WorldWideScience

Sample records for winds ocean currents

  1. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    On the West Coast of North America in summer, episodic relaxation of the upwelling-favorable winds causes warm water to propagate northward from southern to central California, against the prevailing currents [Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. Similar wind relaxations are an important characteristic of coastal upwelling ecosystems worldwide. Although these wind relaxations have an important influence on coastal ocean dynamics, no description exists of the regional atmospheric patterns that lead to wind relaxations in southern California, or of the regional ocean response. We use QuikSCAT wind stress, North American Regional Reanalysis atmospheric pressure products, water temperature and velocity from coastal ocean moorings, surface ocean currents from high-frequency radars, and MODIS satellite sea-surface temperature and ocean color images to analyze wind relaxation events and the ocean response. We identify the events based on an empirical index calculated from NDBC buoy winds [Melton et al. 2009]. We describe the regional evolution of the atmosphere from the Gulf of Alaska to Baja California over the few days leading up to wind relaxations, and the coastal ocean temperature, color, and current response off southern and central California. We analyze ~100 wind relaxation events in June-September during the QuikSCAT mission, 1999-2009. Our results indicate south-central California wind relaxations in summer are tied to mid-level atmospheric low-pressure systems that form in the Gulf of Alaska and propagate southeastward over 3-5 days. As the low-pressure systems reach southern California, the atmospheric pressure gradient along the coast weakens, causing the surface wind stress to relax to near zero. The weak wind signal appears first at San Diego and propagates northward. QuikSCAT data indicate the relaxed winds extend over the entire Southern California Bight and up to 200 km offshore of central California. Atmospheric dynamics in

  2. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    Science.gov (United States)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  3. The relationship between the statistics of open ocean currents and the temporal correlations of the wind stress

    International Nuclear Information System (INIS)

    Bel, Golan; Ashkenazy, Yosef

    2013-01-01

    We study the statistics of wind-driven open ocean currents. Using the Ekman layer model for the integrated currents, we investigate analytically and numerically the relationship between the wind-stress distribution and its temporal correlations and the statistics of the open ocean currents. We found that temporally long-range correlated winds result in currents whose statistics is proportional to the wind-stress statistics. On the other hand, short-range correlated winds lead to Gaussian distributions of the current components, regardless of the stationary distribution of the winds, and therefore to a Rayleigh distribution of the current amplitude, if the wind stress is isotropic. We found that the second moment of the current speed exhibits a maximum as a function of the correlation time of the wind stress for a non-zero Coriolis parameter. The results were validated using an oceanic general circulation model. (paper)

  4. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  5. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    Science.gov (United States)

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  6. Investigating the role of wind in generating surface currents over the slope area of the Laptev Sea, Arctic Ocean

    Science.gov (United States)

    Patteson, R. N.

    2017-12-01

    Mixing mechanisms of the Arctic Ocean have profound impacts on sea ice, global ocean dynamics, and arctic communities. This project used a two-year long time series of ocean current velocities collected from eight moorings located on the Eurasian basin, as well as ERA-interim wind data, to compare and assess relationships between current and wind velocities at different depths. Determining the strength of these correlations will further scientific understanding of the degree to which wind influences mixing, with implications for heat flux, diffusion, and sea ice changes. Using statistical analysis, I calculated whether a significant relationship between wind velocity and ocean currents existed beginning at the surface level ( 50m) .The final correlation values, ranging from R = 0.11 to R = 0.28, indicated a weak relationship between wind velocity and ocean currents at the surface for all eight mooring sites. The results for the surface depth imply that correlation likely decreases with increasing depths, and thus further testing of deeper depth levels was unnecessary. This finding suggests that there is another dominant factor at play in the ocean; we postulate that topography exerts a significant influence on subsurface mixing. This study highlights the need for further research of the different mechanisms and their importance in influencing the dynamic structure of the ocean.

  7. Aquantis C-Plane Ocean Current Turbine Project

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alex [Dehlsen Associates, LLC, Santa Barbara, CA (United States)

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  8. An ocean current inversion accuracy analysis based on a Doppler spectrum model

    Institute of Scientific and Technical Information of China (English)

    BAO Qingliu; ZHANG Youguang; LIN Mingsen; GONG Peng

    2017-01-01

    Microwave remote sensing is one of the most useful methods for observing the ocean parameters.The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars.While the effect of the ocean currents and waves is interactional.It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly.In order to study the relationship between the ocean surface current speed and the Doppler frequency shift,a numerical ocean surface Doppler spectrum model is established and validated with a reference.The input parameters of ocean Doppler spectrum include an ocean wave elevation model,a directional distribution function,and wind speed and direction.The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function (CDOP).What is more,the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed.All these simulations are in Ku band.The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors.With VV polarization,the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s,and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.

  9. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    Science.gov (United States)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  10. Comparison of the ocean surface vector winds over the Nordic Seas and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2017-04-01

    Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity

  11. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  12. Variability of wind stress and currents at selected locations over the north Indian Ocean during 1977 and 1979 summer monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Sadhuram, Y.; RameshBabu, V.; Rao, M.V.

    Intra-seasonal variability of wind stress, wind stress curl and currents at different locations over the northern Indian Ocean during two contrasting monsoon seasons has been investigated making use of the time series data collected during MONSOON...

  13. Southern Ocean carbon-wind stress feedback

    Science.gov (United States)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  14. The impact of wind energy turbine piles on ocean dynamics

    Science.gov (United States)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  15. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  16. Current meter, phytoplankton, and wind data from moored current meter casts and other instruments in the North Pacific Ocean as part of the Deep Ocean Mining and Environmental Study (DOMES) project, 1975-08-29 to 1977-02-24 (NODC Accession 7700458)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter, phytoplankton, and wind data were collected using moored current meter casts and other instruments in the Gulf of Mexico from August 29, 1975 to...

  17. SeaWinds - Oceans, Land, Polar Regions

    Science.gov (United States)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  18. Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands

    Science.gov (United States)

    Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge

    2013-11-01

    The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.

  19. Current direction, wind wave spectra, and CTD data from moored current meter and CTD casts in the North Atlantic Ocean from 1982-09-15 to 1983-09-15 (NODC Accession 8500148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and CTD data were collected using moored current meter and CTD casts in the Gulf of Mexico from September 3, 1982 to September...

  20. OW ASCAT Ocean Surface Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  1. OW CCMP Ocean Surface Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of monthly...

  2. Influence of orographically steered winds on Mutsu Bay surface currents

    Science.gov (United States)

    Yamaguchi, Satoshi; Kawamura, Hiroshi

    2005-09-01

    Effects of spatially dependent sea surface wind field on currents in Mutsu Bay, which is located at the northern end of Japanese Honshu Island, are investigated using winds derived from synthetic aperture radar (SAR) images and a numerical model. A characteristic wind pattern over the bay was evidenced from analysis of 118 SAR images and coincided with in situ observations. Wind is topographically steered with easterly winds entering the bay through the terrestrial gap and stronger wind blowing over the central water toward its mouth. Nearshore winds are weaker due to terrestrial blockages. Using the Princeton Ocean Model, we investigated currents forced by the observed spatially dependent wind field. The predicted current pattern agrees well with available observations. For a uniform wind field of equal magnitude and average direction, the circulation pattern departs from observations demonstrating that vorticity input due to spatially dependent wind stress is essential in generation of the wind-driven current in Mutsu Bay.

  3. Ka-band Doppler Scatterometer for Measurements of Ocean Vector Winds and Surface Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Ocean surface currents impact heat transport, surface momentum and gas fluxes, ocean productivity and marine biological communities. Ocean currents also have social...

  4. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  5. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  6. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  7. Wind and temperature data from current meter in the TOGA - Pacific Ocean (30 N to 30 S) as part of the Equatorial Pacific Ocean Climate Studies (EPOCS), 28 May 1994 to 21 March 1995 (NODC Accession 9800041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind and temperature data were collected using current meter in the TOGA Area - Pacific Ocean (30 N to 30 S) from May 28, 1994 to March 21, 1995. Data were submitted...

  8. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    Science.gov (United States)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  9. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Science.gov (United States)

    Rodgers, K. B.; Mikaloff-Fletcher, S. E.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B. R.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.

    2011-10-01

    Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  10. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Directory of Open Access Journals (Sweden)

    K. B. Rodgers

    2011-10-01

    Full Text Available Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004 indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980 or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980. As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950–1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980–2004. This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  11. On the Effect of Offshore Wind Parks on Ocean Dynamics

    Science.gov (United States)

    Ludewig, E.; Pohlmann, T.

    2012-12-01

    Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area

  12. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect

    Directory of Open Access Journals (Sweden)

    Alvaro Semedo

    2018-03-01

    Full Text Available A climatology of wind sea and swell waves along the Canary eastern boundary current area, from west Iberia to Mauritania, is presented. The study is based on the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis ERA-Interim. The wind regime along the Canary Current, along west Iberia and north-west Africa, varies significantly from winter to summer. High summer wind speeds generate high wind sea waves, particularly along the coasts of Morocco and Western Sahara. Lower winter wind speeds, along with stronger extratropical storms crossing the North Atlantic sub-basin up north lead to a predominance of swell waves in the area during from December to February. In summer, the coast parallel wind interacts with the coastal headlands, increasing the wind speed and the locally generated waves. The spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering.

  13. Airborne Optical Remote Sensing of Ocean Surface Current Variability

    Science.gov (United States)

    Anderson, S. P.; Zuckerman, S.; Stuart, G.

    2016-02-01

    Accurate and timely knowledge of open ocean surface currents are needed for a variety of engineering and emergency missions, as well as for improving scientific understanding of ocean dynamics. This paper presents surface current observations from a new airborne current measurement capability called the Remote Ocean Current Imaging System (ROCIS). ROCIS exploits space-time processing of airborne ocean wave imagery to produce real-time maps of surface currents every 1 km along the flight track. Post-processing of the data allows for more in depth sensitivity studies than can be undertaken with the real-time measurements alone, providing swaths of current retrievals at higher spatial resolutions. Currents can be calculated on scales down to 100 m, across swaths 3 km wide, along the entire flight path. Here, we report on results for multiple ROCIS data collection flights over the Gulf of Mexico conducted in 2012, 2014 and 2015. We show comparisons to in situ current measurements, explore performance as a function of altitude, dwell, wind speed, and wave height, and discuss sources of error. We present examples of current retrievals revealing mesoscale and submesoscale variability. Lastly, we present horizontal kinetic energy spectra from select flights covering a range of spatial scales from hundreds of meters to hundreds of kilometers.

  14. The Interaction of Ocean Waves and Wind

    Science.gov (United States)

    Janssen, Peter

    2004-10-01

    Describing in detail the two-way interaction between wind and ocean waves, this book discusses ocean wave evolution in accordance with the energy balance equation. An extensive overview of nonlinear transfer is given, and the role of four-wave interactions in the generation of extreme events as well as the effects on ocean circulation is included. The volume will interest ocean wave modellers, physicists, applied mathematicians, and engineers.

  15. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Français Océan et Climat dans l'Atlantique Equatorial (SEQUAL/FOCAL) project from 1980-01-25 to 1985-12-18 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  16. Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude

    Science.gov (United States)

    Ridder, Nina N.; England, Matthew H.

    2014-09-01

    Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.

  17. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  18. Retrieving current and wind vectors from ATI SAR data: airborne evidence and inversion strategy

    Science.gov (United States)

    Martin, Adrien; Gommenginger, Christine; Chapron, Bertrand; Marquez, José; Doody, Sam

    2017-04-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) sense the motion of the ocean surface by measuring the Doppler shift of reflected signals. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves. The WASV has been modelled theoretically in past studies but has been estimated empirically only once using Envisat ASAR. Here we propose, firstly, to evaluate this WASV from airborne ATI SAR data, secondly, to validate the airborne retrieved surface current after correction of the WASV against HF radar measurements and thirdly to examine the best inversion strategy for a an Ocean Surface Current (OSC) satellite mission to retrieve accurately both the ocean surface current vector (OSCV) and the wind vector in the frame of an OSC satellite mission. The airborne ATI SAR data were acquired in the tidally dominated Irish Sea using a Wavemill-type dual-beam SAR interferometer. A comprehensive collection of airborne Wavemill data acquired in a star pattern over a well-instrumented site made it possible to estimate the magnitude and dependence on azimuth and incidence angle of the WASV. The airborne results compare favourably with those reported for Envisat ASAR, empirical model, which has been used to correct for it. Validation of the current retrieval capabilities of the proof-of-concept has been conducted against HF radar giving a precisions typically better than 0.1 m/s for surface current speed and 7° for direction. Comparisons with POLCOMS (1.8 km) indicate that the model reproduces well the overall temporal evolution but does not capture the high spatial variability of ocean surface currents at the maximum ebb flow. Airborne retrieved currents highlight a short-scale spatial variability up to 100m related to bathymetry channels, which

  19. Evaluating and Extending the Ocean Wind Climate Data Record

    Science.gov (United States)

    Ricciardulli, Lucrezia; Rodriguez, Ernesto; Stiles, Bryan W.; Bourassa, Mark A.; Long, David G.; Hoffman, Ross N.; Stoffelen, Ad; Verhoef, Anton; O'Neill, Larry W.; Farrar, J. Tomas; Vandemark, Douglas; Fore, Alexander G.; Hristova-Veleva, Svetla M.; Turk, F. Joseph; Gaston, Robert; Tyler, Douglas

    2017-01-01

    Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σo measurements include 1) direct Ku-band σo intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times. PMID:28824741

  20. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  1. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model

    Institute of Scientific and Technical Information of China (English)

    DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian

    2012-01-01

    We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14% of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14%,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75% on average.

  2. NASA CYGNSS Ocean Wind Observations in the 2017 Atlantic Hurricane Season

    Science.gov (United States)

    Ruf, C. S.; Balasubramaniam, R.; Mayers, D.; McKague, D. S.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit to measure ocean surface wind speed in the inner core of tropical cyclones with better than 12 hour refresh rates. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification, made possible by the large number of satellites. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Results of measurements made during the 2017 Atlantic hurricane season, including frequent overpasses of Hurricanes Harvey, Irma and Maria, will be presented.

  3. Temperature profile and other data collected using current meter from the CHAIN from the Atlantic Ocean in part of the International Decade of Ocean Exploration / Mid-Ocean Dynamics Experiment from 12 February 1969 to 16 March 1972 (NODC Accession 7601355)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, current meter, and wind speed/direction data were collected using current meter from the TRIDENT, KNORR, and BILLIE 2 in the Atlantic Ocean from...

  4. Coherency Between Volume Transport in the Antarctic Circumpolar Current and Southern Hemisphere Winds

    Science.gov (United States)

    Makowski, Jessica; Chambers, Don; Bonin, Jennifer

    2013-04-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). The OBP observations from the Gravity Recovery and Climate Experiment (GRACE) will be used to calculate transport along the 150°E longitude choke point, between Antarctica and Australia. We will examine whether zonally averaged wind stress, wind stress curl, or local zonal winds are more coherent with zonal mass transport variability. Preliminary studies suggest that seasonal variation in transport across 150°E is more correlated with winds along and north of the northern front of the ACC: the Sub Tropical front (STF). It also appears that interannual variations in transport along 150°E are related to wind variations south of the STF and centered south of the Sub Antarctic Front (SAF). We have observed a strong anti-correlation across the SAF, in the Indian Ocean, which suggests wind stress curl may also be responsible for transport variations. Preliminary results will be presented.

  5. Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  6. Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  7. Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  8. Stability analysis of offshore wind farm and marine current farm

    Science.gov (United States)

    Shawon, Mohammad Hasanuzzaman

    Renewable energy has been playing an important role to meet power demand and 'Green Energy' market is getting bigger platform all over the world in the last few years. Due to massive increase in the prices of fossil fuels along with global warming issues, energy harvesting from renewable energy sources has received considerable interest, nowadays, where extensive researches are going on to ensure optimum use of renewable sources. In order to meet the increasing demand of electricity and power, integration of renewable energy is getting highest priorities around the world. Wind is one of the most top growing renewable energy resources and wind power market penetration is expected to reach 3.35 percent by 2013 from its present market of about 240 GW. A wind energy system is the most environmental friendly, cost effective and safe among all renewable energy resources available. Another promising form of renewable energy is ocean energy which covers 70 % of the earth. Ocean energy can be tapped from waves, tides and thermal elements. Offshore Wind farm (OWF) has already become very popular for large scale wind power integration with the onshore grid. Recently, marine current farm (MCF) is also showing good potential to become mainstream energy sources and already successfully commissioned in United Kingdom. However, squirrel cage induction generator (SCIG) has the stability problem similar to synchronous generator especially during fault location to restore the electromagnetic torque. Series dynamic braking resistor (SDBR) has been known as a useful mean to stabilize fixed speed wind generator system. On the other hand, doubly fed induction generator (DFIG) has the capability of coupling the control of active and reactive power and to provide necessary reactive power demand during grid fault conditions. Series dynamic braking resistor (SDBR) can also be employed with DFIG to limit the rotor over current. An integration of wind and tidal energy represents a new

  9. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  10. Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs

    Science.gov (United States)

    Bakhoday-Paskyabi, Mostafa; Fer, Ilker; Reuder, Joachim

    2018-01-01

    We report concurrent measurements of ocean currents and turbulence at two sites in the North Sea, one site at upwind of the FINO1 platform and the other 200-m downwind of the Alpha Ventus wind farm. At each site, mean currents, Reynolds stresses, turbulence intensity and production of turbulent kinetic energy are obtained from two bottom-mounted 5-beam Nortek Signature1000s, high-frequency Doppler current profiler, at a water depth of approximately 30 m. Measurements from the two sites are compared to statistically identify the effects of wind farm and waves on ocean current variability and the turbulent structure in the water column. Profiles of Reynolds stresses are found to be sensible to both environmental forcing and the wind farm wake-induced distortions in both boundary layers near the surface and the seabed. Production of turbulent kinetic energy and turbulence intensity exhibit approximately similar, but less pronounced, patterns in the presence of farm wake effects.

  11. Comparison of the ocean surface vector winds from atmospheric reanalysis and scatterometer-based wind products over the Nordic Seas and the northern North Atlantic and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry S.; Bourassa, Mark A.; Petersen, Gudrún Nína; Steffen, John

    2017-03-01

    Ocean surface vector wind fields from reanalysis data sets and scatterometer-derived gridded products are analyzed over the Nordic Seas and the northern North Atlantic for the time period from 2000 to 2009. The data sets include the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR), Cross-Calibrated Multiplatform (CCMP) wind product version 1.1 and recently released version 2.0, and QuikSCAT. The goal of the study is to assess discrepancies across the wind vector fields in the data sets and demonstrate possible implications of these differences for ocean modeling. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. A cyclone tracking methodology is developed and applied to the wind fields to compare cyclone characteristics in the data sets. Additionally, the winds are evaluated against observations collected from meteorological buoys deployed in the Iceland and Irminger Seas. The agreement among the wind fields is better for longer time and larger spatial scales. The discrepancies are clearly apparent for synoptic timescales and mesoscales. CCMP, ASR, and CFSR show the closest overall agreement with each other. Substantial biases are found in the NCEPR2 winds. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The experiments demonstrate differences in the net surface heat fluxes during storms. In the experiment forced by NCEPR2 winds, there are discrepancies in the large-scale wind-driven ocean dynamics compared to the other experiments.

  12. Preliminary determination of the energy potential of ocean currents along the southern coast of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andrea; Beluco, Alexandre; de Almeida, Luiz Emilio B. [Inst. Pesquisas Hidraulicas, Univ. Fed Rio Grande do Sul, Porto Alegre (Brazil)

    2013-07-01

    The ocean can be a strategic alternative for obtaining energy supplies, both from ocean waves as from sea currents and tides. Among these features, the power generation projects based on ocean currents are still under development. Generating energy from ocean can have great impact on the Brazilian energy grid, since Brazil has a vast coastline, with more than 9,000 km long, with potential for generating energy from ocean currents not fully estimated. This article presents a preliminary determination of the energy potential for power generation from ocean currents along the coast of Rio Grande do Sul, the southernmost state of Brazil, and also presents notes that contribute to the characterization of the system of ocean currents in the region. The data used were obtained in two areas near Tramandai, allowing the determination of velocities and directions of the currents on a seasonal basis. The maximum speeds obtained rarely exceed 0.750 m/s, while the average speeds do not exceed 0.200 m/s. A relationship with the prevailing winds in the region was identified. Unfortunately, the results do not allow optimism about the power generation from ocean currents on the southern coast of Brazil, at least over the continental shelf.

  13. Indian Ocean surface winds from NCMRWF analysis as compared

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  14. On the Decrease of the Oceanic Drag Coefficient in High Winds

    Science.gov (United States)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  15. Geophysical potential for wind energy over the open oceans.

    Science.gov (United States)

    Possner, Anna; Caldeira, Ken

    2017-10-24

    Wind turbines continuously remove kinetic energy from the lower troposphere, thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is, therefore, constrained by the rate of kinetic energy replenishment from the atmosphere above. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 W m -2 within large wind farms. However, in this study, we show that considerably higher power generation rates may be sustainable over some open ocean areas. In particular, the North Atlantic is identified as a region where the downward transport of kinetic energy may sustain extraction rates of 6 W m -2 and above over large areas in the annual mean. Furthermore, our results indicate that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where sustained high rates of downward transport of kinetic energy and thus, high rates of kinetic energy extraction may be geophysical possible. While no commercial-scale deep water wind farms yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

  16. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    Science.gov (United States)

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  17. Intraseasonal variability of upper-ocean currents and photosynthetic primary production along the U.S. west coast associated with the Madden-Julian Oscillation

    Science.gov (United States)

    Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.

    2017-12-01

    In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.

  18. Improving model biases in an ESM with an isopycnic ocean component by accounting for wind work on oceanic near-inertial motions.

    Science.gov (United States)

    de Wet, P. D.; Bentsen, M.; Bethke, I.

    2016-02-01

    It is well-known that, when comparing climatological parameters such as ocean temperature and salinity to the output of an Earth System Model (ESM), the model exhibits biases. In ESMs with an isopycnic ocean component, such as NorESM, insufficient vertical mixing is thought to be one of the causes of such differences between observational and model data. However, enhancing the vertical mixing of the model's ocean component not only requires increasing the energy input, but also sound physical reasoning for doing so. Various authors have shown that the action of atmospheric winds on the ocean's surface is a major source of energy input into the upper ocean. However, due to model and computational constraints, oceanic processes linked to surface winds are incompletely accounted for. Consequently, despite significantly contributing to the energy required to maintain ocean stratification, most ESMs do not directly make provision for this energy. In this study we investigate the implementation of a routine in which the energy from work done on oceanic near-inertial motions is calculated in an offline slab model. The slab model, which has been well-documented in the literature, runs parallel to but independently from the ESM's ocean component. It receives wind fields with a frequency higher than that of the coupling frequency, allowing it to capture the fluctuations in the winds on shorter time scales. The additional energy calculated thus is then passed to the ocean component, avoiding the need for increased coupling between the components of the ESM. Results show localised reduction in, amongst others, the salinity and temperature biases of NorESM, confirming model sensitivity to wind-forcing and points to the need for better representation of surface processes in ESMs.

  19. OGCM Simulations of Equatorial Pacific Current and Temperature to ERS-1, FSU and NMC Surface Winds and to Assimilation of Subsurface Temperature Data

    Science.gov (United States)

    Halpern, David

    1995-01-01

    The relative accuracies of three surface wind data products for the tropical Pacific Ocean during April 1992 to March 1994 were examined by analyzing temperature and current fields along the equator, which were simulated with an ocean general circulation model. Simulations were made with and without assimilation of surface and subsurface temperature data. Simulated currents were compared with observations at three sites (170oW, 140oW, 110oW) at the equator. Model-generated currents and temperatures indicated that the ERS-1 westward wind speeds were low compared to the FSU and NMC winds. With data assimilation, the agreement between simulated and observed currents was highest at 170oW and lowest at 110oW.

  20. Atmospheric radiocarbon as a Southern Ocean wind proxy over the last 1000 years

    Science.gov (United States)

    Rodgers, K. B.; Mikaloff Fletcher, S.; Galbraith, E.; Sarmiento, J. L.; Gnanadesikan, A.; Slater, R. D.; Naegler, T.

    2009-04-01

    Measurements of radiocarbon in tree rings over the last 1000 years indicate that there was a pre-industrial latitudinal gradient of atmospheric radiocarbon of 3.9-4.5 per mail and that this gradient had temporal variability of order 6 per mil. Here we test the idea that the mean gradient as well as variability in he gradient is dominated by the strength of the winds over the Southern Ocean. This is done using an ocean model and an atmospheric transport model. The ocean model is used to derive fluxes of 12CO2 and 14CO2 at the sea surface, and these fluxes are used as a lower boundary condition for the transport model. For the mean state, strong winds in the Southern Ocean drive significant upwelling of radiocarbon-depleted Circumpolar Deep Water (CDW), leading to a net flux of 14CO2 relative to 12CO2 into the ocean. This serves to maintain a hemispheric gradient in pre-anthropogenic atmospheric delta-c14. For perturbations, increased/decreased Southern Ocean winds drive increased/decreased uptake of 14CO2 relative to 12CO2, thus increasing/decreasing the hemispheric gradient in atmospheric delta-c14. The tree ring data is interpreted to reveal a decrease in the strength of the Southern Ocean winds at the transition between the Little Ice Age and the Medieval Warm Period.

  1. Geophysical Potential for Wind Energy over the Open Oceans

    Science.gov (United States)

    Possner, A.; Caldeira, K.

    2017-12-01

    Wind turbines continuously remove kinetic energy from the lower troposphere thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is therefore constrained by the rate of kinetic energy replenishment from the atmosphere above. In particular, this study focuses on the maximum sustained transport of kinetic energy through the troposphere to the lowest hundreds of meters above the surface. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 Wm-2 within large wind farms. However, in this study we demonstrate that considerably higher power generation rates may be sustainable over some open ocean areas in giant wind farms. We find that in the North Atlantic maximum extraction rates of up to 6.7 Wm-2 may be sustained by the atmosphere in the annual mean over giant wind farm areas approaching the size of Greenland. In contrast, only a third of this rate is sustained on land for areas of equivalent size. Our simulations indicate a fundamental difference in response of the troposphere and its vertical kinetic energy flux to giant near-surface wind farms. We find that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where large sustained rates of downward transport of kinetic energy and thus rates of kinetic energy extraction may be geophysically possible. While no commercial-scale deep-water wind turbines yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

  2. Shearwater foraging in the Southern Ocean: the roles of prey availability and winds.

    Directory of Open Access Journals (Sweden)

    Ben Raymond

    Full Text Available BACKGROUND: Sooty (Puffinus griseus and short-tailed (P. tenuirostris shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140 degrees E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. CONCLUSIONS/SIGNIFICANCE: The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.

  3. Modeling, Simulation, and Experiment of Switched Reluctance Ocean Current Generator System

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2013-01-01

    Full Text Available This paper presents nonlinear simulation model of switched reluctance (SR ocean current generator system on MATLAB/SIMULINK with describing the structure of generator system. The developed model is made up of main model, rotor position calculation module, controller module, gate module, power converter module, phase windings module, flux-linkage module, torque module, and power calculation module. The magnetization curves obtained by two-dimensional finite-element electromagnetic field calculation and the conjugated magnetic energy graphics obtained from the three-dimensional graphics of flux linkage are stored in the “Lookup Table” modules on MATLAB/SIMULINK. The hardware of the developed three-phase 12/8 structure SR ocean current generator system prototype with the experimental platform is presented. The simulation of the prototype is performed by the developed models, and the experiments have been carried out under the same condition with different output power, turn-off angle, and rotor speed. The simulated phase current waveforms agree well with the tested phase current waveforms experimentally. The simulated output voltage curves agree well with the tested output voltage curves experimentally. It is shown that the developed nonlinear simulation model of the three-phase 12/8 structure SR ocean current generator system is valid.

  4. Ocean Mixed Layer Response to Gap Wind Scenarios

    National Research Council Canada - National Science Library

    Konstantinou, Nikolaos

    2006-01-01

    This study focuses on understanding the oceanic response to gap outflow and the air-sea interaction processes during the gap wind event between 26 and 28 February 2004 over the Gulf of Tehuantepec, Mexico. The U.S...

  5. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  6. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin

    2013-09-15

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power

  7. Intercomparison of the Charnock and COARE bulk wind stress formulations for coastal ocean modelling

    Directory of Open Access Journals (Sweden)

    J. M. Brown

    2013-08-01

    Full Text Available The accurate parameterisation of momentum and heat transfer across the air–sea interface is vital for realistic simulation of the atmosphere–ocean system. In most modelling applications accurate representation of the wind stress is required to numerically reproduce surge, coastal ocean circulation, surface waves, turbulence and mixing. Different formulations can be implemented and impact the accuracy of the instantaneous and long-term residual circulation, the surface mixed layer, and the generation of wave-surge conditions. This, in turn, affects predictions of storm impact, sediment pathways, and coastal resilience to climate change. The specific numerical formulation needs careful selection to ensure the accuracy of the simulation. Two wind stress parameterisations widely used in the ocean circulation and the storm surge communities respectively are studied with focus on an application to the NW region of the UK. Model–observation validation is performed at two nearshore and one estuarine ADCP (acoustic Doppler current profiler stations in Liverpool Bay, a hypertidal region of freshwater influence (ROFI with vast intertidal areas. The period of study covers both calm and extreme conditions to test the robustness of the 10 m wind stress component of the Coupled Ocean–Atmosphere Response Experiment (COARE bulk formulae and the standard Charnock relation. In this coastal application a realistic barotropic–baroclinic simulation of the circulation and surge elevation is set-up, demonstrating greater accuracy occurs when using the Charnock relation, with a constant Charnock coefficient of 0.0185, for surface wind stress during this one month period.

  8. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...

  9. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms

    Science.gov (United States)

    Mayor, S. D.

    2016-02-01

    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  10. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. ... A case study using the TRMM Microwave Imager (TMI) and ... parameter is essential when the values of the parameter ...

  11. Potential scour for marine current turbines based on experience of offshore wind turbine

    International Nuclear Information System (INIS)

    Chen, L; Lam, W H; Shamsuddin, A H

    2013-01-01

    The oceans have tremendous untapped natural resources. These sources are capable to make significant contribution to our future energy demands. Marine current energy offers sustainable and renewable alternative to conventional sources. Survival problems of Marine Current Turbines (MCTs) need to be addressed due to the harsh marine environment. The analogous researches in wind turbine have been conducted. Some of the results and knowledge are transferable to marine current energy industry. There still exist some gaps in the state of knowledge. Scour around marine structures have been well recognised as an engineering issue as scour is likely to cause structural instability. This paper aims to review different types of foundation of MCTs and potential scour and scour protection around these foundations based on the experience of offshore wind turbine farm.

  12. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    Science.gov (United States)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  13. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  14. Simulation of the Impact of New Aircraft-and Satellite-based Ocean Surface Wind Measurements on Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, TImothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Gamache, John; Amarin, Ruba; El-Nimri, Salem; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.

