WorldWideScience

Sample records for winds storm surge

  1. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling

    Directory of Open Access Journals (Sweden)

    Kyra M. Bryant

    2016-09-01

    Full Text Available As hurricanes continue to threaten coastal communities, accurate storm surge forecasting remains a global priority. Achieving a reliable storm surge prediction necessitates accurate hurricane intensity and wind field information. The wind field must be converted to wind stress, which represents the air-sea momentum flux component required in storm surge and other oceanic models. This conversion requires a multiplicative drag coefficient for the air density and wind speed to represent the air-sea momentum exchange at a given location. Air density is a known parameter and wind speed is a forecasted variable, whereas the drag coefficient is calculated using an empirical correlation. The correlation’s accuracy has brewed a controversy of its own for more than half a century. This review paper examines the lineage of drag coefficient correlations and their acceptance among scientists.

  2. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    Science.gov (United States)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  3. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    Science.gov (United States)

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  4. Storm surge climatology report

    OpenAIRE

    Horsburgh, Kevin; Williams, Joanne; Cussack, Caroline

    2017-01-01

    Any increase in flood frequency or severity due to sea level rise or changes in storminess would adversely impact society. It is crucial to understand the physical drivers of extreme storm surges to have confidence in the datasets used for extreme sea level statistics. We will refine and improve methods to the estimation of extreme sea levels around Europe and more widely. We will do so by developing a comprehensive world picture of storm surge distribution (including extremes) for both tropi...

  5. Toward an integrated storm surge application: ESA Storm Surge project

    Science.gov (United States)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www

  6. Modeling Tropical Cyclone Storm Surge and Wind Induced Risk Along the Bay of Bengal Coastline Using a Statistical Copula

    Science.gov (United States)

    Bushra, N.; Trepanier, J. C.; Rohli, R. V.

    2017-12-01

    High winds, torrential rain, and storm surges from tropical cyclones (TCs) cause massive destruction to property and cost the lives of many people. The coastline of the Bay of Bengal (BoB) ranks as one of the most susceptible to TC storm surges in the world due to low-lying elevation and a high frequency of occurrence. Bangladesh suffers the most due to its geographical setting and population density. Various models have been developed to predict storm surge in this region but none of them quantify statistical risk with empirical data. This study describes the relationship and dependency between empirical TC storm surge and peak reported wind speed at the BoB using a bivariate statistical copula and data from 1885-2011. An Archimedean, Gumbel copula with margins defined by the empirical distributions is specified as the most appropriate choice for the BoB. The model provides return periods for pairs of TC storm surge and peak wind along the BoB coastline. The BoB can expect a TC with peak reported winds of at least 24 m s-1 and surge heights of at least 4.0 m, on average, once every 3.2 years, with a quartile pointwise confidence interval of 2.7-3.8 years. In addition, the BoB can expect peak reported winds of 62 m s-1 and surge heights of at least 8.0 m, on average, once every 115.4 years, with a quartile pointwise confidence interval of 55.8-381.1 years. The purpose of the analysis is to increase the understanding of these dangerous TC characteristics to reduce fatalities and monetary losses into the future. Application of the copula will mitigate future threats of storm surge impacts on coastal communities of the BoB.

  7. Extreme Wind, Rain, Storm Surge, and Flooding: Why Hurricane Impacts are Difficult to Forecast?

    Science.gov (United States)

    Chen, S. S.

    2017-12-01

    The 2017 hurricane season is estimated as one of the costliest in the U.S. history. The damage and devastation caused by Hurricane Harvey in Houston, Irma in Florida, and Maria in Puerto Rico are distinctly different in nature. The complexity of hurricane impacts from extreme wind, rain, storm surge, and flooding presents a major challenge in hurricane forecasting. A detailed comparison of the storm impacts from Harvey, Irma, and Maria will be presented using observations and state-of-the-art new generation coupled atmosphere-wave-ocean hurricane forecast model. The author will also provide an overview on what we can expect in terms of advancement in science and technology that can help improve hurricane impact forecast in the near future.

  8. The combined risk of extreme tropical cyclone winds and storm surges along the U.S. Gulf of Mexico Coast

    Science.gov (United States)

    Trepanier, J. C.; Yuan, J.; Jagger, T. H.

    2017-03-01

    Tropical cyclones, with their nearshore high wind speeds and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting offshore economic activities. The combined risk of occurrence of tropical cyclone nearshore wind speeds and storm surges is assessed at 22 coastal cities throughout the United States Gulf of Mexico. The models used are extreme value copulas fitted with margins defined by the generalized Pareto distribution or combinations of Weibull, gamma, lognormal, or normal distributions. The statistical relationships between the nearshore wind speed and storm surge are provided for each coastal city prior to the copula model runs using Spearman's rank correlations. The strongest significant relationship between the nearshore wind speed and storm surge exists at Shell Beach, LA (ρ = 0.67), followed by South Padre Island, TX (ρ = 0.64). The extreme value Archimedean copula models for each city then provide return periods for specific nearshore wind speed and storm surge pairs. Of the 22 cities considered, Bay St. Louis, MS, has the shortest return period for a tropical cyclone with at least a 50 ms-1 nearshore wind speed and a 3 m surge (19.5 years, 17.1-23.5). The 90% confidence intervals are created by recalculating the return periods for a fixed set of wind speeds and surge levels using 100 samples of the model parameters. The results of this study can be utilized by policy managers and government officials concerned with coastal populations and economic activity in the Gulf of Mexico.

  9. Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific

    Science.gov (United States)

    Takagi, Hiroshi; Wu, Wenjie

    2016-03-01

    Even though the maximum wind radius (Rmax) is an important parameter in determining the intensity and size of tropical cyclones, it has been overlooked in previous storm surge studies. This study reviews the existing estimation methods for Rmax based on central pressure or maximum wind speed. These over- or underestimate Rmax because of substantial variations in the data, although an average radius can be estimated with moderate accuracy. As an alternative, we propose an Rmax estimation method based on the radius of the 50 kt wind (R50). Data obtained by a meteorological station network in the Japanese archipelago during the passage of strong typhoons, together with the JMA typhoon best track data for 1990-2013, enabled us to derive the following simple equation, Rmax = 0.23 R50. Application to a recent strong typhoon, the 2015 Typhoon Goni, confirms that the equation provides a good estimation of Rmax, particularly when the central pressure became considerably low. Although this new method substantially improves the estimation of Rmax compared to the existing models, estimation errors are unavoidable because of fundamental uncertainties regarding the typhoon's structure or insufficient number of available typhoon data. In fact, a numerical simulation for the 2013 Typhoon Haiyan as well as 2015 Typhoon Goni demonstrates a substantial difference in the storm surge height for different Rmax. Therefore, the variability of Rmax should be taken into account in storm surge simulations (e.g., Rmax = 0.15 R50-0.35 R50), independently of the model used, to minimize the risk of over- or underestimating storm surges. The proposed method is expected to increase the predictability of major storm surges and to contribute to disaster risk management, particularly in the western North Pacific, including countries such as Japan, China, Taiwan, the Philippines, and Vietnam.

  10. Storm surges in the Singapore Strait due to winds in the South China Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Tkalich, P.; Vethamony, P.; Babu, M.T.; Malanotte-Rizzoli, P.

    on the north, Karimata Strait on the south, east cost of Peninsular Malaysia on the west, and break of Sunda Shelf on the east, could experience positive or negative SLAs depending on the wind direction and speed. Strong sea level surges during NE monsoon...

  11. Analysis of Storm Surge in Hong Kong

    Science.gov (United States)

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.

  12. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    OpenAIRE

    Xue Jin; Xiaoxia Shi; Jintian Gao; Tongbin Xu; Kedong Yin

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is di...

  13. Storm surge model based on variational data assimilation method

    Directory of Open Access Journals (Sweden)

    Shi-li Huang

    2010-06-01

    Full Text Available By combining computation and observation information, the variational data assimilation method has the ability to eliminate errors caused by the uncertainty of parameters in practical forecasting. It was applied to a storm surge model based on unstructured grids with high spatial resolution meant for improving the forecasting accuracy of the storm surge. By controlling the wind stress drag coefficient, the variation-based model was developed and validated through data assimilation tests in an actual storm surge induced by a typhoon. In the data assimilation tests, the model accurately identified the wind stress drag coefficient and obtained results close to the true state. Then, the actual storm surge induced by Typhoon 0515 was forecast by the developed model, and the results demonstrate its efficiency in practical application.

  14. Numerical Evaluation of Storm Surge Indices for Public Advisory Purposes

    Science.gov (United States)

    Bass, B.; Bedient, P. B.; Dawson, C.; Proft, J.

    2016-12-01

    After the devastating hurricane season of 2005, shortcomings with the Saffir-Simpson Hurricane Scale's (SSHS) ability to characterize a tropical cyclones potential to generate storm surge became widely apparent. As a result, several alternative surge indices were proposed to replace the SSHS, including Powell and Reinhold's Integrated Kinetic Energy (IKE) factor, Kantha's Hurricane Surge Index (HSI), and Irish and Resio's Surge Scale (SS). Of the previous, the IKE factor is the only surge index to-date that truly captures a tropical cyclones integrated intensity, size, and wind field distribution. However, since the IKE factor was proposed in 2007, an accurate assessment of this surge index has not been performed. This study provides the first quantitative evaluation of the IKEs ability to serve as a predictor of a tropical cyclones potential surge impacts as compared to other alternative surge indices. Using the tightly coupled ADvanced CIRCulation and Simulating WAves Nearshore models, the surge and wave responses of Hurricane Ike (2008) and 78 synthetic tropical cyclones were evaluated against the SSHS, IKE, HSI and SS. Results along the upper TX coast of the Gulf of Mexico demonstrate that the HSI performs best in capturing the peak surge response of a tropical cyclone, while the IKE accounting for winds greater than tropical storm intensity (IKETS) provides the most accurate estimate of a tropical cyclones regional surge impacts. These results demonstrate that the appropriate selection of a surge index ultimately depends on what information is of interest to be conveyed to the public and/or scientific community.

  15. Reconnaissance level study Mississippi storm surge barrier

    NARCIS (Netherlands)

    Van Ledden, M.; Lansen, A.J.; De Ridder, H.A.J.; Edge, B.

    2012-01-01

    This paper reports a reconnaissance level study of a storm surge barrier in the Mississippi River. Historical hurricanes have shown storm surge of several meters along the Mississippi River levees up to and upstream of New Orleans. Future changes due to sea level rise and subsidence will further

  16. A Numerical Simulation of Extratropical Storm Surge and Hydrodynamic Response in the Bohai Sea

    OpenAIRE

    Ding, Yumei; Ding, Lei

    2014-01-01

    A hindcast of typical extratropical storm surge occurring in the Bohai Sea in October 2003 is performed using a three-dimensional (3D) Finite Volume Coastal Ocean Model (FVCOM). The storm surge model is forced by 10 m winds obtained from the Weather Research Forecasting (WRF) model simulation. It is shown that the simulated storm surge and tides agree well with the observations. The nonlinear interaction between the surge and astronomical tides, the spatial distribution of the max...

  17. Storm Surge and Tide Interaction: A Complete Paradigm

    Science.gov (United States)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  18. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.; Dawson, Clint N.

    2014-01-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  19. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  20. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    Directory of Open Access Journals (Sweden)

    D. Vatvani

    2012-07-01

    Full Text Available To simulate winds and water levels, numerical weather prediction (NWP and storm surge models generally use the traditional bulk relation for wind stress, which is characterized by a wind drag coefficient. A still commonly used drag coefficient in those models, some of them were developed in the past, is based on a relation, according to which the magnitude of the coefficient is either constant or increases monotonically with increasing surface wind speed (Bender, 2007; Kim et al., 2008; Kohno and Higaki, 2006. The NWP and surge models are often tuned independently from each other in order to obtain good results. Observations have indicated that the magnitude of the drag coefficient levels off at a wind speed of about 30 m s−1, and then decreases with further increase of the wind speed. Above a wind speed of approximately 30 m s−1, the stress above the air-sea interface starts to saturate. To represent the reducing and levelling off of the drag coefficient, the original Charnock drag formulation has been extended with a correction term.

    In line with the above, the Delft3D storm surge model is tested using both Charnock's and improved Makin's wind drag parameterization to evaluate the improvements on the storm surge model results, with and without inclusion of the wave effects. The effect of waves on storm surge is included by simultaneously simulating waves with the SWAN model on identical model grids in a coupled mode. However, the results presented here will focus on the storm surge results that include the wave effects.

    The runs were carried out in the Gulf of Mexico for Katrina and Ivan hurricane events. The storm surge model was initially forced with H*wind data (Powell et al., 2010 to test the effect of the Makin's wind drag parameterization on the storm surge model separately. The computed wind, water levels and waves are subsequently compared with observation data. Based on the good

  1. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    Science.gov (United States)

    Shi, Xiaoxia; Xu, Tongbin; Yin, Kedong

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation. PMID:29584628

  2. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups.

    Science.gov (United States)

    Jin, Xue; Shi, Xiaoxia; Gao, Jintian; Xu, Tongbin; Yin, Kedong

    2018-03-27

    Storm surge has become an important factor restricting the economic and social development of China's coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  3. Using Satellite Altimetry to Calibrate the Simulation of Typhoon Seth Storm Surge off Southeast China

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2018-04-01

    Full Text Available Satellite altimeters can capture storm surges generated by typhoons and tropical storms, if the satellite flies over at the right time. In this study, we show TOPEX/Poseidon altimeter-observed storm surge features off Southeast China on 10 October 1994 during Typhoon Seth. We then use a three-dimensional, barotropic, finite-volume community ocean model (FVCOM to simulate storm surges. An innovative aspect is that satellite data are used to calibrate the storm surge model to improve model performance, by adjusting model wind forcing fields (the National Center for Environment Prediction (NCEP reanalysis product in reference to the typhoon best-track data. The calibration reduces the along-track root-mean-square (RMS difference between model and altimetric data from 0.15 to 0.10 m. It also reduces the RMS temporal difference from 0.21 to 0.18 m between the model results and independent tide-gauge data at Xiamen. In particular, the calibrated model produces a peak storm surge of 1.01 m at 6:00 10 October 1994 at Xiamen, agreeing with tide-gauge data; while the peak storm surge with the NCEP forcing is 0.71 m only. We further show that the interaction between storm surges and astronomical tides contributes to the peak storm surge by 34% and that the storm surge propagates southwestward as a coastally-trapped Kelvin wave.

  4. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    Directory of Open Access Journals (Sweden)

    Xue Jin

    2018-03-01

    Full Text Available Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc., storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  5. Coastal Storm Surge Analysis: Storm Forcing. Report 3. Intermediate Submission No. 1.3

    Science.gov (United States)

    2013-07-01

    The storm surge study considers both tropical storms and extratropical cyclones for determination of return period storm surge elevations. The...Appendix B: Extratropical Cyclone Selection in Support of FEMA Region III Storm Surge Modeling...stations applied in the storm selection process. ............................................. 56  Table B2. Extratropical cyclones selected from the

  6. Coastal Storm Surge Analysis: Storm Surge Results. Report 5: Intermediate Submission No. 3

    Science.gov (United States)

    2013-11-01

    Vickery, P., D. Wadhera, A. Cox, V. Cardone , J. Hanson, and B. Blanton. 2012. Coastal storm surge analysis: Storm forcing (Intermediate Submission No...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jeffrey L. Hanson, Michael F. Forte, Brian Blanton

  7. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  8. Developing an early warning system for storm surge inundation in the Philippines

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2014-10-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter

  9. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Science.gov (United States)

    Lapidez, J. P.; Tablazon, J.; Dasallas, L.; Gonzalo, L. A.; Cabacaba, K. M.; Ramos, M. M. A.; Suarez, J. K.; Santiago, J.; Lagmay, A. M. F.; Malano, V.

    2015-07-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH) which is the flagship disaster mitigation program of the Department of Science and Technology (DOST) of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  10. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Directory of Open Access Journals (Sweden)

    J. P. Lapidez

    2015-07-01

    Full Text Available Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH which is the flagship disaster mitigation program of the Department of Science and Technology (DOST of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  11. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  12. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  13. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Directory of Open Access Journals (Sweden)

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  14. Identification of Storm Surge Vulnerable Areas in the Philippines Through Simulations of Typhoon Haiyan-Induced Storm Surge Using Tracks of Historical Tropical Cyclones

    Science.gov (United States)

    Lapidez, John Phillip; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Gonzalo, Lia Anne; Santiago, Joy; Cabacaba, Krichi May; Ramos, Michael Marie Angelo; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 07 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the typhoon's storm surge and strong winds. Storm surges up to a height of 7 meters were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards, the flagship disaster mitigation program of the Department of Science and Technology, Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. DOST-Project NOAH used the Japan Meteorological Agency (JMA) Storm Surge Model, a numerical code that simulates and predicts storm surges spawned by tropical cyclones. Input parameters for the storm surge model include bathymetric data, storm track, central atmospheric pressure, and maximum wind speed. The simulations were made using Haiyan's pressure and wind speed as the forcing parameters. The simulated storm surge height values were added to the maximum tide level obtained from WXTide, software that contains a catalogue of worldwide astronomical tides, to come up with storm tide levels. The resulting water level was used as input to FLO-2D to generate the storm tide inundation maps. One product of this study is a list of the most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions. Another product is the storm tide inundation maps that the local government units can use to develop a Risk-Sensitive Land Use Plan for identifying appropriate areas to build residential buildings

  15. Coastal emergency managers' preferences for storm surge forecast communication.

    Science.gov (United States)

    Morrow, Betty Hearn; Lazo, Jeffrey K

    2014-01-01

    Storm surge, the most deadly hazard associated with tropical and extratropical cyclones, is the basis for most evacuation decisions by authorities. One factor believed to be associated with evacuation noncompliance is a lack of understanding of storm surge. To address this problem, federal agencies responsible for cyclone forecasts are seeking more effective ways of communicating storm surge threat. To inform this process, they are engaging various partners in the forecast and warning process.This project focuses on emergency managers. Fifty-three emergency managers (EMs) from the Gulf and lower Atlantic coasts were surveyed to elicit their experience with, sources of, and preferences for storm surge information. The emergency managers-who are well seasoned in hurricane response and generally rate the surge risk in their coastal areas above average or extremely high-listed storm surge as their major concern with respect to hurricanes. They reported a general lack of public awareness about surge. Overall they support new ways to convey the potential danger to the public, including the issuance of separate storm surge watches and warnings, and the expression of surge heights using feet above ground level. These EMs would like more maps, graphics, and visual materials for use in communicating with the public. An important concern is the timing of surge forecasts-whether they receive them early enough to be useful in their evacuation decisions.

  16. Overview and Design Considerations of Storm Surge Barriers

    NARCIS (Netherlands)

    Mooyaart, L.F.; Jonkman, S.N.

    2017-01-01

    The risk of flooding in coastal zones is expected to increase due to sea level rise and economic development. In larger bays, estuaries, and coastal waterways, storm surge barriers can be constructed to temporarily close off these systems during storm surges to provide coastal flood protection.

  17. Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting

    Science.gov (United States)

    Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.

    2014-12-01

    Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.

  18. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.

    2012-07-01

    Accurate, real-time forecasting of coastal inundation due to hurricanes and tropical storms is a challenging computational problem requiring high-fidelity forward models of currents and water levels driven by hurricane-force winds. Despite best efforts in computational modeling there will always be uncertainty in storm surge forecasts. In recent years, there has been significant instrumentation located along the coastal United States for the purpose of collecting data—specifically wind, water levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge forecasting based on the use of ensemble Kalman filters and the advanced circulation (ADCIRC) storm surge model is described. The singular evolutive interpolated Kalman (SEIK) filter has been shown to be effective at producing accurate results for ocean models using small ensemble sizes initialized by an empirical orthogonal function analysis. The SEIK filter is applied to the ADCIRC model to improve storm surge forecasting, particularly in capturing maximum water levels (high water marks) and the timing of the surge. Two test cases of data obtained from hindcast studies of Hurricanes Ike and Katrina are presented. It is shown that a modified SEIK filter with an inflation factor improves the accuracy of coarse-resolution forecasts of storm surge resulting from hurricanes. Furthermore, the SEIK filter requires only modest computational resources to obtain more accurate forecasts of storm surge in a constrained time window where forecasters must interact with emergency responders.

  19. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  20. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    Science.gov (United States)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  1. Adriatic storm surges and related cross-basin sea-level slope

    Science.gov (United States)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  2. Using satellite altimetry and tide gauges for storm surge warning

    DEFF Research Database (Denmark)

    Andersen, O. B.; Cheng, Yongcun; Deng, X.

    2014-01-01

    of Australia. For both locations we have tried to investigate the possibilities and limitations of the use of satellite altimetry to capture high frequency signals (surges) using data from the past 20 years. The two regions are chosen to represent extra-tropical and tropical storm surge conditions. We have...

  3. Observing Storm Surges from Space: A New Opportunity

    Science.gov (United States)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy

    2013-04-01

    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  4. On the improvement of wave and storm surge hindcasts by downscaled atmospheric forcing: application to historical storms

    Science.gov (United States)

    Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence

    2018-04-01

    Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).

  5. Improvements of Storm Surge Modelling in the Gulf of Venice with Satellite Data: The ESA Due Esurge-Venice Project

    Science.gov (United States)

    De Biasio, F.; Bajo, M.; Vignudelli, S.; Papa, A.; della Valle, A.; Umgiesser, G.; Donlon, C.; Zecchetto, S.

    2016-08-01

    Among the most detrimental natural phenomena, storm surges heavily endanger the environment, the economy and the everyday life of sea-side countries and coastal zones. Considering that 120.000.000 people live in the Mediterranean area, with additional 200.000.000 presences in Summer for tourism purposes, the correct prediction of storm surges is crucial to avoid fatalities and economic losses. Earth Observation (EO) can play an important role in operational storm surge forecasting, yet it is not widely diffused in the storm surge community. In 2011 the European Space Agency (ESA), through its Data User Element (DUE) programme, financed two projects aimed at encouraging the uptake of EO data in this sector: eSurge and eSurge-Venice (eSV). The former was intended to address the issues of a wider users' community, while the latter was focused on a restricted geographical area: the northern Adriatic Sea and the Gulf of Venice. Among the objectives of the two projects there were a number of storm surge hindcast experiments using satellite data, to demonstrate the improvements on the surge forecast brought by EO. We report here the results of the hindcast experiments of the eSV project. They were aimed to test the sensitivity of a storm surge model to a forcing wind field modified with scatterometer data in order to reduce the bias between simulated and observed winds. Hindcast experiments were also performed to test the response of the storm surge model to the assimilation, with a dual 4D-Var system, of satellite altimetry observations as model errors of the initial state of the sea surface level. Remarkable improvements on the storm surge forecast have been obtained for what concerns the modified model wind forcing. Encouraging results have been obtained also in the assimilation experiments.

  6. Hindcast and validation of Hurricane Ike waves, forerunner, and storm surge

    NARCIS (Netherlands)

    Hope, M.E.; Westerink, J.J.; Kennedy, A.B.; Kerr, P.C.; Dietrich, J.C.; Dawson, C.; Bender, C.J.; Smith, J.M.; Jensen, R.E.; Zijlema, M.; Holthuijsen, L.H.; Luettich, R.A.; Powell, M.D.; Cardone, V.J.; Cox, A.T.; Pourtaheri, H.; Roberts, H.J.; Atkinson, J.H.; Tanaka, S.; Westerink, H.J.; Westerink, L.G.

    2013-01-01

    Hurricane Ike (2008) made landfall near Galveston, Texas, as a moderate intensity storm. Its large wind field in conjunction with the Louisiana-Texas coastline's broad shelf and large scale concave geometry generated waves and surge that impacted over 1000 km of coastline. Ike's complex and varied

  7. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    Science.gov (United States)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  8. A numerical storm surge forecast model with Kalman filter

    Institute of Scientific and Technical Information of China (English)

    Yu Fujiang; Zhang Zhanhai; Lin Yihua

    2001-01-01

    Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms to the momentum equations. The deterministic model output is corrected by using the available tidal gauge station data. The stationary Kalman filter algorithm for the model domain is calculated by an iterative procedure using specified information on the inaccuracies in the momentum equations and specified error information for the observations. An application to a real storm surge that occurred in the summer of 1956 in the East China Sea is performed by means of this data assimilation technique. The result shows that Kalman filter is useful for storm surge forecast and hindcast.

  9. Impacts of Storm Surge Mitigation Strategies on Aboveground Storage Tank Chemical Spill Transport

    Science.gov (United States)

    Do, C.; Bass, B. J.; Bernier, C.; Samii, A.; Dawson, C.; Bedient, P. B.

    2017-12-01

    The Houston Ship Channel (HSC), located in the hurricane-prone Houston-Galveston region of the upper Texas Coast, is one of the busiest waterways in the United States and is home to one of the largest petrochemical complexes in the world. Due to the proximity of the HSC to Galveston Bay and the Gulf of Mexico, chemical spills resulting from storm surge damage to aboveground storage tanks (ASTs) pose serious threats to the environment, residential communities, and national/international markets whose activities in the HSC generate billions of dollars annually. In an effort to develop a comprehensive storm surge mitigation strategy for Galveston Bay and its constituents, Rice University's Severe Storm Prediction, Education, and Evacuation from Disasters Center proposed two structural storm surge mitigation concepts, the Mid Bay Structure (MBS) and the Lower Bay Structure (LBS) as components of the Houston-Galveston Area Protection System (H-GAPS) project. The MBS consists of levees along the HSC and a navigational gate across the channel, and the LBS consists of a navigation gate and environmental gates across Bolivar Road. The impacts of these two barrier systems on the fate of AST chemical spills in the HSC have previously been unknown. This study applies the coupled 2D SWAN+ADCIRC model to simulate hurricane storm surge circulation within the Gulf of Mexico and Galveston Bay due to a synthetic storm which results in approximately 250-year surge levels in Galveston Bay. The SWAN+ADCIRC model is run using high-resolution computational meshes that incorporate the MBS and LBS scenarios, separately. The resulting wind and water velocities are then fed into a Lagrangian particle transport model to simulate the spill trajectories of the ASTs most likely to fail during the 250-year proxy storm. Results from this study illustrate how each storm surge mitigation strategy impacts the transport of chemical spills (modeled as Lagrangian particles) during storm surge as

  10. Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles

    Science.gov (United States)

    Krien, Y.; Dudon, B.; Roger, J.; Zahibo, N.

    2015-08-01

    Current storm surge hazard maps in the French West Indies are essentially based on simple statistical methods using limited historical data and early low-resolution models which do not take the effect of waves into account. In this paper, we infer new 100-year and 1000-year surge levels in Guadeloupe from the numerical modelling of storm surges induced by a large set of synthetic events that are in statistical agreement with features of historical hurricanes in the North Atlantic Basin between 1980 and 2011. Computations are performed using the wave-current coupled model ADCIRC-SWAN with high grid resolutions (up to 40-60 m) in the coastal and wave dissipation areas. This model is validated against observations during past events such as hurricane HUGO (1989). Results are generally found to be in reasonable agreement with past studies in areas where surge is essentially wind-driven, but found to differ significantly in coastal regions where the transfer of momentum from waves to the water column constitutes a non-negligible part of the total surge. The methodology, which can be applied to other islands in the Lesser Antilles, allows storm surge level maps to be obtained that can be of major interest for coastal planners and decision makers in terms of risk management.

  11. Assessment of the Temporal Evolution of Storm Surge via Land to Water Isopleths in Coastal Louisiana

    Science.gov (United States)

    Siverd, C. G.; Hagen, S. C.; Bilskie, M. V.; Braud, D.; Gao, S.; Peele, H.; Twilley, R.

    2017-12-01

    The low-lying coastal Louisiana deltaic landscape features an intricate system of fragmented wetlands, natural ridges, man-made navigation canals and flood protection infrastructure. Since 1900 and prior to the landfall of Hurricane Katrina in 2005, Louisiana lost approximately 480,000 ha (1,850 sq mi) of coastal wetlands and an additional 20,000 ha (77 sq mi) due to Katrina. This resulted in a total wetland storm protection value loss of USD 28.3 billion and USD 1.1 billion, respectively (Costanza 2008). To investigate the response of hurricane storm surge (e.g. peak water levels, inundation time and extent) through time due to land loss, hydrodynamic models that represent historical eras of the Louisiana coastal landscape were developed. Land:Water (L:W) isopleths (Gagliano 1970, 1971, Twilley 2016) have been calculated along the coast from the Sabine River to the Pearl River. These isopleths were utilized to create a simplified coastal landscape (bathymetry, topography, bottom roughness) representing circa 2010. Similar methodologies are employed with the objective of developing storm surge models that represent the coastal landscape for past eras. The goal is to temporally examine the evolution of storm surge along coastal Louisiana. The isopleths determined to best represent the Louisiana coast as a result of the methodology devised to develop the simple storm surge model for c.2010 are applied in the development of surge models for historical eras c.1930 and c.1970. The ADvaced CIRCulation (ADCIRC) code (Luettich 2004) is used to perform storm surge simulations with a predetermined suite of hurricane wind and pressure forcings. Hydrologic Unit Code 12 (HUC12) sub-watersheds provide geographical bounds to quantify mean maximum water surface elevations (WSEs), volume of inundation, and area of inundation. HUC12 sub-watersheds also provide a means to compare/contrast these quantified surge parameters on a HUC12-by-HUC12 basis for the c.1930, c.1970 and c.2010

  12. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    Science.gov (United States)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as

  13. Model simulation of storm surge potential for Andaman islands

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, V.S.; RameshBabu, V.; Babu, M.T.; Dhinakaran, G.; Rajamanickam, G.V.

    Hydraulics and Oceanography, the Hydrodynamics Module Reference Manual. DHI Water and Environment, Horsholm, Denmark, 58 p. Dube, S.K., Sinha, P C , Rao, A.D., and Rao, G.S., 1985. Numerical modeling of storm surges in the Arabian Sea, Appl. Math Modelling, 9...

  14. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  15. Storm-surge flooding on the Yukon-Kuskokwim Delta, Alaska

    Science.gov (United States)

    Terenzi, John; Ely, Craig R.; Jorgenson, M. Torre

    2014-01-01

    Coastal regions of Alaska are regularly affected by intense storms of ocean origin, the frequency and intensity of which are expected to increase as a result of global climate change. The Yukon-Kuskokwim Delta (YKD), situated in western Alaska on the eastern edge of the Bering Sea, is one of the largest deltaic systems in North America. Its low relief makes it especially susceptible to storm-driven flood tides and increases in sea level. Little information exists on the extent of flooding caused by storm surges in western Alaska and its effects on salinization, shoreline erosion, permafrost thaw, vegetation, wildlife, and the subsistence-based economy. In this paper, we summarize storm flooding events in the Bering Sea region of western Alaska during 1913 – 2011 and map both the extent of inland flooding caused by autumn storms on the central YKD, using Radarsat-1 and MODIS satellite imagery, and the drift lines, using high-resolution IKONOS satellite imagery and field surveys. The largest storm surges occurred in autumn and were associated with high tides and strong (> 65 km hr-1) southwest winds. Maximum inland extent of flooding from storm surges was 30.3 km in 2005, 27.4 km in 2006, and 32.3 km in 2011, with total flood area covering 47.1%, 32.5%, and 39.4% of the 6730 km2 study area, respectively. Peak stages for the 2005 and 2011 storms were 3.1 m and 3.3 m above mean sea level, respectively—almost as high as the 3.5 m amsl elevation estimated for the largest storm observed (in November 1974). Several historically abandoned village sites lie within the area of inundation of the largest flood events. With projected sea level rise, large storms are expected to become more frequent and cover larger areas, with deleterious effects on freshwater ponds, non-saline habitats, permafrost, and landscapes used by nesting birds and local people.

  16. Probabilistic storm surge inundation maps for Metro Manila based on Philippine public storm warning signals

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2015-03-01

    A storm surge is the sudden rise of sea water over the astronomical tides, generated by an approaching storm. This event poses a major threat to the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013. This hydro-meteorological hazard is one of the main reasons for the high number of casualties due to the typhoon, with 6300 deaths. It became evident that the need to develop a storm surge inundation map is of utmost importance. To develop these maps, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. The Japan Meteorological Agency storm surge model was used to simulate storm surge heights. The frequency distribution of the maximum storm surge heights was calculated using simulation results of tropical cyclones under a specific public storm warning signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of inundation for a specific PSWS using the probability of exceedance derived from the frequency distribution. Buildings and other structures were assigned a probability of exceedance depending on their occupancy category, i.e., 1% probability of exceedance for critical facilities, 10% probability of exceedance for special occupancy structures, and 25% for standard occupancy and miscellaneous structures. The maps produced show the storm-surge-vulnerable areas in Metro Manila, illustrated by the flood depth of up to 4 m and extent of up to 6.5 km from the coastline. This information can help local government units in developing early warning systems, disaster preparedness and mitigation plans, vulnerability assessments, risk-sensitive land use plans, shoreline

  17. Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations

    Science.gov (United States)

    Feng, Xingru; Li, Mingjie; Yin, Baoshu; Yang, Dezhou; Yang, Hongwei

    2018-06-01

    This is a study of the storm surge trends in some of the typhoon-prone coastal areas of China. An unstructured-grid, storm surge-wave-tide coupled model was established for the coastal areas of Zhejiang, Fujian and Guangdong provinces. The coupled model has a high resolution in coastal areas, and the simulated results compared well with the in situ observations and satellite altimeter data. The typhoon-induced storm surges along the coast of the study areas were simulated based on the established coupled model for the past 20 years (1997-2016). The simulated results were used to analyze the trends of the storm surges in the study area. The extreme storm surge trends along the central coast of Fujian Province reached up to 0.06 m/y, significant at the 90% confidence level. The duration of the storm surges greater than 1.0 and 0.7 m had an increasing trend along the coastal area of northern Fujian Province, significant at confidence levels of 70%-91%. The simulated trends of the extreme storm surges were also validated by observations from two tide gauge stations. Further studies show that the correlation coefficient (RTE) between the duration of the storm surge greater than 1 m and the annual ENSO index can reach as high as 0.62, significant at the 99% confidence level. This occurred in a location where the storm surge trend was not significant. For the areas with significant increasing storm surge trends, RTE was small and not significant. This study identified the storm surge trends for the full complex coastline of the study area. These results are useful both for coastal management by the government and for coastal engineering design.

  18. Development of Storm Surge Hazard Maps and Advisory System for the Philippines

    Science.gov (United States)

    Santiago, Joy; Mahar Francisco Lagymay, Alfredo; Caro, Carl Vincent; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Garnet Goting, Prince

    2016-04-01

    The Philippines, located in the most active region of cyclogenesis in the world, experiences an average of 20 tropical cyclones annually. Strong winds brought by tropical cyclones, among other factors, cause storm surges that inundate the coastal areas of the country. As an archipelago with the fourth longest coastline in the world, the country is expose to the threats of storm surges. This was manifested by Typhoon Haiyan on 8 November 2013, which devastated the country and left 6,293 deaths and approximately USD 2 billion worth of damages. To prevent such disaster from happening again, the Nationwide Operational Assessment of Hazards (Project NOAH) developed a Storm Surge Advisory (SSA) that aims to warn communities in coastal areas against impending floods due to storm surges. The Japan Meteorological Agency storm surge model was used to simulate 721 tropical cyclones that entered the Philippine Area of Responsibility from 1951-2013. The resulting storm surge time series from the simulations were added to the maximum tide levels from the WXTide software for the 4,996 observation points placed nearshore in the entire country. The storm tide levels were categorized into four groups based on their peak height to create the SSA - SSA 1 (0.01m to 2m), SSA 2 (2.01m to 3m), SSA 3 (3.01m to 4m), and SSA 4 (4m and above). The time series for each advisory level was used in inundation modelling using FLO-2D, a two-dimensional flood modeling software that uses continuity and dynamic wave momentum equation. The model produced probable extent, depth of inundation, and hazard level for each advisory level. The SSA hazard maps are used as reference to warn communities that are likely to be affected by storm surges. Advisory is released 24 hours in advance and is updated every six hours in the Project NOAH website. It is also being utilized in the pre-disaster risk assessment of the national government agencies and local government units in designing appropriate response to

  19. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters

    Science.gov (United States)

    Bathi, Jejal Reddy; Das, Himangshu S.

    2016-01-01

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters. PMID:26907313

  20. Use of historical information in extreme storm surges frequency analysis

    Science.gov (United States)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the

  1. Storm surge modeling of Superstorm Sandy in the New York City Metropolitan area

    Science.gov (United States)

    Benimoff, A. I.; Blanton, B. O.; Dzedzits, E.; Fritz, W. J.; Kress, M.; Muzio, P.; Sela, L.

    2013-12-01

    Even though the New York/New Jersey area does not lie within the typical 'hurricane belt', recent events and the historical record indicate that large infrequent tropical storms have had direct hits on the region, with impacts being amplified due to the nearly right angle bend in the coastline. The recent plan unveiled by New York City's Mayor Bloomberg lays out mitigation strategies to protect the region's communities, infrastructure, and assets from future storms, and numerical simulation of storm surge and wave hazards driven by potential hurricanes plays a central role in developing and evaluating these strategies. To assist in local planning, recovery, and decision-making, we have used the tide, storm surge, and wind wave model ADCIRC+SWAN to simulate storm surge in one of the most populated areas of the United States: the New York City (NYC) metropolitan area. We have generated a new high-resolution triangular finite-element model grid for the region from recent USGS data as well as recent city topographic maps at 2-foot (0.6m) contour intervals, nautical charts, and details of shipping channels. Our hindcast simulations are compared against Superstorm Sandy. We used the City University of New York High Performance Computing Center's Cray XE6tm at the College of Staten Island for these simulations. Hindcasting and analysis of the Superstorm Sandy storm surge and waves indicates that our simulations produce a reasonable representation of actual events. The grid will be used in an ADCIRC-based forecasting system implementation for the region.

  2. Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea

    Science.gov (United States)

    Mel, Riccardo; Lionello, Piero

    2014-12-01

    In the Adriatic Sea, storm surges present a significant threat to Venice and to the flat coastal areas of the northern coast of the basin. Sea level forecast is of paramount importance for the management of daily activities and for operating the movable barriers that are presently being built for the protection of the city. In this paper, an EPS (ensemble prediction system) for operational forecasting of storm surge in the northern Adriatic Sea is presented and applied to a 3-month-long period (October-December 2010). The sea level EPS is based on the HYPSE (hydrostatic Padua Sea elevation) model, which is a standard single-layer nonlinear shallow water model, whose forcings (mean sea level pressure and surface wind fields) are provided by the ensemble members of the ECMWF (European Center for Medium-Range Weather Forecasts) EPS. Results are verified against observations at five tide gauges located along the Croatian and Italian coasts of the Adriatic Sea. Forecast uncertainty increases with the predicted value of the storm surge and with the forecast lead time. The EMF (ensemble mean forecast) provided by the EPS has a rms (root mean square) error lower than the DF (deterministic forecast), especially for short (up to 3 days) lead times. Uncertainty for short lead times of the forecast and for small storm surges is mainly caused by uncertainty of the initial condition of the hydrodynamical model. Uncertainty for large lead times and large storm surges is mainly caused by uncertainty in the meteorological forcings. The EPS spread increases with the rms error of the forecast. For large lead times the EPS spread and the forecast error substantially coincide. However, the EPS spread in this study, which does not account for uncertainty in the initial condition, underestimates the error during the early part of the forecast and for small storm surge values. On the contrary, it overestimates the rms error for large surge values. The PF (probability forecast) of the EPS

  3. Determining Storm Surge Return Periods: The Use of Evidence of Historic Events

    DEFF Research Database (Denmark)

    Madsen, Kristine S.; Sørensen, Carlo Sass; Schmith, Torben

    Storm surges are a major concern for many coastal communities, and rising levels of surges is a key concern in relation to climate change. The sea level of a statistical 100-year or 1000-year storm surge event and similar statistical measures are used for spatial planning and emergency preparedness...

  4. Risk assessment of storm surge disaster based on numerical models and remote sensing

    Science.gov (United States)

    Liu, Qingrong; Ruan, Chengqing; Zhong, Shan; Li, Jian; Yin, Zhonghui; Lian, Xihu

    2018-06-01

    Storm surge is one of the most serious ocean disasters in the world. Risk assessment of storm surge disaster for coastal areas has important implications for planning economic development and reducing disaster losses. Based on risk assessment theory, this paper uses coastal hydrological observations, a numerical storm surge model and multi-source remote sensing data, proposes methods for valuing hazard and vulnerability for storm surge and builds a storm surge risk assessment model. Storm surges in different recurrence periods are simulated in numerical models and the flooding areas and depth are calculated, which are used for assessing the hazard of storm surge; remote sensing data and GIS technology are used for extraction of coastal key objects and classification of coastal land use are identified, which is used for vulnerability assessment of storm surge disaster. The storm surge risk assessment model is applied for a typical coastal city, and the result shows the reliability and validity of the risk assessment model. The building and application of storm surge risk assessment model provides some basis reference for the city development plan and strengthens disaster prevention and mitigation.

  5. Multidecadal Scale Detection Time for Potentially Increasing Atlantic Storm Surges in a Warming Climate

    Science.gov (United States)

    Lee, Benjamin Seiyon; Haran, Murali; Keller, Klaus

    2017-10-01

    Storm surges are key drivers of coastal flooding, which generate considerable risks. Strategies to manage these risks can hinge on the ability to (i) project the return periods of extreme storm surges and (ii) detect potential changes in their statistical properties. There are several lines of evidence linking rising global average temperatures and increasingly frequent extreme storm surges. This conclusion is, however, subject to considerable structural uncertainty. This leads to two main questions: What are projections under various plausible statistical models? How long would it take to distinguish among these plausible statistical models? We address these questions by analyzing observed and simulated storm surge data. We find that (1) there is a positive correlation between global mean temperature rise and increasing frequencies of extreme storm surges; (2) there is considerable uncertainty underlying the strength of this relationship; and (3) if the frequency of storm surges is increasing, this increase can be detected within a multidecadal timescale (≈20 years from now).

  6. Coastal Flooding Hazards due to storm surges and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Knudsen, Per; Andersen, Ole B.

    Flooding hazard and risk mapping are major topics in low-lying coastal areas before even considering the adverse effects of sea level rise (SLR) due to climate change. While permanent inundation may be a prevalent issue, more often floods related to extreme events (storm surges) have the largest...... damage potential.Challenges are amplified in some areas due to subsidence from natural and/or anthropogenic causes. Subsidence of even a few mm/y may over time greatly impair the safety against flooding of coastal communities and must be accounted for in order to accomplish the economically most viable...

  7. Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique

    Science.gov (United States)

    Krien, Yann; Dudon, Bernard; Roger, Jean; Arnaud, Gael; Zahibo, Narcisse

    2017-09-01

    In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge - up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.

  8. Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey

    Science.gov (United States)

    Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.

    2017-12-01

    Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.

  9. An Approach to Remove the Systematic Bias from the Storm Surge forecasts in the Venice Lagoon

    Science.gov (United States)

    Canestrelli, A.

    2017-12-01

    In this work a novel approach is proposed for removing the systematic bias from the storm surge forecast computed by a two-dimensional shallow-water model. The model covers both the Adriatic and Mediterranean seas and provides the forecast at the entrance of the Venice Lagoon. The wind drag coefficient at the water-air interface is treated as a calibration parameter, with a different value for each range of wind velocities and wind directions. This sums up to a total of 16-64 parameters to be calibrated, depending on the chosen resolution. The best set of parameters is determined by means of an optimization procedure, which minimizes the RMS error between measured and modeled water level in Venice for the period 2011-2015. It is shown that a bias is present, for which the peaks of wind velocities provided by the weather forecast are largely underestimated, and that the calibration procedure removes this bias. When the calibrated model is used to reproduce events not included in the calibration dataset, the forecast error is strongly reduced, thus confirming the quality of our procedure. The proposed approach it is not site-specific and could be applied to different situations, such as storm surges caused by intense hurricanes.

  10. Vulnerability assessment of storm surges in the coastal area of Guangdong Province

    Directory of Open Access Journals (Sweden)

    K. Li

    2011-07-01

    Full Text Available Being bordered by the South China Sea and with long coastline, the coastal zone of Guangdong Province is often under severe risk of storm surges, as one of a few regions in China which is seriously threatened by storm surges. This article systematically analyzes the vulnerability factors of storm surges in the coastal area of Guangdong (from Yangjing to Shanwei. Five vulnerability assessment indicators of hazard-bearing bodies are proposed, which are social economic index, land use index, eco-environmental index, coastal construction index, and disaster-bearing capability index. Then storm surge vulnerability assessment index system in the coastal area of Guangdong is established. Additionally, the international general mode about coastal vulnerability assessment is improved, and the vulnerability evolution model of storm surges in the coastal area of Guangdong is constructed. Using ArcGIS, the vulnerability zoning map of storm surges in the study region is drawn. Results show that there is the highest degree of storm surge vulnerability in Zhuhai, Panyu, and Taishan; second in Zhongshan, Dongguan, Huiyang, and Haifeng; third in Jiangmen, Shanwei, Yangjiang, and Yangdong; fourth in Baoan, Kaiping, and Enping; and lowest in Guangzhou, Shunde, Shenzhen, and Longgang. This study on the risk of storm surges in these coastal cities can guide the land use of coastal cities in the future, and provide scientific advice for the government to prevent and mitigate the storm surge disasters. It has important theoretical and practical significance.

