compared to the HCFWS and ASOS gauges. Three different polarimetric hybrid rainfall retrievals were used: Ciffeli et al. 2011; Bringi et al. 2004; and, Chen et al. 2017. Each of these hybrid retrievals have demonstrated robust performance in the past. However, both daily and event-total comparisons from each of these retrievals compared to those of HCFWS and ASOS rain gauge networks resulted in significant underestimates by the radar retrievals. These radar underestimates are concerning. Sources of error and variance will be investigated to understand the source of radar-gauge disagreement. One current hypothesis is that due to the large number of small drops often found in hurricanes, the differential reflectivity and specific differential phase are relatively small so that the hybrid algorithms use only the reflectivity/rain rate procedure (so called Z-R relationships), and hence rarely invoke the ZDR or KDP procedures. Thus, an alternative Z-R relationship must be invoked to retrieve accurate rain rate estimates.

  12. An improved method for polarimetric image restoration in interferometry

    Science.gov (United States)

    Pratley, Luke; Johnston-Hollitt, Melanie

    2016-11-01

    Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.

  13. Assessment of GF-3 Polarimetric SAR Data for Physical Scattering Mechanism Analysis and Terrain Classification.

    Science.gov (United States)

    Yin, Junjun; Yang, Jian; Zhang, Qingjun

    2017-12-01

    On 10 August 2016 China launched the GF-3, its first C-band polarimetric synthetic aperture radar (SAR) satellite, which was put into operation at the end of January, 2017. GF-3 polarimetric SAR has many advantages such as high resolution and multi-polarization imaging capabilities. Polarimetric SAR can fully characterize the backscatter property of targets, and thus it is of great interest to explore the physical scattering mechanisms of terrain types, which is very important in interpreting polarimetric SAR imagery and for its further usages in Earth observations. In this paper, focusing on target scattering characterization and feature extraction, we generalize the Δ α B / α B method, which was proposed under the reflection symmetric assumption, for the general backscatter process to account for both the reflection symmetry and asymmetry cases. Then, we evaluate the performances of physical scattering mechanism analysis methods for GF-3 polarimetric SAR imagery. Radarsat-2 data acquired over the same area is used for cross validation. Results show that GF-3 polarimetric SAR data has great potential for target characterization, especially for ocean area observation.

  14. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wardle, John F. C. [Brandeis University, Physics Department, Waltham, MA 02454 (United States); Bouman, Katherine L., E-mail: achael@cfa.harvard.edu [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States)

    2016-09-20

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  15. Proceedings of microwave processing of materials 3

    International Nuclear Information System (INIS)

    Beatty, R.L.

    1992-01-01

    This book contains proceedings of the third MRS Symposium on Microwave Processing of Materials. Topics covered include: Microwave Processing Overviews, Numerical Modeling Techniques, Microwave Processing System Design, Microwave/Plasma Processing, Microwave/Materials Interactions, Microwave Processing of Ceramics, Microwave Processing of Polymers, Microwave Processing of Hazardous Wastes, Microwave NDE Techniques and Dielectric Properties and Measurements

  16. The ROHP-PAZ mission and the polarimetric and non-polarimetric effects of rain and other fozen hydrometeors on GNSS Radio-Occultation signals.

    Science.gov (United States)

    De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Tomás, S.; Turk, J.; Ao, C. O.; Oliveras, S.; Rius, A.

    2015-12-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) will test, for the first time, the new polarimetric radio occultation (RO) concept. This is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) RO payload on board of the Spanish Earth Observation satellite PAZ. The launch of the satellite is scheduled for October 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years.The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric components of the received signal, although in this case we will use the forward scattering geometry instead of the backscattering one. It will allow us to retrieve precipitation and other hydrometeors information, and simultaneous thermodynamic vertical profiles which will help to the understanding of the thermodynamic processes beyond heavy rain events. A sensitivity analysis has been performed, showing that the rain-induced effect is above PAZ detectability threshold in 90% of the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. The measurements from the campaign have shown the first experimental evidences that precipitation and frozen hydrometeors induce a noticeable effect into the polarimetric RO observables. We will present here the actual status of the mission and the results from the field campaign. We will also discuss the results of the theoretical study of the thermodynamics and the effects of rain and frozen hydrometeors into standard and polarimetric RO, based on a large collocation exercise of COSMIC and TerrasSar-X with TRMM, GPM and CloudSat.

  17. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    Directory of Open Access Journals (Sweden)

    Pottier E.

    2010-06-01

    Full Text Available SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height

  18. Inter-calibrating, Multi-instrument Microwave Ocean Data Records over Three Decades

    Science.gov (United States)

    Smith, D. K.; Wentz, F. J.

    2015-12-01

    Satellite microwave radiometers have been in continuous operation since 1987. When inter-calibrated and consistently processed, the data from a series of DMSP SSM/I and SSMIS sensors, TRMM TMI, Coriolis WindSat, Aqua AMSR-E, GCOM-W1 AMSR2, and GPM GMI collectively result in a long-term high-quality ocean data set of surface winds, atmospheric water vapor, cloud liquid water content, rain rate, and for some instruments, sea surface temperature and wind direction. Slight variations in frequencies, design and satellite orbits stress the need for carefully implementing an inter-calibration method, so as not to introduce trends or jumps when new instruments begin or when old instruments drift and/or die. The authors have developed a robust inter-calibration method using a published, well-developed and validated radiative transfer model (RTM) as the calibration standard. Most of the sensor data for this nearly 30-year period are available as the Version-7 RTM standard. The GMI sensor, recently launched in 2014, has strict calibration accuracy requirements and was built to have greater precision than any previous microwave sensor. We have utilized the dual calibration and non-linearity-measurement systems built into GMI to improve the RTM, which is now Version-8. In this talk we will present an overview of our calibration procedures and outline the steps required to produce climate quality earth data records. We also intend to present the latest validation results and provide information on recent changes in distribution, format, and availability for these already-popular data products.

  19. Soil moisture inversion from aircraft passive microwave observations during SMEX04 using a single-frequency algorithm

    International Nuclear Information System (INIS)

    Zeng, J Y; Li, Z; Chen, Q; Bi, H Y

    2014-01-01

    Soil moisture plays a key role in global water cycles. In the study, soil moisture retrievals from airborne microwave radiometer observations using a single-frequency algorithm were presented. The algorithm is based on a simplified radiative transfer (tau-omega) model and the influence of both the roughness and vegetation is combined into a single parameter in the algorithm. The microwave polarization difference index (MPDI) is used to eliminate the effects of temperature. Then soil moisture is obtained through a nonlinear iterative procedure by making the absolute value of the differences between the simulated and observed MPDI minimum. The algorithm was validated with aircraft passive microwave data from the Polarimetric Scanning Radiometer (PSR) at the Arizona during the Soil Moisture Experiment 2004 (SMEX04). The results show that the soil moisture retrieved by the algorithm is in good agreement with ground measurements with a small bias and an overall accuracy of 0.037m 3 m −3

  20. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above

  1. A Radarsat-2 Polarimetric Analysis Over The UNESCO Site In Danger Of Samarra (Iraq)

    Science.gov (United States)

    Dore, Nicole; Patruno, Jolanda; Pottier, Eric; Crespi, Mattia

    2013-04-01

    This work has as goal the detection of archaeological probable buried remains and the monitoring of the external ones. The archaeological site taken into account for this purpose is the area of the ancient octagonal city of al-Qadisiyya funded by Harun al-Rashid. This city, located in the southern part of the Samarra territory, was abandoned unfinished when the caliph moved to Raqqa (Syria) in 796 A.D. Bigness of the structures, unstable political situation and agricultural expansion threats, that let the city of Samarra be inscribed in the UNESO list of sites in danger since 2007, gave us a reason more to investigate this area. The study was carried out with four fine quad-pol imagery of the Canadian satellite RADARSAT-2, launched in December 2007. However C-band lower capability of penetration compared to ALOS PALSAR L-band, the choice of this satellite is due to its higher spatial resolution compared to the PALSAR one. Thanks to the higher spatial resolution and the location of the site in a semi desert area, we succeeded in balancing a probable lower waves penetration. Our analysis focused on four polarimetric images, two with a 23° incidence angle and two with a 45° incidence angle, acquired in different moments of the year 2012. The difference between the angles was motivated, respectively, by the possibility of a higher penetration of the microwaves in the ground and by the higher possibility of double bounce response in the case of presence of buried structures. The time spacing, on the other hand, allowed a temporal analysis over different months of the same year accompanied by meteorological condition available on the web for the zone. This type of analysis, however, allowed the identification of the qanāt (the underground channel present in the northern part of the octagonal city of al-Qadisiyya) and other structures, thanks to differences visible in all the products. The potentiality of this SAR research for archaeology is well known, in particular

  2. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  3. The microwave market

    International Nuclear Information System (INIS)

    Bybokas, J.

    1989-01-01

    As superconductors move from the laboratory to the marketplace, it becomes more important for researchers and manufacturers to understand the markets for this technology. The large market for microwave systems represents a major opportunity for high-T c superconductors. Conductor losses are a primary design limitation in conventional microwave systems. The low losses of superconductors at microwave frequencies will allow component designers and system designers to improve their products in many ways. The most important market segments for microwave systems are outlined in this discussion

  4. Atmospheric polarimetric effects on GNSS radio occultations: the ROHP-PAZ field campaign

    Science.gov (United States)

    Padullés, R.; Cardellach, E.; de la Torre Juárez, M.; Tomás, S.; Turk, F. J.; Oliveras, S.; Ao, C. O.; Rius, A.

    2016-01-01

    This study describes the first experimental observations showing that hydrometeors induce polarimetric signatures in global navigation satellite system (GNSS) signals. This evidence is relevant to the PAZ low Earth orbiter, which will test the concept and applications of polarimetric GNSS radio occultation (RO) (i.e. ROs obtained with a dual-polarization antenna). A ground field campaign was carried out in preparation for PAZ to verify the theoretical sensitivity studies on this concept (Cardellach et al., 2015). The main aim of the campaign is to identify and understand the factors that might affect the polarimetric GNSS observables. Studied for the first time, GNSS signals measured with two polarimetric antennas (H, horizontal, and V, vertical) are shown to discriminate between heavy rain events by comparing the measured phase difference between the H and V phase delays (ΔΦ) in different weather scenarios. The measured phase difference indicates higher dispersion under rain conditions. When individual events are examined, significant increases in ΔΦ occur when the radio signals cross rain cells. Moreover, the amplitude of such a signal is much higher than the theoretical prediction for precipitation; thus, other sources of polarimetric signatures have been explored and identified. Modelling of other hydrometeors, such as melting particles and ice crystals, have been proposed to explain the obtained measurements, with good agreement in more than 90 % of the cases.

  5. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Guandong Chen

    2017-09-01

    Full Text Available Polarimetric synthetic aperture radar (SAR remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE and deep belief network (DBN are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM and traditional artificial neural networks (ANN with similar parameter settings, especially when the number of training data samples is limited.

  6. Fitting a Two-Component Scattering Model to Polarimetric SAR Data

    Science.gov (United States)

    Freeman, A.

    1998-01-01

    Classification, decomposition and modeling of polarimetric SAR data has received a great deal of attention in the recent literature. The objective behind these efforts is to better understand the scattering mechanisms which give rise to the polarimetric signatures seen in SAR image data. In this Paper an approach is described, which involves the fit of a combination of two simple scattering mechanisms to polarimetric SAR observations. The mechanisms am canopy scatter from a cloud of randomly oriented oblate spheroids, and a ground scatter term, which can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, seen through a layer of vertically oriented scatterers. An advantage of this model fit approach is that the scattering contributions from the two basic scattering mechanisms can be estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. The model fit can be applied to polarimetric AIRSAR data at C-, L- and P-Band.

  7. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  8. Polarimetric study of the interstellar medium in Taurus Dark Clouds

    International Nuclear Information System (INIS)

    Hsu, J.

    1985-01-01

    An optical linear polarimetric survey was completed for more than 300 stars in an area of 6.5 0 x 10 0 toward the Taurus Dark Clouds Complex. It was found that the orientation of the magnetic field is roughly perpendicular to the elongation direction of the dust lanes, indicating cloud contraction along the magnetic field lines. The distance to the front edge of the dark clouds in Taurus is determined to be 126 pc. There is only insignificant amount of obscuring material between the cloud complex and the Sun. Besides the polarization data, the reddenings of about 250 stars were also obtained from the UBV photometry. The mean polarization to reddening ratio in the Taurus region is 4.6, which is similar to that of the general interstellar matter. The wavelengths of maximum polarization were determined for 30 stars in Taurus. They show an average value of lambda/sub max/ = 0.57 μm, which is only slightly higher than the mean value of the general interstellar medium, lambda/sub max/ = 0.55 μm. A few stars that show higher values of lambda/sub max/ are found near the small isolated regions of very high extinction. One such highly obscured small region where very complex long chain molecules have been discovered in the ratio spectra, is the Taurus Molecular Cloud 1

  9. Sample Extraction Bsaed on Helix Scattering for Polarimetric SAR Calibratio

    Science.gov (United States)

    Chang, Y.; Yang, J.; Li, P.; Zhao, L.; Shi, L.

    2017-09-01

    Polarimetric calibration (PolCAL) of Synthetic Aperture Radar (SAR) images is a significant preprocessing for further applications. Since the reflection symmetry property of distributed objects can provide stable constraints for PolCAL. It is reasonable to extract these reference samples before calibration. The helix scattering generally appears in complex urban area and disappears for a natural scatterer, making it a good measure to extract distributed objects. In this paper, a novel technique that extracts reflecting symmetry samples is proposed by using helix scattering. The helix scattering information is calculated by Yamaguchi four-component decomposition algorithm. An adaptive threshold selection algorithm based on generalized Gaussian distribution is also utilized to scale the helix scattering components automatically, getting rid of the problem of various numerical range. The extracting results will be taken as PolCAL reference samples and the Quegan method are utilized to calibrate these PolSAR images. A C-band airborne PolSAR data was taken as examples to evaluate its ability in improving calibration precision. Traditional method i.e. extracting samples with span power was also evaluated as contrast experiment. The results showed that the samples extracting method based on helix scattering can improve the Polcal precision preferably.

  10. Status of PEM-based polarimetric MSE development at KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jinseok; Chung, Jinil; Oh, Seungtae; Ko, Wonha [National Fusion Research Institute, Daejeon (Korea, Republic of); Bock, Maarten de; Ong, Henry; Lange, Guido [Eindhoven University of Technology, Eindhoven (Netherlands)

    2014-10-15

    A multi-chord PEM (photo elastic modulator)-based polarimetric motional Stark effect (MSE) system is under development for the KSTAR tokamak. The conceptual design for the front optics was optimized to preserve not only the polarization state of the input light for the MSE measurements but also the signal intensity of the existing charge exchange spectroscopy (CES) system that will share the front optics with the MSE. The optics design incorporates how to determine the number of channels and the number of fibers for each channel. A dielectric coating will be applied on the mirror to minimize the relative reflectivity and the phase shift between the two orthogonal polarization components of the incident light. Lenses with low stress-birefringence constants will be adopted to minimize non-linear and random changes in the polarization through the lenses, which is a trade-off with the rather high Faraday rotation in the lenses because the latter effect is linear and can be relatively easily calibrated out. Intensive spectrum measurements and their comparisons with the simulated spectra are done to assist the design of the bandpass filter system that will also use tilting stages to remotely control the passband. Following the system installation in 2014, the MSE measurements are expected to be performed during the 2015 KSTAR campaign.

  11. SAMPLE EXTRACTION BSAED ON HELIX SCATTERING FOR POLARIMETRIC SAR CALIBRATIO

    Directory of Open Access Journals (Sweden)

    Y. Chang

    2017-09-01

    Full Text Available Polarimetric calibration (PolCAL of Synthetic Aperture Radar (SAR images is a significant preprocessing for further applications. Since the reflection symmetry property of distributed objects can provide stable constraints for PolCAL. It is reasonable to extract these reference samples before calibration. The helix scattering generally appears in complex urban area and disappears for a natural scatterer, making it a good measure to extract distributed objects. In this paper, a novel technique that extracts reflecting symmetry samples is proposed by using helix scattering. The helix scattering information is calculated by Yamaguchi four-component decomposition algorithm. An adaptive threshold selection algorithm based on generalized Gaussian distribution is also utilized to scale the helix scattering components automatically, getting rid of the problem of various numerical range. The extracting results will be taken as PolCAL reference samples and the Quegan method are utilized to calibrate these PolSAR images. A C-band airborne PolSAR data was taken as examples to evaluate its ability in improving calibration precision. Traditional method i.e. extracting samples with span power was also evaluated as contrast experiment. The results showed that the samples extracting method based on helix scattering can improve the Polcal precision preferably.

  12. Modeling the photo-polarimetric characteristics of brown dwarfs

    Science.gov (United States)

    Sanghavi, Suniti; Millar-Blanchaer, Max; Jensen-Clem, Rebecca; Shporer, Avi; Nilsson, Ricky; Tinyanont, Samaporn; Riedel, Adric; Kataria, Tiffany; Mawet, Dimitri

    2018-01-01

    An envelope of scatterers like free electrons, atoms/molecules, or haze/clouds affect the Stokes vector of radiation emitted by an oblate body.Due to their high rotation rates, brown dwarfs (BDs) are often considerably oblate. We present a conics-based radiative transfer (RT) scheme for computing the disc-resolved and disc-integrated polarized emission of an oblate body like a BD or extrasolar giant planet (EGP) bearing homogenous or patchy clouds. Using this capability, we theoretically examine the photo-polarimetric signal of BDs as a function of the scattering properties of its atmosphere like cloud optical thickness and grain size concurrently with BD properties like oblateness and inclination angle. The effect of oblateness is examined with and without the temperature gradients caused by gravitational darkening, revealing that the latter can considerably amplify the disc-integrated polarization. The signal depends on both oblateness and inclination angle, with the degree of polarization (DoP) increasing with oblateness and decreasing with inclination, a property useful for assessing the exact spatial orientation of the rotation axis in favorable cases. Our examination of BD cloud properties shows a relative blue-shift in the near-infrared (NIR) for increasing droplet size in optically thick clouds - interesting in view of the observed relative brightening in the J-band for L/T transition BDs. For large cloud grains, the polarization decreases sharply, while the transmitted intensity shows a steady increase, thus reducing the DoP.

  13. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    Science.gov (United States)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    . Where available, clear-sky data from optical sensors (MODIS, Landsat-8, and WorldView) are also used to provide supplementary information on melt pond coverage and evolution. Meteorological data are available from an Environment Canada weather station in Grise Fiord. In this presentation we will discuss the sea ice information provided by each polarization and frequency and evaluate the impact of melt pond evolution on SAR backscatter. Results to date indicate that C- and X-band provide predominantly redundant information, and cross-polarized backscatter (only acquired at C-band) is often very low and near the system noise floor. Early in the melt season a thick wet snow pack is present and both frequencies provide very little ice information. This is attributed to the strong attenuation of the microwave signal by the wet snow. At this time the underlying ice is effectively obscured. During heavily ponded periods backscatter is highly variable, attributed to changing winds and thus variable melt pond surface roughness. In the final week of observations the fast ice in the region is breaking up and open water is present in some images. In these images C-band appears to provide greater contrast between the melting ice and open water than X-band. Analysis of polarimetric parameters is ongoing.

  14. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    Science.gov (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  15. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image

    Directory of Open Access Journals (Sweden)

    Li Yang

    2015-06-01

    Full Text Available Multiaspect Synthetic Aperture Radar (SAR can generate high resolution images and target scattering signatures in different azimuth angles from the coherent integration of all subaperture images. However, mixed anisotropic scatters limit the application of traditional imaging theory. Anisotropic scattering may introduce errors in polarimetric parameters by decreasing the reliability of terrain classification and detection of variability. Thus a method is proposed for estimating and removing anisotropic scattering in multiaspect polarimetric SAR images. The proposed algorithm is based on the maximum likelihood and likelihood-ratio tests for the two-class case, while considering the speckle effect, the mechanism of removing the anisotropic scattering, and the monotonicity of the Constant False Alarm Rate (CFAR detection function. We compare the polarimetric entropy before and after removing the anisotropic subapertures, and then validate the algorithm's potential in retrieving the target signature using a P-band quad-pol airborne SAR with circular trajectory.

  16. Fast polarimetric dehazing method for visibility enhancement in HSI colour space

    Science.gov (United States)

    Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin

    2017-09-01

    Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.

  17. The Potential of Polarimetric and Compact SAR Data in Rice Identification

    International Nuclear Information System (INIS)

    Shao, Y; Li, K; Liu, L; Yang, Z; Brisco, B

    2014-01-01

    Rice is a major food staple in the world, and provides food for more than one-third of the global population. The monitoring and mapping of paddy rice in a timely and efficient manner is very important for governments and decision makers. Synthetic Aperture Radar (SAR) has been proved to be a significant data source in rice monitoring. In this study, RADARSAT-2 polarimetric data were used to simulate compact polarimetry data. The simulated compact data and polarimetric data were then used to evaluate the information content for rice identification. The results indicate that polarimetric SAR can be used for rice identification based on the scattering mechanisms. The compact polarization RH and the RH/RL ratio are very promising for the discrimination of transplanted rice and direct-sown rice. These results require verification in further research

  18. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  19. A high resolution polarimetric L-band SAR-design and first results

    DEFF Research Database (Denmark)

    Skou, Niels; Granholm, Johan; Woelders, Kim

    1995-01-01

    An L-band polarimetric SAR system has been developed as part of the dual frequency (L- and C-band), polarimetric, airborne EMISAR system. The SAR features a unique combination of fine resolution (2×2 m) and wide swath (9.3 km). The transmitter power is 6 kW. From a flight altitude of 41,000 ft...... conventional PIN diode switch matrix able to sustain the 6 kW peak power from the transmitter still exhibiting low loss (0.3 dB) and high isolation (more than 50 dB). Thus system cross talk (between polarizations) is dominated by antenna cross talk and is some -35 dB. Polarimetric imagery has been acquired...

  20. Contribution of polarimetric imaging for the characterization of fibrous surface properties at different scales

    Science.gov (United States)

    Tourlonias, Michel; Bigué, Laurent; Bueno, Marie-Ange

    2010-01-01

    The point in using polarimetric imaging for surface characterization is highlighted in this paper. A method for the evaluation of nonwoven surface properties at microscopic and macroscopic scales is described. This method is based on a polarimetric apparatus and various image processing operations are then performed depending on the studied scale. Polarimetric imaging applied to nonwovens, particularly degree of polarization imaging, highlights texture inhomogeneities. At both scales, image processing techniques were designed to analyze surface zones of different textures. At the macroscopic scale, a basic image processing was developed in order to detect the nonwoven manufacturing process defects. Moreover at the microscopic scale, i.e. at the fiber scale, image processing was adapted to evaluate fiber orientation within nonwovens, which is known to be an important information for mechanical behavior prediction.

  1. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  2. PODAAC-GHWST-2GR01

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  3. PODAAC-WSTL3-RSSV7

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains multi-parameter ocean surface and atmospheric gridded observations made by the WindSat Polarimetric Radiometer, a U.S. Navy instrument aboard...

  4. PODAAC-GHWSA-3UR7A

    Data.gov (United States)

    National Aeronautics and Space Administration — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  5. PODAAC-GHWSA-3UR70

    Data.gov (United States)

    National Aeronautics and Space Administration — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  6. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  7. Microwave Enhanced Reactive Distillation

    NARCIS (Netherlands)

    Altman, E.

    2011-01-01

    The application of electromagnetic irradiation in form of microwaves (MW) has gathered the attention of the scientific community in recent years. MW used as an alternative energy source for chemical syntheses (microwave chemistry) can provide clear advantages over conventional heating methods in

  8. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  9. Microwave hydrology: A trilogy

    Science.gov (United States)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  10. Microwave ion source

    Science.gov (United States)

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  11. Complex Wishart distribution based analysis of polarimetric synthetic aperture radar data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Skriver, Henning; Conradsen, Knut

    2007-01-01

    Multi-look, polarimetric synthetic aperture radar (SAR) data are often worked with in the so-called covariance matrix representation. For each pixel this representation gives a 3x3 Hermitian, positive definite matrix which follows a complex Wishart distribution. Based on this distribution a test ...... covering agricultural fields near Foulum, Denmark, are used. Soon the Japanese ALOS, the German TerraSAR-X and the Canadian RADARSAT-2 will acquire space-borne, polarimetric data making analysis based on these methods important....

  12. Comparison between Multitemporal and Polarimetric SAR Data for Land Cover Classification

    DEFF Research Database (Denmark)

    Skriver, Henning

    2008-01-01

    The investigation focuses on the determination of the land cover type using SAR data, including single polarisation, dual polarisation and fully polarimetric data, at L-band. The analysed data set was acquired during the AgriSAR 2006 campaign by the airborne ESAR system over the Gormin agricultural...... site (Northeast Germany). The multitemporal acquisitions significantly improve the classification results for single and dual polarization configurations. The best results for the single and dual polarization configurations are better than for the polarimetric mode. Overall, the cross...

  13. OPTICAL PHOTOMETRIC AND POLARIMETRIC INVESTIGATION OF NGC 1931

    International Nuclear Information System (INIS)

    Pandey, A. K.; Eswaraiah, C.; Sharma, Saurabh; Yadav, Ram Kesh; Samal, M. R.; Chauhan, N.; Chen, W. P.; Jose, J.; Ojha, D. K.; Chandola, H. C.