  15. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  16. Surface currents in the Bohai Sea derived from the Korean Geostationary Ocean Color Imager (GOCI)

    Science.gov (United States)

    Jiang, L.; Wang, M.

    2016-02-01

    The first geostationary ocean color satellite sensor, the Geostationary Ocean Color Imager (GOCI) onboard the Korean Communication, Ocean, and Meteorological Satellite can monitor and measure ocean phenomena over an area of 2500 × 2500 km2 around the western Pacific region centered at 36°N and 130°E. Hourly measurements during the day around 9:00 to 16:00 local time are a unique capability of GOCI to monitor ocean features of higher temporal variability. In this presentation, we show some recent results of GOCI-derived ocean surface currents in the Bohai Sea using the Maximum Cross-Correlation (MCC) feature tracking method and compare the results with altimetry-inversed tidal current observations produced from Oregon State University (OSU) Tidal Inversion Software (OTIS). The performance of the GOCI-based MCC method is assessed and the discrepancies between the GOCI- and OTIS-derived currents are evaluated. A series of sensitivity studies are conducted with images from various satellite products and of various time differences, MCC adjustable parameters, and influence from other forcings such as wind, to find the best setups for optimal MCC performance. Our results demonstrate that GOCI can effectively provide real-time monitoring of not only water optical, biological, and biogeochemical variability, but also the physical dynamics in the region.

  17. Current direction, wind direction, temperature, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 February 1981 - 01 February 1981 (NODC Accession 8100516)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from February 1, 1981 to...

  18. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  19. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  20. Conflict Resolution for Wind-Optimal Aircraft Trajectories in North Atlantic Oceanic Airspace with Wind Uncertainties

    Science.gov (United States)

    Rodionova, Olga; Sridhar, Banavar; Ng, Hok K.

    2016-01-01

    Air traffic in the North Atlantic oceanic airspace (NAT) experiences very strong winds caused by jet streams. Flying wind-optimal trajectories increases individual flight efficiency, which is advantageous when operating in the NAT. However, as the NAT is highly congested during peak hours, a large number of potential conflicts between flights are detected for the sets of wind-optimal trajectories. Conflict resolution performed at the strategic level of flight planning can significantly reduce the airspace congestion. However, being completed far in advance, strategic planning can only use predicted environmental conditions that may significantly differ from the real conditions experienced further by aircraft. The forecast uncertainties result in uncertainties in conflict prediction, and thus, conflict resolution becomes less efficient. This work considers wind uncertainties in order to improve the robustness of conflict resolution in the NAT. First, the influence of wind uncertainties on conflict prediction is investigated. Then, conflict resolution methods accounting for wind uncertainties are proposed.

  1. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei REN

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models using different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  2. Spectrum Analysis of Inertial and Subinertial Motions Based on Analyzed Winds and Wind-Driven Currents from a Primitive Equation General Ocean Circulation Model.

    Science.gov (United States)

    1982-12-01

    1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation

  3. Current direction, benthic organisms, temperature, and wind direction data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 22 September 1977 - 30 November 1978 (NODC Accession 7900110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, temperature, and wind direction data were collected using moored current meter casts in the Gulf of Mexico from September 22,...

  4. Wind energy input into the upper ocean over a lengthening open water season

    Science.gov (United States)

    Mahoney, A. R.; Rolph, R.; Walsh, J. E.

    2017-12-01

    Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional

  5. Geoengineering Downwelling Ocean Currents. A Cost Assessment

    International Nuclear Information System (INIS)

    Zhou, S.; Flynn, P.C.

    2005-01-01

    Downwelling ocean currents carry carbon into the deep ocean (the solubility pump), and play a role in controlling the level of atmospheric carbon. The formation of North Atlantic Deep Water (NADW) also releases heat to the atmosphere, which is a contributor to a mild climate in Europe. One possible response to the increase in anthropogenic carbon in the atmosphere and to the possible weakening of the NADW is modification of downwelling ocean currents, by an increase in carbon concentration or volume. This study assesses the costs of seven possible methods of modifying downwelling currents, including using existing industrial techniques for exchange of heat between water and air. Increasing carbon concentration in downwelling currents is not practical due to the high degree of saturation of high latitude surface water. Two of the methods for increasing the volume of downwelling currents were found to be impractical, and four were too expensive to warrant further consideration. Formation of thicker sea ice by pumping ocean water onto the surface of ice sheets is the least expensive of the methods identified for enhancing downwelling ocean currents. Modifying downwelling ocean currents is highly unlikely to ever be a competitive method of sequestering carbon in the deep ocean, but may find future application for climate modification

  6. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; Mc; Durand, F.; Muraleedharan, P.M.

    version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1... reversing winds. These wind variations drive seasonal equatorial Kelvin and Rossby wave responses. The seasonal equatorial Kelvin waves propagate into the North Indian Ocean (hereafter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As a result...

  7. HORIZONTAL AXIS MARINE CURRENT TURBINE DESIGN FOR WIND-ELECTRIC HYBRID SAILING BOAT

    OpenAIRE

    Ekinci, Serkan; Alvar, Mustafa

    2017-01-01

    In recent decades, the number of theoretical studies and applications on electric power production from renewable sources such as wind, solar, sea and tidal flows, has been increasing rapidly. Marine Current Turbines (MCTs), among the power turbines, produce power from alternating flows and are a means of power production even at lower flow rates in oceans and seas. In this study, while maintaining functional requirements, an initial and detailed design (mechanic and hydrodynamic), of an M...

  8. Current direction, wind wave spectra, phytoplankton, and other data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 1977-09-24 to 1981-05-31 (NODC Accession 8100612)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, phytoplankton, temperature, salinity, and other data were collected using moored current meter casts in the Gulf of Mexico from...

  9. Arctic Ice-Ocean Coupling and Gyre Equilibration Observed With Remote Sensing

    Science.gov (United States)

    Dewey, Sarah; Morison, James; Kwok, Ronald; Dickinson, Suzanne; Morison, David; Andersen, Roger

    2018-02-01

    Model and observational evidence has shown that ocean current speeds in the Beaufort Gyre have increased and recently stabilized. Because these currents rival ice drift speeds, we examine the potential for the Beaufort Gyre's shift from a system in which the wind drives the ice and the ice drives a passive ocean to one in which the ocean often, in the absence of high winds, drives the ice. The resultant stress exerted on the ocean by the ice and the resultant Ekman pumping are reversed, without any change in average wind stress curl. Through these curl reversals, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization. This manuscript constitutes one of the first observational studies of ice-ocean stress inclusive of geostrophic ocean currents, by making use of recently available remote sensing data.

  10. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  11. Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean

    Science.gov (United States)

    Gallagher, Sarah; Gleeson, Emily; Tiron, Roxana; McGrath, Ray; Dias, Frédéric

    2016-04-01

    Ireland has a highly energetic wave and wind climate, and is therefore uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of the marine resource to Ireland makes it critical to quantify how the wave and wind climate may change in the future due to global climate change. Projected changes in winds, ocean waves and the frequency and severity of extreme weather events should be carefully assessed for long-term marine and coastal planning. We derived an ensemble of future wave climate projections for Ireland using the EC-Earth global climate model and the WAVEWATCH III® wave model, by comparing the future 30-year period 2070-2099 to the period 1980-2009 for the RCP4.5 and the RCP8.5 forcing scenarios. This dataset is currently the highest resolution wave projection dataset available for Ireland. The EC-Earth ensemble predicts decreases in mean (up to 2 % for RCP4.5 and up to 3.5 % for RCP8.5) 10 m wind speeds over the North Atlantic Ocean (5-75° N, 0-80° W) by the end of the century, which will consequently affect swell generation for the Irish wave climate. The WAVEWATCH III® model predicts an overall decrease in annual and seasonal mean significant wave heights around Ireland, with the largest decreases in summer (up to 15 %) and winter (up to 10 %) for RCP8.5. Projected decreases in mean significant wave heights for spring and autumn were found to be small for both forcing scenarios (less than 5 %), with no significant decrease found for RCP4.5 off the west coast in those seasons.

  12. Global Ocean Currents Database (GOCD) (NCEI Accession 0093183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ocean Currents Database (GOCD) is a collection of quality controlled ocean current measurements such as observed current direction and speed obtained from...

  13. Dynamic ocean topography from CryoSat-2: examining recent changes in ice-ocean stress and advancing a theory for Beaufort Gyre stabilization

    Science.gov (United States)

    Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.

    2017-12-01

    Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.

  14. Simulation of the Impact of New Aircraft- and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Krishnamurti, T. N.; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath ( 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state

  15. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico as part of the Brine Disposal project, 1977-12-22 to 1978-07-01 (NODC Accession 7900123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from December 22, 1977 to October...

  16. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  17. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico as part of the Brine Disposal project, 1977-02-02 to 1979-01-31 (NODC Accession 7900144)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, salinity, and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from February 2, 1978 to January 31,...

  18. Current direction and wind wave spectra data from moored current meter casts in the Gulf of Mexico as part of the Brine Disposal project, 1978-06-28 to 1978-12-31 (NODC Accession 7900128)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and wind wave spectra data were collected using moored current meter casts in the Gulf of Mexico from June 28, 1978 to December 31,...

  19. Assessment of the importance of the current-wave coupling in the shelf ocean forecasts

    Directory of Open Access Journals (Sweden)

    G. Jordà

    2007-07-01

    Full Text Available The effects of wave-current interactions on shelf ocean forecasts is investigated in the framework of the MFSTEP (Mediterranean Forecasting System Project Towards Enviromental Predictions project. A one way sequential coupling approach is adopted to link the wave model (WAM to the circulation model (SYMPHONIE. The coupling of waves and currents has been done considering four main processes: wave refraction due to currents, surface wind drag and bottom drag modifications due to waves, and the wave induced mass flux. The coupled modelling system is implemented in the southern Catalan shelf (NW Mediterranean, a region with characteristics similar to most of the Mediterranean shelves. The sensitivity experiments are run in a typical operational configuration. The wave refraction by currents seems to be not very relevant in a microtidal context such as the western Mediterranean. The main effect of waves on current forecasts is through the modification of the wind drag. The Stokes drift also plays a significant role due to its spatial and temporal characteristics. Finally, the enhanced bottom friction is just noticeable in the inner shelf.

  20. Regional Wave Climates along Eastern Boundary Currents

    Science.gov (United States)

    Semedo, Alvaro; Soares, Pedro

    2016-04-01

    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or

  1. Westerly Winds and the Southern Ocean CO2 Sink Since the Last Glacial-Interglacial Transition

    Science.gov (United States)

    Hodgson, D. A.; Saunders, K. M.; Roberts, S. J.; Perren, B.; Butz, C.; Sime, L. C.; Davies, S. J.; Grosjean, M.

    2017-12-01

    The capacity of the Southern Ocean carbon sink is partly controlled by the Southern Hemisphere westerly winds (SHW) and sea ice. These regulate the upwelling of dissolved carbon-rich deep water to Antarctic surface waters, determine the surface area for air-sea gas exchange and therefore modulate the net uptake of atmospheric CO2. Some models have proposed that strengthened SHW will result in a weakening of the Southern Ocean CO2 sink. If these models are correct, then one would expect that reconstructions of changes in SHW intensity on centennial to millennial timescales would show clear links with Antarctic ice core and Southern Ocean marine geological records of atmospheric CO2, temperature and sea ice. Here, we present a 12,300 year reconstruction of past wind strength based on three independent proxies that track the changing inputs of sea salt aerosols and minerogenic particles into lake sediments on sub-Antarctic Macquarie Island. The proxies are consistent in showing that periods of high wind intensity corresponded with the increase in CO2 across the late Last Glacial-Interglacial Transition and in the last 7,000 years, suggesting that the winds have contributed to the long term outgassing of CO2 from the ocean during these periods.

  2. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  3. Current direction, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1978-10-11 to 1980-03-19 (NODC Accession 8000368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and other data were collected using moored current meter casts and other instruments from the CAPT JACK and EXCELLENCE in the...

  4. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  5. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    International Nuclear Information System (INIS)

    Lim, Sung Hun; Han, Tae Hee

    2017-01-01

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding

  6. Current direction, wind wave spectra, phytoplankton, zooplankton, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1977-09-24 to 1981-08-31 (NODC Accession 8100681)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, phytoplankton, zooplankton, wind wave spectra, and other data were collected using moored current meter casts and other instruments in...

  7. Ocean Current Power Generator. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, G. A.

    2002-07-26

    The Ocean Power Generator is both technically and economically suitable for deployment in the Gulf Stream from the US Navy facility in Dania, Florida. Yet to be completed is the calibration test in the Chesapeake Bay with the prototype dual hydroturbine Underwater Electric Kite. For the production units a revised design includes two ballast tanks mounted as pontoons to provide buoyancy and depth control. The power rating of the Ocean Power Generator has been doubled to 200 kW ready for insertion into the utility grid. The projected cost for a 10 MW installation is $3.38 per watt, a cost that is consistent with wind power pricing when it was in its deployment infancy, and a cost that is far better than photovoltaics after 25 years of research and development. The Gulf Stream flows 24 hours per day, and water flow is both environmentally and ecologically perfect as a renewable energy source. No real estate purchases are necessary, and you cannot see, hear, smell, or touch an Ocean Power Generator.

  8. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    Science.gov (United States)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  9. Current direction and wind data from moored current meter casts and other instruments in the Puget Sound during the Mesa Puget Sound/PSERP (MESA -PS) project, 1977-06-21 to 1977-09-25 (NODC Accession 7800257)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and wind data were collected using moored current meter casts and other instruments in the Puget Sound from June 21, 1977 to September 25, 1977. Data...

  10. Current direction, phytoplankton, zooplankton, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1981-02-07 to 1982-11-01 (NODC Accession 8300055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, phytoplankton, zooplankton, wind wave spectra, and other data were collected using moored current meter casts and other instruments in the Gulf of...

  11. Greater Role of Geostrophic Currents on Ekman Dynamics in the Western Arctic Ocean as a Mechanism for Beaufort Gyre Stabilization

    Science.gov (United States)

    Steele, M.; Zhong, W.; Zhang, J.; Zhao, J.

    2017-12-01

    Seven different methods, with and without including geostrophic currents, were used to explore Ekman dynamics in the western Arctic Ocean for the period 1992-2014. Results show that surface geostrophic currents have been increasing and are much stronger than Ekman layer velocities in recent years (2003-2014) when the oceanic Beaufort Gyre (BG) is spinning up in the region. The new methods that include geostrophic currents result in more realistic Ekman pumping velocities than a previous iterative method that does not consider geostrophic currents and therefore overestimates Ekman pumping velocities by up to 52% in the central area of the BG over the period 2003-2014. When the BG is spinning up as seen in recent years, geostrophic currents become stronger, which tend to modify the ice-ocean stress and to cause an Ekman divergence that counteracts wind-driven Ekman convergence in the Canada Basin. This is a mechanism we have identified to play an important and growing role in stabilizing the Ekman convergence and therefore the BG in recent years. This mechanism may be used to explain three scenarios that describe the interplay of changes in wind forcing, sea ice motion, and geostrophic currents that control the variability of the Ekman dynamics in the central BG during 1992-2014. Results also reveal several upwelling regions in the southern and northern Canada Basin and the Chukchi Abyssal Plain which may plays a significant role in biological processes in these regions.

  12. Greater Role of Geostrophic Currents in Ekman Dynamics in the Western Arctic Ocean as a Mechanism for Beaufort Gyre Stabilization

    Science.gov (United States)

    Zhong, Wenli; Steele, Michael; Zhang, Jinlun; Zhao, Jinping

    2018-01-01

    Seven different methods, with and without including geostrophic currents, were used to explore Ekman dynamics in the western Arctic Ocean for the period 1992-2014. Results show that surface geostrophic currents have been increasing and are much stronger than Ekman layer velocities in recent years (2003-2014) when the oceanic Beaufort Gyre (BG) is spinning up in the region. The new methods that include geostrophic currents result in more realistic Ekman pumping velocities than a previous iterative method that does not consider geostrophic currents and therefore overestimates Ekman pumping velocities by up to 52% in the central area of the BG over the period 2003-2014. When the BG is spinning up as seen in recent years, geostrophic currents become stronger, which tend to modify the ice-ocean stress and moderate the wind-driven Ekman convergence in the Canada Basin. This is a mechanism we have identified to play an important and growing role in stabilizing the Ekman convergence and therefore the BG in recent years. This mechanism may be used to explain three scenarios that describe the interplay of changes in wind forcing, sea ice motion, and geostrophic currents that control the variability of the Ekman dynamics in the central BG during 1992-2014. Results also reveal several upwelling regions in the southern and northern Canada Basin and the Chukchi Abyssal Plain which may play a significant role in physical and biological processes in these regions.

  13. Secondary current properties generated by wind-induced water waves in experimental conditions

    Directory of Open Access Journals (Sweden)

    Michio Sanjou

    2014-06-01

    Full Text Available Secondary currents such as the Langmuir circulation are of high interest in natural rivers and the ocean because they have striking impacts on scour, sedimentation, and mass transport. Basic characteristics have been well-studied in straight open-channel flows. However, little is known regarding secondary circulation induced by wind waves. The presented study describes the generation properties of wind waves observed in the laboratory tank. Wind-induced water waves are known to produce large scale circulations. The phenomenon is observed together with high-speed and low-speed streaks, convergence and divergence zones, respectively. Therefore, it is important to determine the hydrodynamic properties of secondary currents for wind-induced water waves within rivers and lakes. In this study, using two high-speed CMOS cameras, stereoscopic particle image velocimetry (PIV measurements were conducted in order to reveal the distribution of all three components of velocity vectors. The experiments allowed us to investigate the three-dimensional turbulent structure under water waves and the generation mechanism of large-scale circulations. Additionally, a third CMOS camera was used to measure the spanwise profile of thefree-surface elevation. The time-series of velocity components and the free-surface were obtained simultaneously. From our experiments, free-surface variations were found to influence the instantaneous velocity distributions of the cross-sectional plane. We also considered thegeneration process by the phase analysis related to gravity waves and compared the contribution of the apparent stress.

  14. Current direction, benthic organisms, wind wave spectra, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1978-01-12 to 1980-06-01 (NODC Accession 8000465)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, wind wave spectra, and other data were collected using moored current meter casts and other instruments from the CAPT JACK and...

  15. Current status of wind energy and wind energy policy in Turkey

    International Nuclear Information System (INIS)

    Yaniktepe, B.; Savrun, M.M.; Koroglu, T.

    2013-01-01

    Highlights: • Present installations of wind power in the world. • Focus on the current state, potential, and development of Turkey’s wind energy. • Explain the institutional framework and support/incentive mechanisms in Turkey. • Investigate and give information about the new Turkish Renewable Energy Law. - Abstract: Over the past decades, the importance of renewable and sustainable energy resources has increased in the world due to both the rapid increase in energy demand and disadvantages of the fossil fuels. Many countries, such as Turkey, aim to increase the use of renewable and sustainable energy sources with different incentive mechanisms. In parallel with these incentive methods being implemented, wind energy capacity in Turkey has a remarkable increase in the growing rates of renewable energy sources according to installed wind power. Up to now, several wind power projects have been developed at different regions of Turkey. This paper aims to analyze the potential and development of wind energy systems in Turkey. Besides, the current usage and development of wind power installations have been explored for the World and Turkey in detail at the end of the 2011. Furthermore, this study also presents tax exemption, support, and incentive mechanisms to develop new wind energy investments in Turkey

  16. Current direction, zooplankton, wind wave spectra, benthic organisms, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 18 October 1977 to 01 May 1979 (NODC Accession 7900270)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, zooplankton, benthic organisms, wind wave spectra, and other data were collected using moored current meter casts and other instruments in the...

  17. On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines during Hurricanes: March 2012 - September 2015

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungsoo [Univ. of Texas, Austin, TX (United States); Manuel, Lance [Univ. of Texas, Austin, TX (United States); Curcic, Milan [Univ. of Miami, Coral Gables, FL (United States); Chen, Shuyi S. [Univ. of Miami, Coral Gables, FL (United States); Phillips, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Veers, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of the changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces

  18. Indian Ocean experiments with a coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Wainer, I. [Sao Paulo, Univ. (Brazil). Dept. of Oceanography

    1997-03-01

    A coupled ocean-atmosphere model is used to investigate the equatorial Indian Ocean response to the seasonally varying monsoon winds. Special attention is given to the oceanic response to the spatial distribution and changes in direction of the zonal winds. The Indian Ocean is surrounded by an Asian land mass to the North and an African land mass to the West. The model extends latitudinally between 41 N and 41 S. The asymmetric atmospheric model is driven by a mass source/sink term that is proportional to the sea surface temperature (SST) over the oceans and the heat balance over the land. The ocean is modeled using the Anderson and McCreary reduced-gravity transport model that includes a prognostic equation for the SST. The coupled system is driven by the annual cycle as manifested by zonally symmetric and asymmetric land and ocean heating. They explored the different nature of the equatorial ocean response to various patterns of zonal wind stress forcing in order to isolate the impact of the remote response on the Somali current. The major conclusions are : i) the equatorial response is fundamentally different for easterlies and westerlies, ii) the impact of the remote forcing on the Somali current is a function of the annual cycle, iii) the size of the basin sets the phase of the interference of the remote forcing on the Somali current relative to the local forcing.

  19. Aquantis Ocean Current Turbine Development Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  20. Response of an ocean general circulation model to wind and ...

    Indian Academy of Sciences (India)

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.

  1. Current direction, chemical, benthic organisms, and wind wave spectra data from moored current meter casts and other instruments in the Gulf of Mexico as part of the Brine Disposal project, 1977-10-14 to 1979-08-24 (NODC Accession 7900335)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, chemical, benthic organisms, and wind direction data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  2. The influence of reactive current on wind farm LVRT behavior

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing; Zhang, Mei; He, Jing; Qin, Shi-yao [China Electric Power Research Institute, Beijing (China)

    2012-07-01

    The Low voltage ride through (LVRT) capability of the whole wind farm is required in Chinese grid code published in 2011. In order to analyze the influence of reactive current on wind farm during grid fault, a 100 MW wind farm was simulated with the wind turbines which have been tested. Based on the validated wind turbine model, the wind farm was detailed modelled in DigSILENT/PowerFactory. The model of wind turbines, transformers, feeders, main transformers, static var compensator, and transmission lines was considered in the simulation. Under the weak and strong grid conditions, the wind farm was simulated with different wind turbine reactive current behavior during grid fault, respectively. The voltage distribution, active and reactive power transient behavior at the point of interconnection was analyzed. The results show that wind farm LVRT behavior is related to reactive current and LVRT capability of wind turbine, wind farm electrical structure and grid conditions. And it is very important for wind turbine to have a flexible dynamic reactive current control capability. (orig.)

  3. Mechanical Extraction of Power From Ocean Currents and Tides

    Science.gov (United States)

    Jones, Jack; Chao, Yi

    2010-01-01

    A proposed scheme for generating electric power from rivers and from ocean currents, tides, and waves is intended to offer economic and environmental advantages over prior such schemes, some of which are at various stages of implementation, others of which have not yet advanced beyond the concept stage. This scheme would be less environmentally objectionable than are prior schemes that involve the use of dams to block rivers and tidal flows. This scheme would also not entail the high maintenance costs of other proposed schemes that call for submerged electric generators and cables, which would be subject to degradation by marine growth and corrosion. A basic power-generation system according to the scheme now proposed would not include any submerged electrical equipment. The submerged portion of the system would include an all-mechanical turbine/pump unit that would superficially resemble a large land-based wind turbine (see figure). The turbine axis would turn slowly as it captured energy from the local river flow, ocean current, tidal flow, or flow from an ocean-wave device. The turbine axis would drive a pump through a gearbox to generate an enclosed flow of water, hydraulic fluid, or other suitable fluid at a relatively high pressure [typically approx.500 psi (approx.3.4 MPa)]. The pressurized fluid could be piped to an onshore or offshore facility, above the ocean surface, where it would be used to drive a turbine that, in turn, would drive an electric generator. The fluid could be recirculated between the submerged unit and the power-generation facility in a closed flow system; alternatively, if the fluid were seawater, it could be taken in from the ocean at the submerged turbine/pump unit and discharged back into the ocean from the power-generation facility. Another alternative would be to use the pressurized flow to charge an elevated reservoir or other pumped-storage facility, from whence fluid could later be released to drive a turbine/generator unit at a

  4. Current direction, marine toxic substances, and wind wave spectra data from moored current meter casts and other instruments in the Gulf of Mexico as part of the Brine Disposal project, 1977-09-15 to 1979-06-30 (NODC Accession 7900295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, marine toxic substances, and wind wave spectra data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  5. Current direction, marine toxic substances, and wind wave spectra data from moored current meter casts and other instruments in the Gulf of Mexico as part of the Brine Disposal project, 1977-12-22 to 1979-09-30 (NODC Accession 7900336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, marine toxic substances, and wind wave spectra data were collected using moored current meter casts and other instruments in the Gulf of Mexico...

  6. Taylor dispersion in wind-driven current

    Science.gov (United States)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  7. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Off the shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated off the shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s-1, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that all frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline.Off the shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1

  8. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    Science.gov (United States)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; hide

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  9. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

    Science.gov (United States)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger

    2018-03-01

    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  10. The effects of wind and rainfall on suspended sediment concentration related to the 2004 Indian Ocean tsunami

    International Nuclear Information System (INIS)

    Zhang Xinfeng; Tang Danling; Li Zizhen; Zhang Fengpan

    2009-01-01

    The effects of rainfall and wind speed on the dynamics of suspended sediment concentration (SSC), during the 2004 Indian Ocean tsunami, were analyzed using spatial statistical models. The results showed a positive effect of wind speed on SSC, and inconsistent effects (positive and negative) of rainfall on SSC. The effects of wind speed and rainfall on SSC weakened immediately around the tsunami, indicating tsunami-caused floods and earthquake-induced shaking may have suddenly disturbed the ocean-atmosphere interaction processes, and thus weakened the effects of wind speed and rainfall on SSC. Wind speed and rainfall increased markedly, and reached their maximum values immediately after the tsunami week. Rainfall at this particular week exceeded twice the average for the same period over the previous 4 years. The tsunami-affected air-sea interactions may have increased both wind speed and rainfall immediately after the tsunami week, which directly lead to the variations in SSC.

  11. A modelling study of the influence of anomalous wind forcing over the Barents Sea on the Atlantic water flow to the Arctic Ocean in the period 1979-2004

    Science.gov (United States)

    Marciniak, Jakub; Schlichtholz, Pawel; Maslowski, Wieslaw

    2016-04-01

    Arctic climate system is influenced by oceanic heat transport with the Atlantic water (AW) streaming towards the Arctic Ocean in two branches, through the deep Fram Strait and the shallow Barents Sea. In Fram Strait, the AW submerges below the Polar surface water and then flows cyclonically along the margin of the Arctic Ocean as a subsurface water mass in the Arctic Slope Current. In contrast to the Fram Strait branch, which is the major source of heat for the Arctic Ocean, most of the heat influx to the Barents Sea through the Barents Sea opening (BSO) is passed to the atmosphere. Only cold remnants of AW outflow to the Arctic Ocean through the northeastern gate of the Barents Sea. Some AW entering the Barents Sea recirculates westward, contributing to an outflow from the Barents Sea through the BSO along the shelf slope south of Bear Island, in the Bear Island Slope Current. Even though the two-branched AW flow toward the Arctic Ocean has been known for more than a century, little is known about co-variability of heat fluxes in the two branches, its mechanisms and climatic implications. Recent studies indicate that the Bear Island Slope Current may play a role in this co-variability. Here, co-variability of the flow through the BSO and Fram Strait is investigated using a pan-Arctic coupled ice-ocean hindcast model run for the period 1979-2004 and forced with daily atmospheric data from the ECMWF. Significant wintertime co-variability between the volume transport in the Bear Island and Arctic slope currents and its link to wind forcing over the Barents Sea is confirmed. It is found that the volume transports in these currents are, however, not correlated in the annual mean and that the wintertime co-variability of these currents has no immediate effect on either the net heat flux through the BSO or the net heat flux divergence in the Barents Sea. It is shown that the main climatic effect of wind forcing over the northern Barents Sea shelf is to induce temperature

  12. Monthly mean wind stress along the coast of the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Shenoi, S.S.C.; Antony, M.K.; Krishnakumar, V.

    Monthly-mean wind stress and its longshore and offshore components have been computed using the bulk aerodynamic method for each of a string of 36 two-degree-latitude by two-degree-longitude squares along the coast of the north Indian Ocean...

  13. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  14. Sea surface temperature (SST) and surface current data collected from the Mar Mostro during the around-the-world Volvo Ocean Race (VOR) from 2011-11-05 to 2012-07-12 (NCEI Accession 0130694)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Navigation, surface current, sea surface temperature, wind, and atmospheric pressure data collected by the Mar Mostro during the around-the-world Volvo Ocean Race...

  15. Spanish leadership in marine renewable energies. The project Ocean Lider; Liderazgo espanol en energias renovables oceanicas. El proyecto Ocean Lider

    Energy Technology Data Exchange (ETDEWEB)

    Amante, J.

    2012-07-01

    The Cenit-e Ocean Lider project is an ambitious R+D technological initiative promoted by a consortium of companies with a strong research capability which addresses the challenge of developing the necessary technologies to set up integrated large scale installations that can harness energies of marine renewable sources, such as waves, tidal currents and wind. Ocean Lider developed knowledge and technologies would provide some new power plant concepts, devices, structures, data acquisition and site characterization systems, vessels, etc. In this way, some new technologies for harnessing ocean energy generation, distribution and transmission would be developed and sized according to a large scale scheme, to make this hybrid harvest (wave, current and wind) as profitable as possible. (Author)

  16. Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review

    Directory of Open Access Journals (Sweden)

    Candace Oviatt

    2015-10-01

    Full Text Available The purpose of this review is to describe the global scope of the multidecadal climate oscillations that go back at least, through several hundred years. Literature, historic data, satellite data and global circulation model output have been used to provide evidence for the zonal and meridional jet stream patterns. These patterns were predominantly zonal from the 1970s to 1990s and switched since the 1990s to a meridional wind phase, with weakening jet streams forming Rossby waves in the northern and southern hemispheres. A weakened northern jet stream has allowed northerly winds to flow down over the continents in the northern hemisphere during the winter period, causing some harsh winters and slowing anthropogenic climate warming regionally. Wind oscillations impact ocean gyre circulation affecting upwelling strength and pelagic fish abundance with synchronous behavior in sub Arctic gyres during phases of the oscillation and asynchronous behavior in subtropical gyres between the Atlantic and Pacific oceans.