  11. Effects of wave-current interaction on storm surge in the Taiwan Strait: Insights from Typhoon Morakot

    Science.gov (United States)

    Yu, Xiaolong; Pan, Weiran; Zheng, Xiangjing; Zhou, Shenjie; Tao, Xiaoqin

    2017-08-01

    The effects of wave-current interaction on storm surge are investigated by a two-dimensional wave-current coupling model through simulations of Typhoon Morakot in the Taiwan Strait. The results show that wind wave and slope of sea floor govern wave setup modulations within the nearshore surf zone. Wave setup during Morakot can contribute up to 24% of the total storm surge with a maximum value of 0.28 m. The large wave setup commonly coincides with enhanced radiation stress gradient, which is itself associated with transfer of wave momentum flux. Water levels are to leading order in modulating significant wave height inside the estuary. High water levels due to tidal change and storm surge stabilize the wind wave and decay wave breaking. Outside of the estuary, waves are mainly affected by the current-induced modification of wind energy input to the wave generation. By comparing the observed significant wave height and water level with the results from uncoupled and coupled simulations, the latter shows a better agreement with the observations. It suggests that wave-current interaction plays an important role in determining the extreme storm surge and wave height in the study area and should not be neglected in a typhoon forecast.

  12. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad

    2014-08-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  13. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Mayo, T.; Luo, X.; Dawson, C.; Heemink, A. W.; Hoteit, Ibrahim

    2014-01-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  14. New technology and tool prepared for communication against storm surges.

    Science.gov (United States)

    Letkiewicz, Beata

    2010-05-01

    The aim of the presentation is description of the new technology and tool prepared for communication, information and issue of warnings against storm surges. The Maritime Branch of the Institute of Meteorology and Water Management is responsible for preparing the forecast as warning, where the end users are Government Officials and Public. The Maritime Branch carry out the project "Strengthening the administrative capacity in order to improve the management of Polish coastal zone environment" (supported by a grant from Norway through the Norwegian Financial Mechanism). The expected final result of the project is web site www.baltyk.pogodynka.pl. One of the activities of the project is - set up of information website www.baltyk.pogodynka.pl, giving public access to the complied data. Information on web site: - meta data - marine data (on-line measurement: sea level, water temperature, salinity, oxygen concentration); - data bases of mathematical model outputs - forecast data (sea level, currents); - ice conditions of the Baltic Sea, - instructions, information materials with information of polish coastal zone. The aim of set up of the portal is development of communication between users of the system, exchange of the knowledge of marine environment and natural hazards such as storm surges, improving the ability of the region in the scope of the data management about the sea environment and the coastal zone.

  15. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  16. Coastal Storm Surge Analysis: Modeling System Validation. Report 4: Intermediate Submission No. 2.0

    Science.gov (United States)

    2013-07-01

    Hurricane Isabel, Hurricane Ernesto, and Extratropical Storm Ida. Model skill was accessed by quantitative comparison of model output to wind, wave...25. Extratropical Storm Nor’Ida maximum wind speeds. ......................................................... 41  Figure 26. Extratropical Storm ...Nor’Ida wind validation stations. ........................................................ 42  Figure 27. Comparisons of Extratropical Storm Nor’Ida wind

  17. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    Science.gov (United States)

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  18. Artificial Neural Network forecasting of storm surge water levels at major estuarine ports to supplement national tide-surge models and improve port resilience planning

    Science.gov (United States)

    French, Jon; Mawdsley, Robert; Fujiyama, Taku; Achuthan, Kamal

    2017-04-01

    configured to take advantage of far-field information on developing tidal surges provided by tide gauges in NW Scotland (the 'external surge'), supported by observations of wind and atmospheric pressure and the predicted astronomical tide at Immingham. Missing data can cause problems with ANN models and a novel aspect of our implementation is the use of multiple redundant inputs (nearby tide gauges that experience a high degree of surge coherence) to synthesise a single external surge input. A similar approach is taken with meteorological forcings, creating an ANN that is resilient against data drop-outs within its input vector. The ANN generates 6 to 24 hour surge forecasts at Immingham with accuracy better than the present UK Storm Tide Warning Service. These can be used to cross-check national forecasts, generate more accurate estimates of likely flood depths, timings and durations and trigger planned responses to severe forecasts. Crucially, this capability can be 'owned' by the port operator, which encourages the development of a shared understanding of storm surge hazards and the challenges of port resilience planning between scientist and stakeholder.

  19. The Development of Storm Surge Ensemble Prediction System and Case Study of Typhoon Meranti in 2016

    Science.gov (United States)

    Tsai, Y. L.; Wu, T. R.; Terng, C. T.; Chu, C. H.

    2017-12-01

    Taiwan is under the threat of storm surge and associated inundation, which is located at a potentially severe storm generation zone. The use of ensemble prediction can help forecasters to know the characteristic of storm surge under the uncertainty of track and intensity. In addition, it can help the deterministic forecasting. In this study, the kernel of ensemble prediction system is based on COMCOT-SURGE (COrnell Multi-grid COupled Tsunami Model - Storm Surge). COMCOT-SURGE solves nonlinear shallow water equations in Open Ocean and coastal regions with the nested-grid scheme and adopts wet-dry-cell treatment to calculate potential inundation area. In order to consider tide-surge interaction, the global TPXO 7.1 tide model provides the tidal boundary conditions. After a series of validations and case studies, COMCOT-SURGE has become an official operating system of Central Weather Bureau (CWB) in Taiwan. In this study, the strongest typhoon in 2016, Typhoon Meranti, is chosen as a case study. We adopt twenty ensemble members from CWB WRF Ensemble Prediction System (CWB WEPS), which differs from parameters of microphysics, boundary layer, cumulus, and surface. From box-and-whisker results, maximum observed storm surges were located in the interval of the first and third quartile at more than 70 % gauge locations, e.g. Toucheng, Chengkung, and Jiangjyun. In conclusion, the ensemble prediction can effectively help forecasters to predict storm surge especially under the uncertainty of storm track and intensity

  20. Storm surge in the Bay of Bengal and Arabian Sea: The problem and its prediction

    Digital Repository Service at National Institute of Oceanography (India)

    Dube, S.K.; Rao, A.D.; Sinha, P.C.; Murty, T.S.; Bahulayan, N.

    to annual economic losses in these countries. Thus, the real time monitoring and warning of storm surge is of great concern for this region. The goal of this paper is to provide an overview of major aspects of the storm surge problem in the Bay of Bengal...

  1. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.; Altaf, Muhammad; Dawson, C.; Hoteit, Ibrahim; Luo, X.; Mayo, T.

    2012-01-01

    levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge

  2. Challenges in Downscaling Surge and Flooding Predictions Associated with Major Coastal Storm Events

    Science.gov (United States)

    Bowman, M. J.

    2015-12-01

    Coastal zone managers, elected officials and emergency planning personnel are continually seeking more reliable estimates of storm surge and inundation for better land use planning, the design, construction and operation of coastal defense systems, resilience evaluation and evacuation planning. Customers of modern regional weather and storm surge prediction models demand high resolution, speed, accuracy, with informative, interactive graphics and easy evaluation of potentially dangerous threats to life and property. These challenges continue to get more difficult as the demand for street-scale and even building-scale predictions increase. Fluctuations in sub-grid-scale wind and water velocities can lead to unsuspected, unanticipated and dangerous flooding in local communities. But how reliable and believable are these models given the inherent natural uncertainty and chaotic behavior in the underlying dynamics, which can lead to rapid and unexpected perturbations in the wind and pressure fields and hence coastal flooding? Traditionally this uncertainty has been quantified by the use of the ensemble method, where a suite of model runs are made with varying physics and initial conditions, presenting the mean and variance of the ensemble as the best metrics possible. But this assumes that each component is equally possible and is statistically independent of the others. But this is rarely true, although the "safety in numbers" approach is comforting to those faced with life and death decisions. An example of the ensemble method is presented for the trajectory of superstorm Sandy's storm center as it approached coastal New Jersey. If one were to ask the question "was Sandy a worst case scenario", the answer would be "no: small variations in the timing (vis-à-vis tide phase) and location of landfall could easily have led to an additional surge of +50 cm at The Battery NY with even more catastrophic consequences to those experienced".

  3. Comparison of two recent storm surge events based on results of field surveys

    Science.gov (United States)

    Nakamura, Ryota; Shibayama, Tomoya; Mikami, Takahito; Esteban, Miguel; Takagi, Hiroshi; Maell, Martin; Iwamoto, Takumu

    2017-10-01

    This paper compares two different types of storm surge disaster based on field surveys. Two cases: a severe storm surge flood with its height of over 5 m due to Typhoon Haiyan (2013) in Philippine, and inundation of storm surge around Nemuro city in Hokkaido of Japan with its maximum surge height of 2.8 m caused by extra-tropical cyclone are taken as examples. For the case of the Typhoon Haiyan, buildings located in coastal region were severely affected due to a rapidly increase in ocean surface. The non-engineering buildings were partially or completely destroyed due to their debris transported to an inner bay region. In fact, several previous reports indicated two unique features, bore-like wave and remarkably high speed currents. These characteristics of the storm surge may contribute to a wide-spread corruption for the buildings around the affected region. Furthermore, in the region where the surge height was nearly 3 m, the wooden houses were completely or partially destroyed. On the other hand, in Nemuro city, a degree of suffering in human and facility caused by the storm surge is minor. There was almost no partially destroyed residential houses even though the height of storm surge reached nearly 2.8 m. An observation in the tide station in Nemuro indicated that this was a usual type of storm surge, which showed a gradual increase of sea level height in several hours without possessing the unique characteristics like Typhoon Haiyan. As a result, not only the height of storm surge but also the robustness of the buildings and characteristics of storm surge, such as bore like wave and strong currents, determined the existent of devastation in coastal regions.

  4. Predicting Typhoon Induced Storm Surges Using the Operational Ocean Forecast System

    Directory of Open Access Journals (Sweden)

    Sung Hyup You

    2010-01-01

    Full Text Available This study was performed to compare storm surges simulated by the operational storm surges/tide forecast system (STORM : Storm surges/Tide Operational Model of the Korea Meteorological Administration (KMA with observations from 30 coastal tidal stations during nine typhoons that occurred between 2005 and 2007. The results (bias showed that for cases of overestimation (or underestimation, storm surges tended to be overestimated (as well as underestimated at all coastal stations. The maximum positive bias was approximately 6.92 cm for Typhoon Ewiniar (2006, while the maximum negative bias was approximately -12.06 cm for Typhoon Khanun (2005. The maximum and minimum root mean square errors (RMSEs were 14.61 and 6.78 cm, which occurred for Typhoons Khanun (2005 and Usagi (2007, respectively. For all nine typhoons, total averaged RMSE was approximately 10.2 cm. Large differences between modeled and observed storm surges occurred in two cases. In the first, a very weak typhoon, such as Typhoon Khanun (2005, caused low storm surges. In the other, exemplified by Typhoon Nari (2007, there were errors in the predicted typhoon strength used as input data for the storm surge model.

  5. Mangroves can provide protection against wind damage during storms

    Science.gov (United States)

    Das, Saudamini; Crépin, Anne-Sophie

    2013-12-01

    Research has established that mangroves can protect lives and property from storms by buffering the impacts of storm surges. However, their effects in attenuating wind velocity and providing protection from wind damage during storms are not known. This study examined whether mangroves attenuate damage from cyclonic winds and found that they provide substantial protection to properties, even relatively far away from mangroves and the coast. We devised a theoretical model of wind protection by mangroves and calibrated and applied this model using data from the 1999 cyclone in the Odisha region of India. The model predicted and quantified the actual level of damage reasonably accurately and showed that mangroves reduced wind damage to houses. The wind protection value of mangroves in reducing house damage amounted to approximately US$177 per hectare at 1999 prices. This provides additional evidence of the storm protection ecosystem services that mangroves supply in the region and an additional reason to invest in mangrove ecosystems to provide better adaptability to coastal disasters such as storms.

  6. Modeling and simulation of storm surge on Staten Island to understand inundation mitigation strategies

    Science.gov (United States)

    Kress, Michael E.; Benimoff, Alan I.; Fritz, William J.; Thatcher, Cindy A.; Blanton, Brian O.; Dzedzits, Eugene

    2016-01-01

    Hurricane Sandy made landfall on October 29, 2012, near Brigantine, New Jersey, and had a transformative impact on Staten Island and the New York Metropolitan area. Of the 43 New York City fatalities, 23 occurred on Staten Island. The borough, with a population of approximately 500,000, experienced some of the most devastating impacts of the storm. Since Hurricane Sandy, protective dunes have been constructed on the southeast shore of Staten Island. ADCIRC+SWAN model simulations run on The City University of New York's Cray XE6M, housed at the College of Staten Island, using updated topographic data show that the coast of Staten Island is still susceptible to tidal surge similar to those generated by Hurricane Sandy. Sandy hindcast simulations of storm surges focusing on Staten Island are in good agreement with observed storm tide measurements. Model results calculated from fine-scaled and coarse-scaled computational grids demonstrate that finer grids better resolve small differences in the topography of critical hydraulic control structures, which affect storm surge inundation levels. The storm surge simulations, based on post-storm topography obtained from high-resolution lidar, provide much-needed information to understand Staten Island's changing vulnerability to storm surge inundation. The results of fine-scale storm surge simulations can be used to inform efforts to improve resiliency to future storms. For example, protective barriers contain planned gaps in the dunes to provide for beach access that may inadvertently increase the vulnerability of the area.

  7. Directional analysis of the storm surge from Hurricane Sandy 2012, with applications to Charleston, New Orleans, and the Philippines.

    Science.gov (United States)

    Drews, Carl; Galarneau, Thomas J

    2015-01-01

    Hurricane Sandy in late October 2012 drove before it a storm surge that rose to 4.28 meters above mean lower low water at The Battery in lower Manhattan, and flooded the Hugh L. Carey automobile tunnel between Brooklyn and The Battery. This study examines the surge event in New York Harbor using the Weather Research and Forecasting (WRF) atmospheric model and the Coupled-Ocean-Atmosphere-Wave- Sediment Transport/Regional Ocean Modeling System (COAWST/ROMS). We present a new technique using directional analysis to calculate and display maps of a coastline's potential for storm surge; these maps are constructed from wind fields blowing from eight fixed compass directions. This analysis approximates the surge observed during Hurricane Sandy. The directional analysis is then applied to surge events at Charleston, South Carolina, New Orleans, Louisiana, and Tacloban City, the Philippines. Emergency managers could use these directional maps to prepare their cities for an approaching storm, on planning horizons from days to years.

  8. Idealised modelling of storm surges in large-scale coastal basins

    NARCIS (Netherlands)

    Chen, Wenlong

    2015-01-01

    Coastal areas around the world are frequently attacked by various types of storms, threatening human life and property. This study aims to understand storm surge processes in large-scale coastal basins, particularly focusing on the influences of geometry, topography and storm characteristics on the

  9. Investigation of surge protective devices operation of a wind generator

    International Nuclear Information System (INIS)

    Dimitrov, D.; Vasileva, M.

    2008-01-01

    The interest to the investments in a wind energetics increases in the last years. The wind energetics is the fastest developing direction in the energetics in global scale. The wind energy is more attractive because its prices are lower in comparison of the other technologies for generating energy. The right choice of the surge protective devices has the important meaning on building and exploitation of the wind generators. The aim of this paper is investigation of the surge protective devices operation when they are installation to a wind generator. (authors)

  10. Monitoring duration and extent of storm-surge and flooding in Western Coastal Louisiana marshes with Envisat ASAR data

    Science.gov (United States)

    Ramsey, E.; Lu, Z.; Suzuoki, Y.; Rangoonwala, A.; Werle, D.

    2011-01-01

    Inundation maps of coastal marshes in western Louisiana were created with multitemporal Envisat Advanced Synthetic Aperture (ASAR) scenes collected before and during the three months after Hurricane Rita landfall in September 2005. Corroborated by inland water-levels, 7 days after landfall, 48% of coastal estuarine and palustrine marshes remained inundated by storm-surge waters. Forty-five days after landfall, storm-surge inundated 20% of those marshes. The end of the storm-surge flooding was marked by an abrupt decrease in water levels following the passage of a storm front and persistent offshore winds. A complementary dramatic decrease in flood extent was confirmed by an ASAR-derived inundation map. In nonimpounded marshes at elevations ;80 cm during the first month after Rita landfall. After this initial period, drainage from marshes-especially impounded marshes-was hastened by the onset of offshore winds. Following the abrupt drops in inland water levels and flood extent, rainfall events coinciding with increased water levels were recorded as inundation re-expansion. This postsurge flooding decreased until only isolated impounded and palustrine marshes remained inundated. Changing flood extents were correlated to inland water levels and largely occurred within the same marsh regions. Trends related to incremental threshold increases used in the ASAR change-detection analyses seemed related to the preceding hydraulic and hydrologic events, and VV and HH threshold differences supported their relationship to the overall wetland hydraulic condition.

  11. Sea level during storm surges as seen in tide-gauge records along the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sundar, D.; Shankar, D.; Shetye, S.R.

    and crossed the north Orissa coast later that day; it weakened and moved westward subsequent to landfall. Sea-level variations due to surges triggered by storm winds form a noise superimposed on the highly periodic tides, which have astronomical origins.... In the next section we describe the analysis used to 1326 CURRENT SCIENCE, VOL. 77, NO. 10, 25 NOVEMBER 1999 COMPUTATIONAL ENGINEERING SCIENCE Figure 1b. Astronomical tide and dehyphenminustided sea level during Event 1. The dark blue vertical lines...

  12. Monitoring Hurricane Rita Inland Storm Surge: Chapter 7J in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Goree, Burl B.

    2007-01-01

    Pressure transducers (sensors) are accurate, reliable, and cost-effective tools to measure and record the magnitude, extent, and timing of hurricane storm surge. Sensors record storm-surge peaks more accurately and reliably than do high-water marks. Data collected by sensors may be used in storm-surge models to estimate when, where, and to what degree stormsurge flooding will occur during future storm-surge events and to calibrate and verify stormsurge models, resulting in a better understanding of the dynamics of storm surge.

  13. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  14. Dynamical Downscaling of Typhoon Vera (1959) and related Storm Surge based on JRA-55 Reanalysis

    Science.gov (United States)

    Ninomiya, J.; Takemi, T.; Mori, N.; Shibutani, Y.; Kim, S.

    2015-12-01

    Typhoon Vera in 1959 is historical extreme typhoon that caused severest typhoon damage mainly due to the storm surge up to 389 cm in Japan. Vera developed 895 hPa on offshore and landed with 929.2 hPa. There are many studies of the dynamical downscaling of Vera but it is difficult to simulate accurately because of the lack of the accuracy of global reanalysis data. This study carried out dynamical downscaling experiment of Vera using WRF downscaling forced by JRA-55 that are latest atmospheric model and reanalysis data. In this study, the reproducibility of five global reanalysis data for Typhoon Vera were compered. Comparison shows that reanalysis data doesn't have strong typhoon information except for JRA-55, so that downscaling with conventional reanalysis data goes wrong. The dynamical downscaling method for storm surge is studied very much (e.g. choice of physical model, nudging, 4D-VAR, bogus and so on). In this study, domain size and resolution of the coarse domain were considered. The coarse domain size influences the typhoon route and central pressure, and larger domain restrains the typhoon strength. The results of simulations with different domain size show that the threshold of developing restrain is whether the coarse domain fully includes the area of wind speed more than 15 m/s around the typhoon. The results of simulations with different resolution show that the resolution doesn't affect the typhoon route, and higher resolution gives stronger typhoon simulation.

  15. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    Science.gov (United States)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  16. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    Science.gov (United States)

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  17. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    Science.gov (United States)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability

  18. Numerical modelling of tides and storm surges in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sindhu, B.

    were done. A storm surge model was developed to simulate total water levels and derived surges caused by low pressure systems identified during the past 27 years (1974-2000) in the Bay of Bengal. Study also estimated the return levels of extreme sea...

  19. Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin

    Directory of Open Access Journals (Sweden)

    Wei-Bo Chen

    2014-10-01

    Full Text Available Low-lying coastal regions and their populations are at risk during storm surge events and high freshwater discharges from upriver. An integrated storm surge and flood inundation modeling system was used to simulate storm surge and inundation in the Tsengwen River basin and the adjacent coastal area in southern Taiwan. A three-dimensional hydrodynamic model with an unstructured grid was used, which was driven by the tidal elevation at the open boundaries and freshwater discharge at the upriver boundary. The model was validated against the observed water levels for three typhoon events. The simulation results for the model were in reasonable agreement with the observational data. The model was then applied to investigate the effects of a storm surge, freshwater discharge, and a storm surge combined with freshwater discharge during an extreme typhoon event. The super Typhoon Haiyan (2013 was artificially shifted to hit Taiwan: the modeling results showed that the inundation area and depth would cause severe overbank flow and coastal flooding for a 200 year return period flow. A high-resolution grid model is essential for the accurate simulation of storm surges and inundation.

  20. Visualizing uncertainties in a storm surge ensemble data assimilation and forecasting system

    KAUST Repository

    Hollt, Thomas

    2015-01-15

    We present a novel integrated visualization system that enables the interactive visual analysis of ensemble simulations and estimates of the sea surface height and other model variables that are used for storm surge prediction. Coastal inundation, caused by hurricanes and tropical storms, poses large risks for today\\'s societies. High-fidelity numerical models of water levels driven by hurricane-force winds are required to predict these events, posing a challenging computational problem, and even though computational models continue to improve, uncertainties in storm surge forecasts are inevitable. Today, this uncertainty is often exposed to the user by running the simulation many times with different parameters or inputs following a Monte-Carlo framework in which uncertainties are represented as stochastic quantities. This results in multidimensional, multivariate and multivalued data, so-called ensemble data. While the resulting datasets are very comprehensive, they are also huge in size and thus hard to visualize and interpret. In this paper, we tackle this problem by means of an interactive and integrated visual analysis system. By harnessing the power of modern graphics processing units for visualization as well as computation, our system allows the user to browse through the simulation ensembles in real time, view specific parameter settings or simulation models and move between different spatial and temporal regions without delay. In addition, our system provides advanced visualizations to highlight the uncertainty or show the complete distribution of the simulations at user-defined positions over the complete time series of the prediction. We highlight the benefits of our system by presenting its application in a real-world scenario using a simulation of Hurricane Ike.

  1. Estimating Areas of Vulnerability: Sea Level Rise and Storm Surge Hazards in the National Parks

    Science.gov (United States)

    Caffrey, M.; Beavers, R. L.; Slayton, I. A.

    2013-12-01

    The University of Colorado Boulder in collaboration with the National Park Service has undertaken the task of compiling sea level change and storm surge data for 105 coastal parks. The aim of our research is to highlight areas of the park system that are at increased risk of rapid inundation as well as periodic flooding due to sea level rise and storms. This research will assist park managers and planners in adapting to climate change. The National Park Service incorporates climate change data into many of their planning documents and is willing to implement innovative coastal adaptation strategies. Events such as Hurricane Sandy highlight how impacts of coastal hazards will continue to challenge management of natural and cultural resources and infrastructure along our coastlines. This poster will discuss the current status of this project. We discuss the impacts of Hurricane Sandy as well as the latest sea level rise and storm surge modeling being employed in this project. In addition to evaluating various drivers of relative sea-level change, we discuss how park planners and managers also need to consider projected storm surge values added to sea-level rise magnitudes, which could further complicate the management of coastal lands. Storm surges occurring at coastal parks will continue to change the land and seascapes of these areas, with the potential to completely submerge them. The likelihood of increased storm intensity added to increasing rates of sea-level rise make predicting the reach of future storm surges essential for planning and adaptation purposes. The National Park Service plays a leading role in developing innovative strategies for coastal parks to adapt to sea-level rise and storm surge, whilst coastal storms are opportunities to apply highly focused responses.

  2. Effects of cluster land reclamation projects on storm surge in Jiaojiang Estuary, China

    Directory of Open Access Journals (Sweden)

    Zhi-lin Sun

    2017-01-01

    Full Text Available Variations in coastline geometry caused by coastal engineering affect tides, storm surges, and storm tides. Three cluster land reclamation projects have been planned for construction in the Jiaojiang Estuary during the period from 2011 to 2023. They will cause significant changes in coastline geometry. In this study, a surge-tide coupled model was established based on a three-dimensional finite-volume coastal ocean model (FVCOM. A series of numerical experiments were carried out to investigate the effects of variations in coastline geometry on tides, storm surges, and storm tides. This model was calibrated using data observed at the Haimen and Ruian gauge stations and then used to reproduce the tides, storm surges, and storm tides in the Jiaojiang Estuary caused by Typhoon Winnie in 1997. Results show that the high tide level, peak storm surge, and high storm tide level at the Haimen Gauge Station increased along with the completion of reclamation projects, and the maximum increments caused by the third project were 0.13 m, 0.50 m, and 0.43 m, respectively. The envelopes with maximum storm tide levels of 7.0 m and 8.0 m inside the river mouth appeared to move seaward, with the latter shifting 1.8 km, 3.3 km, and 4.4 km due to the first project, second project, and third project, respectively. The results achieved in this study contribute to reducing the effects of, and preventing storm disasters after the land reclamation in the Jiaojiang Estuary.

  3. Potential Hydrodynamic Loads on Coastal Bridges in the Greater New York Area due to Extreme Storm Surge and Wave

    Science.gov (United States)

    2018-04-18

    This project makes a computer modeling study on vulnerability of coastal bridges in New York City (NYC) metropolitan region to storm surges and waves. Prediction is made for potential surges and waves in the region and consequent hydrodynamic load an...

  4. The Use of a Statistical Model of Storm Surge as a Bias Correction for Dynamical Surge Models and its Applicability along the U.S. East Coast

    Directory of Open Access Journals (Sweden)

    Haydee Salmun

    2015-02-01

    Full Text Available The present study extends the applicability of a statistical model for prediction of storm surge originally developed for The Battery, NY in two ways: I. the statistical model is used as a biascorrection for operationally produced dynamical surge forecasts, and II. the statistical model is applied to the region of the east coast of the U.S. susceptible to winter extratropical storms. The statistical prediction is based on a regression relation between the “storm maximum” storm surge and the storm composite significant wave height predicted ata nearby location. The use of the statistical surge prediction as an alternative bias correction for the National Oceanic and Atmospheric Administration (NOAA operational storm surge forecasts is shownhere to be statistically equivalent to the existing bias correctiontechnique and potentially applicable for much longer forecast lead times as well as for storm surge climate prediction. Applying the statistical model to locations along the east coast shows that the regression relation can be “trained” with data from tide gauge measurements and near-shore buoys along the coast from North Carolina to Maine, and that it provides accurate estimates of storm surge.

  5. Assessment of storm surge disaster potential for the Andaman Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, V.S.; RameshBabu, V.; Babu, M.T.; Dhinakaran, G.; Rajamanickam, G.V.

    . Supporting volume 1: math- ematical modelling of cyclone surge and related flooding. In: Cy- clone Damage in Bangladesh. United Nations Centre for Regional Development, pp. 9–37. DHI (Danish Hydraulic Institute), 2002. MIKE 21 Coastal Hydrau- lics...

  6. Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam

    OpenAIRE

    Neumann, James; Ludwig, Lindsay; Verly, Caroleen; Emanuel, Kerry Andrew; Ravela, Srinivas

    2015-01-01

    This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam an area already known to be highly vulnerable to coastal risks. By combining a range of sea level rise scenarios for 2050 with the simulated storm surge level for the 100-year storm surge, we analyze permanently inundated lands and temporary flood zones. As is well-established in the literature, sea level rise will increase the risk of storms by raising the base sea level from which surg...

  7. On the Response of Interleaved Transformer Windings to Surge Voltages

    DEFF Research Database (Denmark)

    Pedersen, A.

    1963-01-01

    The high series capacitance theory for the response of interleaved transformer windings to surge voltages is criticized from the point of view that an increased series capacitance as a result of interleaving is incompatible with the concept of a pure capacitive initial voltage distribution. A new...

  8. Storm surges-An option for Hamburg, Germany, to mitigate expected future aggravation of risk

    International Nuclear Information System (INIS)

    Storch, Hans von; Goennert, Gabriele; Meine, Manfred

    2008-01-01

    Summary: Rising sea level together with regionally increased storm activity, caused by elevated and increasing levels of greenhouse gases in the atmosphere will in many parts of the world increase the risk of storm surges significantly. Reducing the emissions of greenhouse gases into the atmosphere may mitigate the increasing risks somewhat, but the major task for regional and local stakeholders will be to prepare for appropriate adaptation. In most cases, possible strategies include intensification of coastal defense measures, in particular strengthening dykes, and adaptation to intermittent flooding. In case of Hamburg and the tidal Elbe river a third option seems to be available, which aims at mitigating storm surge risks by applying estuary engineering constructions. This option is sketched in this paper. The option has the potential to significantly reduce the expected future increases of local surge heights

  9. Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    James E. Neumann

    2015-05-01

    Full Text Available This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam. Permanently inundated lands and temporary flood zones are analyzed by combining sea level rise scenarios for 2050 with simulated storm surge levels for the 100-year event. Our analysis finds that sea level rise through 2050 could increase the effective frequency of the current 100-year storm surge, which is associated with a storm surge of roughly five meters, to once every 49 years. Approximately 10% of the Hanoi region’s GDP is vulnerable to permanent inundation due to sea level rise, and more than 40% is vulnerable to periodic storm surge damage consistent with the current 100-year storm. We conclude that coastal adaptation measures, such as a planned retreat from the sea, and construction of a more substantial seawall and dike system, are needed to respond to these threats.

  10. Storm surge evolution and its relationship to climate oscillations at Duck, NC

    Science.gov (United States)

    Munroe, Robert; Curtis, Scott

    2017-07-01

    Coastal communities experience increased vulnerability during storm surge events through the risk of damage to coastal infrastructure, erosion/deposition, and the endangerment of human life. Policy and planning measures attempt to avoid or mitigate storm surge consequences through building codes and setbacks, beach stabilization, insurance rates, and coastal zoning. The coastal emergency management community and public react and respond on shorter time scales, through temporary protection, emergency stockpiling, and evacuation. This study utilizes time series analysis, the Kolmogorov-Smirnov (K-S) test, Pearson's correlation, and the generalized extreme value (GEV) theorem to make the connection between climate oscillation indices and storm surge characteristics intra-seasonally to inter-annually. Results indicate that an El Niño (+ENSO), negative phase of the NAO, and positive phase of the PNA pattern all support longer duration and hence more powerful surge events, especially in winter. Increased surge duration increases the likelihood of extensive erosion, inland inundation, among other undesirable effects of the surge hazard.

  11. Zonal wind observations during a geomagnetic storm

    Science.gov (United States)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  12. Predicting the Storm Surge Threat of Hurricane Sandy with the National Weather Service SLOSH Model

    Directory of Open Access Journals (Sweden)

    Cristina Forbes

    2014-05-01

    Full Text Available Numerical simulations of the storm tide that flooded the US Atlantic coastline during Hurricane Sandy (2012 are carried out using the National Weather Service (NWS Sea Lakes and Overland Surges from Hurricanes (SLOSH storm surge prediction model to quantify its ability to replicate the height, timing, evolution and extent of the water that was driven ashore by this large, destructive storm. Recent upgrades to the numerical model, including the incorporation of astronomical tides, are described and simulations with and without these upgrades are contrasted to assess their contributions to the increase in forecast accuracy. It is shown, through comprehensive verifications of SLOSH simulation results against peak water surface elevations measured at the National Oceanic and Atmospheric Administration (NOAA tide gauge stations, by storm surge sensors deployed and hundreds of high water marks collected by the U.S. Geological Survey (USGS, that the SLOSH-simulated water levels at 71% (89% of the data measurement locations have less than 20% (30% relative error. The RMS error between observed and modeled peak water levels is 0.47 m. In addition, the model’s extreme computational efficiency enables it to run large, automated ensembles of predictions in real-time to account for the high variability that can occur in tropical cyclone forecasts, thus furnishing a range of values for the predicted storm surge and inundation threat.

  13. Beyond Traditional Extreme Value Theory Through a Metastatistical Approach: Lessons Learned from Precipitation, Hurricanes, and Storm Surges

    Science.gov (United States)

    Marani, M.; Zorzetto, E.; Hosseini, S. R.; Miniussi, A.; Scaioni, M.

    2017-12-01

    The Generalized Extreme Value (GEV) distribution is widely adopted irrespective of the properties of the stochastic process generating the extreme events. However, GEV presents several limitations, both theoretical (asymptotic validity for a large number of events/year or hypothesis of Poisson occurrences of Generalized Pareto events), and practical (fitting uses just yearly maxima or a few values above a high threshold). Here we describe the Metastatistical Extreme Value Distribution (MEVD, Marani & Ignaccolo, 2015), which relaxes asymptotic or Poisson/GPD assumptions and makes use of all available observations. We then illustrate the flexibility of the MEVD by applying it to daily precipitation, hurricane intensity, and storm surge magnitude. Application to daily rainfall from a global raingauge network shows that MEVD estimates are 50% more accurate than those from GEV when the recurrence interval of interest is much greater than the observational period. This makes MEVD suited for application to satellite rainfall observations ( 20 yrs length). Use of MEVD on TRMM data yields extreme event patterns that are in better agreement with surface observations than corresponding GEV estimates.Applied to the HURDAT2 Atlantic hurricane intensity dataset, MEVD significantly outperforms GEV estimates of extreme hurricanes. Interestingly, the Generalized Pareto distribution used for "ordinary" hurricane intensity points to the existence of a maximum limit wind speed that is significantly smaller than corresponding physically-based estimates. Finally, we applied the MEVD approach to water levels generated by tidal fluctuations and storm surges at a set of coastal sites spanning different storm-surge regimes. MEVD yields accurate estimates of large quantiles and inferences on tail thickness (fat vs. thin) of the underlying distribution of "ordinary" surges. In summary, the MEVD approach presents a number of theoretical and practical advantages, and outperforms traditional

  14. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  15. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita

    Science.gov (United States)

    Rego, JoãO. L.; Li, Chunyan

    2010-06-01

    This study applied the finite volume coastal ocean model (FVCOM) to the storm surge induced by Hurricane Rita along the Louisiana-Texas coast. The model was calibrated for tides and validated with observed water levels. Peak water levels were shown to be lower than expected for a landfall at high tide. For low- and high-tide landfalls, nonlinear effects due to tide-surge coupling were constructive and destructive to total storm tide, respectively, and their magnitude reached up to 70% of the tidal amplitude in the Rita application. Tide-surge interaction was further examined using a standard hurricane under idealized scenarios to evaluate the effects of various shelf geometries, tides, and landfall timings (relative to tide). Nonlinearity was important between landfall position and locations within 2.5 × radius of maximum winds. On an idealized wide continental shelf, nonlinear effects reached up to 80% of the tidal amplitude with an S2 tide and up to 47% with a K1 tide. Increasing average depths by 4 m reduced nonlinear effects to 41% of the tidal amplitude; increasing the slope by a factor of 3 produced nonlinearities of just 26% of tide (both with a K1 tide). The nonlinear effect was greatest for landfalls at low tide, followed by landfalls at high tide and then by landfalls at midebb or midflood.

  16. The effect of wave current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989

    Science.gov (United States)

    Xie, Lian; Liu, Huiqing; Peng, Machuan

    The effects of wave-current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave-current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.

  17. Storm Surge Reconstruction and Return Water Level Estimation in Southeast Asia for the 20th Century

    NARCIS (Netherlands)

    Cid, Alba; Wahl, Thomas; Chambers, Don P.; Muis, Sanne

    2018-01-01

    We present a methodology to reconstruct the daily maximum storm surge levels, obtained from tide gauges, based on the surrounding atmospheric conditions from an atmospheric reanalysis (20th Century Reanalysis-20CR). Tide gauge records in Southeast Asia are relatively short, so this area is often

  18. Building with Nature: in search of resilient storm surge protection strategies

    NARCIS (Netherlands)

    Slobbe, van E.J.J.; Vriend, de H.J.; Aarninkhof, S.G.J.; Lulofs, K.; Vries, de M.; Dircke, P.

    2013-01-01

    Low-lying, densely populated coastal areas worldwide are under threat, requiring coastal managers to develop new strategies to cope with land subsidence, sea-level rise and the increasing risk of storm-surge-induced floods. Traditional engineering approaches optimizing for safety are often

  19. Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation

    NARCIS (Netherlands)

    Altaf, M.U.; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, I.

    2013-01-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H? filter. By design, an H? filter is more robust than the common Kalman filter in the sense

  20. Ebb-tidal delta morphology in response to a storm surge barrier

    NARCIS (Netherlands)

    Eelkema, M.; Wang, Z.B.; Hibma, A.

    2012-01-01

    The Eastern Scheldt ebb-tidal delta morphology has been adapting for the past 25 years in response to the construction of the Eastern Scheldt storm-surge barrier in 1986. As a result of the barrier, there has been a decrease in tidal amplitudes, volumes, and average flow velocities, and there is

  1. Influence of Closing Storm Surge Barrier on Extreme Water Levels and Water Exchange; The Limfjord, Denmark

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Bentzen, Thomas Ruby; Larsen, Torben

    2014-01-01

    the increased risk of flooding in the estuary has revitalized the discussion whether this connection should be closed. In this paper, it is shown by numerical simulation that the establishment of a storm surge barrier across Thyborøn Channel can significantly reduce the peak water levels in the central...

  2. Parameter sensitivity and uncertainty analysis for a storm surge and wave model

    Directory of Open Access Journals (Sweden)

    L. A. Bastidas

    2016-09-01

    Full Text Available Development and simulation of synthetic hurricane tracks is a common methodology used to estimate hurricane hazards in the absence of empirical coastal surge and wave observations. Such methods typically rely on numerical models to translate stochastically generated hurricane wind and pressure forcing into coastal surge and wave estimates. The model output uncertainty associated with selection of appropriate model parameters must therefore be addressed. The computational overburden of probabilistic surge hazard estimates is exacerbated by the high dimensionality of numerical surge and wave models. We present a model parameter sensitivity analysis of the Delft3D model for the simulation of hazards posed by Hurricane Bob (1991 utilizing three theoretical wind distributions (NWS23, modified Rankine, and Holland. The sensitive model parameters (of 11 total considered include wind drag, the depth-induced breaking γB, and the bottom roughness. Several parameters show no sensitivity (threshold depth, eddy viscosity, wave triad parameters, and depth-induced breaking αB and can therefore be excluded to reduce the computational overburden of probabilistic surge hazard estimates. The sensitive model parameters also demonstrate a large number of interactions between parameters and a nonlinear model response. While model outputs showed sensitivity to several parameters, the ability of these parameters to act as tuning parameters for calibration is somewhat limited as proper model calibration is strongly reliant on accurate wind and pressure forcing data. A comparison of the model performance with forcings from the different wind models is also presented.

  3. Storm Surge and Wave Impact of Low-Probability Hurricanes on the Lower Delaware Bay—Calibration and Application

    Directory of Open Access Journals (Sweden)

    Mehrdad Salehi

    2018-05-01

    Full Text Available Hurricanes pose major threats to coastal communities and sensitive infrastructure, including nuclear power plants, located in the vicinity of hurricane-prone coastal regions. This study focuses on evaluating the storm surge and wave impact of low-probability hurricanes on the lower Delaware Bay using the Delft3D dynamically coupled wave and flow model. The model comprised Overall and Nested domains. The Overall model domain encompassed portions of the Atlantic Ocean, Delaware Bay, and Chesapeake Bay. The two-level Nested model domains encompassed the Delaware Estuary, its floodplain, and a portion of the continental shelf. Low-probability hurricanes are critical considerations in designing and licensing of new nuclear power plants as well as in establishing mitigating strategies for existing power facilities and other infrastructure types. The philosophy behind low-probability hurricane modeling is to establish reasonable water surface elevation and wave characteristics that have very low to no probability of being exceeded in the region. The area of interest (AOI is located on the west bank of Delaware Bay, almost 16 miles upstream of its mouth. The model was first calibrated for Hurricane Isabel (2003 and then applied to synthetic hurricanes with very low probability of occurrence to establish the storm surge envelope at the AOI. The model calibration results agreed reasonably well with field observations of water surface elevation, wind velocity, wave height, and wave period. A range of meteorological, storm track direction, and storm bearing parameters that produce the highest sustained wind speeds were estimated using the National Weather Service (NWS methodology and applied to the model. Simulations resulted in a maximum stillwater elevation and wave height of 7.5 m NAVD88 and 2.5 m, respectively, at the AOI. Comparison of results with the U.S. Army Corps of Engineers, North Atlantic Coastal Comprehensive Study (USACE-NACCS storm surge

  4. Catastrophe loss modelling of storm-surge flood risk in eastern England.

    Science.gov (United States)

    Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom

    2005-06-15

    Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.

  5. Simulating storm surge inundation and damage potential within complex port facilities

    Science.gov (United States)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular

  6. Observing storm surges in the Bay of Bengal from satellite altimetry

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, C.; Testut, L.; Unnikrishnan, A.S.

    with the large tidal ranges give rise to extreme sea level in the head bay and surrounding regions. Moreover, low-lying nature of the coast and the dense population in the region make the coasts of the northern Bay of Bengal highly vulnerable to storm surges...-gauge data during the passage of the hurricane Igor that crossed Newfoundland in 2010. For this event, St. John’s tide gauge recorded a maximum surge of 94 cm and Jason-2 (the track located 89 km away from the tide-gauge station) showed positive sea-level...

  7. Coastal flooding: impact of waves on storm surge during extremes – a case study for the German Bight

    Directory of Open Access Journals (Sweden)

    J. Staneva

    2016-11-01

    Full Text Available This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. A coupled high-resolution modelling system is used to simulate wind waves, the water level and the three-dimensional hydrodynamics. The models used are the wave model WAM and the circulation model GETM. The two-way coupling is performed via the OASIS3-MCT coupler. The effects of wind waves on sea level variability are studied, accounting for wave-dependent stress, wave-breaking parameterization and wave-induced effects on vertical mixing. The analyses of the coupled model results reveal a closer match with observations than for the stand-alone circulation model, especially during the extreme storm Xaver in December 2013. The predicted surge of the coupled model is significantly enhanced during extreme storm events when considering wave–current interaction processes. This wave-dependent approach yields a contribution of more than 30 % in some coastal areas during extreme storm events. The contribution of a fully three-dimensional model compared with a two-dimensional barotropic model showed up to 20 % differences in the water level of the coastal areas of the German Bight during Xaver. The improved skill resulting from the new developments justifies further use of the coupled-wave and three-dimensional circulation models in coastal flooding predictions.

  8. Prior storm experience moderates water surge perception and risk.

    Directory of Open Access Journals (Sweden)

    Gregory D Webster

    Full Text Available BACKGROUND: How accurately do people perceive extreme water speeds and how does their perception affect perceived risk? Prior research has focused on the characteristics of moving water that can reduce human stability or balance. The current research presents the first experiment on people's perceptions of risk and moving water at different speeds and depths. METHODS: Using a randomized within-person 2 (water depth: 0.45, 0.90 m ×3 (water speed: 0.4, 0.8, 1.2 m/s experiment, we immersed 76 people in moving water and asked them to estimate water speed and the risk they felt. RESULTS: Multilevel modeling showed that people increasingly overestimated water speeds as actual water speeds increased or as water depth increased. Water speed perceptions mediated the direct positive relationship between actual water speeds and perceptions of risk; the faster the moving water, the greater the perceived risk. Participants' prior experience with rip currents and tropical cyclones moderated the strength of the actual-perceived water speed relationship; consequently, mediation was stronger for people who had experienced no rip currents or fewer storms. CONCLUSIONS: These findings provide a clearer understanding of water speed and risk perception, which may help communicate the risks associated with anticipated floods and tropical cyclones.

  9. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad

    2013-08-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  10. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, Ibrahim

    2013-01-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  11. Typhoon Haiyan-Induced Storm Surge Simulation in Metro Manila Using High-Resolution LiDAR Topographic Data

    Science.gov (United States)

    Santiago, J. T.

    2015-12-01

    Storm surge is the abnormal rise in sea water over and above astronomical tides due to a forthcoming storm. Developing an early warning system for storm surges is vital due to the high level of hazard they might cause. On 08 November 2013, Typhoon Haiyan generated storm surges that killed over 6,000 people in the central part of the Philippines. The Nationwide Operational Assessment of Hazards under the Department of Science and Technology was tasked to create storm surge hazard maps for the country's coastal areas. The research project aims to generate storm surge hazard maps that can be used for disaster mitigation and planning. As part of the research, the team explored a scenario wherein a tropical cyclone hits the Metro Manila with strength as strong as Typhoon Haiyan. The area was chosen primarily for its political, economic and cultural significance as the country's capital. Using Japan Meteorological Agency Storm Surge model, FLO2D flooding software, LiDAR topographic data, and GIS technology, the effects of a Haiyan-induced tropical cyclone passing through Metro Manila was examined. The population affected, number of affected critical facilities, and potential evacuation sites were identified. The outputs of this study can be used by the authorities as basis for policies that involve disaster risk reduction and management.