    2013-01-01

    We present optical photometric and polarimetric observations of stars toward NGC 1931 with the aim of deriving cluster parameters such as distance, reddening, age, and luminosity/mass function as well as understanding dust properties and star formation in the region. The distance to the cluster is found to be 2.3 ± 0.3 kpc and the reddening E(B – V) in the region is found to be variable. The stellar density contours reveal two clusters in the region. The observations suggest a differing reddening law within the cluster region. Polarization efficiency of the dust grains toward the direction of the cluster is found to be less than that for the general diffuse interstellar medium (ISM). The slope of the mass function (–0.98 ± 0.22) in the southern region in the mass range of 0.8 ☉ < 9.8 is found to be shallower in comparison to that in the northern region (–1.26 ± 0.23), which is comparable to the Salpeter value (–1.35). The K-band luminosity function (KLF) of the region is found to be comparable to the average value of the slope (∼0.4) for young clusters obtained by Lada and Lada; however, the slope of the KLF is steeper in the northern region as compared to the southern region. The region is probably ionized by two B2 main-sequence-type stars. The mean age of the young stellar objects (YSOs) is found to be 2 ± 1 Myr, which suggests that the identified YSOs could be younger than the ionizing sources of the region. The morphology of the region, the distribution and ages of the YSOs, and ionizing sources indicate a triggered star formation in the region.

  14. Microphysical Structures of Hurricane Irma Observed by Polarimetric Radar

    Science.gov (United States)

    Didlake, A. C.; Kumjian, M. R.

    2017-12-01

    This study examines dual-polarization radar observations of Hurricane Irma as its center passed near the WSR-88D radar in Puerto Rico, capturing needed microphysical information of a mature tropical cyclone. Twenty hours of observations continuously sampled the inner core precipitation features. These data were analyzed by annuli and azimuth, providing a bulk characterization of the primary eyewall, secondary eyewall, and rainbands as they varied around the storm. Polarimetric radar variables displayed distinct signatures of convective and stratiform precipitation in the primary eyewall and rainbands that were organized in a manner consistent with the expected kinematic asymmetry of a storm in weak environmental wind shear but with moderate low-level storm-relative flow. In the front quadrants of the primary eyewall, vertical profiles of differential reflectivity (ZDR) exhibit increasing values with decreasing height consistent with convective precipitation processes. In particular, the front-right quadrant exhibits a signature in reflectivity (ZH) and ZDR indicating larger, sparser drops, which is consistent with a stronger updraft present in this quadrant. In the rear quadrants, a sharply peaked ZDR maximum occurs within the melting layer, which is attributed of stratiform processes. In the rainbands, the convective to stratiform transition can be seen traveling from the front-right to the front-left quadrant. The front-right quadrant exhibits lower co-polar correlation coefficient (ρHV) values in the 3-8 km altitude layer, suggesting larger vertical spreading of various hydrometeors that occurs in convective vertical motions. The front-left quadrant exhibits larger ρHV values, suggesting less diversity of hydrometeor shapes, consistent with stratiform processes. The secondary eyewall did not exhibit a clear signature of processes preferred in a specific quadrant, and a temporal analysis of the secondary eyewall revealed a complex evolution of its structure

  15. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  16. OIL DETECTION IN A COASTAL MARSH WITH POLARIMETRIC SAR

    Directory of Open Access Journals (Sweden)

    E. Ramsey III

    2012-09-01

    Full Text Available The NASA UAVSAR was deployed June 2010 to support Deep Water Horizon oil spill response activities specifically, oil detection and characterization, oil extent mapping in wetlands, coastal resource impact detection, and ecosystem recovery. The UAVSAR platform demonstrated enhanced capability to act rapidly and provide targeted mapping response. Our research focused on the effectiveness of high spatial resolution and fully polarimetric L-band Synthetic Aperture Radar (PolSAR for mapping oil in wetlands, specifically within Barataria Bay in eastern coastal Louisiana. Barataria Bay contained a numerous site observations confirming spatially extensive shoreline oil impacts, multiple oil spill UAVSAR collections, and a near anniversary 2009 collection. PolSAR oil detection relied on decomposition and subsequent classifications of the single look complex (SLC calibrated radar cross sections representing the complex elements of the scattering matrix. Initial analyses results found that shoreline marsh structural damage as well as oil on marsh plants and sediments without canopy structural damage were exhibited as anomalous features on post-spill SLC scenes but were not evident on the pre-spill SLC scene collected in 2009. Pre-spill and post-spill Freeman-Durden (FD and Cloude-Pottier (CP decompositions and the Wishart classifications seeded with the FD and CP classes (Wishart-FD also highlighted these nearshore features as a change in dominate scatter from pre-spill to post-spill. SLC analyses also indicated penetration of oil ladened waters into interior marshes well past the immediate shorelines; however, these post-spill SLC analyses results could not be validated due to the lack of observational data and possible flooding in the pre-spill SLC scene.

  17. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  18. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  19. MICROWAVE STABILIZATION AND MICROWAVE-STIMULATED FIXATION

    NARCIS (Netherlands)

    BOON, ME; KOK, LP

    1990-01-01

    In microwave stabilization the tissue is prepared for histoprocessing through the uniformly distributed increased temperature. This procedure can be called unique: Exclusively by the uniform well-controlled temperature rise to 55-degrees-C it is possible to stabilize the tissue to the needed

  20. Probabilistic discrimination between liquid rainfall events, hailstorms, biomass burning and industrial fires from C-Band Radar Polarimetric Variables

    Science.gov (United States)

    Valencia, J. M.; Sepúlveda, J.; Hoyos, C.; Herrera, L.

    2017-12-01

    Characterization and identification of fire and hailstorm events using weather radar data in a tropical complex topography region is an important task in risk management and agriculture. Polarimetric variables from a C-Band Dual polarization weather radar have potential uses in particle classification, due to the relationship their sensitivity to shape, spatial orientation, size and fall behavior of particles. In this sense, three forest fires and two chemical fires were identified for the Áburra Valley regions. Measurements were compared between each fire event type and with typical data radar retrievals for liquid precipitation events. Results of this analysis show different probability density functions for each type of event according to the particles present in them. This is very important and useful result for early warning systems to avoid precipitation false alarms during fire events within the study region, as well as for the early detection of fires using radar retrievals in remote cases. The comparative methodology is extended to hailstorm cases. Complementary sensors like laser precipitation sensors (LPM) disdrometers and meteorological stations were used to select dates of solid precipitation occurrence. Then, in this dates weather radar data variables were taken in pixels surrounding the stations and solid precipitation polar values were statistically compared with liquid precipitation values. Spectrum precipitation measured by LPM disdrometer helps to define typical features like particles number, fall velocities and diameters for both precipitation types. In addition, to achieve a complete hailstorm characterization, other meteorological variables were analyzed: wind field from meteorological stations and radar wind profiler, profiling data from Micro Rain Radar (MRR), and thermodynamic data from a microwave radiometer.

  1. Microwaves - the hidden danger

    International Nuclear Information System (INIS)

    Brodeur, P.

    1987-01-01

    Today, highly frequent radio waves are regarded as undangerous to man. Diseases seen at radar-technicians during the 2nd World War, however, indicated that microwaves applied in radar systems were hazardous to health. The Russian work medicine has been knowing microwave-caused hazards in industry since the beginning of the thirties. Therefore in some East-European countries there are terms of protection and severe norms of safety for the staying of persons in the radiation sphere of microwaves. (orig.) [de

  2. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  3. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  4. Polarimetric borehole radar measurement near Nojima fault and its application to subsurface crack characterization; Polarimetric borehole radar ni yoru Nojima danso shuhen no chika kiretsu keisoku jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Taniguchi, Y.; Miwa, T.; Niitsuma, H. [Tohoku University, Sendai (Japan); Ikeda, R. [National Research Institute for Disaster Prevention, Tsukuba (Japan); Makino, K. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-05-27

    Practical application of subsurface crack characterization by the borehole radar measurement to which the radar polarimetric method was introduced was attempted to measuring objects for which the borehole radar has not been much used, for example, the inside of low loss rock mass or fracture zone where cracks tightly exist. A system was trially manufactured which makes the radar polarimetric measurement possible in the borehole at a 1000m depth and with a about 10cm diameter, and a field experiment was conducted for realizing the subsurface crack characterization near the Nojima fault. For the measuring experiment by the polarimetric borehole radar, used were Iwaya borehole and Hirabayashi borehole drilled in the north of Awaji-shima, Hyogo-ken. In a comparison of both polarization systems of Hirabayashi borehole, reflected waves at depths of 1038m and 1047m are relatively stronger in both polarization systems than those with the same polarization form and at different depths, whereas reflected waves around a 1017m depth are strong only as to the parallel polarization system. Characteristics of the polarization in this experiment indirectly reflect crack structures. 6 refs., 6 figs., 1 tab.

  5. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    Science.gov (United States)

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  6. Wind direction over the ocean determined by an airborne, imaging, polarimetric radiometer system

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    2001-01-01

    The speed and direction of winds over the ocean can be determined by polarimetric radiometers. This has been established by theoretical work and demonstrated experimentally using airborne radiometers carrying out circle flights and thus measuring the full 360° azimuthal response from the sea surf...

  7. Detection and Monitoring of Inundation with Polarimetric L-Band SAR

    Science.gov (United States)

    Chapman, B. D.; Celi, J. E.; Hamilton, S. K.; McDonald, K. C.

    2014-12-01

    It has been known for decades that at wavelengths L-band or longer, SAR is a sensitive indicator of inundation underneath forest canopies. The high resolution detection of below-canopy inundation is difficult to accomplish at regional to continental scales using other types of remote sensing sensors, making it a compelling SAR measurement especially useful for studying wetland inundation dynamics, particularly in difficult-to-reach access, canopy-covered tropical forest environments. Most results have utilized spaceborne SAR observations with less than fully polarimetric data. Since one of the objectives of the NISAR mission is to characterize and understand the fundamental process that drives changes to ecosystems such as wetland inundated areas, we will discuss the sensitivity of L-band SAR to inundation. We will illustrate the detection of inundation using fully polarimetric L-band SAR data from UAVSAR, NASA's airborne SAR, over a tropical forest region in Ecuador and Peru. At the same time as the data collection, measurements were made on the ground to characterize vegetation and inundation characteristics. The field data were used to validate the results of classifying the vanZyl decomposition of the polarimetric data. We compare this classification with that possible with a reduced subset of the polarimetric observations.

  8. Polarimetric Determination of Starch in Raw Materials and Discharged Waste from Beer Production

    Directory of Open Access Journals (Sweden)

    Anca Farcas

    2013-11-01

    Full Text Available Brewer’s spent grain (BGS is a by-product of thebrewing process, consisting of the solid fraction of barley malt remainingafter separation of worth. In this research, raw materials and discharged waste from beer production were evaluated on the basis of starch content, using Ewers polarimetric method.

  9. The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager (SO/PHI)

    Energy Technology Data Exchange (ETDEWEB)

    Gandorfer, Achim; Solanki, Sami K; Woch, Joachim [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany); Pillet, Valentin MartInez [Instituto de Astrofisica de Canarias, C/ VIa Lactea, s/n, E38205 - La Laguna (Tenerife) (Spain); Herrero, Alberto Alvarez [Instituto Nacional de Tecnica Aeroespacial, E-28850, Torrejon de Ardoz, Madrid (Spain); Appourchaux, Thierry, E-mail: gandorfer@mps.mpg.de [Institut d' Astrophysique Spatiale, CNRS-Universite Paris XI UMR8617, 91405 Orsay Cedex (France)

    2011-01-01

    We briefly outline the scientific and instrumental aspects of ESA's Solar Orbiter mission. Special emphasis is given to the Polarimetric and Helioseismic Imager, the instrument with the highest relevance for helioseismology applications, which will observe gas motions and the vector magnetic field in the photosphere at high spatial and temporal resolution.

  10. Applications of Polarimetric Radar to the Hydrometeorology of Urban Floods in St. Louis

    Science.gov (United States)

    Chaney, M. M.; Smith, J. A.; Baeck, M. L.

    2017-12-01

    Predicting and responding to flash flooding requires accurate spatial and temporal representation of rainfall rates. The polarimetric upgrade of all US radars has led to optimism about more accurate rainfall rate estimation from the NEXRAD network of WSR-88D radars in the US. Previous work has proposed different algorithms to do so, but significant uncertainties remain, especially for extreme short-term rainfall rates that control flash floods in urban settings. We will examine the relationship between radar rainfall estimates and gage rainfall rates for a catalog of 30 storms in St. Louis during the period of polarimetric radar measurements, 2012-2016. The storms are selected to provide a large sample of extreme rainfall measurements at the 15-minute to 3-hour time scale. A network of 100 rain gages and a lack of orographic or coastal effects make St. Louis an interesting location to study these relationships. A better understanding of the relationships between polarimetric radar measurements and gage rainfall rates will aid in refining polarimetric radar rainfall algorithms, in turn helping hydrometeorologists predict flash floods and other hazards associated with severe rainfall. Given the fact that St. Louis contains some of the flashiest watersheds in the United States (Smith and Smith, 2015), it is an especially important urban area in which to have accurate, real-time rainfall data. Smith, Brianne K, and James A Smith. "The Flashiest Watersheds in the Contiguous United States." American Meteorological Society (2015): 2365-2381. Web.

  11. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  12. Compact Polarimetric SAR Ship Detection with m-δ Decomposition Using Visual Attention Model

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2016-09-01

    Full Text Available A few previous studies have illustrated the potentials of compact polarimetric Synthetic Aperture Radar (CP SAR in ship detection. In this paper, we design a ship detection algorithm of CP SAR from the perspective of computer vision. A ship detection algorithm using the pulsed cosine transform (PCT visual attention model is proposed to suppress background clutter and highlight conspicuous ship targets. It is the first time that a visual attention model is introduced to CP SAR application. The proposed algorithm is a quick and complete framework for practical use. Polarimetric features—the relative phase δ and volume scattering component—are extracted from m-δ decomposition to eliminate false alarms and modify the PCT model. The constant false alarm rate (CFAR algorithm based on lognormal distribution is adopted to detect ship targets, after a clutter distribution fitting procedure of the modified saliency map. The proposed method is then tested on three simulated circular-transmit-linear-receive (CTLR mode images, which covering East Sea of China. Compared with the detection results of SPAN and the saliency map with only single-channel amplitude, the proposed method achieves the highest detection rates and the lowest misidentification rate and highest figure of merit, proving the effectiveness of polarimetric information of compact polarimetric SAR ship detection and the enhancement from the visual attention model.

  13. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover

    Science.gov (United States)

    Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder

    2009-01-01

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...

  14. Feature level fusion of polarimetric infrared and GPR data for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Jong, W. de; Schutte, K.; Yarovoy, A.G.; Kovalenko, V.; Bloemenkamp, R.F.

    2003-01-01

    Feature-level sensor fusion is the process where specific information (i.e. features) from objects detected by different sensors are combined and classified. This paper focuses on the feature-level fusion procedure for a sensor combination consisting of a polarimetric infrared (IR) imaging sensor

  15. Design of a Small, Low Cost, P-Band Airborne Polarimetric Synthetic Aperture Radar

    NARCIS (Netherlands)

    Figueras i Ventura, J.; Hoogeboom, P.

    2004-01-01

    A preliminary study of the design of a small, low cost, P-band airborne, polarimetric Synthetic Aperture Radar desired by the Wageningen University and the Borneo Orangutan Survival Foundation (BOS) to carry out forest biomass monitoring in Indonesia is presented. The requirements of the application

  16. Unsupervised polarimetric synthetic aperture radar image classification based on sketch map and adaptive Markov random field

    Science.gov (United States)

    Shi, Junfei; Li, Lingling; Liu, Fang; Jiao, Licheng; Liu, Hongying; Yang, Shuyuan; Liu, Lu; Hao, Hongxia

    2016-04-01

    Markov random field (MRF) model is an effective tool for polarimetric synthetic aperture radar (PolSAR) image classification. However, due to the lack of suitable contextual information in conventional MRF methods, there is usually a contradiction between edge preservation and region homogeneity in the classification result. To preserve edge details and obtain homogeneous regions simultaneously, an adaptive MRF framework is proposed based on a polarimetric sketch map. The polarimetric sketch map can provide the edge positions and edge directions in detail, which can guide the selection of neighborhood structures. Specifically, the polarimetric sketch map is extracted to partition a PolSAR image into structural and nonstructural parts, and then adaptive neighborhoods are learned for two parts. For structural areas, geometric weighted neighborhood structures are constructed to preserve image details. For nonstructural areas, the maximum homogeneous regions are obtained to improve the region homogeneity. Experiments are taken on both the simulated and real PolSAR data, and the experimental results illustrate that the proposed method can obtain better performance on both region homogeneity and edge preservation than the state-of-the-art methods.

  17. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application

    Directory of Open Access Journals (Sweden)

    Chen Siwei

    2017-10-01

    Full Text Available Backscattering of radar targets is sensitive to the relative geometry between target orientations and the radar line of sight. This scattering diversity makes imaging radar represented by polarimetric Synthetic Aperture Radar (SAR information processing and applications very difficult. This situation has become one of the main bottlenecks in the interpretation of the target scattering mechanism and quantitative applications. In this work, we review and introduce a new interpretation of the target scattering mechanism in the rotation domain along the radar line of sight. This concept includes the recently established uniform polarimetric matrix rotation theory and polarimetric coherence pattern visualization and interpretation in the rotation domain. The core idea of target scattering interpretation in the rotation domain is to extend the amount of target information acquired at a given geometry to the rotation domain, which then provides fundamentals for the deep mining and utilization of target scattering information. This work mainly focuses on the investigation of derived new polarimetric feature sets and application demonstrations. Comparison study results validate the promising potential for the application of the established interpretation framework in the rotation domain with respect to target discrimination and classification.

  18. Polarimetric Determination of Starch in Raw Materials and Discharged Waste from Beer Production

    OpenAIRE

    Anca Farcas; Maria Tofana; Sonia Socaci; Stancuta Scrob; Liana Salanta; Doinita Bors

    2013-01-01

    Brewer’s spent grain (BGS) is a by-product of thebrewing process, consisting of the solid fraction of barley malt remainingafter separation of worth. In this research, raw materials and discharged waste from beer production were evaluated on the basis of starch content, using Ewers polarimetric method.

  19. Comparisons of Circular Transmit and Linear Receive Compact Polarimetric SAR Features for Oil Slicks Discrimination

    Directory of Open Access Journals (Sweden)

    Yu Li

    2015-01-01

    Full Text Available Compact polarimetric (CP synthetic aperture radar (SAR has proven its potential in distinguishing oil slicks and look-alikes. Polarimetric information can be retrieved directly from scattering vector or from reconstructed pseudo-Quad-Pol covariance matrix of CP SAR data. In this paper, we analysed features from Circular Transmit and Linear Receive (CTLR CP SAR data that are derived by taking both of these two methods. K-means clustering followed by accuracy assessment was also implemented for performance evaluation. Through experiments that were conducted based on L-band UAVSAR fully polarimetric data, it was found that optimum extraction methods varied for different features. The histogram analysis and segmentation results also demonstrated the comparable performance of CP SAR features in distinguishing different damping properties within oil slicks. This study proposed a framework of statistically analyzing polarimetric SAR (Pol-SAR features and provided guidelines for determining optimum feature extraction methods from CP SAR data and for marine oil-spills detection and classification.

  20. Probe-Fed Stacked Microstrip Patch Antenna for High-Resolution Polarimetric C-Band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes a C-band, dual-linear polarization wideband antenna for use in the next-generation of the Danish high-resolution, airborne polarimetric synthetic aperture radar (SAR) system, EMISAR. The design and performance of a probe-fed, stacked microstrip patch element, operating from 4...

  1. The PHARUS Project; Real Time Digital Processing of Airborne Polarimetric Radar Signals

    NARCIS (Netherlands)

    Pouwels, H.; Hoogeboom, P.; Koomen, P.J.; Snoeij, P.

    1992-01-01

    The Dutch PHARUS project aims for the developrlenÈ of a polarimetric C-band aircraft SAR, to be finalized in 1994. The PHARUS systen consists of three subsystens: the radar, the subsystem for the onboard data processing and recording and the ground-based subsystem for SAR processing. PHARUS is a

  2. The Design and Development of a Polarimetric Phased Array Airborne SAR Sensor

    NARCIS (Netherlands)

    Snoeij, P.; Pouwels, H.; Koomen, P.J.; Vermeulen, B.C.B.; Hoogeboom, P.

    1996-01-01

    A polarimetric C-band airborne SAR has been developed in the Netherlands. The system makes use of a phased array antenna with solid state amplifiers. The project consists of two phases, a definition phase and a realization phase. The definition phase consisted of the actual realization of a SAR

  3. Microwave photonics shines

    Science.gov (United States)

    Won, Rachel

    2011-12-01

    The combination of microwave photonics and optics has advanced many applications in defence, wireless communications, imaging and network infrastructure. Rachel Won talks to Jianping Yao from the University of Ottawa in Canada about the importance of this growing field.

  4. Emitron: microwave diode

    Science.gov (United States)

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  5. Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks

    Science.gov (United States)

    Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.

    2012-04-01

    The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster

  6. Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping

    Science.gov (United States)

    Maghsoudi, Yasser

    Forests are a major natural resource of the Earth and control a wide range of environmental processes. Forests comprise a major part of the planet's plant biodiversity and have an important role in the global hydrological and biochemical cycles. Among the numerous potential applications of remote sensing in forestry, forest mapping plays a vital role for characterization of the forest in terms of species. Particularly, in Canada where forests occupy 45% of the territory, representing more than 400 million hectares of the total Canadian continental area. In this thesis, the potential of polarimetric SAR (PolSAR) Radarsat-2 data for forest mapping is investigated. This thesis has two principle objectives. First is to propose algorithms for analyzing the PolSAR image data for forest mapping. There are a wide range of SAR parameters that can be derived from PolSAR data. In order to make full use of the discriminative power offered by all these parameters, two categories of methods are proposed. The methods are based on the concept of feature selection and classifier ensemble. First, a nonparametric definition of the evaluation function is proposed and hence the methods NFS and CBFS. Second, a fast wrapper algorithm is proposed for the evaluation function in feature selection and hence the methods FWFS and FWCBFS. Finally, to incorporate the neighboring pixels information in classification an extension of the FWCBFS method i.e. CCBFS is proposed. The second objective of this thesis is to provide a comparison between leaf-on (summer) and leaf-off (fall) season images for forest mapping. Two Radarsat-2 images acquired in fine quad-polarized mode were chosen for this study. The images were collected in leaf-on and leaf-off seasons. We also test the hypothesis whether combining the SAR parameters obtained from both images can provide better results than either individual datasets. The rationale for this combination is that every dataset has some parameters which may be

  7. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  8. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  9. Investigation of Polarimetric and Electrical Characteristics of Natural and Triggered Lightning Strikes

    Science.gov (United States)

    Hyland, P. T.; Biggerstaff, M. I.; Uman, M. A.; Jordan, D. M.; Hill, J. D.; Pilkey, J. T.; Ngin, T.; Blakeslee, R. J.; Krehbiel, P. R.; Rison, W.; Winn, W. P.; Eack, K.; Trueblood, J.; Edens, H. E.

    2013-12-01

    For the past three summers, the University of Oklahoma has deployed three mobile, polarimetric radars to the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida and Langmuir Laboratory near Socorro, New Mexico for the purpose of investigating the relationship between cloud structure and the propagation of triggered and natural lightning channels. This presentation will highlight observations from select natural and triggered events at these two facilities. During the summer of 2012, University of Oklahoma radar operators made a launch recommendation to the ICLRT during the passage of Tropical Storm Debby over northeast Florida that resulted in a successful triggered flash with 11 return strokes. The trigger was attempted as precipitation streamers within the stratiform rainbands of Tropical Storm Debby approached the launch site. According to the National Lightning Detection Network (NLDN), there were no reported natural cloud-to-ground (CG) flashes within 60 km of the ICLRT 20 hours before and eight hours after the triggered flash. The recommendation was made based on previous analyses of the storm structure of trigger attempts from the ICLRT that indicated the coincidence of several successful triggers with descending regions of enhanced radar reflectivity, or descending precipitation packets (DePPs). Polarimetric data from the frequency-agile Rapid-scanning X-band Polarimetric (RaXPol) radar as well as data from the lightning mapping array (LMA) and electric field meter (EFM) networks from the ICLRT for this event will be presented. Past analyses also revealed ice alignment signatures in differential phase and specific differential phase as strong electric fields near the top of electrified clouds cause small ice particles to become vertically aligned. These signatures are especially noticeable for circularly polarized radars. Polarimetric data from the Shared Mobile Atmospheric Research & Teaching (SMART) radar and Ra

  10. Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications

    Science.gov (United States)

    Vivekanandan, Jothiram; Loew, Eric

    2018-01-01

    NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.

  11. Polarimetric survey of main-belt asteroids⋆. III. Results for 33 X-type objects

    Science.gov (United States)

    Cañada-Assandri, M.; Gil-Hutton, R.; Benavidez, P.

    2012-06-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows the simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data of a sample of more than 170 asteroids were obtained. In this paper the results for 33 X-type objects are presented, several of them are being polarimetrically observed for the first time. Using these data we found polarization curves and polarimetric parameters for different groups among this taxonomic class and that there are objects with very different albedo in the sub-classes of the X taxonomic complex. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A11

  12. Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features

    Directory of Open Access Journals (Sweden)

    Lamei Zhang

    2010-01-01

    Full Text Available The classification of polarimetric SAR image based on Multiple-Component Scattering Model (MCSM and Support Vector Machine (SVM is presented in this paper. MCSM is a potential decomposition method for a general condition. SVM is a popular tool for machine learning tasks involving classification, recognition, or detection. The scattering powers of single-bounce, double-bounce, volume, helix, and wire scattering components are extracted from fully polarimetric SAR images. Combining with the scattering powers of MCSM and the selected texture features from Gray-level cooccurrence matrix (GCM, SVM is used for the classification of polarimetric SAR image. We generate a validity test for the proposed method using Danish EMISAR L-band fully polarimetric data of Foulum Area (DK, Denmark. The preliminary result indicates that this method can classify most of the areas correctly.