  17. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    Science.gov (United States)

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of

  18. Numerical simulation of wave-current interaction under strong wind conditions

    Science.gov (United States)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  19. Basic study for tsunami detection with DBF ocean radar

    International Nuclear Information System (INIS)

    Sakai, Shin'ichi; Matsuyama, Masafumi; Okuda, Kouzou; Uehara, Fumihiro

    2015-01-01

    To develop early tsunami warning system utilizing ocean radars, the evaluation of the variety of measuring coverage and data accuracy is indispensable in real oceans. The field observation was carried out at 5 minutes interval with two digital beam forming ocean radars with VHF band from 2012 to 2014 in the sea of Enshu. The high data acquisition areas are found in the extent of 17 km off the coast on a hill site and of 13 km on a low ground site. The measured current by the ocean radar were well correlated with that by the current-meter in the depth of 2 m near the coast with the correlation coefficient of ∼0.6. It is inferred that the main factor of difference in both data sets was due to the presence of wind-driven current through the multi-regression analysis with both current data and wind data. In addition, the order of the temporal current deviations as to the representative time-scale of one hour is about 5 cm/s under the ordinary sea conditions, which suggest that ocean radars could sufficiently detect the current deviation due to grant tsunami. (author)

  20. Turbulent kinetic energy of the ocean winds over the Kuroshio Extension from QuikSCAT winds (1999-2009)

    Science.gov (United States)

    Yu, Kai; Dong, Changming; King, Gregory P.

    2017-06-01

    We investigate mesoscale turbulence (10-1000 km) in the ocean winds over the Kuroshio Extension (28°N-40°N, 140°E-180°E) using the QuikSCAT data set (November 1999 to October 2009). We calculate the second (Djj) and third-order structure functions (Djjj) and the spatial variance (Vj) as a function of scale r (j=L,T denotes, respectively, the longitudinal (divergent) and transverse (vortical) component). The most interesting results of the analysis follow. Although both Vj>(r>) and Djj>(r>) measure the turbulent kinetic energy (TKE), we find that Vj>(r>) is the more robust measure. The spatial variance density (dVj/dr) has a broad peak near 450 km (close to the midlatitude Rossby radius of deformation). On interannual time scales, TKE correlates well with the El Niño 3.4 index. According to turbulence theory, the kinetic energy cascades downscale (upscale) if DLLL>(r>) (also skewness SL=DLLL/DLL3/2) is negative (positive). Our results for the Kuroshio Extension are consistent with a downscale cascade (indicating convergence dominates). Furthermore, classical turbulence theory predicts that SL=-0.3 and independent of r; however, we find SL varies strongly with r, from -4 at small scales to -0.3 at large scales. This nonclassical behavior implies strong-scale interaction, which we attribute to the rapid, and sometimes explosive, growth of storms in the region through baroclinic instability. Finally, we find that ST (a measure of cyclonic/anticyclonic asymmetry) is positive (cyclonic) and also varies strongly with r, from 4 at small scales to 0.5 at large scales. New turbulence models are needed to explain these results, and that will benefit Weather Prediction and climate modeling.Plain Language SummaryThe turbulent winds near the ocean surface give rise to air-sea heat and momentum exchange. The turbulence is caused by convective processes - processes generated at weather fronts, in squalls, tropical disturbances and extra-tropical cyclones. In order to improve

  1. Current projects of the National Wind Coordinating Committee

    Energy Technology Data Exchange (ETDEWEB)

    Rhoads, H. [National Wind Coordinating Committee, Washington, DC (United States)

    1997-12-31

    This paper summarizes the activities of the National Wind Coordinating Committee (NWCC), a multi-stakeholder collaborative formed in 1994 to support the responsible use of wind power in the USA. The NWCC`s vision is a self-sustaining commercial market for wind power - environmentally, economically, and politically sustainable. Current NWCC activities include: outreach initiatives, disseminating information about wind energy to regulators and legislators through the Wind Energy Issue Paper Series, researching distributed wind energy models, producing a wind facility permitting handbook, improving avian research, addressing transmission and resource assessment issues, and exploring sustainable development and marketing approaches.

  2. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    Science.gov (United States)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO

  3. Seasonal cooling and blooming in tropical oceans

    Science.gov (United States)

    Longhurst, Alan

    1993-11-01

    The relative importance of tropical pelagic algal blooms in not yet fully appreciated and the way they are induced not well understood. The tropical Atlantic supports pelagic blooms together equivalent to the North Atlantic spring bloom. These blooms are driven by thermocline tilting, curl of wind stress and eddy upwelling as the ocean responds to intensified basin-scale winds in boreal summer. The dimensions of the Pacific Ocean are such that seasonal thermocline tilting does not occur, and nutrient conditions are such that tilting might not induce bloom, in any case. Divergence at the equator is a separate process that strengthens the Atlantic bloom, is more prominent in the eastern Pacific, and in the Indian Ocean induces a bloom only in the western part of the ocean. Where western jet currents are retroflected from the coast off Somalia and Brazil, eddy upwelling induces prominent blooms. In the eastward flow of the northern equatorial countercurrents, positive wind curl stress induces Ekman pumping and the induction of algal blooms aligned with the currents. Some apparent algal bloom, such as that seen frequently in CZCS images westwards from Senegal, must be due to interference from airborne dust.

  4. One kind of atmosphere-ocean three layer model for calculating the velocity of ocean current

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Z; Xi, P

    1979-10-01

    A three-layer atmosphere-ocean model is given in this paper to calcuate the velocity of ocean current, particularly the function of the vertical coordinate, taking into consideratiln (1) the atmospheric effect on the generation of ocean current, (2) a calculated coefficient of the eddy viscosity instead of an assumed one, and (3) the sea which actually varies in depth.

  5. Small Wind Turbine Applications: Current Practice in Colorado

    International Nuclear Information System (INIS)

    Green, Jim

    1999-01-01

    Numerous small wind turbines are being used by homeowners in Colorado. Some of these installations are quite recent while others date back to the federal tax-credit era of the early 1980s. Through visits with small wind turbine owners in Colorado, I have developed case studies of six small wind energy applications focusing on the wind turbine technology, wind turbine siting, the power systems and electric loads, regulatory issues, and motivations about wind energy. These case studies offer a glimpse into the current state-of-the-art of small-scale wind energy and provide some insight into issues affecting development of a wider market

  6. The current wind energy programme in Italy

    International Nuclear Information System (INIS)

    Ambrosini, G.; Foli, U.; Sesto, E.; Vigotti, R.

    1991-01-01

    In Italy, the main activities in the field of wind energy are carried out by two state-owned organizations, ENEA (Italian National Agency for New Technologies, Energy and the Environment) and ENEL (Italian National Electricity Board), and two major wind turbine generator manufacturers, Alenia/WEST and Riva Calzoni, within the framework of a national programme which is supervized by the Ministry of Industry and Commerce. The work currently under way concerns both wind power plant siting and the development and testing of Italian-made wind turbine generators ranging from 5 to 1500 kW in power. In addition, programmes aimed at constructing wind-farms made up of medium-sized machines (200-400 kW) have recently been launched

  7. Reducing AC-Winding Losses in High-Current High-Power Inductors

    DEFF Research Database (Denmark)

    Nymand, Morten; Madawala, Udaya K.; Andersen, Michael Andreas E.

    2009-01-01

    Foil windings are preferable in high-current high-power inductors to realize compact designs and to reduce dc-current losses. At high frequency, however, proximity effect will cause very significant increase in ac resistance in multi-layer windings, and lead to high ac winding losses. This paper ...

  8. 新型风力/洋流涡轮气动及引射特性%Aerodynamic performance and ejection ability of new wind/ocean current turbine

    Institute of Scientific and Technical Information of China (English)

    韩万龙; 颜培刚; 何玉荣; 韩万金

    2016-01-01

    Turbofan engine nozzle ejector technology was used for the design of a new turbine for efficient utilization of low⁃grade wind energy and ocean current energy. The turbine was composed of a low⁃rotation⁃speed single⁃stage and a lobed ejector. A parameterized method for building the lobed ejector structure was given. Reynolds⁃averaged NS equations and k - ε turbulence model were chosen for numerical study on the aerodynamic performance and ejection ability of the turbine using commercial software CFX. Simulation results indicated the lobed ejector could bring the wind/ oceans currents energy into the back of turbine, the stream⁃wise vortices and normal vortices behind the lobes were produced to pump the low speed fluid behind the turbine. The effect could make the pressure reduced, the effective velocity almost increased 1.4 times, and the energy grade was improved. In the condition of wind speed ranges from 2 to 6 m/s and ocean current speed ranges from 2 to 4 m/s, the power output of the turbine exponentially increased as the flow velocity increased, and flow capacity was increased by 32.70%-35.33% than single⁃stage turbine. The energy utilization efficiency of the turbine went up to 66%-77%.%为高效开发利用低品位风能和洋流能,采用涡扇发动机喷管引射技术,设计含有单级涡轮和波瓣引射器结构的低品位风力/洋流涡轮,给出一种波瓣引射器的参数化方法,并基于CFX软件RANS方程和k -ε湍流模型数值研究涡轮气动和引射特性.结果表明:含单级涡轮和波瓣引射器结构的低品位风力/洋流涡轮可将其转子四周流过的能量通过波瓣引射器引入涡轮后侧,通过流向涡和正交涡共同产生的抽吸作用,降低涡轮转子后侧被压,使有效做功速度增大约1.4倍,等效于提升了能量的品位.在2~6m/s的风能和2~4m/s的洋流能利用方面,含单级涡轮和波瓣引射器结构的风力/洋流

  9. Current situation of wind energy in the world and Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Alper Kaplan, Yusuf; San, Ismail [Department of Electrical and Electronics Engineering, Anadolu University (Turkey)], email: yakaplan@anadolu.edu.tr, email: isan@anadolu.edu.tr

    2011-07-01

    This paper gives an overview of the current situation of wind power in Turkey and in the world by evaluating installed wind power using current data. It also looks at the political conditions of Turkey in relation to the current installed wind energy power in Turkey compared with that of certain developed countries. The problems encountered are also illustrated as a basis for proposing solutions. Turkey's wind energy potential is 48,000 MW but installed wind power was only 1,329 MW as of 2011. Wind energy is at present one of the most cost-competitive renewable energy technologies in the world when technical, geographical and social issues are taken into consideration. Economic sources should be researched. The development of current potential and the market entry of renewable energy resources requires a legal and regulatory framework that support suitable mechanisms. Local support is recommended together with tax exemptions. Long-term fixed-price guarantees should also be considered by government.

  10. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during.......3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscillation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals...

  11. Active current control in wind power plants during grid faults

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Phillip C.; Rodriguez, Pedro

    2010-01-01

    Modern wind power plants are required and designed to ride through faults in electrical networks, subject to fault clearing. Wind turbine fault current contribution is required from most countries with a high amount of wind power penetration. In order to comply with such grid code requirements......, wind turbines usually have solutions that enable the turbines to control the generation of reactive power during faults. This paper addresses the importance of using an optimal injection of active current during faults in order to fulfil these grid codes. This is of relevant importance for severe...... faults, causing low voltages at the point of common coupling. As a consequence, a new wind turbine current controller for operation during faults is proposed. It is shown that to achieve the maximum transfer of reactive current at the point of common coupling, a strategy for optimal setting of the active...

  12. Surface Currents and Winds at the Delaware Bay Mouth

    Energy Technology Data Exchange (ETDEWEB)

    Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

  13. Seasonal cycle of cross-equatorial flow in the central Indian Ocean

    Science.gov (United States)

    Wang, Yi; McPhaden, Michael J.

    2017-05-01

    This study investigates the seasonal cycle of meridional currents in the upper layers of central equatorial Indian Ocean using acoustic Doppler current profiler (ADCP) and other data over the period 2004-2013. The ADCP data set collected along 80.5°E is the most comprehensive collection of direct velocity measurements in the central Indian Ocean to date, providing new insights into the meridional circulation in this region. We find that mean volume transport is southward across the equator in the central Indian Ocean in approximate Sverdrup balance with the wind stress curl. In addition, mean westerly wind stress near the equator drives convergent Ekman flow in the surface layer and subsurface divergent geostrophic flow in the thermocline at 50-150 m depths. In response to a mean northward component of the surface wind stress, the maximum surface layer convergence is shifted off the equator to between 0.5° and 1°N. Evidence is also presented for the existence of a shallow equatorial roll consisting of a northward wind-driven surface drift overlaying the southward directed subsurface Sverdrup transport. Seasonal variations are characterized by cross-equatorial transports flowing from the summer to the winter hemisphere in quasi-steady Sverdrup balance with the wind stress curl. In addition, semiannually varying westerly monsoon transition winds lead to semiannual enhancements of surface layer Ekman convergence and geostrophic divergence in the thermocline. These results quantify expectations from ocean circulation theories for equatorial Indian Ocean meridional circulation patterns with a high degree of confidence given the length of the data records.

  14. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  15. Motionally-induced electromagnetic fields generated by idealized ocean currents

    Science.gov (United States)

    Tyler, R. H.; Mysak, L. A.

    Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport

  16. HF Radar Observations of Current, Wave and Wind Parameters in the South Australian Gulf

    Science.gov (United States)

    Middleditch, A.; Cosoli, S.

    2016-12-01

    The Australian Coastal Ocean Radar Network (ACORN) has been measuring metocean parameters from an array of HF radar systems since 2007. Current, wave and wind measurements from a WERA phased-array radar system in the South Australian Gulf are evaluated using current meter, wave buoy and weather station data over a 12-month period. The spatial and temporal scales of the radar deployment have been configured for the measurement of surface currents from the first order backscatter spectra. Quality control procedures are applied to the radar currents that relate to the geometric configurations, statistical properties, and diagnostic variables provided by the analysis software. Wave measurements are obtained through an iterative inversion algorithm that provides an estimate of the directional frequency spectrum. The standard static configurations and data sampling strategies are not optimised for waves and so additional signal processing steps need to be implemented in order to provide reliable estimates. These techniques are currently only applied in offline mode but a real-time approach is in development. Improvements in the quality of extracted wave data are found through increased averaging of the raw radar data but the impact of temporal non-stationarity and spatial inhomogeneities in the WERA measurement region needs to be taken into account. Validations of wind direction data from a weather station on Neptune Island show the potential of using HF radar to combat the spread of bushfires in South Australia.

  17. Reserve Requirement Impacts of Microgrid Integration of Wind, Solar, and Ocean Wave Power Generation

    OpenAIRE

    Ortego Trujillo, Patxi

    2016-01-01

    The ocean wave energy is a free and abundant resource which has led to exploring new methods to take advantage of the energy in an efficient and profitable way. The wave energy harnessing techniques are not as mature as other renewable energy resources ones such as wind or solar. Nevertheless, in recent years wave energy converters (WECs) have been gaining attention and restoring confidence worldwide in their role to meet the increasing demands and strict environmental standards Ocean wave po...

  18. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  19. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  20. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  1. The Current Situation of Wind Energy in Turkey

    Directory of Open Access Journals (Sweden)

    Raşit Ata

    2013-01-01

    Full Text Available Wind energy applications and turbine installations at different scales have increased since the beginning of this century. As wind energy is an alternative clean energy source compared to the fossil fuels that pollute the atmosphere, systems that convert wind energy to electricity have developed rapidly. Turkey’s domestic fossil fuel resources are extremely limited. In addition, Turkey’s geographical location has several advantages for extensive use of wind power. In this context, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Among the renewable sources, Turkey has very high wind energy potential. According to the Organization for Economic Cooperation and Development (OECD Turkey theoretically has 166 TWh a year of wind potential. However the installed wind power capacity is approximately 14% of total economical wind potential. In this study, Turkey’s installed electric power capacity and electric energy production are investigated and also the current situation of wind energy in Turkey is examined. The wind data used in this study were taken from Turkish Wind Energy Association (TUREB for the year 2012. This paper reviews the assessment of wind energy in Turkey as of the end of July 2012 including wind energy applications.

  2. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Liu, Wei

    2015-10-10

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although the weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.

  3. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    Science.gov (United States)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    The Oceanic Platform of the Canary Islands (PLOCAN) is a Governmental Consortium aimed to build and operate an off-shore infrastructure to facilitate the deep sea research and speed up the technology associated. This Consortium is overseen by the Spanish Ministry of Science and Innovation and the Canarian Agency for Research and Innovation. The infrastructure consists of an oceanic platform located in an area with depths between 50-100 meters, close to the continental slope and four kilometers off the coast of Gran Canaria, in the archipelago of the Canary Islands. The process of construction will start during the first months of 2010 and is expected to be finished in mid-year 2011. PLOCAN serves five strategic lines: an integral observatory able to explore from the deep ocean to the atmosphere, an ocean technology testbed, a base for underwater vehicles, an innovation platform and a highly specialized training centre. Ocean energy is a suitable source to contribute the limited mix-energy conformed in the archipelago of the Canary Islands with a total population around 2 million people unequally distributed in seven islands. Islands of Gran Canaria and Tenerife support the 80% of the total population with 800.000 people each. PLOCAN will contribute to develop the ocean energy sector establishing a marine testbed allowing prototypes testing at sea under a meticulous monitoring network provided by the integral observatory, generating valuable information to developers. Reducing costs throughout an integral project management is an essential objective to be reach, providing services such as transportation, customs and administrative permits. Ocean surface for testing activities is around 8 km2 with a depth going from 50 to 100 meters, 4km off the coast. Selected areas for testing have off-shore wind power conditions around 500-600 W/m2 and wave power conditions around 6 kW/m in the East coast and 10 kW/m in the North coast. Marine currents in the Canary Islands are

  4. Buoy observations of the influence of swell on wind waves in the open ocean

    Energy Technology Data Exchange (ETDEWEB)

    Violante-Carvalho, N.; Robinson, I.S. [University of Southampton (United Kingdom). Oceanography Centre; Ocampo-Torres, F.J. [CICESE, Ensenada (Mexico). Dpto. de Oceanografia Fisica

    2004-04-01

    The influence of longer (swell) on shorter, wind sea waves is examined using an extensive database of directional buoy measurements obtained from a heave-pitch-roll buoy moored in deep water in the South Atlantic. This data set is unique for such an investigation due to the ubiquitous presence of a young swell component propagating closely in direction and frequency with the wind sea, as well as a longer, opposing swell. Our results show, within the statistical limits of the regressions obtained from our analysis when compared to measurements in swell free environments, that there is no obvious influence of swell on wind sea growth. For operational purposes in ocean engineering this means that power-laws from fetch limited situations describing the wind sea growth can be applied in more realistic situations in the open sea when swell is present. (author)

  5. Wind changes above warm Agulhas Current eddies

    CSIR Research Space (South Africa)

    Roualt, M

    2016-10-01

    Full Text Available Sea-surface temperature (SST), altimetry derived sea-level anomalies (SLA) and surface current are used south of the Agulhas Current to identify warm core mesoscale ocean eddies presenting a distinct SST perturbation superior to 1(supo...

  6. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    Science.gov (United States)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  7. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    Science.gov (United States)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  8. Extreme wind-wave modeling and analysis in the south Atlantic ocean

    Science.gov (United States)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.

    2018-04-01

    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  9. Wind energy in China. Current scenario and future perspectives

    International Nuclear Information System (INIS)

    Changliang, Xia; Zhanfeng, Song

    2009-01-01

    Wind power in China registered a record level of expansion recently, and has doubled its total capacity every year since 2004. Many experts believe that China will be central to the future of the global wind energy market. Consequently, the growth pattern of wind power in China may be crucial to the further development of the global wind market. This paper firstly presented an overview of wind energy potential in China and reviewed the national wind power development course in detail. Based on the installed wind capacity in China over the past 18 years and the technical potential of wind energy resources, the growth pattern was modeled in this study for the purpose of prospect analysis, in order to obtain projections concerning the development potential. The future perspectives of wind energy development in China are predicted and analyzed. This study provides a comprehensive overview of the current status of wind power in China and some insights into the prospects of China's wind power market, which is emerging as a new superpower in the global wind industry. (author)

  10. The current state of wind energy development in Tanzania

    International Nuclear Information System (INIS)

    Kainkwa, R.M.

    2007-01-01

    Wind Energy is one of the renewable power sources that is currently used in a commercial scale for various end-uses such as pumping water deep wells and electricity generation. A precise knowledge of wind speed characteristics is an essential for the efficient planning and implementation of any wind energy project. In Tanzania the use of wind energy in generating electricity has not yet taken place due to lack of knowledge on prospective sites with high wind energy potential. The main objective of this paper is to review some attempts that have been made to explore the wind energy potential in Tanzania and the corresponding prospective sites that have been earmarked so far. (author)

  11. Temperature, wind direction, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 December 1980 - 01 December 1980 (NODC Accession 8100457)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from December 1, 1980 to December 1, 1980. Data...

  12. Temperature, wind direction, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 January 1981 - 01 January 1981 (NODC Accession 8100474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from January 1, 1981 to January 1, 1981. Data...

  13. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    In this study, the offshore wind resources in the East China Sea and South China Sea were estimated from over ten years of QuikSCAT scatterometer wind products. Since the errors of these products are larger close to the coast due to the land contamination of radar backscatter signal...... and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  14. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  15. Short-Circuit Current Analysis for DFIG Wind Farm Considering the Action of a Crowbar

    Directory of Open Access Journals (Sweden)

    Yan Hong Yuan

    2018-02-01

    Full Text Available With the increasing capacity of wind farms integrated into the power grid, the short-circuit current analysis for wind farms becomes more and more important. Since the wind turbine is usually integrated into the power grid via power electronic devices, the “crowbar” is installed in the wind turbine to protect the power electronic devices and to improve the fault ride through capability. The impact of the crowbar has to be considered during the short-circuit current analysis for the wind farm. In order to fully analyze the short-circuit current characteristics of a wind farm, the short-circuit currents for a doubly-fed induction generator (DFIG wind turbine under symmetrical and asymmetrical faults considering the crowbar action characteristic are derived firstly. Then the action situation of the crowbar of a DFIG wind turbine is studied and the action area curve is obtained. Taking the crowbar action, or not, as the grouping criterion, wind turbines in the wind farm are divided into two groups, and the wind farm is aggregated into two equivalent wind turbines. Using the equivalent model, the short-circuit current of a wind farm can be calculated accurately. Finally, simulations are performed in MATLAB/Simulink which is the commercial math software produced by the MathWorks company in Natick, Massachusetts, the United States to verify the proposed short-circuit current calculation method for the DFIG wind farm.

  16. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection...... zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading.The coming satellite missions, CYGNSS, COSMIC-2, and GEROS...

  17. Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model

    Science.gov (United States)

    Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant

    2018-03-01

    In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily

  18. NODC Standard Format Ocean Wind Time Series from Buoys (F101) Data (1975-1985) (NODC Accession 0014194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This file type contains time series measurements of wind and other surface meteorological parameters taken at fixed locations. The instrument arrays may be deployed...

  19. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  20. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    KAUST Repository

    Zedler, S. E.

    2009-04-25

    The drag coefficient parameterization of wind stress is investigated for tropical storm conditions using model sensitivity studies. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model was run in a regional setting with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using four different drag coefficient parameterizations. Respective model results were tested against in situ measurements of temperature profiles and velocity, available from an array of 22 surface drifters and 12 subsurface floats. Changing the drag coefficient parameterization from one that saturated at a value of 2.3 × 10 -3 to a constant drag coefficient of 1.2 × 10-3 reduced the standard deviation difference between the simulated minus the measured sea surface temperature change from 0.8°C to 0.3°C. Additionally, the standard deviation in the difference between simulated minus measured high pass filtered 15-m current speed reduced from 15 cm/s to 5 cm/s. The maximum difference in sea surface temperature response when two different turbulent mixing parameterizations were implemented was 0.3°C, i.e., only 11% of the maximum change of sea surface temperature caused by the storm. Copyright 2009 by the American Geophysical Union.

  1. Response of upper ocean cooling off northeastern Taiwan to typhoon passages

    Science.gov (United States)

    Zheng, Zhe-Wen; Zheng, Quanan; Gopalakrishnan, Ganesh; Kuo, Yi-Chun; Yeh, Ting-Kuang

    2017-07-01

    A comprehensive investigation of the typhoon induced upper ocean processes and responses off northeastern Taiwan was conducted. Using the Regional Ocean Modeling System, the upper ocean responses of all typhoons striking Taiwan between 2005 and 2013 were simulated. In addition to Kuroshio intrusion, the present study demonstrates another important mechanism of typhoon induced near-inertial currents over the continental shelf of East China Sea, which can also trigger a distinct cooling (through entrainment mixing) within this region. Results indicate that the processes of typhoon inducing distinct cooling off northeastern Taiwan are conditional phenomena (only ∼12% of typhoons passing Taiwan triggered extreme cooling there). Subsequently, by executing a series of sensitivity experiments and systematic analyses on the behaviors and background conditions of all those typhoon cases, key criteria determining the occurrences of cooling through both mechanisms were elucidated. Occurrences of cooling through the Kuroshio intrusion mechanism are determined mainly by the strength of the local wind over northeastern Taiwan. A distinct cooling triggered by enhanced near-inertial currents is shown to be associated with the process of wind-current resonance. Both processes of Kuroshio intrusion and enhanced near-inertial currents are dominated by wind forcing rather than upper oceanic conditions. Based on the recent findings on the possible dynamic linkage between sea surface temperature near northeast Taiwan and local weather systems, the results elucidated in this study lay the foundation for further improvement in the regional weather prediction surrounding northeast Taiwan.

  2. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  3. On Verifying Currents and Other Features in the Hawaiian Islands Region Using Fully Coupled Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations

    Science.gov (United States)

    Jessen, P. G.; Chen, S.

    2014-12-01

    This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.

  4. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  5. Turbines in the ocean

    Science.gov (United States)

    Smith, F. G. W.; Charlier, R. H.

    1981-10-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami; here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  6. HORIZONTAL AXIS MARINE CURRENT TURBINE DESIGN FOR WIND-ELECTRIC HYBRID SAILING BOAT

    Directory of Open Access Journals (Sweden)

    Serkan Ekinci

    2017-01-01

    Full Text Available In recent decades, the number of theoretical studies and applications on electric power production from renewable sources such as wind, solar, sea and tidal flows, has been increasing rapidly. Marine Current Turbines (MCTs, among the power turbines, produce power from alternating flows and are a means of power production even at lower flow rates in oceans and seas. In this study, while maintaining functional requirements, an initial and detailed design (mechanic and hydrodynamic, of an MCT fixed on a sailing boat and at sail which extracts power from the flow around the boat, is undertaken. In the design stages, for analysis and optimization of the marine turbine blade design, the Momentum Blade Element Method is utilized. The Horizontal Axis Marine Turbine (HAMT, determined by the initial and mechanical design, is illustrated with its components included. Computational fluid dynamics (CFD analyses, covering turbine pod geometry at required flow rates and turbine speeds are performed. These analyses are performed very close to real conditions, considering sailing with and without the turbine running (on and off states. The alternator is determined from the results, and the final design which meets the design requirements, is obtained. As a result, a user friendly and innovative turbine design for sail boats, offering more power and efficiency, which is longer lasting compared to solar and wind technologies, that also makes use of renewable sources, such as wind and/or solar, and in addition stores and uses accumulated energy when needed, is proposed.

  7. Drift in ocean currents impacts intergenerational microbial exposure to temperature.

    Science.gov (United States)

    Doblin, Martina A; van Sebille, Erik

    2016-05-17

    Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming.

  8. Numerical studies on the interaction between atmosphere and ocean using different kinds of parallel computers

    International Nuclear Information System (INIS)

    Lee, Soon-Hwan; Chino, Masamichi

    2000-01-01

    The coupling between atmosphere and ocean model has physical and computational difficulties for short-term forecasting of weather and ocean current. In this research, a combination system between high-resolution meso-scale atmospheric model and ocean model has been constructed using a new message-passing library, called Stampi (Seamless Thinking Aid Message Passing Interface), for prediction of particle dispersion at emergency nuclear accident. Stampi, which is based on the MPI (Message Passing Interface) 2 specification, makes us carry out parallel calculations of combination system without parallelization skill to model code. And it realizes dynamic process creation on different machines and communication between spawned one within the scope of MPI semantics. The models included in this combination system are PHYSIC as an atmosphere model, and POM (Princeton Ocean Model) as an ocean model. We applied this combination system to predict sea surface current at Sea of Japan in winter season. Simulation results indicate that the wind stress near the sea surface tends to be a predominant factor to determine surface ocean currents and dispersion of radioactive contamination in the ocean. The surface ocean current is well correspondent with wind direction, induced by high mountains at North Korea. The satellite data of NSCAT (NASA-SCATterometer), which is an image of sea surface current, also agrees well with the results of this system. (author)

  9. Dynamics of Intense Currents in the Solar Wind

    Science.gov (United States)

    Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.

    2018-06-01

    Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.

  10. Western Gulf of Mexico June 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Jun_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  11. Eastern Gulf of Mexico April 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Apr_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  12. Eastern Gulf of Mexico November 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Nov_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  13. Eastern Gulf of Mexico February 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Feb_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  14. Eastern Gulf of Mexico March 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Mar_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  15. Western Gulf of Mexico October 1994 Ocean Currents, Geographic NAD83, MMS (1999)[ocean_currents_wgom_Oct_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  16. Eastern Gulf of Mexico May 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_May_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  17. Western Gulf of Mexico July 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Jul_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  18. Western Gulf of Mexico May 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_May_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  19. Eastern Gulf of Mexico August 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Aug_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  20. Eastern Gulf of Mexico October 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Oct_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  1. Western Gulf of Mexico August 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Aug_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  2. Western Gulf of Mexico April 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Apr_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  3. Eastern Gulf of Mexico September 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Sep_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  4. Western Gulf of Mexico January 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Jan_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  5. Eastern Gulf of Mexico June 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Jun_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  6. Eastern Gulf of Mexico July 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Jul_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  7. Western Gulf of Mexico March 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Mar_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  8. Western Gulf of Mexico September 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Sep_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  9. Western Gulf of Mexico February 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Feb_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  10. Eastern Gulf of Mexico December 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Dec_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  11. Western Gulf of Mexico November 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Nov_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  12. Eastern Gulf of Mexico January 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Jan_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  13. Western Gulf of Mexico December 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Dec_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  14. Wind Stress Variability Observed Over Coastal Waters

    Science.gov (United States)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2016-02-01

    The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these

  15. The current status of wind energy in Turkey and in the world

    International Nuclear Information System (INIS)

    Ilkilic, Cumali; Aydin, Hueseyin; Behcet, Rasim

    2011-01-01

    The rapid increase in world energy demand, the depletion of conventional energy sources and the pollution caused by conventional fuels have increased the importance of developing new and renewable energy sources. Additionally, technological developments have resulted in increased energy demand for the entire world, including Turkey, especially for electrical energy. At present, wind energy is receiving considerable attention. This report focuses on the current status of wind energy in Turkey and in the world. An overview of wind energy in Turkey is presented, and its current status, application, support mechanisms and associated legislation in Turkey are described. Wind energy and its status in the world are also addressed. It can be concluded from this analysis that wind energy utilization in Turkey and throughout world has sharply increased. Turkey has an abundance of wind energy sources. - Research highlights: →The importance of wind energy utilization. →Wind energy status, potential, applications, legislations and supports in Turkey. →An overview of wind energy the world.

  16. Panorama 2011: Ocean renewable energies

    International Nuclear Information System (INIS)

    Demoulin, P.; Vinot, S.