  12. A Tsunami Ball Approach to Storm Surge and Inundation: Application to Hurricane Katrina, 2005

    Directory of Open Access Journals (Sweden)

    Steven N. Ward

    2009-01-01

    Full Text Available Most analyses of storm surge and inundation solve equations of continuity and momentum on fixed finite-difference/finite-element meshes. I develop a completely new approach that uses a momentum equation to accelerate bits or balls of water over variable depth topography. The thickness of the water column at any point equals the volume density of balls there. In addition to being more intuitive than traditional methods, the tsunami ball approach has several advantages. (a By tracking water balls of fixed volume, the continuity equation is satisfied automatically and the advection term in the momentum equation becomes unnecessary. (b The procedure is meshless in the finite-difference/finite-element sense. (c Tsunami balls care little if they find themselves in the ocean or inundating land. (d Tsunami ball calculations of storm surge can be done on a laptop computer. I demonstrate and calibrate the method by simulating storm surge and inundation around New Orleans, Louisiana caused by Hurricane Katrina in 2005 and by comparing model predictions with field observations. To illustrate the flexibility of the tsunami ball technique, I run two “What If” hurricane scenarios—Katrina over Savannah, Georgia and Katrina over Cape Cod, Massachusetts.

  13. Determining Storm Surge Return Periods: The Use of Evidence of Historic Events

    DEFF Research Database (Denmark)

    Madsen, Kristine S.; Sørensen, Carlo Sass; Schmith, Torben

    for tide gauge measurements, with 120 years of data available for the calculations. However, the oldest of these tide gauge stations was set up after a major storm surge in 1872, and no events of similar severity have occurred since. Including the evidence of the historic events from the 18th century...... changes the return period statistics, with a best estimate of a 100 year event changing from 1.5 meters (Sørensen et al. 2013) to 2.6 [2.2 – 2.8] meters (present study) in Køge just south of Copenhagen. Thus, with the tide gauge-based statistics, the storm surge on January 4 2017 was a 100 year event......, but with the revised statistics using historic evidence, much larger events can be expected. Further, we assess the very large impact of sea level rise on the storm surge statistics. As an example, according to the official statistics of southern Copenhagen, the flooding of a present day 100 year event...

  14. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress

    Science.gov (United States)

    Brown, Jennifer M.; Wolf, Judith

    2009-05-01

    We revisit the surge of November 1977, a storm event which caused damage on the Sefton coast in NW England. A hindcast has been made with a coupled surge-tide-wave model, to investigate whether a wave-dependent surface drag is necessary for accurate surge prediction, and also if this can be represented by an optimised Charnock parameter. The Proudman Oceanographic Laboratory Coastal Modelling System-Wave Model (POLCOMS-WAM) has been used to model combined tides, surges, waves and wave-current interaction in the Irish Sea on a 1.85 km grid. This period has been previously thoroughly studied, e.g. Jones and Davies [Jones, J.E., Davies, A.M., 1998. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave-current interaction. Continental Shelf Research 18(2), 201-251] and we build upon this previous work to validate the POLCOMS-WAM model to test the accuracy of surge elevation predictions in the study area. A one-way nested approach has been set up from larger scale models to the Irish Sea model. It was demonstrated that (as expected) swell from the North Atlantic does not have a significant impact in the eastern Irish Sea. To capture the external surge generated outside of the Irish Sea a (1/9° by 1/6°) model extending beyond the continental shelf edge was run using the POLCOMS model for tide and surge. The model results were compared with tide gauge observations around the eastern Irish Sea. The model was tested with different wind-stress formulations including Smith and Banke [Smith, S.D., Banke, E.G., 1975. Variation of the surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorology Society, 101(429), 665-673] and Charnock [Charnock, H., 1955. Wind-stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350), 639-640]. In order to get a single parameterisation that works with wave-coupling, the wave-derived surface roughness length has been imposed in the surge model

  15. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  16. Application of SWAN+ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot's Day storm

    Directory of Open Access Journals (Sweden)

    Dong-mei Xie

    2016-01-01

    Full Text Available The southern coast of the Gulf of Maine in the United States is prone to flooding caused by nor'easters. A state-of-the-art fully-coupled model, the Simulating WAves Nearshore (SWAN model with unstructured grids and the ADvanced CIRCulation (ADCIRC model, was used to study the hydrodynamic response in the Gulf of Maine during the Patriot's Day storm of 2007, a notable example of nor'easters in this area. The model predictions agree well with the observed tide-surges and waves during this storm event. Waves and circulation in the Gulf of Maine were analyzed. The Georges Bank plays an important role in dissipating wave energy through the bottom friction when waves propagate over the bank from offshore to the inner gulf due to its shallow bathymetry. Wave energy dissipation results in decreasing significant wave height (SWH in the cross-bank direction and wave radiation stress gradient, which in turn induces changes in currents. While the tidal currents are dominant over the Georges Bank and in the Bay of Fundy, the residual currents generated by the meteorological forcing and waves are significant over the Georges Bank and in the coastal area and can reach 0.3 m/s and 0.2 m/s, respectively. In the vicinity of the coast, the longshore current generated by the surface wind stress and wave radiation stress acting parallel to the coastline is inversely proportional to the water depth and will eventually be limited by the bottom friction. The storm surge level reaches 0.8 m along the western periphery of the Gulf of Maine while the wave set-up due to radiation stress variation reaches 0.2 m. Therefore, it is significant to coastal flooding.

  17. A probabilistic approach for assessing the vulnerability of transportation infrastructure to flooding from sea level rise and storm surge.

    Science.gov (United States)

    Douglas, E. M.; Kirshen, P. H.; Bosma, K.; Watson, C.; Miller, S.; McArthur, K.

    2015-12-01

    There now exists a plethora of information attesting to the reality of our changing climate and its impacts on both human and natural systems. There also exists a growing literature linking climate change impacts and transportation infrastructure (highways, bridges, tunnels, railway, shipping ports, etc.) which largely agrees that the nation's transportation systems are vulnerable. To assess this vulnerability along the coast, flooding due to sea level rise and storm surge has most commonly been evaluated by simply increasing the water surface elevation and then estimating flood depth by comparing the new water surface elevation with the topographic elevations of the land surface. While this rudimentary "bathtub" approach may provide a first order identification of potential areas of vulnerability, accurate assessment requires a high resolution, physically-based hydrodynamic model that can simulate inundation due to the combined effects of sea level rise, storm surge, tides and wave action for site-specific locations. Furthermore, neither the "bathtub" approach nor other scenario-based approaches can quantify the probability of flooding due to these impacts. We developed a high resolution coupled ocean circulation-wave model (ADCIRC/SWAN) that utilizes a Monte Carlo approach for predicting the depths and associated exceedance probabilities of flooding due to both tropical (hurricanes) and extra-tropical storms under current and future climate conditions. This required the development of an entirely new database of meteorological forcing (e.g. pressure, wind speed, etc.) for historical Nor'easters in the North Atlantic basin. Flooding due to hurricanes and Nor'easters was simulated separately and then composite flood probability distributions were developed. Model results were used to assess the vulnerability of the Central Artery/Tunnel system in Boston, Massachusetts to coastal flooding now and in the future. Local and regional adaptation strategies were

  18. Assessing and Mitigating Hurricane Storm Surge Risk in a Changing Environment

    Science.gov (United States)

    Lin, N.; Shullman, E.; Xian, S.; Feng, K.

    2017-12-01

    Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).

  19. Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, Matthew V.; Hagen, S.C.; Alizad, K.A.; Medeiros, S.C.; Passeri, Davina L.; Needham, H.F.; Cox, A.

    2016-01-01

    This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static (“bathtub”) modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.

  20. Purple pitcher plant (Sarracenia rosea Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    Directory of Open Access Journals (Sweden)

    Matthew J Abbott

    Full Text Available Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment. There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  1. Solar Wind Charge Exchange During Geomagnetic Storms

    Science.gov (United States)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  2. Numerical Modeling of Coastal Inundation and Sedimentation by Storm Surge, Tides, and Waves at Norfolk, Virginia, USA

    Science.gov (United States)

    2012-07-01

    hurricanes (tropical) with a 50-year and a 100-year return period, and one winter storm ( extratropical ) occurred in October 1982. There are a total of 15...under the 0-m and 2-m SLR scenarios, respectively. • Tropical and extratropical storms induce extensive coastal inundation around the military...1 NUMERICAL MODELING OF COASTAL INUNDATION AND SEDIMENTATION BY STORM SURGE, TIDES, AND WAVES AT NORFOLK, VIRGINIA, USA Honghai Li 1 , Lihwa Lin 1

  3. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    Science.gov (United States)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  4. Numerical Analysis of Storm Surge and Seiche at Tokyo Bay caused by the 2 Similar Typhoons, Typhoon Phanphon and Vongfong in 2014

    Science.gov (United States)

    Iwamoto, T.; Takagawa, T.

    2017-12-01

    A long period damped oscillation, or seiche, sometimes happens inside a harbor after passing typhoon. For some cases, a maximum sea level is observed due to the superposition of astronomical tide and seiche rather than a peak of storm surge. Hence to clarify seiche factors for reducing disaster potential is important, a long-period seiche with a fundamental period of 5.46 hours in Tokyo Bay (Konishi, 2008) was investigated through numerical simulations and analyses. We examined the case of Typhoon Phanphon and Vongfong in 2014 (Hereafter Case P and V). The intensity and moving velocity were similar and the best-tracks were an arc-shaped, typical one approaching to Tokyo Bay. The track of Case V was about 1.5 degree higher latitude than that of Case P, only Typhoon Phanphon caused significant seiche.Firstly, numerical simulations for the 2 storm surges at Tokyo Bay were conducted by Regional Ocean Modeling System (ROMS) and Meso-Scale Model Grid Point Values (MSM-GPV). MSM-GPV gave the 10m wind speed and Sea Level Pressure (SLP), especially the Mean Error (ME) and Root Mean Squire Error (RMSE) of SLP were low compared to the 12 JMA observation points data (Case P: ME -0.303hPa, RMSE 1.87hPa, Case V: ME -0.285hPa, RMSE 0.74hPa). The computational results showed that the maximum of storm surge was underestimated but the difference was less than 20cm at 5 observation points in Tokyo Bay(Fig.1, 2).Then, power spectrals, coherences and phase differences of storm surges at the 5 observation points were obtained by spectral analysis of observed and simulated waveforms. For Case P, the phase-difference between the bay mouth and innermost part of Tokyo Bay was little, and coherence was almost 1(Fig.3, 4). However, for Case V, coherence was small around the fundamental period of 5.46 hours. Furthermore, Empirical Orthogonal Function (EOF) analysis of storm surge, SLP and sea surface stress were conducted. The contributions of EOF1 were above 90% for the all variables, the

  5. Hurricane Matthew (2016) and its Storm Surge Inundation under Global Warming Scenarios: Application of an Interactively Coupled Atmosphere-Ocean Model

    Science.gov (United States)

    Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.

    2017-12-01

    An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the

  6. Increasing risk of compound flooding from storm surge and rainfall for major US coastal cities

    Science.gov (United States)

    Wahl, Thomas; Jain, Shaleen; Bender, Jens; Meyers, Steven; Luther, Mark

    2016-04-01

    Flood risk is a well-known facet of natural hazards along the US coastline where nearly 40% of the population resides in coastal counties. Given the heavy reliance on the coastal zone for natural resources and economic activity, flood preparedness and safety is a key element of long-term resilience. A clear understanding of the various flood types and changes in the frequency of their occurrence is critical towards reliable estimates of vulnerability and potential impacts in the near-term as well as into the future. When the two main flood drivers for coastal areas storm surge and heavy precipitation occur in tandem the potential for significant flooding is much greater than from either in isolation. Exploring the probability of these 'compound events' and understanding the processes driving them is essential to mitigate the associated high impact risks. For the contiguous US the likelihood of the joint occurrence of the two phenomena is largely unknown. Here we show - using storm surge and precipitation records spanning the last century - that the risk of compound flooding is higher for the US east and Gulf coasts, relative to the west coast. We also show that the number of compound events has increased significantly over the last century along large coastline stretches including many of the major coastal cities. For New York City - as an example - this increase is attributed to a shift towards storm surge weather patterns also favouring high precipitation. Preliminary analyses reveal that these synoptic scale changes are closely linked to large scale and low frequency climate variations. Our results demonstrate the importance of assessing the risk of compound flooding within the design process of coastal and urban infrastructure in a non-stationary framework and to explore the potential effects of climate change on these high impact events.

  7. Comparative risk assessments for the city of Pointe-à-Pitre (French West Indies): earthquakes and storm surge

    Science.gov (United States)

    Reveillere, A. R.; Bertil, D. B.; Douglas, J. D.; Grisanti, L. G.; Lecacheux, S. L.; Monfort, D. M.; Modaressi, H. M.; Müller, H. M.; Rohmer, J. R.; Sedan, O. S.

    2012-04-01

    In France, risk assessments for natural hazards are usually carried out separately and decision makers lack comprehensive information. Moreover, since the cause of the hazard (e.g. meteorological, geological) and the physical phenomenon that causes damage (e.g. inundation, ground shaking) may be fundamentally different, the quantitative comparison of single risk assessments that were not conducted in a compatible framework is not straightforward. Comprehensive comparative risk assessments exist in a few other countries. For instance, the Risk Map Germany project has developed and applied a methodology for quantitatively comparing the risk of relevant natural hazards at various scales (city, state) in Germany. The present on-going work applies a similar methodology to the Pointe-à-Pitre urban area, which represents more than half of the population of Guadeloupe, an overseas region in the French West Indies. Relevant hazards as well as hazard intensity levels differ from continental Europe, which will lead to different conclusions. French West Indies are prone to a large number of hazards, among which hurricanes, volcanic eruptions and earthquakes dominate. Hurricanes cause damage through three phenomena: wind, heavy rainfall and storm surge, the latter having had a preeminent role during the largest historical event in 1928. Seismic risk is characterized by many induced phenomena, among which earthquake shocks dominate. This study proposes a comparison of earthquake and cyclonic storm surge risks. Losses corresponding to hazard intensities having the same probability of occurrence are calculated. They are quantified in a common loss unit, chosen to be the direct economic losses. Intangible or indirect losses are not considered. The methodology therefore relies on (i) a probabilistic hazard assessment, (ii) a loss ratio estimation for the exposed elements and (iii) an economic estimation of these assets. Storm surge hazard assessment is based on the selection of

  8. Quantifying riverine and storm-surge flood risk by single-family residence: application to Texas.

    Science.gov (United States)

    Czajkowski, Jeffrey; Kunreuther, Howard; Michel-Kerjan, Erwann

    2013-12-01

    The development of catastrophe models in recent years allows for assessment of the flood hazard much more effectively than when the federally run National Flood Insurance Program (NFIP) was created in 1968. We propose and then demonstrate a methodological approach to determine pure premiums based on the entire distribution of possible flood events. We apply hazard, exposure, and vulnerability analyses to a sample of 300,000 single-family residences in two counties in Texas (Travis and Galveston) using state-of-the-art flood catastrophe models. Even in zones of similar flood risk classification by FEMA there is substantial variation in exposure between coastal and inland flood risk. For instance, homes in the designated moderate-risk X500/B zones in Galveston are exposed to a flood risk on average 2.5 times greater than residences in X500/B zones in Travis. The results also show very similar average annual loss (corrected for exposure) for a number of residences despite their being in different FEMA flood zones. We also find significant storm-surge exposure outside of the FEMA designated storm-surge risk zones. Taken together these findings highlight the importance of a microanalysis of flood exposure. The process of aggregating risk at a flood zone level-as currently undertaken by FEMA-provides a false sense of uniformity. As our analysis indicates, the technology to delineate the flood risks exists today. © 2013 Society for Risk Analysis.

  9. Erosion reasons and rate on accumulative Polish dune coast caused by the January 2012 storm surge

    Directory of Open Access Journals (Sweden)

    Tomasz A. Łabuz

    2014-03-01

    Full Text Available The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8. Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  10. An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate

    Directory of Open Access Journals (Sweden)

    A. Sterl

    2009-09-01

    Full Text Available The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.

  11. Assessing inundation hazards to nuclear powerplant sites using geologically extended histories of riverine floods, tsunamis, and storm surges

    Science.gov (United States)

    O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.

    2014-01-01

    Most nuclear powerplants in the United States are near rivers, large lakes, or oceans. As evident from the Fukushima Daiichi, Japan, disaster of 2011, these water bodies pose inundation threats. Geologic records can extend knowledge of rare hazards from flooding, storm surges, and tsunamis. This knowledge can aid in assessing the safety of critical structures such as dams and energy plants, for which even remotely possible hazards are pertinent. Quantitative analysis of inundation from geologic records perhaps is most developed for and applied to riverine flood hazards, but because of recent natural disasters, geologic investigations also are now used widely for understanding tsunami hazards and coastal storm surges.

  12. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge

    OpenAIRE

    Łabuz, Tomasz A.

    2014-01-01

    The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves at...

  13. A Storm Surge and Inundation Model of the Back River Watershed at NASA Langley Research Center

    Science.gov (United States)

    Loftis, Jon Derek; Wang, Harry V.; DeYoung, Russell J.

    2013-01-01

    This report on a Virginia Institute for Marine Science project demonstrates that the sub-grid modeling technology (now as part of Chesapeake Bay Inundation Prediction System, CIPS) can incorporate high-resolution Lidar measurements provided by NASA Langley Research Center into the sub-grid model framework to resolve detailed topographic features for use as a hydrological transport model for run-off simulations within NASA Langley and Langley Air Force Base. The rainfall over land accumulates in the ditches/channels resolved via the model sub-grid was tested to simulate the run-off induced by heavy precipitation. Possessing both the capabilities for storm surge and run-off simulations, the CIPS model was then applied to simulate real storm events starting with Hurricane Isabel in 2003. It will be shown that the model can generate highly accurate on-land inundation maps as demonstrated by excellent comparison of the Langley tidal gauge time series data (CAPABLE.larc.nasa.gov) and spatial patterns of real storm wrack line measurements with the model results simulated during Hurricanes Isabel (2003), Irene (2011), and a 2009 Nor'easter. With confidence built upon the model's performance, sea level rise scenarios from the ICCP (International Climate Change Partnership) were also included in the model scenario runs to simulate future inundation cases.

  14. Great Britain Storm Surge Modeling for a 10,000-Year Stochastic Catalog with the Effect of Sea Level Rise

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Blair, A.; Yablonsky, R. M.

    2017-12-01

    Storm surge caused by Extratropical Cyclones (ETCs) has significantly impacted not only the life of private citizens but also the insurance and reinsurance industry in Great Britain. The storm surge risk assessment requires a larger dataset of storms than the limited recorded historical ETCs. Thus, historical ETCs were perturbed to generate a 10,000-year stochastic catalog that accounts for surge-generating ETCs in the study area with return periods from one year to 10,000 years. Delft3D-Flexible Mesh hydrodynamic model was used to numerically simulate the storm surge along the Great Britain coastline. A nested grid technique was used to increase the simulation grid resolution up to 200 m near the highly populated coastal areas. Coarse and fine mesh models were calibrated and validated using historical recorded water elevations. Then, numerical simulations were performed on a 10,000-year stochastic catalog. The 50-, 100-, and 500-year return period maps were generated for Great Britain coastal areas. The corresponding events with return periods of 50-, 100-, and 500-years in Humber Bay and Thames River coastal areas were identified, and simulated with the consideration of projected sea level rises to reveal the effect of rising sea levels on the inundation return period maps in two highly-populated coastal areas. Finally, the return period of Storm Xaver (2013) was determined with and without the effect of rising sea levels.

  15. Joint projections of sea level and storm surge using a flood index

    Science.gov (United States)

    Little, C. M.; Lin, N.; Horton, R. M.; Kopp, R. E.; Oppenheimer, M.

    2016-02-01

    Capturing the joint influence of sea level rise (SLR) and tropical cyclones (TCs) on future coastal flood risk poses significant challenges. To address these difficulties, Little et al. (2015) use a proxy of tropical cyclone activity and a probabilistic flood index that aggregates flood height and duration over a wide area (the US East and Gulf coasts). This technique illuminates the individual impacts of TCs and SLR and their correlation across different coupled climate models. By 2080-2099, changes in the flood index relative to 1986-2005 are substantial and positively skewed: a 10th-90th percentile range of 35-350x higher for a high-end business-as-usual emissions scenario (see figure). This aggregated flood index: 1) is a means to consistently combine TC-driven storm surges and SLR; 2) provides a more robust description of historical surge-climate relationships than is available at any one location; and 3) allows the incorporation of a larger climate model ensemble - which is critical to uncertainty characterization. It does not provide a local view of the complete spectrum of flood severity (i.e. return curves). However, alternate techniques that provide localized return curves (e.g. Lin et al., 2012) are computationally intensive, limiting the set of large-scale climate models that can be incorporated, and require several linked statistical and dynamical models, each with structural uncertainties that are difficult to quantify. Here, we present the results of Little et al. (2015) along with: 1) alternate formulations of the flood index; 2) strategies to localize the flood index; and 3) a comparison of flood index projections to those provided by model-based return curves. We look to this interdisciplinary audience for feedback on the advantages and disadvantages of each tool for coastal planning and decision-making. Lin, N., K. Emanuel, M. Oppenheimer, and E. Vanmarcke, 2012: Physically based assessment of hurricane surge threat under climate change. Nature

  16. The Development of High-speed Full-function Storm Surge Model and the Case Study of 2013 Typhoon Haiyan

    Science.gov (United States)

    Tsai, Y. L.; Wu, T. R.; Lin, C. Y.; Chuang, M. H.; Lin, C. W.

    2016-02-01

    An ideal storm surge operational model should feature as: 1. Large computational domain which covers the complete typhoon life cycle. 2. Supporting both parametric and atmospheric models. 3. Capable of calculating inundation area for risk assessment. 4. Tides are included for accurate inundation simulation. Literature review shows that not many operational models reach the goals for the fast calculation, and most of the models have limited functions. In this paper, a well-developed COMCOT (COrnell Multi-grid Coupled of Tsunami Model) tsunami model is chosen as the kernel to establish a storm surge model which solves the nonlinear shallow water equations on both spherical and Cartesian coordinates directly. The complete evolution of storm surge including large-scale propagation and small-scale offshore run-up can be simulated by nested-grid scheme. The global tide model TPXO 7.2 established by Oregon State University is coupled to provide astronomical boundary conditions. The atmospheric model named WRF (Weather Research and Forecasting Model) is also coupled to provide metrological fields. The high-efficiency thin-film method is adopted to evaluate the storm surge inundation. Our in-house model has been optimized by OpenMp (Open Multi-Processing) with the performance which is 10 times faster than the original version and makes it an early-warning storm surge model. In this study, the thorough simulation of 2013 Typhoon Haiyan is performed. The detailed results will be presented in Oceanic Science Meeting of 2016 in terms of surge propagation and high-resolution inundation areas.

  17. Using 18th century storm-surge data from the Dutch Coast to improve the confidence in flood-risk estimates

    NARCIS (Netherlands)

    Baart, F.; Bakker, M.A.J.; Van Dongeren, A.; Den Heijer, C.; Van Heteren, S.; Smit, M.W.J.; Van Koningsveld, M.; Pool, A.

    2011-01-01

    For the design of cost-effective coastal defence a precise estimate is needed of the 1/10 000 per year storm surge. A more precise estimate requires more observations. Therefore, the three greatest storm surges that hit the northern part of the Holland Coast in the 18th century are reconstructed.

  18. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model : Model development and its application to 2007 Cyclone Sidr in Bangladesh

    NARCIS (Netherlands)

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro

    2017-01-01

    Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it

  19. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  20. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  1. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  2. Assessing economic impact of storm surge under projected sea level rise scenarios

    Science.gov (United States)

    Del Angel, D. C.; Yoskowitz, D.

    2017-12-01

    Global sea level is expected to rise 0.2-2m by the year 2100. Rising sea level is expected to have a number of impacts such as erosion, saltwater intrusion, and decline in coastal wetlands; all which have direct and indirect socio-economic impact to coastal communities. By 2050, 25% of the world's population will reside within flood-prone areas. These statistics raise a concern for the economic cost that sea level and flooding has on the growing coastal communities. Economic cost of storm surge inundation and rising seas may include loss or damage to public facilities and infrastructure that may become temporarily inaccessible, as well as disruptions to business and services. This goal of this project is to assess economic impacts of storms under four SLR scenarios including low, intermediate-low, intermediate-high, and high (0.2m, 0.5m, 1.2m and 2m, respectively) in the Northern Gulf of Mexico region. To assess flooding impact on communities from storm surge, this project utilizes HAZUS-MH software - a Geographic Information System (GIS)-based modeling tool developed by the Federal Emergency Management Agency - to estimate physical, economic, and social impacts of natural disasters such as floods, earthquakes and hurricanes. The HAZUS database comes integrated with aggregate and site specific inventory which includes: demographic data, general building stock, agricultural statistics, vehicle inventory, essential facilities, transportation systems, utility systems (among other sensitive facilities). User-defined inundation scenarios will serve to identify assets at risk and damage estimates will be generated using the Depth Damage Function included in the HAZUS software. Results will focus on 3 communities in the Gulf and highlight changes in storm flood impact. This approach not only provides a method for economic impact assessment but also begins to create a link between ecosystem services and natural and nature-based features such as wetlands, beaches and dunes

  3. Monitoring and simulation of salinity changes in response to tide and storm surges in a sandy coastal aquifer system

    NARCIS (Netherlands)

    Huizer, S.; Karaoulis, M.C.; Oude Essink, G.H.P.; Bierkens, M.F.P.

    Tidal dynamics and especially storm surges can have an extensive impact on coastal fresh groundwater resources. Combined with the prospect of sea-level rise and the reliance of many people on these resources, this demonstrates the need to assess the vulnerability of coastal areas to these threats.

  4. Tropical Cyclone Storm Surge Inundation and Velocity Hazard Mapping of the State of Andhra Pradesh (India) using ADCIRC

    Science.gov (United States)

    Brackins, J. T.; Kalyanapu, A. J.

    2017-12-01

    The Northern Indian Ocean Bay of Bengal region, including parts of India, Bangladesh, Myanmar, and Sri Lanka, is the largest bay in the world and is structured in such a manner as to produce the world's largest tropical cyclone (TC) storm surges (SS), with approximately five surge events greater than 5 meters in magnitude each decade. (Needham et al. 2015). Although some studies have been performed to attempt to capture the magnitude and location of historical surges (Shaji et al. 2014) and to model surges in the immediate sense, there is a notable lack of application to the effects on coastal infrastructure in these areas. Given that these areas are some of the most densely populated and least economically able to prepare and recover, it is important to consider the potential effects of storm surge to discover areas where improvements can be made with the limited resources available to these areas. To this end, an ADvanced-CIRCulation (ADCIRC) model (Luettich and Westerink 2004) was created for the Bay of Bengal, using the General Bathymetric Chart of the Oceans (GEBCO 2014) as bathymetric and topographic data, and a combination of the Joint Typhoon Warning Center (JTWC) and India Meteorological Department (IMD) records for storm tracks. For the state of Andhra Pradesh, several major TC events ranging from 1977 to 2014 were selected to be modeled with the goal of creating hazard maps of storm surge inundation and velocity for the state. These hazard maps would be used to identify high-vulnerability areas with the goal of implementing land-use planning and coastal development practices that will aid in ameliorating both the loss of life and economic damages sustained as a result of these TCs.

  5. Climate change and wind erosion by dust storms

    International Nuclear Information System (INIS)

    Wheaton, E.E.; Wittrock, V.

    1991-01-01

    Dust storms and their associated wind erosion are thought to be almost synonymous with drought. Dust storms have varying impacts including sandblasting and burying crops, wind erosion of soil, health effects and traffic accidents. A comparison of drought periods for southern Saskatchewan with dust storm frequencies for the period 1977-1988 revealed that the worst drought conditions coincided with the greatest April dust storm frequencies, with 1981 having the worst drought, and secondary spring droughts occurring in 1977, 1988, 1980 and 1982, and spring dust storm peaks occurring, in order of magnitude, in 1981, 1977, 1987, and 1982. An increase in atmospheric dust particles may lead to enhanced atmospheric subsidence and associated drought, and could be a positive feedback for drought intensity. Wind erosion potential may rise with rising temperature due to decreased vegetation cover, but the effect might be offset by rising precipitation

  6. Impact of performance interdependencies on structural vulnerability: A systems perspective of storm surge risk to coastal residential communities

    International Nuclear Information System (INIS)

    Hatzikyriakou, Adam; Lin, Ning

    2017-01-01

    Interaction between residential structures during natural hazards can lead to interdependencies in their performance. During storm surge, for example, structures can affect the performance of inland buildings by generating damaging waterborne debris or by beneficially dampening surge loads. Quantifying the impact of this interaction on structural vulnerability is critical for risk assessment and informed decision-making. In this study we present and implement two general modeling approaches for investigating such interdependencies. The first method is to condition the vulnerability of a structure on the performance of neighboring buildings using a Markov model. The second uses a marginal model to account for correlation between damage observations when estimating a structure's vulnerability to the hazard. Both approaches are implemented using a case study of an impacted coastal community during Hurricane Sandy (2012). Findings indicate that a structure's performance during storm surge is strongly dependent on the damage state of the structure immediately seaward. Furthermore, considering the correlated damage states of buildings increases statistical uncertainty when relating structural performance to hazard intensity. Motivated by these findings, we propose a more coordinated approach to coastal risk mitigation which considers the effects of interdependencies on insurance pricing, structural design, mitigation strategies and community resilience. - Highlights: • Interaction between residential structures leads to performance interdependencies. • Interdependencies during storm surge are due to debris and structural shielding. • Markov model treats interdependencies as an additional demand parameter. • Marginal model incorporates damage correlation into regression estimation. • System behavior should be considered in community risk and resilience.

  7. A tale of two storms: Surges and sediment deposition from Hurricanes Andrew and Wilma in Florida’s southwest coast mangrove forests: Chapter 6G in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Smith, Thomas J.; Anderson, Gordon H.; Tiling, Ginger

    2007-01-01

    Hurricanes can be very different from each other. Here we examine the impacts that two hurricanes, Andrew and Wilma, had in terms of storm surge and sediment deposition on the southwest coast of Florida. Although Wilma was the weaker storm, it had the greater impact. Wilma had the higher storm surge over a larger area and deposited more sediment than did Andrew. This effect was most likely due to the size of Wilma's eye, which was four times larger than that of Andrew.

  8. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach.

    Science.gov (United States)

    Yang, Jie; Graf, Thomas; Herold, Maria; Ptak, Thomas

    2013-06-01

    Coastal aquifers are complex hydrologic systems because many physical processes interact: (i) variably saturated flow, (ii) spatial-temporal fluid density variations, (iii) tidal fluctuations, (iv) storm surges overtopping dykes, and (v) surface runoff of storm water. The HydroGeoSphere model is used to numerically simulate coastal flow dynamics, assuming a fully coupled surface-subsurface approach, accounting for all processes listed above. The diffusive wave approximation of the St. Venant equation is used to describe surface flow. Surface flow and salt transport are fully coupled with subsurficial variably saturated, variable-density flow and salt transport through mathematical terms that represent exchange of fluid mass and solute mass, respectively. Tides and storm surges induce a time-variant head that is applied to nodes of the surface domain. The approach is applied to real cases of tide and storm surge events. Tide simulation results confirm the existence of a recirculating zone, forming beneath the upper part of the intertidal zone. By monitoring the exchange fluid flux rates through the beach, it was found that the major inflow to the aquifer takes place at the upper part of the intertidal zone, which explains the formation of the recirculating zone. The recirculating zone is forming particularly during rising tide. Results from a storm surge simulation show that plume fingers develop below the flooded land surface. Natural remediation by seaward flowing freshwater is relatively slow, such that reducing the salt concentration in the aquifer down to drinking water standards takes up to 10 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    Science.gov (United States)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  10. Modelling sea level rise impacts on storm surges along US coasts

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; Strauss, Benjamin H; Zervas, Chris E

    2012-01-01

    Sound policies for protecting coastal communities and assets require good information about vulnerability to flooding. Here, we investigate the influence of sea level rise on expected storm surge-driven water levels and their frequencies along the contiguous United States. We use model output for global temperature changes, a semi-empirical model of global sea level rise, and long-term records from 55 nationally distributed tidal gauges to develop sea level rise projections at each gauge location. We employ more detailed records over the period 1979–2008 from the same gauges to elicit historic patterns of extreme high water events, and combine these statistics with anticipated relative sea level rise to project changing local extremes through 2050. We find that substantial changes in the frequency of what are now considered extreme water levels may occur even at locations with relatively slow local sea level rise, when the difference in height between presently common and rare water levels is small. We estimate that, by mid-century, some locations may experience high water levels annually that would qualify today as ‘century’ (i.e., having a chance of occurrence of 1% annually) extremes. Today’s century levels become ‘decade’ (having a chance of 10% annually) or more frequent events at about a third of the study gauges, and the majority of locations see substantially higher frequency of previously rare storm-driven water heights in the future. These results add support to the need for policy approaches that consider the non-stationarity of extreme events when evaluating risks of adverse climate impacts. (letter)

  11. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    Science.gov (United States)

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  12. Ensemble Kalman Filter data assimilation and storm surge experiments of tropical cyclone Nargis

    Directory of Open Access Journals (Sweden)

    Le Duc

    2015-07-01

    Full Text Available Data assimilation experiments on Myanmar tropical cyclone (TC, Nargis, using the Local Ensemble Transform Kalman Filter (LETKF method and the Japan Meteorological Agency (JMA non-hydrostatic model (NHM were performed to examine the impact of LETKF on analysis performance in real cases. Although the LETKF control experiment using NHM as its driving model (NHM–LETKF produced a weak vortex, the subsequent 3-day forecast predicted Nargis’ track and intensity better than downscaling from JMA's global analysis. Some strategies to further improve the final analysis were considered. They were sea surface temperature (SST perturbations and assimilation of TC advisories. To address SST uncertainty, SST analyses issued by operational forecast centres were used in the assimilation window. The use of a fixed source of SST analysis for each ensemble member was more effective in practice. SST perturbations were found to have slightly positive impact on the track forecasts. Assimilation of TC advisories could have a positive impact with a reasonable choice of its free parameters. However, the TC track forecasts exhibited northward displacements, when the observation error of intensities was underestimated in assimilation of TC advisories. The use of assimilation of TC advisories was considered in the final NHM–LETKF by choosing an appropriate set of free parameters. The extended forecast based on the final analysis provided meteorological forcings for a storm surge simulation using the Princeton Ocean Model. Probabilistic forecasts of the water levels at Irrawaddy and Yangon significantly improved the results in the previous studies.

  13. Hurricane Sandy science plan: impacts of storm surge, including disturbed estuarine and bay hydrology

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers

  14. Enhancement of wind stress evaluation method under storm conditions

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  15. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK.

    Science.gov (United States)

    Haigh, Ivan D; Wadey, Matthew P; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J; Brown, Jennifer M; Horsburgh, Kevin; Gouldby, Ben

    2016-12-06

    In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915-2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (sea level events from happening within 4-8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective.

  16. Ensemble projection of the sea level rise impact on storm surge and inundation at the coast of Bangladesh

    Science.gov (United States)

    Jisan, Mansur Ali; Bao, Shaowu; Pietrafesa, Leonard J.

    2018-01-01

    The hydrodynamic model Delft3D is used to study the impact of sea level rise (SLR) on storm surge and inundation in the coastal region of Bangladesh. To study the present-day inundation scenario, the tracks of two known tropical cyclones (TC) were used: Aila (Category 1; 2009) and Sidr (Category 5; 2007). Model results were validated with the available observations. Future inundation scenarios were generated by using the strength of TC Sidr, TC Aila and an ensemble of historical TC tracks but incorporating the effect of SLR. Since future change in storm surge inundation under SLR impact is a probabilistic incident, a probable range of future change in the inundated area was calculated by taking into consideration the uncertainties associated with TC tracks, intensities and landfall timing. The model outputs showed that the inundated area for TC Sidr, which was calculated as 1860 km2, would become 31 % larger than the present-day scenario if a SLR of 0.26 m occurred during the mid-21st-century climate scenario. Similarly to that, an increasing trend was found for the end-21st-century climate scenario. It was found that with a SLR of 0.54 m, the inundated area would become 53 % larger than the present-day case. Along with the inundation area, the impact of SLR was examined for changes in future storm surge level. A significant increase of 14 % was found in storm surge level for the case of TC Sidr at Barisal station if a SLR of 0.26 m occurred in the mid-21st century. Similarly to that, an increase of 29 % was found at storm surge level with a SLR of 0.54 m in this location for the end-21st-century climate scenario. Ensemble projections based on uncertainties of future TC events also showed that, for a change of 0.54 m in SLR, the inundated area would range between 3500 and 3750 km2, whereas for present-day SLR simulations it was found within the range of 1000-1250 km2. These results revealed that even if the future TCs remain at the same strength as at present, the

  17. Modeling of Coastal Inundation, Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, USA

    Science.gov (United States)

    2013-01-01

    Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, USA 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...tive comments on the manuscript. Permission was granted by the Chief, USACE, to publish this information. LITERATURE CITED Blanton, B.; Stillwell, L...Geospatial Center. http://www.agc.army.mil/ (accessed February 29, 2012). Vickery, P.; Wadhera, D.; Cox, A.; Cardone , V.; Hanson, J., and Blanton, B

  18. Extreme storm surges in the south of Brazil: atmospheric conditions and shore erosion

    Directory of Open Access Journals (Sweden)

    Cláudia Klose Parise

    2009-09-01

    Full Text Available The region under study is regularly subject to the occurrence of storms associated with frontal systems and extratropical cyclones, since it is located near one of the cyclogenetic regions in South America. These storms can generate storm surges that cause anomalous high sea level rises on Cassino Beach. The use of reanalysis data along with an efficient technique for the location of the cyclone, using a vorticity threshold, has provided a new classification based upon the trajectories of events that produce positive sea level variation. Three patterns have been identified: 1 Cyclogenesis to the south of Argentina with displacement to the east and a trajectory between 47.5ºS and 57.5ºS; 2 Cyclogenesis to the south of Uruguay with displacement to the east and a trajectory between 35ºS and 42.5ºS; and 3 Cyclogenesis to the south of Uruguay with displacement to the southeast and a trajectory between 35ºS and 57.5ºS. Maximum water level elevation above the mean sea level and beach erosion were associated, respectively, with winter and summer storms. Cassino beach displayed a seasonal morphological behavior, with short periods of episodic erosion associated with winter storm events followed by long periods of accretion characterized by the dominance of fair weather conditions.Marés meteorológicas que geram sobre-elevações do nível do mar são freqüentes na costa do Rio Grande do Sul e respondem às variações ocorridas na atmosfera. Torna-se importante, dessa maneira, definir padrões meteorológicos sinóticos responsáveis por gerar eventos de marés meteorológicas intensas na Praia do Cassino como objetivo desse trabalho. O uso de dados de reanálise associados a uma técnica eficiente de localização do ciclone, aplicando o conceito de vorticidade, permitiu definir uma nova classificação com base na trajetória de ciclones extratropicais responsáveis pela subida do nível do mar. Três padrões de trajetórias foram

  19. The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Harry V. Wang

    2014-03-01

    Full Text Available Hurricane Sandy inflicted heavy damage in New York City and the New Jersey coast as the second costliest storm in history. A large-scale, unstructured grid storm tide model, Semi-implicit Eulerian Lagrangian Finite Element (SELFE, was used to hindcast water level variation during Hurricane Sandy in the mid-Atlantic portion of the U.S. East Coast. The model was forced by eight tidal constituents at the model’s open boundary, 1500 km away from the coast, and the wind and pressure fields from atmospheric model Regional Atmospheric Modeling System (RAMS provided by Weatherflow Inc. The comparisons of the modeled storm tide with the NOAA gauge stations from Montauk, NY, Long Island Sound, encompassing New York Harbor, Atlantic City, NJ, to Duck, NC, were in good agreement, with an overall root mean square error and relative error in the order of 15–20 cm and 5%–7%, respectively. Furthermore, using large-scale model outputs as the boundary conditions, a separate sub-grid model that incorporates LIDAR data for the major portion of the New York City was also set up to investigate the detailed inundation process. The model results compared favorably with USGS’ Hurricane Sandy Mapper database in terms of its timing, local inundation area, and the depth of the flooding water. The street-level inundation with water bypassing the city building was created and the maximum extent of horizontal inundation was calculated, which was within 30 m of the data-derived estimate by USGS.

  20. Wind turbine optimal control during storms

    International Nuclear Information System (INIS)

    Petrović, V; Bottasso, C L

    2014-01-01

    This paper proposes a control algorithm that enables wind turbine operation in high winds. With this objective, an online optimization procedure is formulated that, based on the wind turbine state, estimates those extremal wind speed variations that would produce maximal allowable wind turbine loads. Optimization results are compared to the actual wind speed and, if there is a danger of excessive loading, the wind turbine power reference is adjusted to ensure that loads stay within allowed limits. This way, the machine can operate safely even above the cut-out wind speed, thereby realizing a soft envelope-protecting cut-out. The proposed control strategy is tested and verified using a high-fidelity aeroservoelastic simulation model

  1. Application of SWAN+ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot’s Day storm

    Directory of Open Access Journals (Sweden)

    Dong-mei Xie

    2016-01-01

    Full Text Available The southern coast of the Gulf of Maine in the United States is prone to flooding caused by nor’easters. A state-of-the-art fully-coupled model, the Simulating WAves Nearshore (SWAN model with unstructured grids and the ADvanced CIRCulation (ADCIRC model, was used to study the hydrodynamic response in the Gulf of Maine during the Patriot’s Day storm of 2007, a notable example of nor’easters in this area. The model predictions agree well with the observed tide-surges and waves during this storm event. Waves and circulation in the Gulf of Maine were analyzed. The Georges Bank plays an important role in dissipating wave energy through the bottom friction when waves propagate over the bank from offshore to the inner gulf due to its shallow bathymetry. Wave energy dissipation results in decreasing significant wave height (SWH in the cross-bank direction and wave radiation stress gradient, which in turn induces changes in currents. While the tidal currents are dominant over the Georges Bank and in the Bay of Fundy, the residual currents generated by the meteorological forcing and waves are significant over the Georges Bank and in the coastal area and can reach 0.3 m/s and 0.2 m/s, respectively. In the vicinity of the coast, the longshore current generated by the surface wind stress and wave radiation stress acting parallel to the coastline is inversely proportional to the water depth and will eventually be limited by the bottom friction. The storm surge level reaches 0.8 m along the western periphery of the Gulf of Maine while the wave set-up due to radiation stress variation reaches 0.2 m. Therefore, it is significant to coastal flooding.

  2. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    Science.gov (United States)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  3. Wind tunnel simulation of Martian sand storms

    Science.gov (United States)

    Greeley, R.

    1980-01-01

    The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.

  4. Using 18th century storm-surge data from the Dutch Coast to improve the confidence in flood-risk estimates

    Directory of Open Access Journals (Sweden)

    F. Baart

    2011-10-01

    Full Text Available For the design of cost-effective coastal defence a precise estimate is needed of the 1/10 000 per year storm surge. A more precise estimate requires more observations. Therefore, the three greatest storm surges that hit the northern part of the Holland Coast in the 18th century are reconstructed. The reconstructions are based on paintings, drawings, written records and shell deposits that have recently appeared. The storm-surge levels of these storms have been estimated using numerical modelling of the coastal processes. Here we show how these reconstructions can be used in combination with extreme value statistics to give a more confident estimate of low probability events.

  5. A new deterministic Ensemble Kalman Filter with one-step-ahead smoothing for storm surge forecasting

    KAUST Repository

    Raboudi, Naila

    2016-11-01

    by performing assimilation experiments with the highly nonlinear Lorenz model and a realistic setting of the Advanced Circulation (ADCIRC) model configured for storm surge forecasting in the Gulf of Mexico during Hurricane Ike.

  6. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh

    Science.gov (United States)

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro

    2017-08-01

    Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it is of great importance to assess the compound risks of fluvial and coastal floods at a large scale, including mega-deltas. However, most studies on compound fluvial and coastal flooding have been limited to relatively small scales, and global-scale or large-scale studies have not yet addressed both of them. The objectives of this study are twofold: to develop a global coupled river-coast flood model; and to conduct a simulation of compound fluvial flooding and storm surges in Asian mega-delta regions. A state-of-the-art global river routing model was modified to represent the influence of dynamic sea surface levels on river discharges and water levels. We conducted the experiments by coupling a river model with a global tide and surge reanalysis data set. Results show that water levels in deltas and estuaries are greatly affected by the interaction between river discharge, ocean tides and storm surges. The effects of storm surges on fluvial flooding are further examined from a regional perspective, focusing on the case of Cyclone Sidr in the Ganges-Brahmaputra-Meghna Delta in 2007. Modeled results demonstrate that a >3 m storm surge propagated more than 200 km inland along rivers. We show that the performance of global river routing models can be improved by including sea level dynamics.