  13. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-band Dual Polarimetric (NPOL) Doppler Radar MC3E dataset was collected by the NASA NPOL radar, which was developed by a research...

  14. PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain

    Directory of Open Access Journals (Sweden)

    Chensong Tao

    2017-07-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR. Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM/decision tree (DT classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM/96.38% (with DT, while that of the conventional classification method is 93.87% (with SVM/94.12% (with DT, respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM/99.39% (with DT, which is also higher

  15. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walt; Krajewski, Witek; Wolff, David; Gatlin, Patrick

    2015-04-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  16. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walter; Wolff, David; Krajewski, Witek; Gatlin, Patrick

    2015-01-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  17. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Marinak, M.

    1988-01-01

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  18. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  19. Polarimetric synthetic aperture radar application for tropical peatlands classification: a case study in Siak River Transect, Riau Province, Indonesia

    Science.gov (United States)

    Novresiandi, Dandy Aditya; Nagasawa, Ryota

    2017-01-01

    Mapping spatial distributions of tropical peatlands is important for properly estimating carbon emissions and for providing information that aids in the sustainable management of tropical peatlands, particularly in Indonesia. This study evaluated the performance of phased array type L-band synthetic aperture radar (SAR) (PALSAR) dual-polarization and fully polarimetric data for tropical peatlands classification. The study area was in Siak River Transect, Riau Province, Indonesia, a rapidly developing region, where the peatland has been intensively converted mostly into oil palm plantations over the last two decades. Thus, polarimetric features derived after polarimetric decompositions, backscatter coefficients measurements, and the radar vegetation index were evaluated to classify tropical peatlands using the decision tree classifier. Overall, polarimetric features generated by the combination of dual-polarization and fully polarimetric data yielded an overall accuracy (OA) of 69% and a kappa coefficient (K) of 0.57. The integration of an additional feature, "distance to river," to the algorithm increased the OA to 76% and K to 0.66. These results indicated that the methodology in this study might serve as an efficient tool in tropical peatlands classification, especially when involving the use of L-band SAR dual-polarization and fully polarimetric data.

  20. Polarimetric Radar Characteristics of Simulated and Observed Intense Convection Between Continental and Maritime Environment

    Science.gov (United States)

    Matsui, T.; Dolan, B.; Tao, W. K.; Rutledge, S. A.; Iguchi, T.; Barnum, J. I.; Lang, S. E.

    2017-12-01

    This study presents polarimetric radar characteristics of intense convective cores derived from observations as well as a polarimetric-radar simulator from cloud resolving model (CRM) simulations from Midlatitude Continental Convective Clouds Experiment (MC3E) May 23 case over Oklahoma and a Tropical Warm Pool-International Cloud Experiment (TWP-ICE) Jan 23 case over Darwin, Australia to highlight the contrast between continental and maritime convection. The POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a state-of-art T-matrix-Mueller-Matrix-based polarimetric radar simulator that can generate synthetic polarimetric radar signals (reflectivity, differential reflectivity, specific differential phase, co-polar correlation) as well as synthetic radar retrievals (precipitation, hydrometeor type, updraft velocity) through the consistent treatment of cloud microphysics and dynamics from CRMs. The Weather Research and Forecasting (WRF) model is configured to simulate continental and maritime severe storms over the MC3E and TWP-ICE domains with the Goddard bulk 4ICE single-moment microphysics and HUCM spectra-bin microphysics. Various statistical diagrams of polarimetric radar signals, hydrometeor types, updraft velocity, and precipitation intensity are investigated for convective and stratiform precipitation regimes and directly compared between MC3E and TWP-ICE cases. The result shows MC3E convection is characterized with very strong reflectivity (up to 60dBZ), slight negative differential reflectivity (-0.8 0 dB) and near-zero specific differential phase above the freezing levels. On the other hand, TWP-ICE convection shows strong reflectivity (up to 50dBZ), slight positive differential reflectivity (0 1.0 dB) and differential phase (0 0.8 dB/km). Hydrometeor IDentification (HID) algorithm from the observation and simulations detect hail-dominant convection core in MC3E, while graupel-dominant convection core in TWP-ICE. This land-ocean contrast

  1. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  2. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  3. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  4. PHYSICS OF MICROWAVES IN MICROSCOPY

    NARCIS (Netherlands)

    KOK, LP

    1990-01-01

    Microwave technology can help in the preparation of samples for microscopy in many different ways. This paper discusses the physics of microwaves. It gives the theoretical background to understand the practical procedures. Some peculiarities in the optics of microwaves are pointed out. Diffusion

  5. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  6. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  7. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  8. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  9. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    Science.gov (United States)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  10. The effects of thermal equilibrium and contrast in LWIR polarimetric images.

    Science.gov (United States)

    Tyo, J Scott; Ratliff, Bradley M; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-11-12

    Long-wave infrared (LWIR) polarimetric signatures provide the potential for day-night detection and identification of objects in remotely sensed imagery. The source of optical energy in the LWIR is usually due to thermal emission from the object in question, which makes the signature dependent primarily on the target and not on the external environment. In this paper we explore the impact of thermal equilibrium and the temperature of (unseen) background objects on LWIR polarimetric signatures. We demonstrate that an object can completely lose its polarization signature when it is in thermal equilibrium with its optical background, even if it has thermal contrast with the objects that appear behind it in the image.

  11. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    Directory of Open Access Journals (Sweden)

    T. H. Raupach

    2017-07-01

    Full Text Available A new technique for estimating the raindrop size distribution (DSD from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.

  12. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    Science.gov (United States)

    Raupach, Timothy H.; Berne, Alexis

    2017-07-01

    A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.

  13. Photo-polarimetric sensitivities to layering and mixing of absorbing aerosols

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2011-09-01

    Full Text Available We investigate to what extent multi-angle polarimetric measurements are sensitive to vertical mixing/layering of absorbing aerosols, adopting calibration uncertainty of 1.5% in intensity and 0.5% in the degree of linear polarization of Multiangle Spectro-Polarimetric Imager (MSPI. Employing both deterministic and Monte Carlo radiative transfer codes with polarization, we conduct modeling experiments to determine how the measured Stokes vector elements are affected at UV and short visible wavelengths by the vertical distribution, mixing and layering of smoke and dust aerosols for variety of microphysical parameters. We find that multi-angular polarimetry holds the potential to infer dust-layer heights and thicknesses at blue visible channel due to its lesser sensitivity to changes in dust coarse mode optical properties, but higher sensitivity to the dust vertical profiles. Our studies quantify requirements for obtaining simultaneous information on aerosol layer height and absorption under MSPI measurement uncertainties.

  14. Investigation of hydrometeor classification uncertainties through the POLARRIS polarimetric radar simulator

    Science.gov (United States)

    Dolan, B.; Rutledge, S. A.; Barnum, J. I.; Matsui, T.; Tao, W. K.; Iguchi, T.

    2017-12-01

    POLarimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a framework that has been developed to simulate radar observations from cloud resolving model (CRM) output and subject model data and observations to the same retrievals, analysis and visualization. This framework not only enables validation of bulk microphysical model simulated properties, but also offers an opportunity to study the uncertainties associated with retrievals such as hydrometeor classification (HID). For the CSU HID, membership beta functions (MBFs) are built using a set of simulations with realistic microphysical assumptions about axis ratio, density, canting angles, size distributions for each of ten hydrometeor species. These assumptions are tested using POLARRIS to understand their influence on the resulting simulated polarimetric data and final HID classification. Several of these parameters (density, size distributions) are set by the model microphysics, and therefore the specific assumptions of axis ratio and canting angle are carefully studied. Through these sensitivity studies, we hope to be able to provide uncertainties in retrieved polarimetric variables and HID as applied to CRM output. HID retrievals assign a classification to each point by determining the highest score, thereby identifying the dominant hydrometeor type within a volume. However, in nature, there is rarely just one a single hydrometeor type at a particular point. Models allow for mixing ratios of different hydrometeors within a grid point. We use the mixing ratios from CRM output in concert with the HID scores and classifications to understand how the HID algorithm can provide information about mixtures within a volume, as well as calculate a confidence in the classifications. We leverage the POLARRIS framework to additionally probe radar wavelength differences toward the possibility of a multi-wavelength HID which could utilize the strengths of different wavelengths to improve HID classifications. With

  15. Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available The purpose of this research is to analyze how changes in acquisition time and incidence angle affect various C-band synthetic aperture radar (SAR polarimetric intensities, co-polarized phase information, polarimetric response plots and decomposition parameters for various crops typical of Northern Ontario, Canada. We examine how these parameters may be used to monitor the growth stages of five common cash crops, namely, barley (Hordeum vulgare, canola (Brassica napus, oat (Avena sativa, soybean (Glycine max and wheat (Triticum spp.. In total, nine RADARSAT-2 polarimetric images were analyzed across a 14-week period beginning in June and ending in September 2011 using two incidence angles of approximately 26° and 41°. As expected, the backscatter intensities for all targets were found to show a higher response when acquired at the steeper incidence angle (26°. All cash crop targets showed a rise and fall in backscatter response over the course of the growing season, coinciding with changing growth stages. Slight phase differences were observed for cereal crops, possibly due to one of the polarizations penetrating between the rows allowing double-bounce to occur. The polarimetric response plots and decompositions offered insight into the scattering mechanisms of each crop type, generally showing an increase in volume scattering as the crops reached maturity. Specifically, the contributions of the crops increased towards the volume scattering component and zones 4 and 2, as the crops matured in regards to the Freeman-Durden and Cloude-Pottier decompositions respectively. Overall, soybean and canola showed a more similar response in comparison to the cereal cash crops. Although the study focused on Northern Ontario, it is anticipated that these results would be relevant in investigations of multi-temporal RADARSAT-2 for agricultural zones with similar crop types.

  16. On the possibility of noninvasive polarimetric determination of glucose content in skin

    Science.gov (United States)

    Pravdin, A. B.; Spivak, V. A.; Yakovlev, D. A.

    2016-01-01

    Based on real structure and optical properties of the dermis, we analyzed the possibility of polarimetric measurement of glucose content in the skin. It was shown that, at physiological concentrations of glucose in the interstitial fluid, the optical activity of glucose is not manifested in the polarization and optical properties of the tissue, since the optical activity of glucose is almost completely suppressed by the linear birefringence of the dermis.

  17. An Inter-calibrated Passive Microwave Brightness Temperature Data Record and Ocean Products

    Science.gov (United States)

    Hilburn, K. A.; Wentz, F. J.

    2014-12-01

    Inter-calibration of passive microwave sensors has been the subject of on-going activity at Remote Sensing Systems (RSS) since 1974. RSS has produced a brightness temperature TB data record that spans the last 28 years (1987-2014) from inter-calibrated passive microwave sensors on 14 satellites: AMSR-E, AMSR2, GMI, SSMI F08-F15, SSMIS F16-F18, TMI, WindSat. Accompanying the TB record are a suite of ocean products derived from the TBs that provide a 28-year record of wind speed, water vapor, cloud liquid, and rain rate; and 18 years (1997-2014) of sea surface temperatures, corresponding to the period for which 6 and/or 10 GHz measurements are available. Crucial to the inter-calibration and ocean product retrieval are a highly accurate radiative transfer model RTM. The RSS RTM has been continually refined for over 30 years and is arguably the most accurate model in the 1-100 GHz spectrum. The current generation of TB and ocean products, produced using the latest version of the RTM, is called Version-7. The accuracy of the Version-7 inter-calibration is estimated to be 0.1 K, based on inter-satellite comparisons and validation of the ocean products against in situ measurements. The data record produced by RSS has had a significant scientific impact. Over just the last 14 years (2000-2013) RSS data have been used in 743 peer-reviewed journal articles. This is an average of 4.5 peer-reviewed papers published every month made possible with RSS data. Some of the most important scientific contributions made by RSS data have been to the study of the climate. The AR5 Report "Climate Change 2013: The Physical Science Basis" by the Intergovernmental Panel on Climate Change (IPCC), the internationally accepted authority on climate change, references 20 peer-reviewed journal papers from RSS scientists. The report makes direct use of RSS water vapor data, RSS atmospheric temperatures from MSU/AMSU, and 9 other datasets that are derived from RSS data. The RSS TB data record is

  18. Large scale evaluation of soil moisture retrievals from passive microwave observations

    Science.gov (United States)

    Parinussa, R.; Holmes, T. R.; Crow, W. T.; De Jeu, R. A.

    2011-12-01

    For several years passive microwave observations have been used to retrieve surface soil moisture from the Earth's surface. Several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and WindSat have been used for this purpose using multi-channel observations. Large scale validation of these retrievals is generally hampered by a lack of ground-based observation networks with sufficient spatial density to be accurately up-scaled to the resolution of satellite-based soil moisture retrievals. In response to this challenge, two new global evaluation techniques have been proposed which circumvent the need for extensive ground-based soil moisture observations. The first technique (Rvalue) is based on calculating the correlation coefficient between known rainfall errors and Kalman filter analysis increments realized during the assimilation of remotely sensed soil moisture into an antecedent precipitation index. The second technique is based on a so-called Triple Collocation (TC) analysis, which is a statistical tool for estimating the root mean square error (RMSE) of a set of three linearly related data sources with independent error structures. These two newly-developed, large-scale soil moisture evaluation techniques are applied for cross-verification on a global scale. Both techniques are also used to determine the sensitivity of soil moisture retrievals to land surface temperature estimates by artificially degrading the satellite signal used for the retrieval of this important parameter. Instead of coincident land surface temperature observations from the same satellite, external sources for land surface temperature are also evaluated using the same evaluation techniques. Finally, both day- and night-time observations are evaluated separately to determine the impact of the different physical conditions during day- and night-time. The evaluation results produced by the Rvalue and TC soil moisture verification approaches show a high mutual

  19. Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil

    Science.gov (United States)

    Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long

    2017-10-01

    Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.

  20. IMPROVED SEARCH OF PRINCIPAL COMPONENT ANALYSIS DATABASES FOR SPECTRO-POLARIMETRIC INVERSION

    International Nuclear Information System (INIS)

    Casini, R.; Lites, B. W.; Ramos, A. Asensio; Ariste, A. López

    2013-01-01

    We describe a simple technique for the acceleration of spectro-polarimetric inversions based on principal component analysis (PCA) of Stokes profiles. This technique involves the indexing of the database models based on the sign of the projections (PCA coefficients) of the first few relevant orders of principal components of the four Stokes parameters. In this way, each model in the database can be attributed a distinctive binary number of 2 4n bits, where n is the number of PCA orders used for the indexing. Each of these binary numbers (indices) identifies a group of ''compatible'' models for the inversion of a given set of observed Stokes profiles sharing the same index. The complete set of the binary numbers so constructed evidently determines a partition of the database. The search of the database for the PCA inversion of spectro-polarimetric data can profit greatly from this indexing. In practical cases it becomes possible to approach the ideal acceleration factor of 2 4n as compared to the systematic search of a non-indexed database for a traditional PCA inversion. This indexing method relies on the existence of a physical meaning in the sign of the PCA coefficients of a model. For this reason, the presence of model ambiguities and of spectro-polarimetric noise in the observations limits in practice the number n of relevant PCA orders that can be used for the indexing

  1. Assessment of Polarimetric SAR Interferometry for Improving Ship Classification based on Simulated Data

    Directory of Open Access Journals (Sweden)

    Jordi J. Mallorqui

    2008-12-01

    Full Text Available This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels’ geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions.

  2. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  3. Effects of surface materials on polarimetric-thermal measurements: applications to face recognition.

    Science.gov (United States)

    Short, Nathaniel J; Yuffa, Alex J; Videen, Gorden; Hu, Shuowen

    2016-07-01

    Materials, such as cosmetics, applied to the face can severely inhibit biometric face-recognition systems operating in the visible spectrum. These products are typically made up of materials having different spectral properties and color pigmentation that distorts the perceived shape of the face. The surface of the face emits thermal radiation, due to the living tissue beneath the surface of the skin. The emissivity of skin is approximately 0.99; in comparison, oil- and plastic-based materials, commonly found in cosmetics and face paints, have an emissivity range of 0.9-0.95 in the long-wavelength infrared part of the spectrum. Due to these properties, all three are good thermal emitters and have little impact on the heat transferred from the face. Polarimetric-thermal imaging provides additional details of the face and is also dependent upon the thermal radiation from the face. In this paper, we provide a theoretical analysis on the thermal conductivity of various materials commonly applied to the face using a metallic sphere. Additionally, we observe the impact of environmental conditions on the strength of the polarimetric signature and the ability to recover geometric details. Finally, we show how these materials degrade the performance of traditional face-recognition methods and provide an approach to mitigating this effect using polarimetric-thermal imaging.

  4. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering.

    Science.gov (United States)

    He, Si; Wang, Xia; Xia, Runqiu; Jin, Weiqi; Liang, Jian'an

    2018-03-01

    A novel method to simulate the polarimetric infrared imaging of a synthetic sea surface with atmospheric Mie scattering effects is presented. The infrared emission, multiple reflections, and infrared polarization of the sea surface and the Mie scattering of aerosols are all included for the first time. At first, a new approach to retrieving the radiative characteristics of a wind-roughened sea surface is introduced. A two-scale method of sea surface realization and the inverse ray tracing of light transfer calculation are combined and executed simultaneously, decreasing the consumption of time and memory dramatically. Then the scattering process that the infrared light emits from the sea surface and propagates in the aerosol particles is simulated with a polarized light Monte Carlo model. Transformations of the polarization state of the light are calculated with the Mie theory. Finally, the polarimetric infrared images of the sea surface of different environmental conditions and detection parameters are generated based on the scattered light detected by the infrared imaging polarimeter. The results of simulation examples show that our polarimetric infrared imaging simulation can be applied to predict the infrared polarization characteristics of the sea surface, model the oceanic scene, and guide the detection in the oceanic environment.

  5. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  6. Microwave stability at transition

    International Nuclear Information System (INIS)

    Holt, J.A.; Colestock, P.L.

    1995-05-01

    The question of microwave stability at transition is revisited using a Vlasov approach retaining higher order terms in the particle dynamics near the transition energy. A dispersion relation is derived which can be solved numerically for the complex frequency in terms of the longitudinal impedance and other beam parameters. Stability near transition is examined and compared with simulation results

  7. Nonlinear Microwave Optomechanics

    NARCIS (Netherlands)

    Shevchuk, O.

    2017-01-01

    The nonlinearity is essential for creation of non-classical states of the cavity or mechanical resonator such as squeezed or cat states. A microwave cavity can be made nonlinear by, for instance, adding Josephson junctions. The mechanical resonator is inherently nonlinear. The radiation pressure

  8. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  9. Commercial microwave space power

    International Nuclear Information System (INIS)

    Siambis, J.; Gregorwich, W.; Walmsley, S.; Shockey, K.; Chang, K.

    1991-01-01

    This paper reports on central commercial space power, generating power via large scale solar arrays, and distributing power to satellites via docking, tethering or beamed power such as microwave or laser beams, that is being investigated as a potentially advantageous alternative to present day technology where each satellite carries its own power generating capability. The cost, size and weight for electrical power service, together with overall mission requirements and flexibility are the principal selection criteria, with the case of standard solar array panels based on the satellite, as the reference point. This paper presents and investigates a current technology design point for beamed microwave commercial space power. The design point requires that 25 kW be delivered to the user load with 30% overall system efficiency. The key elements of the design point are: An efficient rectenna at the user end; a high gain, low beam width, efficient antenna at the central space power station end, a reliable and efficient cw microwave tube. Design trades to optimize the proposed near term design point and to explore characteristics of future systems were performed. Future development for making the beamed microwave space power approach more competitive against docking and tethering are discussed

  10. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  11. The Cosmic Microwave Background: Detection and Interpretation of the First Light

    Science.gov (United States)

    Wollack, Edward J.

    2016-01-01

    A host of astrophysical observations suggest the early Universe was incredibly hot, dense, and homogeneous. A powerful and useful probe of this epoch is provided by the relic radiation, which we refer to today as the Cosmic Microwave Background (CMB). Precision maps of this light contain the earliest glimpse of the Universe after the Big Bang and signatures of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, detailed composition, and geometry of the Universe can be made. A brief survey of the evolution of the radiometric and polarimetric imaging systems used in advancing our understanding of the early Universe will be reviewed. A survey of detector technologies, instrumentation techniques, and experimental challenges encountered in these efforts will be presented.

  12. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2016-06-01

    Full Text Available Synthetic aperture radar polarimetry (PolSAR and polarimetric decomposition techniques have proven to be useful tools for wetland mapping. In this study we classify reed belts and monitor their phenological changes at a natural lake in northeastern Germany using dual-co-polarized (HH, VV TerraSAR-X time series. The time series comprises 19 images, acquired between August 2014 and May 2015, in ascending and descending orbit. We calculated different polarimetric indices using the HH and VV intensities, the dual-polarimetric coherency matrix including dominant and mean alpha scattering angles, and entropy and anisotropy (normalized eigenvalue difference as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The image classifications were performed with the random forest classifier and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes for the double-bounce–sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles and in the dual-polarimetric coherence (amplitude, anisotropy, entropy, and anisotropy-entropy combinations; whereas in summer dense leaves cause volume scattering, in winter, after leaves have fallen, the reed stems cause predominately double-bounce scattering. Our study showed that the five most important parameters for the classification of reed are the intensity difference HH-VV, the mean alpha scattering angle, intensity ratio HH/VV, and the coherence (phase. Due to the better separation of reed and other vegetation (deciduous forest, coniferous forest, meadow, winter acquisitions are preferred for the mapping of reed. Multi-temporal stacks of winter images performed better than summer ones. The combination of ascending and descending images also improved the result as it reduces the influence of the sensor

  13. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  14. Microwave superheaters for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-10-16

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ..delta..T of 2000/sup 0/K is possible when the wall temperature is maintained at 1000/sup 0/K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D-/sup 3/He. 5 refs.

  15. Microwave multicomponent synthesis.

    Science.gov (United States)

    Hügel, Helmut M

    2009-12-01

    In the manner that very important research is often performed by multidisciplinary research teams, the applications of multicomponent reactions involving the combination of multiple starting materials with different functional groups leading to the higher efficiency and environmentally friendly construction of multifunctional/complex target molecules is growing in importance. This review will explore the advances and advantages in microwave multicomponent synthesis (MMS) that have been achieved over the last five years.

  16. Microwave Multicomponent Synthesis

    Directory of Open Access Journals (Sweden)

    Helmut M. Hügel

    2009-12-01

    Full Text Available In the manner that very important research is often performed by multidisciplinary research teams, the applications of multicomponent reactions involving the combination of multiple starting materials with different functional groups leading to the higher efficiency and environmentally friendly construction of multifunctional/complex target molecules is growing in importance. This review will explore the advances and advantages in microwave multicomponent synthesis (MMS that have been achieved over the last five years.

  17. Microwave Multicomponent Synthesis

    OpenAIRE

    Helmut M. Hügel

    2009-01-01

    In the manner that very important research is often performed by multidisciplinary research teams, the applications of multicomponent reactions involving the combination of multiple starting materials with different functional groups leading to the higher efficiency and environmentally friendly construction of multifunctional/complex target molecules is growing in importance. This review will explore the advances and advantages in microwave multicomponent synthesis (MMS) that have been achiev...

  18. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  19. Microwave-Assisted Olefin Metathesis

    Science.gov (United States)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  20. Microwave-assisted ADMET polymerization

    OpenAIRE

    Rojas Jiménez, Giovanni

    2015-01-01

    Microwave-assisted ADMET polymerization is reported on a series of α,ω-diene monomers, both polar and non-polar. Investigations indicate that of the multiple microwave modes possible, constant power is the most advantageous, providing polymers up to M‾w=31,000g/mol. Molecular weight values are nearly triple in comparison with conventional oil bath heating. Polymers are characterized by NMR, GPC, TGA, and DSC. Microwave irradiation provides a highly controllable and energy efficient ADMET poly...

  1. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image

    Directory of Open Access Journals (Sweden)

    She Xiaoqiang

    2017-10-01

    Full Text Available This paper proposes a classification method for the intertidal area using quad-polarimetric synthetic aperture radar data. In this paper, a systematic comparison of four well-known multipolarization features is provided so that appropriate features can be selected based on the characteristics of the intertidal area. Analysis result shows that the two most powerful multipolarization features are polarimetric entropy and anisotropy. Furthermore, through our detailed analysis of the scattering mechanisms of the polarimetric entropy, the Generalized Extreme Value (GEV distribution is employed to describe the statistical characteristics of the intertidal area based on the extreme value theory. Consequently, a new classification method is proposed by combining the GEV Mixture Models and the EM algorithm. Finally, experiments are performed on the Radarsat-2 quad-polarization data of the Dongtan intertidal area, Shanghai, to validate our method.

  2. Estimating the Concentration of Large Raindrops from Polarimetric Radar and Disdrometer Observations

    Science.gov (United States)

    Carey, Lawrence D.; Petersen, Walter A; Gatlink, Patrick N.