    2011-01-01

    Our society is looking increasingly to renewable energy sources in the face of the energy and environmental challenges with which it is grappling. As far as ocean renewable energies are concerned, a wide range of technologies is currently being experimented with, including wind power and energy derived from waves and tidal currents. They are all at varying levels of maturity, and bring with them very different technical and economic challenges. (author)

  17. Impact of Negative Sequence Current Injection by Wind Power Plants

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Göksu, Ömer; Teodorescu, Remus

    2013-01-01

    This paper presents an analysis of the impact from negative sequence current injection by wind power plants in power systems under steady-state and short-term unbalanced conditions, including faults. The separate positive and negative sequence current control capability of the grid-side converters...... of full scale converter type wind turbines may be utilized to alter voltage imbalance at the point of connection and further into the grid, in turn changing the resultant negative sequence current flow in the grid. The effects of such control actions have been analyzed and discussed through theoretical...

  18. Wind Generated Ocean Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter

    2001-01-01

    Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)......Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)...

  19. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  20. Wave and Wind Model Performance Metrics Tools

    Science.gov (United States)

    Choi, J. K.; Wang, D. W.

    2016-02-01

    Continual improvements and upgrades of Navy ocean wave and wind models are essential to the assurance of battlespace environment predictability of ocean surface wave and surf conditions in support of Naval global operations. Thus, constant verification and validation of model performance is equally essential to assure the progress of model developments and maintain confidence in the predictions. Global and regional scale model evaluations may require large areas and long periods of time. For observational data to compare against, altimeter winds and waves along the tracks from past and current operational satellites as well as moored/drifting buoys can be used for global and regional coverage. Using data and model runs in previous trials such as the planned experiment, the Dynamics of the Adriatic in Real Time (DART), we demonstrated the use of accumulated altimeter wind and wave data over several years to obtain an objective evaluation of the performance the SWAN (Simulating Waves Nearshore) model running in the Adriatic Sea. The assessment provided detailed performance of wind and wave models by using cell-averaged statistical variables maps with spatial statistics including slope, correlation, and scatter index to summarize model performance. Such a methodology is easily generalized to other regions and at global scales. Operational technology currently used by subject matter experts evaluating the Navy Coastal Ocean Model and the Hybrid Coordinate Ocean Model can be expanded to evaluate wave and wind models using tools developed for ArcMAP, a GIS application developed by ESRI. Recent inclusion of altimeter and buoy data into a format through the Naval Oceanographic Office's (NAVOCEANO) quality control system and the netCDF standards applicable to all model output makes it possible for the fusion of these data and direct model verification. Also, procedures were developed for the accumulation of match-ups of modelled and observed parameters to form a data base

  1. Transformer inrush current reduction through sequential energization for wind farm applications

    Energy Technology Data Exchange (ETDEWEB)

    Abdulsalam, S.; Xu, W. [Alberta Univ., Edmonton, AB (Canada)

    2008-07-01

    Wind power is considered as one of the fastest growing technologies in the power industry. The electrical configuration of a wind farm consists of long spans of medium voltage collector feeders. Each wind generator is connected to the collector circuit/feeder through either a pad mount oil filled, or a nacelle-mounted dry type transformer. All collector feeders connect to a single collector substation where the connection to the high-voltage transmission is established through a step up transformer. With a large number of wind generators per feeder, large inrush current will flow due to simultaneous transformer energization which can cause high voltage sag at the point of common coupling. Wind farms are generally located in unpopulated remote areas where no access to strong network connection is feasible. It is common to have the PCC on a relatively weak location on the sub-transmission/distribution network. In order to meet interconnection standards requirements, the amount of voltage sag due to the energization of a number of transformers needs to be evaluated. This paper presented an effective solution to the mitigation of inrush currents and associated voltage sag for wind farm applications. The paper presented a diagram of a typical configuration of a wind farm electrical distribution system and also described the analytical methodologies for the evaluation of inrush current level together with simulation results. A simplified analysis and sizing criteria for the associated neutral resistor size was presented. It was concluded that the scheme could significantly reduce inrush current level when a large number of transformers are simultaneously energized. The presented application eliminates the need to sectionalize feeders, thereby simplifying them for the energization process. 6 refs., 5 figs.

  2. Wind effect on currents in a thin surface layer of coastal waters faced open-sea

    International Nuclear Information System (INIS)

    Nakano, Masanao; Isozaki, Hisaaki; Isozaki, Tokuju; Nemoto, Masashi; Hasunuma, Keiichi; Kitamura, Takashi

    2009-01-01

    Two-years of continuous observation of wind and current were carried out to investigate the relationship between them in the coastal waters off Tokai-mura, Ibaraki prefecture. Three instruments to measure the current were set in a thin surface layer of 3 m above the strong pycnocline, which is a common feature in coastal waters. Both of the power spectra of wind and currents showed very similar features, an outstanding high peak at 24-hour period and a range of high peaks longer than several-days period. The long term variation of the wind field always contained north-wind component, which contributed to forming the southward current along the shore throughout the year. A high correlation coefficient (0.64) was obtained between the wind and the current at a depth of 0.5 m on the basis of the two-year observation. Harmonic analysis revealed that an outstanding current with 24-hour period was the S 1 component (meteorological tide), and was driven by land and sea breezes. These breezes also contained solar tidal components such as K 1 , P 1 and S 2 . These wind components added their own wind driven currents on the original tidal currents. This meant that land and sea breezes generated wind driven currents with solar tidal periods which behaved like astronomical tidal currents. As result, coastal currents contained pseudo tidal currents which behaved like astronomical tidal currents. (author)

  3. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  4. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    Geosat altimeter data for the period November 1986-October 1987 over the north Indian Ocean have been processed to retrieve wind speeds and significant wave heights. Smoothed Brown algorithm is used to retrieve wind speeds from back...

  5. Characterization Of Ocean Wind Vector Retrievals Using ERS-2 High-Resolution Long-Term Dataset And Buoy Measurements

    Science.gov (United States)

    Polverari, F.; Talone, M.; Crapolicchio, R. Levy, G.; Marzano, F.

    2013-12-01

    The European Remote-sensing Satellite (ERS)-2 scatterometer provides wind retrievals over Ocean. To satisfy the needs of high quality and homogeneous set of scatterometer measurements, the European Space Agency (ESA) has developed the project Advanced Scatterometer Processing System (ASPS) with which a long-term dataset of new ERS-2 wind products, with an enhanced resolution of 25km square, has been generated by the reprocessing of the entire ERS mission. This paper presents the main results of the validation work of such new dataset using in situ measurements provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). The comparison indicates that, on average, the scatterometer data agree well with buoys measurements, however the scatterometer tends to overestimates lower winds and underestimates higher winds.

  6. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    Science.gov (United States)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  7. The Relationship of High-Latitude Thermospheric Wind With Ionospheric Horizontal Current, as Observed by CHAMP Satellite

    Science.gov (United States)

    Huang, Tao; Lühr, Hermann; Wang, Hui; Xiong, Chao

    2017-12-01

    The relationship between high-latitude ionospheric currents (Hall current and field-aligned current) and thermospheric wind is investigated. The 2-D patterns of horizontal wind and equivalent current in the Northern Hemisphere derived from the CHAMP satellite are considered for the first time simultaneously. The equivalent currents show strong dependences on both interplanetary magnetic field (IMF) By and Bz components. However, IMF By orientation is more important in controlling the wind velocity patterns. The duskside wind vortex as well as the antisunward wind in the morning polar cap is more evident for positive By. To better understand their spatial relation in different sectors, a systematic superposed epoch analysis is applied. Our results show that in the dusk sector, the vectors of the zonal wind and equivalent current are anticorrelated, and both of them form a vortical flow pattern for different activity levels. The currents and zonal wind are intensified with the increase of merging electric field. However, on the dawnside, where the relation is less clear, antisunward zonal winds dominate. Plasma drift seems to play a less important role for the wind than neutral forces in this sector. In the noon sector, the best anticorrelation between equivalent current and wind is observed for a positive IMF By component and it is less obvious for negative By. A clear seasonal effect with current intensities increasing from winter to summer is observed in the noon sector. Different from the currents, the zonal wind intensity shows little dependence on seasons. Our results indicate that the plasma drift and the neutral forces are of comparable influence on the zonal wind at CHAMP altitude in the noon sector.

  8. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    Directory of Open Access Journals (Sweden)

    A. Roobaert

    2018-03-01

    Full Text Available The calculation of the air–water CO2 exchange (FCO2 in the ocean not only depends on the gradient in CO2 partial pressure at the air–water interface but also on the parameterization of the gas exchange transfer velocity (k and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2. The analysis is performed at a 1°  ×  1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a for the 1991–2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ⋅ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014, where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009 as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗ for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study

  9. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    Science.gov (United States)

    Roobaert, Alizée; Laruelle, Goulven G.; Landschützer, Peter; Regnier, Pierre

    2018-03-01

    The calculation of the air-water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air-water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2). The analysis is performed at a 1° × 1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a) for the 1991-2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP) project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ṡ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014), where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009) as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗) for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study but the resulting global FCO2 estimates

  10. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  11. Short-Circuit Current Analysis for DFIG Wind Farm Considering the Action of a Crowbar

    OpenAIRE

    Yan Hong Yuan; Feng Wu

    2018-01-01

    With the increasing capacity of wind farms integrated into the power grid, the short-circuit current analysis for wind farms becomes more and more important. Since the wind turbine is usually integrated into the power grid via power electronic devices, the “crowbar” is installed in the wind turbine to protect the power electronic devices and to improve the fault ride through capability. The impact of the crowbar has to be considered during the short-circuit current analysis for the wind farm....

  12. Warm Bias and Parameterization of Boundary Upwelling in Ocean Models

    Energy Technology Data Exchange (ETDEWEB)

    Cessi, Paola; Wolfe, Christopher

    2012-11-06

    It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

  13. Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones: Progress, Challenges, and Ways Forward

    Science.gov (United States)

    Chen, Shuyi

    2015-04-01

    It has long been recognized that air-sea interaction plays an important role in tropical cyclones (TC) intensity change. However, most current numerical weather prediction (NWP) models are deficient in predicting TC intensity. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in TCs push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. Parameterizations of air-sea fluxes in NWP models are often crude and create "manmade" energy source/sink that does not exist, especially in the absence of a fully interactive ocean in the model. The erroneous surface heat, moisture, and momentum fluxes can cause compounding errors in the model (e.g., precipitation, water vapor, boundary layer properties). The energy source (heat and moisture fluxes from the ocean) and sink (surface friction and wind-induced upper ocean cooling) are critical to TC intensity. However, observations of air-sea fluxes in TCs are very limited, especially in extreme high wind conditions underneath of the eyewall region. The Coupled Boundary Layer Air-Sea Transfer (CBLAST) program was designed to better understand the air-sea interaction, especially in high wind conditions, which included laboratory and coupled model experiments and field campaign in 2003-04 hurricane seasons. Significant progress has been made in better understanding of air-sea exchange coefficients up to 30 m/s, i.e., a leveling off in drag coefficient and relatively invariant exchange coefficient of enthalpy with wind speed. More recently, the Impact of Typhoon on the Ocean in the Pacific (ITOP) field campaign in 2010 has provided an unprecedented data set to study the air-sea fluxes in TCs and their impact on TC structure and intensity. More than 800 GPS dropsondes and 900 AXBTs/AXCTs as well as drifters, floats, and moorings were deployed in TCs, including Typhoons Fanapi and Malakas, and Supertyphoon Megi with a record peak wind speed of more than 80 m

  14. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    Science.gov (United States)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  15. The role of ocean currents for carbonate platform stratigraphy (Invited)

    Science.gov (United States)

    Betzler, C.; Lindhorst, S.; Luedmann, T.; Eberli, G. P.; Reijmer, J.; Huebscher, C. P.

    2013-12-01

    Breaks and turnovers in carbonate bank growth and development record fluctuations in sea-level and environmental changes. For the carbonate banks of the Bahamas, the Maldives, the Queensland, and the Marion Plateau, sea-level changes and synchronous oceanographic and atmospheric circulation events were recorded through compositional and architectural changes. Most of these major carbonate edifices contain drift deposits, indicating that oceanic currents were a major driver of carbonate-bank evolution. It is proposed that such currents have a larger imprint on the growth patterns and the stratigraphic packaging of carbonates than previously thought. In the Bahamas, slope facies of carbonate banks exposed to deep oceanic currents are not arranged into sediment-texture controlled and depth-dependant strike-continuous facies belts. Facies patterns are controlled by the interplay of shallow-water input, succeeding sediment sorting as well as redistribution and erosion processes. This complements the classical windward - leeward classification of carbonate platform slopes and accounts for the significant and potentially dominant process of alongslope sediment transport and dispersal. Deep oceanic currents also have the potential to steepen the carbonate bank slopes, through sediment winnowing at the distal slope, such as for example in the Maldives. This process can be enhanced as the bank grows and expands in size which may accelerate currents. Oceanic current onset or amplification, however, may also account for slope steepening as an externally, i.e. climate-driven agent, thus forcing the banks into an aggradation mode of growth which is not a response to sea-level fluctuations or a result of the windward / leeward exposure of the bank edge. Ignorance of the impact of currents on platforms and platform slopes may lead to an erroneous conclusion that changes in sediment production, distribution, and morphologies of sediment bodies are features solely related to sea

  16. Biogeography of the Oceans: a Review of Development of Knowledge of Currents, Fronts and Regional Boundaries from Sailing Ships in the Sixteenth Century to Satellite Remote Sensing

    Science.gov (United States)

    Priede, Imants G.

    2014-06-01

    The development of knowledge of global biogeography of the oceans from sixteenthcentury European voyages of exploration to present-day use of satellite remote sensing is reviewed in three parts; the pre-satellite era (1513-1977), the satellite era leading to a first global synthesis (1978-1998), and more recent studies since 1998. The Gulf Stream was first identified as a strong open-ocean feature in 1513 and by the eighteenth century, regular transatlantic voyages by sailing ships had established the general patterns of winds and circulation, enabling optimisation of passage times. Differences in water temperature, water colour and species of animals were recognised as important cues for navigation. Systematic collection of information from ships' logs enabled Maury (The Physical Geography of the Sea Harper and Bros. New York 1855) to produce a chart of prevailing winds across the entire world's oceans, and by the early twentieth century the global surface ocean circulation that defines the major biogeographic regions was well-known. This information was further supplemented by data from large-scale plankton surveys. The launch of the Coastal Zone Color Scanner, specifically designed to study living marine resources on board the Nimbus 7 polar orbiting satellite in 1978, marked the advent of the satellite era. Over subsequent decades, correlation of satellite-derived sea surface temperature and chlorophyll data with in situ measurements enabled Longhurst (Ecological Geography of the Sea. Academic Press, New York 1998) to divide the global ocean into 51 ecological provinces with Polar, Westerly Wind, Trade Wind and Coastal Biomes clearly recognisable from earlier subdivisions of the oceans. Satellite imagery with semi-synoptic images of large areas of the oceans greatly aided definition of boundaries between provinces. However, ocean boundaries are dynamic, varying from season to season and year to year. More recent work has focused on the study of variability of

  17. The atmosphere and ocean: A physical introduction

    International Nuclear Information System (INIS)

    Wells, N.

    1986-01-01

    The book's contents are: The Earth within the solar system. Composition and physical properties of the ocean and atmosphere. Radiation, temperature and stability. Water in the atmosphere. Global budgets of heat, water and salt. Observations of winds and currents. The influence of the Earth's rotation on fluid motion. Waves and tides. Energy transfer in the ocean-atmosphere system. Climate variability and predictability. The atmosphere and ocean are two different environmental systems, yet both are interdependent, interacting and exchanging energy, heat and matter. This book attempts to bring the study of the atmosphere and ocean together. It is a descriptive account of physical properties, exploring their common bases, similarities, interactions and fundamental differences

  18. Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean

    Science.gov (United States)

    Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier

    2011-01-01

    The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.

  19. A modified objective mapping technique for scatterometer wind data

    Science.gov (United States)

    Kelly, Kathryn A.; Caruso, Michael J.

    1990-01-01

    A method for generating high-resolution wind maps from scatterometer data was developed and tested on synthetic data for the northeast Pacific Ocean. It is shown that, unlike the wind fields generated by current GCMs, the wind maps constructed by this method retain the high spatial resolution of the scatterometer wherever adequate measurements exist. For the NASA scatterometer, this method would produce every 12 hours a wind map with spatial resolution that preserves the small-scale features of the original data over about half the mapped region. Over the rest of the region, maps with somewhat lower resolution and accuracy will be obtained.

  20. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  1. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  2. Survey on utility technology of a tidal and ocean current energy

    Science.gov (United States)

    Hirose, Manabu; Kadoyu, Masataka; Tanaka, Hiroyoshi

    1987-06-01

    A study is made to show the current technological levels in Japan and other nations regarding the conversion of tidal current or ocean current energy to electric power and to determine the latent energy quantities and energy-related characteristics of tidal and ocean currents. In Japan, relatively large-scale experiments made so far mostly used one of the following three types of devices: Savonius-wheel type, Darrieus-wheel type, and cross-flow-wheel type. Field experiments of tidal energy conversion have been performed at the Naruto and Kurushima Straits. The energy in the Kuroshio current is estimated at about 170 billion kWh per year. Ocean current energy does not undergo large seasonal variations. The total energy in major straits and channels in the Inland Sea and other sea areas to the west is estimated at about 124 billion kWh per year. Tidal current energy shows large seasonal variations, but it is possible to predict the changes. A survey is made to determine energy-related characteristics of a tidal current at Chichino-seto, Kagoshima Prefecture. At Chichino-seto, the flow velocity ranges from 0 to 2.2m/s, with a latent tidal current energy of about 70 kW, of which about 20 kW can actually be utilized.

  3. Current and Future Opportunities for Wind Power in the Southeast

    Energy Technology Data Exchange (ETDEWEB)

    Tinnesand, Heidi; Roberts, Owen; Lantz, Eric

    2016-10-05

    This presentation discusses future wind opportunities in the Southeast including factors such as changes in wind turbine technology, historical innovation trends, and forecast demand growth among regions. The presentation covers the current status of wind in the United States at 80-m hub height and the near-future outlook with a hub height at 110 to 140 meters. Future cost reductions in 2030 and beyond are also explored. Heidi Tinnesand presented this information to a utility advisory group meeting in Charlotte, North Carolina, on October 5, 2016.

  4. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    Next, the evaluation has been carried out by comparing the OSCAR currents with currents measured by moored buoys ... measurements, to derive the surface current prod- uct, known ... ogy of surface currents based on drifter data. The ... and prediction (RAMA). ..... of satellite derived forcings on numerical ocean model sim-.

  5. Dynamics of a Marine Turbine for Deep Ocean Currents

    Directory of Open Access Journals (Sweden)

    Ling-Yuan Chang

    2016-09-01

    Full Text Available For most of the ocean currents, such as the Kuroshio at east Taiwan, the Gulf Stream at east Florida and the Agulhas Current at southeast Africa, the depth of the seabed is generally deeper than one hundred meters, some waters of which can even reach one thousand meters. In such deep waters, the design of the turbine, as well as the anchoring system shall have special features so that existing ocean engineering technologies can be applied and the engineering cost can be lowered. Thus, as regards design, in addition to the analysis of the interaction between turbine and current, priority shall also be given to the design of the anchoring system of the turbine. To address the concerns, the authors propose an ocean turbine featured as follows: (1 it can be anchored in deep waters with a single cable; (2 it can generate high power in a current of moderate flow speed while producing low drag; (3 it can be self-balanced against current disturbance; (4 it is shrouded to enhance power efficiency; (5 the dynamic variations due to the interaction between the turbine and current are small. All of these features are confirmed with the computational results, leading to a detailed design of the turbine structure. If the easy-to-install high-efficiency shrouded turbines, having the capability to self-balance and requiring minimum maintenance effort, are successfully developed, the power supply pressure in Taiwan can be greatly alleviated. The Kuroshio was chosen as the typical current for the present dynamic analysis because, firstly, the flow characteristics of Kuroshio are similar to those of other large-scale currents mentioned above, and secondly, the data of Kuroshio are highly available to us so that a thorough analysis can be done.

  6. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  7. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  8. Energy extraction from ocean currents using straight bladed cross-flow hydrokinetic turbine

    Directory of Open Access Journals (Sweden)

    Prasad Dudhgaonkar

    2017-04-01

    Full Text Available Harvesting marine renewable energy remains to be a prime focus of researchers across the globe both in environmental and in commercial perspectives. India is blessed with a long coastline, and the seas around Indian peninsula offer ample potential to tap various ocean energy forms. National Institute of Ocean Technology carries out research and various ocean energy technologies, out of which harnessing kinetic energy in seawater currents is one. This article presents the open sea trials recently carried out on National Institute of Ocean Technology’s cross-flow hydrokinetic ocean current turbine in South Andaman. The turbine was designed to generate 100 W electricity at 1.2 m/s current speed and was built in-house. The turbine was initially tested in a seawater channel and then was deployed in Macpherson Strait in Andaman. It was fitted below a floating platform designed especially for this purpose, and the performance of the turbine was continuously logged inside an on-board data acquisition system. The trials were successful and in line with computations.

  9. O?shore ?oating wind turbine and its dynamic problems?

    Institute of Scientific and Technical Information of China (English)

    Renchuan ZHU; Guoping MIAO; Ju FAN; Hua LIU

    2016-01-01

    Green energy sources and ocean wind power are plentiful in deep sea. More and more o?shore wind power plants are constructed in the deep water over hundred meters below the surface. While o?shore ?oating wind turbine system is working, wind turbine, ?oating foundation, and mooring system a?ect each other with wind, waves, and currents acting on them. Various o?shore ?oating wind turbine systems and the encoun-tered environmental loads are brie?y reviewed and discussed. It is di?cult and crucial to comprehensively analyze the aerodynamic-hydrodynamic-service system-structure un-der the coupling e?ect of o?shore ?oating wind turbine system. The environmental ?ow ?eld, structure scale, and rational applications of theories and approaches should be well considered in advance.

  10. Research opportunities and challenges in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Hood, R.; Naqvi, S.W.A.; Wiggert, J.; Goes, J.; Coles, V.; McCreary, J.; Bates, N.; Karuppasamy, P.K.; Mahowald, N.; Seitzinger, S.; Meyers, G.

    research questions. Ocean Currents and Variability The unique physical properties of the IO occur largely as a result of forcing by the strong semiannually reversing monsoon winds (Figure 1). These winds drive intense upwelling and seasonally reversing... the Pacifi c via the Indonesian Throughfl ow [Interna- tional CLIVAR Project Offi ce, 2006]. In gen- eral, there is a need to characterize and better understand the ecological and bio- geochemical responses to these physical forcings (Figure 1) as well...

  11. Wind wave spectra and other data from moored current meter casts and other instruments in the Gulf of Mexico as part of the Brine Disposal project, 1979-09-22 to 1980-05-01 (NODC Accession 8000462)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind wave spectra and other data were collected using moored current meter casts and other instruments in the Gulf of Mexico from September 22, 1979 to May 1, 1980....

  12. Comparison of wind data from QuikSCAT and buoys in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Satheesan, K.; Sarkar, A; Parekh, A; RameshKumar, M.R.; Kuroda, Y.

    QuikSCAT derived winds over NIO matches better with in-situ compared to those derived over the EIO. Earlier studies by Thompson et al., (1983) and Keller et al., (1985) have reported a dependence of backscatter cross section in L and X...-120. SENGUPTA D, GOSWAMI B N AND SENAN R 2001, Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon, Geophys. Res. Lett., 28, 4127 – 4130. THOMPSON, T. W., D. E. WEISSMAN AND F. I. GONZALEZ, 1983: L band radar...

  13. Fritz Schott's Contributions to the Understanding of the Ocean Circulation

    Science.gov (United States)

    Visbeck, M.

    2009-04-01

    The ocean circulation and its central significance for global climate lay at the heart of Fritz's research. In the context of hard-won data from his more than 30 research cruises to key regions of the Atlantic and Indian oceans, he made fundamental contributions to our understanding of the wind-driven and thermohaline ocean circulation. His insights and explorations of circulation and dynamics of the tropical Indian and Atlantic Oceans have led the field and provided a large part of the basis for planning large, international experiments. Fritz's work is also distinguished by his making exceptional use of modeling results, increasingly as the models have improved. His research has provided a much clearer correspondence between the observed ocean-structure and dynamical theory-noting both theoretical successes and limitations. Besides his general interest in the physical oceanography of the World Oceans, most of his research was devoted to the dynamics of tropical oceans with its intense and highly variable current systems. Concerning the Indian Ocean, Fritz's investigated the response of the Somali Current system to the variable monsoon winds in the early 1980's, obtaining high-quality, hydrographic surveys and the first long term direct measurement of ocean currents from moored arrays. His analyses and interpretations provided a synthesis of the complex circulations there. In the tropical Atlantic Ocean Fritz research focused on the western boundary circulation with important contributions to the understanding of the North Brazil Current retroflection, and the variability of the shallow and deep western boundary currents. Trying to solve the fundamental question ‘what is the role of the tropical ocean for climate variability', Fritz initiated large multinational research programs under the umbrella of the World Climate Research Projects WOCE (World Ocean Circulation Experiment) and CLIVAR (Climate Variability and Predictability). Fritz was the initiator and

  14. Navigating a sea of values: Understanding public attitudes toward the ocean and ocean energy resources

    Science.gov (United States)

    Lilley, Jonathan Charles

    In examining ocean values and beliefs, this study investigates the moral and ethical aspects of the relationships that exist between humans and the marine environment. In short, this dissertation explores what the American public thinks of the ocean. The study places a specific focus upon attitudes to ocean energy development. Using both qualitative and quantitative methods, this research: elicits mental models that exist in society regarding the ocean; unearths what philosophies underpin people's attitudes toward the ocean and offshore energy development; assesses whether these views have any bearing on pro-environmental behavior; and gauges support for offshore drilling and offshore wind development. Despite the fact that the ocean is frequently ranked as a second-tier environmental issue, Americans are concerned about the state of the marine environment. Additionally, the data show that lack of knowledge, rather than apathy, prevents people from undertaking pro-environmental action. With regard to philosophical beliefs, Americans hold slightly more nonanthropocentric than anthropocentric views toward the environment. Neither anthropocentrism nor nonanthropocentrism has any real impact on pro-environmental behavior, although nonanthropocentric attitudes reduce support for offshore wind. This research also uncovers two gaps between scientific and public perceptions of offshore wind power with respect to: 1) overall environmental effects; and 2) the size of the resource. Providing better information to the public in the first area may lead to a shift toward offshore wind support among opponents with nonanthropocentric attitudes, and in both areas, is likely to increase offshore wind support.

  15. Voltage-current characteristics of multiterminal HVDC-VSC for offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2., 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Liang, Jun; Ekanayake, Janaka; Jenkins, Nicholas [School of Engineering, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA, Wales (United Kingdom)

    2011-02-15

    Voltage-current characteristics and equilibrium points for the DC voltages of multiterminal HVDC systems using voltage source converters are discussed. The wind farm rectifiers and grid connected inverters are analyzed through their operating modes, governing equations and graphical characteristics. Using the converter equations and the HVDC grid conductance matrix the equilibrium voltages and currents are found. Case studies are presented considering wind power generation, loss of a converter and voltage sags in the AC grid. (author)

  16. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  17. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  18. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  19. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  20. Microbiology of Wind-eroded Sediments: Current Knowledge and Future Research Directions

    Science.gov (United States)

    Wind erosion is a threat to the sustainability and productivity of soils that takes place at local, regional, and global scales. Current estimates of cost of wind erosion have not included the costs associated with the loss of soil biodiversity and reduced ecosystem functions. Microorganisms carrie...

  1. Fault current contribution from VSC-based wind turbines to the grid

    DEFF Research Database (Denmark)

    Valentini, Massimo; Akhmatov, Vladislav; Iov, Florin

    2008-01-01

    current injections during the fault. In this paper an equivalent VSC-based wind turbine model for short-circuit calculations at steady-state conditions is developed and presented. The model is implemented in DigSILENT PowerFactory using the DPL-Programming Language. The developed wind turbine model...

  2. Development of three dimensional ocean current model for coastal region

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    1999-12-01

    In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)

  3. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  4. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  5. Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine

    Science.gov (United States)

    Zhao, Yong-sheng; She, Xiao-he; He, Yan-ping; Yang, Jian-min; Peng, Tao; Kou, Yu-feng

    2018-04-01

    Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research. Key words: floating wind turbine, model test, WindStar TLP, dynamic response

  6. Wind and Current Forces Acting on Canadian Forces Ships During Tug Operations

    Science.gov (United States)

    2002-11-01

    McTaggart and Sav- age [1] describe model tests conducted on a generic frigate model to determine wind forces influencing ship capsize. Van Manen and van ...Fn will be 0.06. Based on data presented by van Manen and van Oossanen [2], the fric- tional resistance coefficient will be approximately 0.002 and...Conference on Stability of Ships and Ocean Vehicles (Melbourne, Florida, 1994). 2. J.D. van Manen and P. van Oossanen, Principles of Naval Architecture, Volume

  7. Centennial-Scale Relationship Between the Southern Hemisphere Westerly Winds and Temperature

    Science.gov (United States)

    Hodgson, D. A.; Perren, B.; Roberts, S. J.; Sime, L. C.; Verleyen, E.; Van Nieuwenhuyze, W.; Vyverman, W.

    2017-12-01

    Recent changes in the intensity and position of the Southern Hemisphere Westerly Winds (SHW) have been implicated in a number of important physical changes in the Southern High Latitudes. These include changes in the efficiency of the Southern Ocean CO2 sink through alterations in ocean circulation, the loss of Antarctic ice shelves through enhanced basal melting, changes in Antarctic sea ice extent, and warming of the Antarctic Peninsula. Many of these changes have far-reaching implications for global climate and sea level rise. Despite the importance of the SHW in global climate, our current understanding of the past and future behaviour of the westerly winds is limited by relatively few reconstructions and measurements of the SHW in their core belt over the Antarctic Circumpolar Current; the region most relevant to Southern Ocean air-sea gas exchange. The aim of this study was to reconstruct changes in the relative strength of the SHW at Marion Island, one of a small number of sub-Antarctic islands that lie in the core of the SHWs. We applied independent diatom- and geochemistry- based methods to track past changes in relative wind intensity. This mutiproxy approach provides a validation that the proxies are responding to the external forcing (the SHW) rather than local (e.g. precipitation ) or internal dynamics. Results show that that the strength of the SHW are intrinsically linked to extratropical temperatures over centennial timescales, with warmer temperatures driving stronger winds. Our findings also suggest that large variations in the path and intensity of the westerly winds are driven by relatively small variations in temperature over these timescales. This means that with continued climate warming, even in the absence of anthropogenic ozone-depletion, we should anticipate large shifts in the SHW, causing stronger, more poleward-intensified winds in the decades and centuries to come, with attendant impacts on ocean circulation, ice shelf stability, and

  8. Variable speed wind turbine generator system with current controlled voltage source inverter

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.