  7. Deep Uncertainties in Sea-Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management.

    Science.gov (United States)

    Oddo, Perry C; Lee, Ben S; Garner, Gregory G; Srikrishnan, Vivek; Reed, Patrick M; Forest, Chris E; Keller, Klaus

    2017-09-05

    Sea levels are rising in many areas around the world, posing risks to coastal communities and infrastructures. Strategies for managing these flood risks present decision challenges that require a combination of geophysical, economic, and infrastructure models. Previous studies have broken important new ground on the considerable tensions between the costs of upgrading infrastructure and the damages that could result from extreme flood events. However, many risk-based adaptation strategies remain silent on certain potentially important uncertainties, as well as the tradeoffs between competing objectives. Here, we implement and improve on a classic decision-analytical model (Van Dantzig 1956) to: (i) capture tradeoffs across conflicting stakeholder objectives, (ii) demonstrate the consequences of structural uncertainties in the sea-level rise and storm surge models, and (iii) identify the parametric uncertainties that most strongly influence each objective using global sensitivity analysis. We find that the flood adaptation model produces potentially myopic solutions when formulated using traditional mean-centric decision theory. Moving from a single-objective problem formulation to one with multiobjective tradeoffs dramatically expands the decision space, and highlights the need for compromise solutions to address stakeholder preferences. We find deep structural uncertainties that have large effects on the model outcome, with the storm surge parameters accounting for the greatest impacts. Global sensitivity analysis effectively identifies important parameter interactions that local methods overlook, and that could have critical implications for flood adaptation strategies. © 2017 Society for Risk Analysis.

  8. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge

    Directory of Open Access Journals (Sweden)

    Tomasz A. Łabuz

    2014-01-01

    Full Text Available The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8. Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  9. Influence of a Storm Surge Barrier’s Operation on the Flood Frequency in the Rhine Delta Area

    Directory of Open Access Journals (Sweden)

    Hua Zhong

    2012-05-01

    Full Text Available The Rhine River Delta is crucial to the Dutch economy. The Maeslant barrier was built in 1997 to protect the Rhine estuary, with the city and port of Rotterdam, from storm surges. This research takes a simple approach to quantify the influence of the Maeslant storm surge barrier on design water levels behind the barrier. The dikes in the area are supposed to be able to withstand these levels. Equal Level Curves approach is used to calculate the Rotterdam water levels by using Rhine discharges and sea water levels as input. Their joint probability function generates the occurrence frequency of a certain combination that will lead to a certain high water level in Rotterdam. The results show that the flood frequency in Rotterdam is reduced effectively with the controlled barrier in current and in future scenarios influenced by climate change. In addition, an investigation of the sensitivity of the operational parameters suggests that there is a negligible influence on the high water level frequency when the decision closing water level for the barrier is set higher due to the benefits of navigation (but not exceeding the design safety level 4 m MSL.

  10. Life defence against big storm surges. Cyclone shelter in Bangladesh; Kyodai takashio kara seimei wo mamoru. Bangladesh no cyclone shelter

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, H. [Kyoto Univ., Kyoto (Japan). Disaster Prevention Research Inst.

    1996-08-15

    This paper presents the cyclone shelters in Bangladesh. Bangladesh has been damaged by flooding due to big storm surges caused by cyclone every year, losing many human lives and properties. The sea within 100km apart from the coast is gradually shoaling beach shallower than 10m because of sediment transport by the Ganges. Consequently, huge storm surges are easily caused by cyclone generated in Bay of Bengal. The cyclone shelter is only one refuge from cyclone. Construction of the cyclone shelters was opened in the 1960s, and the public work department (PWD) in the government had constructed the cyclone shelters under support by International Development Association (IDA) since 1970. At the same time, BDRCS had constructed the shelters under support by Red Cross Societies of every country, and positive NGOs such as Caritas had been also in the same action. Because many cyclone shelters became too old for use, construction of new cyclone shelters was opened again just after disaster in 1991. 2 refs., 8 figs., 1 tab.

  11. 76 FR 74776 - Forum-Trends in Extreme Winds, Waves, and Extratropical Storms Along the Coasts

    Science.gov (United States)

    2011-12-01

    ... Winds, Waves, and Extratropical Storms Along the Coasts AGENCY: National Environmental Satellite, Data...-extratropical-storms/home . FOR FURTHER INFORMATION CONTACT: Brooke Stewart, National Climatic Data Center, 151.../noaa.gov/extreme-winds-waves-extratropical-storms/home . Topics To Be Addressed This forum will address...

  12. Cost-efficient and storm surge-sensitive bridge design for coastal Maine.

    Science.gov (United States)

    2013-08-01

    Climatic variation felt through changing weather patterns is having increasingly acute effects on Maines : transportation infrastructure. Acute risk occurs as a result of events, such as storms and flooding, while chronic risk : surrounds longer r...

  13. Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    Science.gov (United States)

    Ho, C. M.; Tsurutani, B. T.

    1997-01-01

    We have examined the ISEE 3 distant tail data during three intense magnetic storms and have identified the tail response to high-speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms.

  14. (abstract) The Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    Science.gov (United States)

    Ho, C. M.; Tsurutani, B. T.

    1996-01-01

    We have examined the ISEE-3 distant tail data during three intense magnetic storms and have identified the tail response to high speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms.

  15. What caused the rise of water level in the battle of Luermen bay in 1661? Tsunami, Storm surge, or Tide?

    Science.gov (United States)

    Wu, Tso-Ren; Wu, Han; Tsai, Yu-Lin

    2016-04-01

    In 1661, Chinese navy led by General Zheng Chenggong at the end of Ming Dynasty had a naval battle against Netherlands. This battle was not only the first official sea warfare that China confronted the Western world, but also the only naval battle won by Chinese Navy so far. This event was important because it changed the fate of Taiwan until today. One of the critical points that General Zheng won the battle was entering Luermen bay unexpected. Luermen bay was and is an extreme shallow bay with a 2.1m maximum water depth during the high tide, which was not possible for a fleet of 20,000 marines to across. Therefore, no defense was deployed from the Netherlands side. However, plenty of historical literatures mentioned a strange phenomenon that helped Chinese warships entered the Luermen bay, the rise of water level. In this study, we will discuss the possible causes that might rise the water level, e.g. Tsunami, storm surge, and high tide. We analyzed it based on the knowledge of hydrodynamics. We performed the newly developed Impact Intensify Analysis (IIA) for finding the potential tsunami sources, and the COMCOT tsunami model was adopted for the nonlinear scenario simulations, associated with the high resolution bathymetry data. Both earthquake and mudslide tsunamis were inspected. Other than that, we also collected the information of tide and weather for identifying the effects form high tide and storm surge. After the thorough study, a scenario that satisfy most of the descriptions in the historical literatures will be presented. The results will explain the cause of mysterious event that changed the destiny of Taiwan.

  16. Strengthening the resiliency of the coastal transportation system through integrated simulation of storm surge, inundation, and non-recurrent congestion in Northeast Florida.

    Science.gov (United States)

    2013-05-01

    In this study, the MTEVA (Developed as part of CMS #2009-010) has been advanced to apply storm surge and evacuation models to the greater Jacksonville area of Northeast Florida. Heuristic and time dynamic algorithms have been enhanced to work with th...

  17. PCR and culture identification of pathogenic Leptospira spp. from coastal soil in Leyte, Philippines, after a storm surge during Super Typhoon Haiyan (Yolanda).

    Science.gov (United States)

    Saito, Mitsumasa; Miyahara, Satoshi; Villanueva, Sharon Y A M; Aramaki, Natsumi; Ikejiri, Mami; Kobayashi, Yoshie; Guevarra, Jonathan P; Masuzawa, Toshiyuki; Gloriani, Nina G; Yanagihara, Yasutake; Yoshida, Shin-ichi

    2014-11-01

    Leptospirosis is a zoonosis caused by pathogenic Leptospira spp. Most of the outbreaks of leptospirosis occur after floods caused by heavy rain in countries where Leptospira spp. are endemic. It has been believed that the overflow of seawater rarely causes outbreaks of leptospirosis because the leptospires are killed by salt water. On 8 November 2013, a storm surge caused by Super Typhoon Haiyan (Yolanda) inundated the entire coastal areas of Tacloban and Palo in Leyte, Philippines. The present study was carried out in order to determine whether the environmental leptospires in soil were able to survive after the storm surge in the affected areas. We collected 23 wet soil samples along the coastal areas of Tacloban and Palo 2 months after the storm surge. The samples were suspended in HEPES buffer, and the supernatants were cultured in liquid or semisolid Korthof's medium supplemented with five antimicrobial agents to inhibit the growth of contaminants. Leptospires were isolated from primary cultures of 22 out of 23 samples. The DNA of pathogenic Leptospira species was detected in 11 samples (47.8%) by analysis of flaB by nested PCR. Eventually, two pathogenic Leptospira strains were isolated and showed the highest 16S rRNA gene sequence similarity to Leptospira kmetyi. When these isolates were experimentally mixed with soil, they were found to survive in seawater for 4 days. These results show the possibility that leptospires living in soil survived after the storm surge. Our findings may serve as a warning that when seawater inundates the land during a storm surge or a tsunami, an outbreak of leptospirosis could occur in the disaster-stricken area. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Wind response in the lower thermosphere to the geomagnetic storm on March, 1989

    International Nuclear Information System (INIS)

    Kazimirovskij, Eh.S.; Vergasova, G.V.

    1991-01-01

    The horizontal wind response in the ionospheric D region above Irkutsk to the geomagnetic storm on March 13, 1989 is studied. The geomagnetic storm response is expressed through a stability loss of the wind system, a great speed increase of the meridional and zonal wind, in particular, and their dispersions, respectively, as well as changes in the semidaily tidal phase. The proof of the fact that the Earth magnetic field disturbances destabilize the system of horizontal winds in the lower ionosphere is given

  19. Regional Risk Assessment for the analysis of the risks related to storm surge extreme events in the coastal area of the North Adriatic Sea.

    Science.gov (United States)

    Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge

  20. Modeling the Effects of Storm Surge from Hurricane Jeanne on Saltwater Intrusion into the Surficial Aquifer, East-Central Florida (USA)

    Science.gov (United States)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Hall, C. R.

    2017-12-01

    Saltwater intrusion (SWI) that has been widely recognized as a detrimental issue causing the deterioration of coastal aquifer water quality and degradation of coastal ecosystems. While it is widely recognized that SWI is exacerbated worldwide due to global sea-level rise, we show that increased SWI from tropical cyclones under climate change is also a concern. In the Cape Canaveral Barrier Island Complex (CCBIC) located in east-central Florida, the salinity level of the surficial aquifer is of great importance to maintain a bio-diverse ecosystem and to support the survival of various vegetation species. Climate change induced SWI into the surficial aquifer can lead to reduction of freshwater storage and alteration of the distribution and productivity of vegetation communities. In this study, a three-dimensional variable-density SEAWAT model is developed and calibrated to investigate the spatial and temporal variation of salinity level in the surficial aquifer of CCBIC. We link the SEAWAT model to surge model data to examine the effects of storm surge from Hurricane Jeanne. Simulation results indicate that the surficial aquifer salinity level increases significantly right after the occurrence of storm surge because of high aquifer permeability and rapid infiltration and diffusion of the overtopping saltwater, while the surficial aquifer salinity level begins to decrease after the fresh groundwater recharge from the storm's rainfall. The tropical storm precipitation generates an effective hydraulic barrier further impeding SWI and providing seaward freshwater discharge for saltwater dilution and flushing. To counteract the catastrophic effects of storm surge, this natural remediation process may take at least 15-20 years or even several decades. These simulation results contribute to ongoing research focusing on forecasting regional vegetation community responses to climate change, and are expected to provide a useful reference for climate change adaptation planning

  1. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  2. Variation of Magnetic Field (By , Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    OpenAIRE

    Ga-Hee Moon

    2011-01-01

    It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are ...

  3. A geospatial dataset for U.S. hurricane storm surge and sea-level rise vulnerability: Development and case study applications

    Directory of Open Access Journals (Sweden)

    Megan C. Maloney

    2014-01-01

    Full Text Available The consequences of future sea-level rise for coastal communities are a priority concern arising from anthropogenic climate change. Here, previously published methods are scaled up in order to undertake a first pass assessment of exposure to hurricane storm surge and sea-level rise for the U.S. Gulf of Mexico and Atlantic coasts. Sea-level rise scenarios ranging from +0.50 to +0.82 m by 2100 increased estimates of the area exposed to inundation by 4–13% and 7–20%, respectively, among different Saffir-Simpson hurricane intensity categories. Potential applications of these hazard layers for vulnerability assessment are demonstrated with two contrasting case studies: potential exposure of current energy infrastructure in the U.S. Southeast and exposure of current and future housing along both the Gulf and Atlantic Coasts. Estimates of the number of Southeast electricity generation facilities potentially exposed to hurricane storm surge ranged from 69 to 291 for category 1 and category 5 storms, respectively. Sea-level rise increased the number of exposed facilities by 6–60%, depending on the sea-level rise scenario and the intensity of the hurricane under consideration. Meanwhile, estimates of the number of housing units currently exposed to hurricane storm surge ranged from 4.1 to 9.4 million for category 1 and category 4 storms, respectively, while exposure for category 5 storms was estimated at 7.1 million due to the absence of landfalling category 5 hurricanes in the New England region. Housing exposure was projected to increase 83–230% by 2100 among different sea-level rise and housing scenarios, with the majority of this increase attributed to future housing development. These case studies highlight the utility of geospatial hazard information for national-scale coastal exposure or vulnerability assessment as well as the importance of future socioeconomic development in the assessment of coastal vulnerability.

  4. Synoptic Storms in the North Atlantic in the Atmospheric Reanalysis and Scatterometer-Based Wind Products

    Science.gov (United States)

    Dukhovskoy, D. S.; Bourassa, M. A.

    2016-12-01

    The study compares and analyses the characteristics of synoptic storms in the Subpolar North Atlantic over the time period from 2000 through 2009 derived from reanalysis data sets and scatterometer-based gridded wind products. The analysis is performed for ocean 10-m winds derived from the following wind data sets: NCEP/DOE AMIP-II reanalysis (NCEPR2), NCAR/CFSR, Arctic System Reanalysis (ASR) version 1, Cross-Calibrated Multi-Platform (CCMP) wind product versions 1.1 and recently released version 2.0 prepared by the Remote Sensing Systems, and QuikSCAT. A cyclone tracking algorithm employed in this study for storm identification is based on average vorticity fields derived from the wind data. The study discusses storm characteristics such as storm counts, trajectories, intensity, integrated kinetic energy, spatial scale. Interannal variability of these characteristics in the data sets is compared. The analyses demonstrates general agreement among the wind data products on the characteristics of the storms, their spatial distribution and trajectories. On average, the NCEPR2 storms are more energetic mostly due to large spatial scales and stronger winds. There is noticeable interannual variability in the storm characteristics, yet no obvious trend in storms is observed in the data sets.

  5. Using Direct Policy Search to Identify Robust Strategies in Adapting to Uncertain Sea Level Rise and Storm Surge

    Science.gov (United States)

    Garner, G. G.; Keller, K.

    2017-12-01

    Sea-level rise poses considerable risks to coastal communities, ecosystems, and infrastructure. Decision makers are faced with deeply uncertain sea-level projections when designing a strategy for coastal adaptation. The traditional methods have provided tremendous insight into this decision problem, but are often silent on tradeoffs as well as the effects of tail-area events and of potential future learning. Here we reformulate a simple sea-level rise adaptation model to address these concerns. We show that Direct Policy Search yields improved solution quality, with respect to Pareto-dominance in the objectives, over the traditional approach under uncertain sea-level rise projections and storm surge. Additionally, the new formulation produces high quality solutions with less computational demands than the traditional approach. Our results illustrate the utility of multi-objective adaptive formulations for the example of coastal adaptation, the value of information provided by observations, and point to wider-ranging application in climate change adaptation decision problems.

  6. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Science.gov (United States)

    2011-06-08

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the Holtec HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage... Title 10 of the Code of Federal Regulations Section 72.214 to add the Holtec HI- STORM Flood/Wind cask...

  7. Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Directory of Open Access Journals (Sweden)

    Su Yean Teh

    2015-09-01

    Full Text Available Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM is integrated into the USGS groundwater model (SUTRA to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  8. Modeling the refraction of microbaroms by the winds of a large maritime storm.

    Science.gov (United States)

    Blom, Philip; Waxler, Roger

    2017-12-01

    Continuous infrasonic signals produced by the ocean surface interacting with the atmosphere, termed microbaroms, are known to be generated by a number of phenomena including large maritime storms. Storm generated microbaroms exhibit axial asymmetry when observed at locations far from the storm due to the source location being offset from the storm center. Because of this offset, a portion of the microbarom energy will radiate towards the storm center and interact with the winds in the region. Detailed here are predictions for the propagation of microbaroms through an axisymmetric, three-dimensional model storm. Geometric propagation methods have been utilized and the predicted horizontal refraction is found to produce signals that appear to emanate from a virtual source near the storm center when observed far from the storm. This virtual source near the storm center is expected to be observed only from a limited arc around the storm system with increased extent associated with more intense wind fields. This result implies that identifying the extent of the arc observing signal from the virtual source could provide a means to estimate the wind structure using infrasonic observations far from the storm system.

  9. A Case Study of Preliminary Cost-Benefit Analysis of Building Levees to Mitigate the Joint Effects of Sea Level Rise and Storm Surge

    Directory of Open Access Journals (Sweden)

    Binbin Peng

    2018-02-01

    Full Text Available Sea-level rise (SLR will magnify the impacts of storm surge; the resulting severe flooding and inundation can cause huge damage to coastal communities. Community leaders are considering implementing adaptation strategies, typically hard engineering projects, to protect coastal assets and resources. It is important to understand the costs and benefits of the proposed project before any decision is made. To mitigate the flooding impact of joint effects of storm surge and SLR, building levee segments is chosen to be a corresponding adaptation strategy to protect the real estate assets in the study area—the City of Miami, FL, USA. This paper uses the classic Cost-Benefit Analysis (CBA to assess the cost efficiency and proposes corresponding improvements in the benefit estimation, by estimating the avoided damages of implementing levee projects. Results show that the city will benefit from implementing levee projects along the Miami River in both a one-time 10 year storm event with SLR and cumulative long-term damage scenarios. This study also suggests that conducting CBA is a critical process before making coastal adaptation planning investment. A more meaningful result of cost effectiveness is estimated by accounting for the appreciation and time value. In addition, a sensitivity analysis is conducted to verify how the choice of discount rate influences the result. Uncertain factors including the rate of SLR, storm intensification, land use changes, and real estate appreciation are further analyzed.

  10. Regional-scale impact of storm surges on groundwaters of Texas, Florida and Puerto Rico after 2017 hurricanes Harvey, Irma, Jose, Maria

    Science.gov (United States)

    Sellier, W. H.; Dürr, H. H.

    2017-12-01

    Hurricanes and related storm surges have devastating effects on near-shore infrastructure and above-ground installations. They also heavily impact groundwater resources, with potentially millions of people dependant on these resources as a freshwater source. Destructions of casings and direct incursions of saline and/or polluted waters have been widely observed. It is uncertain how extensive the effects are on underground water systems, especially in limestone karst areas such as Florida and Puerto Rico. Here, we report regional-scale water level changes in groundwater systems of Texas, Florida and Puerto Rico for the 2017 Hurricanes Harvey, Irma, Jose and Maria. We collected regional scale data from the USGS Waterdata portal. Puerto Rico shows the strongest increase in groundwater levels in wells during Hurricane Maria, with less reaction for the preceding storms Irma and Jose. Increases in water levels range from 0.5 to 11m, with maximum storm surges in Puerto Rico around 3m. These wells are located throughout Puerto Rico, on the coast and inland. In Florida, most wells that show a response during Hurricane Irma are located in the Miami region. Wells located on the west coast show smaller responses with the exception of one well located directly on Hurricane Irma's track. These wells show an increase of 0.2 to 1.7m. In Texas, wells located in proximity to Hurricane Harvey's track show an increase in water level. The effect of groundwater level increases is not limited to the Texas coast, but inland as well. An increase between 0.03 and 2.9m is seen. Storm surges for both Florida and Texas have ranged from 1.8-3.7m maximum. We discuss the findings in the context of local and regional geology and hydrogeology (presence of connected aquifer systems, faulting, presence of carbonate/karst systems etc.).

  11. The Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    Science.gov (United States)

    Ho, C. M.; Tsurutani, B. T.

    1996-01-01

    We have examined the ISEE-3 distant tail data during three intense (Dststorms and have identified the tail response to high speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms. The three storms have a peak Dst ranging from -150 to -220 nT, and occur on Jan. 9, Feb. 4, and Aug. 8, 1993.

  12. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa Forests in the Florida Keys, USA

    Directory of Open Access Journals (Sweden)

    Jay P. Sah

    2010-01-01

    Full Text Available In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  13. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa) Forests in the Florida Keys, USA

    International Nuclear Information System (INIS)

    Sah, J.P.; Ross, M.S.; Ross, M.S.; Ogurcak, D.E.; Snyder, J.R.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on post fire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with under story type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pine lands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  14. Tree mortality following prescribed fire and a storm surge event in Slash Pine (pinus elliottii var. densa) forests in the Florida Keys, USA

    Science.gov (United States)

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  15. The Surge, Wave, and Tide Hydrodynamics (SWaTH) network of the U.S. Geological Survey—Past and future implementation of storm-response monitoring, data collection, and data delivery

    Science.gov (United States)

    Verdi, Richard J.; Lotspeich, R. Russell; Robbins, Jeanne C.; Busciolano, Ronald J.; Mullaney, John R.; Massey, Andrew J.; Banks, William S.; Roland, Mark A.; Jenter, Harry L.; Peppler, Marie C.; Suro, Thomas P.; Schubert, Christopher E.; Nardi, Mark R.

    2017-06-20

    After Hurricane Sandy made landfall along the northeastern Atlantic coast of the United States on October 29, 2012, the U.S. Geological Survey (USGS) carried out scientific investigations to assist with protecting coastal communities and resources from future flooding. The work included development and implementation of the Surge, Wave, and Tide Hydrodynamics (SWaTH) network consisting of more than 900 monitoring stations. The SWaTH network was designed to greatly improve the collection and timely dissemination of information related to storm surge and coastal flooding. The network provides a significant enhancement to USGS data-collection capabilities in the region impacted by Hurricane Sandy and represents a new strategy for observing and monitoring coastal storms, which should result in improved understanding, prediction, and warning of storm-surge impacts and lead to more resilient coastal communities.As innovative as it is, SWaTH evolved from previous USGS efforts to collect storm-surge data needed by others to improve storm-surge modeling, warning, and mitigation. This report discusses the development and implementation of the SWaTH network, and some of the regional stories associated with the landfall of Hurricane Sandy, as well as some previous events that informed the SWaTH development effort. Additional discussions on the mechanics of inundation and how the USGS is working with partners to help protect coastal communities from future storm impacts are also included.

  16. The transforming perception of a regional geohazard between coastal defence and mediated discourse on global warming: Storm surges in Hamburg, Germany

    Science.gov (United States)

    Neverla, I.; Lüthje, C.

    2010-03-01

    The term regional geohazard is used for a major geophysical risk which can lead to a natural disaster. The effects will be strictly located to a specific region. It is expected but still not proven that global warming will intensify weather extremes and thus the number of regional geohazards will increase. Regional geohazards are not dangerous per se, but from the perspective of human being certain weather and nature extremes are considered dangerous as they impose damage on human beings and their belongings. Therefore the media often call them ‘natural disaster’ and as a matter of fact it seems to be a ‘must’ - according to theory and practice of news selections - that media report on any natural disaster that occur in their region. Moreover, media even report on geohazards in any other region as soon as these events seem to have any general impact. The major geophysical risk along the coast of the North Sea is storm surges. A long list of historical disasters has deeply engraved the ubiquity of this hazard into the collective memory and habitus of the local population. Not only coastal region is concerned by this danger but also the megacity of Hamburg. Hamburg is the second-largest city in Germany and the sixth-largest city in the European Union. The Hamburg Metropolitan Region has more than 4.3 million inhabitants. The estuary of the river Elbe extends from Cuxhaven (coast) to Hamburg a distance of about 130 km. Hamburg has often been subject to storm surges with significant damages. But after the storm flood in 1855 for more than 100 years until 1962 no severe storm surge happened. The Big Flood in the night from February 16 to February 17 1962 destroyed the homes of about 60.000 people. The death toll amounted to 315 in the city of Hamburg, where the storm surge had a traumatic impact and was followed by political decisions driven by the believe in technological solutions. After 1962 massive investments into the coastal defence were made and dikes

  17. Analysis and simulation of propagule dispersal and salinity intrusion from storm surge on the movement of a marsh–mangrove ecotone in South Florida

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Anderson, Gordon H.; Smith, Thomas J.

    2014-01-01

    Coastal mangrove–freshwater marsh ecotones of the Everglades represent transitions between marine salt-tolerant halophytic and freshwater salt-intolerant glycophytic communities. It is hypothesized here that a self-reinforcing feedback, termed a “vegetation switch,” between vegetation and soil salinity, helps maintain the sharp mangrove–marsh ecotone. A general theoretical implication of the switch mechanism is that the ecotone will be stable to small disturbances but vulnerable to rapid regime shifts from large disturbances, such as storm surges, which could cause large spatial displacements of the ecotone. We develop a simulation model to describe the vegetation switch mechanism. The model couples vegetation dynamics and hydrologic processes. The key factors in the model are the amount of salt-water intrusion into the freshwater wetland and the passive transport of mangrove (e.g., Rhizophora mangle) viviparous seeds or propagules. Results from the model simulations indicate that a regime shift from freshwater marsh to mangroves is sensitive to the duration of soil salinization through storm surge overwash and to the density of mangrove propagules or seedlings transported into the marsh. We parameterized our model with empirical hydrologic data collected from the period 2000–2010 at one mangrove–marsh ecotone location in southwestern Florida to forecast possible long-term effects of Hurricane Wilma (24 October 2005). The model indicated that the effects of that storm surge were too weak to trigger a regime shift at the sites we studied, 50 km south of the Hurricane Wilma eyewall, but simulations with more severe artificial disturbances were capable of causing substantial regime shifts.

  18. On the impact of wind on the development of wave field during storm Britta

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Du, Jianting; Bolaños, Rodolfo

    2017-01-01

    The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve...... our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud...... images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea...

  19. Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)

    Science.gov (United States)

    Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances

    1989-01-01

    The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.

  20. Index for Predicting Insurance Claims from Wind Storms with an Application in France.

    Science.gov (United States)

    Mornet, Alexandre; Opitz, Thomas; Luzi, Michel; Loisel, Stéphane

    2015-11-01

    For insurance companies, wind storms represent a main source of volatility, leading to potentially huge aggregated claim amounts. In this article, we compare different constructions of a storm index allowing us to assess the economic impact of storms on an insurance portfolio by exploiting information from historical wind speed data. Contrary to historical insurance portfolio data, meteorological variables show fewer nonstationarities between years and are easily available with long observation records; hence, they represent a valuable source of additional information for insurers if the relation between observations of claims and wind speeds can be revealed. Since standard correlation measures between raw wind speeds and insurance claims are weak, a storm index focusing on high wind speeds can afford better information. A storm index approach has been applied to yearly aggregated claim amounts in Germany with promising results. Using historical meteorological and insurance data, we assess the consistency of the proposed index constructions with respect to various parameters and weights. Moreover, we are able to place the major insurance events since 1998 on a broader horizon beyond 40 years. Our approach provides a meteorological justification for calculating the return periods of extreme-storm-related insurance events whose magnitude has rarely been reached. © 2015 Society for Risk Analysis.

  1. Storms

    International Nuclear Information System (INIS)

    Kai, Keizo; Melrose, D.B.; Suzuki, S.

    1985-01-01

    At metre and decametre wavelengths long-lasting solar radio emission, consisting of thousands of short-lived spikes superimposed on a slowly varying continuum, is observed. This type of storm emission may continue for periods ranging from a few hours to several days; the long duration is one of the characteristics which distinguish storms from other types of solar radio emission. These events are called storms or noise storms by analogy with geomagnetic storms. (author)

  2. Experimental verification of the effect of cable length on voltage distribution in stator winding of an induction motor under surge condition

    Energy Technology Data Exchange (ETDEWEB)

    Oyegoke, B.S. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Electromechanics

    1997-12-31

    This paper presents the results of surge distribution tests performed on a stator of a 6 kV induction motor. The primary aim of these tests was to determine the wave propagation properties of the machine winding fed via cables of different lengths. Considering the measured resorts, conclusions are derived regarding the effect of cable length on the surge distribution within the stator winding of an ac motor. (orig.) 15 refs.

  3. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea

    Science.gov (United States)

    Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping

    2017-06-01

    A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study tide-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of tide are respectively investigated using two statistical approaches. Results show that tide-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify tide-surge interaction in this region and to investigate its physical cause. The largest amplitudes of tide-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to tide-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining tide-surge modulation, leaving the surge peaks usually occur on the rising or falling tide. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of tide-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and tides for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.

  4. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore

    Science.gov (United States)

    Cannaby, Heather; Palmer, Matthew D.; Howard, Tom; Bricheno, Lucy; Calvert, Daley; Krijnen, Justin; Wood, Richard; Tinker, Jonathan; Bunney, Chris; Harle, James; Saulter, Andrew; O'Neill, Clare; Bellingham, Clare; Lowe, Jason

    2016-05-01

    Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time-mean sea level were evaluated using the process-based climate model data and methods presented in the United Nations Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Regional surge and wave solutions extending from 1980 to 2100 were generated using ˜ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( ˜ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980 to 2010, enabling a quantitative assessment of model skill. Simulated historical sea-surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data, respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the Representative Concentration Pathway (RCP)4.5 (8.5) scenarios. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically

  5. Solar wind-magnetosphere coupling during intense magnetic storms (1978--1979)

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Tsurutani, B.T.; Gonzalez, A.L.C.; Smith, E.J.; Tang, F.; Akasofu, S.

    1989-01-01

    The solar wind-magnetosphere coupling problem is investigated for the ten intense magnetic storms (Dst <-100 nT) that occurred during the 500 days (August 16, 1978 to December 28, 1979) studied by Gonzalez and Tsurutani [1987]. This investigation concentrates on the ring current energization in terms of solar wind parameters, in order to explain the | -Dst | growth observed during these storms. Thus several coupling functions are tested as energy input and several sets of the ring current decay time-constant τ are searched to find best correlations with the Dst response. From the fairly large correlation coefficients found in this study, there is strong evidence that large scale magnetopause reconnection operates during such intense storm events and that the solar wind ram pressure plays an important role in the ring current energization. Thus a ram pressure correction factor is suggested for expressions concerning the reconnection power during time intervals with large ram pressure variations

  6. Low-dimensionality and predictability of solar wind and global magnetosphere during magnetic storms

    OpenAIRE

    Zivkovic, Tatjana; Rypdal, Kristoffer

    2011-01-01

    This article is part of Tatjana Živkovics' doctoral thesis. Available in Munin at http://hdl.handle.net/10037/3231 The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods, but tests for determinism in the time series indicate that SYM-H exhibits a significant low-dimensional component during storm time, suggesting that self-organization takes place during magnetic storms. Even though our analysis...

  7. A dynamic system to forecast ionospheric storm disturbances based on solar wind conditions

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    2005-06-01

    Full Text Available For the reliable performance of technologically advanced radio communications systems under geomagnetically disturbed conditions, the forecast and modelling of the ionospheric response during storms is a high priority. The ionospheric storm forecasting models that are currently in operation have shown a high degree of reliability during quiet conditions, but they have proved inadequate during storm events. To improve their prediction accuracy, we have to take advantage of the deeper understanding in ionospheric storm dynamics that is currently available, indicating a correlation between the Interplanetary Magnetic Field (IMF disturbances and the qualitative signature of ionospheric storm disturbances at middle latitude stations. In this paper we analyse observations of the foF2 critical frequency parameter from one mid-latitude European ionospheric station (Chilton in conjunction with observations of IMF parameters (total magnitude, Bt and Bz-IMF component from the ACE spacecraft mission for eight storm events. The determination of the time delay in the ionospheric response to the interplanetary medium disturbances leads to significant results concerning the forecast of the ionospheric storms onset and their development during the first 24 h. In this way the real-time ACE observations of the solar wind parameters may be used in the development of a real-time dynamic ionospheric storm model with adequate accuracy.

  8. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    Science.gov (United States)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  9. Statistical uncertainty of extreme wind storms over Europe derived from a probabilistic clustering technique

    Science.gov (United States)

    Walz, Michael; Leckebusch, Gregor C.

    2016-04-01

    Extratropical wind storms pose one of the most dangerous and loss intensive natural hazards for Europe. However, due to only 50 years of high quality observational data, it is difficult to assess the statistical uncertainty of these sparse events just based on observations. Over the last decade seasonal ensemble forecasts have become indispensable in quantifying the uncertainty of weather prediction on seasonal timescales. In this study seasonal forecasts are used in a climatological context: By making use of the up to 51 ensemble members, a broad and physically consistent statistical base can be created. This base can then be used to assess the statistical uncertainty of extreme wind storm occurrence more accurately. In order to determine the statistical uncertainty of storms with different paths of progression, a probabilistic clustering approach using regression mixture models is used to objectively assign storm tracks (either based on core pressure or on extreme wind speeds) to different clusters. The advantage of this technique is that the entire lifetime of a storm is considered for the clustering algorithm. Quadratic curves are found to describe the storm tracks most accurately. Three main clusters (diagonal, horizontal or vertical progression of the storm track) can be identified, each of which have their own particulate features. Basic storm features like average velocity and duration are calculated and compared for each cluster. The main benefit of this clustering technique, however, is to evaluate if the clusters show different degrees of uncertainty, e.g. more (less) spread for tracks approaching Europe horizontally (diagonally). This statistical uncertainty is compared for different seasonal forecast products.

  10. Solar wind drivers of geomagnetic storms during more than four solar cycles

    Directory of Open Access Journals (Sweden)

    Richardson Ian G.

    2012-05-01

    Full Text Available Using a classification of the near-Earth solar wind into three basic flow types: (1 High-speed streams associated with coronal holes at the Sun; (2 Slow, interstream solar wind; and (3 Transient flows originating with coronal mass ejections (CMEs at the Sun, including interplanetary CMEs and the associated upstream shocks and post-shock regions, we determine the drivers of geomagnetic storms of various size ranges based on the Kp index and the NOAA “G” criteria since 1964, close to the beginning of the space era, to 2011, encompassing more than four solar cycles (20–23. We also briefly discuss the occurrence of storms since the beginning of the Kp index in 1932, in the minimum before cycle 17. We note that the extended low level of storm activity during the minimum following cycle 23 is without precedent in this 80-year interval. Furthermore, the “typical” numbers of storm days/cycle quoted in the standard NOAA G storm table appear to be significantly higher than those obtained from our analysis, except for the strongest (G5 storms, suggesting that they should be revised downward.

  11. Time Delay Between Dst Index and Magnetic Storm Related Structure in the Solar Wind

    Science.gov (United States)

    Osherovich, Vladimir A.; Fainberg, Joseph

    2015-01-01

    Benson et al. (2015, this volume) selected 10 large magnetic storms, with associated Dst minimum values less than or equal to -100 nT, for which high-latitude topside ionospheric electron density profiles are available from topside-sounder satellites. For these 10 storms, we performed a superposition of Dst and interplanetary parameters B, v, N(sub p) and T(sub p). We have found that two interplanetary parameters, namely B and v, are sufficient to reproduce Dst with correlation coefficient cc approximately 0.96 provided that the interplanetary parameter times are taken 0.15 days earlier than the associated Dst times. Thus we have found which part of the solar wind is responsible for each phase of the magnetic storm. This result is also verified for individual storms as well. The total duration of SRS (storm related structure in the solar wind) is 4 - 5 days which is the same as the associated Dst interval of the magnetic storm.

  12. Dependence of US hurricane economic loss on maximum wind speed and storm size

    International Nuclear Information System (INIS)

    Zhai, Alice R; Jiang, Jonathan H

    2014-01-01

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependences of normalized US hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the US from 1988 through 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (V max ) and size (R), L = 10 c V max a R b , with c determining an overall scaling factor and the exponents a and b generally ranging between 4–12 and 2–4 respectively. Both a and b tend to increase with stronger wind speed. Hurricane Sandy’s size was about three times of the average size of all hurricanes analyzed. Based on the bi-variate regression model that explains the most variance for hurricanes, Hurricane Sandy’s loss would be approximately 20 times smaller if its size were of the average size with maximum wind speed unchanged. It is important to revise conventional empirical hurricane loss models that are only dependent on maximum wind speed to include both maximum wind speed and size as predictors. (letters)

  13. Simulating damage for wind storms in the land surface model ORCHIDEE-CAN (revision 4262)

    Science.gov (United States)

    Chen, Yi-Ying; Gardiner, Barry; Pasztor, Ferenc; Blennow, Kristina; Ryder, James; Valade, Aude; Naudts, Kim; Otto, Juliane; McGrath, Matthew J.; Planque, Carole; Luyssaert, Sebastiaan

    2018-03-01

    Earth system models (ESMs) are currently the most advanced tools with which to study the interactions among humans, ecosystem productivity, and the climate. The inclusion of storm damage in ESMs has long been hampered by their big-leaf approach, which ignores the canopy structure information that is required for process-based wind-throw modelling. Recently the big-leaf assumptions in the large-scale land surface model ORCHIDEE-CAN were replaced by a three-dimensional description of the canopy structure. This opened the way to the integration of the processes from the small-scale wind damage risk model ForestGALES into ORCHIDEE-CAN. The integration of ForestGALES into ORCHIDEE-CAN required, however, developing numerically efficient solutions to deal with (1) landscape heterogeneity, i.e. account for newly established forest edges for the parameterization of gusts; (2) downscaling spatially and temporally aggregated wind fields to obtain more realistic wind speeds that would represents gusts; and (3) downscaling storm damage within the 2500 km2 pixels of ORCHIDEE-CAN. This new version of ORCHIDEE-CAN was parameterized over Sweden. Subsequently, the performance of the model was tested against data for historical storms in southern Sweden between 1951 and 2010 and south-western France in 2009. In years without big storms, here defined as a storm damaging less than 15 × 106 m3 of wood in Sweden, the model error is 1.62 × 106 m3, which is about 100 % of the observed damage. For years with big storms, such as Gudrun in 2005, the model error increased to 5.05 × 106 m3, which is between 10 and 50 % of the observed damage. When the same model parameters were used over France, the model reproduced a decrease in leaf area index and an increase in albedo, in accordance with SPOT-VGT and MODIS records following the passing of Cyclone Klaus in 2009. The current version of ORCHIDEE-CAN (revision 4262) is therefore expected to have the capability to capture the dynamics of

  14. Design winds during ice storm as a function of direction for transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The effects of wind directionality are important considerations in the design of electric transmission lines. A procedure for the estimation of the probability distribution function of maximum wind speed as a function of direction was proposed. The procedure was applied to the sample of annual maximum wind speeds using the Gumbal distribution method and then used to estimate the maximum wind speed as a function of direction for the sample of maximum annual wind speeds, and maximum annual wind speeds during ice storms at 22 locations throughout Quebec. Wind direction obtained from the meteorological stations was recorded in 10 degrees sectors. The data set was used to obtain maximum wind speed for each year in each of 36 sectors. The joint probability distribution function was obtained by assuming that extreme distribution for non-directional winds was common to all directions during a season or period, as well as by assuming independence between wind speed and wind direction during a storm pattern. Structural effects were obtained by integrating the joint probability distribution with design equations. Results were then presented in the form of a ratio relative to the reference wind speed for each location. The procedure was demonstrated using a meteorological data set as well as glaze ice data from Quebec City, and covered a period of 30 years. Results indicated that a reduction factor of 25 per cent can be achieved on ice accumulations when overhead lines are directed parallel to dominant winds. It was concluded that the method will represent significant savings in the design and up-grading of existing lines. Further research will be conducted to address issues related to regional criteria and local adjustments for topographical features. 7 refs., 4 figs.

  15. Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms

    Science.gov (United States)

    Swift, C. T.; Dehority, D. C.; Black, P. G.; Chien, J. Z.

    1984-01-01

    The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980.

  16. Wind fields of storms from surface isobars for wave hindcasting

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Vaithiyanathan, R.; Santanam, K.

    Marine operations of various types are critically linked to mean and extreme wave statistics. In the Indian seas extreme wave conditions are caused by cyclones and steady strong monsoon winds. Wave data from cyclone areas are not directly available...

  17. What is the Relationship between the Solar Wind and Storms/Substorms?

    Science.gov (United States)

    Fairfield, D. H.; Burlaga, L. F.

    1999-01-01

    The interplanetary magnetic field (IMF) carried past the Earth by the solar wind has long been known to be the principal quantity that controls geomagnetic storms and substorms. Intervals of strong southward IMF with durations of at least a significant fraction of a day produce storms, while more typical, shorter intervals of less-intense southward fields produce substorms. The strong, long-duration southward fields are generally associated with coronal mass ejections and magnetic clouds or else they are produced by interplanetary dynamics initiated by fast solar wind flows that compress preexisting southward fields. Smaller, short-duration southward fields that occur on most days are related to long period waves, turbulence, or random variations in the IMF. Southward IMF enhances dayside reconnection between the IMF and the Earth's dipole with the reconnected field lines supplementing open field lines of the geomagnetic tail and producing an expanded polar cap and increased tail energy. Although the frequent storage of solar wind energy and its release during substorms is the most common mode of solar wind/magnetosphere interaction, under certain circumstances, steady southward IMF seems to produce intervals of relatively steady magnetosphere convection without substorms. During these latter times, the inner magnetosphere remains in a stressed tail-like state while the more distant magnetotail has larger northward field and more dipolar-like field lines. Recent evidence suggests that enhanced magnetosphere particle densities associated with enhanced solar wind densities allow more particles to be accelerated for the ring current, thus creating larger storms.

  18. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    Science.gov (United States)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean

  19. High resolution modelling of wind fields for optimization of empirical storm flood predictions

    Science.gov (United States)

    Brecht, B.; Frank, H.

    2014-05-01

    High resolution wind fields are necessary to predict the occurrence of storm flood events and their magnitude. Deutscher Wetterdienst (DWD) created a catalogue of detailed wind fields of 39 historical storms at the German North Sea coast from the years 1962 to 2011. The catalogue is used by the Niedersächsisches Landesamt für Wasser-, Küsten- und Naturschutz (NLWKN) coastal research center to improve their flood alert service. The computation of wind fields and other meteorological parameters is based on the model chain of the DWD going from the global model GME via the limited-area model COSMO with 7 km mesh size down to a COSMO model with 2.2 km. To obtain an improved analysis COSMO runs are nudged against observations for the historical storms. The global model GME is initialised from the ERA reanalysis data of the European Centre for Medium-Range Weather Forecasts (ECMWF). As expected, we got better congruency with observations of the model for the nudging runs than the normal forecast runs for most storms. We also found during the verification process that different land use data sets could influence the results considerably.

  20. Moisture convergence using satellite-derived wind fields - A severe local storm case study

    Science.gov (United States)

    Negri, A. J.; Vonder Haar, T. H.

    1980-01-01

    Five-minute interval 1-km resolution SMS visible channel data were used to derive low-level wind fields by tracking small cumulus clouds on NASA's Atmospheric and Oceanographic Information Processing System. The satellite-derived wind fields were combined with surface mixing ratios to derive horizontal moisture convergence in the prestorm environment of April 24, 1975. Storms began developing in an area extending from southwest Oklahoma to eastern Tennessee 2 h subsequent to the time of the derived fields. The maximum moisture convergence was computed to be 0.0022 g/kg per sec and areas of low-level convergence of moisture were in general indicative of regions of severe storm genesis. The resultant moisture convergence fields derived from two wind sets 20 min apart were spatially consistent and reflected the mesoscale forcing of ensuing storm development. Results are discussed with regard to possible limitations in quantifying the relationship between low-level flow and between low-level flow and satellite-derived cumulus motion in an antecedent storm environment.

  1. Variation of Magnetic Field (By , Bz Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2011-06-01

    Full Text Available It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME-driven storms, co-rotating interaction region (CIR-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF By and Bz components (in geocentric solar magnetospheric coordinate system coordinate during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of Bz < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF Bz (T1~T4 is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0% under the Bz < 0 condition. It is found that the correlation is highest between the time-integrated IMF Bz and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is

  2. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  3. Seasat microwave wind and rain observations in severe tropical and midlatitude marine storms

    Science.gov (United States)

    Black, P. G.; Hawkins, J. D.; Gentry, R. C.; Cardone, V. J.

    1985-01-01

    Initial results of studies concerning Seasat measurements in and around tropical and severe midlatitude cyclones over the open ocean are presented, together with an assessment of their accuracy and usefulness. Complementary measurements of surface wind speed and direction, rainfall rate, and the sea surface temperature obtained with the Seasat-A Satellite Scatterometer (SASS), the Scanning Multichannel Microwave Radiometer (SMMR), and the Seasat SAR are analyzed. The Seasat data for the Hurrricanes Fico, Ella, and Greta and the QE II storm are compared with data obtained from aircraft, buoys, and ships. It is shown that the SASS-derived wind speeds are accurate to within 10 percent, and the directions are accurate to within 20 percent. In general, the SASS estimates tend to measure light winds too high and intense winds too low. The errors of the SMMR-derived measurements of the winds in hurricanes tend to be higher than those of the SASS-derived measurements.