    2013-01-01

    Estimation of rainfall integral parameters, including radar observables, and empirical relations between them are sensitive to the truncation of the drop size distribution (DSD), particularly at the large drop end. The sensitivity of rainfall integral parameters to the maximum drop diameter (D(sub max)) is exacerbated at C-band since resonance effects are pronounced for large drops in excess of 5 mm diameter (D). Due to sampling limitations, it is often difficult to reliably estimate D(sub max) with disdrometers. The resulting uncertainties in D(sub max0 potentially increase errors in radar retrieval methods, particularly at C-band, that rely on disdrometer observations for DSD input to radar models. In fact, D(sub max) is typically an assumed DSD parameter in the development of radar retrieval methods. Because of these very uncertainties, it is difficult to independently confirm disdrometer estimates of D(sub max) with polarimetric radar observations. A couple of approaches can be taken to reduce uncertainty in large drop measurement. Longer integration times can be used for the collection of larger disdrometer samples. However, integration periods must be consistent with a radar resolution volume (RRV) and the temporal and spatial scales of the physical processes affecting the DSD therein. Multiple co-located disdrometers can be combined into a network to increase the sample size within a RRV. However, over a reasonable integration period, a single disdrometer sample volume is many orders of magnitudes less than a RRV so it is not practical to devise a network of disdrometers that has an equivalent volume to a typical RRV. Since knowledge of DSD heterogeneity and large drop occurrence in time and space is lacking, the specific accuracy or even general representativeness of disdrometer based D(sub max) and large drop concentration estimates within a RRV are currently unknown. To address this complex issue, we begin with a simpler question. Is the frequency of

  3. Atmospheric and precipitation sounding with polarimetric radio-occultations aboard PAZ LEO

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomás, Sergio; Oliveras, Santi; Rius, Antonio; de la Torre, Manuel; Turk, Joseph; Ao, Chi; Kursinski, Robert; Shreiner, Bill; Ector, Dave; Cucurull, Lidia; Wickert, Jens

    2015-04-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of the precipitation through simultaneous thermodynamic and vertical rain profiles. The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric antennas, although here we will use the forward scattering geometry instead of the backscattering.The depolarization effect increases as the propagation line aligns with the plane of the drops' flattening (nominally perpendicular to the local gravity, i.e., parallel to the local horizon). The RO signals cross the lower troposphere tangentially, i.e., along the local horizon, which should maximize the depolarization effect. The satellite launch is scheduled for March 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years. A sensitivity analysis have been performed, showing that we should be able to detect the 90% of all the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. Results from the campaign also show a good correlation between phase shifts increases and heavy rain events. We will present here the status of the mission, which will have been launched few weeks before the EGU, together with some preliminary data analysis from both the actual satellite data and the prior-to-launch work.

  4. The European Microwave Week 2008 and its Microwave Conferences

    NARCIS (Netherlands)

    Hoogeboom, P.; Van Vliet, F.

    2009-01-01

    Under the auspices of the European Microwave Association (EuMA) the 11th annual European Microwave Week was organized in the Amsterdam RAI Congress Centre, The Netherlands, 27-31 October 2008. This major event consisted this year of five conferences, an exhibition, and various side events. The 38th

  5. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Schou, Jesper

    2003-01-01

    . Based on this distribution, a test statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are derived and applied successfully to change detection in polarimetric SAR data. In a case study, EMISAR L-band data from April 17...... to HH, VV, or HV data alone, the derived test statistic reduces to the well-known gamma likelihood-ratio test statistic. The derived test statistic and the associated significance value can be applied as a line or edge detector in fully polarimetric SAR data also....

  6. Identification of hydrometeor mixtures in polarimetric radar measurements and their linear de-mixing

    Science.gov (United States)

    Besic, Nikola; Ventura, Jordi Figueras i.; Grazioli, Jacopo; Gabella, Marco; Germann, Urs; Berne, Alexis

    2017-04-01

    The issue of hydrometeor mixtures affects radar sampling volumes without a clear dominant hydrometeor type. Containing a number of different hydrometeor types which significantly contribute to the polarimetric variables, these volumes are likely to occur in the vicinity of the melting layer and mainly, at large distance from a given radar. Motivated by potential benefits for both quantitative and qualitative applications of dual-pol radar, we propose a method for the identification of hydrometeor mixtures and their subsequent linear de-mixing. This method is intrinsically related to our recently proposed semi-supervised approach for hydrometeor classification. The mentioned classification approach [1] performs labeling of radar sampling volumes by using as a criterion the Euclidean distance with respect to five-dimensional centroids, depicting nine hydrometeor classes. The positions of the centroids in the space formed by four radar moments and one external parameter (phase indicator), are derived through a technique of k-medoids clustering, applied on a selected representative set of radar observations, and coupled with statistical testing which introduces the assumed microphysical properties of the different hydrometeor types. Aside from a hydrometeor type label, each radar sampling volume is characterized by an entropy estimate, indicating the uncertainty of the classification. Here, we revisit the concept of entropy presented in [1], in order to emphasize its presumed potential for the identification of hydrometeor mixtures. The calculation of entropy is based on the estimate of the probability (pi ) that the observation corresponds to the hydrometeor type i (i = 1,ṡṡṡ9) . The probability is derived from the Euclidean distance (di ) of the observation to the centroid characterizing the hydrometeor type i . The parametrization of the d → p transform is conducted in a controlled environment, using synthetic polarimetric radar datasets. It ensures balanced

  7. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance

    Directory of Open Access Journals (Sweden)

    Zhang Jie

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR, an important earth observation sensor, has been used in a wide range of applications for land and marine surveillance. Polarimetric SAR (PolSAR can obtain abundant scattering information of a target to improve the ability of target detection, classification, and quantitative inversion. In this paper, the important role of PolSAR in ocean monitoring is discussed with factors such as sea ice, ships, oil spill, waves, internal waves, and seabed topography. Moreover, the future development direction of PolSAR is put forward to get an inspiration for further research of PolSAR in marine surveillance applications.

  8. Processing and Analysis of Polarimetric Ship Signatures from MARSIE: Report on Results for Polar Epsilon

    Science.gov (United States)

    2006-10-01

    observations de la surface équivalente radar de navires cibles pour les canaux de copolarisation et de polarisation croisée, la réduction de la...motion, environmental conditions, etc. on the observed polarimetric signatures; • The differences in the elemental scatterer distributions among the...calculée pour plusieurs navires. Les valeurs estimées de SER totale pour les canaux HV et VH étaient d’environ 10 dB inférieures aux valeurs

  9. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests

    Science.gov (United States)

    Freeman, Anthony

    2007-01-01

    Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the

  10. Microwave and Pulsed Power

    Energy Technology Data Exchange (ETDEWEB)

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  11. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi

    2017-01-01

    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...

  12. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are ...

  13. Microwave Sterilization in School Microbiology.

    Science.gov (United States)

    Wynn, Brian; Dixon, Angela

    1988-01-01

    Described are two investigations carried out in a high school biology department using a domestic microwave oven to compare the relative attributes of the autoclave and microwave oven in school use. Discussed are equipment, methods, and results of each investigation. (Author/CW)

  14. Microwave Radiometry in Remote Sensing

    DEFF Research Database (Denmark)

    Gudmandsen, Preben

    1982-01-01

    Microwave radiometry has shown its capabilities of observing and monitoring large-scale geophysical observables from space. Examples are sea surface temperature and surface wind over the ocean, sea ice extent, concentration and category and snow cover extent and water content. At low microwave fr...

  15. Resonant freak microwaves

    International Nuclear Information System (INIS)

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  16. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  17. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  18. Validation of Forested Inundation Extent Revealed by L-Band Polarimetric and Interferometric SAR Data

    Science.gov (United States)

    Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle

    2013-01-01

    UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.

  19. Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines)

    Science.gov (United States)

    Crisologo, I.; Vulpiani, G.; Abon, C. C.; David, C. P. C.; Bronstert, A.; Heistermann, Maik

    2014-11-01

    We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.

  20. Full polarimetric millimetre wave radar for stand-off security screening

    Science.gov (United States)

    Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew

    2017-10-01

    The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.

  1. Handheld SFDI/polarimetric imaging device for objective evaluation of hypertrophic scars (Conference Presentation)

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Montejo, Karla; Sevilla, Nicole; Stoff, Susan; Gonzalez, Mariacarla; Chue-Sang, Joseph

    2017-02-01

    Scars can be debilitating and cause serious functional limitations, significantly reduced physical function and loss of ability to perform normal daily activities. Scar formation is not fully understood and the treatment options have been hampered by the lack of an objective diagnostic tool to assess scars. Presently, assessment of hypertrophic scars has been based on subjective clinician rankings using a four-parameter scale called the Vancouver Scar Scale (VSS) or the Patient Observer Scar Assessment Scale (POSAS) but no objective, standardized tool for quantifying scar severity is available, despite known inadequacies of the subjective scales. We have developed a hand-held multi modal system consisting of a combined Spatial Frequency Domain Imager (SFDI) used for the assessment of tissue molecular components and a polarimeter for structural measurements. The SFDI capability is provided by an Arduino board controlled spectrally and polarimetric diverse Light Emitting Diodes (LED) ring illuminator. For SFDI imagery, the LEDs are combined with sinusoidal patterns. A single pattern snapshot SFDI approach is used to observe and quantify the biological components in the scar tissue including: oxygenated and de oxygenated hemoglobin, water, and melanin. The SFDI system is integrated with a reduced Mueller Matrix polarimetric system, whose illumination is also included in the LED's ring, and providing for the assessment of collagen orientation through Mueller Matrix decomposition. The design of the system and experimental work on phantoms will be presented.

  2. Using WSR-88D Polarimetric Data to Identify Bird-Contaminated Doppler Velocities

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2013-01-01

    Full Text Available As an important part of Doppler velocity data quality control for radar data assimilation and other quantitative applications, an automated technique is developed to identify and remove contaminated velocities by birds, especially migrating birds. This technique builds upon the existing hydrometeor classification algorithm (HCA for dual-polarimetric WSR-88D radars developed at the National Severe Storms Laboratory, and it performs two steps. In the first step, the fuzzy-logic method in the HCA is simplified and used to identify biological echoes (mainly from birds and insects. In the second step, another simple fuzzy logic method is developed to detect bird echoes among the biological echoes identified in the first step and thus remove bird-contaminated velocities. The membership functions used by the fuzzy logic method in the second step are extracted from normalized histograms of differential reflectivity and differential phase for birds and insects, respectively, while the normalized histograms are constructed by polarimetric data collected during the 2012 fall migrating season and sorted for bird and insects, respectively. The performance and effectiveness of the technique are demonstrated by real-data examples.

  3. Polarimetric Imaging Of Protoplanetary Disks From The Optical To Sub-Mm

    Science.gov (United States)

    De Boer, Jos; Ménard, F.; Pinte, C.; van der Plas, G.; Snik, F.

    2017-10-01

    To learn how planets form from the smallest building blocks within protoplanetary disks, we first need to know how dust grains grow from micron to mm sizes. Polarimetry across the spectrum has proven to be sensitive to grain properties like dust size distribution and composition and thus can be used to characterize the scattering grains. However, polarization measured with radio interferometric arrays is rarely studied in concert with optical polarimetry. Our team has successfully calibrated the NIR polarimetric imaging mode of VLT/SPHERE, hence upgrading the instrument from a high-contrast imager to a robust tool for quantitative characterization. In this presentation, we will discuss which lessons can be learned by comparing polarimetry in the optical and sub-mm and explore for which science cases both techniques can complement each other. When we combine the polarimetric capabilities of the most advanced optical high-contrast imagers (e.g., Gemini GPI or VLT SPHERE) with that of ALMA we will be able to study the spatial distribution of an extensive range of different grains, which allows us to take an essential step towards a deeper understanding of planet formation.

  4. Algorithm Development for the Optimum Rainfall Estimation Using Polarimetric Variables in Korea

    Directory of Open Access Journals (Sweden)

    Cheol-Hwan You

    2015-01-01

    Full Text Available In this study, to get an optimum rainfall estimation using polarimetric variables observed from Bislsan radar which is the first polarimetric radar in Korea, rainfall cases for 84 hours caused by different conditions, which are Changma front and typhoon, Changma front only, and typhoon only, occurred in 2011, were analyzed. And rainfall algorithms were developed by using long period drop size distributions with six different raindrop axis ratio relations. The combination of the relations between R and Z, ZDR, R and KDP, ZDR, and R and KDP with different rainfall intensity would be an optimum rainfall algorithm if the reference of rainfall would be defined correctly. In the case the reference is not defined adequately, the relation between R and Z, ZDR, KDP, AH and R and Z, KDP, AH can be used as a representative rainfall relation. Particularly if the qualified ZDR is not available, the relation between R and Z, KDP, AH can be used as an optimum rainfall relation in Korea.

  5. Landslide Mapping in Vegetated Areas Using Change Detection Based on Optical and Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2016-04-01

    Full Text Available Mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response, i.e., to support rescue and humanitarian operations. Most synthetic aperture radar (SAR data-based landslide detection approaches reported in the literature use change detection techniques, requiring very high resolution (VHR SAR imagery acquired shortly before the landslide event, which is commonly not available. Modern VHR SAR missions, e.g., Radarsat-2, TerraSAR-X, or COSMO-SkyMed, do not systematically cover the entire world, due to limitations in onboard disk space and downlink transmission rates. Here, we present a fast and transferable procedure for mapping of landslides, based on change detection between pre-event optical imagery and the polarimetric entropy derived from post-event VHR polarimetric SAR data. Pre-event information is derived from high resolution optical imagery of Landsat-8 or Sentinel-2, which are freely available and systematically acquired over the entire Earth’s landmass. The landslide mapping is refined by slope information from a digital elevation model generated from bi-static TanDEM-X imagery. The methodology was successfully applied to two landslide events of different characteristics: A rotational slide near Charleston, West Virginia, USA and a mining waste earthflow near Bolshaya Talda, Russia.

  6. Development and Testing of Operational Dual-Polarimetric Radar Based Lightning Initiation Forecast Techniques

    Science.gov (United States)

    Woodard, Crystal; Carey, Lawrence D.; Petersen, Walter A.; Felix, Mariana; Roeder, William P.

    2011-01-01

    Lightning is one of Earth s natural dangers, destructive not only to life but also physical property. According to the National Weather Service, there are on average 58 lightning fatalities each year, with over 300 related injuries (NWS 2010). The ability to forecast lightning is critical to a host of activities ranging from space vehicle launch operations to recreational sporting events. For example a single lightning strike to a Space Shuttle could cause billions of dollars of damage and possible loss of life. While forecasting that provides longer lead times could provide sporting officials with more time to respond to possible threatening weather events, thus saving the lives of player and bystanders. Many researchers have developed and tested different methods and tools of first flash forecasting, however few have done so using dual-polarimetric radar variables and products on an operational basis. The purpose of this study is to improve algorithms for the short-term prediction of lightning initiation through development and testing of operational techniques that rely on parameters observed and diagnosed using C-band dual-polarimetric radar.

  7. Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis

    Science.gov (United States)

    Kojima, S.; Hensley, S.

    2012-12-01

    There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume

  8. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  9. VizieR Online Data Catalog: Main-belt asteroids polarimetric survey. II. (Gil-Hutton+, 2012)

    Science.gov (United States)

    Gil-Hutton, R.; Canada-Assandri, M.

    2012-01-01

    Results for the objects observed during the polarimetric survey of main-belt asteroids. The observations were carried out during different observing runs between May 2004 and November 2009 at the 2.15m telescope of the CASLEO, San Juan, Argentina, using the Torino and CASPROF polarimeters. (3 data files).

  10. Use of Radarsat-2 polarimetric SAR images for fuel moisture mapping in the Kruger National Park, South Africa

    CSIR Research Space (South Africa)

    Kong, M

    2015-08-01

    Full Text Available Fully polarimetric Radarsat-2 imagery from wet and dry conditions over the South African Lowveld is compared to assess its value for fuel moisture mapping. Imagery was acquired at two different dates, in May (end of summer, wet) and in August (mid...

  11. Basics and first experiments demonstrating isolation improvements in the agile polarimetric FM-CW radar – PARSAX

    NARCIS (Netherlands)

    Krasnov, O.A.; Babur, G.P.; Wang, Z.; Ligthart, L.P.; Van der Zwan, F.

    2010-01-01

    The article describes the IRCTR PARSAX radar system, the S-band high-resolution Doppler polarimetric frequency modulated continuous wave (FM-CW) radar with dual-orthogonal sounding signals, which has the possibility to measure all elements of the radar target polarization scattering matrix

  12. High-resolution polarimetric X-band weather radar observations at the Cabauw Experimental Site for Atmospheric Research

    NARCIS (Netherlands)

    Otto, T.; Russchenberg, H.W.J.

    2013-01-01

    In 2007, the horizontally scanning polarimetric X-band radar IDRA (IRCTR Drizzle Radar) was installed on top of the 213 m high mast at the Dutch meteorological observatory Cabauw Experimental Site for Atmospheric Research (CESAR) at Netherlands. This radar complements a large variety of measurement

  13. Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping

    Science.gov (United States)

    Tamiminia, H.; Homayouni, S.; Safari, A.

    2015-12-01

    Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  14. An omnibus likelihood test statistic and its factorization for change detection in time series of polarimetric SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2016-01-01

    Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution with an associated p-value and a factorization of this test statistic, change analysis in a short sequence of multilook, polarimetric SAR data...

  15. Comparison of vehicle-mounted forward-looking polarimetric infrared and downward-looking infrared sensors for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Schavemaker, J.G.M.; Jong, W. de; Schutte, K.

    2003-01-01

    This paper gives a comparison of two vehicle-mounted infrared systems for landmine detection. The first system is a down-ward looking standard infrared camera using processing methods developed within the EU project LOTUS. The second system is using a forward-looking polarimetric infrared camera.

  16. 21 CFR 1030.10 - Microwave ovens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microwave ovens. 1030.10 Section 1030.10 Food and... HEALTH PERFORMANCE STANDARDS FOR MICROWAVE AND RADIO FREQUENCY EMITTING PRODUCTS § 1030.10 Microwave ovens. (a) Applicability. The provisions of this standard are applicable to microwave ovens manufactured...

  17. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    International Nuclear Information System (INIS)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-01-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  18. The Liverpool Microwave Palaeointensity System

    Science.gov (United States)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot

    2016-04-01

    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  19. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    Science.gov (United States)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-08-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  20. On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2017-01-01

    Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there

  1. Polarimetric survey of main-belt asteroids. II. Results for 58 B- and C-type objects

    Science.gov (United States)

    Gil-Hutton, R.; Cañada-Assandri, M.

    2012-03-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico el Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data on a sample of more than 170 asteroids were obtained. In this paper the results for 58 B- and C-type objects are presented, most of them polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for these taxonomic classes. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Tables 1 and 2 are available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A115

  2. Polarimetric survey of main-belt asteroids. I. Results for fifty seven S-, L-, and K-type objects

    Science.gov (United States)

    Gil-Hutton, R.; Cañada-Assandri, M.

    2011-05-01

    Aims: We present the first results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties, similar to those shown by the asteroid (234) Barbara. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows the simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data on a sample of more than 170 asteroids were obtained. In this paper the results of 57 S-, L-, and K-type objects are presented, most of them are being polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for these taxonomic classes. Furthermore, we also find two candidates, (397) Vienna and (458) Hercynia, that could have a phase-polarization curve with a large inversion angle. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?j/A+A/529/A86

  3. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  4. The microwave Tokamak experiment (MTX)

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Cohen, B.I.; Hooper, E.B.; Lang, D.D.; Nevins, W.M.

    1987-01-01

    A new experimental facility is being assembled at the Lawrence Livermore National Laboratory (LLNL) for studying microwave propagation and absorption in high density plasmas. A unique feature of the facility is the free electron laser (FEL) used to generate high peak power microwaves at 250 GHz, at a repetition rate so as to produce up to 2 MW of average power for up to 30 s. Called the Microwave Tokamak Experiment (MTX), the facility will be used for studies of plasma heating, current drive, and confinement

  5. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  6. Study of microwave instability

    International Nuclear Information System (INIS)

    Heifets, S.; Chao, A.

    1996-12-01

    The microwave instability is usually described by linearizing Vlasov equation in the angle-action variables I, φ and assuming that the interaction of azimuthal harmonics ρ n (I) of the distribution function ρ is weak. The argument implied here is that the Hamiltonian flow smears out particles over invariant tori characterized by the action variables, and the remaining azimuthal dependence of the distribution function is small. Indeed, such an approach successfully describes bunch spectrum and the threshold of the microwave instability. However, recently there have been interesting observations of bunch centroid and bunch shape oscillations above instability threshold at LEP and the damping ring at SLAC. There are also indicates that the oscillations sometimes occur in localized region in the longitudinal coordinate instead of affecting the entire longitudinal distribution as one expects by an action-angle analysis. In this paper the authors describe an alternative approach to the problem of bunch stability using decomposition of the Fokker-Plank equation in the system of nonlinear equations for the moments of the distribution function. In particular, this approach allows them to avoid the conventional action-angle decomposition. The physical quantities they are interested in, the moments, are expressed in the Cartesian z - δ phase space. To close the infinite hierarchy of moments equations, the authors assume that higher order correlations are small. Although both the action-angle and the Cartesian languages must be equivalent before truncation, they may have different speed of convergence depending on the problem being studied. It is hoped that Cartesian expansion approach would converge faster for the cases corresponding to those observed recently above threshold. The recent experimental observations made them interested in it again. This note is a progress report of their work

  7. Microwave Thermal Propulsion

    Science.gov (United States)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  8. Soil Moisture Experiments 2004 (SMEX04) Polarimetric Scanning Radiometer, AMSR-E and Heterogeneous Landscapes

    National Research Council Canada - National Science Library

    Jackson, T. J; Bindlish, R; Cosh, M; Gasiewski, A; Stankov, B; Klein, M; Weber, B; Zavorotny, V

    2005-01-01

    An unresolved issue in global soil moisture retrieval using passive microwave sensors is the spatial integration of heterogeneous landscape features to the nominal 50 km footprint observed by most satellite systems...

  9. A New Polarimetric Study of Cygnus A Using JVLA from 2-18GHz

    Science.gov (United States)

    Lerato Sebokolodi, Makhuduga; Perley, Rick; Carilli, Chris; Smirnov, Oleg M.; Makhathini, Sphesihle

    2018-01-01

    Polarimetric studies of Cygnus A [5, 1, 2, 3] have shown that this radio galaxy has unusually large rotation measures ranging from -4000 to +3000 rad m -2 for the eastern lobe (E-lobe) and -2000 to +1300 rad m -2 for western lobe(W-lobe). A challenge since then has been to identify the medium(s) responsible for these high Faraday rotations (FR). Although a majority of the FR must arise from the surrounding cluster gas, an unknown portion may arise either in the sheath or within the lobes. In these cases, some depolarization must result, along with a non λ 2 rotation of the plane of polarization. Detecting such a depolarization will enable an estimate of the internal (and/or sheath) thermal gas density. [1] found significant depolarization associated with the inner regions of the E-lobe and no depolarization associated with the W-lobe. This depolarization could be either internal to the source (Faraday depolarization) or due to unresolved small-scale fluctuations in the foreground screen (beam depolarization) [1]. The former is expected to impose significant deviations in the λ2 -law, none of which have been found to date, nor could have been found due to the limited number of frequencies employed in these studies.Since 2015, new JVLA polarimetric observations of Cygnus A have been taken, in all four configurations, covering the frequency range from 2 to 18GHz. These new data provide thousands of frequency channels at high resolution and sensitivity – opening a new opportunity to study in great detail the physics of the jets, lobes and the magnetic field of the X-ray cluster medium and lobes. Our objective is to analyze these new polarimetric data with the expectation of extending the previous work and more importantly, to investigate the possibility of any significantdeviations from the λ2-law. Initial analysis shows significant deviations from λ2 -law associated with the W-lobe. We will present these results in detail, and also the results from RM

  10. Polarimetric mountain based radio-occultation for rain detection: The ROHP-PAZ ground campaign

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomas, Sergio; de la Torre, Manuel; Turk, Joe

    2014-05-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of precipitation through simultaneous thermodynamic and vertical rain profiles. Prior to the launch of the satellite, expected for 2014, a ground experimental campaign is being conducted with the goal of starting the process of identifying and understanding all the factors that might affect the polarimetric RO observables. The campaign is being carried out at the top of Puig Sesolles, a 1667m peak in the Natural Park of Montseny (41º46'24 N, 2º26'17 E), 50 km N-NE from Barcelona, with clear views over the horizon to the South (East to West) direction, an area in which intense precipitation events tend to occur a few times per year. The campaign uses a ICE-CSIC/IEEC's GOLD-RTR open-loop receiver initially designed for collecting GNSS signals reflected off the sea surface. The receiver has been adjusted to track occulting GNSS radio-links. A double polarization (H and V) GNSS antenna has been designed and manufactured by the Polytechnic University of Barcelona (UPC) team for this particular ground-based experiment. The antenna is a phase-array made of 7 elements, each of them being a square patch built using a Rogers 4003 substrate, and symmetrically fed by four probes. It provides a pattern of 12.9 dB peak gain, 45 degrees half-power beam-width, and <-35 dB cross-polar isolation at the peak (better than -30 dB in the main lobe). The preliminary results show that not only precipitation, but also other factors are affecting the GNSS signal, wich means that the polarimetric signal is richer than expected

  11. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013

    Science.gov (United States)

    Ho, Shu-Peng; Peng, Liang; Mears, Carl; Anthes, Richard A.