    2011-01-01

    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  9. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  10. Assessing GOCE Gravity Models using Altimetry and In-situ Ocean Current Observation

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Honecker, Johanna

    gravity models provided by the GOCE mission have enhanced the resolution and sharpened the boundaries of those features and the associated geostrophic surface currents reveal improvements for all of the ocean's current systems. In this study, a series of 23 newer gravity models including observations from...... as quantified quality measures associated with the 23 GOCE gravity models.......The Gravity and steady state Ocean Circulation Explorer (GOCE) satellite mission measures Earth's gravity field with an unprecedented accuracy at short spatial scales. Previous results have demonstrated a significant advance in our ability to determine the ocean's general circulation. The improved...

  11. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  12. Detection and Modeling of Non-Tidal Oceanic Effects on the Earth's Rotation Rate

    Science.gov (United States)

    Marcus, S. L.; Chao, Y.; Dickey, J. O.; Gegout, P.

    1998-01-01

    Sub-decadal changes in the Earth's rotation rate, and hence in the length-of-day (LOD), are largely controlled by variations in atmospheric angular momentum. Results from two oceanic general circulation models (OGCMs), forced by observed wind stress and heat flux for the years 1992-1994, show that ocean current and mass distribution changes also induce detectable LOD variations.

  13. Ekman Upwelling, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  14. The most intense electric currents in turbulent high speed solar wind

    Science.gov (United States)

    Podesta, J. J.

    2017-12-01

    Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.

  15. Offshore renewable energies, offshore wind power marine currents and waves; Energies renouvelables en mer eolien en mer courants marins et vagues

    Energy Technology Data Exchange (ETDEWEB)

    Paillard, M [Institut Francais de Recherche pour l' Exploitation de la Mer, 92 - Issy les Moulineaux (France); Peirano, E [Agence de Environnement et de la Maitrise de l' Energie (ADEME), 06 - Valbonne (France)

    2004-07-01

    This colloquium aims to take stock on the development of ocean energies, mainly exploitation of offshore wind energy, but also exploitation of marine currents and waves for energy conversion by discussing their perspectives, their constraints, and their environmental and socio-economic impacts. It proposes also a review the recent methodological and technological advances. The different subjects introduced are: state of the art and prospects; resource assessments, forecasting and short-term prediction, site conditions; technical assessments, installation,decommissioning, certification; environmental impacts, social aspects and acceptability; policies, market perspectives and constraints; project developments and feedback. (A.L.B.)

  16. Western Gulf of Mexico, June 1993 to June 1994 Average Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_AVG_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  17. Eastern Gulf of Mexico, February 1996 to June 1997 Average Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_AVG_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  18. NASA's Newest SeaWinds Instrument Breezes Into Operation

    Science.gov (United States)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.' 'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international

  19. Ocean Science for Decision-Making: Current Activities of the National Research Council's Ocean Studies Board

    Science.gov (United States)

    Roberts, S.; Glickson, D.; Mengelt, C.; Forrest, S.; Waddell, K.

    2012-12-01

    The National Research Council is a private, nonprofit organization chartered by Congress in 1916 as an expansion of the U.S. National Academy of Sciences. Its mission is to improve the use of science in government decision making and public policy, increase public understanding, and promote the acquisition and dissemination of knowledge in matters involving science, engineering, technology, and health. Within the National Research Council, the Ocean Studies Board (OSB) mission is to explore the science, policies, and infrastructure needed to understand, manage, and conserve coastal and marine environments and resources. OSB undertakes studies and workshops on emerging scientific and policy issues at the request of federal agencies, Congress, and others; provides program reviews and guidance; and facilitates communication on oceanographic issues among different sectors. OSB also serves as the U.S. National Committee to the international, nongovernmental Scientific Committee on Oceanic Research (SCOR). OSB has produced reports on a wide range of topics of interest to researchers and educators, the federal government, the non-profit sector, and industry. Recent reports have focused on ecosystem services in the Gulf of Mexico after the Deepwater Horizon oil spill, sea level rise on the U.S. west coast, scientific ocean drilling needs and accomplishments, requirements for sustained ocean color measurements, critical infrastructure for ocean research, tsunami warning and preparedness, ocean acidification, and marine and hydrokinetic power resource assessments. Studies that are currently underway include responding to oil spills in the Arctic, evaluating the effectiveness of fishery stock rebuilding plans, and reviewing the National Ocean Acidification Research Plan. OSB plays an important role in helping create policy decisions and disseminating important information regarding various aspects of ocean science.

  20. Distribution of ionospheric currents induced by the solar wind interaction with Venus

    International Nuclear Information System (INIS)

    Daniell, R.E. Jr.; Cloutier, P.A.

    1977-01-01

    The electric currents induced in the atmosphere of a non-magnetic planet such as Venus by the interaction of the solar wind satisfy a generalized Ohm's Law relationship with tensor conductivity. The distribution of these currents within the planetary ionosphere may be calculated by a variational technique which minimizes the Joule heating over the ionospheric volume. In this paper, we present the development of the variational technique, and apply it to a model of the solar wind interaction with Venus. Potential and current distributions are shown, and the use of these distributions in determining convective transport patterns of planetary ions is discussed. (author)

  1. Current meter data from moored current meter casts in the Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1979-01-20 to 1984-04-26 (NODC Accession 8500007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Pacific Ocean from January 20, 1979 to April 26, 1984. Data were submitted by Pacific...

  2. Variability, interaction and change in the atmosphere-ocean-ecology system of the Western Indian Ocean.

    Science.gov (United States)

    Spencer, T; Laughton, A S; Flemming, N C

    2005-01-15

    Traditional ideas of intraseasonal and interannual climatic variability in the Western Indian Ocean, dominated by the mean cycle of seasonally reversing monsoon winds, are being replaced by a more complex picture, comprising air-sea interactions and feedbacks; atmosphere-ocean dynamics operating over intrannual to interdecadal time-scales; and climatological and oceanographic boundary condition changes at centennial to millennial time-scales. These forcings, which are mediated by the orography of East Africa and the Asian continent and by seafloor topography (most notably in this area by the banks and shoals of the Mascarene Plateau which interrupts the westward-flowing South Equatorial Current), determine fluxes of water, nutrients and biogeochemical constituents, the essential controls on ocean and shallow-sea productivity and ecosystem health. Better prediction of climatic variability for rain-fed agriculture, and the development of sustainable marine resource use, is of critical importance to the developing countries of this region but requires further basic information gathering and coordinated ocean observation systems.

  3. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    Science.gov (United States)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  4. Current meter data from moored current meter casts in the Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1979-01-20 to 1984-04-01 (NODC Accession 8700077)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Pacific Ocean from January 20, 1979 to April 1, 1984. Data were submitted by Pacific Marine...

  5. Current meter data from moored current meter casts in the Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1990-04-30 to 1991-05-15 (NODC Accession 9400005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Pacific Ocean from April 30, 1990 to May 15, 1991. Data were submitted by Pacific Marine...

  6. Current meter data from moored current meter casts in the Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1986-05-28 to 1987-05-11 (NODC Accession 8900168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Pacific Ocean from 28 May 1986 to 01 May 1983. Data were submitted by Pacific Marine...

  7. Swell Propagation over Indian Ocean Region

    Directory of Open Access Journals (Sweden)

    Suchandra A. Bhowmick

    2011-06-01

    Full Text Available Swells are the ocean surface gravity waves that have propagated out of their generating fetch to the distant coasts without significant attenuation. Therefore they contain a clear signature of the nature and intensity of wind at the generation location. This makes them a precursor to various atmospheric phenomena like distant storms, tropical cyclones, or even large scale sea breeze like monsoon. Since they are not affected by wind once they propagate out of their generating region, they cannot be described by regional wave models forced by local winds. However, their prediction is important, in particular, for ship routing and off shore structure designing. In the present work, the propagation of swell waves from the Southern Ocean and southern Indian Ocean to the central and northern Indian Ocean has been studied. For this purpose a spectral ocean Wave Model (WAM has been used to simulate significant wave height for 13 years from 1993–2005 using NCEP blended winds at a horizontal spatial resolution of 1° × 1°. It has been observed that Indian Ocean, with average wave height of approximately 2–3 m during July, is mostly dominated by swell waves generated predominantly under the extreme windy conditions prevailing over the Southern Ocean and southern Indian Ocean. In fact the swell waves reaching the Indian Ocean in early or mid May carry unique signatures of monsoon arriving over the Indian Subcontinent. Pre-monsoon month of April contains low swell waves ranging from 0.5–1 m. The amplitudes subsequently increase to approximately 1.5–2 meters around 7–15 days prior to the arrival of monsoon over the Indian Subcontinent. This embedded signature may be utilized as one of the important oceanographic precursor to the monsoon onset over the Indian Ocean.

  8. The most intense current sheets in the high-speed solar wind near 1 AU

    Science.gov (United States)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1current-carrying structures in high-speed wind occur at electron scales, although the peak current densities at kinetic and electron scales are predicted to be nearly the same as those found in this study.

  9. Impact of Parameterized Lateral Mixing on the Circulation of the Southern Ocean

    Science.gov (United States)

    Ragen, S.; Gnanadesikan, A.

    2016-02-01

    The Antarctic Circumpolar Current (ACC) is the strongest ocean current in the world, transporting approximately 130 Sv Eastward around Antarctica. This current is often poorly simulated in climate models. It is not clear why this is the case as the Circumpolar Current is affected by both wind and buoyancy. Changes in wind and buoyancy are not independent of each other, however, so determining the effects of both separately has proved difficult. This study was undertaken in order to examine the impact of changing the lateral diffusion coefficient A­redi on ACC transport. A­redi is poorly known and its value ranges across an order of magnitude in the current generation of climate models. To explore these dynamics, a coarse resolution, fully coupled model suite was run with A­redi mixing coefficients of 400 m2/s, 800 m2/s, 1200 m2/s, and 2400 m2/s. Additionally, two models were run with two-dimensional representations of the mixing coefficient based on altimetry. Our initial results indicate that higher values of the lateral mixing coefficient result in the following changes. We see weaker winds over the Southern Ocean as a whole. The high mixing case results in an 8.7% decrease in peak wind stress. We see a 2% weaker transport in the Drake Passage in the highest mixing case compared to the lowest, but an 11% decrease in transport for a zonal average. The change of temperature and salinity with depth with different Redi parameters also shows a significant difference between the Southern Ocean as a whole and the Drake Passage. Our findings seem to suggest that the Drake Passage is not an adequate diagnostic for explaining the differences between different climate models, as processes distant from the passage may play an important role. Observed changes in overturning with an increase in lateral mixing include an increase in northward transport of Antarctic Bottom Water fed by a small diversion of northern deep water inflows. This diversion means that less of the

  10. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    Science.gov (United States)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  11. The Lake Turkana wind farm project

    Energy Technology Data Exchange (ETDEWEB)

    Burlando, M.; Durante, F. [DEWI GmbH, Genoa (Italy); Claveri, L. [DEWI GmbH, Oldenburg (Germany)

    2010-08-15

    The Lake Turkana wind farm is one of the largest wind farm projects to be realised in the African Continent, and the first of its kind in Kenya. After its full commissioning in 2012, the wind farm will be generating 300 MW of clean power almost steadily thanks to the very peculiar characteristics of the wind climate of north-western Kenya. Until now, only northern African countries such as Morocco and Egypt had used wind power for commercial purposes on the continent. Projects are now beginning to bloom south of the Sahara as governments realise that harnessing the vast wind potential can efficiently meet the growing demand of electric power. With the Lake Turkana wind farm project and other minor projects, Kenya is trying to lead the way. The project consists of building 365 wind turbines Vestas V52 of hub height 45 m and nominal power 850 kW, corresponding to about 30% of Kenya's current installed power. The project includes also reinforcing 200 km of roads and bridges to transport the wind turbines from the Indian Ocean port of Mombasa to the northwestern Kenya, and adding more than 400 km of transmission lines and several substations to connect the wind farm and supply power to the national electric grid. (orig.)

  12. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    Science.gov (United States)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  13. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...... for open-/star-winding loads. Elaborately, per phase of the VSI is built with one additional bi-directional switch (MOSFET/IGBT) and all five legs links to the neutral through two capacitors. The structure allows multilevel generation to five-level output with greater potential for fault tolerability under...

  14. Gap winds and their effects on regional oceanography Part II: Kodiak Island, Alaska

    Science.gov (United States)

    Ladd, Carol; Cheng, Wei; Salo, Sigrid

    2016-10-01

    Frequent gap winds, defined here as offshore-directed flow channeled through mountain gaps, have been observed near Kodiak Island in the Gulf of Alaska (GOA). Gap winds from the Iliamna Lake gap were investigated using QuikSCAT wind data. The influence of these wind events on the regional ocean was examined using satellite and in situ data combined with Regional Ocean Modeling System (ROMS) model runs. Gap winds influence the entire shelf width (> 200 km) northeast of Kodiak Island and extend an additional 150 km off-shelf. Due to strong gradients in the along-shelf direction, they can result in vertical velocities in the ocean of over 20 m d-1 due to Ekman pumping. The wind events also disrupt flow of the Alaska Coastal Current (ACC), resulting in decreased flow down Shelikof Strait and increased velocities on the outer shelf. This disruption of the ACC has implications for freshwater transport into the Bering Sea. The oceanographic response to gap winds may influence the survival of larval fishes as Arrowtooth Flounder recruitment is negatively correlated with the interannual frequency of gap-wind events, and Pacific Cod recruitment is positively correlated. The frequency of offshore directed winds exhibits a strong seasonal cycle averaging 7 days per month during winter and 2 days per month during summer. Interannual variability is correlated with the Pacific North America Index and shows a linear trend, increasing by 1.35 days per year. An accompanying paper discusses part I of our study (Ladd and Cheng, 2016) focusing on gap-wind events flowing out of Cross Sound in the eastern GOA.

  15. Current meter data from moored current meter casts in the South Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1981-11-21 to 1983-11-20 (NODC Accession 8500258)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the South Pacific Ocean from November 21, 1981 to November 20, 1983. Data were submitted by...

  16. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator

    Directory of Open Access Journals (Sweden)

    Naggar H. Saad

    2016-05-01

    Full Text Available The main challenges of wind energy conversion systems (WECS are to maximize the energy capture from the wind and injecting reactive power during the fault. This paper presents a current controlled matrix converter to interface Permanent Magnet Synchronous Generators (PMSG based WECS with the grid. To achieve fast dynamic response with reduced current ripples, a hysteresis current control is utilized. The proposed control system decouples the active and reactive components of the PMSG current to extract the maximum power from the wind at a given wind velocity and to inject reactive power to the grid. Reactive power injection during the fault satisfying the grid-codes requirement. The proposed WECS has been modeled and simulated using PSCAD/EMTDC software package.

  17. NODC Standard Format Coastal Ocean Wave and Current (F181) Data from the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) (1980) (NODC Accession 0014202)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series coastal ocean wave and current data collected during the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE). ARSLOE was...

  18. Ocean-Atmosphere Interaction in Climate Changes

    Science.gov (United States)

    Liu, W. Timothy

    1999-01-01

    The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface

  19. Current system of the solar wind: results of numerical calculation

    International Nuclear Information System (INIS)

    Pisanko, Yu.V.

    1985-01-01

    Results of numerical calculations of surface current in the interplanetary current layer and steady volume current in the solar wind for heliocentric distances (1-10)Rsub(s) (Rsub(s) is the Sun radius) are given. The strength of current dependence on spatial coordinates is considered. Stationary nondissipative magnetohydrodynamic corona expansion (SNMCE) in the reference system rotating with the Sun is studied. Calculations show that three-dimensional current system of nonaxial-symmetric and nonsymmetric relatively to helioequator plane of SNMCE is more complicated than the zonal ring current around the Sun, which is the only component of the current system in spatial symmetric case

  20. Surface and subsurface geostrophic current variability in the Indian Ocean from altimetry

    Digital Repository Service at National Institute of Oceanography (India)

    Cadden, D.D.H.; Subrahmanyam, B.; Chambers, D.P.; Murty, V.S.N.

    the World Ocean Atlas 2005. The results of this method were validated with currents measured using Acoustic Doppler Current Profilers moored along the equator at 77 degrees E, 83 degrees E, and 93 degrees E. The measured and computed currents compared...

  1. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    Directory of Open Access Journals (Sweden)

    V. Zharkova

    2015-04-01

    Full Text Available Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS or in a front of interplanetary coronal mass ejections (ICMEs often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012. The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR, which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic

  2. QuikSCAT and SSM/I ocean surface winds for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Per

    2007-01-01

    -European mid-latitudes and in the Atlantic trade belt zone are compared. Distinct differences are identified and these agree well with independent data from meteorological masts in the two regions. Seven years of twice daily observations from QuikSCAT are used for the offshore wind resource assessment. Wind...

  3. Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability

    Science.gov (United States)

    Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.

    2018-02-01

    Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.

  4. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  5. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  6. Remote sensing of ocean currents using ERTS imagery

    Science.gov (United States)

    Maul, G. A.

    1973-01-01

    Major ocean currents such as the Loop Current in the eastern Gulf of Mexico have surface manifestations which can be exploited for remote sensing. Surface chlorophyll-a concentrations, which contribute to the shift in color from blue to green in the open sea, were found to have high spatial variability; significantly lower concentrations were observed in the current. The cyclonic edge of the current is an accumulation zone which causes a peak in chlorophyll concentration. The dynamics also cause surface concentrations of algae, which have a high reflectance in the near infrared. Combining these observations gives rise to an edge effect which can show up as a bright lineation on multispectral imagery delimiting the current's boundary under certain environmental conditions. When high seas introduce bubbles, white caps, and foam, the reflectance is dominated by scattering rather than absorption. This has been detected in ERTS imagery and used for current location.

  7. Current Sheets in the Corona and the Complexity of Slow Wind

    Science.gov (United States)

    Antiochos, Spiro

    2010-01-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.

  8. Current measurements from acoustic doppler current profilers (ADCP) in the southwest Atlantic Ocean from the World Ocean Circulation Experiment (WOCE) from 1991-01-03 to 1992-11-26 (NODC Accession 0087597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data from the ADCP instruments of BE/335 and BW/333 from January 3, 1991 to November 26, 1992 collected as part of the World Ocean Circulation...

  9. Deep and surface circulation in the Northwest Indian Ocean from Argo, surface drifter, and in situ profiling current observations

    Science.gov (United States)

    Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.

    2010-12-01

    The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur

  10. Symmetrical and Unsymmetrical Fault Currents of a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    This paper investigates the short-circuit behavior of a wind power plant for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. The size of wind power plants (WPPs) keeps getting bigger and bigger. The number of wind plants in the U.S. has increased very rapidly in the past 10 years. It is projected that in the U.S., the total wind power generation will reach 330 GW by 2030. As the importance of WPPs increases, planning engi-neers must perform impact studies used to evaluate short-circuit current (SCC) contribution of the plant into the transmission network under different fault conditions. This information is needed to size the circuit breakers, to establish the proper sys-tem protection, and to choose the transient suppressor in the circuits within the WPP. This task can be challenging to protec-tion engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. Three different soft-ware packages are utilized to develop this paper. Time domain simulations and steady-state calculations are used to perform the analysis.

  11. Current meter data from moored current meter casts in the Northeast Pacific Ocean as part of the Ocean Prediction Through Observation Modeling and Analysis (OPTOMA) project, 1984-09-26 to 1985-07-16 (NODC Accession 9600075)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Northeast Pacific Ocean from September 26, 1984 to July 16, 1985. Data were submitted by...

  12. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    Science.gov (United States)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  13. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    Science.gov (United States)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  14. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  15. Propagation of large amplitude Alfven waves in the solar wind current sheet

    International Nuclear Information System (INIS)

    Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi

    1996-01-01

    The time evolution of Alfvenic perturbations in the Solar Wind current sheet is studied by using numerical simulations of the compressible magnetohydrodynamic (MHD) equations. The simulations show that the interaction between the large amplitude Alfvenic pertubation and the solar wind current sheet decreases the correlation between velocity and magnetic field fluctuations and produces compressive fluctuations. The characteristics of these compressive fluctuations compare rather well with spatial observations. The behavior of the correlation between density and magnetic field intensity fluctuations and of the their spectra are well reproduced so that the physical mechanisms giving rise to these behaviors can be identified

  16. Sensitivity experiments with an adaptation model of circulation of western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.; Rao, A.D.; Dube, S.K.

    circulation at 10 m depth is controlled by both wind stress and sea surface topography. Circulation at 50 m depth is mainly controlled by thermohaline forcing and sea surface topography. The current speed in the western tropical Indian Ocean is of the order...

  17. Negative sequence current control in wind power plants with VSC-HVDC connection

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Teodorescu, Remus; Rodriguez, Pedro

    2012-01-01

    Large offshore wind power plants may have multi-MW wind turbine generators (WTG) equipped with full-scale converters (FSC) and voltage source converter (VSC) based high voltaage direct-current (HVDC) transmission for grid connection. The power electronic converters in theWTG-FSC and the VSC......-HVDC allow fast current control in the offshore grid. This paper presents a method of controlling the negative sequence current injection into the offshore grid from the VSC-HVDC as well as WTG-FSCs. This would minimize the power oscillations and hence reduce the dc voltage overshoots in the VSC-HVDC system...... as well as in the WTG-FSCs; especially when the offshore grid is unbalanced due to asymmetric faults. The formulation for negative sequence current injection is mathematically derived and then implemented in electromagnetic transients (EMT) simulation model. The simulated results show that the negative...

  18. How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean

    Science.gov (United States)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.

    2017-05-01

    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.

  19. Breaking phase focused wave group loads on offshore wind turbine monopiles

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Bredmose, Henrik; Dixen, M.

    2016-01-01

    The current method for calculating extreme wave loads on offshore wind turbine structures is based on engineering models for non-breaking regular waves. The present article has the aim of validating previously developed models at DTU, namely the OceanWave3D potential flow wave model and a coupled...

  20. Coherence of river and ocean conditions along the US West Coast during storms

    Science.gov (United States)

    Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goni, M.A.

    2011-01-01

    The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river-ocean temporal coherence for four coastal river-shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river-shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river-ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river-shelf systems. Although there are seasonal variations in river-ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river-ocean coherence patterns along the US West

  1. Seasonality of the Mindanao Current/Undercurrent System

    Science.gov (United States)

    Ren, Qiuping; Li, Yuanlong; Wang, Fan; Song, Lina; Liu, Chuanyu; Zhai, Fangguo

    2018-02-01

    Seasonality of the Mindanao Current (MC)/Undercurrent (MUC) system is investigated using moored acoustic Doppler current profiler (ADCP) measurements off Mindanao (8°N, 127.05°E) and ocean model simulations. The mooring observation during December 2010 to August 2014 revealed that the surface-layer MC between 50-150 m is dominated by annual-period variation and tends to be stronger in spring (boreal) and weaker in fall. Prominent semiannual variations were detected below 150 m. The lower MC between 150 and 400 m is stronger in spring and fall and weaker in summer and winter, while the northward MUC below 400 m emerges in summer and winter and disappears in spring and fall. In-phase and out-of-phase current anomalies above and below 150 m were observed alternatively. These variations are faithfully reproduced by an eddy-resolving ocean model simulation (OFES). Further analysis demonstrates that seasonal variation of the MC is a component of large-scale upper-ocean circulation gyre, while current variations in the MUC layer are confined near the western boundary and featured by shorter-scale (200-400 km) structures. Most of the MC variations and approximately half of the MUC variations can be explained by the first and second baroclinic modes and caused by local wind forcing of the western Pacific. Semiannual surface wind variability and superimposition of the two baroclinic modes jointly give rise to the enhanced subsurface semiannual variations. The pronounced mesoscale eddy variability in the MUC layer may also contribute to the seasonality of the MUC through eddy-current interaction.

  2. Changes in ocean circulation in the South-east Atlantic Ocean during the Pliocene

    Science.gov (United States)

    Petrick, B. F.; McClymont, E.; Felder, S.; Leng, M. J.

    2013-12-01

    The Southeast Atlantic Ocean is an important ocean gateway because major oceanic systems interact with each other in a relatively small geographic area. These include the Benguela Current, Antarctic Circumpolar Current, and the input of warm and saline waters from the Indian Ocean via the Agulhas leakage. However, there remain questions about circulation change in this region during the Pliocene, including whether there was more or less Agulhas Leakage, which may have implications for the strength of the global thermohaline circulation. ODP Site 1087 (31°28'S, 15°19'E, 1374m water depth) is located outside the Benguela upwelling region and is affected by Agulhas leakage in the modern ocean. Sea-surface temperatures (SSTs) are thus sensitive to the influence of Agulhas Leakage at this site. Our approach is to apply several organic geochemistry proxies and foraminiferal analyses to reconstruct the Pliocene history of ODP 1087, including the UK37' index (SSTs), pigments (primary productivity) and planktonic foraminifera (water mass changes). SSTs during the Pliocene range from 17 to 22.5 °C (mean SSTs at 21 °C), and show variability on orbital and suborbital time scales. Our results indicate that the Benguela upwelling system had intensified and/or shifted south during the Pliocene. We find no evidence of Agulhas leakage, meaning that either Agulhas Leakage was severely reduced or displaced during the mid-Pliocene. Potential causes of the observed signals include changes to the local wind field and/or changes in the temperature of intermediate waters which upwell in the Benguela system. Pronounced cooling is observed during cold stages in the Pliocene, aligned with the M2 and KM2 events. These results may indicate that changes to the extent of the Antarctic ice sheet had impact on circulation in the south east Atlantic during the Pliocene via displacement of the Antarctic Circumpolar Currents.

  3. Solar wind parameters responsible for the plasma injection into the magnetospheric ring current region

    International Nuclear Information System (INIS)

    Bobrov, M.S.

    1977-01-01

    Solar wind effect on the magnetospheric ring-current region has been considered. The correlations with solar wind parameters of the magnitude qsub(o) proportional to the total energy of particles being injected into the magnetospheric ring-current region per one hour are studied statistically and by comparison of time variations. The data on 8 sporadic geomagnetic storms of various intensity, from moderate to very severe one, are used. It is found that qsub(o) correlates not only with the magnitude and the direction of the solar-wind magnetic field component normal to the ecliptic plane, Bsub(z), but also with the variability, sigmasub(B), of the total magnetic-field strength vector. The solar-wind flux velocity ν influences the average storm intensity but the time variations of ν during any individual storm do not correlate with those of qsub(o)

  4. Parameterized and resolved Southern Ocean eddy compensation

    Science.gov (United States)

    Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman

    2018-04-01

    The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.

  5. Atmospheric Signature of the Agulhas Current

    Science.gov (United States)

    Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu

    2018-05-01

    Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.

  6. Observations of the upper ocean response to storm forcing in the South Atlantic Roaring Forties

    Directory of Open Access Journals (Sweden)

    R. Marsh

    1995-10-01

    Full Text Available In the austral summer of 1992–1993 the passage of a storm system drove a strong upper ocean response at 45°S in the mid-South Atlantic. Good in situ observations were obtained. CTD casts revealed that the mixed layer deepened by ~40 m over 4 days. Wind stirring dominated over buoyancy flux-driven mixing during the onset of high winds. Doppler shear currents further reveal this to be intimately related to inertial dynamics. The penetration depth of inertial currents, which are confined to the mixed layer, increases with time after a wind event, matched by a downward propagation of low values of the Richardson number. This suggests that inertial current shear is instrumental in producing turbulence at the base of the mixed layer. Evolution of inertial transport is simulated using a time series of ship-observed wind stress. Simulated transport is only 30–50% of the observed transport, suggesting that much of the observed inertial motion was forced by an earlier (possibly remote storm. Close proximity of the subtropical front further complicates the upper ocean response to the storm. A simple heat balance for the upper 100 m reveals that surface cooling and mixing (during the storm can account for only a small fraction of an apparent ~1 °C mixed layer cooling.

  7. Coastal and rain-induced wind variability depicted by scatterometers

    Science.gov (United States)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy

  8. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    the atmosphere must, by conservation, result in the generation of the surface waves and currents. The physics-based methods are sensitive to the choice of wind-input source function (Sin), parameterization of high-frequency wave spectra tail, and numerical cut-off frequencies. Unfortunately, literature survey......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... shows that in most wind-wave coupling systems, either the Sin in the wave model is different from the one used for the momentum flux estimation in the atmospheric model, or the methods are too sensitive to the parameterization of high-frequency spectra tail and numerical cut-off frequencies. To confront...

  9. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  10. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  11. Hurricane Wind Vector Estimates from WindSat Polarimetric Radiometer

    National Research Council Canada - National Science Library

    Adams, Ian S; Hennon, Christopther C; Jones, W. L; Ahmad, Khalil

    2005-01-01

    .... In late 2004, the first preliminary oceanic wind vector results were released, and this paper presents the first evaluation of this product for several Atlantic hurricanes during the 2003 season...

  12. Harnessing the Ocean's Power : Energy from Waves and Currents (Part I)

    OpenAIRE

    Yukihisa, Washio; Japan Marine Science and Technology Center

    1985-01-01

    The oceans are a potential source of renewable and pollution-free energy of particular importance to Japan. In this Issue we look at current development work to harness wave energy for power generation.

  13. Assessment of current effect on waves in a semi-enclosed basin

    Science.gov (United States)

    Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.

    2012-04-01

    The wave-current interaction process in the semi-enclosed Adriatic Sea is studied using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, which is used to exchange data fields between the ocean model ROMS (Regional Ocean Modeling System) and the wave model SWAN (Simulating WAves Nearshore). The 2-way data transfer between circulation and wave models is synchronous with ROMS providing current fields, free surface elevation, and bathymetry to SWAN. In particular, the 3-D current profiles are averaged using a formulation that integrates the near-surface velocity over a depth controlled by the spectral mean wave number. This coupling procedure is carried out up to coastal areas by means of an offline grid nesting. The parent grid covers the whole Adriatic Sea and has a horizontal resolution of 2.0 km, whereas the child grid resolution increases to 0.5 km but it is limited to the northern Adriatic Sea (Gulf of Venice), where the current effect on waves is investigated. The most frequent winds blowing on the Adriatic Sea are the so-called Bora and Sirocco which cause high waves in the Adriatic Sea, although Bora waves are generally fetch-limited. In fact, Bora winds blow orthogonal to the main basin axis (approximately aligned with the NW-SE direction), while Sirocco has large spatial scale being a southeasterly wind. For the numerical simulations, the meteorological forcings are provided by the operational meteorological model COSMO-I7, which is the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium. During the analysis period, the simulated wind, current and wave are compared with observations at the ISMAR oceanographic tower located off the Venice littoral. Wave heights and sea surface winds are also compared with satellite-derived data. To account for the variability of sea states during a storm, the expected maximum individual wave height in a sea storm with a given history is also

  14. Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents

    Science.gov (United States)

    Diez, M.; Redondo, J. M.