  4. Study of the responsible factors for the closure of an intermittent washout during a storm surge, Rio Grande do Sul, Brazil

    OpenAIRE

    Serpa, Christian Garcia; Romeu, Marco Antônio Rígola; Fontoura, Jose Antonio Scotti; Calliari, Lauro Julio; Melo Filho, Eloi; Albuquerque, Miguel da Guia

    2011-01-01

    The washouts are water courses essential to the drainage of the water accumulated in the backshore zone, and are responsible for great ruptures in the dunes field. They supply the swash zone with large amounts of sediment. The study area is located a few kilometers south of the Patos Lagoon Inlet. This study measures the contribution of the wind, the waves, the atmospheric pressure and the tide on the elevation of the sea level in a period when the beach has suffered the impact of a storm sur...

  5. Forest structure and light regimes following moderate wind storms: implications for multi-cohort management.

    Science.gov (United States)

    Hanson, Jacob J; Lorimer, Craig G

    2007-07-01

    Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late

  6. Classification and quantification of solar wind driver gases leading to intense geomagnetic storms

    Science.gov (United States)

    Adekoya, B. J.; Chukwuma, V. U.

    2018-01-01

    Classification and quantification of the interplanetary structures causing intense geomagnetic storms (Dst ≤ -100 nT) that occurred during 1997-2016 are studied. The subject of this consists of solar wind parameters of seventy-three intense storms that are associated with the southward interplanetary magnetic field. About 30.14% of the storms were driven by a combination of the sheath and ejecta (S + E), magnetic clouds (MC) and sheath field (S) are 26% each, 10.96% by combined sheath and MCs (S + C), while 5.48% of the storms were driven by ejecta (E) alone. Therefore, we want to aver that for storms driven by: (1) S + E. The Bz is high (≥10 nT), high density (ρ) (>10 N/cm3), high plasma beta (β) (>0.8), and unspecified (i.e. high or low) structure of the plasma temperature (T) and the flow speed (V); (2) MC. The Bz is ≥10 nT, low temperature (T ≤ 400,000 K), low ρ (≤10 N/cm3), high V (≥450 km), and low β (≤0.8); (3) The structures of S + C are similar to that of MC except that the V is low (V ≤ 450 km); (4) S. The Bz is high, low T, high ρ, unspecified V, and low β; and (5) E. Is when the structures are directly opposite of the one driven by MCs except for high V. Although, westward ring current indicates intense storms, but the large intensity of geomagnetic storms is determined by the intense nature of the electric field strength and the Bz. Therefore, great storms (i.e. Dst ≤ -200 nT) are manifestation of high electric field strength (≥13 mV/m).

  7. The solar wind control of electron fluxes in geostationary orbit during magnetic storms

    International Nuclear Information System (INIS)

    Popov, G.V.; Degtyarev, V.I.; Sheshukov, S.S.; Chudnenko, S.E.

    1999-01-01

    The dynamics of electron fluxes (with energies from 30 to 1360 keV) in geostationary orbit during magnetic storms was investigated on the basis of LANL spacecraft 1976-059 and 1977-007 data. Thirty-seven magnetic storms with distinct onsets from the time interval July 1976-December 1978 were used in the analysis. A treatment of experimental data involved the moving averaging and the overlapping epoch method. The smoothed component of electron fluxes represents mainly trapped electrons and shows their strong dependence on the solar wind velocity. The time lag between a smoothed electron flux and the solar wind velocity increases with electron energy reflecting dynamics of the inner magnetosphere filling with trapped energetic electrons originating from substorm injection regions located not far outside geostationary orbit

  8. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Science.gov (United States)

    2011-03-28

    ...-0007] RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY... or the Commission) is proposing to amend its spent fuel storage cask regulations to add the HI-STORM...: June 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the HI...

  9. Statistical Characteristics of Solar Wind Dynamic Pressure Enhancements During Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    C.-R. Choi

    2008-06-01

    Full Text Available Solar wind dynamic pressure enhancements are known to cause various types of disturbances to the magnetosphere. In particular, dynamic pressure enhancements may affect the evolution of magnetic storms when they occur during storm times. In this paper, we have investigated the statistical significance and features of dynamic pressure enhancements during magnetic storm times. For the investigation, we have used a total of 91 geomagnetic storms for 2001-2003, for which the Dst minimum (Dst_min is below -50 nT. Also, we have imposed a set of selection criteria for a pressure enhancement to be considered an event: The main selection criterion is that the pressure increases by ≥50% or ≥3nPa within 30 min and remains to be elevated for 10 min or longer. For our statistical analysis, we define the storm time to be the interval from the main Dst decrease, through Dst_min, to the point where the Dst index recovers by 50%. Our main results are summarized as follows. (i ~81% of the studied storms indicate at least one event of pressure enhancements. When averaged over all the 91 storms, the occurrence rate is 4.5 pressure enhancement events per storm and 0.15 pressure enhancement events per hour. (ii The occurrence rate of the pressure enhancements is about three times higher for CME-driven storm times than for CIR-driven storm times. (iii Only 21.1% of the pressure enhancements show a clear association with an interplanetary shock. (iv A large number of the pressure enhancement events are accompanied with a simultaneous change of IMF By and/or Bz: For example, 73.5% of the pressure enhancement events are associated with an IMF change of either |∆Bz|>2nT or |∆By|>2nT. This last finding suggests that one should consider possible interplay effects between the simultaneous pressure and IMF changes in many situations.

  10. Influence of Model Simplifications Excitation Force in Surge for a Floating Foundation for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt; Hindhede, Dennis; Lauridsen, Jimmy

    2015-01-01

    As offshore wind turbines move towards deeper and more distant sites, the concept of floating foundations is a potential technically and economically attractive alternative to the traditional fixed foundations. Unlike the well-studied monopile, the geometry of a floating foundation is complex and...

  11. Northeast storms ranked by wind stress and wave-generated bottom stress observed in Massachusetts Bay, 1990-2006

    Science.gov (United States)

    Butman, B.; Sherwood, C.R.; Dalyander, P.S.

    2008-01-01

    Along the coast of the northeastern United States, strong winds blowing from the northeast are often associated with storms called northeasters, coastal storms that strongly influence weather. In addition to effects caused by wind stress, the sea floor is affected by bottom stress associated with these storms. Bottom stress caused by orbital velocities associated with surface waves integrated over the duration of a storm is a metric of storm strength at the sea floor. Near-bottom wave-orbital velocities calculated by using measurements of significant wave height and dominant wave period and the parametric spectral method described in Wiberg and Sherwood [Wiberg, P.L., Sherwood, C.R. Calculating wave-generated bottom orbital velocities from surface wave parameters. Computers in Geosciences, in press] compared well with observations in Massachusetts Bay. Integrated bottom-wave stress (called IWAVES), calculated at 30 m water depth, and a companion storm-strength metric, integrated surface wind stress at 10 m (called IWINDS), are used to provide an overview of the strength, frequency, and timing of large storms in Massachusetts Bay over a 17-year period from January 1990 through December 2006. These new metrics reflect both storm duration and intensity. Northeast storms were the major cause of large waves in Massachusetts Bay because of the long fetch to the east: of the strongest 10% of storms (n=38) ranked by IWAVES, 22 had vector-averaged wind stress from the northeast quadrant. The Blizzard of December 1992, the Perfect Storm of October 1991, and a December 2003 storm were the strongest three storms ranked by IWAVES and IWINDS, and all were northeasters. IWAVES integrated over the winter season (defined as October-May) ranged by about a factor of 11; the winters with the highest integrated IWAVES were 1992-1993 and 2004-2005 and the winter with the lowest integrated IWAVES was 2001-2002. May 2005 was the only month in the 17-year record that two of the nine

  12. Solar Wind Features Responsible for Magnetic Storms and Substorms During the Declining Phase of the Solar Cycle: 197

    Science.gov (United States)

    Tsurutani, B.; Arballo, J.

    1994-01-01

    We examine interplanetary data and geomagnetic activity indices during 1974 when two long-lasting solar wind corotating streams existed. We find that only 3 major storms occurred during 1974, and all were associated with coronal mass ejections. Each high speed stream was led by a shock, so the three storms had sudden commencements. Two of the 1974 major storms were associated with shock compression of preexisting southward fields and one was caused by southward fields within a magnetic cloud. Corotating streams were responsible for recurring moderate to weak magnetic storms.

  13. SAPS effects on thermospheric winds during the 17 March 2013 storm

    Science.gov (United States)

    Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.

    2017-12-01

    Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.

  14. Wind structure during mid-latitude storms and its application in Wind Energy

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Du, Jianting; Bolanos, Rodolfo

    2015-01-01

    in Denmark. The extreme wind and wave conditions in the coastal area for wind energy application are important but have rarely been studied in the literature. Our experiments are done to the Danish coasts where the mid-latitude depression systems are causes of the extreme wind and wave conditions....... The numerical modeling is done through an atmosphere-wave coupled system, where the atmospheric model is the Weather Research and Forecasting (WRF) model and the wave model is the Simulating WAves Nearshore (SWAN) model. Measurements from offshore stations, Horns Rev and the FINO platform, as well as satellite...... and the modeling will be presented. Here the “key” is referring both to the application of wind energy and the wind-wave coupling system. The various parameterization of the interface parameter for the atmospheric and wave modeling, the roughness length, has been examined. Data analysis reveals the importance...

  15. Satellite accelerometer measurements of neutral density and winds during geomagnetic storms

    Science.gov (United States)

    Marcos, F. A.; Forbes, J. M.

    1986-01-01

    A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.

  16. Short-interval SMS wind vector determinations for a severe local storms area

    Science.gov (United States)

    Peslen, C. A.

    1980-01-01

    Short-interval SMS-2 visible digital image data are used to derive wind vectors from cloud tracking on time-lapsed sequences of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on May 6, 1975 hail-producing thunderstorms occurred ahead of a well defined dry line. Cloud tracking is performed on the Goddard Space Flight Center Atmospheric and Oceanographic Information Processing System. Lower tropospheric cumulus tracers are selected with the assistance of a cloud-top height algorithm. Divergence is derived from the cloud motions using a modified Cressman (1959) objective analysis technique which is designed to organize irregularly spaced wind vectors into uniformly gridded wind fields. The results demonstrate the feasibility of using satellite-derived wind vectors and their associated divergence fields in describing the conditions preceding severe local storm development. For this case, an area of convergence appeared ahead of the dry line and coincided with the developing area of severe weather. The magnitude of the maximum convergence varied between -10 to the -5th and -10 to the -14th per sec. The number of satellite-derived wind vectors which were required to describe conditions of the low-level atmosphere was adequate before numerous cumulonimbus cells formed. This technique is limited in areas of advanced convection.

  17. Predicting geomagnetic storms from solar-wind data using time-delay neural networks

    Directory of Open Access Journals (Sweden)

    H. Gleisner

    1996-07-01

    Full Text Available We have used time-delay feed-forward neural networks to compute the geomagnetic-activity index Dst one hour ahead from a temporal sequence of solar-wind data. The input data include solar-wind density n, velocity V and the southward component Bz of the interplanetary magnetic field. Dst is not included in the input data. The networks implement an explicit functional relationship between the solar wind and the geomagnetic disturbance, including both direct and time-delayed non-linear relations. In this study we especially consider the influence of varying the temporal size of the input-data sequence. The networks are trained on data covering 6600 h, and tested on data covering 2100 h. It is found that the initial and main phases of geomagnetic storms are well predicted, almost independent of the length of the input-data sequence. However, to predict the recovery phase, we have to use up to 20 h of solar-wind input data. The recovery phase is mainly governed by the ring-current loss processes, and is very much dependent on the ring-current history, and thus also the solar-wind history. With due consideration of the time history when optimizing the networks, we can reproduce 84% of the Dst variance.

  18. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    Science.gov (United States)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; hide

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  19. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  20. A retrospective tiered environmental assessment of the Mount Storm Wind Energy Facility, West Virginia,USA

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, Rebecca Ann [ORNL; Day, Robin [No Affiliation; Strickland, M. Dale [Western EcoSystems Technology

    2012-11-01

    Bird and bat fatalities from wind energy projects are an environmental and public concern, with post-construction fatalities sometimes differing from predictions. Siting facilities in this context can be a challenge. In March 2012 the U.S. Fish and Wildlife Service (USFWS) released Land-based Wind Energy Guidelines to assess collision fatalities and other potential impacts to species of concern and their habitats to aid in siting and management. The Guidelines recommend a tiered approach for assessing risk to wildlife, including a preliminary site evaluation that may evaluate alternative sites, a site characterization, field studies to document wildlife and habitat and to predict project impacts, post construction studies to estimate impacts, and other post construction studies. We applied the tiered assessment framework to a case study site, the Mount Storm Wind Energy Facility in Grant County, West Virginia, USA, to demonstrate the use of the USFWS assessment approach, to indicate how the use of a tiered assessment framework might have altered outputs of wildlife assessments previously undertaken for the case study site, and to assess benefits of a tiered ecological assessment framework for siting wind energy facilities. The conclusions of this tiered assessment for birds are similar to those of previous environmental assessments for Mount Storm. This assessment found risk to individual migratory tree-roosting bats that was not emphasized in previous preconstruction assessments. Differences compared to previous environmental assessments are more related to knowledge accrued in the past 10 years rather than to the tiered structure of the Guidelines. Benefits of the tiered assessment framework include good communication among stakeholders, clear decision points, a standard assessment trajectory, narrowing the list of species of concern, improving study protocols, promoting consideration of population-level effects, promoting adaptive management through post

  1. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    Science.gov (United States)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  2. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records

    Science.gov (United States)

    O'Loingsigh, T.; McTainsh, G. H.; Tews, E. K.; Strong, C. L.; Leys, J. F.; Shinkfield, P.; Tapper, N. J.

    2014-03-01

    Wind erosion of soils is a natural process that has shaped the semi-arid and arid landscapes for millennia. This paper describes the Dust Storm Index (DSI); a methodology for monitoring wind erosion using Australian Bureau of Meteorology (ABM) meteorological observational data since the mid-1960s (long-term), at continental scale. While the 46 year length of the DSI record is its greatest strength from a wind erosion monitoring perspective, there are a number of technical challenges to its use because when the World Meteorological Organisation (WMO) recording protocols were established the use of the data for wind erosion monitoring was never intended. Data recording and storage protocols are examined, including the effects of changes to the definition of how observers should interpret and record dust events. A method is described for selecting the 180 long-term ABM stations used in this study and the limitations of variable observation frequencies between stations are in part resolved. The rationale behind the DSI equation is explained and the examples of temporal and spatial data visualisation products presented include; a long term national wind erosion record (1965-2011), continental DSI maps, and maps of the erosion event types that are factored into the DSI equation. The DSI is tested against dust concentration data and found to provide an accurate representation of wind erosion activity. As the ABM observational records used here were collected according to WMO protocols, the DSI methodology could be used in all countries with WMO-compatible meteorological observation and recording systems.

  3. Impact of Short Interval SMS Digital Data on Wind Vector Determination for a Severe Local Storms Area

    Science.gov (United States)

    Peslen, C. A.

    1979-01-01

    The impact of 5 minute interval SMS-2 visible digital image data in analyzing severe local storms is examined using wind vectors derived from cloud tracking on time lapsed sequence of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on 6 May 1975, hail-producing thunderstorms occurred ahead of a well defined dry line. The results demonstrate that satellite-derived wind vectors and their associated divergence fields complement conventional meteorological analyses in describing the conditions preceding severe local storm development.

  4. The extent of wind-induced undercatch in the UK winter storms of 2015

    Science.gov (United States)

    Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda; Lanza, Luca

    2016-04-01

    The most widely used device for measuring rainfall is the rain gauge, of which the tipping bucket (TBR) is the most prevalent type. Rain gauges are considered by many to be the most accurate method currently available. The data they produce are used in flood-forecasting and flood risk management, water resource management, hydrological modelling and evaluating impacts on climate change; to name but a few. Rain gauges may provide the most accurate measurement of rainfall at a point in space and time, but they are subject to errors - and some gauges are more prone than others. The most significant error is the 'wind-induced undercatch'. This is caused by the gauge itself contributing to an acceleration of the wind speed near the orifice, which disturbs and distorts the airflow. The trajectories of precipitation particles are affected, resulting in an undercatch. Results from Computational Fluid Dynamics (CFD) simulations, presented herein, describe in detail the physical processes contributing to this. High resolution field measurements of rainfall and wind are collected at four field research stations in the UK. Each site is equipped with juxtaposed rain gauges with different funnel profiles, in addition to a WMO reference pit rain gauge measurement. These data describe the rainfall measurement uncertainty. The sites were selected to represent the prevalent rainfall regimes observed in the UK. Two research stations are on the west coast; which is prone to frontal weather systems and storms swept in from the Atlantic, often enhanced by orography. Two are located in the east. Rural lowland and upland areas are represented, both in the west and the east. Urban sites will also have significant undercatch problems but are outside the scope of this study. Data from the four research stations are analysed for the 2015 winter storms which caused devastating flooding in the west of the UK, particularly Cumbria and the Scottish Borders, where two of the sites are located. An

  5. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  6. Variations in long term wind speed during different decades in ...

    Indian Academy of Sciences (India)

    A study has been carried out by comparing the extreme wind speeds estimated based on. NCEP/NCAR reanalysis data for 100 ... Analysis has shown slight upward trend in the annual maximum wind for location off Machilipatnam with ... storm surges and also it affects the offshore marine operations. Several studies were ...

  7. 1983 lightning, turbulence, wind shear, and Doppler radar studies at the National Severe Storms Laboratory

    Science.gov (United States)

    Lee, J. T.

    1984-01-01

    As part of continuing research on aviation related weather hazards, numerous experiments were incorporated into the 1983 Spring Observation Program. This year's program was an abbreviated one because of commitments made to the development of the Next Generation Radar (NEXRAD) project. The National Oceanic and Atmospheric Administration's (NOAA) P-3 Orion and the National Aeronautics and Space Administration's (NASA) RB-57B and U-2 were the main aircraft involved in the studies of lightning, wind shear, turbulence, and storm structure. A total of 14 flights were made by these aircraft during the period of May 16 through June 5, 1983. Aircraft instrumentation experiments are described, and resultant data sets available for research are detailed. Aircraft instrumentation and Doppler radar characteristics are detailed.

  8. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    Science.gov (United States)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  9. [Dust storms trend in the Capital Circle of China over the past 50 years and its correlation with temperature, precipitation and wind].

    Science.gov (United States)

    Chen, Yu-fu; Tang, Hai-ping

    2005-01-01

    The trends of number of dust storm days of the selected 11 meteorological stations from their established year to 2000 as well as their correlations with temperature, precipitation and wind are revealed. The number of dust storm days of the Capital Circle of China is distinctly variable in space and time. The numbers of dust storm days of the western area are far more than those of the eastern area. The interannual variability of number of dust storm days is remarkable. The number of dust storm days of the following 7 stations, Erlianhaote, Abaga, Xilinhaote, Fengning, Zhangjiakou, Huailai and Beijing, declined along the past decades, but those of the other four stations had no significant upward or downward trends. There is a marked seasonality of the number of dust storm days, and the maximum was in April. The correlation between number of dust storm days and number of days of mean wind velocity > 5 m/s, which is critical wind velocity to entrain sand into the air, was strongest among the three climatic factor. There were significant positive correlations between the number of dust storm days and number of days of mean wind velocity > 5 m/s in 6 stations. The second strongest climatic factor correlated with the number of dust storm days is temperature. There are significant negative correlations between the number of dust storm days and mean annual temperature, mean winter temperature, mean spring temperature in 3 or 4 stations. The correlation between the number of dust storm days and precipitation is weakest. Only one station, Zhurihe, showes significant negative correlation between the number of dust storm days and spring rainfall. There are 4 stations whose number of dust storm days don't significantly correlate with the climate. In the end, the spatial-temporal variability of dust storms and its relation with climate in the Capital Circle of China were discussed thoroughly.

  10. Impact of Cyclone Track Features and Tidal Phase Shift upon Surge Characteristics in the Bay of Bengal along the Bangladesh Coast

    Directory of Open Access Journals (Sweden)

    Mohammad Asad Hussain

    2017-11-01

    Full Text Available The impact of cyclone track features (e.g., cyclone translation speed, cyclone path and cyclone landfall crossing angle in combination with tidal phase shift upon surge characteristics have been investigated at the Bay of Bengal along the Bangladesh coast. A two-dimensional hydrodynamic model in a horizontal direction (2DH coupled with a storm-surge model has been employed for the study. Numerical experiments with three different cyclone translation speeds show that when the surge height is directly forced by the cyclonic wind speed especially within the RWM (Radius of Maximum Wind, faster translation speed produces reduced surge height as the cyclone gets less time to force the water. On the other hand, at locations outside the RMW, surge waves travel as a propagating long wave where higher surges are produced by faster moving cyclones. It is found that surge arrival times are more and more affected by tidal phase when cyclone translation speed is reduced. Analysis of seven hypothetical parallel cyclone paths show that local bathymetry and complex coastline configurations strongly influence the surge height and surge arrival time along the Bangladesh coast. From the analyses of cyclone landfall crossing angles at the Khulna and Chittagong coasts, it is observed that surge durations are the smallest at both the coasts when the coastline crossing angles are the smallest.

  11. A Two-Step Method to Select Major Surge-Producing Extratropical Cyclones from a 10,000-Year Stochastic Catalog

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the primary driver of storm surge events along the UK and northwest mainland Europe coastlines. In an effort to evaluate the storm surge risk in coastal communities in this region, a stochastic catalog is developed by perturbing the historical storm seeds of European ETCs to account for 10,000 years of possible ETCs. Numerical simulation of the storm surge generated by the full 10,000-year stochastic catalog, however, is computationally expensive and may take several months to complete with available computational resources. A new statistical regression model is developed to select the major surge-generating events from the stochastic ETC catalog. This regression model is based on the maximum storm surge, obtained via numerical simulations using a calibrated version of the Delft3D-FM hydrodynamic model with a relatively coarse mesh, of 1750 historical ETC events that occurred over the past 38 years in Europe. These numerically-simulated surge values were regressed to the local sea level pressure and the U and V components of the wind field at the location of 196 tide gauge stations near the UK and northwest mainland Europe coastal areas. The regression model suggests that storm surge values in the area of interest are highly correlated to the U- and V-component of wind speed, as well as the sea level pressure. Based on these correlations, the regression model was then used to select surge-generating storms from the 10,000-year stochastic catalog. Results suggest that roughly 105,000 events out of 480,000 stochastic storms are surge-generating events and need to be considered for numerical simulation using a hydrodynamic model. The selected stochastic storms were then simulated in Delft3D-FM, and the final refinement of the storm population was performed based on return period analysis of the 1750 historical event simulations at each of the 196 tide gauges in preparation for Delft3D-FM fine mesh simulations.

  12. Prediction of SYM-H index during large storms by NARX neural network from IMF and solar wind data

    Directory of Open Access Journals (Sweden)

    L. Cai

    2010-02-01

    Full Text Available Similar to the Dst index, the SYM-H index may also serve as an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study the NARX neural network has been used for the first time to predict SYM-H index from solar wind (SW and IMF parameters. In total 73 time intervals of great storm events with IMF/SW data available from ACE satellite during 1998 to 2006 are used to establish the ANN model. Out of them, 67 are used to train the network and the other 6 samples for test. Additionally, the NARX prediction model is also validated using IMF/SW data from WIND satellite for 7 great storms during 1995–1997 and 2005, as well as for the July 2000 Bastille day storm and November 2001 superstorm using Geotail and OMNI data at 1 AU, respectively. Five interplanetary parameters of IMF Bz, By and total B components along with proton density and velocity of solar wind are used as the original external inputs of the neural network to predict the SYM-H index about one hour ahead. For the 6 test storms registered by ACE including two super-storms of min. SYM-H<−200 nT, the correlation coefficient between observed and NARX network predicted SYM-H is 0.95 as a whole, even as high as 0.95 and 0.98 with average relative variance of 13.2% and 7.4%, respectively, for the two super-storms. The prediction for the 7 storms with WIND data is also satisfactory, showing averaged correlation coefficient about 0.91 and RMSE of 14.2 nT. The newly developed NARX model shows much better capability than Elman network for SYM-H prediction, which can partly be attributed to a key feedback to the input layer from the output neuron with a suitable length (about 120 min. This feedback means that nearly real information of the ring current status is effectively directed to take part in the prediction of SYM-H index by ANN. The proper history length of the output-feedback may mainly reflect

  13. Prediction of SYM-H index during large storms by NARX neural network from IMF and solar wind data

    Directory of Open Access Journals (Sweden)

    L. Cai

    2010-02-01

    Full Text Available Similar to the Dst index, the SYM-H index may also serve as an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study the NARX neural network has been used for the first time to predict SYM-H index from solar wind (SW and IMF parameters. In total 73 time intervals of great storm events with IMF/SW data available from ACE satellite during 1998 to 2006 are used to establish the ANN model. Out of them, 67 are used to train the network and the other 6 samples for test. Additionally, the NARX prediction model is also validated using IMF/SW data from WIND satellite for 7 great storms during 1995–1997 and 2005, as well as for the July 2000 Bastille day storm and November 2001 superstorm using Geotail and OMNI data at 1 AU, respectively. Five interplanetary parameters of IMF Bz, By and total B components along with proton density and velocity of solar wind are used as the original external inputs of the neural network to predict the SYM-H index about one hour ahead. For the 6 test storms registered by ACE including two super-storms of min. SYM-H<−200 nT, the correlation coefficient between observed and NARX network predicted SYM-H is 0.95 as a whole, even as high as 0.95 and 0.98 with average relative variance of 13.2% and 7.4%, respectively, for the two super-storms. The prediction for the 7 storms with WIND data is also satisfactory, showing averaged correlation coefficient about 0.91 and RMSE of 14.2 nT. The newly developed NARX model shows much better capability than Elman network for SYM-H prediction, which can partly be attributed to a key feedback to the input layer from the output neuron with a suitable length (about 120 min. This feedback means that nearly real information of the ring current status is effectively directed to take part in the prediction of SYM-H index by ANN. The proper history length of the output-feedback may mainly reflect on average the characteristic time of ring

  14. WIND-STORM: A Decision Support System for the Strategic Management of Windthrow Crises by the Forest Community

    Directory of Open Access Journals (Sweden)

    Simon Riguelle

    2015-09-01

    Full Text Available Storms are one of the most damaging agents for European forests and can cause huge and long-term economic impacts on the forest sector. Recent events and research haves contributed to a better understanding and management of destructive storms, but public authorities still lack appropriate decision-support tools for evaluating their strategic decisions in the aftermath of a storm. This paper presents a decision support system (DSS that compares changes in the dynamics of the regional forest-based sector after storm events under various crisis management options. First, the development and implementation of a regional forest model is addressed; then, the potential application of the model-based DSS WIND-STORM is illustrated. The results of simulated scenarios reveal that this DSS type is useful for designing a cost-effective regional strategy for storm-damage management in the context of scarce public resources and that public strategies must encompass the whole forest-based sector to be efficient. Additional benefits of such a DSS is to bring together decision-makers and forest stakeholders for a common objective and therefore to enhance participatory approaches to crisis management.

  15. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  16. Kiel Canal: Past and future threats for shipping resulting from precipitation, wind surge and sea level rise

    Science.gov (United States)

    Ganske, Anette; Hüttl-Kabus, Sabine; Möller, Jens; Schade, Nils; Heinrich, Hartmut; Tinz, Birger

    2017-04-01

    The Kiel Canal is the most frequented artificial waterway in the world. It connects the North Sea and the Hamburg Harbor with the Baltic Sea and has a length of about 100 km. The Canal receives its water from the upper catchment of the river Eider. Discharge from the Canal towards the North Sea is via the sluices at Brunsbüttel (90%) into river Elbe and into the Baltic Sea via the sluices at Kiel-Holtenau. A risk of closure of the Canal occurs when high precipitation in the catchment meets high water levels in the river Elbe and/or the Baltic preventing the discharge of excess Canal water. Future sea level rise jointly with other effects such as possibly increasing wind surge and precipitation will close the gap between the inner and outer water levels, so that someday the outside levels will surmount the inner one. The German Federal Ministry of Transport and Digital Infrastructure (BMVI) tasked its internal Network of Experts to run a case study on the evolution of critical water levels in order to estimate risks and vulnerabilities for adaptation measures. First step of the investigation is a search for factors or combination of factors responsible for closures in the past. Candidates are factors such as higher water levels at low tides, high precipitation events on land, soil moisture and human factors like preventive water management measures. Second step will be the search for the natural criteria in climate projections. Here we report on the results of the first step of the case study with a focus on the exit towards the North Sea. There, discharge is possible only during low tide. Presently still sufficient difference in height exists between the levels in the Canal and the river Elbe allowing for a free flow of excess Canal water. Shipping is ceased when levels in the Canal surpass safety limits due to high precipitation events in the catchment jointly with high outer water levels. We used atmospheric data from ERA-Interim reanalysis instead of gauge data

  17. Mid-latitude thermospheric wind changes during the St. Patrick's Day storm of 2015 observed by two Fabry-Perot interferometers in China

    Science.gov (United States)

    Huang, Cong; Xu, Ji-Yao; Zhang, Xiao-Xin; Liu, Dan-Dan; Yuan, Wei; Jiang, Guo-Ying

    2018-04-01

    In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick's Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75 m/s and the equatorward wind enhanced to a peak value of over 100 m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.

  18. Sensitivity study of surface wind flow of a limited area model simulating the extratropical storm Delta affecting the Canary Islands

    OpenAIRE

    Marrero, C.; Jorba, O.; Cuevas, E.; Baldasano, J. M.

    2009-01-01

    In November 2005 an extratropical storm named Delta affected the Canary Islands (Spain). The high sustained wind and intense gusts experienced caused significant damage. A numerical sensitivity study of Delta was conducted using the Weather Research & Forecasting Model (WRF-ARW). A total of 27 simulations were performed. Non-hydrostatic and hydrostatic experiments were designed taking into account physical parameterizations and geometrical factors (size and position of the outer domain, d...

  19. Prediction of geomagnetic storms from solar wind data with the use of a neural network

    Directory of Open Access Journals (Sweden)

    H. Lundstedt

    Full Text Available An artificial feed-forward neural network with one hidden layer and error back-propagation learning is used to predict the geomagnetic activity index (Dst one hour in advance. The Bz-component and ΣBz, the density, and the velocity of the solar wind are used as input to the network. The network is trained on data covering a total of 8700 h, extracted from the 25-year period from 1963 to 1987, taken from the NSSDC data base. The performance of the network is examined with test data, not included in the training set, which covers 386 h and includes four different storms. Whilst the network predicts the initial and main phase well, the recovery phase is not modelled correctly, implying that a single hidden layer error back-propagation network is not enough, if the measured Dst is not available instantaneously. The performance of the network is independent of whether the raw parameters are used, or the electric field and square root of the dynamical pressure.

  20. Dependence of regular background noise of VLF radiation and thunder-storm activity on solar wind proton density

    International Nuclear Information System (INIS)

    Sobolev, A.V.; Kozlov, V.I.

    1997-01-01

    Correlation of the intensity of slowly changing regular background noise within 9.7 kHz frequency in Yakutsk (L = 3) and of the solar wind density protons was determined. This result explains the reverse dependence of the intensity of the regular background noise on the solar activity, 27-day frequency, increase before and following geomagnetic storms, absence of relation with K p index of geomagnetic activity. Conclusion is made that growth of density of the solar wind protons results in increase of the regular background noise and thunderstorm activity

  1. The use of long-term observations in combination with modeling and their effect on the estimation of the North Sea storm surge climate

    Energy Technology Data Exchange (ETDEWEB)

    Aspelien, T.

    2006-07-01

    The aim of this PhD thesis is to design, implement and assess a method to combine long-term observations with multi-decadal model simulations. In this work a computationally cost-efficient nudging method, well suited for multi-decadal simulations, is chosen. First, the nudging method was tested for its sensitivity to different parameters. Then the long-term observations of sea level height from the UK tide gauge Aberdeen were combined with a multi-decadal hindcast for the North Sea. Compared to a control simulation, in which no observed values of sea level height were combined with the model, the nudging method generally improves the modeled water levels with respect to the observed values, especially for surge. The estimation of long-term fluctuations and biases of extreme values of high waters in the nudged simulation are generally considerably improved after nudging and closer to the observed. The effect is largest in the German Bight and at the West coast of Denmark. It is concluded that the cost-efficient nudging method, in which external processes, such as external surges, are additionally taken into account, provides a considerable improvement in reproducing long-term variations and trends, especially for surge. Without additional data from e.g. observed values from tide gauges taken into account, the meteorological induced long-term variations in a hindcast are not fully captured. (orig.)

  2. Role of neutral wind and storm time electric fields inferred from the storm time ionization distribution at low latitudes: in-situ measurements by Indian satellite SROSS-C2

    Directory of Open Access Journals (Sweden)

    P. Subrahmanyam

    2005-11-01

    Full Text Available Recently, there has been a renewal of interest in the study of the effects of solar weather events on the ionization redistribution and irregularity generation. The observed changes at low and equatorial latitudes are rather complex and are noted to be a function of location, the time of the storm onset and its intensity, and various other characteristics of the geomagnetic storms triggered by solar weather events. At these latitudes, the effects of geomagnetic storms are basically due to (a direct penetration of the magnetospheric electric fields to low latitudes, (b development of disturbance dynamo, (c changes in atmospheric neutral winds at ionospheric level and (d changes in neutral composition triggered by the storm time atmospheric heating.

    In the present study an attempt is made to further understand some of the observed storm time effects in terms of storm time changes in zonal electric fields and meridional neutral winds. For this purpose, observations made by the Retarding Potential Analyzer (RPA payload on board the Indian satellite SROSS-C2 are examined for four prominent geomagnetic storm events that occurred during the high solar activity period of 1997-2000. Available simultaneous observations, from the GPS satellite network, are also used. The daytime passes of SROSS-C2 have been selected to examine the redistribution of ionization in the equatorial ionization anomaly (EIA region. In general, EIA is observed to be weakened 12-24 h after the main phase onset (MPO of the storm. The storm time behaviour inferred by SROSS-C2 and the GPS satellite network during the geomagnetic storm of 13 November 1998, for which simultaneous observations are available, is found to be consistent. Storm time changes in the delay of received GPS signals are noted to be ~1-3 m, which is a significant component of the total delay observed on a quiet day.

    An attempt is made to identify and

  3. Solar wind variations and geomagnetic storms - A study of individual storms based on high time resolution ISEE 3 data

    Science.gov (United States)

    Akasofu, S.-I.; Olmsted, C.; Smith, E. J.; Tsurutani, B.; Okida, R.; Baker, D. N.

    1985-01-01

    Two independent methods are employed to determine the relationship between the parameter epsilon and total energy dissipation rate of the magnetosphere U sub T by selecting disturbed periods from the same data d set used by Baker et al. (1983). Specifically, four storms are examined in detail, since the accuracy of estimating U sub T is significantly improved during disturbed periods. The first method assumes that U sub T = M sub A exp.2- alpha(epsilon) where M sub A is the Alfven Mach number and alpha varies with time. The second method considers a linear, time-invariant dynamic system with epsilon as input and U sub T as output. This means that U sub T = W(asterisk)epsilon where asterisk is the convolution and W is a transfer function characteristic of the system. It is found that alpha values fluctuate mainly between 0 and -0.25. The transfer function analysis indicates that W often resembles a delta-function or a narrow rectangular impulse. Both results give the same implication (namely that U sub T is approximately equal to epsilon) and thus are consistent with the view that the magnetosphere is primarily a directly driven system during disturbed periods.

  4. Overview and first results of the Wind and Storms Experiment (WASTEX): a field campaign to observe the formation of gusts using a Doppler lidar

    Science.gov (United States)

    Pantillon, Florian; Wieser, Andreas; Adler, Bianca; Corsmeier, Ulrich; Knippertz, Peter

    2018-05-01

    Wind gusts are responsible for most damages in winter storms over central Europe, but capturing their small scale and short duration is a challenge for both models and observations. This motivated the Wind and Storms Experiment (WASTEX) dedicated to investigate the formation of gusts during the passage of extratropical cyclones. The field campaign took place during the winter 2016-2017 on a former waste deposit located close to Karlsruhe in the Upper Rhine Valley in southwest Germany. Twelve extratropical cyclones were sampled during WASTEX with a Doppler lidar system performing vertical scans in the mean wind direction and complemented with a Doppler C-band radar and a 200 m instrumented tower. First results are provided here for the three most intense storms and include a potential sting jet, a unique direct observation of a convective gust and coherent boundary-layer structures of strong winds.

  5. A Perspective on Sea Level Rise and Coastal Storm Surge from Southern and Eastern Africa: A Case Study Near Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Derek D. Stretch

    2012-03-01

    Full Text Available Recent coastal storms in southern Africa have highlighted the need for more proactive management of the coastline. Within the southern and eastern African region the availability of coastal information is poor. The greatest gap in information is the likely effects of a combination of severe sea storms and future sea level rise (SLR on the shoreline. This lack of information creates a barrier to informed decision making. This research outlines a practical localized approach to this problem, which can be applied as a first order assessment within the region. In so doing it provides a cost effective and simple decision support tool for the built environment and disaster professionals in development and disaster assessments. In a South African context the newly promulgated Integrated Coastal Management Act requires that all proposed coastal developments take into consideration future SLR, however such information currently does not exist, despite it being vital for informed planning in the coastal zone. This practical approach has been applied to the coastline of Durban, South Africa as a case study. The outputs are presented in a Geographic Information System (GIS based freeware viewer tool enabling ease of access to both professionals and laypersons. This demonstrates that a simple approach can provide valuable information about the current and future risk of flooding and coastal erosion under climate change to buildings, infrastructure as well as natural features along the coast.

  6. Analysis of Hurricane Irene’s Wind Field Using the Advanced Research Weather Research and Forecast (WRF-ARW Model

    Directory of Open Access Journals (Sweden)

    Alfred M. Klausmann

    2014-01-01

    Full Text Available Hurricane Irene caused widespread and significant impacts along the U.S. east coast during 27–29 August 2011. During this period, the storm moved across eastern North Carolina and then tracked northward crossing into Long Island and western New England. Impacts included severe flooding from the mid-Atlantic states into eastern New York and western New England, widespread wind damage and power outages across a large portion of southern and central New England, and a major storm surge along portions of the Long Island coast. The objective of this study was to conduct retrospective simulations using the Advanced Research Weather Research and Forecast (WRF-ARW model in an effort to reconstruct the storm’s surface wind field during the period of 27–29 August 2011. The goal was to evaluate how to use the WRF modeling system as a tool for reconstructing the surface wind field from historical storm events to support storm surge studies. The results suggest that, with even modest data assimilation applied to these simulations, the model was able to resolve the detailed structure of the storm, the storm track, and the spatial surface wind field pattern very well. The WRF model shows real potential for being used as a tool to analyze historical storm events to support storm surge studies.

  7. Extreme storms, sea level rise, and coastal change: implications for infrastructure reliability in the Gulf of Mexico

    Science.gov (United States)

    Anarde, K.; Kameshwar, S.; Irza, N.; Lorenzo-Trueba, J.; Nittrouer, J. A.; Padgett, J.; Bedient, P. B.

    2016-12-01

    Predicting coastal infrastructure reliability during hurricane events is important for risk-based design and disaster planning, such as delineating viable emergency response routes. Previous research has focused on either infrastructure vulnerability to coastal flooding or the impact of changing sea level and landforms on surge dynamics. Here we investigate the combined impact of sea level, morphology, and coastal flooding on the reliability of highway bridges - the only access points between barrier islands and mainland communities - during future extreme storms. We forward model coastal flooding for static projections of geomorphic change using ADCIRC+SWAN. First-order parameters that are adjusted include sea level and elevation. These are varied for each storm simulation to evaluate relative impact on the reliability of bridges surrounding Freeport, TX. Simulated storms include both synthetic and historical events, which are classified by intensity using the storm's integrated kinetic energy, a metric for surge generation potential. Reliability is estimated through probability of failure - given wave and surge loads - and time inundated. Findings include that: 1) bridge reliability scales inversely with surge height, and 2) sea level rise reduces bridge reliability due to a monotonic increase in surge height. The impact of a shifting landscape on bridge reliability is more complex: barrier island rollback can increase or decrease inundation times for storms of different intensity due to changes in wind-setup and back-barrier bay interactions. Initial storm surge readily inundates the coastal landscape during large intensity storms, however the draining of inland bays following storm passage is significantly impeded by the barrier. From a coastal engineering standpoint, we determine that to protect critical infrastructure, efforts now implemented that nourish low-lying barriers may be enhanced by also armoring back-bay coastlines and elevating bridge approach

  8. Laboratory Research of the Two-Layer Liquid Dynamics at the Wind Surge in a Strait Canal

    Directory of Open Access Journals (Sweden)

    S.F. Dotsenko

    2017-06-01

    Full Text Available The results of laboratory experiments in a straight aerohydrocanal of the rectangular cross-section filled with the two-layer (fresh-salty liquid are represented. The disturbance generator is the air flow directed to the area above the canal. The cases of the two-layer liquid dynamics in the canal with the horizontal flat bottom and in the presence of the bottom obstacle of finite width are considered. It is shown that during the surge in the straight canal, one of the possible exchange mechanisms on the boundary of fresh and salty layers may consist in the salt water emissions (resulted from the Kelvin-Helmholtz instability to the upper freshwater layer. The subsequent eviction can possibly be accompanied by occurrence of undulations at the interface. Besides, the evictions can be followed by formation of the oscillating layer, i.e. the layer with maximum density gradient the oscillations of which propagate to the overlying layers. Presence of the bottom obstacle complicates the structure of the two-layer liquid motions. In particular, it results in emergence of the mixed layers and transformation of the flow behind the obstacle into a turbulent one, formation of the wave-like disturbances over the obstacle, sharp change of the interface position and occurrence of large-scale vortices with the horizontal axes. It is revealed that the maximum peak of the flow velocity horizontal component is shifted upstream from the obstacle.

  9. Hindcast storm events in the Bering Sea for the St. Lawrence Island and Unalakleet Regions, Alaska

    Science.gov (United States)

    Erikson, Li H.; McCall, Robert T.; van Rooijen, Arnold; Norris, Benjamin

    2015-01-01

    This study provides viable estimates of historical storm-induced water levels in the coastal communities of Gambell and Savoonga situated on St. Lawrence Island in the Bering Sea, as well as Unalakleet located at the head of Norton Sound on the western coast of Alaska. Gambell, Savoonga, and Unalakleet are small Native Villages that are regularly impacted by coastal storms but where little quantitative information about these storms exists. The closest continuous water-level gauge is at Nome, located more than 200 kilometers from both St. Lawrence Island and Unalakleet. In this study, storms are identified and quantified using historical atmospheric and sea-ice data and then used as boundary conditions for a suite of numerical models. The work includes storm-surge (temporary rise in water levels due to persistent strong winds and low atmospheric pressures) modeling in the Bering Strait region, as well as modeling of wave runup along specified sections of the coast in Gambell and Unalakleet. Modeled historical water levels are used to develop return periods of storm surge and storm surge plus wave runup at key locations in each community. It is anticipated that the results will fill some of the data void regarding coastal flood data in western Alaska and be used for production of coastal vulnerability maps and community planning efforts.

  10. Developing Local Scale, High Resolution, Data to Interface with Numerical Storm Models

    Science.gov (United States)

    Witkop, R.; Becker, A.; Stempel, P.

    2017-12-01

    High resolution, physical storm models that can rapidly predict storm surge, inundation, rainfall, wind velocity and wave height at the intra-facility scale for any storm affecting Rhode Island have been developed by Researchers at the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) (Ginis et al., 2017). At the same time, URI's Marine Affairs Department has developed methods that inhere individual geographic points into GSO's models and enable the models to accurately incorporate local scale, high resolution data (Stempel et al., 2017). This combination allows URI's storm models to predict any storm's impacts on individual Rhode Island facilities in near real time. The research presented here determines how a coastal Rhode Island town's critical facility managers (FMs) perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale and explores methods to elicit this information from FMs in a format usable for incorporation into URI's storm models.

  11. Sensitivity study of surface wind flow of a limited area model simulating the extratropical storm Delta affecting the Canary Islands

    Directory of Open Access Journals (Sweden)

    C. Marrero

    2009-04-01

    Full Text Available In November 2005 an extratropical storm named Delta affected the Canary Islands (Spain. The high sustained wind and intense gusts experienced caused significant damage. A numerical sensitivity study of Delta was conducted using the Weather Research & Forecasting Model (WRF-ARW. A total of 27 simulations were performed. Non-hydrostatic and hydrostatic experiments were designed taking into account physical parameterizations and geometrical factors (size and position of the outer domain, definition or not of nested grids, horizontal resolution and number of vertical levels. The Factor Separation Method was applied in order to identify the major model sensitivity parameters under this unusual meteorological situation. Results associated to percentage changes relatives to a control run simulation demonstrated that boundary layer and surface layer schemes, horizontal resolutions, hydrostaticity option and nesting grid activation were the model configuration parameters with the greatest impact on the 48 h maximum 10 m horizontal wind speed solution.

  12. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains.