    2018-01-01

    We compare atmospheric total precipitable water (TPW) derived from the SSM/I (Special Sensor Microwave Imager) and SSMIS (Special Sensor Microwave Imager/Sounder) radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate) radio occultation (RO) under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW) radiometer - COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade-1, with a 95 % confidence interval of (0.96, 2.63), which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade-1 with a 95 % confidence interval of 0.94, 2.62). The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40-60° N and 40-65° S), and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade-1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor-temperature feedback on a warming planet in regions where precipitation from extratropical storms is already large.

  12. Develop Prototype Microwave Interferometry Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Converse, M. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-15

    A prototype microwave interferometer was created at NSTec to characterize moving conductive fronts in upcoming experiments. The interferometer is capable of operation in the ~26-40 GHz band, and interrogating fronts with more than 1 W of power.

  13. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  14. Scanning Microwave Induced Acoustic Tomography

    National Research Council Canada - National Science Library

    Wang, Lihong V

    2001-01-01

    .... Cancerous breast tissues are found to be 2-5 times more strongly absorbing than surrounding normal breast tissues in the microwave, which has been attributed to an increase in bound water and sodium...

  15. Tracking Code for Microwave Instability

    International Nuclear Information System (INIS)

    Heifets, S.; SLAC

    2006-01-01

    To study microwave instability the tracking code is developed. For bench marking, results are compared with Oide-Yokoya results [1] for broad-band Q = 1 impedance. Results hint to two possible mechanisms determining the threshold of instability

  16. Cosmic microwave background, where next?

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  17. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  18. Efficient Estimation of Spectral Moments and the Polarimetric Variables on Weather Radars, Sonars, Sodars, Acoustic Flow Meters, Lidars, and Similar Active Remote Sensing Instruments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method for estimation of Doppler spectrum, its moments, and polarimetric variables on pulsed weather radars which uses over sampled echo components at a rate...

  19. Polarimetric and Interferometric Synthetic Aperture Radar (Pol-InSAR); a new way to quantify three-dimensional structure of Earth and planetary surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will employ a three phased approach: SAR image formation and calibration. DBSAR polarimetric and interferometric data analysis. PolInSAR algorithm...

  20. Graphene Josephson Junction Microwave Detector

    Science.gov (United States)

    Fong, Kin Chung; Walsh, Evan; Lee, Gil-Ho; Efetov, Dmitri; Crossno, Jesse; Ranzani, Leonardo; Ohki, Thomas; Kim, Philip; Englund, Dirk

    Modern readout schemes for superconducting qubits have predominately relied on weak microwave signal detection and discrimination. Most schemes are based on heterodyne or homodyne receiver systems and only a few have demonstrated direct detection of microwave photons. The challenges of direct detection stem from the low energy of microwave photons and existing detector efficiency. We have designed, fabricated, and measured a graphene-based Josephson junction (gJJ) microwave detector. Exploiting its low electronic thermal conductivity and specific heat, an electron temperature rise on the order of 0.1 K due to a time average of about 10 photons in the graphene thermal photodetector is readout via a Josephson junction embedded in an 8 GHz microwave cavity. We will estimate the quantum efficiency and dark count probability of the gJJ microwave single photon detectors. This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

  1. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  2. Study of federal microwave standards

    Energy Technology Data Exchange (ETDEWEB)

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  3. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  4. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  5. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  6. On the calibration of the polarimetric slope - albedo relation for asteroids: Work in progress

    Directory of Open Access Journals (Sweden)

    A. Cellino

    2011-09-01

    Full Text Available Asteroid polarimetry is known to be an excellent tool to derive information on the geometric albedo of these objects. This is made possible by the existence of a relation between the albedo and the morphology of the curve which describes the variation of the degree of linear polarization of asteroid light as a function of the illumination conditions. A major problem is that the calibration of the commonly accepted form of the polarization - albedo relation includes numerical coefficients which are affected by fairly high uncertainties. Following some recommendations issued by IAU Commission 15, we are trying to improve the albedo - polarization relation by taking advantage of new polarimetric data obtained in dedicated observation campaigns. We present here some very preliminary results.

  7. PRELIMINARY RESULTS OF ESTIMATING SOIL MOISTURE OVER BARE SOIL USING FULL-POLARIMETRIC ALOS-2 DATA

    Directory of Open Access Journals (Sweden)

    A. Sekertekin

    2016-10-01

    Full Text Available Synthetic Aperture Radar (SAR imaging system is one of the most effective way for Earth observation. The aim of this study is to present the preliminary results about estimating soil moisture using L-band Synthetic Aperture Radar (SAR data. Full-polarimetric (HH, HV, VV, VH ALOS-2 data, acquired on 22.04.2016 with the incidence angle of 30.4o, were used in the study. Simultaneously with the SAR acquisition, in-situ soil moisture samples over bare agricultural lands were collected and evaluated using gravimetric method. Backscattering coefficients for all polarizations were obtained and linear regression analysis was carried out with in situ moisture measurements. The best correlation coefficient was observed with VV polarization. Cross-polarized backscattering coefficients were not so sensitive to soil moisture content. In the study, it was observed that soil moisture maps can be retrieved with the accuracy about 14% (RMSE.

  8. Bilateral bad pixel and Stokes image reconstruction for microgrid polarimetric imagers

    Science.gov (United States)

    LeMaster, Daniel A.; Ratliff, Bradley M.

    2015-09-01

    Uncorrected or poorly corrected bad pixels reduce the effectiveness of polarimetric clutter suppression. In conventional microgrid processing, bad pixel correction is accomplished as a separate step from Stokes image reconstruction. Here, these two steps are combined to speed processing and provide better estimates of the entire image, including missing samples. A variation on the bilateral filter enables both edge preservation in the Stokes imagery and bad pixel suppression. Understanding the newly presented filter requires two key insights. First, the adaptive nature of the bilateral filter is extended to correct for bad pixels by simply incorporating a bad pixel mask. Second, the bilateral filter for Stokes estimation is the sum of the normalized bilateral filters for estimating each analyzer channel individually. This paper describes the new approach and compares it to our legacy method using simulated imagery.

  9. Space-based detection of space debris by photometric and polarimetric characteristics

    Science.gov (United States)

    Pang, Shuxia; Wang, Hu; Lu, Xiaoyun; Shen, Yang; Pan, Yue

    2017-10-01

    The number of space debris has been increasing dramatically in the last few years, and is expected to increase as much in the future. As the orbital debris population grows, the risk of collision between debris and other orbital objects also grows. Therefore, space debris detection is a particularly important task for space environment security, and then supports for space debris modeling, protection and mitigation. This paper aims to review space debris detection systematically and completely. Firstly, the research status of space debris detection at home and abroad is presented. Then, three kinds of optical observation methods of space debris are summarized. Finally, we propose a space-based detection scheme for space debris by photometric and polarimetric characteristics.

  10. Spectro-polarimetric study of the early evolutionary phases of the most massive galaxies

    International Nuclear Information System (INIS)

    Vernet, Joel

    2001-01-01

    This research thesis addresses the study of the early phases of evolution of the most massive galaxies (giant elliptic), a fundamental process which is a matter of study for various reasons exposed by the author in his introduction. While presented results are based on spectro-polarimetric observations, the author first presents specific instruments and methods used by spectropolarimetry which provides access to variations of all vectorial properties of light, without loss of information. Then, he reports the study of a near powerful radio-galaxy, Cygnus A, the study of nine radio-galaxies with a high redshift, and the study of a far ultra-luminous infrared galaxy (SMM J02399-0136). Results are then discussed and perspectives of research are proposed. Appendices present the theoretical study of the contribution of massive stars to the diffuse extragalactic ionizing background, and observations made on a near radio-galaxy (NGC 6251)

  11. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart

    Directory of Open Access Journals (Sweden)

    Hua Wen-qiang

    2015-02-01

    Full Text Available In this study, we propose a new semi-supervised classification method for Polarimetric SAR (PolSAR images, aiming at handling the issue that the number of train set is small. First, considering the scattering characters of PolSAR data, this method extracts multiple scattering features using target decomposition approach. Then, a semi-supervised learning model is established based on a co-training framework and Support Vector Machine (SVM. Both labeled and unlabeled data are utilized in this model to obtain high classification accuracy. Third, a recovery scheme based on the Wishart classifier is proposed to improve the classification performance. From the experiments conducted in this study, it is evident that the proposed method performs more effectively compared with other traditional methods when the number of train set is small.

  12. Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc

    Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched

  13. ESA'S POLarimetric Airborne Radar Ice Sounder (POLARIS): design and first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kristensen, Steen Savstrup; Krozer, Viktor

    2010-01-01

    -of-concept campaign was conducted in Greenland. This study outlines the design and implementation of the system, and based on first results it is concluded that in the central dry snow zone of Greenland, POLARIS can resolve shallow and deep internal ice layers, penetrate the thickest ice encountered and detect......The Technical University of Denmark has developed and tested a P-band ice sounding radar for European Space Agency (ESA). With the recent by the International Telecommunication Union (ITU) allocation of a radar band at 435 MHz, increased interest in space-based sounding of the Earth s ice caps has...... been encountered. ESA s POLarimetric Airborne Radar Ice Sounder (POLARIS) is intended to provide a better understanding of P-band scattering and propagation through ice sheets and to verify novel surface clutter suppression techniques in preparation for a potential space-based ice sounding mission...

  14. EMISAR: An Absolutely Calibrated Polarimetric L- and C-band SAR

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Skou, Niels; Dall, Jørgen

    1998-01-01

    and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry. Thermal control and several calibration loops have been built into the system to ensure system stability and absolute......EMISAR is a high-resolution (2×2 m), fully polarimetric, dual-frequency (L- and C-band) synthetic aperture radar (SAR) system designed for remote-sensing applications. The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes...... calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key to most of the current applications. Recent interferometric enhancements are important for many scientific applications...

  15. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  16. Ground-Based Polarimetric Remote Sensing of Dust Aerosol Properties in Chinese Deserts near Hexi Corridor

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2014-01-01

    Full Text Available One-year observation of dust aerosol properties near Hexi Corridor was obtained from polarimetric measurements by ground-based sunphotometer in the county of Minqin in northwestern China from March 2012 to February 2013. We observed an annual mean AOD of 0.22±0.22 at 0.50 μm and Ångström exponents of 0.1–1.0 fitting a bimode normal distribution centered at 0.18 and 0.50, respectively. The effective radii of fine (0.13–0.17 μm and coarse (2.49–3.49 μm modes were found stable at all seasons together with the appearance of a third mode of particle radius at 0.4–1.0 μm when AOD was larger than 0.6. It is noticeable that the real (1.5–1.7 and imaginary (0.0005 to 0.09 parts of complex refractive indices were higher than other studies performed in other desert regions of China, while single scattering albedo was relatively lower (~0.84–0.89 at wavelengths of 0.44, 0.67, 0.87, and 1.02 μm. This is partially due to calcite or hematite in the soil in Minqin or the influence of anthropogenic aerosols containing carbon. Moreover, from our novel polarimetric measurement, the scattering phase function (F11 and degree of linear polarization for incident unpolarized light (-F12/F11 of dust aerosols were also obtained within this deserted area.

  17. Oil Detection in a Coastal Marsh with Polarimetric Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    Cathleen E. Jones

    2011-12-01

    Full Text Available The National Aeronautics and Space Administration’s airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD and Cloude-Pottier (CP decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  18. QuadCam - A Quadruple Polarimetric Camera for Space Situational Awareness

    Science.gov (United States)

    Skuljan, J.

    A specialised quadruple polarimetric camera for space situational awareness, QuadCam, has been built at the Defence Technology Agency (DTA), New Zealand, as part of collaboration with the Defence Science and Technology Laboratory (Dstl), United Kingdom. The design was based on a similar system originally developed at Dstl, with some significant modifications for improved performance. The system is made up of four identical CCD cameras looking in the same direction, but in a different plane of polarisation at 0, 45, 90 and 135 degrees with respect to the reference plane. A standard set of Stokes parameters can be derived from the four images in order to describe the state of polarisation of an object captured in the field of view. The modified design of the DTA QuadCam makes use of four small Raspberry Pi computers, so that each camera is controlled by its own computer in order to speed up the readout process and ensure that the four individual frames are taken simultaneously (to within 100-200 microseconds). In addition, a new firmware was requested from the camera manufacturer so that an output signal is generated to indicate the state of the camera shutter. A specialised GPS unit (also developed at DTA) is then used to monitor the shutter signals from the four cameras and record the actual time of exposure to an accuracy of about 100 microseconds. This makes the system well suited for the observation of fast-moving objects in the low Earth orbit (LEO). The QuadCam is currently mounted on a Paramount MEII robotic telescope mount at the newly built DTA space situational awareness observatory located on Whangaparaoa Peninsula near Auckland, New Zealand. The system will be used for tracking satellites in low Earth orbit and geostationary belt as well. The performance of the camera has been evaluated and a series of test images have been collected in order to derive the polarimetric signatures for selected satellites.

  19. Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis

    Science.gov (United States)

    Harrison, Mark C.; Armani, Andrea M.

    2015-05-01

    Non-destructive materials characterization methods have significantly changed our fundamental understanding of material behavior and have enabled predictive models to be developed. However, the majority of these efforts have focused on crystalline and metallic materials, and transitioning to biomaterials, such as tissue samples, is non-trivial, as there are strict sample handling requirements and environmental controls which prevent the use of conventional equipment. Additionally, the samples are smaller and more complex in composition. Therefore, more advanced sample analysis methods capable of operating in these environments are needed. In the present work, we demonstrate an all-fiber-based material analysis system based on optical polarimetry. Unlike previous polarimetric systems which relied on free-space components, our method combines an in-line polarizer, polarization-maintaining fiber, and a polarimeter to measure the arbitrary polarization state of the output, eliminating all free-space elements. Additionally, we develop a more generalized theoretical analysis which allows more information about the polarization state to be obtained via the polarimeter. We experimentally verify our system using a series of elastomer samples made from polydimethylsiloxane (PDMS), a commonly used biomimetic material. By adjusting the base:curing agent ratio of the PDMS, we controllably tune the Young's modulus of the samples to span over an order of magnitude. The measured results are in good agreement with those obtained using a conventional load-frame system. Our fiber-based polarimetric stress sensor shows promise for use as a simple research tool that is portable and suitable for a wide variety of applications.

  20. A Combined Use of Decomposition and Texture for Terrain Classification of Fully Polarimetric SAR Images

    Science.gov (United States)

    Rodionova, N. V.

    2007-03-01

    This p aper presents two-stag e unsupervised terrain classification of fully polarimetr ic SA R data using Freeman and Durden decomposition based on three simp le scattering mechanisms: surface, volume and double bounce (first step), and textur al features (uncorrelated uniformity , contr ast, inv erse mo men t and entropy) obtained from grey lev el co-occurrence matr ices (GLCM) (second step). Textural f eatures ar e defined in moving w indow 5x5 pixels w ith N=32 (N - number of grey lev els) . This algorith m preserves th e purity of domin ant polarimetric scattering properties and defines textural features in each scatter ing category. It is shown better object discrimin ation after app lying textur e w ith in fix ed scattering category. Speckle r eduction is one of th e main mo ments in imag e interpr etation improvement because of its great influen ce on textur e. Results from unfiltered and Lee filtered polar imetr ic SAR imag es show that the v alues of contrast and en tropy decr ease and th e values of uniformity and inverse moment increase with speckle reduction, that's tru e for all polarizations (HH, VV, HV). Th e d iscr imination b etw een objects increases after speckle f ilter ing. Polar ization influen ce on textur e features is def ined by calculating th e features in SAR images w ith HH , VV and HV polarizations before and after speck le filter ing, and then creating RG B images. It is shown mor e polarization inf luence on textur e features (uniformity , inverse mo ment and entropy) before filtering and less influen ce - after speck le f iltering. I t's not true for contrast wher e polar ization influen ce is not ch anged practically w ith filtering. SIR-C/X-SA R SLC L-band imag es of Moscow r egion are used for illustr ation.

  1. Feasibility Study of Rain Rate Monitoring from Polarimetric GNSS Propagation Parameters

    Directory of Open Access Journals (Sweden)

    Hao An

    2016-12-01

    Full Text Available In this work, the feasibility of estimating rain rate based on polarimetric Global Navigation Satellite Systems (GNSS signals is explored in theory. After analyzing the cause of polarimetric signals, three physical-mathematical relation models between co-polar phase shift (KHH, KVV, specific differential phase shift (KDP, and rain rate (R are respectively investigated. These relation models are simulated based on four different empirical equations of nonspherical raindrops and simulated Gamma raindrop size distribution. They are also respectively analyzed based on realistic Gamma raindrop size distribution and maximum diameter of raindrops under three different rain types: stratiform rain, cumuliform rain, and mixed clouds rain. The sensitivity of phase shift with respect to some main influencing factors, such as shape of raindrops, frequency, as well as elevation angle, is also discussed, respectively. The numerical results in this study show that the results by scattering algorithms T-matrix are consistent with those from Rayleigh Scattering Approximation. It reveals that they all have the possibility to estimate rain rate using the KHH-R, KVV-R or KDP-R relation. It can also be found that the three models are all affected by shape of raindrops and frequency, while the elevation angle has no effect on KHH-R. Finally, higher frequency L1 or B1 and lower elevation angle are recommended and microscopic characteristics of raindrops, such as shape and size distribution, are deemed to be important and required for further consideration in future experiments. Since phase shift is not affected by attenuation and not biased by ground clutter cancellers, this method has considerable potential in precipitation monitoring, which provides new opportunities for atmospheric research.

  2. Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar

    Directory of Open Access Journals (Sweden)

    G. Vulpiani

    2015-11-01

    It is based on an iterative approach that uses a very short-length (1 km moving window, allowing proper capture of the observed high radial gradients of the differential phase. The parameterization of the attenuation correction algorithm, which uses the reconstructed differential phase shift, is derived from electromagnetic simulations based on 3 years of drop size distribution (DSD observations collected in Rome (Italy. A fuzzy logic hydrometeor classification algorithm was also adopted to support the analysis of the storm characteristics. The precipitation field amounts were reconstructed using a combined polarimetric rainfall algorithm based on reflectivity and specific differential phase. The first storm was observed on 21 February when a winter convective system that originated in the Tyrrhenian Sea, marginally hit the central-eastern coastline of Sicily, causing a flash flood in Catania. Due to an optimal location (the system is located a few kilometers from the city center, it was possible to retrieve the storm characteristics fairly well, including the amount of rainfall field at the ground. Extemporaneous signal extinction, caused by close-range hail core causing significant differential phase shift in a very short-range path, is documented. The second storm, on 21 August 2013, was a summer mesoscale convective system that originated from a Mediterranean low pressure system lasting a few hours that eventually flooded the city of Syracuse. The undergoing physical process, including the storm dynamics, is inferred by analyzing the vertical sections of the polarimetric radar measurements. The high registered amount of precipitation was fairly well reconstructed, although with a trend toward underestimation at increasing distances. Several episodes of signal extinction were clearly manifested during the mature stage of the observed supercells.

  3. Image Enhancement and Speckle Reduction of Full Polarimetric SAR Data by Gaussian Markov Random Field

    Science.gov (United States)

    Mahdian, M.; Motagh, M.; Akbari, V.

    2013-09-01

    In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR) data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF) has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF), which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  4. Retrieval of Macro- and Micro-Physical Properties of Oceanic Hydrosols from Polarimetric Observations

    Science.gov (United States)

    Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir

    2016-01-01

    Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.

  5. INVESTIGATION OF THERMAL AND NON-THERMAL INTERACTIONS OF MICROWAVES WITH MATERIALS AND MICROWAVE CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Soner KUŞLU

    2002-03-01

    Full Text Available The use of microwaves in industry has generated interest recently as an alternative to classic thermal heating because of the drastic reduction in the processing time. In spite of the fact that there is a wide application of microwaves, the interaction mechanism between microwaves and materials has not been well understood. Nowadays, the fact that there is a debate on the alternative use of microwaves is on not the dielectric heating which is well known but microwave specific effect. In this article there are reports which show similar kinetic in both microwave and classic thermal methods at similar temperature and simple dielectric heating of materials under microwaves conditions. There are also reports which show a clear reaction rate enhancement by microwave radiation compared to the thermal method under similar reactions conditions and temperatures indicating microwave specific effect. In addition, the study on the effects of microwaves on chemical reactions and hypothesis associated with the microwave effects will discuss.

  6. Microwave Sterilization and Depyrogenation System

    Science.gov (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.

    2009-01-01

    A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time

  7. GA microwave window development

    International Nuclear Information System (INIS)

    Moeller, C.P.; Kasugai, A.; Sakamoto, K.; Takahashi, K.

    1994-10-01

    The GA prototype distributed window was tested in a 32 mm diam. waveguide system at a power density suitable for a MW gyrotron, using the JAERI/Toshiba 110 GHz long pulse internal converter gyrotron in the JAERI test stand. The presence of the untilted distributed window had no adverse effect on the gyrotron operation. A pulse length of 10 times the calculated thermal equilibrium time (1/e time) of 30 msec was reached, and the window passed at least 750 pulses greater than 30 msec and 343 pulses greater than 60 msec. Beyond 100 msec, the window calorimetry reached steady state, allowing the window dissipation to be measured in a single pulse. The measured loss of 4.0% agrees both with the estimated loss, on which the stress calculations are based, and with the attenuation measured at low power in the HE 11 mode. After the end of the tests, the window was examined; no evidence of arcing air coating was found in the part of the window directly illuminated by the microwaves, although there was discoloration in a recess containing an optical diagnostic which outgassed, causing a local discharge to occur in that recess. Finally, there was no failure of the metal-sapphire joints during a total operating time of 50 seconds consisting of pulses longer than 30 msec

  8. Study of microwave components for an electron cyclotron resonance ...

    Indian Academy of Sciences (India)

    The system consists of a microwave source, an isolator, a directional coupler, a threestub tuner, a high voltage break, a microwave vacuum window, and a microwave launcher. These microwave components were simulated using microwave studio software. The low power and full term characterization of the microwave ...

  9. Microwave. Instructor's Edition. Louisiana Vocational-Technical Education.

    Science.gov (United States)

    Blanton, William

    This publication contains related study assignments and job sheets for a course in microwave technology. The course is organized into 12 units covering the following topics: introduction to microwave, microwave systems, microwave oscillators, microwave modulators, microwave transmission lines, transmission lines, detectors and mixers, microwave…

  10. A Novel Ship Detection Method Using Model-Based Decomposition as a Polarimetric Band-Stop Filter

    Science.gov (United States)

    Sugimoto, Mitsunobu; Marino, Armando; Ouchi, Kazuo; Nakamura, Yasuhiro

    2013-08-01

    In this study, a novel ship detection method using model-based decomposition is suggested. The model-based decomposition is one of the popular analytical methods of POLSAR (polarimetric SAR) data. Since most of the scattering on the sea is surface scattering, the model-based decomposition can be used as a band-stop filter, to block out surface scattering component. As a result, ships, which generally have more complex scattering process, can be detected. Advanced Land Observation Satellite-Phased Array L-band SAR (ALOS-PALSAR) polarimetric SAR data and available reference data for validation are used in the study. The result was processed using adaptive-CFAR (constant false alarm rate) technique and compared with the reference data.

  11. Wideband Agile Digital Microwave Radiometer

    Science.gov (United States)

    Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven

    2012-01-01

    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.

  12. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Microwave AsherA tool using microwave oxygen plasma to remove organics on the surfacesSpecifications / Capabilities:Frequency: 2.45 GHzPower:...

  13. DMSP SSM/I- Microwave Imager

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/I is a seven-channel, four frequency, linearly-polarized, passive microwave radiometric system which measures atmospheric, ocean and terrain microwave...

  14. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George

    2013-01-01

    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en

  15. COMPARISON BETWEEN SPECTRAL, SPATIAL AND POLARIMETRIC CLASSIFICATION OF URBAN AND PERIURBAN LANDCOVER USING TEMPORAL SENTINEL – 1 IMAGES

    Directory of Open Access Journals (Sweden)

    K. Roychowdhury

    2016-06-01

    Full Text Available Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July and winter (December months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC data of the region while ground range detected (GRD data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70% was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI and Normalized Difference Vegetation Index (NDVI obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.

  16. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations

    Science.gov (United States)

    Wang, Mingjun; Zhao, Kun; Xue, Ming; Zhang, Guifu; Liu, Su; Wen, Long; Chen, Gang

    2016-10-01

    The evolution of microphysical characteristics of a rainband in Typhoon Matmo (2014) over eastern China, through its onset, developing, mature, and dissipating stages, is documented using observations from an S band polarimetric Doppler radar and a two-dimensional video disdrometer (2DVD). The drop size distributions observed by the 2DVD and retrieved from the polarimetric radar measurements indicate that the convection in the rainband generally contains smaller drops and higher number concentrations than the typical maritime type convection described in Bringi et al. (2003). The average mass-weighted mean diameter (Dm) of convective precipitation in the rainband is about 1.41 mm, and the average logarithmic normalized intercept (Nw) is 4.67 log10 mm-1 m-3. To further investigate the dominant microphysical processes, the evolution of the vertical structures of polarimetric variables is examined. Results show that complex ice processes are involved above the freezing level, while it is most likely that the accretion and/or coalescence processes dominate below the freezing level throughout the rainband life cycle. A combined examination of the polarimetric measurements and profiles of estimated vertical liquid and ice water contents indicates that the conversion of cloud water into rainwater through cloud water accretion by raindrops plays a dominant role in producing heavy rainfall. The high estimated precipitation efficiency of 50% also suggests that cloud water accretion is the dominant mechanism for producing heavy rainfall. This study represents the first time that radar and 2DVD observations are used together to characterize the microphysical characteristics and precipitation efficiency for typhoon rainbands in China.