    2009-04-01

    As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities

  15. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  16. The count of losses by eddy currents in the windings of electric motors with hollow anchor

    Directory of Open Access Journals (Sweden)

    N. V. Pribylova

    2017-01-01

    Full Text Available Given the rationale of taking into account losses on eddy currents in the windings of a low-inertia DC motors with offered magnetoelectric systems. Increased in recent years, the power of these motors (through the use of highly coercive magnets permanent caused an increase in the volume of copper in the air gap and the magnetic induction values. All this has values given rise to significant eddy currents in the windings made in the air gap, and hence the necessity of taking into account losses from these currents. The experimentally obtained dependence of the losses on eddy currents on the frequency of rotation for a DC motor with a hollow anchor with a power of 350 watts. The magnitude of these losses can reach 30% of the nominal power of the motor. Described mechanism of occurrence of losses. Eddy currents occur in areas with variable magnetic flux and cause the appearance of force, which is directed toward the velocity vector and inhibits the anchor. The directions of these currents, the vectors of magnetic induction, magnetic field and force acting on the conductor winding and a braking anchor. The proposed methods reduce losses: crushing contours of eddy currents and achieve uniform distribution of magnetic induction in the interpolar space of the motor. Shows their strengths and weaknesses. The crushing circuits of windings occur surge currents. To eliminate the losses on the surge currents it is necessary to apply a transposition of the conductors. Given a refined formula for finding the losses on eddy currents in the armature winding, the conductors of which is made in the form of a harness of several wires. Formula has shown a good convergence with experimental data.

  17. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  18. On the role of atmospheric forcing on upper ocean physics in the Southern Ocean and biological impacts

    Science.gov (United States)

    Carranza, Magdalena M.

    The Southern Ocean (SO) plays a key role in regulating climate by absorbing nearly half of anthropogenic carbon dioxide (CO2). Both physical and biogeochemical processes contribute to the net CO2 sink. As a result of global warming and ozone depletion, westerly winds have increased, with consequences for upper ocean physics but little is known on how primary producers are expected to respond to changes in atmospheric forcing. This thesis addresses the impact of atmospheric forcing on upper ocean dynamics and phytoplankton bloom development in the SO on synoptic storm scales, combining a broad range of observations derived from satellites, reanalysis, profiling floats and Southern elephant seals. On atmospheric synoptic timescales (2-10 days), relevant for phytoplankton growth and accumulation, wind speed has a larger impact on satellite Chl-a variability than surface heat fluxes or wind stress curl. In summer, strong winds are linked to deep mixed layers, cold sea surface temperatures and enhanced satellite chlorophyll-a (Chl-a), which suggest wind-driven entrainment plays a role in sustaining phytoplankton blooms at the surface. Subsurface bio-optical data from floats and seals reveal deep Chl-a fluorescence maxima (DFM) are ubiquitous in summer and tend to sit at the base of the mixed layer, but can occur in all seasons. The fact that wind speed and Chl-a correlations are maximal at zero lag time (from daily data) and incubation experiments indicate phytoplankton growth occurs 3-4 days after iron addition, suggests high winds in summer entrain Chl-a from a subsurface maximum. Vertical profiles also reveal Chl-a fluorescence unevenness within hydrographically defined mixed layers, suggesting the biological timescales of adaptation through the light gradient (i.e. growth and/or photoacclimation) are often faster than mixing timescales, and periods of quiescence between storms are long enough for biological gradients to form within the homogeneous layer in density

  19. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  20. Ocean Color and the Equatorial Annual Cycle in the Pacific

    Science.gov (United States)

    Hammann, A. C.; Gnanadesikan, A.

    2012-12-01

    upwelling acting on a mean temperature field contribute the largest term to SST variability (Köberle & Philander 1994; Li & Philander 1996). We examine whether it is changes in the surface currents (driven by the annual cycle of winds) or changes in the mean temperature fields (driven by enhanced penetration of solar radiation) that drive the differences between the coupled models. We do this using a simple linear equatorial-wave model, which, when forced with an annual harmonic of wind stresses, reproduces the essential characteristics of annual ocean current anomalies. The model solves the linearized Boussinesq equations by expansion into discrete modes in all spatial dimensions (McCreary 1981; Lighthill 1969). Both the wind forcing and the (laterally homogeneous) background density profile are constructed as approximations to the coupled model fields. The annual perturbation currents from the wave model are then used to advect the mean temperature fields from the coupled model experiments. While the difference in the mean stratification explains the difference between the 'green' and 'blue' cases. For the other two cases, it appears that changes in the annual wind fields need also be taken into account. An initial hypothesis is that the hemispheric asymmetry in the annual amplitude of wind stress curl that is most important in setting the amplitude of the annual cycle on the equator.

  1. Energy from the ocean. Report of the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fifth Congress, Second Session by the Science Policy Research Division, Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    In the area of renewable sources of energy from the ocean, the report includes chapters on ocean thermal energy conversion; energy from ocean waves; energy from ocean currents; energy from tides; energy from oceanic winds; energy from salinity gradients; and energy from oceanic bioconversion. Also covered are the nonrenewable sources of energy from the ocean with chapters on deep ocean oil and gas; offshore geothermal energy; and offshore hard mineral energy resources. The report concludes with a bibliography and a selection of current articles on the general subject of the energy potential of the oceans.

  2. Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation

    Science.gov (United States)

    Ponte, Rui M.; Frey, H. (Technical Monitor)

    2000-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic angular momentum (OAM) and mass fields and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability. The impact on OAM values of an optimization procedure that uses available data to constrain ocean model results was also tested for the first time. The optimization procedure yielded substantial changes, in OAM, related to adjustments in both motion and mass fields,as well as in the wind stress torques acting on the ocean. Constrained OAM values were found to yield noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale.

  3. Impact of data assimilation on ocean current forecasts in the Angola Basin

    Science.gov (United States)

    Phillipson, Luke; Toumi, Ralf

    2017-06-01

    The ocean current predictability in the data limited Angola Basin was investigated using the Regional Ocean Modelling System (ROMS) with four-dimensional variational data assimilation. Six experiments were undertaken comprising a baseline case of the assimilation of salinity/temperature profiles and satellite sea surface temperature, with the subsequent addition of altimetry, OSCAR (satellite-derived sea surface currents), drifters, altimetry and drifters combined, and OSCAR and drifters combined. The addition of drifters significantly improves Lagrangian predictability in comparison to the baseline case as well as the addition of either altimetry or OSCAR. OSCAR assimilation only improves Lagrangian predictability as much as altimetry assimilation. On average the assimilation of either altimetry or OSCAR with drifter velocities does not significantly improve Lagrangian predictability compared to the drifter assimilation alone, even degrading predictability in some cases. When the forecast current speed is large, it is more likely that the combination improves trajectory forecasts. Conversely, when the currents are weaker, it is more likely that the combination degrades the trajectory forecast.

  4. NODC Standard Product: Ocean current drifter data (2 disc set) (NODC Accession 0098060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These CD-ROMs hold over 4 million surface current observations, almost all obtained by the ship drift method. Date, data source, position, and current direction and...

  5. Current Status and Challenges in Wind Energy Assessment

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Badger, Jake; Hahmann, Andrea N.

    2014-01-01

    Here we discuss the status and challenges in the development of atlases for the assessment of the regional and global wind resources. The text more specifically describes a methodology that is under development at DTU Wind Energy in Denmark. As the wind assessment is based on mesoscale modelling,......, some of the specific challenges in mesoscale modelling for wind energy purposes are discussed such as wind profiles and long-term statistics of the wind speed time series. Solutions to these challenges will help secure an economic and effective deployment of wind energy....

  6. Estonian wind climate

    International Nuclear Information System (INIS)

    Kull, Ain

    1999-01-01

    Estonia is situated on the eastern coast of the Baltic Sea. This is a region with intensive cyclonic activity and therefore with a relatively high mean wind speed. Atmospheric circulation and its seasonal variation determine the general character of the Estonian wind regime over the Atlantic Ocean and Eurasia. However, the Baltic sea itself is a very important factor affecting wind climate, it has an especially strong influence on the wind regime in costal areas. The mean energy density (W/m 2 ) is a wind energy characteristic that is proportional to the third power of wind speed and describes energy available in a flow of air through a unit area. The mean energy density is a characteristic which has practical importance in regional assessment of snowdrift, storm damage and wind energy

  7. Ring current energy injection rate and solar wind-magnetosphere energy coupling

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.; Akasofu, S.-I.

    1982-01-01

    The purpose of this paper is to (i) formulate the ring current injection rate Usub(R) in terms of phisub(CT) (cross-tail potential drop) by assuming that the ring current formation is a direct consequence of an enhanced convection, (ii) examine the relationship between the injection rate Usub(R) and the power transferred from the solar wind to the magnetosphere and (iii) demonstrate that an enhanced convection indeed leads to the formation of the ring current. (author)

  8. Current error vector based prediction control of the section winding permanent magnet linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)

    2011-10-15

    Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.

  9. The Abrupt Onset of the Modern South Asian Monsoon Winds (iodp Exp. 359)

    Science.gov (United States)

    Betzler, C.; Eberli, G. P.; Kroon, D.; Wright, J. D.; Swart, P. K.; Nath, B. N.; Reijmer, J.; Alvarez Zarikian, C. A.

    2016-12-01

    The South Asian Monson (SAM) is one of the most extreme features in Earth's climate system, yet its initiation and variations are not well established. The SAM is a seasonal reversal of winds accompanied by changes in precipitation with heavy rain during the summer monsoon. It is one of the most intense annually recurring climatic elements and of immense importance in supplying moisture to the Indian subcontinent thus affecting human population and vegetation, as well as marine biota in the surrounding seas. The seasonal precipitation change is one of the SAM elements most noticed on land, whereas the reversal of the wind regime is the dominating driver of circulation in the central and northern Indian Ocean realm. New data acquired during International Ocean Discovery Program Expedition 359 from the Inner Sea of the Maldives provide a previously unread archive that reveals an abrupt onset of the SAM-linked ocean circulation pattern and its relationship to the long term Neogene climate cooling. In particular it registers ocean current fluctuations and changes of intermediate water mass properties for the last 25 myrs that are directly related to the monsoon. Dating the deposits of SAM wind-driven currents yields an age of 12.9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of sedimentary organic matter. A weaker `proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  10. Estuary-ocean connectivity: fast physics, slow biology.

    Science.gov (United States)

    Raimonet, Mélanie; Cloern, James E

    2017-06-01

    Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1-3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary-ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing

  11. Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-04-15

    Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)

  12. The response of the Red Sea to a strong wind jet near the Tokar Gap in summer

    KAUST Repository

    Zhai, Ping

    2013-01-01

    [1] Remote sensing and in situ observations are used to investigate the ocean response to the Tokar Wind Jet in the Red Sea. The wind jet blows down the atmospheric pressure gradient through the Tokar Gap on the Sudanese coast, at about 19°N, during the summer monsoon season. It disturbs the prevailing along-sea (southeastward) winds with strong cross-sea (northeastward) winds that can last from days to weeks and reach amplitudes of 20-25 m/s. By comparing scatterometer winds with along-track and gridded sea level anomaly observations, it is observed that an intense dipolar eddy spins up in response to the wind jet. The eddy pair has a horizontal scale of 140 km. Maximum ocean surface velocities can reach 1 m/s and eddy currents extend more than 100 m into the water column. The eddy currents appear to cover the width of the sea, providing a pathway for rapid transport of marine organisms and other drifting material from one coast to the other. Interannual variability in the strength of the dipole is closely matched with variability in the strength of the wind jet. The dipole is observed to be quasi-stationary, although there is some evidence for slow eastward propagation in an idealized numerical model. Simulation of the dipole in an idealized high-resolution numerical model suggests that this is the result of self-advection. © 2012. American Geophysical Union. All Rights Reserved.

  13. Current meter and other data collected using current meter casts from R/V RESEARCHER and R/V CALANUS in the Atlantic and Pacific Ocean as part of the Eastern Pacific Ocean Circulation Study (EPOCS) and Subtropical Atlantic Current Study (STACS), 23 March 1983 - 19 November 1986 (NODC Accession 8700226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and other data were collected using current meter casts from R/V RESEARCHER and R/V CALANUS in the Atlantic and Pacific Ocean from March 23, 1983 to...

  14. Wave measurement in severe ocean currents

    Digital Repository Service at National Institute of Oceanography (India)

    Diwan, S.G.; Suryavanshi, A.K.; Nayak, B.U.

    The measurement of ocean waves has been of particular interest, as wave data and understanding of wave phenomena are essential to ocean engineering, coastal engineering and to many marine operations. The National Institute of Oceanography, Goa...

  15. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator

    OpenAIRE

    Naggar H. Saad; Ahmed A. El-Sattar; Mohamed I. Marei

    2016-01-01

    The main challenges of wind energy conversion systems (WECS) are to maximize the energy capture from the wind and injecting reactive power during the fault. This paper presents a current controlled matrix converter to interface Permanent Magnet Synchronous Generators (PMSG) based WECS with the grid. To achieve fast dynamic response with reduced current ripples, a hysteresis current control is utilized. The proposed control system decouples the active and reactive components of the PMSG curren...

  16. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    Science.gov (United States)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  17. Plastic pollution in islands of the Atlantic Ocean.

    Science.gov (United States)

    Monteiro, Raqueline C P; Ivar do Sul, Juliana A; Costa, Monica F

    2018-07-01

    Marine plastic pollution is present in all oceans, including remote oceanic islands. Despite the increasing number of articles on plastic pollution in the last years, there is still a lack of studies in islands, that are biodiversity hotspots when compared to the surrounding ocean, and even other recognized highly biodiverse marine environments. Articles published in the peer reviewed literature (N = 20) were analysed according to the presence of macro (>5 mm) and microplastics (plastics associated with variables such as position of the beach in relation to wind and currents. Very few studies have analysed plastics colonization by organisms or the identification of persistent organic pollutants (POPs). Islands of the North/South Atlantic and Caribbean Sea were influenced by different sources of macroplastics, being marine-based sources (i.e., fishing activities) predominant in the Atlantic Ocean basin. On the other hand, in the Caribbean Sea, land-based sources were more common. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    Science.gov (United States)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  19. Practical Application of Eddy Currents Generated by Wind

    International Nuclear Information System (INIS)

    Dirba, I; Kleperis, J

    2011-01-01

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  20. Practical Application of Eddy Currents Generated by Wind

    Science.gov (United States)

    Dirba, I.; Kleperis, J.

    2011-06-01

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  1. Practical Application of Eddy Currents Generated by Wind

    Energy Technology Data Exchange (ETDEWEB)

    Dirba, I; Kleperis, J, E-mail: imants.dirba@gmail.com [Institute of Solid State Physics of University of Latvia, 8 Kengaraga Street, Riga, LV-1063 (Latvia)

    2011-06-23

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  2. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy plan...

  3. The formation of a cold-core eddy in the East Australian Current

    Science.gov (United States)

    Macdonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2016-02-01

    Cold-core eddies (CCEs) frequently form in western boundary currents and can affect continental shelf processes. It is not always clear, however, if baroclinic or barotropic instabilities contribute more to their formation. The Regional Ocean Modelling System (ROMS) is used to investigate the ocean state during the formation of a CCE in the East Australian Current (EAC) during October 2009. The observed eddy initially appeared as a small billow (approx. 50 km in length) that perturbed the landward edge of the EAC. The billow grew into a mesoscale CCE (approx. 100 km in diameter), diverting the EAC around it. A ROMS simulation with a realistic wind field reproduced a similar eddy. This eddy formed from negative vorticity waters found on the continental shelf south of the EAC separation point. A sensitivity analysis is performed whereby the impact of 3 different wind forcing scenarios, upwelling, downwelling, and no winds, are investigated. A CCE formed in all wind scenarios despite the wind induced changes in hydrographic conditions in the continental shelf and slope waters. As such, the source of energy for eddy formation did not come from the interactions of wind with the continental shelf waters. Analysis of strain and energy transformation confirms this by showing that the prevailing source of CCE energy was kinetic energy of the offshore EAC. These results clearly link the formation of the CCE to the swift flowing EAC and barotropic instabilities.

  4. Prognostics and Health Management of Wind Turbines: Current Status and Future Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2015-12-14

    Prognostics and health management is not a new concept. It has been used in relatively mature industries, such as aviation and electronics, to help improve operation and maintenance (O&M) practices. In the wind industry, prognostics and health management is relatively new. The level for both wind industry applications and research and development (R&D) has increased in recent years because of its potential for reducing O&M cost of wind power, especially for turbines installed offshore. The majority of wind industry application efforts has been focused on diagnosis based on various sensing and feature extraction techniques. For R&D, activities are being conducted in almost all areas of a typical prognostics and health management framework (i.e., sensing, data collection, feature extraction, diagnosis, prognosis, and maintenance scheduling). This presentation provides an overview of the current status of wind turbine prognostics and health management that focuses on drivetrain condition monitoring through vibration, oil debris, and oil condition analysis techniques. It also discusses turbine component health diagnosis through data mining and modeling based on supervisory control and data acquisition system data. Finally, it provides a brief survey of R&D activities for wind turbine prognostics and health management, along with future opportunities.

  5. Tidal influence on the sea-to-air transfer of CH4 in the coastal ocean

    International Nuclear Information System (INIS)

    Hahm, Doshik; Kim, Guebuem; Lee, Yong-Woo; Nam, Sungh-Yun; Kim, Kyung-Ryul; Kim, Kuh

    2006-01-01

    We obtained real-time monitoring data of water temperature, salinity, wind, current, CH 4 and other oceanographic parameters in a coastal bay in the southern sea of Korea from July 8 to August 15, 2003, using an environmental monitoring buoy. In general, the transfer velocity of environmental gases across the air-sea interface is obtained exclusively from empirical relationships with wind speeds. However, our monitoring data demonstrate that the agitation of the aqueous boundary layer is controlled significantly by tidal turbulence, similar to the control exercised by wind stress in the coastal ocean. The sea-to-air transfer of CH 4 is enhanced significantly during spring tide due to an increase in the gas transfer velocity and vertical CH 4 transport from bottom water to the surface layer. Thus, our unique time-series results imply that the sea-to-air transfer of gases, such as CH 4 , DMS, DMHg, N 2 O, CO 2 and 222 Rn, from highly enriched coastal bottom waters, is controlled not only by episodic wind events but also by regular tidal turbulence in the coastal ocean

  6. Ocean currents modify the coupling between climate change and biogeographical shifts.

    Science.gov (United States)

    García Molinos, J; Burrows, M T; Poloczanska, E S

    2017-05-02

    Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.

  7. Fatigue loading on a 5MW offshore wind turbine due to the combined action of waves and current

    International Nuclear Information System (INIS)

    Peeringa, Johan M

    2014-01-01

    In the design of an offshore wind turbine the natural frequencies of the structure are of importance. In the design of fixed offshore wind turbine support structures it cannot be avoided that the first eigenmode of the structure lies in the frequency band of wave excitation. This study indicates that wave-current interaction should be taken into account for support structure design load calculations. Wave-current interaction changes the shape of the wave spectrum and the energy content in the wave frequency range of 0.2 – 0.35Hz. This is in the range of natural frequencies fixed offshore wind turbine structures are designed for. The waves are affected by the current in two ways. First there is a frequency shift, Doppler effect, for the fixed observer when the wave travels on a current. Second the shape of the wave is modified in case the wave travels from an area without current into an area with current. Due to wave-current interaction the wave height and wave length change. For waves on an opposing current the wave energy content increases, while for wave on a following current the wave energy content slightly reduces. Simulations of normal production cases between cut-in and cut-out wind speed are performed for a 5MW wind turbine in 20m water depth including waves with 1) a following current, 2) an opposing current and 3) no current present. In case of waves having an opposing current, the 1Hz equivalent fore-aft tower bending moment at the seabed is about 10% higher compared to load cases with waves only

  8. Air-Sea Interaction in the Somali Current Region

    Science.gov (United States)

    Jensen, T. G.; Rydbeck, A.

    2017-12-01

    The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.

  9. Current direction, temperature, and salinity data from moored current meter casts in the North Pacific Ocean from 1983-06-01 to 1983-08-01 (NODC Accession 8500147)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and salinity data were collected using moored current meter casts in the North Pacific Ocean from June 1, 1983 to August 1, 1983....

  10. Current meter and temperature profile data from moored current meter casts in the TOGA area - Atlantic Ocean from 10 September 1970 - 27 October 1980 (NODC Accession 8600320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using moored current meter - PCM casts in the TOGA area - Atlantic Ocean from September 10, 1970 to October...

  11. Prognostics and Health Management of Wind Turbines: Current Status and Future Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2016-10-04

    This presentation was given at the 2016 Annual Conference of the Prognostics and Health Management Society. It covers the current status and challenges and opportunities of prognostics and health management of wind turbines.

  12. Patterns and processes in the California Current System

    Science.gov (United States)

    Checkley, David M., Jr.; Barth, John A.

    2009-12-01

    The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (∼50°N) to off Baja California, Mexico (∼15-25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.

  13. Resistive instabilities of current sheets in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolny, M [CNR, Laboratorio per il Plasma nello Spazio, Frascati, Italy; Trussoni, E [CNR, Laboratorio di Cosmo-Geofisica, Turin, Italy

    1979-03-01

    Resistive magnetohydrodynamic instabilities are investigated numerically for non-antisymmetric magnetic field profiles similar to those indicated in spacecraft data on solar wind discontinuities. The eigenvalue problem derived for the growth rate of possible instabilities from dimensionless equations for velocity and magnetic field perturbations is solved starting from the outer regions where the plasma is frozen to the magnetic field. For an antisymmetric magnetic profile, calculations show only tearing modes to be present, with instabilities occurring only at long wavelengths, while for a non-antisymmetric magnetic profile resembling the observed solar wind, calculations indicate the presence of rippling modes driven by resistivity gradients, in addition to the tearing modes. Calculations of the scale lengths of variation of the reversing component based on a scaling law relating the maximum growth rate to the magnetic Reynolds number are found to agree with observed solar current sheet scale lengths.

  14. Inhibition of solar wind impingement on Mercury by planetary induction currents

    International Nuclear Information System (INIS)

    Hood, L.L.; Schubert, G.

    1979-01-01

    The simple compression of a planetary magnetosphere by varying solar wind stagnation pressure is limited by currents induced in the electrically conducting parts of the planet. This inhibition is especially important for Mercury, since the radius of the electrically conducting iron core is a large fraction of the planetary radius, which in turn is a significant fraction of the subsolar magnetospheric radius b. Previous treatments of solar wind standoff distance variations at Mercury using the terrestrial analogue b 6 assumption have neglected this phenomenon. Using the lowest suggested value of the planetary dipole moment, 2.4 x 10 22 G cm 3 , we estimate that a minimum pressure of approx.38P 0 where P 0 is the external stagnation pressure in the steady state, is required to force the standoff distance down to the subsolar surface of Mercury if the pressure change persists for at least 1 day. This value is 4.3 times that which would be predicted if Mercury had no core, and it is larger than the maximum pressure predicted at Mercury's orbit (approx.25P 0 ) on the basis of hourly averaged solar wind statistics at 1 AU. Thus a direct interaction at any time of solar wind plasma with the surface of Mercury due to external compression effects alone is unlikely for solar wind conditions similar to those at present

  15. Current direction and CTD data from moored current meter and CTD casts in the Atlantic Ocean from 1980-08-04 to 1981-08-14 (NODC Accession 8200240)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and CTD data were collected using moored current meter and CTD casts in the Atlantic Ocean from August 4, 1980 to August 14, 1981. Data were...

  16. Global Climatology of the Coastal Low-Level Wind Jets using different Reanalysis

    Science.gov (United States)

    Lima, Daniela C. A.; Soares, Pedro M. M.; Semedo, Alvaro; Cardoso, Rita M.

    2016-04-01

    Coastal Low-Level Jets (henceforth referred to as "coastal jets" or simply as CLLJ) are low-tropospheric mesoscale wind features, with wind speed maxima confined to the marine atmospheric boundary layer (MABL), typically bellow 1km. Coastal jets occur in the eastern flank of the semi-permanent subtropical mid-latitude high pressure systems, along equatorward eastern boundary currents, due to a large-scale synoptic forcing. The large-scale synoptic forcing behind CLLJ occurrences is a high pressure system over the ocean and a thermal low inland. This results in coastal parallel winds that are the consequence of the geostrophic adjustment. CLLJ are found along the California (California-Oregon) and the Canary (Iberia and Northeastern Africa) currents in the Northern Hemisphere, and along the Peru-Humboldt (Peru-Chile), Benguela (Namibia) and Western Australia (West Australia) currents in the Southern Hemisphere. In the Arabian Sea (Oman CLLJ), the interaction between the high pressure over the Indian Ocean in summer (Summer Indian Monsoon) and the Somali (also known as Findlater) Jet forces a coastal jet wind feature off the southeast coast of Oman. Coastal jets play an important role in the regional climates of the mid-latitude western continental regions. The decrease of the sea surface temperatures (SST) along the coast due to upwelling lowers the evaporation over the ocean and the coast parallel winds prevents the advection of marine air inshore. The feedback processes between the CLLJ and upwelling play a crucial role in the regional climate, namely, promoting aridity since the parallel flow prevents the intrusion of moisture inland, and increasing fish stocks through the transport of rich nutrient cold water from the bottom. In this study, the global coastal low-level wind jets are identified and characterized using an ensemble of three reanalysis, the ECMWF Interim Reanalysis (ERA-Interim), the Japanese 55-year Reanalysis (JRA-55) and the NCEP Climate Forecast

  17. Current observations from a looking down vertical V-ADCP: interaction with winds and tide? The case of Giglio Island (Tyrrhenian Sea, Italy

    Directory of Open Access Journals (Sweden)

    Laura Cutroneo

    2017-04-01

    Full Text Available In the context of the environmental monitoring of the Concordia wreck removal project, measurements of currents, winds and sea level height were made along the eastern coast of the Giglio Island, Tyrrhenian Sea (Italy, during 2012–2013. The aim of the study was to investigate the effect of atmospheric forcing and periodic sea-level changes on the coastal currents. Normalised Cross-Correlation Function analysis allowed us to correlate these observations. A marked inter-seasonal variability was found in both current and local wind velocity observations but a significant level of correlation between the data was only found during strong wind events. Current and wind directions appeared to be uncorrelated and current measurements showed a predominant NW–SE direction, presumably linked to the shape and orientation of Giglio Island itself. During strong winds from the SSE, current flow was towards the NNW but it suddenly switched from the NNW to the SE at the end of wind events. The results show that, at Giglio Island, currents are principally dominated by the general cyclonic Tyrrhenian circulation, and, secondly, by strong wind events. The sea level had no effects on the current regime.

  18. Coordination between Fault-Ride-Through Capability and Over-current Protection of DFIG Generators for Wind Farms

    DEFF Research Database (Denmark)

    Bak-Jensen, Birgitte; Kawady, T.A.; Abdel-Rahman, Mansour Hassan

    2010-01-01

    is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected......Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks...... not to work, and then disabling the over-current protection, which should have worked in this situation....

  19. Ocean waves monitor system by inland microseisms

    Science.gov (United States)

    Lin, L. C.; Bouchette, F.; Chang, E. T. Y.

    2016-12-01

    Microseisms are continuous ground oscillations which have been wildly introduced for decades. It is well known that the microseismicity in the frequency band from 0.05 to about 1 Hz partly results from ocean waves, which has been first explained by Longuet-Higgins [1950]. The generation mechanism for such a microseismicity is based on nonlinear wave-wave interactions which drive pressure pulses within the seafloor. The resulting ground pressure fluctuations yield ground oscillations at a double frequency (DF) with respect to that of current ocean waves. In order to understand the characteristics of DF microseisms associated with different wave sources, we aim to analyze and interpret the spectra of DF microseisms by using the simple spectrum method [Rabinovich, 1997] at various inland seismometer along the Taiwan coast. This is the first monitoring system of ocean waves observed by inland seismometers in Taiwan. The method is applied to identify wave sources by estimating the spectral ratios of wave induced microseisms associated with local winds and typhoons to background spectra. Microseism amplitudes above 0.2 Hz show a good correlation with wind-driven waves near the coast. Comparison of microseism band between 0.1 and 0.2 Hz with buoys in the deep sea shows a strong correlation of seismic amplitude with storm generated waves, implying that such energy portion originates in remote regions. Results indicate that microseisms observed at inland sites can be a potential tool for the tracking of typhoon displacements and the monitoring of extreme ocean waves in real time. Real- time Microseism-Ocean Waves Monitoring Website (http://mwave.droppages.com/) Reference Rabinovich, A. B. (1997) "Spectral analysis of tsunami waves: Separation of source and topography effects," J. Geophys. Res., Vol. 102, p. 12,663-12,676. Longuet-Higgins, M.S. (1950) "A theory of origin of microseisms," Philos. Trans. R. Soc., A. 243, pp. 1-35.

  20. Weakest solar wind of the space age and the current 'MINI' solar maximum

    International Nuclear Information System (INIS)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-01-01

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  1. The artificial object detection and current velocity measurement using SAR ocean surface images

    Science.gov (United States)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  2. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun

    2015-01-01

    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  3. Mapping the ocean current strength and persistence in the Agulhas to inform marine energy development

    CSIR Research Space (South Africa)

    Meyer, I

    2017-04-01

    Full Text Available sensing - Acoustic Doppler Current Profiler - Natal pulses U N C O R R EC TE D PR O O F 1 Mapping the Ocean Current Strength 2 and Persistence in the Agulhas to Inform 3 Marine Energy Development 4 I. Meyer, L. Braby, M. Krug and B. Backeberg 5... International Publishing AG 2017 Z. Yang and A. Copping (eds.), Marine Renewable Energy, DOI 10.1007/978-3-319-53536-4_8 1 A u th o r P ro o f U N C O R R EC TE D PR O O F 16 Current. Western boundary ocean currents have become an area of focus (Duerr and 17...

  4. Energy supply technologies. Hydro, ocean, wave and tidal

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.; Larsen, Hans [Risoe National Lab. - DTU (Denmark)

    2007-11-15

    This chapter presents an overview of current hydro, ocean, wave and tidal initiatives. Large hydro remains one of the lowest-cost generating technologies, although environmental constraints, resettlement impacts and the limited availability of sites have restricted further growth in many countries. Large hydro supplied 16 % of global electricity in 2004, down from 19 % a decade ago. Large hydro capacity totalled about 720 GW worldwide in 2004 and has grown historically at slightly more than 2 % annually. China installed nearly 8 GW of large hydro in 2004, taking the country to number one in terms of installed capacity (74 GW). With the completion of the Three Gorges Dam, China will add some 18.2 GW of hydro capacity in 2009. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic cost of hydro includes displacements and submergence. Further hydro can improve peak-capacity management. Ocean currents, some of which runs close to European coasts, carry a lot of kinetic energy. Part of this energy can be captured by sub-marine windmills and converted into electricity. These are more compact than the wind turbines used on land, simply because water is much denser than air. The main European countries with useful current power potential are France and the UK. Ocean tides are driven by the gravitational pull of the moon. With one high tide every 12 hours, a tidal power plant can operate for only four or five hours per cycle, so power from a single plant is intermittent. A suitably-designed tidal plant can, however, operate as a pimped storage system, using electricity during periods of low demand to store energy that can be recovered later. The only large, modern example of a tidal power plant is the 240 MW La Rance plant, built in France in the 1960s, which represents 91 % of the world tidal power capacity. Wave energy can be seen as

  5. Current meter and marine toxic substances data from moored current meter casts and other instruments in the North Pacific Ocean as part of the Deep Ocean Mining and Environmental Study (DOMES) project, 1975-08-29 to 1977-12-01 (NODC Accession 7800741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and marine toxic substances data were collected using moored current meter casts and other instruments in the North Pacific Ocean from August 29, 1975...