    Science.gov (United States)

    Csilléry, Katalin; Kunstler, Georges; Courbaud, Benoît; Allard, Denis; Lassègues, Pierre; Haslinger, Klaus; Gardiner, Barry

    2017-12-01

    Damage due to wind-storms and droughts is increasing in many temperate forests, yet little is known about the long-term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind-storms on adult tree mortality across a 31-year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind-storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave-one-out cross-validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind-storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms -1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind-loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind-storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these

  13. The Effect of Neutral Winds on Simulated Inner Magnetospheric Electric Fields During the 17 March 2013 Storm

    Science.gov (United States)

    Chen, M.; Lemon, C.; Walterscheid, R. L.; Hecht, J. H.; Sazykin, S. Y.; Wolf, R.

    2017-12-01

    We investigate how neutral winds and particle precipitation affect the simulated development of electric fields including Sub-Auroral Polarization Streams (SAPS) during the 17 March 2013 storm. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) to simulate the inner magnetospheric electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. Ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. The electron and proton contributions to the auroral conductance in the RCM-E are calculated using the empirical Robinson et al. [JGR, 1987] and Galand and Richmond [JGR, 2001] equations, respectively. The "background" ionospheric conductance is based on parameters from the International Reference Ionosphere [Bilitza and Reinisch, JASR, 2008] but modified to include the effect of specified ionospheric troughs. Neutral winds are modeled by the empirical Horizontal Wind Model (HWM07) in the RCM-E. We compare simulated precipitating particle energy flux, E x B velocities with DMSP observations during the 17 March 2013 storm with and without the inclusion of neutral winds. Discrepancies between the simulations and observations will aid us in assessing needed improvements in the model.

  14. Geomagnetic storm effects in ionospheric TEC at an euatorial station: contribution of EXB drifts and meridional neutral winds

    International Nuclear Information System (INIS)

    Dabas, R.S.; Jain, A.R.

    1985-01-01

    Storm-time variations in TEC measurements at the Indian station Ootacamund with IEC data for four stations in the anomaly region. Variations in Nsub(T)(OOTY) are found to be smaller compared to those observed at anomaly stations. The equatorial electrojet control of Nsub(T)(OOTY) is weaker compared to that of Nsub(m)F2. This result and absence of midday biteout in Nsub(T)(OOTY) are interpreted in terms of plasma exchange between ionosphere and plasmasphere which, to some extent, compensates the loss of plasma in the column due to E x B drifts. The anomaly depth is found to be well correlated with the electrojet strength. It is also noticed that for the same anomaly is weaker on a storm day than for quiet days. This is interpreted in terms of converging equatorward meridional winds. Thus, ionosphere-plasmasphere plasma exchange and, during disturbed period, the converging equatorward meridional winds also have significant effects on the distribution of ionization at these latitudes though the E x B drifts are most important in affecting the ionization distribution at low latitudes. (author)

  15. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term

  16. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  17. Aeroservoelastic analysis of storm-ride-through control strategies for wind turbines

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Hansen, Morten Hartvig

    2016-01-01

    An investigation of a control strategy to allow wind turbines to operate at high wind speeds by derating the rotor speed and generator torque set-points is presented. The investigation analyzes the wind turbine aeroservoelastic behavior in the above rated operational range by computing the aerody......An investigation of a control strategy to allow wind turbines to operate at high wind speeds by derating the rotor speed and generator torque set-points is presented. The investigation analyzes the wind turbine aeroservoelastic behavior in the above rated operational range by computing...... the aerodynamic gains and closed-loop eigenvalue solutions using a high-delity linear model. A simple strategy to reduce the reference rotor speed based on a pitch angle feedback is presented and analyzed. It is shown that high aerodynamic gains for operation at high wind speeds requires special handling...... in the scheduling of the controller gains. The computed closed-loop modal frequencies and damping ratios show how most turbine modes become less damped as the rotor speed is derated, and at very high winds the frequency and damping of the first drivetrain torsion mode are significantly reduced. Possible resonance...

  18. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z- M relationship

    Science.gov (United States)

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2018-02-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  19. Abnormal storm waves in the winter East/Japan Sea: generation process and hindcasting using an atmosphere-wind wave modelling system

    Directory of Open Access Journals (Sweden)

    H. S. Lee

    2010-04-01

    Full Text Available Abnormal storm waves cause coastal disasters along the coasts of Korean Peninsula and Japan in the East/Japan Sea (EJS in winter, arising due to developed low pressures during the East Asia winter monsoon. The generation of these abnormal storm waves during rough sea states were studied and hindcast using an atmosphere-wave coupled modelling system. Wind waves and swell due to developed low pressures were found to be the main components of abnormal storm waves. The meteorological conditions that generate these waves are classified into three patterns based on past literature that describes historical events as well as on numerical modelling. In hindcasting the abnormal storm waves, a bogussing scheme originally designed to simulate a tropical storm in a mesoscale meteorological model was introduced into the modelling system to enhance the resolution of developed low pressures. The modelling results with a bogussing scheme showed improvements in terms of resolved low pressure, surface wind field, and wave characteristics obtained with the wind field as an input.

  20. Flood Losses Associated with Winter Storms in the U.S. Northeast

    Science.gov (United States)

    Ting, M.; Shimkus, C.

    2015-12-01

    Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.

  1. Reconstruction of solar wind features that caused a super geomagnetic storm

    Science.gov (United States)

    Lui, A. T. Y.; Gonzalez, W. D.

    2013-06-01

    A superstorm with Dst < -300 nT can cause major space disturbances. We examine one on March 31, 2001 that has the minimum Dst of -387 nT and obtain two-dimensional maps in pressure and magnetic field of the sheath region and a magnetic cloud behind it. Both the sheath and the magnetic cloud play a role in building the storm strength. Several properties of the magnetic cloud are inferred, including an estimated total magnetic flux of ~6.5×1012 Wb.

  2. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    Science.gov (United States)

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  3. Role of the lifetime of ring current particles on the solar wind-magnetosphere power transfer during the intense geomagnetic storm of 28 August 1978

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.; Lee, L.C.

    1990-01-01

    For the intense magnetic storms of 28 August 1978 it is shown that the power transfer from the solar wind to the magnetosphere is well represented by the expression obtained by Vasyliunas et al. (1982, Planet. Space Sci. 30, 359) from dimensional analysis, but this representation becomes improved when such an expression is modified by a factor due to an influence of the lifetime of ring current particles as suggested by Lee and Akasofu (1984, Planet. Space Sci. 32, 1423). During a steady state regime of the ring current evolution of this storm, our study suggests that the power transfer depends on the solar wind density, the transverse component of the IMF (Interplanetary magnetic field) (with respect to the Sun-Earth line) and also, explicitly, on the time constant for ring current energy decay, but not on the solar wind speed. (author)

  4. Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California

    Science.gov (United States)

    Dettinger, M.D.; Martin, Ralph F.; Hughes, M.; Das, T.; Neiman, P.; Cox, D.; Estes, G.; Reynolds, D.; Hartman, R.; Cayan, D.; Jones, L.

    2012-01-01

    The USGS Multihazards Project is working with numerous agencies to evaluate and plan for hazards and damages that could be caused by extreme winter storms impacting California. Atmospheric and hydrological aspects of a hypothetical storm scenario have been quantified as a basis for estimation of human, infrastructure, economic, and environmental impacts for emergency-preparedness and flood-planning exercises. In order to ensure scientific defensibility and necessary levels of detail in the scenario description, selected historical storm episodes were concatentated to describe a rapid arrival of several major storms over the state, yielding precipitation totals and runoff rates beyond those occurring during the individual historical storms. This concatenation allowed the scenario designers to avoid arbitrary scalings and is based on historical occasions from the 19th and 20th Centuries when storms have stalled over the state and when extreme storms have arrived in rapid succession. Dynamically consistent, hourly precipitation, temperatures, barometric pressures (for consideration of storm surges and coastal erosion), and winds over California were developed for the so-called ARkStorm scenario by downscaling the concatenated global records of the historical storm sequences onto 6- and 2-km grids using a regional weather model of January 1969 and February 1986 storm conditions. The weather model outputs were then used to force a hydrologic model to simulate ARkStorm runoff, to better understand resulting flooding risks. Methods used to build this scenario can be applied to other emergency, nonemergency and non-California applications. ?? 2011 The Author(s).

  5. Factors controlling storm impacts on coastal barriers and beaches - A preliminary basis for near real-time forecasting

    Science.gov (United States)

    Morton, R.A.

    2002-01-01

    Analysis of ground conditions and meteorological and oceanographic parameters for some of the most severe Atlantic and Gulf Coast storms in the U.S. reveals the primary factors affecting morphological storm responses of beaches and barrier islands. The principal controlling factors are storm characteristics, geographic position relative to storm path, timing of storm events, duration of wave exposure, wind stress, degree of flow confinement, antecedent topography and geologic framework, sediment textures, vegetative cover, and type and density of coastal development. A classification of commonly observed storm responses demonstrates the sequential interrelations among (1) land elevations, (2) water elevations in the ocean and adjacent lagoon (if present), and (3) stages of rising water during the storm. The predictable coastal responses, in relative order from high frequency beach erosion to low frequency barrier inundation, include: beach erosion, berm migration, dune erosion, washover terrace construction, perched fan deposition, sheetwash, washover channel incision, washout formation, and forced and unforced ebb flow. Near real-time forecasting of expected storm impacts is possible if the following information is available for the coast: a detailed morphological and topographic characterization, accurate storm-surge and wave-runup models, the real-time reporting of storm parameters, accurate forecasts of the storm position relative to a particular coastal segment, and a conceptual model of geological processes that encompasses observed morphological changes caused by extreme storms.

  6. Coastal ecosystems for protection against storm surge

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    and infrastructure in single catastrophe exceeded Rs. 2750 crore. Economic loss is thus prohibitive and hence unsustainable. This paper acknowledges the intrinsic protective value of coastal sand dunes, vegetation and wetlands as a functional natural defence...

  7. Modeling Storm Surges Using Discontinuous Galerkin Methods

    Science.gov (United States)

    2016-06-01

    layer non-reflecting boundary condition (NRBC) on the right wall of the model. A NRBC is when an artificial boundary , B, is created, which truncates the... applications ,” Journal of Computational Physics, 2004. [30] P. L. Butzer and R. Weis, “On the lax equivalence theorem equipped with orders,” Journal of...closer to the shoreline. In our simulation, we also learned of the effects spurious waves can have on the results. Due to boundary conditions, a

  8. Centrifugal Compressor Surge Controlled

    Science.gov (United States)

    Skoch, Gary J.

    2003-01-01

    It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.

  9. FY 1998 Report on development of large-scale wind power generation systems. Research of wind turbines for storm worthy and easy construction; 1998 nendo ogata furyoku hatsuden system kaihatsu. Taikyofu kensetsu yoigata fusha ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The research and development statuses in various countries are surveyed, to have useful information to draw the future R and D directions for wind turbines resistant to storms and easy construction. Greece has sites suitable for wind power generation in mountainous districts, and is developing the systems while taking the characteristic weather conditions into consideration. The country provides information regarding aerodynamic/structural design methods for wind turbine blades applicable to turbulent wind generated by complex terrain, and wind assessment and analyses in complex terrain. In India, on-the-spot surveys are made at the cyclone-attacked wind farms. One of the areas on which the USA is putting emphasis is development of small-size wind turbines and wind-diesel hybrid systems for developing countries and independent grid systems in remote areas. Australia is constructing wind-diesel hybrid systems to be connected to a number of independent grid systems in its western area. In Europe, information is collected for the advanced aerodynamic analysis, construction of offshore wind turbines, and production engineering and facilities for blades and other components from Vestas and N.E.G. Micon as the leading wind turbine makers. (NEDO)

  10. Tide-surge interaction in the English Channel

    Directory of Open Access Journals (Sweden)

    D. Idier

    2012-12-01

    Full Text Available The English Channel is characterised by strong tidal currents and a wide tidal range, such that their influence on surges is expected to be non-negligible. In order to better assess storm surges in this zone, tide-surge interactions are investigated. A preliminary data analysis on hourly surges indicates some preferential times of occurrence of large storm surges at rising tide, especially in Dunkerque. To examine this further, a numerical modelling approach is chosen, based on the 2DH shallow-water model (MARS. The surges are computed both with and without tide interaction. For the two selected events (the November 2007 North Sea and March 2008 Atlantic storms, it appears that the instantaneous tide-surge interaction is seen to be non-negligible in the eastern half of the English Channel, reaching values of 74 cm (i.e. 50% of the same event maximal storm surge in the Dover Strait for the studied cases. This interaction decreases in westerly direction. In the risk-analysis community in France, extreme water levels have been determined assuming skew surges and tide as independent. The same hydrodynamic model is used to investigate this dependence in the English Channel. Simple computations are performed with the same meteorological forcing, while varying the tidal amplitude, and the skew surge differences DSS are analysed. Skew surges appear to be tide-dependent, with negligible values of DSS (<0.05 m over a large portion of the English Channel, although reaching several tens of centimetres in some locations (e.g. the Isle of Wight and Dover Strait.

  11. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    Science.gov (United States)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal

  12. Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV

    Science.gov (United States)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.

    1981-01-01

    An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.

  13. High resolution modelling results of the wind flow over Canary Islands during the meteorological situation of the extratropical storm Delta (28–30 November 2005

    Directory of Open Access Journals (Sweden)

    J. M. Baldasano

    2008-05-01

    Full Text Available On 28–29 November 2005 an extratropical storm affected the Canary Islands causing significant damage related to high average wind speeds and intense gusts over some islands of the archipelago. Delta was the twenty-sixth tropical or subtropical storm of the 2005 Atlantic hurricane season. It represents an unusual meteorological phenomenon for that region, and its impacts were underestimated by the different operational meteorological forecasts during the previous days of the arrival of the low near Canary Islands. The aim of this study is to reproduce the local effects of the flow that were observed over the Canary Islands during the travel of the Delta storm near the region using high-resolution mesoscale meteorological simulations. The Advanced Research Weather Research & Forecasting Model (WRF-ARW is applied at 9, 3 and 1 km horizontal resolution using ECMWF forecasts as initial and boundary conditions. The high-resolution simulation will outline the main features that contributed to the high wind speeds observed in the archipelago. Variations in vertical static stability, vertical windshear and the intense synoptic winds of the southwestern part of Delta with a warm core at 850 hPa were the main characteristics that contributed to the development and amplification of intense gravity waves while the large-scale flow interacted with the complex topography of the islands.

  14. Profiling Radar Observations and Numerical Simulations of a Downslope Wind Storm and Rotor on the Lee of the Medicine Bow Mountains in Wyoming

    Directory of Open Access Journals (Sweden)

    Binod Pokharel

    2017-02-01

    Full Text Available This study describes a downslope wind storm event observed over the Medicine Bow range (Wyoming, USA on 11 January 2013. The University of Wyoming King Air (UWKA made four along-wind passes over a five-hour period over the mountain of interest. These passes were recognized as among the most turbulent ones encountered in many years by crew members. The MacCready turbulence meter aboard the UWKA measured moderate to severe turbulence conditions on each pass in the lee of the mountain range, with eddy dissipation rate values over 0.5 m2/3 s−1. Three rawinsondes were released from an upstream location at different times. This event is simulated using the non-hydrostatic Weather Research and Forecast (WRF model at an inner- domain resolution of 1 km. The model produces a downslope wind storm, notwithstanding some discrepancies between model and rawinsonde data in terms of upstream atmospheric conditions. Airborne Wyoming Cloud Radar (WCR vertical-plane Doppler velocity data from two beams, one pointing to the nadir and one pointing slant forward, are synthesized to obtain a two-dimensional velocity field in the vertical plane below flight level. This synthesis reveals the fine-scale details of an orographic wave breaking event, including strong, persistent downslope acceleration, a strong leeside updraft (up to 10 m·s−1 flanked by counter-rotating vortices, and deep turbulence, extending well above flight level. The analysis of WCR-derived cross-mountain flow in 19 winter storms over the same mountain reveals that cross-mountain flow acceleration and downslope wind formation are difficult to predict from upstream wind and stability profiles.

  15. Ionosphere and thermosphere responses during August 1972 storms - a review

    International Nuclear Information System (INIS)

    Matsushita, S.

    1976-01-01

    Various reports of ionospheric responses during the August 1972 storm events are reviewed with respect to the phenomena in three major world sectors, N-S America, Afro-Europe, and Austro-Asia, in order to have a global picture. Emphasized highlights are (1) extensive investigation of the sudden increase of the total electron content estimated from Faraday-rotation measurements of satellite signals; (2) a dramatic upward surge above 300 km latitude, soon after a flare, measured by the Millstone Hill incoherent scatter radar; (3) electron density profiles, electric fields and conductivities, and neutral winds, at the time of the geomagnetic storm sudden commencement and during the succeeding storms, measured by the Chatanika incoherent scatter radar; and, (4) approximately 2.5-h oscillatory F2 density variations in Eastern Asia during the F2 storm main phase. To show temporal variations of the latitudinal distributions of storm-time F2 electron densities, in three longitudinal sectors separated about 60 0 longitude each, newly investigated results of the F2 hourly data at 35 stations in the Asia-Australia-Pacific sector are then exhibited. Finally, current theories or at least theoretical ideas of ionospheric storm mechanisms are briefly introduced, and a few remarks on the August events in the light of those theories are presented. (Auth.)

  16. Storm Power, an Icy Tower and Elsa’s Bower: The Winds of Change in Disney’s Frozen

    Directory of Open Access Journals (Sweden)

    Lauren Dundes

    2018-05-01

    Full Text Available In Disney’s box office sensation Frozen (2013, Elsa conjures powers rivaling those of Zeus, which is an echo of the shifting gender dynamics at the time of the film’s release. By independently creating offspring Olaf and Marshmallow through whirlwinds, Elsa’s parthenogenesis (virgin birth evokes wind-driven pollination, allowing her to circumvent any male role in creation. However, Elsa’s autonomy clashes with the traditional gender hierarchy, which is reinforced by a cultural context replete with latent symbolic meanings. Examples include both carrots and carats as phallic symbols, eggs as representations of the procreative potential that is appropriated by men and devalued in women, gender bias in perceptions of magic and enchantment, and the value of the nubile nymph over the tempestuous termagant. The normalcy of male dominance likely drives the resolution of the plot, in which Elsa learns to wield power in a non-threatening manner. In addition to having implications for gender roles, Frozen also portrays a mélange of gender symbolism through Elsa’s snowmen creations, which function as an expression of the storm of controversy surrounding the subversion of binary conceptions of gender. In the end, Frozen serves as a cautionary tale about the dangers inherent in an unattached female as the ultimate potentate. This content analysis suggests that the film reflects fears surrounding the maelstrom of societal changes including expanding fertility options and the re-conceptualization of gender identity--pressing issues likely to sustain Frozen’s relevance.

  17. How the effects of winds and electric fields in F2-layer storms vary with latitude and longitude - A theoretical study

    Science.gov (United States)

    Mendillo, M.; He, X.-Q.; Rishbeth, H.

    1992-01-01

    The effects of thermospheric winds and electric fields on the ionospheric F2-layer are controlled by the geometry of the magnetic field, and so vary with latitude and longitude. A simple model of the daytime F2-layer is adopted and the effects at midlatitudes (25-65 deg geographic) of three processes that accompany geomagnetic storms: (1) thermospheric changes due to auroral heating; (2) equatorward winds that tend to cancel the quiet-day poleward winds; and (3) the penetration of magnetospheric electric fields are studied. At +/- 65 deg, the effects of heating and electric fields are strongest in the longitudes toward which the geomagnetic dipole is tilted, i.e., the North American and the South Indian Ocean sectors. Because of the proximity of the geomagnetic equator to the East Asian and South American sectors, the reverse is true at +/- 25 deg.

  18. Interplanetary ions during an energetic storm particle event: The distribution function from solar wind thermal energies to 1.6 MeV

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Paschmann, G.; Sckopke, N.; Hynds, R.J.

    1981-01-01

    Data from the Los Alamos Scientific Laboratory/Max-Planck-Institut fast plasma experiment on Isee 2 have been combined with data from the European Space Agency/Imperial College/Space Research Laboratory low-energy proton experiment on Isee 3 to obtain for the first time an ion velocity distribution function f(v) extending from solar wind energies (-1 keV) to 1.6 MeV during the postshock phase of an energetic storm particle (ESP) event. This study reveals that f(v) of the ESP population is roughly isotropic in the solar wind frame from solar wind thermal energies out to 1.6 MeV. Emerging smoothly out of the solar wind thermal distribution, the ESP f(v) initially falls with increasing energy as E/sup -2.4/ in the solar wind frame. Above about 40 keV no single power law exponent adequately describes the energy dependence of f(v) in the solar wind frame. Above approx.200 keV in both the spacecraft frame and the solar wind frame, f(v) can be described by an exponential in speed (f(v)proportionale/sup -v/v//sub o/) with v/sub o/ = 1.05 x 10 8 cm s -1 . The ESP event studied (August 27, 1978) was superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. Our observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with the shock wave disturbance. The acceleration mechanism is sufficiently efficient that approx.1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approx.290 eV cm -3

  19. The dual effect of vegetation green-up date and strong wind on the return period of spring dust storms.

    Science.gov (United States)

    Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi

    2017-08-15

    Vegetation phenology changes have been widely applied in the disaster risk assessments of the spring dust storms, and vegetation green-up date shifts have a strong influence on dust storms. However, the effect of earlier vegetation green-up dates due to climate warming on the evaluation of dust storms return periods remains an important, but poorly understood issue. In this study, we evaluate the spring dust storm return period (February to June) in Inner Mongolia, Northern China, using 165 observations of severe spring dust storm events from 16 weather stations, and regional vegetation green-up dates as an integrated factor from NDVI (Normalized Difference Vegetation Index), covering a period from 1982 to 2007, by building the bivariate Copula model. We found that the joint return period showed better fitting results than without considering the integrated factor when the actual dust storm return period is longer than 2years. Also, for extremely severe dust storm events, the gap between simulation result and actual return period can be narrowed up to 0.4888years by using integrated factor. Furthermore, the risk map based on the return period results shows that the Mandula, Zhurihe, Sunitezuoqi, Narenbaolige stations are identified as high risk areas. In this study area, land surface is extensively covered by grasses and shrubs, vegetation green-up date can play a significant role in restraining spring dust storm outbreaks. Therefore, we suggest that Copula method can become a useful tool for joint return period evaluation and risk analysis of severe dust storms. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Wind field measurement in the nonprecipitous regions surrounding storms by an airborne pulsed Doppler lidar system, appendix A

    Science.gov (United States)

    Bilbro, J. W.; Vaughan, W. W.

    1980-01-01

    Coherent Doppler lidar appears to hold great promise in contributing to the basic store of knowledge concerning flow field characteristics in the nonprecipitous regions surrounding severe storms. The Doppler lidar, through its ability to measure clear air returns, augments the conventional Doppler radar system, which is most useful in the precipitous regions of the storm. A brief description of the Doppler lidar severe storm measurement system is provided along with the technique to be used in performing the flow field measurements. The application of the lidar is addressed, and the planned measurement program is outlined.

  1. Integration of coastal inundation modeling from storm tides to individual waves

    Science.gov (United States)

    Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai

    2014-11-01

    Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.

  2. A Comparison of Tropical Storm (TS) and Non-TS Gust Factors for Assessing Peak Wind Probabilities at the Eastern Range

    Science.gov (United States)

    Merceret, Francis J.; Crawford, Winifred C.

    2010-01-01

    Peak wind speed is an important forecast element to ensure the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) in East-Central Florida. The 45th Weather Squadron (45 WS), the organization that issues forecasts for the KSC/CCAFS area, finds that peak winds are more difficult to forecast than mean winds. This difficulty motivated the 45 WS to request two independent studies. The first (Merceret 2009) was the development of a reliable model for gust factors (GF) relating the peak to the mean wind speed in tropical storms (TS). The second (Lambert et al. 2008) was a climatological study of non-TS cool season (October-April) mean and peak wind speeds by the Applied Meteorology Unit (AMU; Bauman et al. 2004) without the use of GF. Both studies presented their statistics as functions of mean wind speed and height. Most of the few comparisons of TS and non-TS GF in the literature suggest that non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics calculated by the AMU to the equivalent GF statistics and compared them with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data were taken from the same towers in the same locations. This eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The goal of this study is two-fold: to determine the relationship between the non-TS and TS GF and their standard deviations (GFSD) and to determine if models similar to those developed for TS data in Merceret (2009) could be developed for the non-TS environment. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF and GFSD as a function

  3. Coastal Flooding in Florida's Big Bend Region with Application to Sea Level Rise Based on Synthetic Storms Analysis

    Directory of Open Access Journals (Sweden)

    Scott C. Hagen Peter Bacopoulos

    2012-01-01

    Full Text Available Flooding is examined by comparing maximum envelopes of water against the 0.2% (= 1-in-500-year return-period flooding surface generated as part of revising the Federal Emergency Management Agency¡¦s flood insurance rate maps for Franklin, Wakulla, and Jefferson counties in Florida¡¦s Big Bend Region. The analysis condenses the number of storms to a small fraction of the original 159 used in production. The analysis is performed by assessing which synthetic storms contributed to inundation extent (the extent of inundation into the floodplain, coverage (the overall surface area of the inundated floodplain and the spatially variable 0.2% flooding surface. The results are interpreted in terms of storm attributes (pressure deficit, radius to maximum winds, translation speed, storm heading, and landfall location and the physical processes occurring within the natural system (storms surge and waves; both are contextualized against existing and new hurricane scales. The approach identifies what types of storms and storm attributes lead to what types of inundation, as measured in terms of extent and coverage, in Florida¡¦s Big Bend Region and provides a basis in the identification of a select subset of synthetic storms for studying the impact of sea level rise. The sea level rise application provides a clear contrast between a dynamic approach versus that of a static approach.

  4. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    International Nuclear Information System (INIS)

    Gold, R.E.; Dodson-Prince, H.W.; Hedeman, E.R.; Roelof, E.C.

    1982-01-01

    We have studied solar and interplanetary data by identification of the heliographic longitudes of the coronal source regions of high speed solar wind streams and by mapping the velocities measured near earth back to the sun using the approximation of constant radial velocity. Interplay of active regions and solar wind were studied

  5. Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic

    Science.gov (United States)

    2015-08-01

    windfield improvements in WIS result in a superior hindcast product. ERDC/CHL TR-15-11 16 Figure 6. Station 44025 full hindcast evaluations. See...using IOKA winds and WAVEWATCH III modeling technology. Furthermore, the NCEP reanalysis hindcast will likely be rerun with improved WAVEWATCH III...surface wind speeds. Part I: Theory and seawinds observations. Journal of Climate 19:497–520. Ramsey, R., D. Leathers , D. Wells, and H. Talley. 1998

  6. Evaluation of surge transferred overvoltages in distribution transformers

    NARCIS (Netherlands)

    Popov, M.; Sluis, van der L.; Smeets, R.P.P.

    2008-01-01

    The paper presents an analysis of very fast-transient overvoltages that occur because of the capacitive surge transfer from the high-voltage (HV) transformer winding to the low-voltage (LV) transformer winding. The study is done on a 6.6 kV single-phase test transformer. By applying a pulse with a

  7. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  8. Exceptional winter storms affecting Western Iberia and extremes: diagnosis, modelling and multi-model ensemble projection

    Science.gov (United States)

    Liberato, M. L. R.; Pinto, J. G.; Gil, V.; Ramos, A. M.; Trigo, R. M.

    2017-12-01

    Extratropical cyclones dominate autumn and winter weather over Western Europe and particularly over the Iberian Peninsula. Intense, high-impact storms are one of the major weather risks in the region, mostly due to the simultaneous occurrence of high winds and extreme precipitation events. These intense extratropical cyclones may result in windstorm damage, flooding and coastal storm surges, with large societal impacts. In Portugal, due to the extensive human use of coastal areas, the natural and built coastal environments have been amongst the most affected. In this work several historical winter storms that adversely affected the Western Iberian Peninsula are studied in detail in order to contribute to an improved assessment of the characteristics of these events. The diagnosis has been performed based on instrumental daily precipitation and wind records, on satellite images, on reanalysis data and through model simulations. For several examples the synoptic evolution and upper-level dynamics analysis of physical processes controlling the life cycle of extratropical storms associated with the triggering of the considered extreme events has also been accomplished. Furthermore, the space-time variability of the exceptionally severe storms affecting Western Iberia over the last century and under three climate scenarios (the historical simulation, the RCP4.5 and RCP8.5 scenarios) is presented. These studies contribute to improving the knowledge of atmospheric dynamics controlling the life cycle of midlatitude storms associated to severe weather (precipitation and wind) in the Iberian Peninsula. AcknowledgementsThis work is supported by the Portuguese Foundation for Science and Technology (FCT), Portugal, through project UID/GEO/50019/2013 - Instituto Dom Luiz. A. M. Ramos is also supported by a FCT postdoctoral grant (FCT/DFRH/SFRH/BPD/84328/2012).

  9. Overview of the ARkStorm scenario

    Science.gov (United States)

    Porter, Keith; Wein, Anne; Alpers, Charles N.; Baez, Allan; Barnard, Patrick L.; Carter, James; Corsi, Alessandra; Costner, James; Cox, Dale; Das, Tapash; Dettinger, Mike; Done, James; Eadie, Charles; Eymann, Marcia; Ferris, Justin; Gunturi, Prasad; Hughes, Mimi; Jarrett, Robert; Johnson, Laurie; Le-Griffin, Hanh Dam; Mitchell, David; Morman, Suzette; Neiman, Paul; Olsen, Anna; Perry, Suzanne; Plumlee, Geoffrey; Ralph, Martin; Reynolds, David; Rose, Adam; Schaefer, Kathleen; Serakos, Julie; Siembieda, William; Stock, Jonathan; Strong, David; Wing, Ian Sue; Tang, Alex; Thomas, Pete; Topping, Ken; Wills, Chris; Jones, Lucile

    2011-01-01

    coastal communities. Windspeeds in some places reach 125 miles per hour, hurricane-force winds. Across wider areas of the state, winds reach 60 miles per hour. Hundreds of landslides damage roads, highways, and homes. Property damage exceeds $300 billion, most from flooding. Demand surge (an increase in labor rates and other repair costs after major natural disasters) could increase property losses by 20 percent. Agricultural losses and other costs to repair lifelines, dewater (drain) flooded islands, and repair damage from landslides, brings the total direct property loss to nearly $400 billion, of which $20 to $30 billion would be recoverable through public and commercial insurance. Power, water, sewer, and other lifelines experience damage that takes weeks or months to restore. Flooding evacuation could involve 1.5 million residents in the inland region and delta counties. Business interruption costs reach $325 billion in addition to the $400 property repair costs, meaning that an ARkStorm could cost on the order of $725 billion, which is nearly 3 times the loss deemed to be realistic by the ShakeOut authors for a severe southern California earthquake, an event with roughly the same annual occurrence probability. The ARkStorm has several public policy implications: (1) An ARkStorm raises serious questions about the ability of existing federal, state, and local disaster planning to handle a disaster of this magnitude. (2) A core policy issue raised is whether to pay now to mitigate, or pay a lot more later for recovery. (3) Innovative financing solutions are likely to be needed to avoid fiscal crisis and adequately fund response and recovery costs from a similar, real, disaster. (4) Responders and government managers at all levels could be encouraged to conduct risk assessments, and devise the full spectrum of exercises, to exercise ability of their plans to address a similar event. (5) ARkStorm can be a reference point for application of Federal Emergency Ma

  10. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    Science.gov (United States)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  11. Great magnetic storms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Yen Te Lee; Tang, F.; Gonzalez, W.D.

    1992-01-01

    The five largest magnetic storms that occurred between 1971 and 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events ) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective

  12. Role of neutral wind and storm time electric fields inferred from the storm time ionization distribution at low latitudes: in-situ measurements by Indian satellite SROSS-C2

    OpenAIRE

    Subrahmanyam , P.; Jain , A. R.; Singh , L.; Garg , S. C.

    2005-01-01

    Recently, there has been a renewal of interest in the study of the effects of solar weather events on the ionization redistribution and irregularity generation. The observed changes at low and equatorial latitudes are rather complex and are noted to be a function of location, the time of the storm onset and its intensity, and various other characteristics of the geomagnetic storms triggered by solar weather events. At these latitudes, the effects of geomagnetic storms are basically due to (a)...

  13. Tide-surge Interaction Intensified by the Taiwan Strait

    Science.gov (United States)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  14. A theoretical model of the influence of spray on the exchange of momentum, with storm and hurricane winds

    Science.gov (United States)

    Troitskaya, Yuliya; Ezhova, Ekaterina; Soustova, Irina

    2013-04-01

    A stochastic model of the "life cycle" of a droplet, the torn off the crest of a steep surface wave and then falling down to the water is constructed. The model includes the following constituents: i) a model of motion of a heavy particle in the forcing air flow (equation of motion), ii) a model of the wind flow (wind velocity, wave-induced disturbances, turbulent fluctuations), iii) a model of spray injection, iiii) the droplet statistics (size distribution, wind-speed dependence) The interaction of water droplets in the atmospheric boundary layer with turbulent fluctuations is described in terms of the Markovian chain. The mean wind field in the marine atmospheric boundary layer is determined by the momentum exchange associated with the turbulent and wave momentum transfer and by sprays. The wave and turbulent momentum exchange is parameterized by the Charnok expression for the roughness parameter. Wave disturbances induced in the air flow by waves at the surface, were calculated within the model of the marine atmospheric boundary suggested in [1]. The greatest uncertainty in this model is the mechanism of droplets injection. We consider two models for the injection of droplets in the air flow. In the first model the droplets formed by the development of the Kelvin-Helmholtz instability, are entered in the flow with the orbital velocity of the wave (Koga's model [2]), The second mechanism, investigated in many papers, considers droplets from the breakdown of a jet which rises at high speeds from the bottom of the collapsing air bubble cavity [3]. To determine the number of drops injected to the atmospheric boundary layer from the sea surface, the Spray generation function proposed in [4] was in use. Within the model the momentum acquired by every droplet in the interaction with the air flow was calculated. Depending on the particular field of air velocity, wave parameters and the radius of the droplet, it can both get and deliver momentum give impetus to the air

  15. On the contribution of reconstruction labor wages and material prices to demand surge

    Science.gov (United States)

    Olsen, Anna H.; Porter, Keith A.

    2011-01-01

    Demand surge is understood to be a socio-economic phenomenon of large-scale natural disasters, most commonly explained by higher repair costs (after a large- versus small-scale disaster) resulting from higher material prices and labor wages. This study tests this explanation by developing quantitative models for the cost change of sets, or "baskets," of repairs to damage caused by Atlantic hurricanes making landfall on the mainland United States. We define six such baskets, representing the total repair cost, and material and labor components, each for a typical residential or commercial property. We collect cost data from the leading provider of these data to insurance claims adjusters in the United States, and we calculate the cost changes from July to January for nine Atlantic hurricane seasons at fifty-two cities on the Atlantic and Gulf Coasts. The data show that: changes in labor costs drive the changes in total repair costs; cost changes can vary significantly by geographic region and year; and cost changes for the residential basket of repairs are more volatile than the cost changes for the commercial basket. We then propose a series of multilevel regression models to predict the cost changes by considering several combinations of the following explanatory variables: the largest gradient wind speed at a city in a hurricane season; the number of tropical storms in a hurricane season whose center passes within 200 km of a city; and cost changes in the first two quarters of the year. We also allow the coefficients of the regression model to be stochastic, varying across groups defined by region of the Southeastern United States and year. Our best models predict that, for any city on the Gulf or Atlantic Coasts in any hurricane season, the residential total repair cost changes vary from 0.01 to 0.25, depending on the wind speed and number of storms, with an uncertainty of 0.1 (two standard errors of prediction) given the wind speed and number of storms. The

  16. Hurricane impacts on coastal wetlands: a half-century record of storm-generated features from southern Louisiana

    Science.gov (United States)

    Morton, Robert A.; Barras, John A.

    2011-01-01

    Temporally and spatially repeated patterns of wetland erosion, deformation, and deposition are observed on remotely sensed images and in the field after hurricanes cross the coast of Louisiana. The diagnostic morphological wetland features are products of the coupling of high-velocity wind and storm-surge water and their interaction with the underlying, variably resistant, wetland vegetation and soils. Erosional signatures include construction of orthogonal-elongate ponds and amorphous ponds, pond expansion, plucked marsh, marsh denudation, and shoreline erosion. Post-storm gravity reflux of floodwater draining from the wetlands forms dendritic incisions around the pond margins and locally integrates drainage pathways forming braided channels. Depositional signatures include emplacement of broad zones of organic wrack on topographic highs and inorganic deposits of variable thicknesses and lateral extents in the form of shore-parallel sandy washover terraces and interior-marsh mud blankets. Deformational signatures primarily involve laterally compressed marsh and displaced marsh mats and balls. Prolonged water impoundment and marsh salinization also are common impacts associated with wetland flooding by extreme storms. Many of the wetland features become legacies that record prior storm impacts and locally influence subsequent storm-induced morphological changes. Wetland losses caused by hurricane impacts depend directly on impact duration, which is controlled by the diameter of hurricane-force winds, forward speed of the storm, and wetland distance over which the storm passes. Distinguishing between wetland losses caused by storm impacts and losses associated with long-term delta-plain processes is critical for accurate modeling and prediction of future conversion of land to open water.

  17. Learning Storm

    CERN Document Server

    Jain, Ankit

    2014-01-01

    If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications.

  18. Effects of storm waves on rapid deposition of sediment in the Yangtze Estuary channel

    Directory of Open Access Journals (Sweden)

    Xu Fumin

    2008-03-01

    Full Text Available Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.

  19. Multifluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms-Initial Results

    Science.gov (United States)

    Glocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J.-C.; Kistler, L. M.

    2009-01-01

    The magnetosphere contains a significant amount of ionospheric O+, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multifluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single-fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multifluid MHD model (with outflow) gives comparable results to the multispecies MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multispecies and multifluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H+ and O+, which is not possible when utilizing the other techniques considered

  20. Increasing Flood Risk due to Run-off Outflow near Estuarine City during Storm Event

    Science.gov (United States)

    Son, S.; Lee, C.; Do, K.; Jung, T.

    2017-12-01

    Tropical cyclone easily causes inundation damage to low-lying coastal area and the damage may be amplified due to tide motion, sea-level rise, riverine discharges. Specifically, typhoons are accompanied by intensive rainfall, which will of course raise the river water level and thus enhance the flooding damages. If the tidal cycle coincides the high water, flooding will be even aggravated. In the present study, we simulated storm surge motions at the coastal area considering combined effects of tidal and river discharge with aim to improve the accuracy of flooding prediction. The quasi 3-dimension ocean circulation model, Delf3D was used which solves the unsteady shallow water equation in the 2D and 3D. Since Delft3D is much applicable to accommodate the indirect flooding factors such as riverine discharge and short waves, outer-coupled modeling system was established to account for combined tide-surge-riverine discharge effects. In such integrated system, 11 tidal constituents were input as open boundary condition using TPXO 7.2 model, while the water level per unit time was preliminary calculated by HEC-HMS model and input as the upstream boundary conditions for river inside the domain. Typhoon MAEMI which attacked Masan city located at southern coast of South Korea and caused severe inundation damages in 2003 was selected for the study event. Basic information for typhoon such as path, wind speed, atmospheric pressure every 3 hours was provided by the Korea Meteorological Agency and was adopted. The simulation was implemented with tide and storm surge boundary conditions focusing on the target area, Masan, while the additional consideration on the discharge of the river inside the domain was also made. Simulated water level at the fixed location was compared to the observation for its verification and the extent of inundation areas of Masan were compared between observed and calculated. The marginal contribution of riverine discharge on the flooding area

  1. Positive and negative ionospheric storms occurring during the 15 May 2005 geomagnetic superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2015-09-01

    This study focuses on the 15 May 2005 geomagnetic superstorm and aims to investigate the global variation of positive and negative storm phases and their development. Observations are provided by a series of global total electron content maps and multi-instrument line plots. Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) simulations are also employed. Results reveal some sunward streaming plumes of storm-enhanced density (SED) over Asia and a well-developed midlatitude trough over North America forming isolated positive and negative storms, respectively. The simultaneous development of positive and negative storms over North America is also shown. Then, some enhanced auroral ionizations maintained by strong equatorward neutral winds appeared in the depleted nighttime ionosphere. Meanwhile, the northern nighttime polar region became significantly depleted as the SED plume plasma could not progress further than the dayside cusp. Oppositely, a polar tongue of ionization (TOI) developed in the daytime southern polar region. According to CTIP simulations, solar heating locally maximized (minimized) over the southern (northern) magnetic pole. Furthermore, strong upward surges of molecular-rich air created O/N2 decreases both in the auroral zone and in the trough region, while some SED-related downward surges produced O/N2 increases. From these results we conclude for the time period studied that (1) composition changes contributed to the formation of positive and negative storms, (2) strengthening polar convection and increasing solar heating of the polar cap supported polar TOI development, and (3) a weaker polar convection and minimized solar heating of the polar cap aided the depletion of polar plasma.

  2. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  3. Substorms during different storm phases

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2011-11-01

    Full Text Available After the deep solar minimum at the end of the solar cycle 23, a small magnetic storm occurred on 20–26 January 2010. The Dst (disturbance storm time index reached the minimum of −38 nT on 20 January and the prolonged recovery that followed the main phase that lasted for about 6 days. In this study, we concentrate on three substorms that took place (1 just prior to the storm, (2 during the main phase of the storm, and (3 at the end of the recovery of the storm. We analyse the solar wind conditions from the solar wind monitoring spacecraft, the duration and intensity of the substorm events as well as the behaviour of the electrojet currents from the ground magnetometer measurements. We compare the precipitation characteristics of the three substorms. The results show that the F-region electron density enhancements and dominant green and red auroral emission of the substorm activity during the storm recovery resembles average isolated substorm precipitation. However, the energy dissipated, even at the very end of a prolonged storm recovery, is very large compared to the typical energy content of isolated substorms. In the case studied here, the dissipation of the excess energy is observed over a 3-h long period of several consecutive substorm intensifications. Our findings suggest that the substorm energy dissipation varies between the storm phases.

  4. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  5. Intercomparison of the Charnock and COARE bulk wind stress formulations for coastal ocean modelling

    Directory of Open Access Journals (Sweden)

    J. M. Brown

    2013-08-01

    Full Text Available The accurate parameterisation of momentum and heat transfer across the air–sea interface is vital for realistic simulation of the atmosphere–ocean system. In most modelling applications accurate representation of the wind stress is required to numerically reproduce surge, coastal ocean circulation, surface waves, turbulence and mixing. Different formulations can be implemented and impact the accuracy of the instantaneous and long-term residual circulation, the surface mixed layer, and the generation of wave-surge conditions. This, in turn, affects predictions of storm impact, sediment pathways, and coastal resilience to climate change. The specific numerical formulation needs careful selection to ensure the accuracy of the simulation. Two wind stress parameterisations widely used in the ocean circulation and the storm surge communities respectively are studied with focus on an application to the NW region of the UK. Model–observation validation is performed at two nearshore and one estuarine ADCP (acoustic Doppler current profiler stations in Liverpool Bay, a hypertidal region of freshwater influence (ROFI with vast intertidal areas. The period of study covers both calm and extreme conditions to test the robustness of the 10 m wind stress component of the Coupled Ocean–Atmosphere Response Experiment (COARE bulk formulae and the standard Charnock relation. In this coastal application a realistic barotropic–baroclinic simulation of the circulation and surge elevation is set-up, demonstrating greater accuracy occurs when using the Charnock relation, with a constant Charnock coefficient of 0.0185, for surface wind stress during this one month period.

  6. The Major Cause of Observed Erosion Surge on the Beaches North ...

    African Journals Online (AJOL)

    Surges in coastal erosion north of Dar es Salaam city have been documented from 1977 to the early 1980s and around 1997/98. Analysis of the wind data shows that the documented increase in coastal erosion coincided with increased wind speeds. Extreme winds in excess of 10-11 m s-1 were experienced during ...

  7. Geomagnetic storm forecasting service StormFocus: 5 years online

    Science.gov (United States)

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri

    2018-04-01

    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  8. The Effect of Sub-Auroral Polarization Streams (SAPS) on Ionosphere and Thermosphere during 2015 St. Patrick's Day storm: Global Ionosphere-Thermosphere Model (GITM) Simulations

    Science.gov (United States)

    Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.

    2017-12-01

    Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.

  9. Monitoring storm tide and flooding from Hurricane Matthew along the Atlantic coast of the United States, October 2016

    Science.gov (United States)

    Frantz, Eric R.; Byrne,, Michael L.; Caldwell, Andral W.; Harden, Stephen L.