  17. Polarimetric survey of main-belt asteroids. IV. New results from the first epoch of the CASLEO survey

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Bendjoya, Ph.

    2014-09-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the Torino and CASPROF polarimeters at the 2.15m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 1995, and until 2012 data on a large sample of asteroids were obtained. We here present and analyze the unpublished results for 129 asteroids of different taxonomic types, 56 which were polarimetrically observed for the first time. We find that the asteroids (402) Chloe and (729) Watsonia are Barbarians, and asteroid (269) Justitia shows a phase - polarization curve that seems to have a small inversion angle. Data obtained in UBVRI colors allow us to sketch an analysis of the wavelength dependence of the degree of linear polarization for 31 asteroids, in spite of some large error bars in some cases. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A122

  18. Evaluation of Digital Classification of Polarimetric SAR Data for Iron-Mineralized Laterites Mapping in the Amazon Region

    Directory of Open Access Journals (Sweden)

    Cleber G. Oliveira

    2013-06-01

    Full Text Available This study evaluates the potential of C- and L-band polarimetric SAR data for the discrimination of iron-mineralized laterites in the Brazilian Amazon region. The study area is the N1 plateau located on the northern border of the Carajás Mineral Province, the most important Brazilian mineral province which has numerous mineral deposits, particularly the world’s largest iron deposits. The plateau is covered by low-density savanna-type vegetation (campus rupestres which contrasts visibly with the dense equatorial forest. The laterites are subdivided into three units: chemical crust, iron-ore duricrust, and hematite, of which only the latter two are of economic interest. Full polarimetric data from the airborne R99B sensor of the SIVAM/CENSIPAM (L-band system and the RADARSAT-2 satellite (C-band were evaluated. The study focused on an assessment of distinct schemes for digital classification based on decomposition theory and hybrid approach, which incorporates statistical analysis as input data derived from the target decomposition modeling. The results indicated that the polarimetric classifications presented a poor performance, with global Kappa values below 0.20. The accuracy for the identification of units of economic interest varied from 55% to 89%, albeit with high commission error values. In addition, the results using L-band were considered superior compared to C-band, which suggest that the roughness scale for laterite discrimination in the area is nearer to L than to C-band.

  19. EFFECT OF POLARIMETRIC NOISE ON THE ESTIMATION OF TWIST AND MAGNETIC ENERGY OF FORCE-FREE FIELDS

    International Nuclear Information System (INIS)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay; Joshi, Jayant

    2009-01-01

    The force-free parameter α, also known as helicity parameter or twist parameter, bears the same sign as the magnetic helicity under some restrictive conditions. The single global value of α for a whole active region gives the degree of twist per unit axial length. We investigate the effect of polarimetric noise on the calculation of global α value and magnetic energy of an analytical bipole. The analytical bipole has been generated using the force-free field approximation with a known value of constant α and magnetic energy. The magnetic parameters obtained from the analytical bipole are used to generate Stokes profiles from the Unno-Rachkovsky solutions for polarized radiative transfer equations. Then we add random noise of the order of 10 -3 of the continuum intensity (I c ) in these profiles to simulate the real profiles obtained by modern spectropolarimeters such as Hinode (SOT/SP), SVM (USO), ASP, DLSP, POLIS, and SOLIS etc. These noisy profiles are then inverted using a Milne-Eddington inversion code to retrieve the magnetic parameters. Hundred realizations of this process of adding random noise and polarimetric inversion is repeated to study the distribution of error in global α and magnetic energy values. The results show that (1) the sign of α is not influenced by polarimetric noise and very accurate values of global twist can be calculated, and (2) accurate estimation of magnetic energy with uncertainty as low as 0.5% is possible under the force-free condition.

  20. Automated chromatographic system with polarimetric detection laser applied in the control of fermentation processes and seaweed extracts characterization

    International Nuclear Information System (INIS)

    Fajer, V.; Naranjo, S.; Mora, W.; Patinno, R.; Coba, E.; Michelena, G.

    2012-01-01

    There are presented applications and innovations of chromatographic and polarimetric systems in which develop methodologies for measuring the input molasses and the resulting product of a fermentation process of alcohol from a rich honey and evaluation of the fermentation process honey servery in obtaining a drink native to the Yucatan region. Composition was assessed optically active substances in seaweed, of interest to the pharmaceutical industry. The findings provide measurements alternative raw materials and products of the sugar industry, beekeeping and pharmaceutical liquid chromatography with automated polarimetric detection reduces measurement times up to 15 min, making it comparable to the times of high chromatography resolution, significantly reducing operating costs. By chromatography system with polarimetric detection (SCDP) is new columns have included standard size designed by the authors, which allow process samples with volumes up to 1 ml and reduce measurement time to 15 min, decreasing to 5 times the volume sample and halving the time of measurement. Was evaluated determining the concentration of substances using the peaks of the chromatograms obtained for the different columns and calculate the uncertainty of measurements. The results relating to the improvement of a data acquisition program (ADQUIPOL v.2.0) and new programs for the preparation of chromatograms (CROMAPOL CROMAPOL V.1.0 and V.1.2) provide important benefits, which allow a considerable saving of time the processing of the results and can be applied in other chromatography systems with the appropriate adjustments. (Author)

  1. A NEW SAR CLASSIFICATION SCHEME FOR SEDIMENTS ON INTERTIDAL FLATS BASED ON MULTI-FREQUENCY POLARIMETRIC SAR IMAGERY

    Directory of Open Access Journals (Sweden)

    W. Wang

    2017-11-01

    Full Text Available We present a new classification scheme for muddy and sandy sediments on exposed intertidal flats, which is based on synthetic aperture radar (SAR data, and use ALOS-2 (L-band, Radarsat-2 (C-band and TerraSAR-X (X-band fully polarimetric SAR imagery to demonstrate its effectiveness. Four test sites on the German North Sea coast were chosen, which represent typical surface compositions of different sediments, vegetation, and habitats, and of which a large amount of SAR is used for our analyses. Both Freeman-Durden and Cloude-Pottier polarimetric decomposition are utilized, and an additional descriptor called Double-Bounce Eigenvalue Relative Difference (DERD is introduced into the feature sets instead of the original polarimetric intensity channels. The classification is conducted following Random Forest theory, and the results are verified using ground truth data from field campaigns and an existing classification based on optical imagery. In addition, the use of Kennaugh elements for classification purposes is demonstrated using both fully and dual-polarization multi-frequency and multi-temporal SAR data. Our results show that the proposed classification scheme can be applied for the discrimination of muddy and sandy sediments using L-, C-, and X-band SAR images, while SAR imagery acquired at short wavelengths (C- and X-band can also be used to detect more detailed features such as bivalve beds on intertidal flats.

  2. Geomorphological mapping of ice-free areas using polarimetric RADARSAT-2 data on Fildes Peninsula and Ardley Island, Antarctica

    Science.gov (United States)

    Schmid, T.; López-Martínez, J.; Guillaso, S.; Serrano, E.; D'Hondt, O.; Koch, M.; Nieto, A.; O'Neill, T.; Mink, S.; Durán, J. J.; Maestro, A.

    2017-09-01

    Satellite-borne Synthetic Aperture Radar (SAR) has been used for characterizing and mapping in two relevant ice-free areas in the South Shetland Islands. The objective has been to identify and characterize land surface covers that mainly include periglacial and glacial landforms, using fully polarimetric SAR C band RADARSAT-2 data, on Fildes Peninsula that forms part of King George Island, and Ardley Island. Polarimetric parameters obtained from the SAR data, a selection of field based training and validation sites and a supervised classification approach, using the support vector machine were chosen to determine the spatial distribution of the different landforms. Eight periglacial and glacial landforms were characterized according to their scattering mechanisms using a set of 48 polarimetric parameters. The mapping of the most representative surface covers included colluvial deposits, stone fields and pavements, patterned ground, glacial till and rock outcrops, lakes and glacier ice. The overall accuracy of the results was estimated at 81%, a significant value when mapping areas that are within isolated regions where access is limited. Periglacial surface covers such as stone fields and pavements occupy 25% and patterned ground over 20% of the ice-free areas. These are results that form the basis for an extensive monitoring of the ice-free areas throughout the northern Antarctic Peninsula region.

  3. Microwavable thermal energy storage material

    Science.gov (United States)

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  4. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  5. Microwave Activation of Drug Release

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór

    to verify the presence of creeping waves. Due to the inherent high wave attenuation in biological tissues, such as muscles at microwave frequencies, sensitive receiving structures are suggested to be integrated on a drug capsule. The capsules are meant to contain the pharmaceutical drugs and the receiving......Due to current limitations in control of pharmaceutical drug release in the body along with increasing medicine use, methods of externally-controlled drug release are of high interest. In this thesis, the use of microwaves is proposed as a technique with the purpose of externally activating...... setup, called the microwave activation system has been developed and tested on a body phantom that emulates the human torso. The system presented in this thesis, operates unobtrusively, i.e. without physically interfering with the target (patient). The torso phantom is a simple dual-layered cylindrical...

  6. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc biased...... at different points in the current-voltage characteristic. Both numerical calculations based on the Tien-Gordon theory and 70-GHz microwave experiments have confirmed the wide dynamic range (more than 15-dB attenuation for one stage) and the low insertion loss in the ''open'' state. The performance of a fully...... integrated submillimeter receiver circuit which comprises a flux-flow oscillator (FFO) as local oscillator, a superconducting variable attenuator, and a microwave SIS detector with tuned-out capacitance is also reported....

  7. 47 CFR 101.141 - Microwave modulation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Microwave modulation. 101.141 Section 101.141... SERVICES Technical Standards § 101.141 Microwave modulation. (a) Microwave transmitters employing digital modulation techniques and operating below 25.25 GHz (except for MVDDS stations in the 12,200-12,700 MHz band...

  8. Microwave assisted centrifuge and related methods

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  9. Prospects of microwave processing: An overview

    Indian Academy of Sciences (India)

    Administrator

    wave heating. In addition, microwave energy is being explored for the sintering of metal powders also. Ceramic and metal nanopowders have been sintered in microwave. Furthermore, initiatives have been taken to process the amorphous materials (e.g. glass) by microwave heating. Besides this, an attempt has been made ...

  10. The microwave era is just beginning

    International Nuclear Information System (INIS)

    Grad, P.

    1989-01-01

    Microwave energy applicators in curing rubber products and in ceramic manufacture are enunciated by some of the participants at the First Australian Symposium on Microwave Power Applications held in February 1989 at Wollongong. The advantages and disadvantages of microwave heating over conventional methods are stated

  11. Particle physics implications of Wilkinson microwave anisotropy ...

    Indian Academy of Sciences (India)

    ... Journals; Pramana – Journal of Physics; Volume 63; Issue 6. Particle physics implications of Wilkinson microwave anisotropy project measurements. U A Yajnik. Volume 63 Issue 6 December 2004 pp 1317-1330 ... Keywords. Cosmic microwave background radiation; inflation; Wilkinson microwave anisotropy project.

  12. Microwave torch. Physics and applications.

    Science.gov (United States)

    Gritsinin, Sergei; Knyazev, Vitalii; Kossyi, Igor

    2004-09-01

    New construction of a coaxial microwave torch (CMT) has been developed, tested and investigated. CMT provides a means for plasma stream production virtually in all gases and gaseous mixture flow at atmospheric pressure. A broad spectrum of diagnostics has been applied including microwave and laser interferometry, optical active and absorptive spectroscopy, laser holographic interferometry, microwave radiation detection, high-speed photography, etc. The time evolution of the torch operating in the pulsed mode is considered. It has been revealed that the evolution is different in noble and molecular gases. The characteristic feature of torches in noble gases is a dense core with plasma density no less than 1016 cm-3. Plasma bunches with density of 1014-1015 cm-3 successively propagate downstream from this core, which are seen as glow bursts. In molecular gases, the core is absent and the torch is formed by propagating plasma bunches. By optical diagnostics application temperature of neutral component of microwave torch has been determined. With high efficiency energy of microwave radiation comes into gas heating. Gas temperature is maximal near the nozzle (4,5 - 5,0 kK) and falls down in axial direction (to 2,5 - 3,0 kK). Torch is thermally-non-equilibrium plasma formation capable of significant change of working and surrounding gaseous state. Peculiarities of discharge development and maintenance are under discussion as well as possibilities to use microwave torch as a spaceborne plasma source, combustion ignitor, mean for nanoparticles production, different plasmachemical applications etc. Contact information: Mailing address: Prof. I.A.Kossyi General Physics Institute, 119991, Vavilov Street 38 Moscow, Russia Tel.: 7(095)135-41-65; Fax: 7(095)135-80-11 E-mail: kossyi@fpl.gpi.ru

  13. Microwave power transmission by satellites

    Science.gov (United States)

    Keydel, W.

    The MPTS (microwave power transmission system) is examined with regard to the problems involved, the proposed solutions, the future outlook, and the necessity for further work. The MPTS is analyzed with regard to system considerations, design considerations (power transmission, frequency selection, power generation, the spacetenna, microwave propagation problems, the rectenna, and efficiency), environmental impacts (electromagnetic compatibility and RF interference, and health and ecological effects). It is concluded that the MPTS is feasible, but that further studies are needed to optimize the system with respect to such factors as efficiency and environmental impact.

  14. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  15. Classification of Forest Regrowth Stage using Polarimetric Decomposition and Foliage Projective Cover

    Science.gov (United States)

    Clewley, D.; Lucas, R.; Bunting, P.; Moghaddam, M.

    2012-12-01

    Within Queensland, Australia extensive clearing of vegetation for agriculture has occurred within the Brigalow Belt Bioregion (BBB), reducing forests dominated by Acacia harpophylla (brigalow) to 10 % of their former extent. Where cleared land is left abandoned or unmanaged regeneration is rapid, Regenerating vegetation represents a more efficient and cost effective method for carbon sequestration than direct planting and offers a number of benefits over plantation forest, particularly in terms of provision of habitat for native fauna. To effectively protect regenerating vegetation, maps of the distribution of forests at different stages of regeneration are required. Whilst mapping approaches have traditionally focused on optical data, the high canopy cover of brigalow regrowth in all but the very early stages limits discrimination of forests at different stages of growth. The combination of optical data, namely Landsat derived Foliage Projective Cover (FPC) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (SAR) backscatter data have previously been investigated for mapping regrowth. This study therefore aimed to investigate the potential of the alpha-Entropy (α/H) decomposition (S Cloude and E Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," 1997, IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 1, pp. 68-78) applied to polarimetric ALOS PALSAR backscatter for mapping regrowth stage combined with FPC data to account for canopy variations. The study focused on the Tara Downs subregion, located in the Western Darling Downs, within the south of the BBB. PALSAR data were acquired over the study site in fully-polarimetric mode (incidence angle mid swath ~ 26 degrees). From these data α/H layers were generated and stacked with FPC data. Considering only those areas known to contain brigalow prior to clearing and with an FPC > 9 %, k-means clustering was applied, with

  16. Microphysics in West African squall line with an Xband polarimetric radar and an Hydrometeor Identification Scheme: comparison with in situ measurements

    Science.gov (United States)

    Cazenave, F.; Gosset, M.; Kacou, M.; Alcoba, M.; Fontaine, E.

    2015-12-01

    A better knowledge on the microphysics of tropical continental convective systems is needed in order to improve quantitative precipitation measurements in the Tropics. Satellite passive microwave estimation of tropical rainfall could be improved with a better parameterization of the icy hydrometeors in the Bayesian RAIN estimation algorithm (BRAIN, Viltard et al., 2006) used over continental tropics. To address this important issue specific campaigns that combine aircraft based in situ microphysics probing and polarimetric radar have been organized as part of the CNES/ISRO satellite mission Megha-Tropiques. The first microphysics validation campaign was set up in Niamey in August 2010. The field deployment included the AMMA-CATH 56 rain gages, 3 disdrometers, 2 meteorological radars including the C-band MIT and the Xport X-band dual polarisation radar, and a 4 weeks campaign with the instrumented Falcon 20 from the french operator for environmental research aircrafts equipped with several microphysics probes and the 94Ghz cloud radar RASTA. The objective is to combine scales and methods to converge towards a parameterization of the ice size, mass and density laws inside continental Mesoscale Convective System (MCS). The Particle IDentification algorithm (PID) developed by the Colorado State University (CSU) adapted to the band X by B. Dolan (Dolan et al. 2009) is used to classify seven kind of particles: drizzle or light rain, moderate to heavy rain, wet and dry graupel, wet and dry aggregates and ice crystals. On a limited number of systems, the airborne microphysics sensors provide a detailed in situ reference on the Particle Size Distribution (PSD) that can be compared with the radar PID in the radar pixels located along the flight trajectory. An original approach has been developed for the radar - in situ comparison: it consists in simulating synthetic radar variables from the microphysics probe information and compare the 2 data sets in a common 'radar space

  17. The Impact of Warm-Rain Microphysical Processes on Rain Rate and Polarimetric Observables at X-Band

    Science.gov (United States)

    Xie, Xinxin; Evaristo, Raquel; Troemel, Silke; Simmer, Clemens

    2015-04-01

    Microphysical processes govern the evolution of drop size distribution (DSD) during the development of precipitating systems. Thus, an accurate knowledge on precipitating systems from a microphysical perspective is required for better quantitative precipitation estimates (QPE). Additionally, detection of microphysical processes in 3D polarimetric radar volumes paves the way for better parameterizations in numerical weather predictions (NWP). In this study, we focus on the impact of different microphysical processes on rain rate (RR) and polarimetric observables at X band. Microphysical processes during the evolution of warm-rain precipitating systems, including size sorting, evaporation, coalescence and breakup, are taken into account. Assuming that vertical rain shaft is composed of liquid spheroids distributed in a normalized Gamma size distribution, microphysical processes are reconstructed. The variation of RR governed by microphysical processes is also examined. Unique fingerprints caused by microphysical processes have been identified in polarimetric radar observations. For size sorting, large rain drops concentrating near ground surface or at leading edge induce strong Zdr (differential reflectivity) accompanied by small Zh (reflectivity). A larger mean size in DSD results in stronger Zdr during size sorting. The increasing mean size due to evaporation and coalescence enhances Zdr, while Zh during evaporation is reduced by the depletion of small rain drops. The reduction of Zh ranges between -10 dB and 0 dB considering different DSDs during evaporation. Zh, Zdr and Kdp (specific differential phase) all decrease when large rain drops break up. The evolution of DSD which depends on the ongoing microphysical processes results in a variation in RR. Though size sorting due to differential sedimentation occurs, RR approaches stable within 15 min. Suffering from vertical wind shear, RR is reduced because of the categorization of rain drops with different terminal

  18. The potential of linear discriminative Laplacian eigenmaps dimensionality reduction in polarimetric SAR classification for agricultural areas

    Science.gov (United States)

    Shi, Lei; Zhang, Lefei; Zhao, Lingli; Yang, Jie; Li, PingXiang; Zhang, Liangpei

    2013-12-01

    In this paper, the linear discriminative Laplacian eigenmaps (LDLE) dimensionality reduction (DR) algorithm is introduced to C-band polarimetric synthetic aperture radar (PolSAR) agricultural classification. A collection of homogenous areas of the same crop class usually presents physical parameter variation, such as the biomass and soil moisture. Furthermore, the local incidence angle also impacts a lot on the same crop category when the vegetation layer is penetrable with C-band radar. We name this phenomenon as the "observed variation of the same category" (OVSC). The most common PolSAR features, e.g., the Freeman-Durden and Cloude-Pottier decompositions, show an inadequate performance with OVSC. In our research, more than 40 coherent and incoherent PolSAR decomposition models are stacked into the high-dimensionality feature cube to describe the various physical parameters. The LDLE algorithm is then performed on the observed feature cube, with the aim of simultaneously pushing the local samples of the same category closer to each other, as well as maximizing the distance between local samples of different categories in the learnt subspace. Finally, the classification result is obtained by nearest neighbor (NN) or Wishart classification in the reduced feature space. In the simulation experiment, eight crop blocks are picked to generate a test patch from the 1991 Airborne Synthetic Aperture Radar (AIRSAR) C-band fully polarimetric data from of Flevoland test site. Locality preserving projections (LPP) and principal component analysis (PCA) are then utilized to evaluate the DR results of the proposed method. The classification results show that LDLE can distinguish the influence of the physical parameters and achieve a 99% overall accuracy, which is better than LPP (97%), PCA (88%), NN (89%), and Wishart (88%). In the real data experiment, the Chinese Hailaer nationalized farm RadarSat2 PolSAR test set is used, and the classification accuracy is around 94%, which

  19. Exploration of Data Fusion between Polarimetric Radar and Multispectral Image Data

    Science.gov (United States)

    2012-09-01

    specific problem areas exist in this image. The water classification shows errors of commission on four football fields throughout the image. The urban...discriminate forest cover types in brazil . Multispectral and Microwave Sensing of Forestry Hydrology, and Natural Resources, Mougin, Ranson, and Smith

  20. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  1. Recent Advancements in Microwave Imaging Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  2. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  3. Microwave processing of radioactive materials-I

    International Nuclear Information System (INIS)

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs

  4. Iatrogenic burns: beware of microwaves!

    Science.gov (United States)

    2008-08-01

    (1) The traditional hot-water bottle now faces competition from a variety of similar devices, such as microwave-heated compresses and gel packs; (2) These devices can cause severe burns; (3) Microwave-heated gel packs can be harmful for two main reasons. First, microwave ovens heat deeply and unevenly and dangerous temperatures can quickly be reached. In addition, gels retain heat longer than other materials such as cotton compresses or towels; (4) Burns are sometimes caused by lengthy contact with an object that is not hot enough to cause pain or even discomfort. The heat perceived by the user does not reflect the quantity of heat actually transferred. Instructions that can be inadequate and that vary among different brands are further contributing factors; (5) These heating devices must be used with care. The recommended microwaving duration must not be exceeded, the device should be let stand for at least 10 minutes before use, and the heat-retaining material should be homogenised before applying the device to the skin.

  5. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    and their performances were checked numerically. The measurement of transmission and reflection coefficients in the frequency range 10 to 30 GHz was performed using Agilent N5230A microwave vector network analyzer. The numerical simulations are performed using FEMLAB package. 3. Results and discussion.

  6. Microwave Oven Repair. Teacher Edition.

    Science.gov (United States)

    Smreker, Eugene

    This competency-based curriculum guide for teachers addresses the skills a technician will need to service microwave ovens and to provide customer relations to help retain the customer's confidence in the product and trust in the service company that performs the repair. The guide begins with a task analysis, listing 20 cognitive tasks and 5…

  7. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  8. Microstrip PIN diode microwave switch

    OpenAIRE

    Usanov, Dmitry A.; Skripal, A. V.; Kulikov, M. Yu.

    2011-01-01

    A possibility of creating narrow-band electrically controlled microwave breakers and switches with enhanced attenuation level in the blocking mode has been considered. The specified devices are based on the structure containing a short-circuited microstrip link with connected capacitor and the loop coupler, in the center of which is located a PIN diode.

  9. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements

    Directory of Open Access Journals (Sweden)

    Yuta Izumi

    2017-04-01

    Full Text Available Circularly polarized synthetic aperture radar (CP-SAR is known to be insensitive to polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment. Additionally, the dual-circular polarimetric (DCP mode has proven to have more polarimetric information than that of the corresponding mode of linear polarization, i.e., the dual-linear polarimetric (DLP mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages. Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP and DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their effectiveness in phenology retrieval. Among different observations, the H / α ¯ plane and triangle plots obtained by three scattering components (surface, double-bounce, and volume scattering for both the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant intervals of rice growth.

  10. Land Cover Changes Detection in Polarimetric SAR Data Using Algebra, Similarity and Distance Based Methods

    Science.gov (United States)

    Najafi, A.; Hasanlou, M.; Akbari, V.

    2017-09-01

    Monitoring and surveillance changes around the world need powerful methods, so detection, visualization, and assessment of significant changes are essential for planning and management. Incorporating polarimetric SAR images due to interactions between electromagnetic waves and target and because of the high spatial resolution almost one meter can be used to study changes in the Earth's surface. Full polarized radar images comparing to single polarized radar images use amplitude and phase information of the surface in different available polarization (HH, HV, VH, and VV). This study is based on the decomposition of full polarized airborne UAVSAR images and integration of these features with algebra method involves Image Differencing (ID) and Image Ratio (IR) algorithms with the mathematical nature and distance-based method involves Canberra (CA) and Euclidean (ED) algorithms with measuring distance between corresponding vector and similarity-based method involves Taminoto (TA) and Kulczynski (KU) algorithms with dependence corresponding vector for change detecting purposes on two real PolSAR datasets. Assessment of incorporated methods is implemented using ground truth data and different criteria for evaluating such as overall accuracy (OA), area under ROC curve (AUC) and false alarms rate (FAR). The output results show that ID, IR, and CA have superiority to detect changes comparing to other implemented algorithms. Also, numerical results show that the highest performance in two datasets has OA more than 90%. In other assessment criteria, mention algorithms have low FAR and high AUC value indices to detect changes in PolSAR images.

  11. Structural Classification of Marshes with Polarimetric SAR Highlighting the Temporal Mapping of Marshes Exposed to Oil

    Directory of Open Access Journals (Sweden)

    Elijah Ramsey

    2015-09-01

    Full Text Available Empirical relationships between field-derived Leaf Area Index (LAI and Leaf Angle Distribution (LAD and polarimetric synthetic aperture radar (PolSAR based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.