  6. CCSM3 simulation of pacific multi-decadal climate variability: the role of subpolar North Pacific Ocean

    International Nuclear Information System (INIS)

    Zhong, Y; Liu, Z

    2008-01-01

    Previous analyses of the CCSM3 standard integration have revealed pronounced multidecadal variability in the Pacific climate system. The purpose of the present work is to investigate the physical mechanism underlying the Pacific multidecadal variability (PMV) using specifically designed sensitivity experiments. A novel mechanism is advanced, characterized by a crucial role of the subpolar North Pacific Ocean. The multidecadal signal in ocean temperature and salinity fields is found to originate from the subsurface of the subpolar North Pacific, as result of the wave adjustment to the preceding basin-scale wind curl forcing. The multidecadal signal then ascends to the surface and is amplified through local temperature/salinity convective feedback. Along the southward Oyashio current, the anomaly travels to the Kuroshio Extension (KOE) region and is further intensified through a similar convective feedback in addition to the wind-evaporation-sea surface temperature feedback. The temperature anomaly in the KOE is able to feed back to the large-scale atmospheric circulation, inducing wind curl anomaly over the subpolar region, which in turn generates anomalous oceanic circulation and causes temperature/salinty variability in the subpolar subsurface. Thereby, a closed loop of PMV is established, in the form of a subpolar delayed oscillator

  7. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  8. UK DTI wind programme area - review and current priorities

    International Nuclear Information System (INIS)

    Craig, J.W.

    1998-01-01

    The Wind Energy programme commenced in 1979 initially to determine the technical and economic feasibility of the technology. Since that time the programme has progressed from research, development and assessment to commercial deployment. It now provides a technology push to complement the market pull created by the Non-Fossil Fuel Obligation (NFFO). Over 280 MW of capacity has now been commissioned. The wind energy programme, is based upon a five year strategy in common with other DTI renewable energy technologies, which were outlined in Energy Paper 62. The programme has four key aims: 1. To encourage the uptake of wind energy. 2. To encourage internationally competitive industries to develop and utilise capabilities for the domestic and export markets. 3. To quantify environmental improvements and disbenefits associated with wind energy. 4. To manage the programme effectively. During the mid 1980s and early 1990s the programme concentrated on technology development and demonstration, which has helped to establish UK expertise in wind energy. Non-technical barriers such as planning have been addressed but are now largely for the industry to resolve. The development of wind turbine technology and related components is aimed at meeting the challenge of both the domestic and world markets. The ability of the DTI programme to meet these challenges is partly dependent on the technical ability and commercially acumen of British companies and partly on the level of support offered by Government. The programme budget has fallen from Pound8.7M/year in 1992/93 to current level of Pound1.4M/year and is yet to fall further. It should be stressed that the decline in budgets followed a review of the Renewables Programme in 1995 which affected all technologies. The wind programme budget was reduced substantially at that time which resulted in a revision of priorities. Continued support for market enablement measures was reduced partly because the industry, supported by the NFFO

  9. Indian Ocean warming modulates Pacific climate change.

    Science.gov (United States)

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-11-13

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east-west Walker circulation) through the Pacific ocean-atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific's could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries.

  10. Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation

    Digital Repository Service at National Institute of Oceanography (India)

    Vialard, J.; Shenoi, S.S.C.; Mc; Shankar, D.; Durand, F.; Fernando, V.; Shetye, S.R.

    Author version: Geophys. Res. Lett.: 36(14); 2009; doi:10.1029/2009GL038450; 5 pp Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation J. Vialard 1 2 , S.S.C Shenoi 2 , J.P. McCreary 3 , D. Shankar 2... involving both equatorial wave dynamics and coastal wave propagation around the perimeter of the northern Indian Ocean [McCreary et al., 1993]. The East India Coastal Current (EICC), for example, is strongly influenced by remote wind forcing from...

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 1977-present, Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Wind data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  12. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    Science.gov (United States)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven

  13. National Offshore Wind Strategy: Facilitating the Development of the Offshore Wind Industry in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maurer, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Feinberg, Luke [National Renewable Energy Lab. (NREL), Golden, CO (United States); Duerr, Alana [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, Lauren [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Phillipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Golladay, Jennifer [Dept. of the Interior (DOI), Washington DC (United States); Stromberg, Jessica [Dept. of the Interior (DOI), Washington DC (United States); Johnson, Isis [Dept. of the Interior (DOI), Washington DC (United States); Boren, Doug [Dept. of the Interior (DOI), Washington DC (United States); Moore, Annette [Dept. of the Interior (DOI), Washington DC (United States)

    2016-09-01

    The U.S. Department of Energy, through its Wind Energy Technologies Office, and U.S. Department of the Interior, through its Bureau of Ocean Energy Management, have jointly produced this updated national strategy to facilitate the responsible development of offshore wind energy in the United States.

  14. Enhanced short-term wind power forecasting and value to grid operations. The wind forecasting improvement project

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Kirsten D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States). Transmission Grid Integration; Benjamin, Stan; Wilczak, James; Marquis, Melinda [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Stern, Andrew [National Oceanic and Atmospheric Administration, Silver Spring, MD (United States); Clark, Charlton; Cline, Joel [U.S. Department of Energy, Washington, DC (United States). Wind and Water Power Program; Finley, Catherine [WindLogics, Grand Rapids, MN (United States); Freedman, Jeffrey [AWS Truepower, Albany, NY (United States)

    2012-07-01

    The current state-of-the-art wind power forecasting in the 0- to 6-h timeframe has levels of uncertainty that are adding increased costs and risks to the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: (1) a one-year field measurement campaign within two regions; (2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and (3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provide an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis. (orig.)

  15. Wind-drive coastal currents in the Gulf of Tehuatepec: HF radar observations and numerical model simulations.

    Science.gov (United States)

    Velazquez, F. A.; Martinez, J. A.; Durazo, R.; Flament, P.

    2007-12-01

    Most of the studies on coastal dynamics in the Gulf of Tehuatepec (GT) have been focused on mixing processes and mesoscale eddies generated due to strong off-shore wind events, know as Nortes or Tehuanos. In order to investigate the spatial and temporal mesoscale variability of surface dynamic in the GT in February 2005, two HF Radar model WERA were deployed along the shore of Oaxaca, Mexico. The spatial coverage of radars reaches up to 120 km off-shore. The radial velocities were processed to obtain total velocity maps every hour in a regular grid of 5.5 km. space resolution. The information of surface velocity and quickscat/NCEP wind obtained during the first sample days show that exist a coastal current toward the west and, during the wind events, is accelerated and steered toward the southwest. In this same period, we find that spatial density of kinetic energy and divergence of velocity field increase during wind events while the vorticity becomes negative. When strong wind events are not present the surface circulation is weakened, mainly for the zonal component of the wind that is mostly positive (westward). These results are in agreement with the upwelling processes observed on the coast and the anticyclonic eddie generation west of the GT during Tehuanos. Images of sea surface temperature and chlorophyll concentration are also used to observe the signature of wind events near the shore. Complementary to field observations, numerical simulation using a 3D primitive equations model (POM) are used to study the wind-driven circulation in the GT. It has been commonly accepted in previous studies that the strong wind events generate mesoscale eddies. We discuss the limited effect of the wind and the interaction of the wind with a coastal current required to generate long life eddies.

  16. Simulating and understanding the gap outflow and oceanic response over the Gulf of Tehuantepec during GOTEX

    Science.gov (United States)

    Hong, Xiaodong; Peng, Melinda; Wang, Shouping; Wang, Qing

    2018-06-01

    Tehuantepecer is a strong mountain gap wind traveling through Chivela Pass into eastern Pacific coast in southern Mexico, most commonly between October and February and brings huge impacts on local and surrounding meteorology and oceanography. Gulf of Tehuantepec EXperiment (GOTEX) was conducted in February 2004 to enhance the understanding of the strong offshore gap wind, ocean cooling, vertical circulations and interactions among them. The gap wind event during GOTEX was simulated using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). The simulations are compared and validated with the observations retrieved from several satellites (GOES 10-12, MODIS/Aqua/Terra, TMI, and QuikSCAT) and Airborne EXpendable BathyThermograph (AXBT). The study shows that the gap wind outflow has a fanlike pattern expending from the coast and with a strong diurnal variability. The surface wind stress and cooling along the axis of the gap wind outflow caused intense upwelling and vertical mixing in the upper ocean; both contributed to the cooling of the ocean mixed layer under the gap wind. The cooling pattern of sea surface temperature (SST) also reflects temperature advection by the nearby ocean eddies to have a crescent shape. Two sensitivity experiments were conducted to understand the relative roles of the wind stress and heat flux on the ocean cooling. The control has more cooling right under the gap flow region than either the wind-stress-only or the heat-flux-only experiment. Overall, the wind stress has a slightly larger effect in bringing down the ocean temperature near the surface and plays a more important role in local ocean circulations beneath the mixed layer. The impact of surface heat flux on the ocean is more limited to the top 30 m within the mixed layer and is symmetric to the gap flow region by cooling the ocean under the gap flow region and reducing the warming on both sides. The effect of surface wind stress is to induce more cooling

  17. Real-Time Ocean Prediction System for the East Coast of India

    Science.gov (United States)

    Warrior, H. V.

    2016-02-01

    The primary objective of the research work reported in this abstract was to develop a Realtime Environmental model for Ocean Dispersion and Impact (as part of an already in-place Decision Support System) for the purpose of radiological safety for the area along Kalpakkam (East Indian) coast. This system involves combining real-time ocean observations with numerical models of ocean processes to provide hindcasts, nowcasts and forecasts of currents, tides and waves. In this work we present the development of an Automated Coupled Atmospheric - Ocean Model (we call it IIT-CAOM) used to forecast the sea surface currents, sea surface temperature (SST) and salinity etc of the Bay of Bengal region under the influence of transient and unsteady atmospheric conditions. This method uses a coupling of Atmosphere and Ocean model. The models used here are the WRF for atmospheric simulations and POM for the ocean counterpart. It has a 3 km X 3 km resolution. This Coupled Model uses GFS (Global Forecast System) Data or FNL (Final Analyses) Data as initial conditions for jump-starting the atmospheric model. The Atmospheric model is run first thus extracting air temperature, wind speed and relative humidity. The heat flux subroutine computes the net heat flux, using above mentioned parameters data. The net heat flux feeds to the ocean model by simply adding net heat flux subroutine to the ocean model code without changing the model original structure. The online forecast of the IIT-CAOM is currently available in the web. The whole system has been automized and runs without any more manual support. The IIT-CAOM simulations have been carried out for Kalpakkam region, which is located on the East coast of India, about 70 km south of Chennai in Tamilnadu State and a three day forecast of sea surface currents, sea surface temperature (SST) and salinity, etc have been obtained.

  18. Biogeochemical modelling of dissolved oxygen in a changing ocean

    Science.gov (United States)

    Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha

    2017-08-01

    Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  19. Current direction and CTD data from moored current meter and CTD casts in the North Pacific Ocean from 1979-02-05 to 1980-12-01 (NODC Accession 8300042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and CTD data were collected using moored current meter and CTD casts in the North Pacific Ocean from February 5, 1979 to December 1, 1980. Data...

  20. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  1. The role of meridional density differences for a wind-driven overturning circulation

    Energy Technology Data Exchange (ETDEWEB)

    Schewe, J.; Levermann, A. [Potsdam Institute for Climate Impact Research, Earth System Analysis, Potsdam (Germany); Potsdam University, Physics Institute, Potsdam (Germany)

    2010-03-15

    Experiments with the coupled climate model CLIMBER-3{alpha}, which contains an oceanic general circulation model, show deep upwelling in the Southern Ocean to be proportional to the surface wind stress in the latitudinal band of Drake Passage. At the same time, the distribution of the Southern Ocean upwelling onto the oceanic basins is controlled by buoyancy distribution; the inflow into each basin being proportional to the respective meridional density difference. We observe approximately the same constant of proportionality for all basins, and demonstrate that it can be directly related to the flow geometry. For increased wind stress in the Southern Ocean, the overturning increases both in the Atlantic and the Indo-Pacific basin. For strongly reduced wind stress, the circulation enters a regime where Atlantic overturning is maintained through Pacific upwelling, in order to satisfy the transports set by the density differences. Previous results on surface buoyancy and wind stress forcing, obtained with different models, are reproduced within one model in order to distill a consistent picture. We propose that both Southern Ocean upwelling and meridional density differences set up a system of conditions that determine the global meridional overturning circulation. (orig.)

  2. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  3. Temperature profile and other data collected using moored buoy in the Pacific Ocean (30-N to 30-S) as part of the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project from 06 November 1977 to 24 March 1978 (NODC Accession 8200053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Air pressure, current, wind and temperature time series data were collected from moored buoys from TOGA Area in Pacific (30 N to 30 S). Buoy data from the equatorial...

  4. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  5. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  6. Bearing failure detection of micro wind turbine via power spectral density analysis for stator current signals spectrum

    Science.gov (United States)

    Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.

    2018-05-01

    The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.

  7. Estimation of Typhoon Wind Hazard Curves for Nuclear Sites

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young-Sun; Kim, Min-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The intensity of such typhoons, which can influence the Korean Peninsula, is on an increasing trend owing to a rapid change of climate of the Northwest Pacific Ocean. Therefore, nuclear facilities should be prepared against future super-typhoons. Currently, the U.S. Nuclear Regulatory Commission requires that a new NPP should be designed to endure the design-basis hurricane wind speeds corresponding to an annual exceedance frequency of 10{sup -7} (return period of 10 million years). A typical technique used to estimate typhoon wind speeds is based on a sampling of the key parameters of typhoon wind models from the distribution functions fitting statistical distributions to the observation data. Thus, the estimated wind speeds for long return periods include an unavoidable uncertainty owing to a limited observation. This study estimates the typhoon wind speeds for nuclear sites using a Monte Carlo simulation, and derives wind hazard curves using a logic-tree framework to reduce the epistemic uncertainty. Typhoon wind speeds were estimated for different return periods through a Monte-Carlo simulation using the typhoon observation data, and the wind hazard curves were derived using a logic-tree framework for three nuclear sites. The hazard curves for the simulated and probable maximum winds were obtained. The mean hazard curves for the simulated and probable maximum winds can be used for the design and risk assessment of an NPP.

  8. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  9. Wind_Speeds_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included wind speeds for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came from...

  10. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    Science.gov (United States)

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  11. Wind driven currents in the Channel of São Sebastião: winter, 1979

    Directory of Open Access Journals (Sweden)

    Belmiro Mendes de Castro Fo

    1990-12-01

    Full Text Available Simultaneous 40 h low-passed wind, current and sea level data in the Channel of São Sebastião (CSS and atmospheric pressure and sea level data in the South Brazil Bight (SBB during winter of 1979 were analysed and compared. Currents in the CSS were predominantly northeastward, associated with frontal southerly winds. Current reversals occurred between meteorological disturbance passages. There were significant correlation between alongchannel components of wind and current, with a time lag of 12-18 h, wind leading; and between alongchannel component of current and sea level, with a time lag of 6-12 h, current leading. Most of the variance in the CSS series is concentrated in two frequency bands: 11-16 d and 3 d. SBB series also show high variance in those two bands. Coherences in those two bands show significant values when calculated between alongchannel components of wind and current, and sea level, in the CSS. Those three last signals were almost in phase in the 11-16 d band; and there was a lead of 16 h (25 h by wind over current (sea level in the 3 d band. There are several indications that in die subtidal band currents in the CSS are not totally locally forced.Dados simultâneos de vento, corrente e nível do mar no Canal de São Sebastião (CSS, e de pressão atmosférica e nível do mar na Plataforma Continental Sudeste (PCS, coletados durante o inverno de 1979, foram analisados e comparados. Todas as séries de tempo foram previamente filtradas utilizando um filtro passa baixa com corte em 40 h. As correntes no CSS foram predominantemente para nordeste, em associação com ventos vindos do sul juntamente com sistemas meteorológicos frontais. Reversões de corrente ocorreram entre as passagens das perturbações atmosféricas. Foram significativas as correlações entre as componentes paralelas ao canal do vento e da corrente, havendo um deslocamento de 12-18 h, com liderança do vento; e também entre a componente paralela ao canal

  12. Condition monitoring of a wind turbine doubly-fed induction generator through current signature analysis

    Science.gov (United States)

    Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio

    2017-11-01

    Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.

  13. The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds

    Science.gov (United States)

    Wernberg, Thomas; Thomsen, Mads S.; Connell, Sean D.; Russell, Bayden D.; Waters, Jonathan M.; Zuccarello, Giuseppe C.; Kraft, Gerald T.; Sanderson, Craig; West, John A.; Gurgel, Carlos F. D.

    2013-01-01

    Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales. PMID:24260352

  14. Hope for water, wind, and warmth

    Energy Technology Data Exchange (ETDEWEB)

    Heuseler, H

    1974-01-01

    Geothermal energy finds its primary applications in the generation of electricity and the heating of homes and office buildings. The largest operational geothermal power plants are those of the Geysers, USA, and Larderello, Italy. The total output of electricity from geothermal sources in 1974 was 10 GW, a small figure compared to the total production of 600 GW. Promising geothermal areas have been discovered along the western edge of the Americas, in eastern Africa, Japan, the Philippines, and in West Germany. Estimates of future development of geothermal energy indicate that 150 GW should be available by 1985, and 500 GW by the year 2000. Small scale wind power plants are in operation in the USA and in Europe. It is estimated that by the turn of the century, the total output from wind sources could be equal to the annual electricity consumption of the USA. Another energy source with significant potential is that associated with ocean tides and currents. A 240 MW tidal power plant is operational at the Rance estuary in France and a second is under construction in the USSR. A system is also under consideration in Brazil. Theoretically, this resource could provide about 5.0 GW/yr. Several systems for the generation of power using ocean thermal gradients are also under study.

  15. Presal36: a high resolution ocean current model for Brazilian pre-salt area: implementation and validation results

    Energy Technology Data Exchange (ETDEWEB)

    Schoellkopf, Jacques P. [Advanced Subsea do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The PRESAL 36 JIP is a project for the development of a powerful Ocean Current Model of 1/36 of a degree resolution, nested in an existing Global Ocean global Model, Mercator PSY4 (1/12-a-degree resolution ), with tide corrections, improved bathymetry accuracy and high frequency atmospheric forcing (every 3 hours). The simulation outputs will be the 3 dimensional structure of the velocity fields (u,v,w) at 50 vertical levels over the water column, including geostrophic, Ekman and tidal currents, together with Temperature, Salinity and sea surface height at a sub-mesoscale spatial resolution. Simulations will run in hindcast, nowcast and forecast modes, with a temporal resolution of 3 hours . This Ocean current model will allow to perform detailed statistical studies on various areas using conditions analysed using hindcast mode, short term operational condition prediction for various surface and sub sea operations using realtime and Forecast modes. The paper presents a publication of significant results of the project, in term of pre-sal zoomed model implementation, and high resolution model validation. It demonstrate the capability to properly describe ocean current phenomenon at beyond mesoscale frontier. This project demonstrate the feasibility of obtaining accurate information for engineering studies and operational conditions, based on a 'zoom technique' starting from global ocean models. (author)

  16. Current meter data from moored current meter casts and other instruments in the Northwest and Southwest Pacific Ocean from 01 October 1992 to 15 March 1993 (NODC Accession 9400088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts and other instruments in the Northwest and Southwest Pacific Ocean from October 1, 1992 to March...

  17. Shore-based Path Planning for Marine Vehicles Using a Model of Ocean Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop path planning methods that incorporate an approximate model of ocean currents in path planning for a range of autonomous marine vehicles such as surface...

  18. Dynamic modelling and robust current control of wind-turbine driven DFIG during external AC voltage dip

    Institute of Scientific and Technical Information of China (English)

    HU Jia-bing; HE Yi-kang

    2006-01-01

    Doubly-FedInduction Generator (DFIG), with vector control applied, is widely used in Variable-Speed ConstantFrequency (VSCF) windenergy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carried out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.

  19. The measurement of winds over the ocean from Skylab with application to measuring and forecasting typhoons and hurricanes

    Science.gov (United States)

    Cardone, V. J.; Pierson, W. J.

    1975-01-01

    On Skylab, a combination microwave radar-radiometer (S193) made measurements in a tropical hurricane (AVA), a tropical storm, and various extratropical wind systems. The winds at each cell scanned by the instrument were determined by objective numerical analysis techniques. The measured radar backscatter is compared to the analyzed winds and shown to provide an accurate method for measuring winds from space. An operational version of the instrument on an orbiting satellite will be able to provide the kind of measurements in tropical cyclones available today only by expensive and dangerous aircraft reconnaissance. Additionally, the specifications of the wind field in the tropical boundary layer should contribute to improved accuracy of tropical cyclone forecasts made with numerical weather predictions models currently being applied to the tropical atmosphere.

  20. A HPC “Cyber Wind Facility” Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, James G. [Univ. of Colorado, Boulder, CO (United States)

    2017-05-09

    The central aims of the DOE-supported “Cyber Wind Facility” project center on the recognition that wind turbines over land and ocean generate power from atmospheric winds that are inherently turbulent and strongly varying, both spatially over the rotor disk and in temporally as the rotating blades pass through atmospheric eddies embedded within the mean wind. The daytime unstable atmospheric boundary layer (ABL) is particularly variable in space time as solar heating generates buoyancy-driven motions that interact with strong mean shear in the ABL “surface layer,” the lowest 200 - 300 m where wind turbines reside in farms. With the “Cyber Wind Facility” (CWF) program we initiate a research and technology direction in which “cyber data” are generated from “computational experiments” within a “facility” akin to a wind tunnel, but with true space-time atmospheric turbulence that drive utility-scale wind turbines at full-scale Reynolds numbers. With DOE support we generated the key “modules” within a computational framework to create a first generation Cyber Wind Facility (CWF) for single wind turbines in the daytime ABL---both over land where the ABL globally unstable and over water with closer-to-neutral atmospheric conditions but with time response strongly affected by wave-induced forcing of the wind turbine platform (here a buoy configuration). The CWF program has significantly improved the accuracy of actuator line models, evaluated with the Cyber Wind Facility in full blade-boundary-layer-resolved mode. The application of the CWF made in this program showed the existence of important ramp-like response events that likely contribute to bearing fatigue failure on the main shaft and that the advanced ALM method developed here captures the primary nonsteady response characteristics. Long-time analysis uncovered distinctive key dynamics that explain primary mechanisms that underlie potentially deleterious load transients. We also showed

  1. Physical, currents, nutrients, and other data from bottle and GEK casts from the FUJI and SHIRASE in the Indian Ocean, North Pacific Ocean, South Pacific Ocean, and Southern Oceans (> 60 degrees South) from 06 December 1965 to 10 January 1994 (NODC Accession 0000039)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, currents, nutrients, and other data were collected from bottle and GEK casts from the FUJI and SHIRASE in the Indian Ocean and other locations from 06...

  2. Oceansat-2 and RAMA buoy winds: A comparison

    Indian Academy of Sciences (India)

    rate Numerical Weather Prediction (NWP) model analysis over the data sparse oceanic region. Sea ... Among the three tropical oceans, Pacific, Atlantic ..... which obviously causes bias. ... side, and will increase mean buoy winds relative.

  3. Eddy Current Loss Modeling for Design of PM Generators for Wind Turbines

    NARCIS (Netherlands)

    Jassal, A.

    2014-01-01

    This thesis deals with analysis, calculation and validation of eddy current loss models for Permanent Magnet (PM) direct drive generators for wind turbines. The modelling approach is a mixed use of analytical and Finite Element (FE) methods. The models are validated experimentally and design

  4. DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2010-12-01

    Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.

  5. Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    Shoudao Huang

    2016-09-01

    Full Text Available The generator stator current gets distorted with unacceptable levels of total harmonic distortion (THD because impedance-source wind power generation systems use three-phase diode rectifiers. The stator current harmonics will cause increasing losses and torque ripple, which reduce the efficiency and stability of the system. This paper proposes a novel half quasi-Z-source inverter (H-qZSI for grid-connected wind power generation systems, which can reduce the generator stator current harmonics a great deal. When H-qZSI operates in the shoot-through zero state, the derivative of the generator stator current is only determined by the instantaneous value of the generator stator voltage, so the nonlinear relationship between generator stator current and stator voltage is improved compared with the traditional impedance-source inverter. Theoretically, it is indicated that the stator current harmonics can be reduced effectively by means of the proposed H-qZSI. Finally, simulation and experimental results are given to verify the theoretical analysis.

  6. The role of remote wind forcing in the subinertial current variability in the central and northern parts of the South Brazil Bight

    Science.gov (United States)

    Dottori, Marcelo; Castro, Belmiro Mendes

    2018-05-01

    Data analysis of continental shelf currents and coastal sea level, together with the application of a semi-analytical model, are used to estimate the importance of remote wind forcing on the subinertial variability of the current in the central and northern areas of the South Brazil Bight. Results from both the data analysis and from the semi-analytical model are robust in showing subinertial variability that propagates along-shelf leaving the coast to the left in accordance with theoretical studies of Continental Shelf Waves (CSW). Both the subinertial variability observed in along-shelf currents and sea level oscillations present different propagation speeds for the narrow northern part of the SBB ( 6-7 m/s) and the wide central SBB region ( 11 m/s), those estimates being in agreement with the modeled CSW propagation speed. On the inner and middle shelf, observed along-shelf subinertial currents show higher correlation coefficients with the winds located southward and earlier in time than with the local wind at the current meter mooring position and at the time of measurement. The inclusion of the remote (located southwestward) wind forcing improves the prediction of the subinertial currents when compared to the currents forced only by the local wind, since the along-shelf-modeled currents present correlation coefficients with observed along-shelf currents up to 20% higher on the inner and middle shelf when the remote wind is included. For most of the outer shelf, on the other hand, this is not observed since usually, the correlation between the currents and the synoptic winds is not statistically significant.

  7. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  8. Exploring China’s offshore wind energy potential in a comprehensive perspectives of technical, environmental and economic constraints

    DEFF Research Database (Denmark)

    Hong, Lixuan; Möller, Bernd

    with projections of current wind turbine technology development to calculate the maximum amount of offshore wind energy that could be generated. Secondly, to calculate practical potential, the migratory path of an endangered bird and existing shipping lanes and submarine cables are excluded from the calculated......Adequate recognition of offshore wind energy potential may have far-reaching influence on the development of future energy strategies. This study aims to investigate available offshore wind energy resource in China’s exclusive economic zones (EEZs) with the aid of a Geographical Information System...... (GIS), which allows the influence of technical, spatial and economic constraints on raw offshore wind potential being reflected in a continuous space. Firstly, based on ocean wind speed data gained from satellite QuikSCAT, raw potential are identified. Those findings are then used along...

  9. Potential climatic impacts and reliability of very large-scale wind farms

    Directory of Open Access Journals (Sweden)

    C. Wang

    2010-02-01

    Full Text Available Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure

  10. Station-keeping control of an unmanned surface vehicle exposed to current and wind disturbances

    OpenAIRE

    Sarda, Edoardo I.; Qu, Huajin; Bertaska, Ivan R.; von Ellenrieder, Karl D.

    2017-01-01

    Field trials of a 4 meter long, 180 kilogram, unmanned surface vehicle (USV) have been conducted to evaluate the performance of station-keeping heading and position controllers in an outdoor marine environment disturbed by wind and current. The USV has a twin hull configuration and a custom-designed propulsion system, which consists of two azimuthing thrusters, one for each hull. Nonlinear proportional derivative, backstepping and sliding mode feedback controllers were tested in winds of abou...

  11. Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Pena Diaz, Alfredo; Badger, Merete

    2014-01-01

    The QuikSCAT mission provided valuable daily information on global ocean wind speed and direction from July 1999 until November 2009 for various applications including numerical weather prediction, ocean and atmospheric modelling. One new and important application for wind vector satellite data i...

  12. Linking the oceans to public health: current efforts and future directions.

    Science.gov (United States)

    Kite-Powell, Hauke L; Fleming, Lora E; Backer, Lorraine C; Faustman, Elaine M; Hoagland, Porter; Tsuchiya, Ami; Younglove, Lisa R; Wilcox, Bruce A; Gast, Rebecca J

    2008-11-07

    We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research.We find that:* There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health."* The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases.* The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.

  13. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1989-present, Wind Stress

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Wind Stress data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  14. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1989-present, Wind Stress

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Wind Stress data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  15. Adaptive Hysteresis Band Current Control (AHB) with PLL of Grid Side Converter-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given......, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system....

  16. Wind and wave dataset for Matara, Sri Lanka

    Science.gov (United States)

    Luo, Yao; Wang, Dongxiao; Priyadarshana Gamage, Tilak; Zhou, Fenghua; Madusanka Widanage, Charith; Liu, Taiwei

    2018-01-01

    We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1) is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017) is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447).

  17. Wind and wave dataset for Matara, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2018-01-01

    Full Text Available We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1 is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017 is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447.

  18. Response of the Benguela upwelling systems to spatial variations in the wind stress

    Science.gov (United States)

    Fennel, Wolfgang; Junker, Tim; Schmidt, Martin; Mohrholz, Volker

    2012-08-01

    In this paper we combine field observations, numerical modeling and an idealized analytical theory to study some features of the Benguela upwelling system. The current system can be established through a combination of observations and realistic simulations with an advanced numerical model. The poleward undercurrent below the equator-ward coastal jet is often found as a countercurrent that reaches the sea surface seaward of the coastal jet. The coastal band of cold upwelled water appears to broaden from south to north and at the northern edge of the wind band an offshore flow is often detected, which deflects the coastal Angola current to the west. These features can be explained and understood with an idealized analytical model forced by a spatially variable wind. A crucial role is played by the wind stress curl, which shapes the oceanic response through Ekman-pumping. The interplay of the curl driven effects and the coastal Ekman upwelling together with the coastal jet, Kelvin waves, and the undercurrent is the key to understand the formation of the three-dimensional circulation patterns in the Benguela system. While the numerical model is based on the full set of primitive equations, realistic topography and forcing, the analytic model uses a linear, flat-bottomed f-plane ocean, where the coast is a straight wall and the forcing is represented by an alongshore band of dome-shaped wind stress. Although the analytical model is highly idealized it is very useful to grasp the basic mechanisms leading to the response patterns.

  19. Ocean Response to Tropical Storms as Observed by a Moored Ocean Observing System in the Deep Gulf of Mexico

    Science.gov (United States)

    Oropeza, F.; Jaramillo, S.; Fan, S.