    2017-11-02

    IntroductionHurricane Matthew moved adjacent to the coasts of Florida, Georgia, South Carolina, and North Carolina. The hurricane made landfall once near McClellanville, South Carolina, on October 8, 2016, as a Category 1 hurricane on the Saffir-Simpson Hurricane Wind Scale. The U.S. Geological Survey (USGS) deployed a temporary monitoring network of storm-tide sensors at 284 sites along the Atlantic coast from Florida to North Carolina to record the timing, areal extent, and magnitude of hurricane storm tide and coastal flooding generated by Hurricane Matthew. Storm tide, as defined by the National Oceanic and Atmospheric Administration, is the water-level rise generated by a combination of storm surge and astronomical tide during a coastal storm.The deployment for Hurricane Matthew was the largest deployment of storm-tide sensors in USGS history and was completed as part of a coordinated Federal emergency response as outlined by the Stafford Act (Public Law 92–288, 42 U.S.C. 5121–5207) under a directed mission assignment by the Federal Emergency Management Agency. In total, 543 high-water marks (HWMs) also were collected after Hurricane Matthew, and this was the second largest HWM recovery effort in USGS history after Hurricane Sandy in 2012.During the hurricane, real-time water-level data collected at temporary rapid deployment gages (RDGs) and long-term USGS streamgage stations were relayed immediately for display on the USGS Flood Event Viewer (https://stn.wim.usgs.gov/FEV/#MatthewOctober2016). These data provided emergency managers and responders with critical information for tracking flood-effected areas and directing assistance to effected communities. Data collected from this hurricane can be used to calibrate and evaluate the performance of storm-tide models for maximum and incremental water level and flood extent, and the site-specific effects of storm tide on natural and anthropogenic features of the environment.

  10. Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain)

    Science.gov (United States)

    Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A.

    2006-06-01

    Mapping of coastal inundation hazard related to storms requires the combination of multiple sources of information regarding meteorological, morphological and dynamic characteristics of both the area at risk and the studied phenomena. Variables such as beach slope, storm wave height or wind speed have traditionally been used, but detailed geomorphological features of the area as well as long-term shoreline evolution trends must also be taken into account in order to achieve more realistic results. This work presents an evaluation of storm flooding hazard in Valdelagrana spit and marshes (SW Spain), considering two types of storm that are characteristic of the area: a modal storm with 1 year of recurrence interval (maximum wave height of 3.3 m), and an extreme storm with 6-10 years of recurrence interval (maximum wave height of 10.6 m), both approaching the coast perpendicularly. After calculating theoretical storm surge elevation, a digital terrain model was made by adjusting topographic data to field work and detailed geomorphological analysis. A model of flooding extent was subsequently developed for each storm type, and then corrected according to the rates of shoreline change in the last decades, which were assessed by means of aerial photographs taking the dune toe as shoreline indicator. Results show that long-term coastline trend represents an important factor in the prediction of flooding extent, since shoreline retreat causes the deterioration of natural coastal defences as dune ridges, thus increasing coastal exposure to high-energy waves. This way, it has been stated that the lack of sedimentary supply plays an important role in spatial variability of inundation extent in Valdelagrana spit. Finally, a hazard map is presented, where calculated coastal retreat rates are employed in order to predict the areas that could be affected by future inundation events.

  11. Tide Gauge and Satellite Altimetry Integration for Storm Surge Prediction

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Cheng, Yongcun; Deng, X.

    2013-01-01

    of the Northeast Australia, we have investigated several large cyclones causing much destruction when they hit the coast. One of these being the Cyclone Larry, which hit the Queensland coast in March 2006 and caused both losses of lives as well as huge devastation. Here we demonstrate the importance of integrating...

  12. Comparative risk assessments for Guadeloupe: earthquakes and storm surge

    OpenAIRE

    Réveillère , Arnaud; Monfort , Daniel; Lecacheux , Sophie; Grisanti , Ludovic; Muller , Héloise; Bertil , Didier; Rohmer , Jérémy; Sedan , Olivier; Douglas , John; Baills , Audrey; Modaressi , Hormoz

    2012-01-01

    In France, risk assessments for natural hazards are usually carried out separately and decision makers lack comprehensive information. Moreover, since the cause of the hazard (e.g. meteorological, geological) and the physical phenomenon that causes damage (e.g. inundation, ground shaking) may be fundamentally different, the quantitative comparison of single risk assessments that were not conducted in a compatible framework is not straightforward. Comprehensive comparative risk assessments exi...

  13. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    Science.gov (United States)

    Kettle, Anthony

    2016-04-01

    Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the

  14. Sele coastal plain flood risk due to wave storm and river flow interaction

    Science.gov (United States)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  15. Electrodynamics properties of auroral surges

    International Nuclear Information System (INIS)

    Robinson, R.M.; Vondrak, R.R.

    1990-01-01

    The incoherent scatter radar technique provides an excellent means to study the ionization and electric fields associated with auroral precipitation events. One of the most intense and dynamic auroral events is the so-called surge or breakup aurora that accompanies auroral substorms. For their purposes they define a surge as a transient intensification of auroral precipitation that occurs simultaneously with a pronounced negative bay in the ground magnetometer data. They present data obtained during five such events in 1980 and 1981. Prior to the surge, auroral forms move equatorward, develop ray structure, and intensify. The surge is identified by an apparent poleward motion of the aurora producing aurorally associated ionization that extends over several hundred kilometers in latitude. The presurge auroral forms are embedded in a region of northward electric field. The auroral forms that comprise the surge span a region within which the meridional electric field is small and at times southward. A westward electric field is often but not always present within the surge. The behavior of the westward electric field is significantly different from the north-south field, in that sharp spatial gradients are absent even in very disturbed conditions. Although the westward Hall currents are mostly responsible for the negative bays that accompany the surge, at times the westward Pedersen current sustained by the westward electric field can be important. Sudden variations in the H component of the ground magnetogram can be caused by motions of the aurora or by temporal variations in the fields or conductivities. They present a model that simulates the observed changes in electric field and precipitation that accompany surges. The perturbation in the electric field produced by the surge is simulated by adding negative potential in regions of intense precipitation

  16. Living with storm damage to forests

    NARCIS (Netherlands)

    Gardiner, B.; Schuck, A.; Schelhaas, M.J.; Orazio, C.; Blennow, K.; Nicoll, B.

    2013-01-01

    Windstorms are a major disturbance factor for European forests. In the past six decades wind storms have damaged standing forest volume, which on a yearly average equals about the size of Poland's annual fellings. The evedence also indicates that the actual severity of storms in the wake of climatic

  17. Measuring storm tide and high-water marks caused by Hurricane Sandy in New York: Chapter 2

    Science.gov (United States)

    Simonson, Amy E.; Behrens, Riley

    2015-01-01

    In response to Hurricane Sandy, personnel from the U.S. Geological Survey (USGS) deployed a temporary network of storm-tide sensors from Virginia to Maine. During the storm, real-time water levels were available from tide gages and rapid-deployment gages (RDGs). After the storm, USGS scientists retrieved the storm-tide sensors and RDGs and surveyed high-water marks. These data demonstrate that the timing of peak storm surge relative to astronomical tide was extremely important in southeastern New York. For example, along the south shores of New York City and western Suffolk County, the peak storm surge of 6–9 ft generally coincided with the astronomical high tide, which resulted in substantial coastal flooding. In the Peconic Estuary and northern Nassau County, however, the peak storm surge of 9 ft and nearly 12 ft, respectively, nearly coincided with normal low tide, which helped spare these communities from more severe coastal flooding.

  18. The differences between storms driven by helmet streamer CIRs and storms driven by pseudostreamer CIRs

    OpenAIRE

    Borovsky, Joseph E.; Denton, Michael

    2013-01-01

    A corotating interaction region (CIR) is formed when fast coronal hole origin solar wind overtakes slow solar wind and forms a region of compressed plasma and magnetic field. The slow wind upstream of the coronal hole fast wind can be either of helmet streamer origin or pseudostreamer origin. For a collection of 125 CIR-driven geomagnetic storms, the slow wind ahead of each CIR is examined; for those storm not containing ejecta, each CIR is categorized as a helmet streamer CIR (74 of the 125 ...

  19. A superposed epoch analysis of geomagnetic storms

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1994-06-01

    Full Text Available A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index. Storms have also been classified here as either storm sudden commencements (SSCs or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement. The prevailing solar wind conditions defined by the parameters solar wind speed (vsw, density (ρsw and pressure (Psw and the total field and the components of the interplanetary magnetic field (IMF during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h, but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.

  20. Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon

    Science.gov (United States)

    Fauzi, R. R.; Hidayat, R.

    2018-05-01

    Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.

  1. Geomagnetic storms

    International Nuclear Information System (INIS)

    McNamara, A.G.

    1980-01-01

    Disturbances due to geomagnetic storms can affect the functioning of communications satellites and of power lines and other long conductors. Two general classes of geomagnetic activity can be distinguished: ionospheric current flow (the auroral electrojet), and magnetospheric compression. Super magnetic storms, such as the one of August 1972, can occur at any time and average about 17 occurrences per century. Electrical transmission systems can be made more tolerant of such events at a price, but the most effective way to minimize damage is by better operator training coupled with effective early warning systems. (LL)

  2. Impact of wind-induced microsites and disturbance severity on tree regeneration patterns: Results from the first post-storm decade

    Science.gov (United States)

    Floor Vodde; Kalev Jogiste; Jeroen Engelhart; Lee E. Frelich; W. Keith Moser; Alan Sims; Marek Metslaid

    2015-01-01

    In two hemiboreal mixed spruce-hardwood forests in north-east Estonia, we studied (1) which factors affect tree regeneration survival and development during the first post-storm decade and (2) how these effects change in time. Regeneration height and mortality of the tree species black alder (Alnus glutinosa (L.) J. Gaertn.), birch (Betula pendula Roth., Betula...

  3. Relationships of storm-time changes in thermospheric mass density with solar wind/IMF parameters and ring current index of Sym-H

    Science.gov (United States)

    Zhou, Yunliang; Ma, S. Y.; Xiong, Chao; Luehr, Hermann

    The total air mass densities at about 500 km altitude are derived using super-STAR accelerom-eter measurements onboard GRACE satellites for 25 great magnetic storms with minimum Dst less than 100 nT during 2002 to 2006 years. Taking NRLMSISE-00 model-predicted densities without active ap index input as a reference baseline of quiet-time mass density, the storm-time changes in upper thermospheric mass densities are obtained by subtraction for all the storm events and sorted into different grids of latitude by local time sector. The relationships of the storm-time density changes with various interplanetary parameters and magnetospheric ring current index of Sym-H are statistically investigated. The parameters include Akasofu energy coupling function, the merging electric field Em, the magnitude of IMF component in the GSM y-z plane etc. as calculated from OMNI data at 1 AU. It is found that the storm-time changes in the upper thermospheric mass density have the best linear correlation with the Sym-H index in general, showing nearly zero time delay at low-latitudes and a little time ahead at high-latitudes for most cases. Unexpectedly, the magnitude of IMF component in the y-z plane, Byz, shows correlation with storm-time mass density changes better and closer than Akasofu function and even Em. And, the mass density changes lag behind Byz about 1-4 hours for most cases at low-latitudes. The correlations considered above are local time dependent, showing the lowest at dusk sectors. For the largest superstorm of November 2003, the changes in mass density are correlated very closely with Byz, Em, and Sym-H index, showing correlation coefficients averaged over all latitudes in noon sector as high as 0.93, 0.91 and 0.90 separately. The physical factors controlling the lag times between the mass density changes at mid-low-latitudes and the interplanetary parameter variations are also analyzed. The results in this study may pro-vide useful suggestions for establishing

  4. Tide-surge historical assessment of extreme water levels for the St. Johns River: 1928-2017

    Science.gov (United States)

    Bacopoulos, Peter

    2017-10-01

    An historical storm population is developed for the St. Johns River, located in northeast Florida-US east coast, via extreme value assessment of an 89-year-long record of hourly water-level data. Storm surge extrema and the corresponding (independent) storm systems are extracted from the historical record as well as the linear and nonlinear trends of mean sea level. Peaks-over-threshold analysis reveals the top 16 most-impactful (storm surge) systems in the general return-period range of 1-100 years. Hurricane Matthew (2016) broke the record with a new absolute maximum water level of 1.56 m, although the peak surge occurred during slack tide level (0.00 m). Hurricanes and tropical systems contribute to return periods of 10-100 years with water levels in the approximate range of 1.3-1.55 m. Extratropical systems and nor'easters contribute to the historical storm population (in the general return-period range of 1-10 years) and are capable of producing extreme storm surges (in the approximate range of 1.15-1.3 m) on par with those generated by hurricanes and tropical systems. The highest astronomical tide is 1.02 m, which by evaluation of the historical record can contribute as much as 94% to the total storm-tide water level. Statically, a hypothetical scenario of Hurricane Matthew's peak surge coinciding with the highest astronomical tide would yield an overall storm-tide water level of 2.58 m, corresponding to an approximate 1000-year return period by historical comparison. Sea-level trends (linear and nonlinear) impact water-level return periods and constitute additional risk hazard for coastal engineering designs.

  5. Current understanding of magnetic storms: Storm-substorm relationships

    International Nuclear Information System (INIS)

    Kamide, Y.; Gonzalez, W.D.; Baumjohann, W.; Daglis, I.A.; Grande, M.; Joselyn, J.A.; Singer, H.J.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.; Rostoker, G.; Sharma, A.S.; Tsurutani, B.T.

    1998-01-01

    This paper attempts to summarize the current understanding of the storm/substorm relationship by clearing up a considerable amount of controversy and by addressing the question of how solar wind energy is deposited into and is dissipated in the constituent elements that are critical to magnetospheric and ionospheric processes during magnetic storms. (1) Four mechanisms are identified and discussed as the primary causes of enhanced electric fields in the interplanetary medium responsible for geomagnetic storms. It is pointed out that in reality, these four mechanisms, which are not mutually exclusive, but interdependent, interact differently from event to event. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are found to be the primary phenomena responsible for the main phase of geomagnetic storms. The other two mechanisms, i.e., HILDCAA (high-intensity, long-duration, continuous auroral electrojet activity) and the so-called Russell-McPherron effect, work to make the ICME and CIR phenomena more geoeffective. The solar cycle dependence of the various sources in creating magnetic storms has yet to be quantitatively understood. (2) A serious controversy exists as to whether the successive occurrence of intense substorms plays a direct role in the energization of ring current particles or whether the enhanced electric field associated with southward IMF enhances the effect of substorm expansions. While most of the Dst variance during magnetic storms can be solely reproduced by changes in the large-scale electric field in the solar wind and the residuals are uncorrelated with substorms, recent satellite observations of the ring current constituents during the main phase of magnetic storms show the importance of ionospheric ions. This implies that ionospheric ions, which are associated with the frequent occurrence of intense substorms, are accelerated upward along magnetic field lines, contributing to the energy density of the

  6. Emergency department surge: models and practical implications.

    Science.gov (United States)

    Nager, Alan L; Khanna, Kajal

    2009-08-01

    Emergency Department crowding has long been described. Despite the daily challenges of managing emergency department volume and acuity; a surge response during a disaster entails even greater challenges including collaboration, intervention, and resourcefulness to effectively carry out pediatric disaster management. Understanding surge and how to respond with appropriate planning will lead to success. To achieve this, we sought to analyze models of surge; review regional and national data outlining surge challenges and factors that impact surge; and to outline potential solutions. We conducted a systemic review and included articles and documents that best described the theoretical and practical basis of surge response. We organized the systematic review according to the following questions: What are the elements and models that are delineated by the concept of surge? What is the basis for surge response based on regional and national published sources? What are the broad global solutions? What are the major lessons observed that will impact effective surge capacity? Multiple models of surge are described including public health, facility-based and community-based; a 6-tiered response system; and intrinsic or extrinsic surge capacity. In addition, essential components (4 S's of surge response) are described along with regional and national data outlining surge challenges, impacting factors, global solutions, and lesions observed. There are numerous shortcomings regionally and nationally affecting our ability to provide an effective and coordinated surge response. Planning, education, and training will lead to an effective pediatric disaster management response.

  7. Dependence between sea surge, river flow and precipitation in south and west Britain

    Directory of Open Access Journals (Sweden)

    C. Svensson

    2004-01-01

    Full Text Available Estuaries around Great Britain may be at heightened risk of flooding because of the simultaneous occurrence of extreme sea surge and river flow, both of which may be caused by mid-latitude cyclones. A measure especially suited for extremes was employed to estimate dependence between river flow and sea surge. To assist in the interpretation of why flow-surge dependence occurs in some areas and not in others, the dependence between precipitation and surge and between precipitation and river flow was also studied. Case studies of the meteorological situations leading to high surges and/or river flows were also carried out. The present study concerns catchments draining to the south and west coasts of Great Britain. Statistically significant dependence between river flow and daily maximum sea surge may be found at catchments spread along most of this coastline. However, higher dependence is generally found in catchments in hilly areas with a southerly to westerly aspect. Here, precipitation in south-westerly airflow, which is generally the quadrant of prevailing winds, will be enhanced orographically as the first higher ground is encountered. The sloping catchments may respond quickly to the abundant rainfall and the flow peak may arrive in the estuary on the same day as a large sea surge is produced by the winds and low atmospheric pressure associated with the cyclone. There are three regions where flow-surge dependence is strong: the western part of the English south coast, southern Wales and around the Solway Firth. To reduce the influence of tide-surge interaction on the dependence analysis, the dependence between river flow and daily maximum surge occurring at high tide was estimated. The general pattern of areas with higher dependence is similar to that using the daily maximum surge. The dependence between river flow and daily maximum sea surge is often strongest when surge and flow occur on the same day. The west coast from Wales and

  8. Extreme Geomagnetic Storms – 1868–2010

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Lefèvre, L.; Dumbović, M.

    2016-01-01

    presents our investigation of the corresponding solar eventsand their characteristics. The storms were selected based on their intensity in the aa index,which constitutes the longest existing continuous series of geomagnetic activity. They areanalyzed statistically in the context of more well...... occurring in May 1921 and the Quebec storm from March 1989. We identifykey characteristics of the storms by combining several different available data sources, listsof storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks,solar wind in-situ measurements, neutron monitor data...... %), Forbushdecreases (100 %), and energetic solar proton events (70 %). A quantitative comparison ofthese associations relative to less intense storms is also presented. Most notably, we findthat most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar...

  9. Are inundation limit and maximum extent of sand useful for differentiating tsunamis and storms? An example from sediment transport simulations on the Sendai Plain, Japan

    Science.gov (United States)

    Watanabe, Masashi; Goto, Kazuhisa; Bricker, Jeremy D.; Imamura, Fumihiko

    2018-02-01

    We examined the quantitative difference in the distribution of tsunami and storm deposits based on numerical simulations of inundation and sediment transport due to tsunami and storm events on the Sendai Plain, Japan. The calculated distance from the shoreline inundated by the 2011 Tohoku-oki tsunami was smaller than that inundated by storm surges from hypothetical typhoon events. Previous studies have assumed that deposits observed farther inland than the possible inundation limit of storm waves and storm surge were tsunami deposits. However, confirming only the extent of inundation is insufficient to distinguish tsunami and storm deposits, because the inundation limit of storm surges may be farther inland than that of tsunamis in the case of gently sloping coastal topography such as on the Sendai Plain. In other locations, where coastal topography is steep, the maximum inland inundation extent of storm surges may be only several hundred meters, so marine-sourced deposits that are distributed several km inland can be identified as tsunami deposits by default. Over both gentle and steep slopes, another difference between tsunami and storm deposits is the total volume deposited, as flow speed over land during a tsunami is faster than during a storm surge. Therefore, the total deposit volume could also be a useful proxy to differentiate tsunami and storm deposits.

  10. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    Science.gov (United States)

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  11. Space storms as natural hazards

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2008-04-01

    Full Text Available Eruptive activity of the Sun produces a chain of extreme geophysical events: high-speed solar wind, magnetic field disturbances in the interplanetary space and in the geomagnetic field and also intense fluxes of energetic particles. Space storms can potentially destroy spacecrafts, adversely affect astronauts and airline crew and human health on the Earth, lead to pipeline breaking, melt electricity transformers, and discontinue transmission. In this paper we deal with two consequences of space storms: (i rise in failures in the operation of railway devices and (ii rise in myocardial infarction and stroke incidences.

  12. Wind Power Plant Grounding, Overvoltage Protection, and Insulation Coordination

    Energy Technology Data Exchange (ETDEWEB)

    Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bolado, O. [IEEE PES Wind Plant Collector System Design Working Group; Bollen, M. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Edds, M. [IEEE PES Wind Plant Collector System Design Working Group; Hejdak, W. J. [IEEE PES Wind Plant Collector System Design Working Group; Houseman, D. [IEEE PES Wind Plant Collector System Design Working Group; Klein, S. [IEEE PES Wind Plant Collector System Design Working Group; Li, Fangxing [ORNL; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Maibach, P. [IEEE PES Wind Plant Collector System Design Working Group; Nicolai, T. [IEEE PES Wind Plant Collector System Design Working Group; Pasupulati, S. V. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Saylors, S. [IEEE PES Wind Plant Collector System Design Working Group; Siebert, T. [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group

    2009-01-01

    Proper insulation coordination is critical to achieving expected life from wind plant equipment. The collector systems of large wind plants require the application of surge arresters to protect the equipment insulation from transient overvoltages. The application of surge arresters is constrained by maximum operating and temporary overvoltage levels. This paper provides a tutorial description of the process of selecting and applying surge arresters to wind plant medium voltage collector systems, with emphasis on the peculiar properties of this application.

  13. The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms

    Science.gov (United States)

    Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie

    2009-01-01

    The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with

  14. Mathematical modeling of tornadoes and squall storms

    Directory of Open Access Journals (Sweden)

    Sergey A. Arsen’yev

    2011-04-01

    Full Text Available Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional mathematical modeling of a tornado with the fourth coordinate time multiplied by its characteristic velocity. Such a tornado can arise in a thunderstorm supercell filled with turbulent whirlwinds. A theory of the squall storms is proposed. The squall storm is modeled by running perturbation of the temperature inversion on the lower boundary of cloudiness. This perturbation is induced by the action of strong, hurricane winds in the upper and middle troposphere, and looks like a running solitary wave (soliton; which is developed also in a field of pressure and velocity of a wind. If a soliton of a squall storm gets into the thunderstorm supercell then this soliton is captured by supercell. It leads to additional pressure fall of air inside a storm supercell and stimulate amplification of wind velocity here. As a result, a cyclostrophic balance inside a storm supercell generates a tornado. Comparison of the radial distribution of wind velocity inside a tornado calculated by using the new formulas and equations with radar observations of the wind velocity inside Texas Tornado Dummit in 1995 and inside the 3 May 1999 Oklahoma City Tornado shows good correspondence.

  15. Earlier vegetation green-up has reduced spring dust storms.

    Science.gov (United States)

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  16. Wind vs Water in Hurricanes: The Challenge of Multi-peril Hazard Modeling

    Science.gov (United States)

    Powell, M. D.

    2017-12-01

    With the advancing threat of Sea Level Rise much of the U. S. is in danger of falling into the "protection gap". Residential property flood risk is not yet covered by the insurance market. Many coastal properties are not paying into the National Flood Insurance Program (NFIP) at premiums commensurate with the risk. This is exasperated by the program being deep in debt, despite only covering a fraction of the potential loss, while windstorm insurance covers up to replacement value. This results in a battle that benefits nobody. Any significant hurricane will include both wind and storm surge perils at the same time and any coastal property has to contend with the risk of damage by both. If you have extensive flood damage your wind storm policy might deny your claim and your flood policy (if you even have one) will in most cases be constrained to a $250,000 limit. Bring on the litigators! Some homeowners will claim that the wind destroyed the home first and then it was carried away by flood waters or pulverized by waves. Insurers might respond that the storm surge did all the damage and deny the claim. We've seen this already following Hurricane Katrina in 2005, and Hurricane Ike in 2008, with thousands of litigation claims and a cottage industry of scientists serving as expert witnesses on both sides of the aisle. Congress responded in 2012 with the Coastal Act, which provided an "unfunded mandate" directing NOAA to provide wind and water level data to FEMA for input to their "Coastal Formula" for attributing loss to wind and water. The results of the formula would then limit the amount paid by the NFIP by subtracting out the wind loss portion. The Texas Windstorm Insurance Association (TWIA) went further by assembling a panel of experts to recommend guidelines for how the state should respond to future hurricane impacting properties on the Texas coast. The expert panel report was released in April of 2016, and TWIA is currently developing a comprehensive

  17. Decadal-scale variation in dune erosion and accretion rates: An investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK

    Science.gov (United States)

    Pye, K.; Blott, S. J.

    2008-12-01

    Monitoring of frontal dune erosion and accretion on the Sefton coast in northwest England over the past 50 years has revealed significant spatial and temporal variations. Previous work has shown that the spatial variations primarily reflect longshore differences in beach and nearshore morphology, energy regime and sediment budget, but the causes of temporal variations have not previously been studied in detail. This paper presents the results of work carried out to test the hypothesis that a major cause of temporal variation is changes in the frequency and magnitude of storms, surges and resulting high tides. Dune toe erosion/accretion records dating from 1958 have been compared with tide gauge records at Liverpool and Heysham. Relatively high dune erosion rates at Formby Point 1958-1968 were associated with a relatively large number of storm tides. Slower erosion at Formby, and relatively rapid accretion in areas to the north and south, occurred during the 1970's and 1980's when there were relatively few major storm tides. After 1990 rates of dune erosion at Formby increased again, and dunes to the north and south experienced slower accretion. During this period high storm tides have been more frequent, and the annual number of hours with water levels above the critical level for dune erosion has increased significantly. An increase in the rate of mean sea-level rise at both Liverpool and Heysham is evident since 1990, but we conclude that this factor is of less importance than the occurrence of extreme high tides and wave action associated with storms. The incidence of extreme high tides shows an identifiable relationship with the lunar nodal tidal cycle, but the evidence indicates that meteorological forcing has also had a significant effect. Storms and surges in the eastern Irish Sea are associated with Atlantic depressions whose direction and rate of movement have a strong influence on wind speeds, wave energy and the height of surge tides. However

  18. [Electrical storm].

    Science.gov (United States)

    Barnay, C; Taieb, J; Morice, R

    2007-11-01

    Electrical storm is defined as repeated occurrence of severe ventricular arrhythmias requiring multiple cardioversions, two or more or three or more following different studies. The clinical aspect can sometimes be made of multiple, self aggravating, life threatening accesses. There are three main clinical circumstances of occurrence: in patients equipped with intracardiac defibrillators, during the acute phase of myocardial infarction and in Brugada syndrome. 10 to 15% of patients with cardiac defibrillators are subject to electrical storms in a period of two years. The causative arrhythmia is most often ventricular tachycardia than ventricular fibrillation, especially in secondary prevention and if the initial arrhythmias justifying the device was a ventricular tachycardia. Precipitaing factors are present in one third of cases, mainly acute heart failure, ionic disorders and arrhythmogenic drugs. Predictive factors are age, left ventricular ejection fractionelectrical shock in 50% of cases, antitachycardi stimulation in 30% and in 20% by association of the two. Treatment, after elimination of inappropriate shocks, is mainly based on beta-blockers and amiodarone, class I antiarrhythmics, lidocaïne or bretylium in some cases, and sedation pushed to general anesthesia in some cases. Radio-frequency ablation and even heart transplantation have been proposed in extreme cases. Quinidine has been proved efficient in cases of Brugada syndrome.

  19. Hindicast and forecast of the Parsifal storm

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, L.; Cavaleri, L. [Istituto Studio Dinamica Grandi Masse, Venice (Italy); De girolamo, P.; Magnaldi, S. [Rome, Univ. `La Sapienza` (Italy). Dip. di Idraulica, Trasporti e Strade; Franco, L. [Rome, III Univ. (Italy). Dip. di Scienze dell`Ingegneria Civile

    1998-05-01

    On 2 November 1995 a Mistral storm in the Gulf of Lions sank the 16 metre yacht Parsifal claiming six lives out of the nine member crew. The authors analyse the storm with different meteorological and wave models, verifying the results against the available buoy and satellite measurements. Then the authors consider the accuracy of the storm forecasts and the information available the days before the accident. The limitations related to the resolution of the meteorological models are explored by hind casting the storm also with the winds produced by some limited area models. Finally, the authors discuss the present situation of wind and wave hind cast and forecast in the Mediterranean Sea, and the distribution of these results to the public.

  20. On the equivalence of the solar wind coupling parameter ε and the magnetospheric energy output parameter UT during intense geomagnetic storms

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.; Tsurutani, B.T.

    1990-01-01

    For intervals with intense geomagnetic activity it is shown that the solar wind coupling parameter ε and the magnetospheric output parameter U T are equivalent and that ranges of values of ε can be set up in terms of values of the ring current-time constant τ. (author)

  1. Geomagnetic Storm Sudden Commencements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  2. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2008-06-01

    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  3. Predicting severe winter coastal storm damage

    International Nuclear Information System (INIS)

    Hondula, David M; Dolan, Robert

    2010-01-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North

  4. Predicting severe winter coastal storm damage

    Energy Technology Data Exchange (ETDEWEB)

    Hondula, David M; Dolan, Robert, E-mail: hondula@virginia.edu [Department of Environmental Sciences, University of Virginia, PO Box 400123, Charlottesville, VA 22903 (United States)

    2010-07-15

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the

  5. Predicting severe winter coastal storm damage

    Science.gov (United States)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the

  6. Using forecast information for storm ride-through control

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio; Trombe, Pierre-Julien; Vincent, Claire Louise

    2013-01-01

    Using probabilistic forecast information in control algorithms can improve the performance of wind farms during periods of extreme winds. This work presents a wind farm supervisor control concept that uses probabilistic forecast information to ride-through a storm with softer ramps of power. Wind...... speed forecasts are generated with a statistical approach (i.e. time series models). The supervisor control is based on a set of logical rules that consider point forecasts and predictive densities to ramp-down the power of the wind farm before the storm hits. The potential of this supervisor control...

  7. Strong winds and waves offshore

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    2016-01-01

    is on the meteorologi al and o eani onditions related to storm winds and waves over the North Sea. With regard to the o shore wind energy appli ation, the parameters addressed here in lude: extreme wind and extreme waves, storm wind and waves and turbulen e issues for o shore onditions.......This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report...

  8. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  9. Hurricane Rita surge data, southwestern Louisiana and southeastern Texas, September to November 2005

    Science.gov (United States)

    McGee, Benton D.; Goree, Burl B.; Tollett, Roland W.; Woodward, Brenda K.; Kress, Wade H.

    2006-01-01

    Pressure transducers and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network consisting of 47 pressure transducers (sensors) was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast. Quality-assurance measures were used to assess the variability and accuracy of the water-level data recorded by the sensors. Water-level data from sensors were similar to data from co-located sensors, permanent U.S. Geological Survey streamgages, and water-surface elevations performed by field staff. Water-level data from sensors at selected locations were compared to corresponding high-water mark elevations. In general, the water-level data from sensors were similar to elevations of high quality high-water marks, while reporting consistently higher than elevations of lesser quality high-water marks.

  10. Multi-Fluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms, Initial Results

    Science.gov (United States)

    Gkocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J. C.; Kistler, L. M.

    2010-01-01

    The magnetosphere contains a significant amount of ionospheric O{+}, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the BATS-R-US model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multi-fluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single- fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multi-fluid MHD model (with outflow) gives comparable results to the multi-species MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multi-species and multi-fluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H{+} and O(+}, which is not possible when utilizing the other techniques considered.

  11. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    International Nuclear Information System (INIS)

    Choun, Young Sun; Kim, Min Kyu; Kang, Ju Whan; Kim, Yang Seon

    2016-01-01

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  12. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Kang, Ju Whan; Kim, Yang Seon [Mokpo National University, Muan (Korea, Republic of)

    2016-05-15

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  13. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen

    2004-04-01

    Full Text Available Magnetic disturbances in the Earth's magnetosphere can be very different depending on the type of solar wind driver. We have determined the solar wind causes for intense magnetic storms (DstDst index was more difficult to model for a sheath region or a post-shock stream driven storm than for a storm caused by a magnetic cloud.

  14. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  15. Non-storm irregular variation of the Dst index

    Directory of Open Access Journals (Sweden)

    S. Nakano

    2012-01-01

    Full Text Available The Dst index has a long-term variation that is not associated with magnetic storms. We estimated the long-term non-storm component of the Dst variation by removing the short-term variation related to magnetic storms. The results indicate that the variation of the non-storm component includes not only a seasonal variation but also an irregular variation. The irregular long-term variation is likely to be due to an anti-correlation with the long-term variation of solar-wind activity. In particular, a clear anti-correlation is observed between the non-storm component of Dst and the long-term variation of the solar-wind dynamic pressure. This means that in the long term, the Dst index tends to increase when the solar-wind dynamic pressure decreases. We interpret this anti-correlation as an indication that the long-term non-storm variation of Dst is influenced by the tail current variation. The long-term variation of the solar-wind dynamic pressure controls the plasma sheet thermal pressure, and the change of the plasma sheet thermal pressure would cause the non-storm tail current variation, resulting in the non-storm variation of Dst.

  16. Safety Evaluation for the Impact of Strom Surges on Nuclear Facilities considering the Climate Change

    International Nuclear Information System (INIS)

    Hyun, Seung Gyu; Jin, So Beom

    2012-01-01

    Twenty one units of Nuclear Power Plants(hereinafter NPPs) are operating and five units are under construction in Korea. In particular, Kori unit 1 has been operating for over 30 years. All of the interior NPPs are located in coastal areas and use the sea water for the cooling system. Therefore, the change of sea level seem to affect the safety of NPPs in case of a flood(Hyun et al., 2009). The IPCC 4 th Report(2007) showed that the climate change induced by the high CO 2 effluent scenario results in rise of the sea level (+ 26 to 59 cm), increase in wind strength and more increase of typhoon intensity in the period between 2090 and 2099 and the rate of global mean sea level rise was up to 1.8 ± 0.5 mm/yr from 1961 to 2003. Kang et al.(2005) reported that the rise rate of sea level was 5.4 ± 0.3 mm/yr at the entire East Sea and was 6.6 ± 0.4 mm/yr for the southern part of East Sea from 1992 to 2002. These results are approximately four times greater than the results of the IPCC 4 th Report. The IAEA recommends that some safety margin related with climate change should be taken into consideration in the design basis flood for constructing new NPPs considering the entire plant lifetime and for periodic safety reviewing of operating NPPs referring to the interval between two consecutive reviews(2003). This paper, therefore, summarized the current regulatory activities related with the safety assessment of the impact of storm surge on the NPPs with climate change

  17. Safety Evaluation for the Impact of Strom Surges on Nuclear Facilities considering the Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Seung Gyu; Jin, So Beom [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    Twenty one units of Nuclear Power Plants(hereinafter NPPs) are operating and five units are under construction in Korea. In particular, Kori unit 1 has been operating for over 30 years. All of the interior NPPs are located in coastal areas and use the sea water for the cooling system. Therefore, the change of sea level seem to affect the safety of NPPs in case of a flood(Hyun et al., 2009). The IPCC 4{sup th} Report(2007) showed that the climate change induced by the high CO{sub 2} effluent scenario results in rise of the sea level (+ 26 to 59 cm), increase in wind strength and more increase of typhoon intensity in the period between 2090 and 2099 and the rate of global mean sea level rise was up to 1.8 {+-} 0.5 mm/yr from 1961 to 2003. Kang et al.(2005) reported that the rise rate of sea level was 5.4 {+-} 0.3 mm/yr at the entire East Sea and was 6.6 {+-} 0.4 mm/yr for the southern part of East Sea from 1992 to 2002. These results are approximately four times greater than the results of the IPCC 4{sup th} Report. The IAEA recommends that some safety margin related with climate change should be taken into consideration in the design basis flood for constructing new NPPs considering the entire plant lifetime and for periodic safety reviewing of operating NPPs referring to the interval between two consecutive reviews(2003). This paper, therefore, summarized the current regulatory activities related with the safety assessment of the impact of storm surge on the NPPs with climate change

  18. Using Bayesian Network as a tool for coastal storm flood impact prediction at Varna Bay (Bulgaria, Western Black Sea)

    Science.gov (United States)

    Valchev, Nikolay; Eftimova, Petya; Andreeva, Nataliya; Prodanov, Bogdan

    2017-04-01

    Coastal zone is among the fastest evolving areas worldwide. Ever increasing population inhabiting coastal settlements develops often conflicting economic and societal activities. The existing imbalance between the expansion of these activities, on one hand, and the potential to accommodate them in a sustainable manner, on the other, becomes a critical problem. Concurrently, coasts are affected by various hydro-meteorological phenomena such as storm surges, heavy seas, strong winds and flash floods, which intensities and occurrence frequency is likely to increase due to the climate change. This implies elaboration of tools capable of quick prediction of impact of those phenomena on the coast and providing solutions in terms of disaster risk reduction measures. One such tool is Bayesian network. Proposed paper describes the set-up of such network for Varna Bay (Bulgaria, Western Black Sea). It relates near-shore storm conditions to their onshore flood potential and ultimately to relevant impact as relative damage on coastal and manmade environment. Methodology for set-up and training of the Bayesian network was developed within RISC-KIT project (Resilience-Increasing Strategies for Coasts - toolKIT). Proposed BN reflects the interaction between boundary conditions, receptors, hazard, and consequences. Storm boundary conditions - maximum significant wave height and peak surge level, were determined on the basis of their historical and projected occurrence. The only hazard considered in this study is flooding characterized by maximum inundation depth. BN was trained with synthetic events created by combining estimated boundary conditions. Flood impact was modeled with the process-based morphodynamical model XBeach. Restaurants, sport and leisure facilities, administrative buildings, and car parks were introduced in the network as receptors. Consequences (impact) are estimated in terms of relative damage caused by given inundation depth. National depth

  19. Okla. Tornado Renews Debate on Storm Safety

    Science.gov (United States)

    Shah, Nirvi

    2013-01-01

    As soon as the winds that left seven students in Moore, Okla., dead last month had calmed, and more storms blew through the same area less than two weeks later, questions about the safety of schools in a region labeled Tornado Alley rose amid the rubble. While better design of new schools and thorough emergency training and practice may be in…

  20. Tree recovery from ice storm injury

    Science.gov (United States)

    Kevin T. Smith

    2015-01-01

    Ice storms are part of nature, particularly in northeastern North America. The combination of air and surface temperatures, precipitation, and wind that result in damaging layers of ice is very specific, occurring infrequently at any given location. Across the region however, damaging ice is formed in fragmented areas every year. Occasionally as in December 2013 and...

  1. Geometric effects of ICMEs on geomagnetic storms

    Science.gov (United States)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  2. Increased wind risk from sting-jet windstorms with climate change

    Science.gov (United States)

    Martínez-Alvarado, Oscar; Gray, Suzanne L.; Hart, Neil C. G.; Clark, Peter A.; Hodges, Kevin; Roberts, Malcolm J.

    2018-04-01

    Extra-tropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact on landfall due to strong surface winds and coastal storm surges. Climate model integrations have predicted a future increase in the frequency of, and potential damage from, European windstorms and yet these integrations cannot properly represent localised jets, such as sting jets, that may significantly enhance damage. Here we present the first prediction of how the climatology of sting-jet-containing cyclones will change in a future warmer climate, considering the North Atlantic and Europe. A proven sting-jet precursor diagnostic is applied to 13 year present-day and future (~2100) climate integrations from the Met Office Unified Model in its Global Atmosphere 3.0 configuration. The present-day climate results are consistent with previously-published results from a reanalysis dataset (with around 32% of cyclones exhibiting the sing-jet precursor), lending credibility to the analysis of the future-climate integration. The proportion of cyclones exhibiting the sting-jet precursor in the future-climate integration increases to 45%. Furthermore, while the proportion of explosively-deepening storms increases only slightly in the future climate, the proportion of those storms with the sting-jet precursor increases by 60%. The European resolved-wind risk associated with explosively-deepening storms containing a sting-jet precursor increases substantially in the future climate; in reality this wind risk is likely to be further enhanced by the release of localised moist instability, unresolved by typical climate models.

  3. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms

    International Nuclear Information System (INIS)

    Kurazhkovskaya, N.A.; Klajn, B.I.

    1995-01-01

    Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs

  4. Simulation of Lightning Overvoltage Distribution on Stator Windings of Wind Turbine Generators

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Xue-zhong; WANG Ying; LI Dan-dan

    2011-01-01

    This paper analyzes lightning surge on the stator windings of wind turbine generators. The path of lightning in the wind turbines was analyzed. An equivalent circuit model for megawatt direct-driven wind turbine system was developed, in which high-frequency distributed parameters of the blade conducts, tower, power cables and stator windings of generator were calculated based on finite element method, and the models of converter, grounding, loads, surge protection devices and power grid were established. The voltage distribution along stator windings, when struck by lightning with 10/350 ~ts wave form and different amplitude current between 50 kA and 200 kA, was simulated u- sing electro-magnetic transient analysis method. The simulated results show that the highest coil-to-core voltage peak appears on the last coil or near the neutral of stator windings, and the voltage distribution along the windings is non- uniform initially. The voltage drops of each coil fall from first to last coil, and the highest voltage drop appears on the first coil. The insulation damage may occur on the windings under lightning overvoltage. The surge arresters can re- strain the lightning surge in effect and protect the insulation. The coil-to-core voltage in the end of windings is nearly 19.5 kV under the 200 kA lightning current without surge arresters on the terminal of generator, but is only 2.7 kV with arresters.

  5. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, G

    1975-11-20

    A wind power plant is proposed suitable for electicity generation or water pumping. This plant is to be self-adjusting to various wind velocities and to be kept in operation even during violent storms. For this purpose the mast, carrying the wind rotor and pivotable around a horizontal axis is tiltable and equipped with a wind blind. Further claims contain various configurations of the tilting base resp. the cut in of an elastic link, the attachment and design of the wind blind as well as the constructive arrangement of one or more dynamos.

  6. Reliability of offshore wind power production under extreme wind conditions. Deliverable D 9.5. Work Package 9: Electrical grid

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Zeni, Lorenzo

    years, with each year simulated with five random seeds, leading to a total of 25 annual wind power time series for six large offshore wind farms, summing up to a little over 330 wind turbines. Two storm control strategies were used. The analysis involved several aspects inspired from reliability studies....... The aspects investigated are storm events occurrences and durations, storm control strategy impact on the capacity factor (lost production), the loss of production (power produced from wind drops below a certain threshold due to high wind speeds and storm controller) and finally, the wind power production......Reliability of offshore wind production under extreme wind conditions was investigated in this report. The wind power variability from existing and future large offshore wind farms in Western Denmark were simulated using the Correlated Wind model developed at Risø. The analysis was done for five...

  7. NCDC Storm Events Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of...

  8. Estimation of wind speed and wave height during cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Mandal, S.; AshokKumar, K.

    , the isobaric charts were collected at three hourly intervals from the India Meteorological Department. The storm variables such as central pressure, radius of maximum wind, speed of forward motion and direction of storm movement were extracted and the method...

  9. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  10. Surging Seas Risk Finder: A Tool for Local-Scale Flood Risk Assessments in Coastal Cities

    Science.gov (United States)

    Kulp, S. A.; Strauss, B.

    2015-12-01

    Local decision makers in coastal cities require accurate, accessible, and thorough assessments of flood exposure risk within their individual municipality, in their efforts to mitigate against damage due to future sea level rise. To fill this need, we have developed Climate Central's Surging Seas Risk Finder, an interactive data toolkit which presents our sea level rise and storm surge analysis for every coastal town, city, county, and state within the USA. Using this tool, policy makers can easily zoom in on their local place of interest to receive a detailed flood risk assessment, which synthesizes a wide range of features including total population, socially vulnerable population, housing, property value, road miles, power plants, schools, hospitals, and many other critical facilities. Risk Finder can also be used to identify specific points of interest in danger of exposure at different flood levels. Additionally, this tool provides localized storm surge probabilities and sea level rise projections at tidal gauges along the coast, so that users can quickly understand the risk of flooding in their area over the coming decades.

  11. Impacts of Hurricane Rita on the beaches of western Louisiana: Chapter 5D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Stockdon, Hilary F.; Fauver, Laura A.; Sallenger,, Asbury H.; Wright, C. Wayne

    2007-01-01

    Hurricane Rita made landfall as a category 3 storm in western Louisiana in late September 2005, 1 month following Hurricane Katrina's devastating landfall in the eastern part of the State. Large waves and storm surge inundated the lowelevation coastline, destroying many communities and causing extensive coastal change including beach, dune, and marsh erosion.

  12. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Smeulers, J.P.M.; Slot, H.J.; Meulendijks, D.

    2011-01-01

    Surge of turbo compressors can cause large stepwise changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. Surge is usually avoided by an anti surge controller (ASC). However, in spite of the ASC surge cycles may

  13. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Slot, H.J.; Meulendijks, D.; Smeulers, J.P.M.

    2009-01-01

    Surge of turbo compressors can cause large stepwise changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. Surge is usually avoided by an anti surge controller (ASC). However, in spite of the ASC surge cycles may

  14. Extreme winds and sea-surges in climate models

    NARCIS (Netherlands)

    Brink, H.W. (Hendrik Willem) van den

    2005-01-01

    This thesis deals with the problem of how to estimate values of meteorological parameters that correspond to return periods that are considerably longer than the length of the observational data sets. The problem is approached by considering the output of weather-and climate models as

  15. An analysis of simulated and observed storm characteristics

    Science.gov (United States)

    Benestad, R. E.