  12. Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach

    Directory of Open Access Journals (Sweden)

    Íñigo Molina

    2012-11-01

    Full Text Available This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU times.

  13. POLAMI: Polarimetric Monitoring of AGN at Millimetre Wavelengths - I. The programme, calibration and calibrator data products

    Science.gov (United States)

    Agudo, Iván; Thum, Clemens; Molina, Sol N.; Casadio, Carolina; Wiesemeyer, Helmut; Morris, David; Paubert, Gabriel; Gómez, José L.; Kramer, Carsten

    2018-02-01

    We describe the POLAMI (Polarimetric Monitoring of AGN at Millimetre Wavelengths) programme for the monitoring of all four Stokes parameters of a sample of bright radio-loud active galactic nuclei with the IRAM 30-m telescope at 3.5 and 1.3 mm. The programme started in 2006 October and accumulated, until 2014 August, 2300 observations at 3.5 mm, achieving a median time sampling interval of 22 d for the sample of 37 sources. This first paper explains the source selection, mostly blazars, the observing strategy and data calibration and gives the details of the instrumental polarization corrections. The sensitivity (1σ) reached at 3.5 mm is 0.5 per cent (linear polarization degree), 4.7° (polarization angle), and 0.23 per cent (circular polarization), while the corresponding values at 1.3 mm are 1.7 per cent, 9.9° and 0.72 per cent, respectively. The data quality is demonstrated by the time sequences of our calibrators Mars and Uranus. For the quasar 3C 286, widely used as a linear polarization calibrator, we give improved estimates of its linear polarization, and show for the first time occasional detections of its weak circular polarization, which suggests a small level of variability of the source at millimeter wavelengths.

  14. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data

    Science.gov (United States)

    Gallant, Alisa L.; Kaya, Shannon G.; White, Lori; Brisco, Brian; Roth, Mark F.; Sadinski, Walter J.; Rover, Jennifer

    2014-01-01

    Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  15. Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt

    2013-07-01

    Full Text Available One fundamental task in wetland monitoring is the regular mapping of (temporarily flooded areas especially beneath vegetation. Due to the independence of weather and illumination conditions, Synthetic Aperture Radar (SAR sensors could provide a suitable data base. Using polarimetric modes enables the identification of flooded vegetation by means of the typical double-bounce scattering. In this paper three decomposition techniques—Cloude-Pottier, Freeman-Durden, and Normalized Kennaugh elements—are compared to each other in terms of identifying the flooding extent as well as its temporal change. The image comparison along the time series is performed with the help of the Curvelet-based Change Detection Method. The results indicate that the decomposition algorithm has a strong impact on the robustness and reliability of the change detection. The Normalized Kennaugh elements turn out to be the optimal representation for Curvelet-based change detection processing. Furthermore, the co-polarized channels (same transmit and receive polarization in horizontal (HH and vertical (VV direction respectively appear to be sufficient for wetland monitoring so that dual-co-polarized imaging modes could be an alternative to conventional quad-polarized acquisitions.

  16. Full Polarimetric Synthetic Aperture Radar (SAR) Data for ionosphere observation - A comparative study

    Science.gov (United States)

    Mohanty, S.; Singh, G.

    2017-12-01

    Ionosphere, predominantly, govern the propagation of radio waves, especially at L-band and lower frequencies. Small-scale, rapid fluctuations in the electron density, termed as scintillation phenomenon, cause rapid variations in signal amplitude and phase. Scintillation studies have been done using ground-based radio transmitter and beacon GPS signals. In this work, attempt has been made to utilize full polarimetric synthetic aperture radar (SAR) satellite signal at L-band (1.27 GHz) to develop a new measurement index for SAR signal intensity fluctuation. Datasets acquired from Japan's latest Advanced Land Observation Satellite (ALOS)-2 over the Indian subcontinent on two different dates, with varying ionospheric activities, have been utilized to compare the index. A 20% increase in the index values for a scintillation-affected day has been observed. The result coincides with the nature of ionospheric scintillation pattern typically observed over the equatorial belt. Total electron content values, for the two dates of acquisition, obtained from freely available Ionosphere Exchange (IONEX) data have been used to validate the varying ionospheric activities as well as the trend in index results. Another interesting finding of the paper is the demarcation of the equatorial anomaly belt. The index values are comparatively higher at these latitudes on a scintillation-affected day. Furthermore, the SAR signal intensity fluctuation index has great potential in being used as a preliminary measurement index to identify low frequency SAR data affected by ionospheric scintillation.

  17. Spectral and polarimetric characterization of gazeous and telluric planets with SEE COAST

    Science.gov (United States)

    Boccaletti, A.; Baudoz, P.; Mawet, D.; Schneider, J.; Tinetti, G.; Galicher, R.; Stam, D.; Cavarroc, C.; Hough, J.; Doel, P.; Pinfield, D.; Keller, C.-U.; Beuzit, J.-L.; Udry, S.; Ferrari, A.; Martin, E.; Ménard, F.; Sein, E.

    2011-07-01

    SEE COAST stands for Super Earth Explorer - Coronagraphic Off-Axis Space Telescope. The concept was initially proposed to ESA for Cosmic Vision. None of the direct detection exoplanet proposals were selected in 2007 and we are now pursuing our efforts to consolidate the astrophysical program and the technical developments for the next call for proposal. The prime objective of SEE COAST is to contribute to the understanding of the formation and evolution of planetary systems. Exploring the diversity of these objects is therefore the main driver to define the instrumentation. In the next decade the improvement of radial velocity instruments and obviously temporal coverage will provide us with a large numbers of long period giants as well as telluric planets, namely Super Earths. Obtaining the spectral and polarimetric signatures of these objects in the visible range to measure atmospheric parameters (molecular composition, clouds, soils, …) will be unique and with important scientific returns. A space mission complementary to near IR instruments like SPHERE, GPI, JWST and later ELTs for the full characterization of giants and Super Earths is a first secure step towards the longer term goal that is the characterization of telluric planets with mass and atmosphere comparable to that of the Earth. An overview of the astrophysical motivation and the trade-off that lead to a simple integrated concept of a space-based high contrast imaging instrument are given here.

  18. Correlation methods for the analysis of X-ray polarimetric signals

    Science.gov (United States)

    Massaro, E.; Fabiani, S.; Campana, R.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.

    2018-03-01

    X-ray polarimetric measurements are based on studying the distribution of the directions of scattered photons or photoelectrons and on the search of a sinusoidal modulation with a period of π. We developed two tools for investigating these angular distributions based on the correlations between counts in phase bins separated by fixed phase distances. In one case we use the correlation between data separated by half of the bin number (one period) which is expected to give a linear pattern. In the other case, the scatter plot obtained by shifting by 1/8 of the bin number (1/4 of period) transforms the sinusoid in a circular pattern whose radius is equal to the amplitude of the modulation. For unpolarized radiation these plots are reduced to a random point distribution centred at the mean count level. This new methods provide direct visual and simple statistical tools for evaluating the quality of polarization measurements and for estimating the polarization parameters. Furthermore they are useful for investigating distortions due to systematic effects.

  19. Distributed transverse stress measurement along an optic fiber using polarimetric OFDR.

    Science.gov (United States)

    Wei, Changjiang; Chen, Hongxin; Chen, Xiaojun; Chen, David; Li, Zhihong; Yao, X Steve

    2016-06-15

    We report a novel polarimetric optical frequency domain reflectometer (P-OFDR) that can simultaneously measure both space-resolved transverse stresses and light back-reflections along an optic fiber with sub-mm spatial resolution. By inducing transversal stresses and optical back-reflections at multiple points along a length of optic fiber, we demonstrate that our system can unambiguously distinguish the stresses from the back-reflections of a fiber with a fiber length longer than 800 m, a spatial resolution of 0.5 mm, a maximum stress level of up to 200 kpsi (1379 Mpa), a minimum stress of about 10 kpsi (69 Mpa), and a stress measurement uncertainty of 10%. We show that our P-OFDR can clearly identify the locations and magnitudes of the stresses inside a fiber coil induced during a fiber winding process. The P-OFDR can be used for fiber health monitoring for critical fiber links, fiber gyro coil characterization, and other distributed fiber sensing applications.

  20. Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy

    Science.gov (United States)

    Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed

    2015-04-01

    We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.

  1. Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering

    Science.gov (United States)

    Xiang, Deliang; Tang, Tao; Ban, Yifang; Su, Yi; Kuang, Gangyao

    2016-06-01

    Since it has been validated that cross-polarized scattering (HV) is caused not only by vegetation but also by rotated dihedrals, in this study, we use rotated dihedral corner reflectors to form a cross scattering matrix and propose an extended four-component model-based decomposition method for PolSAR data over urban areas. Unlike other urban area decomposition techniques which need to discriminate the urban and natural areas before decomposition, this proposed method is applied on PolSAR image directly. The building orientation angle is considered in this scattering matrix, making it flexible and adaptive in the decomposition. Therefore, we can separate cross scattering of urban areas from the overall HV component. Further, the cross and helix scattering components are also compared. Then, using these decomposed scattering powers, the buildings and natural areas can be easily discriminated from each other using a simple unsupervised K-means classifier. Moreover, buildings aligned and not aligned along the radar flight direction can be also distinguished clearly. Spaceborne RADARSAT-2 and airborne AIRSAR full polarimetric SAR data are used to validate the performance of our proposed method. The cross scattering power of oriented buildings is generated, leading to a better decomposition result for urban areas with respect to other state-of-the-art urban decomposition techniques. The decomposed scattering powers significantly improve the classification accuracy for urban areas.

  2. WIRC-POL: A near-IR spectro-polarimetric imager at Palomar Observatory

    Science.gov (United States)

    Nilsson, Ricky; Tinyanont, Samaporn; Mawet, Dimitri; Knutson, Heather; WIRC-POL Team

    2017-01-01

    The 200-inch Hale Telescope at Palomar Observatory is the largest equatorial-mounted telescope in the world. Combining a large aperture, extremely stable tracking, and no differential motion of optics, it introduces low and stable instrument polarization, making it uniquely suited for time-resolved polarimetry. Its prime focus currently hosts the Wide-field InfraRed Camera (WIRC), which is being refurbished with a new H2 detector, 32 channel readout electronics, grism, focal-plane mask and polarization grating. This will transform it into WIRC-POL — a machine for high-precision photometry, and slitless low-resolution (R~150) spectroscopy and spectro-polarimetry. Two key science programs are starting in 2017: (1) a large spectro-polarimetric survey of approximately 1000 LTY field brown dwarfs, probing atmospheric composition, physical properties, and cloud dynamics at the L-T transition, and (2) a survey of transiting exoplanets, using the high photometric stability and slitless spectroscopy mode to characterize exoplanet atmospheres from spectra obtained in transit and secondary eclipse, and search for transit-timing variations in multiple planet systems. Here we present an overview of the instrument upgrades and the exciting scientific questions we aim to address.

  3. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  4. Semi-Supervised Learning for Ill-Posed Polarimetric SAR Classification

    Directory of Open Access Journals (Sweden)

    Stefan Uhlmann

    2014-05-01

    Full Text Available In recent years, the interest in semi-supervised learning has increased, combining supervised and unsupervised learning approaches. This is especially valid for classification applications in remote sensing, while the data acquisition rate in current systems has become fairly large considering high- and very-high resolution data; yet on the other hand, the process of obtaining the ground truth data may be cumbersome for such large repositories. In this paper, we investigate the application of semi-supervised learning approaches and particularly focus on the small sample size problem. To that extend, we consider two basic unsupervised approaches by enlarging the initial labeled training set as well as an ensemble-based self-training method. We propose different strategies within self-training on how to select more reliable candidates from the pool of unlabeled samples to speed-up the learning process and to improve the classification performance of the underlying classifier ensemble. We evaluate the effectiveness of the proposed semi-supervised learning approach over polarimetric SAR data. Results show that the proposed self-training approach using an ensemble-based classifier that is initially trained over a small training set can achieve a similar performance level of a fully supervised learning approach where the training is performed over significantly larger labeled data. Considering the difficulties of the manual data labeling in such massive volumes of SAR repositories, this is indeed a promising accomplishment for semi-supervised SAR classification.

  5. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR Data

    Directory of Open Access Journals (Sweden)

    Alisa L. Gallant

    2014-03-01

    Full Text Available Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  6. Dual-Branch Deep Convolution Neural Network for Polarimetric SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2017-04-01

    Full Text Available The deep convolution neural network (CNN, which has prominent advantages in feature learning, can learn and extract features from data automatically. Existing polarimetric synthetic aperture radar (PolSAR image classification methods based on the CNN only consider the polarization information of the image, instead of incorporating the image’s spatial information. In this paper, a novel method based on a dual-branch deep convolution neural network (Dual-CNN is proposed to realize the classification of PolSAR images. The proposed method is built on two deep CNNs: one is used to extract the polarization features from the 6-channel real matrix (6Ch which is derived from the complex coherency matrix. The other is utilized to extract the spatial features of a Pauli RGB (Red Green Blue image. These extracted features are first combined into a fully connected layer sharing the polarization and spatial property. Then, the Softmax classifier is employed to classify these features. The experiments are conducted on the Airborne Synthetic Aperture Radar (AIRSAR data of Flevoland and the results show that the classification accuracy on 14 types of land cover is up to 98.56%. Such results are promising in comparison with other state-of-the-art methods.

  7. Spectral and polarimetric characterization of gazeous and telluric planets with SEE COAST

    Directory of Open Access Journals (Sweden)

    Keller C.-U.

    2011-07-01

    Full Text Available SEE COAST stands for Super Earth Explorer – Coronagraphic Off-Axis Space Telescope. The concept was initially proposed to ESA for Cosmic Vision. None of the direct detection exoplanet proposals were selected in 2007 and we are now pursuing our efforts to consolidate the astrophysical program and the technical developments for the next call for proposal. The prime objective of SEE COAST is to contribute to the understanding of the formation and evolution of planetary systems. Exploring the diversity of these objects is therefore the main driver to define the instrumentation. In the next decade the improvement of radial velocity instruments and obviously temporal coverage will provide us with a large numbers of long period giants as well as telluric planets, namely Super Earths. Obtaining the spectral and polarimetric signatures of these objects in the visible range to measure atmospheric parameters (molecular composition, clouds, soils, … will be unique and with important scientific returns. A space mission complementary to near IR instruments like SPHERE, GPI, JWST and later ELTs for the full characterization of giants and Super Earths is a first secure step towards the longer term goal that is the characterization of telluric planets with mass and atmosphere comparable to that of the Earth. An overview of the astrophysical motivation and the trade-off that lead to a simple integrated concept of a space-based high contrast imaging instrument are given here.

  8. Investigating the capabilities of new microwave ALOS-2/PALSAR-2 data for biomass estimation

    Science.gov (United States)

    Anh, L. V.; Paull, D. J.; Griffin, A. L.

    2016-10-01

    Most studies indicate that L-band synthetic aperture radar (SAR) has a great capacity to estimate biomass due to its ability to penetrate deeply through canopy layers. Many applications using L-band space-borne data have showcased their own significant contribution in biomass estimation but some limitations still exist. New data have been released recently that are designed to overcome limitations and drawbacks of previous sensor generations. The Japan Aerospace Exploration Agency (JAXA) launched the new sensor ALOS-2 to improve wide and high-resolution observation technologies in order to further meet social and environmental objectives. In the list of priority tasks addressed by JAXA there are experiments utilizing these new data for vegetation biomass distribution measurement. This study, therefore, focused on investigating the capabilities of these new microwave data in above ground biomass (AGB) estimation. The data mode used in this study was a full polarimetric ALOS-2/PALSAR-2 (L-band) scene. The experiment was conducted on a portion of a tropical forest in a Central Highland province in Vietnam.

  9. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    Science.gov (United States)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  10. Monitoring Soil Salinization in Keriya River Basin, Northwestern China Using Passive Reflective and Active Microwave Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Ilyas Nurmemet

    2015-07-01

    Full Text Available Soil salinization is one of the most widespread soil degradation processes on Earth, especially in arid and semi-arid areas. The salinized soil in arid to semi-arid Xinjiang Uyghur Autonomous Region in China accounts for 31% of the area of cultivated land, and thus it is pivotal for the sustainable agricultural development of the area to identify reliable and cost-effective methodologies to monitor the spatial and temporal variations in soil salinity. This objective was accomplished over the study area (Keriya River Basin, northwestern China by adopting technologies that heavily rely on, and integrate information contained in, a readily available suite of remote sensing datasets. The following procedures were conducted: (1 a selective principle component analysis (S-PCA fusion image was generated using Phased Array Type L-band SAR (PALSAR backscattering coefficient (σ° and Landsat Enhanced Thematic Mapper Plus (ETM+ multispectral image of Keriya River Basin; and (2 a support vector machines (SVM classification method was employed to classify land cover types with a focus on mapping salinized soils; (3 a cross-validation method was adopted to identify the optimum classification parameters, and obtain an optimal SVM classification model; (4 Radarsat-2 (C band and PALSAR polarimetric images were used to analyze polarimetric backscattering behaviors in relation to the variation in soil salinization; (5 a decision tree (DT scheme for multi-source optical and polarimetric SAR data integration was proposed to improve the estimation and monitoring accuracies of soil salinization; and (6 detailed field observations and ground truthing were used for validation of the adopted methodology, and quantity and allocation disagreement measures were applied to assess classification outcome. Results showed that the fusion of passive reflective and active microwave remote sensing data provided an effective tool in detecting soil salinization. Overall accuracy of

  11. Microwave regeneration of molecular sieves

    International Nuclear Information System (INIS)

    Singh, V.P.

    1984-05-01

    Molecular sieve driers have been included in the design of tritium handling systems for fusion reactors. In these systems there is a need to maintain extremely low exit dew points from the driers as well as a capability to rapidly reduce tritium concentrations following an accident. The required capacity of the driers is very high. The conventional method of regenerating these sieves after a water adsorption cycle is with hot air. However, because water is rapidly heated by microwave energy, this technology may be suitable for decreasing the bed regeneration time and hence may allow reduced capital and operating costs associated with a smaller bed. The present study was conducted to obtain preliminary information on the technical feasibility of regenerating molecular sieves with microwave energy. The study concentrated on Type 4A molecular sieve with a few tests on Type 13X sieve and also a silica gel adsorbent

  12. Interstitial microwave hyperthermia treatment investigations

    International Nuclear Information System (INIS)

    Siauve, N; Lormel, C

    2012-01-01

    Microwave ablation also called interstitial hyperthermia is a medical procedure used in the treatment of many cancers, cardiac arrhythmias and other medical conditions. With this medical therapy, an electromagnetic source (antenna) is directly positioned in the target tissue and a sufficient power is injected to necrosis the tissue. The aim of this study is to propose a design procedure and develop the associated tools, for determining the optimal shape, dimensions, type and operating frequency of antenna according to the target volume. In this context, a 3D numerical predictive model of temperature elevation induced by the electric fields and two benches for thermal and electrical tissues properties characterization have been developed. To validate the procedure and the different tools, an experimental bench test which includes interstitial antenna, external microwave generator, phantom that represents the target tissue and measurement system of temperature and electric field has been elaborated.

  13. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  14. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    such as voltage-controlled oscillators and electron devices for millimeter wave and submillimeter wave applications. This part also covers studies of integrated buffer circuits. Passive components are indispensable elements of any electronic system. The increasing demands to miniaturization and cost effectiveness...... push currently available technologies to the limits. Some considerations to meet the growing requirements are provided in the fifth part of this book. The following part deals with circuits based on LTCC and MEMS technologies. The book concludes with chapters considering application of microwaves...... in measurement and sensing systems. This includes topics related to six-port reflectometers, remote network analysis, inverse scattering for microwave imaging systems, spectroscopy for medical applications and interaction with transponders in medical sensors....

  15. Coupled retrieval of aerosol properties and land surface reflection using the Airborne Multiangle SpectroPolarimetric Imager

    Science.gov (United States)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Bruegge, Carol J.; Dubovik, Oleg

    2017-07-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) has been flying aboard the NASA ER-2 high-altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data in bands centered at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 11 km and is typically observed from nine viewing angles between ±66° off nadir. For a simultaneous retrieval of aerosol properties and surface reflection using AirMSPI, an efficient and flexible retrieval algorithm has been developed. It imposes multiple types of physical constraints on spectral and spatial variations of aerosol properties as well as spectral and temporal variations of surface reflection. Retrieval uncertainty is formulated by accounting for both instrumental errors and physical constraints. A hybrid Markov-chain/adding-doubling radiative transfer (RT) model is developed to combine the computational strengths of these two methods in modeling polarized RT in vertically inhomogeneous and homogeneous media, respectively. Our retrieval approach is tested using 27 AirMSPI data sets with low to moderately high aerosol loadings, acquired during four NASA field campaigns plus one AirMSPI preengineering test flight. The retrieval results including aerosol optical depth, single-scattering albedo, aerosol size and refractive index are compared with Aerosol Robotic Network reference data. We identify the best angular combinations for 2, 3, 5, and 7 angle observations from the retrieval quality assessment of various angular combinations. We also explore the benefits of polarimetric and multiangular measurements and target revisits in constraining aerosol property and surface reflection retrieval.

  16. Multi-Feature Segmentation for High-Resolution Polarimetric SAR Data Based on Fractal Net Evolution Approach

    Directory of Open Access Journals (Sweden)

    Qihao Chen

    2017-06-01

    Full Text Available Segmentation techniques play an important role in understanding high-resolution polarimetric synthetic aperture radar (PolSAR images. PolSAR image segmentation is widely used as a preprocessing step for subsequent classification, scene interpretation and extraction of surface parameters. However, speckle noise and rich spatial features of heterogeneous regions lead to blurred boundaries of high-resolution PolSAR image segmentation. A novel segmentation algorithm is proposed in this study in order to address the problem and to obtain accurate and precise segmentation results. This method integrates statistical features into a fractal net evolution algorithm (FNEA framework, and incorporates polarimetric features into a simple linear iterative clustering (SLIC superpixel generation algorithm. First, spectral heterogeneity in the traditional FNEA is substituted by the G0 distribution statistical heterogeneity in order to combine the shape and statistical features of PolSAR data. The statistical heterogeneity between two adjacent image objects is measured using a log likelihood function. Second, a modified SLIC algorithm is utilized to generate compact superpixels as the initial samples for the G0 statistical model, which substitutes the polarimetric distance of the Pauli RGB composition for the CIELAB color distance. The segmentation results were obtained by weighting the G0 statistical feature and the shape features, based on the FNEA framework. The validity and applicability of the proposed method was verified with extensive experiments on simulated data and three real-world high-resolution PolSAR images from airborne multi-look ESAR, spaceborne single-look RADARSAT-2, and multi-look TerraSAR-X data sets. The experimental results indicate that the proposed method obtains more accurate and precise segmentation results than the other methods for high-resolution PolSAR images.

  17. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    Science.gov (United States)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  18. Screening Mississippi River Levees Using Texture-Based and Polarimetric-Based Features from Synthetic Aperture Radar Data

    Directory of Open Access Journals (Sweden)

    Lalitha Dabbiru

    2017-03-01

    Full Text Available This article reviews the use of synthetic aperture radar remote sensing data for earthen levee mapping with an emphasis on finding the slump slides on the levees. Earthen levees built on the natural levees parallel to the river channel are designed to protect large areas of populated and cultivated land in the Unites States from flooding. One of the signs of potential impending levee failure is the appearance of slump slides. On-site inspection of levees is expensive and time-consuming; therefore, a need to develop efficient techniques based on remote sensing technologies is mandatory to prevent failures under flood loading. Analysis of multi-polarized radar data is one of the viable tools for detecting the problem areas on the levees. In this study, we develop methods to detect anomalies on the levee, such as slump slides and give levee managers new tools to prioritize their tasks. This paper presents results of applying the National Aeronautics and Space Administration (NASA Jet Propulsion Lab (JPL’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR quad-polarized L-band data to detect slump slides on earthen levees. The study area encompasses a portion of levees of the lower Mississippi River in the United States. In this paper, we investigate the performance of polarimetric and texture features for efficient levee classification. Texture features derived from the gray level co-occurrence (GLCM matrix and discrete wavelet transform were computed and analyzed for efficient levee classification. The pixel-based polarimetric decomposition features, such as entropy, anisotropy, and scattering angle were also computed and applied to the support vector machine classifier to characterize the radar imagery and compared the results with texture-based classification. Our experimental results showed that inclusion of textural features derived from the SAR data using the discrete wavelet transform (DWT features and GLCM features provided

  19. Modeling of Microwave Semiconductor Diodes

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2008-09-01

    Full Text Available The paper deals with the multi-physical mode-ling of microwave diodes. The electrostatic, drift-diffusion and thermal phenomena are considered in the physical model of the components. The basic semiconductor equati-ons are summarized, and modeling issues are discussed. The simulations of the Gunn Effect in transferred electron devices and the carrier injection effect in PIN diodes are investigated and discussed. The analysis was performed in COMSOL Multiphysics using the finite element method.

  20. Modeling of Microwave Semiconductor Diodes

    OpenAIRE

    Pokorny, M.; Raida, Zbyněk

    2008-01-01

    The paper deals with the multi-physical mode-ling of microwave diodes. The electrostatic, drift-diffusion and thermal phenomena are considered in the physical model of the components. The basic semiconductor equati-ons are summarized, and modeling issues are discussed. The simulations of the Gunn Effect in transferred electron devices and the carrier injection effect in PIN diodes are investigated and discussed. The analysis was performed in COMSOL Multiphysics using the finite element method.