    2010-09-01

    A calculus-based cyclone identification (CCI) method has been applied to the most recent re-analysis (ERAINT) from the European Centre for Medium-range Weather Forecasts and results from regional climate model (RCM) simulations. The storm frequency for events with central pressure below a threshold value of 960-990hPa were examined, and the gradient wind from the simulated storm systems were compared with corresponding estimates from the re-analysis. The analysis also yielded estimates for the spatial extent of the storm systems, which was also included in the regional climate model cyclone evaluation. A comparison is presented between a number of RCMs and the ERAINT re-analysis in terms of their description of the gradient winds, number of cyclones, and spatial extent. Furthermore, a comparison between geostrophic wind estimated though triangules of interpolated or station measurements of SLP is presented. Wind still represents one of the more challenging variables to model realistically.

  16. The impact of waves and sea spray on modelling storm track and development

    Directory of Open Access Journals (Sweden)

    Lichuan Wu

    2015-09-01

    Full Text Available In high wind speed conditions, sea spray generated by intensely breaking waves greatly influences the wind stress and heat fluxes. Measurements indicate that the drag coefficient decreases at high wind speeds. The sea spray generation function (SSGF, an important term of wind stress parameterisation at high wind speeds, is usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave-state-dependent SSGF and wave-age-dependent Charnock number into a high wind speed–wind stress parameterisation. The newly proposed wind stress parameterisation and sea spray heat flux parameterisation were applied to an atmosphere–wave coupled model to study the mid-latitude storm development of six storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterisation can reduce wind speed simulation errors in the high wind speed range. Considering only sea spray impact on wind stress (and not on heat fluxes will intensify the storms (in terms of minimum sea level pressure and maximum wind speed, but has little effect on the storm tracks. Considering the impact of sea spray on heat fluxes only (not on wind stress can improve the model performance regarding air temperature, but it has little effect on the storm intensity and storm track performance. If the impact of sea spray on both the wind stress and heat fluxes is taken into account, the model performs best in all experiments for minimum sea level pressure, maximum wind speed and air temperature.

  17. Winter storm intensity, hazards, and property losses in the New York tristate area.

    Science.gov (United States)

    Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E

    2017-07-01

    Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  18. The variability of maximum wind gusts in the Czech Republic between 1961 and 2014

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Hostýnek, J.; Řezníčková, Ladislava; Zahradníček, Pavel; Tolasz, R.; Dobrovolný, Petr; Štěpánek, Petr

    2017-01-01

    Roč. 37, č. 4 (2017), s. 1961-1978 ISSN 0899-8418 Institutional support: RVO:67179843 Keywords : Czech Republic * Emma wind storm * Homogenisation * Kyrill wind storm * Maximum wind gust * Spatial variability * Temporal variability * Wind measurement Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016

  19. Assessment of storm forecast

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Hahmann, Andrea N.; Huus Bjerge, Martin

    When wind speed exceeds a certain value, wind turbines shut-down in order to protect their structure. This leads to sudden wind plants shut down and to new challenges concerning the secure operation of the pan-European electric system with future large scale offshore wind power. This task aims...... stopped, completely or partially, producing due to extreme wind speeds. Wind speed and power measurements from those events are presented and compared to the forecast available at Energinet.dk. The analysis looked at wind speed and wind power forecast. The main conclusion of the analysis is that the wind...... to consider it an EWP) and that the available wind speed forecasts are given as a mean wind speed over a rather large area. At wind power level, the analysis shows that prediction of accurate production levels from a wind farm experiencing EWP is rather poor. This is partially because the power curve...

  20. Volume-based characterization of postocclusion surge.

    Science.gov (United States)

    Zacharias, Jaime; Zacharias, Sergio

    2005-10-01

    To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.

  1. Estonian wind climate

    International Nuclear Information System (INIS)

    Kull, Ain

    1999-01-01

    Estonia is situated on the eastern coast of the Baltic Sea. This is a region with intensive cyclonic activity and therefore with a relatively high mean wind speed. Atmospheric circulation and its seasonal variation determine the general character of the Estonian wind regime over the Atlantic Ocean and Eurasia. However, the Baltic sea itself is a very important factor affecting wind climate, it has an especially strong influence on the wind regime in costal areas. The mean energy density (W/m 2 ) is a wind energy characteristic that is proportional to the third power of wind speed and describes energy available in a flow of air through a unit area. The mean energy density is a characteristic which has practical importance in regional assessment of snowdrift, storm damage and wind energy

  2. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    2000-01-01

    (Technical Report, Danish Technical press, 1970) and by Abild (Technical Report R-522 (EN), Riso National Laboratory, 1994). A short discussion of the wind storm on the 3rd of December 1999 is included. It is demonstrated how the data can be applied to non-standard situations where the roughness length......Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity, defined as the 50 yr wind speed (10 min averages) under standard conditions, i.e., 10 m over a homogeneous terrain with the roughness length 0.05 m, The sites are Skjern (15 yr......), Kegnaes (7 yr), Sprogo (20 yr), and Tystofte (16 yr). The measured data are wind speed, wind direction, temperature and pressure. The wind records are cleaned for terrain effects by means of WASP (Mortensew ct al., Technical Report I-666 (EN), Riso National Laboratory, 1993. Vol. 2. User's Guide...

  3. The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness

    Science.gov (United States)

    Welling, D. T.; Liemohn, M. W.; Ridley, A. J.

    2012-12-01

    It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric

  4. New forecasting methods of the intensity and time development of geomagnetic and ionospheric storms

    International Nuclear Information System (INIS)

    Akasofu, S.I.

    1981-01-01

    The main phase of a geomagnetic storm develops differently from one storm to another. A description is given of the solar wind quantity which controls directly the development of the main phase of geomagnetic storms. The parameters involved include the solar wind speed, the magnetic field intensity, and the polar angle of the solar wind magnetic field projected onto the dawn-dusk plane. A redefinition of geomagnetic storm and auroral activity is given. It is pointed out that geomagnetic disturbances are caused by the magnetic fields of electric currents which are generated by the solar wind-magnetosphere dynamo. Attention is given to approaches for forecasting the occurrence and intensity of geomagnetic storms and ionospheric disturbances

  5. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    Science.gov (United States)

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-07-01

    Impacts of storm chronology within a storm cluster on beach/dune erosion are investigated by applying the state-of-the-art numerical model XBeach to the Sefton coast, northwest England. Six temporal storm clusters of different storm chronologies were formulated using three storms observed during the 2013/2014 winter. The storm power values of these three events nearly halve from the first to second event and from the second to third event. Cross-shore profile evolution was simulated in response to the tide, surge and wave forcing during these storms. The model was first calibrated against the available post-storm survey profiles. Cumulative impacts of beach/dune erosion during each storm cluster were simulated by using the post-storm profile of an event as the pre-storm profile for each subsequent event. For the largest event the water levels caused noticeable retreat of the dune toe due to the high water elevation. For the other events the greatest evolution occurs over the bar formations (erosion) and within the corresponding troughs (deposition) of the upper-beach profile. The sequence of events impacting the size of this ridge-runnel feature is important as it consequently changes the resilience of the system to the most extreme event that causes dune retreat. The highest erosion during each single storm event was always observed when that storm initialised the storm cluster. The most severe storm always resulted in the most erosion during each cluster, no matter when it occurred within the chronology, although the erosion volume due to this storm was reduced when it was not the primary event. The greatest cumulative cluster erosion occurred with increasing storm severity; however, the variability in cumulative cluster impact over a beach/dune cross section due to storm chronology is minimal. Initial storm impact can act to enhance or reduce the system resilience to subsequent impact, but overall the cumulative impact is controlled by the magnitude and number

  6. Elliptical magnetic clouds and geomagnetic storms

    Czech Academy of Sciences Publication Activity Database

    Antoniadou, I.; Geranios, A.; Vandas, Marek; Panagopoulou, M.; Zacharopoulou, O.; Malandraki, O.

    2008-01-01

    Roč. 56, 3-4 (2008), s. 492-500 ISSN 0032-0633 R&D Projects: GA AV ČR 1QS300120506; GA ČR GA205/06/0875 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic clouds * geomagnetic storms * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.506, year: 2008

  7. The impact of waves and sea spray on modeling storm track and development

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-01-01

    parameterisation were applied to anatmospherewave coupled model to study the mid-latitude storm development of six storm cases. Comparedwith measurements from the FINO1 platform in the North Sea, the new wind stress parameterisation canreduce wind speed simulation errors in the high wind speed range. Considering......In high wind speed conditions, sea spray generated by intensely breaking waves greatly influences the windstress and heat fluxes. Measurements indicate that the drag coefficient decreases at high wind speeds. The seaspray generation function (SSGF), an important term of wind stress parameterisation...... at high wind speeds, isusually treated as a function of wind speed/friction velocity. In this study, we introduce a wave-state-dependentSSGF and wave-age-dependent Charnock number into a high wind speedwind stress parameterisation. Thenewly proposed wind stress parameterisation and sea spray heat flux...

  8. Modelagem numérica de ressacas na plataforma sudeste do Brasil a partir de cartas sinóticas de pressão atmosférica na superfície Numerical modeling of storm surges in the brazilian southeastern shelf using synopitc charts of atmospheric pressure at the surface

    Directory of Open Access Journals (Sweden)

    Ricardo de Camargo

    1994-12-01

    Full Text Available Um modelo numérico tri-dimensional, linear, barotrópico e de meso-escala, é usado para a plataforma sudeste brasileira, de maneira a representar a composição das principais componentes astronômicas de maré, sobrepostas a efeitos meteorológicos extremos, para períodos específicos de interesse. No entanto, como dados meteorológicos relativos a esta área são muito escassos e esparsos, foi utilizada uma metodologia de fornecimento de condições meteorológicas para o modelo de circulação oceânica, baseada somente em cartas sinóticas de pressão atmosférica na superfície. O campo de pressão foi bem representado, mas as intensidades calculadas para os ventos foram bem maiores do que as observadas na costa. Os resultados do modelo indicam que é possível associar o centro de alta pressão do Atlântico Sul e as correspondentes elevações de superfície paralelas à linha da costa a um sistema geostrófico de circulação oceânica. Por outro lado, a passagem de frentes frias na área induz sistemas transientes que modificam o padrão geostrófico, também mudando a configuração das isolinhas de elevação de superfície.A three-dimensional, linear, barotropic and meso-scale numerical model is used for the southeastern Brazilian shelf, in order to represent the composition of the main astronomical tidal constituents, superimposed to extreme meteorological effects, for specific periods of interest. However, meteorological data relative to this area are very few and sparse, so that a methodology to provide meteorological conditions to the oceanic circulation model was used, based only on atmospheric pressure charts at the surface. The pressure field was well represented, while the calculated wind speeds were much larger than the observed winds at the coast. The model results indicate that it is possible to associate the predominant high pressure center in the South Atlantic and the correspondent surface elevations parallel to the

  9. Development of wave and surge atlas for the design and protection of coastal bridges in south Louisiana : [tech summary].

    Science.gov (United States)

    2015-02-01

    The failures of highway bridges on the Gulf Coast seen in the aftermath of Hurricane Katrina in 2005 were unprecedented. : In the past four decades, wind waves accompanied by high surges from hurricanes have damaged a number of coastal : bridges alon...

  10. Nippon Storm Study design

    Directory of Open Access Journals (Sweden)

    Takashi Kurita

    2012-10-01

    Full Text Available An understanding of the clinical aspects of electrical storm (E-storms in patients with implantable cardiac shock devices (ICSDs: ICDs or cardiac resynchronization therapy with defibrillator [CRT-D] may provide important information for clinical management of patients with ICSDs. The Nippon Storm Study was organized by the Japanese Heart Rhythm Society (JHRS and Japanese Society of Electrocardiology and was designed to prospectively collect a variety of data from patients with ICSDs, with a focus on the incidence of E-storms and clinical conditions for the occurrence of an E-storm. Forty main ICSD centers in Japan are participating in the present study. From 2002, the JHRS began to collect ICSD patient data using website registration (termed Japanese cardiac defibrillator therapy registration, or JCDTR. This investigation aims to collect data on and investigate the general parameters of patients with ICSDs, such as clinical backgrounds of the patients, purposes of implantation, complications during the implantation procedure, and incidence of appropriate and inappropriate therapies from the ICSD. The Nippon Storm Study was planned as a sub-study of the JCDTR with focus on E-storms. We aim to achieve registration of more than 1000 ICSD patients and complete follow-up data collection, with the assumption of a 5–10% incidence of E-storms during the 2-year follow-up.

  11. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  12. From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics

    Directory of Open Access Journals (Sweden)

    G. Balasis

    2006-12-01

    Full Text Available We show that distinct changes in scaling parameters of the Dst index time series occur as an intense magnetic storm approaches, revealing a gradual reduction in complexity. The remarkable acceleration of energy release – manifested in the increase in susceptibility – couples to the transition from anti-persistent (negative feedback to persistent (positive feedback behavior and indicates that the occurence of an intense magnetic storm is imminent. The main driver of the Dst index, the VBSouth electric field component, does not reveal a similar transition to persistency prior to the storm. This indicates that while the magnetosphere is mostly driven by the solar wind the critical feature of persistency in the magnetosphere is the result of a combination of solar wind and internal magnetospheric activity rather than solar wind variations alone. Our results suggest that the development of an intense magnetic storm can be studied in terms of "intermittent criticality" that is of a more general character than the classical self-organized criticality phenomena, implying the predictability of the magnetosphere.

  13. Exercising Tactically for Taming Postmeal Glucose Surges.

    Science.gov (United States)

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20-30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%-80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  14. Exercising Tactically for Taming Postmeal Glucose Surges

    Directory of Open Access Journals (Sweden)

    Elsamma Chacko

    2016-01-01

    Full Text Available This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20–30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%–80%  VO2max to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  15. The dynamics of surge in compression systems

    Indian Academy of Sciences (India)

    is of interest to study compression-system surge to understand its dynamics in order ... Internal problems like compressor going into rotating stall, resulting in loss of ... of water column, was used for mass-flow measurement at the impeller entry.

  16. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, Frank; Heemels, W.P.M.H.; de Jager, Bram; Stoorvogel, Antonie Arij

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  17. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, F.P.T.; Heemels, W.P.M.H.; Jager, de A.G.; Stoorvogel, A.A.

    2002-01-01

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  18. Ice storm 1998 : lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    McCready, J. [Eastern Ontario Model Forest, Kemptville, ON (Canada)

    2006-07-01

    This paper presented details of a partnership formed in response to the ice storm of 1998, which caused extensive damage to trees in woodlots and urban settings in eastern Ontario and western Quebec. The aim of the Ice Storm Forest Recovery Group was to assist in the recovery of eastern forests, collect information on the extent of the damage to trees as well as contribute to the development of assistance programs for woodlot owners and municipalities. In response to the group's request, an initial aerial survey was conducted by the Ontario Ministry of Natural Resources to map the extent of the damage in eastern Ontario, which was followed by a more scientific survey with the Canadian Forest Service through the development of a flying grid pattern to observe the status of trees, followed by extensive ground checks. Damage was variable, depending on tree species, stand age and composition, management practices, wind direction, topography and ice deposition patterns. A summary of the severity of damage indicated that conifers suffered less than hardwoods. Consultants were hired to prepare news releases and extension notes to the public in order to provide information for the caring of trees. Various educational workshops were held which attracted large numbers of landowners and homeowners. A literature review was undertaken to produce a summary of current published knowledge covering the effects of storms and ice damage to trees and forests. Science efforts were published in a series of papers, and financial assistance programs were then organized by governmental agencies. It was concluded that cooperation between all agencies, groups and levels of government is needed in order to coordinate effective emergency strategies. 7 refs., 1 tab., 1 fig.

  19. Automated detection of geomagnetic storms with heightened risk of GIC

    Science.gov (United States)

    Bailey, Rachel L.; Leonhardt, Roman

    2016-06-01

    Automated detection of geomagnetic storms is of growing importance to operators of technical infrastructure (e.g., power grids, satellites), which is susceptible to damage caused by the consequences of geomagnetic storms. In this study, we compare three methods for automated geomagnetic storm detection: a method analyzing the first derivative of the geomagnetic variations, another looking at the Akaike information criterion, and a third using multi-resolution analysis of the maximal overlap discrete wavelet transform of the variations. These detection methods are used in combination with an algorithm for the detection of coronal mass ejection shock fronts in ACE solar wind data prior to the storm arrival on Earth as an additional constraint for possible storm detection. The maximal overlap discrete wavelet transform is found to be the most accurate of the detection methods. The final storm detection software, implementing analysis of both satellite solar wind and geomagnetic ground data, detects 14 of 15 more powerful geomagnetic storms over a period of 2 years.

  20. Enhanced poleward propagation of storms under climate change

    Science.gov (United States)

    Tamarin-Brodsky, Talia; Kaspi, Yohai

    2017-12-01

    Earth's midlatitudes are dominated by regions of large atmospheric weather variability—often referred to as storm tracks— which influence the distribution of temperature, precipitation and wind in the extratropics. Comprehensive climate models forced by increased greenhouse gas emissions suggest that under global warming the storm tracks shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what the underlying dynamical mechanism is. Here we present a new perspective on the poleward shift, which is based on a Lagrangian view of the storm tracks. We show that in addition to a poleward shift in the genesis latitude of the storms, associated with the shift in baroclinicity, the latitudinal displacement of cyclonic storms increases under global warming. This is achieved by applying a storm-tracking algorithm to an ensemble of CMIP5 models. The increased latitudinal propagation in a warmer climate is shown to be a result of stronger upper-level winds and increased atmospheric water vapour. These changes in the propagation characteristics of the storms can have a significant impact on midlatitude climate.

  1. Effect of piping systems on surge in centrifugal compressors

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2008-01-01

    There is a possibility that the exchange of the piping system may change the surge characteristic of a compressor. The piping system of a plant is not always the same as that of a test site. Then it is important to evaluate the effect of piping systems on surge characteristics in centrifugal compressors. Several turbochargers combined with different piping systems were tested. The lumped parameter model which was simplified to be solved easily was applied for the prediction of surge point. Surge lines were calculated with the linearlized lumped parameter model. The difference between the test and calculated results was within 10 %. Trajectory of surge cycle was also examined by solving the lumped parameter model. Mild surge and deep surge were successfully predicted. This study confirmed that the lumped parameter model was a very useful tool to predict the effect of piping systems on surge characteristics in centrifugal compressors, even though that was a simple model

  2. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    Science.gov (United States)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind

  3. 48 CFR 252.217-7001 - Surge option.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Surge option. 252.217-7001... Clauses 252.217-7001 Surge option. As prescribed in 217.208-70(b), use the following clause: Surge Option (AUG 1992) (a) General. The Government has the option to— (1) Increase the quantity of supplies or...

  4. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  5. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Smeulers, J.P.M.; Gonzalez Díez, N.; Slot, H.J.

    2012-01-01

    Surge of turbo compressors can cause large almost step like changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. In spite of an anti-surge controller (ASC), at extreme events surge cycles may occur. In order to

  6. Vulnerability of Amazon forests to storm-driven tree mortality

    Science.gov (United States)

    Negrón-Juárez, Robinson I.; Holm, Jennifer A.; Magnabosco Marra, Daniel; Rifai, Sami W.; Riley, William J.; Chambers, Jeffrey Q.; Koven, Charles D.; Knox, Ryan G.; McGroddy, Megan E.; Di Vittorio, Alan V.; Urquiza-Muñoz, Jose; Tello-Espinoza, Rodil; Alegria Muñoz, Waldemar; Ribeiro, Gabriel H. P. M.; Higuchi, Niro

    2018-05-01

    Tree mortality is a key driver of forest community composition and carbon dynamics. Strong winds associated with severe convective storms are dominant natural drivers of tree mortality in the Amazon. Why forests vary with respect to their vulnerability to wind events and how the predicted increase in storm events might affect forest ecosystems within the Amazon are not well understood. We found that windthrows are common in the Amazon region extending from northwest (Peru, Colombia, Venezuela, and west Brazil) to central Brazil, with the highest occurrence of windthrows in the northwest Amazon. More frequent winds, produced by more frequent severe convective systems, in combination with well-known processes that limit the anchoring of trees in the soil, help to explain the higher vulnerability of the northwest Amazon forests to winds. Projected increases in the frequency and intensity of convective storms in the Amazon have the potential to increase wind-related tree mortality. A forest demographic model calibrated for the northwestern and the central Amazon showed that northwestern forests are more resilient to increased wind-related tree mortality than forests in the central Amazon. Our study emphasizes the importance of including wind-related tree mortality in model simulations for reliable predictions of the future of tropical forests and their effects on the Earth’ system.

  7. Mathematical modeling of the moderate storm on 28 February 2008

    Science.gov (United States)

    Eroglu, Emre

    2018-04-01

    The sun is an active star with plasma-filled prominences. The sudden ejection of the solar plasma creates storms in the form of bursting or spraying. A magnetospheric storm is a typical phenomenon that lasts 1-3 days and involves all magnetosphere from the earth's ionosphere to the magnetotail. The storms are known by different categorical names such as weak, moderate, strong, intense. One of these is the moderate geomagnetic storm on February 28, 2008, which occurred in the 24th solar cycle. The reason for discussing this storm is that it is the first moderate storm in the 24th solar cycle. In this study, we investigate the storm and entered the 24th solar cycle. The correlation among the parametres has been investigated via statistics. The solar wind parameters and the zonal geomagnetic indices have been analyzed separately and then the interaction with each other has been exhibited. The author has concluded the work with two new nonlinear mathematical models. These explain the storm with 79.1% and 87.5% accuracy.

  8. Storm Data Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 'Storm Data and Unusual Weather Phenomena' is a monthly publication containing a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail,...

  9. Influence of Surge on Extreme Roll Amplitudes

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Rognebakke, Olav; Pedersen, Preben Terndrup

    2008-01-01

    Interference of the wave-induced ship surge motion with roll dynamics has been studied. The surge motion has been included in a previously derived hydrodynamic roll prediction model in order to account for the ship speed variation due to the longitudinal incident wave pressure force. Depending...... balanced in order to determine the added thrust term that would represent actions to maintain speed The resulting forward speed variation affects the frequency of encounter and the parametric roll resonant condition is directly influenced by this speed variation. The analysis procedure is demonstrated...... for an example containership sailing mainly in head sea condition and higher sea states. Sensitivity of the results to the added thrust model and vertical motion calculation is discussed....

  10. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    the atmosphere must, by conservation, result in the generation of the surface waves and currents. The physics-based methods are sensitive to the choice of wind-input source function (Sin), parameterization of high-frequency wave spectra tail, and numerical cut-off frequencies. Unfortunately, literature survey......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... shows that in most wind-wave coupling systems, either the Sin in the wave model is different from the one used for the momentum flux estimation in the atmospheric model, or the methods are too sensitive to the parameterization of high-frequency spectra tail and numerical cut-off frequencies. To confront...

  11. Interplanetary sources of magnetic storms: A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed T......-p/T-exp, together with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more...

  12. Interplanetary sources to magnetic storms - A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed Tp/Texp, together...... with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more so. Only...

  13. Storm tide monitoring during the blizzard of January 26-28, 2015, in eastern Massachusetts

    Science.gov (United States)

    Massey, Andrew J.; Verdi, Richard J.

    2015-01-01

    The U.S. Geological Survey (USGS) deployed a temporary monitoring network of six storm surge sensors and four barometric pressure sensors along the Atlantic coast in eastern Massachusetts, from Plymouth to Newburyport, before the blizzard of January 26–28, 2015 (Blizzard of January 2015), to record the timing and magnitude of storm tide at select locations where forecasters had predicted the potential for coastal flooding. Additionally, water-level data were recorded and transmitted in near real-time from four permanent USGS tidal stations—three on Cape Cod and one near the mouth of the Merrimack River in Newburyport. The storm surge sensors were deployed at previously established fixed sites outfitted with presurveyed mounting brackets. The mounting brackets were installed in 2014 as part of the USGS Surge, Wave, and Tide Hydrodynamic (SWaTH) Network (https://water.usgs.gov/floods/STN/), which was funded through congressional supplemental appropriations for the U.S. Department of the Interior after the devastating landfall of Hurricane Sandy on October 29, 2012 (Simmons and others, 2014). The USGS received this funding to enable better understanding of coastal flooding hazards in the region, to improve preparedness for future coastal storms, and to increase the resilience of coastal cities, infrastructure, and natural systems in the region (Buxton and others, 2013). The USGS established 163 monitoring locations along the New England coast for the SWaTH Network, including 70 sites in Massachusetts.

  14. Ionospheric storms at geophysically-equivalent sites – Part 1: Storm-time patterns for sub-auroral ionospheres

    Directory of Open Access Journals (Sweden)

    M. Mendillo

    2009-04-01

    Full Text Available The systematic study of ionospheric storms has been conducted primarily with groundbased data from the Northern Hemisphere. Significant progress has been made in defining typical morphology patterns at all latitudes; mechanisms have been identified and tested via modeling. At higher mid-latitudes (sites that are typically sub-auroral during non-storm conditions, the processes that change significantly during storms can be of comparable magnitudes, but with different time constants. These include ionospheric plasma dynamics from the penetration of magnetospheric electric fields, enhancements to thermospheric winds due to auroral and Joule heating inputs, disturbance dynamo electrodynamics driven by such winds, and thermospheric composition changes due to the changed circulation patterns. The ~12° tilt of the geomagnetic field axis causes significant longitude effects in all of these processes in the Northern Hemisphere. A complementary series of longitude effects would be expected to occur in the Southern Hemisphere. In this paper we begin a series of studies to investigate the longitudinal-hemispheric similarities and differences in the response of the ionosphere's peak electron density to geomagnetic storms. The ionosonde stations at Wallops Island (VA and Hobart (Tasmania have comparable geographic and geomagnetic latitudes for sub-auroral locations, are situated at longitudes close to that of the dipole tilt, and thus serve as our candidate station-pair choice for studies of ionospheric storms at geophysically-comparable locations. They have an excellent record of observations of the ionospheric penetration frequency (foF2 spanning several solar cycles, and thus are suitable for long-term studies. During solar cycle #20 (1964–1976, 206 geomagnetic storms occurred that had Ap≥30 or Kp≥5 for at least one day of the storm. Our analysis of average storm-time perturbations (percent deviations from the monthly means showed a remarkable

  15. AI techniques in geomagnetic storm forecasting

    Science.gov (United States)

    Lundstedt, Henrik

    This review deals with how geomagnetic storms can be predicted with the use of Artificial Intelligence (AI) techniques. Today many different Al techniques have been developed, such as symbolic systems (expert and fuzzy systems) and connectionism systems (neural networks). Even integrations of AI techniques exist, so called Intelligent Hybrid Systems (IHS). These systems are capable of learning the mathematical functions underlying the operation of non-linear dynamic systems and also to explain the knowledge they have learned. Very few such powerful systems exist at present. Two such examples are the Magnetospheric Specification Forecast Model of Rice University and the Lund Space Weather Model of Lund University. Various attempts to predict geomagnetic storms on long to short-term are reviewed in this article. Predictions of a month to days ahead most often use solar data as input. The first SOHO data are now available. Due to the high temporal and spatial resolution new solar physics have been revealed. These SOHO data might lead to a breakthrough in these predictions. Predictions hours ahead and shorter rely on real-time solar wind data. WIND gives us real-time data for only part of the day. However, with the launch of the ACE spacecraft in 1997, real-time data during 24 hours will be available. That might lead to the second breakthrough for predictions of geomagnetic storms.

  16. Establishing Design Storm Values from Climate Models in Coastal Regions: Challenges and Opportunities

    Science.gov (United States)

    Dynamic interactions of atmospheric and hydrological processes result in large spatiotemporal changes of precipitation and wind speed in coastal storm events under both current and future climates. This variability can impact the design and sustainability of water infrastructure ...

  17. Manifestation of interplanetary medium parameters in development of a geomagnetic storm initial phase

    International Nuclear Information System (INIS)

    Chkhetiya, A.M.

    1988-01-01

    The role of solar wind plasma parameters in formation of a geomagnetic storm initial phase is refined. On the basis of statistical analysis an empirical formula relating the interplanetary medium parameters (components of interplanetary magnetic field, proton velocity and concentration) and D st -index during the geomagnetic storm initial phase is proposed

  18. Tornadic storm avoidance behavior in breeding songbirds

    Science.gov (United States)

    Streby, Henry M.; Kramer, Gunnar R.; Peterson, Sean M.; Lehman, Justin A.; Buehler, David A.; Andersen, David E.

    2015-01-01

    Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research.

  19. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    Science.gov (United States)

    Haylock, M. R.

    2011-10-01

    Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961-2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed. The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  20. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    Directory of Open Access Journals (Sweden)

    M. R. Haylock

    2011-10-01

    Full Text Available Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961–2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed.

    The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  1. Impacts of a large array of offshore wind farms on precipitation during hurricane Harvey

    Science.gov (United States)

    Pan, Y.; Archer, C. L.

    2017-12-01

    Hurricane Harvey brought to the Texas coast possibly the heaviest rain ever recorded in U.S. history, which then caused flooding at unprecedented levels. Previous studies have shown that large arrays of offshore wind farms can extract kinetic energy from a hurricane and thus reduce the wind and storm surge. This study will quantitatively test weather the offshore turbines may also affect precipitation patterns. The Weather Research Forecast model is employed to model Harvey and the offshore wind farms are parameterized as elevated drag and turbulence kinetic energy sources. The turbines (7.8 MW Enercon-126 with rotor diameter D=127 m) are placed along the coast of Texas and Louisiana within 100 km from the shore, where the water depth is below 200 meters. Three spacing between turbines are considered (with the number of turbines in parenthesis): 7D×7D (149,936), 9D×9D (84,339), and 11D×11D (56,226). A fourth case (9D×9D) with a smaller area and thus less turbines (33,363) is added to the simulations to emphasize the impacts of offshore turbines installed specifically to protect the city of Houston, which was flooded heavily during hurricane Harvey. The model is integrated for 24 hours from 00UTC Aug 26th, 2017 to 00UTC Aug 27th, 2017. Model results indicate that the offshore wind farms have a strong impact on the distribution of 24-hour accumulated precipitation, with an obvious decrease onshore, downstream of the wind farms, and an increase in the offshore areas, upstream of or within the wind farms. A sector covering the metro-Houston area is chosen to study the sensitivity of the four different wind farm layouts. The spatial-average 24-hour accumulated precipitation is decreased by 37%, 28%, 20% and 25% respectively for the four cases. Compared with the control case with no wind turbines, increased horizontal wind divergence and lower vertical velocity are found where the precipitation is reduced onshore, whereas increased horizontal wind convergence and

  2. Ice accreditation vs wind

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, G. [Hydro-Quebec, PQ (Canada). TransEnergie Div.; Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada)

    2002-07-01

    Wind and ice data from Hydro Quebec and Environment Canada indicates that winds during ice storms are in the general direction of the St. Lawrence River. This observation is important for upgrading existing power transmission lines from the Manicouagan and Churchill generation system because they are parallel to the St. Lawrence and they were designed with lower criteria than is currently accepted. ASCE 74 suggests an accumulation ratio based on thickness of 0.70 for winds parallel to the line. The Goodwin model was used to calculate this ratio. The presentation includes illustrations showing the accumulation ratio for a north wind, as well as the accumulation ratios and wind roses at Quebec. A table showing a comparison of ratios from passive ice meters shows that results are similar to mean values from the theoretical model.

  3. Evaluation of Deep Learning Representations of Spatial Storm Data

    Science.gov (United States)

    Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.

    2017-12-01

    The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being

  4. Coastal wave measurements during passage of tropical storm Amy

    Science.gov (United States)

    Morris, W. D.

    1977-01-01

    Aerial photographic and laser profilometer data of waves generated by tropical storm Amy are presented. The data mission consisted primarily of two legs, one in the direction of the wind waves, and the second along the direction of swell propagation, using Jennette's Pier at Nags Head, North Carolina, as a focal point. At flight time, Amy's center was 512 nmi from shore and had maximum winds of 60 knots. The storm's history is presented, along with a satellite photograph, showing the extent of the storm on the day of the flight. Flight ground tracks are presented along with sample aerial photographs of the wave conditions showing approximate wavelength and direction. Sample wave energy spectra are presented both from the laser profilometer onboard the aircraft, and from the Corps of Engineers Research Center (CERC) shore gauge at Nags Head, North Carolina.

  5. Scale-dependent behavior of the foredune: Implications for barrier island response to storms and sea-level rise

    Science.gov (United States)

    Houser, Chris; Wernette, Phil; Weymer, Bradley A.

    2018-02-01

    The impact of storm surge on a barrier island tends to be considered from a single cross-shore dimension, dependent on the relative elevations of the storm surge and dune crest. However, the foredune is rarely uniform and can exhibit considerable variation in height and width at a range of length scales. In this study, LiDAR data from barrier islands in Texas and Florida are used to explore how shoreline position and dune morphology vary alongshore, and to determine how this variability is altered or reinforced by storms and post-storm recovery. Wavelet analysis reveals that a power law can approximate historical shoreline change across all scales, but that storm-scale shoreline change ( 10 years) and dune height exhibit similar scale-dependent variations at swash and surf zone scales (< 1000 m). The in-phase nature of the relationship between dune height and storm-scale shoreline change indicates that areas of greater storm-scale shoreline retreat are associated with areas of smaller dunes. It is argued that the decoupling of storm-scale and historical shoreline change at swash and surf zone scales is also associated with the alongshore redistribution of sediment and the tendency of shorelines to evolve to a more diffusive (or straight) pattern with time. The wavelet analysis of the data for post-storm dune recovery is also characterized by red noise at the smallest scales characteristic of diffusive systems, suggesting that it is possible that small-scale variations in dune height can be repaired through alongshore recovery and expansion if there is sufficient time between storms. However, the time required for dune recovery exceeds the time between storms capable of eroding and overwashing the dune. Correlation between historical shoreline retreat and the variance of the dune at swash and surf zone scales suggests that the persistence of the dune is an important control on transgression through island migration or shoreline retreat with relative sea-level rise.

  6. Influence of Northeast Monsoon cold surges on air quality in Southeast Asia

    Science.gov (United States)

    Ashfold, M. J.; Latif, M. T.; Samah, A. A.; Mead, M. I.; Harris, N. R. P.

    2017-10-01

    Ozone (O3) is an important ground-level pollutant. O3 levels and emissions of O3 precursors have increased significantly over recent decades in East Asia and export of this O3 eastward across the Pacific Ocean is well documented. Here we show that East Asian O3 is also transported southward to tropical Southeast (SE) Asia during the Northeast Monsoon (NEM) season (defined as November to February), and that this transport pathway is especially strong during 'cold surges'. Our analysis employs reanalysis data and measurements from surface sites in Peninsular Malaysia, both covering 2003-2012, along with trajectory calculations. Using a cold surge index (northerly winds at 925 hPa averaged over 105-110°E, 5°N) to define sub-seasonal strengthening of the NEM winds, we find the largest changes in a region covering much of the Indochinese Peninsula and surrounding seas. Here, the levels of O3 and another key pollutant, carbon monoxide, calculated by the Monitoring Atmospheric Composition and Climate (MACC) Reanalysis are on average elevated by, respectively, >40% (∼15 ppb) and >60% (∼80 ppb) during cold surges. Further, in the broader region of SE Asia local afternoon exceedances of the World Health Organization's air quality guideline for O3 (100 μg m-3, or ∼50 ppb, averaged over 8 h) largely occur during these cold surges. Day-to-day variations in available O3 observations at surface sites on the east coast of Peninsular Malaysia and in corresponding parts of the MACC Reanalysis are similar, and are clearly linked to cold surges. However, observed O3 levels are typically ∼10-20 ppb lower than the MACC Reanalysis. We show that these observations are also subject to influence from local urban pollution. In agreement with past work, we find year-to-year variations in cold surge activity related to the El Nino-Southern Oscillation (ENSO), but this does not appear to be the dominant influence of ENSO on atmospheric composition in this region. Overall, our study

  7. Biological effects of geomagnetic storms

    International Nuclear Information System (INIS)

    Chibisov, S.M.; Breus, T.K.; Levitin, A.E.; Drogova, G.M.; AN SSSR, Moscow; AN SSSR, Moscow

    1995-01-01

    Six physiological parameters of cardio-vascular system of rabbits and ultrastructure of cardiomyocytes were investigated during two planetary geomagnetic storms. At the initial and main phase of the storm the normal circadian structure in each cardiovascular parameter was lost. The disynchronozis was growing together with the storm and abrupt drop of cardia activity was observed during the main phase of storm. The main phase of storm followed by the destruction and degradation of cardiomyocytes. Parameters of cardia activity became substantially synchronized and characterized by circadian rhythm structure while the amplitude of deviations was still significant at the recovery stage of geomagnetic storm. 3 refs.; 7 figs

  8. Analysis of storm-tide impacts from Hurricane Sandy in New York

    Science.gov (United States)

    Schubert, Christopher E.; Busciolano, Ronald J.; Hearn, Paul P.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack; Simonson, Amy E.

    2015-07-21

    The hybrid cyclone-nor’easter known as Hurricane Sandy affected the mid-Atlantic and northeastern United States during October 28-30, 2012, causing extensive coastal flooding. Prior to storm landfall, the U.S. Geological Survey (USGS) deployed a temporary monitoring network from Virginia to Maine to record the storm tide and coastal flooding generated by Hurricane Sandy. This sensor network augmented USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent monitoring sites that also documented storm surge. Continuous data from these networks were supplemented by an extensive post-storm high-water-mark (HWM) flagging and surveying campaign. The sensor deployment and HWM campaign were conducted under a directed mission assignment by the Federal Emergency Management Agency (FEMA). The need for hydrologic interpretation of monitoring data to assist in flood-damage analysis and future flood mitigation prompted the current analysis of Hurricane Sandy by the USGS under this FEMA mission assignment.

  9. Destruction of intertidal bar morphology during a summer storm surge event: Example of positive morphodynamic feedback

    DEFF Research Database (Denmark)

    Masselink, Gerd; Aagaard, Troels; Kroon, Aart

    2011-01-01

    . The measurements demonstrated an example of positive morphodynamic feedback. Once the bar crest elevation started to decrease because of wave overtopping and sediment transport into the runnel on the rising tide, the bar crest lowered and overwash frequency increased, leading to enhanced crest erosion, even under...

  10. A new deterministic Ensemble Kalman Filter with one-step-ahead smoothing for storm surge forecasting

    KAUST Repository

    Raboudi, Naila

    2016-01-01

    KF-OSA exploits the observation twice. The incoming observation is first used to smooth the ensemble at the previous time step. The resulting smoothed ensemble is then integrated forward to compute a "pseudo forecast" ensemble, which is again updated with the same

  11. Two-sample Kalman filter and system error modelling for storm surge forecasting

    NARCIS (Netherlands)

    Sumihar, J.H.

    2009-01-01

    Two directions for improving the accuracy of sea level forecast are investigated in this study. The first direction seeks to improve the forecast accuracy of astronomical tide component. Here, a method is applied to analyze and forecast the remaining periodic components of harmonic analysis

  12. Visualizing uncertainties in a storm surge ensemble data assimilation and forecasting system

    KAUST Repository

    Hollt, Thomas; Altaf, Muhammad; Mandli, Kyle T.; Hadwiger, Markus; Dawson, Clint N.; Hoteit, Ibrahim

    2015-01-01

    allows the user to browse through the simulation ensembles in real time, view specific parameter settings or simulation models and move between different spatial and temporal regions without delay. In addition, our system provides advanced visualizations

  13. Joint Projections of US East Coast Sea Level and Storm Surge

    Science.gov (United States)

    Little, Christopher M.; Horton, Radley M.; Kopp, Robert E.; Oppenheimer, Michael; Vecchi, Gabriel A.; Villarini, Gabriele

    2015-01-01

    Future coastal flood risk will be strongly influenced by sea-level rise (SLR) and changes in the frequency and intensity of tropical cyclones. These two factors are generally considered independently. Here, we assess twenty-first century changes in the coastal hazard for the US East Coast using a flood index (FI) that accounts for changes in flood duration and magnitude driven by SLR and changes in power dissipation index (PDI, an integrated measure of tropical cyclone intensity, frequency and duration). Sea-level rise and PDI are derived from representative concentration pathway (RCP) simulations of 15 atmosphere- ocean general circulation models (AOGCMs). By 2080-2099, projected changes in the FI relative to 1986-2005 are substantial and positively skewed: a 10th-90th percentile range 4-75 times higher for RCP 2.6 and 35-350 times higher for RCP 8.5. High-end Fl projections are driven by three AOGCMs that project the largest increases in SLR, PDI and upper ocean temperatures. Changes in PDI are particularly influential if their intra-model correlation with SLR is included, increasing the RCP 8.5 90th percentile FI by a further 25%. Sea-level rise from other, possibly correlated, climate processes (for example, ice sheet and glacier mass changes) will further increase coastal flood risk and should be accounted for in comprehensive assessments.

  14. Hurricane Rita and the destruction of Holly Beach, Louisiana: Why the chenier plain is vulnerable to storms

    Science.gov (United States)

    Sallenger, A.H.; Wright, C.W.; Doran, K.; Guy, K.; Morgan, K.

    2009-01-01

    Hurricane Rita devastated gulf-front communities along the western Louisiana coast in 2005. LIDAR (light detection and ranging) topographic surveys and aerial photography collected before and after the storm showed the loss of every structure within the community of Holly Beach. Average shoreline change along western Louisiana's 140-km-long impacted shore was -23.3 ?? 30.1 m of erosion, although shoreline change in Holly Beach was substantially less, and erosion was not pervasive where the structures were lost. Before the storm, peak elevations of the dunes, or berms in the absence of dunes, along the impacted shore averaged 1.6 m. The storm surge, which reached 3.5 m just east of Holly Beach, completely inundated the beach systems along the impacted western Louisiana shore. The high surge potential and low land elevations make this coast extremely vulnerable to hurricanes. In fact, most of the western Louisiana shore impacted by Rita will be completely inundated by the storm surge of a worst-case Saffi r-Simpson category 1 hurricane. All of this shore will be inundated by worst-case category 2-5 storms. ?? 2009 The Geological Society of America.

  15. Development of an amorphous surge blocker for a high voltage acceleration power supply of the neutral beam injectors

    International Nuclear Information System (INIS)

    Mizuno, Makoto; Ohara, Yoshihiro; Watanabe, Kazuhiro; Ozaki, Akira.

    1993-10-01

    An amorphous surge blocker for a high voltage acceleration power supply for the neutral beam injectors has been developed. Since the saturation magnetic flux density of the amorphous core is higher than that of the ferrite core, the surge blocker made of amorphous cores can be reduced in size appreciably compared to the conventional ferrite surge blocker. A 350 kV, 0.05 volt-second amorphous surge blocker was designed, fabricated and tested. The amorphous core was made by winding an amorphous tape with a film for the layer insulation and was heat-treated to recover the magnetic characteristics. The core is molded by epoxy resin and installed in a FRP insulator tube filled with SF 6 gas for the insulation. The volt-second measured was higher than the designed value and the electrical breakdown along the cores and between layers was not observed. This test result shows that the amorphous surge blocker is applicable for a dc acceleration power supply for high energy neutral beam injectors. (author)

  16. Dune recovery after storm erosion on a high-energy beach: Vougot Beach, Brittany (France)

    Science.gov (United States)

    Suanez, Serge; Cariolet, Jean-Marie; Cancouët, Romain; Ardhuin, Fabrice; Delacourt, Christophe

    2012-02-01

    On 10th March 2008, the high energy storm Johanna hit the French Atlantic coast, generating severe dune erosion on Vougot Beach (Brittany, France). In this paper, the recovery of the dune of Vougot Beach is analysed through a survey of morphological changes and hydrodynamic conditions. Data collection focused on the period immediately following storm Johanna until July 2010, i.e. over two and a half years. Results showed that the dune retreated by a maximum of almost 6 m where storm surge and wave attack were the most energetic. Dune retreat led to the creation of accommodation space for the storage of sediment by widening and elevating space between the pre- and post-storm dune toe, and reducing impacts of the storm surge. Dune recovery started in the month following the storm event and is still ongoing. It is characterised by the construction of "secondary" embryo dunes, which recovered at an average rate of 4-4.5 cm per month, although average monthly volume changes varied from - 1 to 2 m 3.m - 1 . These embryo dunes accreted due to a large aeolian sand supply from the upper tidal beach to the existing foredune. These dune-construction processes were facilitated by growth of vegetation on low-profile embryo dunes promoting backshore accretion. After more than two years of survey, the sediment budget of the beach/dune system showed that more than 10,000 m 3 has been lost by the upper tidal beach. We suggest that seaward return currents generated during the storm of 10th March 2008 are responsible for offshore sediment transport. Reconstitution of the equilibrium beach profile following the storm event may therefore have generated cross-shore sediment redistribution inducing net erosion in the tidal zone.

  17. Connection of the positive phase of ionospheric storms with the day-time cusp

    International Nuclear Information System (INIS)

    Morozova, L.D.; Danilov, A.D.

    1986-01-01

    Data on the relation of ionospheric storms with the day-time cusp are considered. Experimental data on the velocity and direction of wind from the day-time cusp region, obtained for perturbed conditions on 30.12.1981, are analyzed. It is shown that perturbed wind from the cusp results in the increase of the value δf 0 F2 and under conditions before magnetic storm onset unambiguously causes positive ionosheric perturbation, and under conditions of a developed magnetic stor