  1. Microwave chemistry for inorganic nanomaterials synthesis.

    Science.gov (United States)

    Bilecka, Idalia; Niederberger, Markus

    2010-08-01

    This Feature Article gives an overview of microwave-assisted liquid phase routes to inorganic nanomaterials. Whereas microwave chemistry is a well-established technique in organic synthesis, its use in inorganic nanomaterials' synthesis is still at the beginning and far away from having reached its full potential. However, the rapidly growing number of publications in this field suggests that microwave chemistry will play an outstanding role in the broad field of Nanoscience and Nanotechnology. This article is not meant to give an exhaustive overview of all nanomaterials synthesized by the microwave technique, but to discuss the new opportunities that arise as a result of the unique features of microwave chemistry. Principles, advantages and limitations of microwave chemistry are introduced, its application in the synthesis of different classes of functional nanomaterials is discussed, and finally expected benefits for nanomaterials' synthesis are elaborated.

  2. Phenomenology of microwave coupling, part 1

    Science.gov (United States)

    King, R. J.; Breakall, J. K.; Hudson, H. G.; Morrison, J. J.; McGevna, V. G.; Kunz, K. S.; Ludwigsen, A. P.; Gnade, D. K.

    1984-11-01

    Advances in the development of high power microwave sources have increased the potential for future deployment of microwave weapons. A key ingredient in being able to predict the vulnerability of military systems to such threats involves understanding the phenomenology of how electromagnetic energy couples into cavity like objects, or the so called back door coupling. A similar but much longer standing problem is that of nuclear electromagnetic pulses (EMP) in which the frequencies extend up to several hundreds of MHz. However, compared to EMP coupling, microwave coupling is distinctively different because the wavelength is comparable to the size of the ports of entry. Coupling paths can be highly resonant at certain microwave frequencies, making the shielding against microwave threats difficult. The initial efforts at Lawrence Livermore National Laboratory to study the phenomenology of back door coupling at the low microwave frequencies (up to 2.5 GHz) are summarized.

  3. Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and Fully Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning

    2012-01-01

    Classification of crops and other land cover types is an important application of both optical/infrared and synthetic aperture radar (SAR) satellite data. It is already an import application of present satellite systems, as it will be for planned missions, such as the Sentinels. A multitemporal...... data set from the Danish airborne polarimetric EMISAR has been used to assess the performance of different polarization modes for crop classification. Both C- and L-band SAR data were acquired simultaneously over the Foulum agricultural test site in Denmark on a monthly basis during the growing season...

  4. Polarimetric survey of main-belt asteroids. VI. New results from the second epoch of the CASLEO survey

    Science.gov (United States)

    Gil-Hutton, R.; García-Migani, E.

    2017-11-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry and to estimate the diversity in the polarimetric properties of asteroids that belong to different taxonomic classes. Methods: The data were obtained using the CASPOL polarimeter at the 2.15 m telescope. CASPOL is a polarimeter based on a CCD detector and a Savart plate. The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. Results: We present and analyze the unpublished results for 128 asteroids of different taxonomic types, 55 of them observed for the first time. The observational data allowed us to find probable new cases of Barbarian objects but also two D-type objects, (565) Marbachia and (1481) Tubingia, that seem to have phase-polarization curves with a large inversion angle. The data obtained combined with data from the literature enabled us to find phase-polarization curves for 121 objects of different taxonomic types and to study the relations between several polarimetric and physical parameters. Using an approximation for the phase-polarization curve we found the index of refraction of the surface material and the scatter separation distance for all the objects with known polarimetric parameters. We also found that the inversion angle is a function of the index of refraction of the surface, while the phase angle where the minimum of polarization is produced provides information about the distance between scatter particles or, to some extent, the porosity of the surface. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la

  5. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    Science.gov (United States)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  6. Visualization of and Software for Omnibus Test Based Change Detected in a Time Series of Polarimetric SAR Data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2017-01-01

    Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution and a factorization of this test statistic with associated p-values, change analysis in a time series of multilook polarimetric SAR data...... in the covariance matrix representation is carried out. The omnibus test statistic and its factorization detect if and when change occurs. Using airborne EMISAR and spaceborne RADARSAT-2 data this paper focuses on change detection based on the p-values, on visualization of change at pixel as well as segment level......, and on computer software....

  7. Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm

    DEFF Research Database (Denmark)

    Loosvelt, Lien; Peters, Jan; Skriver, Henning

    2012-01-01

    Although the use of multidate polarimetric synthetic aperture radar (SAR) data for highly accurate land cover classification has been acknowledged in the literature, the high dimensionality of the data set remains a major issue. This study presents two different strategies to reduce the number...... acquired by the Danish EMISAR on four dates within the period April to July in 1998. The predictive capacity of each feature is analyzed by the importance score generated by random forests (RF). Results show that according to the variation in importance score over time, a distinction can be made between...

  8. Derivation of the pure Faraday and Cotton-Mouton effects when polarimetric effects in a tokamak are large

    International Nuclear Information System (INIS)

    Segre, S E; Zanza, V

    2006-01-01

    When polarimetric effects are large the Cotton-Mouton and Faraday effects do not combine linearly and it is not possible to separate exactly the pure Cotton-Mouton effect W 1 and the pure Faraday effect, W 3 . Four alternative approximate expressions for W 1 and W 3 in terms of measurable quantities are examined for tokamak configurations. Two of these approximations proposed recently are found to be preferable, some previous statements concerning them are corrected and the errors incurred by their use are evaluated

  9. Microwave heating for male contraception

    International Nuclear Information System (INIS)

    Jiang, H.B.

    1985-01-01

    A study at Sichuan University investigated microwave irradiation as a reversible male contraception. In the first phase of the study, the testes of rabbits were exposed to 2450 MHz microwaves with intensity of 15-35 mW/cm/sup 2/ for 15-20 minutes. The animals' sperm count was reduced from 5.86 x 10/sup 8/ +- 1.67 x 10/sup 8//ml (S.D.), to 0.273 x 10/sup 8/ +- 0.385 x 10/sup -8//ml 35 days after exposure. The impregnation ability was lost for about two months, even though the animals retained a normal sexual desire and physical condition. In the second phase, a group of 200 human volunteers received 2450 MHz microwave exposure with an intensity of 80-100 mW/cm/sup 2/ at the surface of the scrotum for 40-60 minutes. The volunteers' sperm counts were reduced from 7511 x 10/sup 4/ +- 2758 x 10/sup 4//ml to 366 x 10/sup 4/ +- 352 x 10/sup 4//ml at 39 +- 5.4 days after exposure; reduction amounting to approximately 95 percent. The viability and motility of the sperm were also reduced. Two months after the last exposure, the sperm counts of the volunteers recovered to 4625 x 10/sup 4/ +- 1897 x 10/sup 4//ml. No obvious changes were found either in medical examinations or in the daily lifestyles of the volunteers

  10. Microwave solidification development for Rocky Flats waste

    International Nuclear Information System (INIS)

    Dixon, D.; Erle, R.; Eschen, V.

    1994-04-01

    The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology

  11. Microwave processing in MOX fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G.K. [Advanced Fuel Fabrication Facility, BARC, Tarapur, PO Ghivali, Thane 401 502, Maharasthra (India)]. E-mail: gatiwant@hotmail.com; Malav, R.K.; Panakkal, J.P. [Advanced Fuel Fabrication Facility, BARC, Tarapur, PO Ghivali, Thane 401 502, Maharasthra (India)]. E-mail: panakkal@apsara.barc.ernet.in; Kamath, H.S. [Advanced Fuel Fabrication Facility, BARC, Tarapur, PO Ghivali, Thane 401 502, Maharasthra (India)]. E-mail: hskamath@magnum.barc.ernet.in

    2005-07-01

    The prominent aspect of the microwave heating technique applications in nuclear material processing is its eco-friendly status. It is envisaged that no active liquid waste will be generated from microwave processing. AFFF has fabricated the (U, Pu){sub 2}O mixed oxide fuels for PHWRs, BWRs and PFBR. AFFF is also working for the AHWR fuel cycle. The present paper summarises about the process experiments, instrumental development, results, and future applications of microwave heating technique. (author)

  12. Microwave Tokamak Experiment: Overview and status

    International Nuclear Information System (INIS)

    1990-05-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. 3 figs., 3 tabs

  13. Empirical Soil Moisture Estimation with Spaceborne L-band Polarimetric Radars: Aquarius, SMAP, and PALSAR-2

    Science.gov (United States)

    Burgin, M. S.; van Zyl, J. J.

    2017-12-01

    Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.

  14. Optical polarimetric and near-infrared photometric study of the RCW95 Galactic H II region

    Science.gov (United States)

    Vargas-González, J.; Roman-Lopes, A.; Santos, F. P.; Franco, G. A. P.; Santos, J. F. C.; Maia, F. F. S.; Sanmartim, D.

    2018-02-01

    We carried out an optical polarimetric study in the direction of the RCW 95 star-forming region in order to probe the sky-projected magnetic field structure by using the distribution of linear polarization segments which seem to be well aligned with the more extended cloud component. A mean polarization angle of θ = 49.8° ± 7.7°7 was derived. Through the spectral dependence analysis of polarization it was possible to obtain the total-to-selective extinction ratio (RV) by fitting the Serkowski function, resulting in a mean value of RV = 2.93 ± 0.47. The foreground polarization component was estimated and is in agreement with previous studies in this direction of the Galaxy. Further, near-infrared (NIR) images from Vista Variables in the Via Láctea (VVV) survey were collected to improve the study of the stellar population associated with the H II region. The Automated Stellar Cluster Analysis algorithm was employed to derive structural parameters for two clusters in the region, and a set of PAdova and TRieste Stellar Evolution Code (PARSEC) isochrones was superimposed on the decontaminated colour-magnitude diagrams to estimate an age of about 3 Myr for both clusters. Finally, from the NIR photometry study combined with spectra obtained with the Ohio State Infrared Imager and Spectrometer mounted at the Southern Astrophysics Research Telescope we derived the spectral classification of the main ionizing sources in the clusters associated with IRAS 15408-5356 and IRAS 15412-5359, both objects classified as O4V stars.

  15. Is 67P/Churyumov-Gerasimenko a Classical JFC? Clues from Recent Polarimetric Observations

    Science.gov (United States)

    Hadamcik, Edith; Levasseur-Regourd, A.; Sen, A.; Gupta, R.; Lasue, J.

    2009-09-01

    Remote observations of the light scattered by comet 67P/Churyumov-Gerasimenko dust coma are of major importance to determine the physical properties of the particles and prepare the rendezvous with the ESA/Rosetta spacecraft in 2014. While dust observations have been made during different apparitions, polarization measurements were only obtained during the 1982 apparition by spectropolarimetry [1-2]. Recent imaging polarimetric observations were conducted at Haute-Provence observatory (France) on 2009 March 17-19 at 35 deg. phase angle and at IUCAA Girawali observatory (India) on 2008 December 25-27 at 36 deg. phase angle and on 2009 April 30-May 1 at 29 deg. phase angle. The imaging technique allows us to follow the intensity and polarization variations through the coma and their evolution. The decrease in intensity as a function of the distance to nucleus in log-log scale is close to -1 on average but important variations with values down to -1.5 are observed in agreement with previous observations in 1982-83 and 1995-96 [3]. Aperture polarization values are nominal before perihelion. Nevertheless, after perihelion, the increase in polarization suggests that an outburst occurred. Finally, comet 67P/C-G results will be compared to those obtained for other comets, including Jupiter Family Comets [4,5]. Polarization and intensity variations in the coma are reminiscent of those noticed for 9P/Tempel 1 (before Deep Impact) and comet C/2000 WM1 [5]. The presence of rather large particles can thus be suggested before and after perihelion. The properties of the particles ejected during post-perihelion will be discussed. [1] Myers and Nordsieck, Icarus 58, 431 (1984) [2] Levasseur-Regourd et al., The New Rosetta Targets, Kluwer, 111 (2004) [3] Schleicher, Icarus 181, 442 (2006) [4] Hadamcik and Levasseur-Regourd, PSS 57, 1118 (2009) [5] Hadamcik and Levasseur-Regourd, JQSRT, 79-80, 661 (2003)

  16. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  17. Radiometric and Polarimetric Accuracy Assessment and Calibration of the Hyper-Angular Rainbow Polarimeter (HARP) Instrument

    Science.gov (United States)

    McBride, B.; Martins, J. V.; Fernandez Borda, R. A.; Barbosa, H. M.

    2017-12-01

    The Laboratory for Aerosols, Clouds, and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) present a novel, wide FOV, hyper-angular imaging polarimeter for the microphysical sampling of clouds and aerosols from aircraft and space. The instrument, the Hyper-Angular Rainbow Polarimeter (HARP), is a precursor to the multi-angle imaging polarimeter solicited by the upcoming NASA Aerosols, Clouds, and Ecosystems (ACE) mission. HARP currently operates in two forms: a spaceborne CubeSat slated for a January 2018 launch to the ISS orbit, and an identical aircraft platform that participated in the Lake Michigan Ozone Study (LMOS) and Aerosol Characterization from Polarimeter and Lidar (ACEPOL) NASA campaigns in 2017. To ensure and validate the instrument's ability to produce high quality Level 2 cloud and aerosol microphysical products, a comprehensive calibration scheme that accounts for flatfielding, radiometry, and all optical interference processes that contribute to the retrieval of Stokes parameters I, Q, and U, is applied across the entirety of HARP's 114° FOV. We present an innovative calibration algorithm that convolves incident polarization from a linear polarization state generator with intensity information observed at three distinct linear polarizations. The retrieved results are pixel-level, modified Mueller matrices that characterize the entire HARP optical assembly, without the need to characterize every individual element or perform ellipsometric studies. Here we show results from several pre- and post- LMOS campaign radiometric calibrations at NASA GSFC and polarimetric calibration using a "polarization dome" that allows for full-FOV characterization of Stokes parameters I, Q, and U. The polarization calibration is verified by passing unpolarized light through partially-polarized, tilted glass plates with well-characterized degree of linear polarization (DoLP). We apply this calibration to a stratocumulous cloud deck case observed

  18. Fiber-based polarimetric stress sensor for measuring the Young's modulus of biomaterials

    Science.gov (United States)

    Harrison, Mark C.; Armani, Andrea M.

    2015-03-01

    Polarimetric optical fiber-based stress and pressure sensors have proven to be a robust tool for measuring and detecting changes in the Young's modulus (E) of materials in response to external stimuli, including the real-time monitoring of the structural integrity of bridges and buildings. These sensors typically work by using a pair of polarizers before and after the sensing region of the fiber, and often require precise alignment to achieve high sensitivity. The ability to perform similar measurements in natural and in engineered biomaterials could provide significant insights and enable research advancement and preventative healthcare. However, in order for this approach to be successful, it is necessary to reduce the complexity of the system by removing free-space components and the need for alignment. As the first step in this path, we have developed a new route for performing these measurements. By generalizing and expanding established theoretical analyses for these types of sensors, we have developed a predictive theoretical model. Additionally, by replacing the conventional free space components and polarization filters with a polarimeter, we have constructed a sensor system with higher sensitivity and which is semi-portable. In initial experiments, a series of polydimethylsiloxane (PDMS) samples with several base:curing agent ratios ranging from 5:1 up to 30:1 were prepared to simulate tissues with different stiffnesses. By simultaneously producing stress-strain curves using a load frame and monitoring the polarization change of light traveling through the samples, we verified the accuracy of our theoretical model.

  19. A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations

    Science.gov (United States)

    Tan, H.; Chandra, C. V.; Chen, H.

    2016-12-01

    Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge

  20. Mapping Forest Height in Gabon Using UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Lidar Fusion

    Science.gov (United States)

    Simard, M.; Denbina, M. W.

    2017-12-01

    Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems

  1. FPGA Coprocessor Design for an Onboard Multi-Angle Spectro-Polarimetric Imager

    Science.gov (United States)

    Pingree, Paula J.; Werne, Thomas A.

    2010-01-01

    A multi-angle spectro-polarimetric imager (MSPI) is an advanced camera system currently under development at JPL for possible future consideration on a satellite-based Aerosol-Cloud-Environ - ment (ACE) interaction study. The light in the optical system is subjected to a complex modulation designed to make the overall system robust against many instrumental artifacts that have plagued such measurements in the past. This scheme involves two photoelastic modulators that are beating in a carefully selected pattern against each other. In order to properly sample this modulation pattern, each of the proposed nine cameras in the system needs to read out its imager array about 1,000 times per second. The onboard processing required to compress this data involves least-squares fits (LSFs) of Bessel functions to data from every pixel in realtime, thus requiring an onboard computing system with advanced data processing capabilities in excess of those commonly available for space flight. As a potential solution to meet the MSPI onboard processing requirements, an LSF algorithm was developed on the Xilinx Virtex-4FX60 field programmable gate array (FPGA). In addition to configurable hardware capability, this FPGA includes Power -PC405 microprocessors, which together enable a combination hardware/ software processing system. A laboratory demonstration was carried out based on a hardware/ software co-designed processing architecture that includes hardware-based data collection and least-squares fitting (computationally), and softwarebased transcendental function computation (algorithmically complex) on the FPGA. Initial results showed that these calculations can be handled using a combination of the Virtex- 4TM Power-PC core and the hardware fabric.

  2. A Polarimetric Approach for Constraining the Dynamic Foreground Spectrum for Cosmological Global 21 cm Measurements

    Science.gov (United States)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Jack O.

    2017-02-01

    The cosmological global (sky-averaged) 21 cm signal is a powerful tool to probe the evolution of the intergalactic medium in high-redshift universe (z≤slant 6). One of the biggest observational challenges is to remove the foreground spectrum which is at least four orders of magnitude brighter than the cosmological 21 cm emission. Conventional global 21 cm experiments rely on the spectral smoothness of the foreground synchrotron emission to separate it from the unique 21 cm spectral structures in a single total-power spectrum. However, frequency-dependent instrumental and observational effects are known to corrupt such smoothness and complicate the foreground subtraction. We introduce a polarimetric approach to measure the projection-induced polarization of the anisotropic foreground onto a stationary dual-polarized antenna. Due to Earth rotation, when pointing the antenna at a celestial pole, the revolving foreground will modulate this polarization with a unique frequency-dependent sinusoidal signature as a function of time. In our simulations, by harmonic decomposing this dynamic polarization, our technique produces two separate spectra in parallel from the same observation: (I) a total sky power consisting both the foreground and the 21 cm background and (II) a model-independent measurement of the foreground spectrum at a harmonic consistent to twice the sky rotation rate. In the absence of any instrumental effects, by scaling and subtracting the latter from the former, we recover the injected global 21 cm model within the assumed uncertainty. We further discuss several limiting factors and potential remedies for future implementation.

  3. Meterwavelength Single-pulse Polarimetric Emission Survey. IV. The Period Dependence of Component Widths of Pulsars

    Science.gov (United States)

    Skrzypczak, Anna; Basu, Rahul; Mitra, Dipanjan; Melikidze, George I.; Maciesiak, Krzysztof; Koralewska, Olga; Filothodoros, Alexandros

    2018-02-01

    The core component width in normal pulsars, with periods (P) > 0.1 s, measured at the half-power point at 1 GHz, has a lower boundary line (LBL) that closely follows the P ‑0.5 scaling relation. This result is of fundamental importance for understanding the emission process and requires extended studies over a wider frequency range. In this paper we have carried out a detailed study of the profile component widths of 123 normal pulsars observed in the Meterwavelength Single-pulse Polarimetric Emission Survey at 333 and 618 MHz. The components in the pulse profile were separated into core and conal classes. We found that at both frequencies, the core, as well as the conal component widths versus period, had a LBL that followed the P ‑0.5 relation with a similar lower boundary. The radio emission in normal pulsars has been observationally shown to arise from a narrow range of heights around a few hundred kilometers above the stellar surface. In the past the P ‑0.5 relation has been considered as evidence for emission arising from last open dipolar magnetic field lines. We show that the P ‑0.5 dependence only holds if the trailing and leading half-power points of the component are associated with the last open field line. In such a scenario we do not find any physical motivation that can explain the P ‑0.5 dependence for both core and conal components as evidence for dipolar geometry in normal pulsars. We believe the period dependence is a result of a currently unexplained physical phenomenon.

  4. The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data

    Directory of Open Access Journals (Sweden)

    Changcheng Wang

    2016-03-01

    Full Text Available Forest height is of great significance in analyzing the carbon cycle on a global or a local scale and in reconstructing the accurate forest underlying terrain. Major algorithms for estimating forest height, such as the three-stage inversion process, are depending on the random-volume-over-ground (RVoG model. However, the RVoG model is characterized by a lot of parameters, which influence its applicability in forest height retrieval. Forest density, as an important biophysical parameter, is one of those main influencing factors. However, its influence to the RVoG model has been ignored in relating researches. For this paper, we study the applicability of the RVoG model in forest height retrieval with different forest densities, using the simulated and real Polarimetric Interferometric SAR data. P-band ESAR datasets of the European Space Agency (ESA BioSAR 2008 campaign were selected for experiments. The test site was located in Krycklan River catchment in Northern Sweden. The experimental results show that the forest density clearly affects the inversion accuracy of forest height and ground phase. For the four selected forest stands, with the density increasing from 633 to 1827 stems/Ha, the RMSEs of inversion decrease from 4.6 m to 3.1 m. The RVoG model is not quite applicable for forest height retrieval especially in sparsely vegetated areas. We conclude that the forest stand density is positively related to the estimation accuracy of the ground phase, but negatively correlates to the ground-to-volume scattering ratio.

  5. Microwave generation and complex microwave responsivity measurements on small Dayem bridges

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sørensen, O; Mygind, Jesper

    1977-01-01

    Measurements of the active properties of a Dayem micro-bridge at X-band frequencies is described. The bridge was mounted in a microwave cavity designed to match the bridge properly and the microwave output from the cavity was detected using a sensitive X-band spectrometer. Microwave power...

  6. TRMM MICROWAVE IMAGER (TMI) WENTZ OCEAN PRODUCTS V3

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Microwave Imager (TMI) is a 5-channel, dual-polarized, passive microwave radiometer. Microwave radiation is emitted by the Earth's surface and by water...

  7. CAMEX-4 ER-2 MICROWAVE TEMPERATURE PROFILER V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 Microwave Temperature Profiler dataset was collected by the Microwave Temperature Profiler (MTP), which is a passive microwave radiometer which...

  8. 5 Tips for Using Your Microwave Oven Safely

    Science.gov (United States)

    ... Consumers Consumer Updates 5 Tips for Using Your Microwave Oven Safely Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Safe Microwave Oven Use When you operate a microwave oven, ...

  9. TCSP ER-2 MICROWAVE TEMPERATURE PROFILER (MTP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TCSP ER-2 Microwave Temperature Profiler (MTP) dataset was collected by the ER-2 Microwave Temperature Profiler (MTP), which is a passive microwave radiometer...

  10. Microwave-assisted addition of azomethines to isatoic anhydride

    Indian Academy of Sciences (India)

    TECS

    . Kenstar domestic, multimode, without on and off mode, microwave oven, with rotating platform tray, with a power source of 230 V, 50 Hz, and micro- wave energy output 800 W, microwave input power. 1200 W and microwave frequency 2450 ...

  11. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  12. Advanced Microwave Electrothermal Thruster (AMET) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) and the University of Alabama at Huntsville (UAH) propose to develop the Advanced Microwave Electrothermal Thruster...

  13. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  14. Microwave Photonic Imaging Radiometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Passive Microwave Remote Sensing is currently utilized by NASA, NOAA, and USGIS to conduct Earth Science missions, including weather forecasting, early warning...

  15. Freeze dehydration of milk using microwave energy

    International Nuclear Information System (INIS)

    Souda, K.B.; Akyel, C.; Bilgen, E.

    1989-01-01

    This paper presents the results of experimental studies on heat and mass transfer during a microwave freeze dehydration process. An experimental system and procedure was developed to freeze dry milk. A 2500-W microwave system with an appropriate wave guide was set up and instrumented, and a procedure was experimentally developed to obtain milk powder first by freezing milk and then dehydrating it at low pressure using microwave energy. An unsteady-state analysis was used to derive a one-dimensional mathematical model of the freeze dehydration process in a microwave electromagnetic field

  16. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  17. Refraction and absorption of microwaves in wood

    International Nuclear Information System (INIS)

    Ziherl, Saša; Bajc, Jurij; Čepič, Mojca

    2013-01-01

    A demonstration experiment for physics students showing the dependence of the refractive index and absorption coefficient of wood on the direction of microwaves is presented. Wood and microwaves enable study of anisotropic properties, which are typically found in crystals. Wood is used as the persuasive representative of uniaxial anisotropic materials due to its visible structure and its consequent anisotropic properties. Wood can be cut in a general direction and wooden plates a few centimetres thick with well-defined fibre orientation are easily prepared. Microwaves are used because wood is transparent for microwaves and their centimetre-scale wavelength is comparable to the wood structure. (paper)

  18. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and condu......Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity...

  19. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  20. Microwave assisted ignition to achieve combustion synthesis

    Directory of Open Access Journals (Sweden)

    E. Balakrishnan

    2001-01-01

    Full Text Available The use of microwave heating to initiate combustion synthesis has been increasingly investigated in recent years because of its advantages over traditional methods. A simple mathematical model is used to model these experiments. The microwave power absorption term is modelled as the product of an Arrhenius reaction term with a function that decays exponentially with distance. The former represents the temperature-dependent absorption of the microwaves whereas the latter describes the penetration of the material by the microwaves. Combustion kinetics are modelled as a first-order Arrhenius reaction.