    2013-05-01

    As part of the support activities for a deepwater development in the Gulf of Mexico, a moored ocean observing system (OOS) was deployed in a water depth of approximately 2500m, 300km south of the Louisiana Coast. From June 2007 to May 2009, the system comprised seven single point Aanderaa Recording Current Meters (RCM), deployed at 450m, 700m, 1,100m, 1,500m, 2,000m, 2,400m and 2,490m below surface, and an RDI 75kHz Longranger Acoustic Doppler Current Profiler (ADCP), deployed between 249 and 373m below surface in upward-looking mode. Since May 2009, the OOS was upgraded to a Wavescan Buoy based moored system including meteorological sensors for: atmospheric pressure, air temperature, wind speed and direction; directional waves sensor; a Doppler Current Sensor (DCS) at 1.5 m depth for surface currents; and two downward-looking ADCP's covering the upper 1,000m of the water column. This OOS has been operating without interruptions from 2007 to the present and has registered data associated with nine tropical storms, including the direct passage of Hurricane Ike, in September of 2008, and loop current events with speeds of up to 4 knots. It has provided one of the most comprehensive set of velocity observations in the Gulf of Mexico, especially, the near surface currents, during pre-storm conditions, response, and ocean relaxation following hurricanes/tropical storms. Based on these observations the upper ocean responses to the energy input from tropical storms are characterized in terms of the associated mixing processes and momentum balances.

  20. Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2015-06-01

    Full Text Available Offshore wind farm cluster effects between neighboring wind farms increase rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes observed from Synthetic Aperture Radar (SAR are sometimes visible and atmospheric and wake models are here shown to convincingly reproduce the observed very long wind farm wakes. The present study mainly focuses on wind farm wake climatology based on Envisat ASAR. The available SAR data archive covering the large offshore wind farms at Horns Rev has been used for geo-located wind farm wake studies. However, the results are difficult to interpret due to mainly three issues: the limited number of samples per wind directional sector, the coastal wind speed gradient, and oceanic bathymetry effects in the SAR retrievals. A new methodology is developed and presented. This method overcomes effectively the first issue and in most cases, but not always, the second. In the new method all wind field maps are rotated such that the wind is always coming from the same relative direction. By applying the new method to the SAR wind maps, mesoscale and microscale model wake aggregated wind-fields results are compared. The SAR-based findings strongly support the model results at Horns Rev 1.

  1. Saturation wind power potential and its implications for wind energy.

    Science.gov (United States)

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  2. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. II. Predicting wind components

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Derek van der [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Curry, Charles L. [Environment Canada University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Monahan, Adam H. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada)

    2012-04-15

    A regression-based downscaling technique was applied to monthly mean surface wind observations from stations throughout western Canada as well as from buoys in the Northeast Pacific Ocean over the period 1979-2006. A predictor set was developed from principal component analysis of the three wind components at 500 hPa and mean sea-level pressure taken from the NCEP Reanalysis II. Building on the results of a companion paper, Curry et al. (Clim Dyn 2011), the downscaling was applied to both wind speed and wind components, in an effort to evaluate the utility of each type of predictand. Cross-validated prediction skill varied strongly with season, with autumn and summer displaying the highest and lowest skill, respectively. In most cases wind components were predicted with better skill than wind speeds. The predictive ability of wind components was found to be strongly related to their orientation. Wind components with the best predictions were often oriented along topographically significant features such as constricted valleys, mountain ranges or ocean channels. This influence of directionality on predictive ability is most prominent during autumn and winter at inland sites with complex topography. Stations in regions with relatively flat terrain (where topographic steering is minimal) exhibit inter-station consistencies including region-wide seasonal shifts in the direction of the best predicted wind component. The conclusion that wind components can be skillfully predicted only over a limited range of directions at most stations limits the scope of statistically downscaled wind speed predictions. It seems likely that such limitations apply to other regions of complex terrain as well. (orig.)

  3. Offshore wind mapping Mediterranean area using SAR

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    2013-01-01

    Satellite observations of the ocean surface, for example from Synthetic Aperture Radars (SAR), provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean Sea, where spatial wind information is only provided by sparse buoys, often with...

  4. Aircraft Derived Low Level Winds and Upwelling Off the Peruvian Cost during March, April, and May 1977.

    Science.gov (United States)

    1979-08-01

    Force Institute of Technology (ATC) ~ vih -Patterson AFB,. OH 45433 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 20...per- manent high located west of Chile drives the consistent southerly winds, while the more variable ocean currents pro- vide the colder subsurface

  5. Fragmented coastal boundary layer induced by gap winds

    Science.gov (United States)

    Caldeira, Rui M. A.; Iglesias, Isabel; Sala, Iria; Vieira, Rui R.; Bastos, Luísa

    2015-04-01

    The oceanic impact of offshore-localized winds in the NW Iberian Peninsula was studied. Satellite and in situ observations showed the formation of plumes protruding offshore from the coast. To study the dynamics of such episodes tee Coupled-Ocean-Atmosphere-Wave- Sediment Transport Modeling System (COAWST) was used to reproduce the coastal conditions of the nortwestern Iberian Peninsula, allowing the concurrent representation of local winds, waves, currents, and rivers runoff. The use of coupled models is of outmost importance in order to accurately study the impact of the local winds on the coastal currents. The NW Iberian Peninsula has prominent capes, promontories and submarine canyons, which produce persistent hydrodynamic features. Thus far, the scientific literature shows that the western Iberian rivers produce a recurrent combined plume often denominated as the Western Iberian Buoyant Plume (WIBP) which increases the stratification of the water column and produces a vertical retention mechanism that keeps the biological material inshore. The WIBP extends northward along the coast (over the inner-shelf), and forms a front with the warmer and more saline surface (offshore) waters. However during episodes of strong offshore winds this coastal boundary layer is broken interrupting the WIBP. Coastal orography allows the formation of down-valley winds that produce coastal jets, promoting the offshore transport of pollutants, larvae and sediments. Acknowledgments: Acknowledgments: Numerical model solutions were calculated at CIIMARs HPC unit, acquired and maintained by FCT pluriannual funds (PesTC/Mar/LA0015/2013), and RAIA (0313-RAIA-1-E) and RAIA.co (0520-RAIACO-1-E) projects. The NICC (POCTI/CTA/49563/2002) project provided databases for this work. Rui Caldeira was supported by funds from the ECORISK project (NORTE-07-0124-FEDER-000054), co-financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference

  6. Rotor current transient analysis of DFIG-based wind turbines during symmetrical voltage faults

    International Nuclear Information System (INIS)

    Ling, Yu; Cai, Xu; Wang, Ningbo

    2013-01-01

    Highlights: • We theoretically analyze the rotor fault current of DFIG based on space vector. • The presented analysis is simple, easy to understand. • The analysis highlights the accuracy of the expression of the rotor fault currents. • The expression can be widely used to analyze the different levels of voltage symmetrical fault. • Simulation results show the accuracy of the expression of the rotor currents. - Abstract: The impact of grid voltage fault on doubly fed induction generators (DFIGs), especially rotor currents, has received much attention. So, in this paper, the rotor currents of based-DFIG wind turbines are considered in a generalized way, which can be widely used to analyze the cases under different levels of voltage symmetrical faults. A direct method based on space vector is proposed to obtain an accurate expression of rotor currents as a function of time for symmetrical voltage faults in the power system. The presented theoretical analysis is simple and easy to understand and especially highlights the accuracy of the expression. Finally, the comparable simulations evaluate this analysis and show that the expression of the rotor currents is sufficient to calculate the maximum fault current, DC and AC components, and especially helps to understand the causes of the problem and as a result, contributes to adapt reasonable approaches to enhance the fault ride through (FRT) capability of DFIG wind turbines during a voltage fault

  7. Offshore Wind Potential in South India from Synthetic Aperture Radar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Bingöl, Ferhat; Badger, Merete

    are from Wide Swath Mode and each cover approximately 400 km by 400 km. The ocean wind speed maps are retrieved and processed at Risø DTU. The results show wind energy density from 200 W/m2 to 500 W/m2 at 10 m height above sea level. QuikSCAT ocean winds are included as background information on the 10......The offshore wind energy potential for pre-feasibility in South India in the area from 77° to 80° Eastern longitude and 7° to 10° Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes......-year mean and a general description of the winds and climate with monsoons in India is presented....

  8. Offshore wind potential in South India from synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Bingoel, F.; Badger, M.; Karagali, I.; Sreevalsan, E.

    2011-10-15

    The offshore wind energy potential for pre-feasibility in South India in the area from 77 deg. to 80 deg. Eastern longitude and 7 deg. to 10 deg. Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes are from Wide Swath Mode and each cover approximately 400 km by 400 km. The ocean wind speed maps are retrieved and processed at Risoe DTU. The results show wind energy density from 200 W/m2 to 500 W/m2 at 10 m height above sea level. QuikSCAT ocean winds are included as background information on the 10-year mean and a general description of the winds and climate with monsoons in India is presented. (Author)

  9. Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean

    Science.gov (United States)

    Makowski, Jessica K.; Chambers, Don P.; Bonin, Jennifer A.

    2015-06-01

    Previous studies have suggested that ocean bottom pressure (OBP) from the Gravity Recovery and Climate Experiment (GRACE) can be used to measure the depth-averaged, or barotropic, transport variability of the Antarctic Circumpolar Current (ACC). Here, we use GRACE OBP observations to calculate transport variability in a region of the southern Indian Ocean encompassing the major fronts of the ACC. We use a statistical analysis of a simulated GRACE-like data set to determine the uncertainty of the estimated transport for the 2003.0-2013.0 time period. We find that when the transport is averaged over 60° of longitude, the uncertainty (one standard error) is close to 1 Sv (1 Sv = 106 m3 s-1) for low-pass filtered transport, which is significantly smaller than the signal and lower than previous studies have found. The interannual variability is correlated with the Southern Annual mode (SAM) (0.61), but more highly correlated with circumpolar zonally averaged winds between 45°S and 65°S (0.88). GRACE transport reflects significant changes in transport between 2007 and 2009 that is observed in the zonal wind variations but not in the SAM index. We also find a statistically significant trend in transport (-1.0 ± 0.4 Sv yr-1, 90% confidence) that is correlated with a local deceleration in zonal winds related to an asymmetry in the SAM on multidecadal periods.

  10. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    DEFF Research Database (Denmark)

    Chang, Rui; Zhu, Rong; Badger, Merete

    2014-01-01

    In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR) images from...... ENVISAT advanced SAR (ASAR) for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard...... density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from...

  11. Current meter and temperature profile data from current meter and buoy casts in the TOGA area of Pacific Ocean from 29 March 1991 to 24 December 1993 (NODC Accession 9900057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using current meter and buoy casts in the TOGA area of Pacific Ocean from 29 March 1991 to 24 December...

  12. Surface currents in the equatorial Indian Ocean during spring and fall - An altimetry based analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Somayajulu, Y.K.

    This communication presents the results of a study aimed at investigating the nature and variability of surface currents in the equatorial Indian Ocean between 5 degrees N and 5 degrees S during spring and fall seasons. Geostrophic surface currents...

  13. Annual cycle of the upper-ocean circulation and properties in the ...

    African Journals Online (AJOL)

    ocean dynamics and its influence on ocean properties in the tropical western Indian Ocean. Surface winds and heat fluxes from the National Centers for Environmental Prediction (NCEP) reanalysis forced the model (Model_NCEP) with initial and ...

  14. Predictability of surface currents and fronts off the Mississippi Delta

    International Nuclear Information System (INIS)

    Walker, N.D.; Rouse, L.J.; Wiseman, W.J.

    2001-01-01

    The dynamic coastal region of the lower Mississippi River was examined under varying conditions of wind, river discharge and circulation patterns of the Gulf of Mexico. Nearly 7,000 deep-sea merchant vessels enter the port complex each year and the area boasts the highest concentration of offshore drilling rigs, rendering the Mississippi delta and adjacent coastal areas vulnerable to risk from oil spills. Satellite imagery has been useful in tracking movements of the Mississippi river plume as recognizable turbidity and temperature fronts are formed where river waters encounter ambient shelf waters. Oil spill modelers often base their predictions of oil movement on the surface wind field and surface currents, but past studies have indicated that this can be overly simplistic in regions affected by river flow because river fronts have significant control over the movement of oil in opposition to prevailing winds. Frontal zones, such as those found where river waters meet oceanic waters, are characterized by strong convergence of surface flow. These frontal zones can provide large and efficient traps or natural booms for spilled oil. In an effort to facilitate cleanup operations, this study made use of the National Ocean and Atmospheric Administration (NOAA) AVHRR satellite imagery of temperature and reflectance to study front locations and their variability in space and time. The main objectives were to quantify surface temperature structure and locations of fronts throughout the year using satellite image data, to map the structure of the Mississippi sediment plume and to assess the forcing factors responsible for its variability over space and time. The final objective was to use in-situ measurements of surface currents together with satellite image data to better understand surface flow in this region of strong and variable currents. It was concluded that the main factors controlling circulation in the Mississippi River outflow region are river discharge and

  15. Current meter and temperature profile data from current meter and buoy casts in the TOGA area of Pacific Ocean from 27 April 1993 to 09 June 1994 (NODC Accession 9700042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using current meter and buoy casts in the TOGA area of Pacific Ocean from 27 April 1993 to 09 June 1994....

  16. Spatial-Temporal Variations of Turbidity and Ocean Current Velocity of the Ariake Sea Area, Kyushu, Japan Through Regression Analysis with Remote Sensing Satellite Data

    OpenAIRE

    Yuichi Sarusawa; Kohei Arai

    2013-01-01

    Regression analysis based method for turbidity and ocean current velocity estimation with remote sensing satellite data is proposed. Through regressive analysis with MODIS data and measured data of turbidity and ocean current velocity, regressive equation which allows estimation of turbidity and ocean current velocity is obtained. With the regressive equation as well as long term MODIS data, turbidity and ocean current velocity trends in Ariake Sea area are clarified. It is also confirmed tha...

  17. A new regime of the Agulhas Current Retroflection: Turbulent Choking of Indian-Atlantic leakag

    NARCIS (Netherlands)

    le Bars, D.L.B.; de Ruijter, W.P.M.; Dijkstra, H.A.

    2012-01-01

    An analysis of the Indian Ocean circulation and the Agulhas Current retroflection is carried out using a primitive equation model with simplified coastline and flat bottom. Four configurations with 0.258 and 0.18 horizontal resolution and in barotropic and baroclinic cases are considered. The wind

  18. Turbulent wind waves on a water current

    Directory of Open Access Journals (Sweden)

    M. V. Zavolgensky

    2008-05-01

    Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.

  19. Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts

    Science.gov (United States)

    McGee, David; Moreno-Chamarro, Eduardo; Green, Brian; Marshall, John; Galbraith, Eric; Bradtmiller, Louisa

    2018-01-01

    The atmospheric Hadley cells, which meet at the Intertropical Convergence Zone (ITCZ), play critical roles in transporting heat, driving ocean circulation and supplying precipitation to the most heavily populated regions of the globe. Paleo-reconstructions can provide concrete evidence of how these major features of the atmospheric circulation can change in response to climate perturbations. While most such reconstructions have focused on ITCZ-related rainfall, here we show that trade wind proxies can document dynamical aspects of meridional ITCZ shifts. Theoretical expectations based on angular momentum constraints and results from freshwater hosing simulations with two different climate models predict that ITCZ shifts due to anomalous cooling of one hemisphere would be accompanied by a strengthening of the Hadley cell and trade winds in the colder hemisphere, with an opposite response in the warmer hemisphere. This expectation of hemispherically asymmetric trade wind changes is confirmed by proxy data of coastal upwelling and windblown dust from the Atlantic basin during Heinrich stadials, showing trade wind strengthening in the Northern Hemisphere and weakening in the Southern Hemisphere subtropics in concert with southward ITCZ shifts. Data from other basins show broadly similar patterns, though improved constraints on past trade wind changes are needed outside the Atlantic Basin. The asymmetric trade wind changes identified here suggest that ITCZ shifts are also marked by intensification of the ocean's wind-driven subtropical cells in the cooler hemisphere and a weakening in the warmer hemisphere, which induces cross-equatorial oceanic heat transport into the colder hemisphere. This response would be expected to prevent extreme meridional ITCZ shifts in response to asymmetric heating or cooling. Understanding trade wind changes and their coupling to cross-equatorial ocean cells is key to better constraining ITCZ shifts and ocean and atmosphere dynamical

  20. Geometrical effects on western intensification of wind-driven ocean currents: The rotated-channel Stommel model, coastal orientation, and curvature

    Science.gov (United States)

    Boyd, John P.; Sanjaya, Edwin

    2014-03-01

    We revisit early models of steady western boundary currents [Gulf Stream, Kuroshio, etc.] to explore the role of irregular coastlines on jets, both to advance the research frontier and to illuminate for education. In the framework of a steady-state, quasigeostrophic model with viscosity, bottom friction and nonlinearity, we prove that rotating a straight coastline, initially parallel to the meridians, significantly thickens the western boundary layer. We analyze an infinitely long, straight channel with arbitrary orientation and bottom friction using an exact solution and singular perturbation theory, and show that the model, though simpler than Stommel's, nevertheless captures both the western boundary jet (“Gulf Stream”) and the “orientation effect”. In the rest of the article, we restrict attention to the Stommel flow (that is, linear and inviscid except for bottom friction) and apply matched asymptotic expansions, radial basis function, Fourier-Chebyshev and Chebyshev-Chebyshev pseudospectral methods to explore the effects of coastal geometry in a variety of non-rectangular domains bounded by a circle, parabolas and squircles. Although our oceans are unabashedly idealized, the narrow spikes, broad jets and stationary points vividly illustrate the power and complexity of coastal control of western boundary layers.

  1. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  2. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System.

    Science.gov (United States)

    Xiu, Peng; Chai, Fei; Curchitser, Enrique N; Castruccio, Frederic S

    2018-02-12

    Coastal upwelling ecosystems are among the most productive ecosystems in the world, meaning that their response to climate change is of critical importance. Our understanding of climate change impacts on marine ecosystems is largely limited to the open ocean, mainly because coastal upwelling is poorly reproduced by current earth system models. Here, a high-resolution model is used to examine the response of nutrients and plankton dynamics to future climate change in the California Current System (CCS). The results show increased upwelling intensity associated with stronger alongshore winds in the coastal region, and enhanced upper-ocean stratification in both the CCS and open ocean. Warming of the open ocean forces isotherms downwards, where they make contact with water masses with higher nutrient concentrations, thereby enhancing the nutrient flux to the deep source waters of the CCS. Increased winds and eddy activity further facilitate upward nutrient transport to the euphotic zone. However, the plankton community exhibits a complex and nonlinear response to increased nutrient input, as the food web dynamics tend to interact differently. This analysis highlights the difficulty in understanding how the marine ecosystem responds to a future warming climate, given to range of relevant processes operating at different scales.

  3. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  4. Solid Waste Transportation through Ocean Currents: Marine Debris Sightings and their Waste Quantification at Port Dickson Beaches, Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Chong Jing Yi

    2016-07-01

    Full Text Available Four beaches at Port Dickson, Peninsular Malaysia, namely Saujana Beach, Nelayan Beach, Bagan Pinang Beach and Cermin beach have been sampled for marine debris from 7th June 2014 until 26th July 2014, on every Saturday. These beaches face the Strait of Malacca with a coastline stretching 18 km each. Our observations revealed a total debris items of 13193 in those beaches. The top three items of highest frequency were cigarette butts, foamed fragments and food wrappers. Plastic debris scaled high upto 41% of the total debris. Compared to the ocean conservancy�s 2013 report of marine debris in Malaysian beaches, which was 27,005 items with in 6.44 km, the current count is slightly low. However, Malaysia was ranked 14th place among the top 20 countries in International Marine Debris Watch program. Nelayan Beach is the dirtiest beach in Port Dickson. Around 50% of the total plastic items collected are found on those beaches. The marine debris items indicated that they arrived there by land-based and ocean-based activities. High energy conditions such as wind and waves in the beaches correlated well with less debris deposition on the beaches. With debris equivalent of 4193 items/km, Malaysia harvests less solid wastes compared to Croatia, USA, Singapore and Turkey. However, a nation wide survey is needed to assess the seriousness of marine debris problem in Malaysia.

  5. AMS Weather Studies and AMS Ocean Studies: Dynamic, College-Level Geoscience Courses Emphasizing Current Earth System Data

    Science.gov (United States)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P.; Ruwe, E. E.

    2008-12-01

    AMS Weather Studies and AMS Ocean Studies are introductory college-level courses developed by the American Meteorological Society, with NSF and NOAA support, for local offering at undergraduate institutions nationwide. The courses place students in a dynamic and highly motivational educational environment where they investigate the atmosphere and world ocean using real-world and real-time environmental data. Over 360 colleges throughout the United States have offered these courses in course environments ranging from traditional lecture/laboratory to completely online. AMS Diversity Projects aim to increase undergraduate student access to the geosciences through implementation of the courses at minority-serving institutions and training programs for MSI faculty. The AMS Weather Studies and AMS Ocean Studies course packages consist of a hard-cover, 15-chapter textbook, Investigations Manual with 30 lab-style activities, and course website containing weekly current weather and ocean investigations. Course instructors receive access to a faculty website and CD containing answer keys and course management system-compatible files, which allow full integration to a college's e-learning environment. The unique aspect of the courses is the focus on current Earth system data through weekly Current Weather Studies and Current Ocean Studies investigations written in real time and posted to the course website, as well as weekly news files and a daily weather summary for AMS Weather Studies. Students therefore study meteorology or oceanography as it happens, which creates a dynamic learning environment where student relate their experiences and observations to the course, and actively discuss the science with their instructor and classmates. With NSF support, AMS has held expenses-paid course implementation workshops for minority-serving institution faculty planning to offer AMS Weather Studies or AMS Ocean Studies. From May 2002-2007, AMS conducted week-long weather workshops

  6. Reminiscences on the study of wind waves

    Science.gov (United States)

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  7. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  8. Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow

    Science.gov (United States)

    Wajsowicz, R. C.

    The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ×106 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts

  9. A simple predictive model for the structure of the oceanic pycnocline

    Science.gov (United States)

    Gnanadesikan

    1999-03-26

    A simple theory for the large-scale oceanic circulation is developed, relating pycnocline depth, Northern Hemisphere sinking, and low-latitude upwelling to pycnocline diffusivity and Southern Ocean winds and eddies. The results show that Southern Ocean processes help maintain the global ocean structure and that pycnocline diffusion controls low-latitude upwelling.

  10. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, 1989-present, Wind Stress

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Wind Stress data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  11. Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models

    Science.gov (United States)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.

  12. Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean

    Science.gov (United States)

    Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.

    2011-01-01

    Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.

  13. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  14. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  15. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  16. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  17. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  18. Instability of Wind Turbine Converters during Current Injection to Low Voltage Grid Faults and PLL Frequency Based Stability Solution

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth

    2014-01-01

    In recent grid codes for wind power integration, wind turbines are required to stay connected during grid faults even when the grid voltage drops down to zero; and also to inject reactive current in proportion to the voltage drop. However, a physical fact, instability of grid-connected converters...... during current injection to very low (close to zero) voltage faults, has been omitted, i.e., failed to be noticed in the previous wind power studies and grid code revisions. In this paper, the instability of grid side converters of wind turbines defined as loss of synchronism (LOS), where the wind...... turbines lose synchronism with the grid fundamental frequency (e.g., 50 Hz) during very deep voltage sags, is explored with its theory, analyzed and a novel stability solution based on PLL frequency is proposed; and both are verified with power system simulations and by experiments on a grid...

  19. Characteristics of transformer-type superconducting fault current limiter depending on reclosing in changing the number of turns of secondary winding

    International Nuclear Information System (INIS)

    Choi, S.G.; Choi, H.S.; Cho, Y.S.; Park, H.M.; Jung, B.I.; Ha, K.H.

    2011-01-01

    The amount of consumed power is increasing with industrial development and rapidly increasing population. In accidents due to increased power consumption, the fault current sharply increases. Superconducting fault current limiters (SFCL) are studied widely to limit such fault currents. In this study, the characteristics of a transformer-type SFCL are analyzed depending on reclosing in changing the number of secondary winding turns. For experiment conditions, the turn ratio of the primary and secondary windings of a transformer-type SFCL was set to 4:2 and 4:4. The voltage was incremented by 80 V from 120 V for the experiment. The circuit breaker was operated with two open times of CO-0.17 s -CO-0.17 s -CO seconds (C; closed, O; open), respectively. Comparing the result for the experiment conditions with the case of the turn ratios of the primary and secondary windings at 4:4 and 4:2, the fault current was limited effectively in 4:2 than in 4:4 for the fault current limit ratios. With respect to the result of recovery characteristics, it was examined that the superconducting unit recovered faster when the turn ratio of the primary and secondary windings was 4:2 than 4:4. Comparing the amount of consumed power related to the recovery characteristics of the superconducting element, it was examined that the recovery time was faster in less power consumption for the superconducting unit. As such, since a transformer-type SFCL depending on reclosing in changing the number of turns of the secondary winding controls the turn ratio of the secondary winding to control fault current limiting and recovery characteristics, it can normally operate.

  20. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    Science.gov (United States)

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed. © 2014 John Wiley & Sons Ltd.

  1. Current meter and other data from current meter casts from NOAA Ship RESEARCHER in the North and South Pacific Ocean from 1984-06-28 to 1984-07-01 (NODC Accession 8500226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and other data were collected using current meter casts from NOAA Ship RESEARCHER in the North/South Pacific Ocean from June 28, 1984 to July 1, 1984....

  2. Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb

    Science.gov (United States)

    Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve

    2011-01-01

    This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.

  3. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  4. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  5. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  6. Estimation of the drag coefficient from the upper ocean response to a hurricane: A variational data assimilation approach

    KAUST Repository

    Zedler, Sarah

    2013-08-01

    We seek to determine whether a small number of measurements of upper ocean temperature and currents can be used to make estimates of the drag coefficient that have a smaller range of uncertainty than previously found. We adopt a numerical approach in an inverse problem setup using an ocean model and its adjoint, to assimilate data and to adjust the drag coefficient parameterization (here the free parameter) with wind speed that corresponds to the minimum of a model minus data misfit or cost function. Pseudo data are generated from a reference forward simulation, and are perturbed with different levels of Gaussian distributed noise. It is found that it is necessary to assimilate both surface current speed and temperature data to obtain improvement over previous estimates of the drag coefficient. When data is assimilated without any smoothing or constraints on the solution, the drag coefficient is overestimated at low wind speeds and there are unrealistic, high frequency oscillations in the adjusted drag coefficient curve. When second derivatives of the drag coefficient curve are penalized and the solution is constrained to experimental values at low wind speeds, the adjusted drag coefficient is within 10% of its target value. This result is robust to the addition of realistic random noise meant to represent turbulence due to the presence of mesoscale background features in the assimilated data, or to the wind speed time series to model its unsteady and gusty character. When an eddy is added to the background flow field in both the initial condition and the assimilated data time series, the target and adjusted drag coefficient are within 10% of one another, regardless of whether random noise is added to the assimilated data. However, when the eddy is present in the assimilated data but is not in the initial conditions, the drag coefficient is overestimated by as much as 30%. This carries the implication that when real data is assimilated, care needs to be taken in

  7. COOP Wind and Radiation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind and radiation data from stations in the National Weather Service Cooperative Observers Network. Some precipitation and pressure forms are mistakenly placed in...

  8. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...... to wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  9. Design and implementation of a 3D ocean virtual reality and visualization engine

    Science.gov (United States)

    Chen, Ge; Li, Bo; Tian, Fenglin; Ji, Pengbo; Li, Wenqing

    2012-12-01

    In this study, a 3D virtual reality and visualization engine for rendering the ocean, named VV-Ocean, is designed for marine applications. The design goals of VV-Ocean aim at high fidelity simulation of ocean environment, visualization of massive and multidimensional marine data, and imitation of marine lives. VV-Ocean is composed of five modules, i.e. memory management module, resources management module, scene management module, rendering process management module and interaction management module. There are three core functions in VV-Ocean: reconstructing vivid virtual ocean scenes, visualizing real data dynamically in real time, imitating and simulating marine lives intuitively. Based on VV-Ocean, we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface. Environment factors such as ocean current and wind field have been considered in this simulation. On this platform oil spilling process can be abstracted as movements of abundant oil particles. The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering. VV-Ocean can be widely used in ocean applications such as demonstrating marine operations, facilitating maritime communications, developing ocean games, reducing marine hazards, forecasting the weather over oceans, serving marine tourism, and so on. Finally, further technological improvements of VV-Ocean are discussed.

  10. The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea

    Science.gov (United States)

    Semedo, Alvaro

    2015-04-01

    Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and

  11. Relationship of oceanic whitecap coverage to wind speed and wind history

    NARCIS (Netherlands)

    Callaghan, A.; Leeuw, G. de; Cohen, L.; O'Dowd, C.D.

    2008-01-01

    Sea surface images obtained during the 2006 Marine Aerosol Production (MAP) campaign in the North East Atlantic were analysed for values of percentage whitecap coverage (W). Values of W are presented for wind speeds up to circa 23 m s-1. The W data were divided into two overlapping groups and a

  12. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    Science.gov (United States)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  13. Deterministic and Stochastic Study of Wind Farm Harmonic Currents

    DEFF Research Database (Denmark)

    Sainz, Luis; Mesas, Juan Jose; Teodorescu, Remus

    2010-01-01

    Wind farm harmonic emissions are a well-known power quality problem, but little data based on actual wind farm measurements are available in literature. In this paper, harmonic emissions of an 18 MW wind farm are investigated using extensive measurements, and the deterministic and stochastic char...

  14. Study on the influence of attitude angle on lidar wind measurement results

    Science.gov (United States)

    Han, Xiaochen; Dou, Peilin; Xue, Yangyang

    2017-11-01

    When carrying on wind profile measurement of offshore wind farm by shipborne Doppler lidar technique, the ship platform often produces motion response under the action of ocean environment load. In order to measure the performance of shipborne lidar, this paper takes two lidar wind measurement results as the research object, simulating the attitude of the ship in the ocean through the three degree of freedom platform, carrying on the synchronous observation test of the wind profile, giving an example of comparing the wind measurement data of two lidars, and carrying out the linear regression statistical analysis for all the experimental correlation data. The results show that the attitude angle will affect the precision of the lidar, The influence of attitude angle on the accuracy of lidar is uncertain. It is of great significance to the application of shipborne Doppler lidar wind measurement technology in the application of wind resources assessment in offshore wind power projects.

  15. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    Science.gov (United States)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  16. The 2015-16 El Niño - Birth, Evolution and Teleconnections from Scatterometer Observations of the Ocean Surface Winds

    Science.gov (United States)

    Hristova-Veleva, S. M.; Lee, T.; Stiles, B. W.; Rodriguez, E.; Turk, J.; Haddad, Z. S.

    2016-12-01

    The 2015-16 El Niño is one of the strongest events observed during the modern instrumentation period, rivaling the two big ones observed by satellites during 1982-83 and 1997-98. Yet, the precipitation anomalies differ from the expectations that were based on these two events. While El Niño events have a significant impact on the entire Earth System, they are most easily visible in measurements of sea surface temperature (SST), sea surface height (SSH) and ocean winds near the surface. In fact, the signature eastward-blowing anomalous surface winds in the Western and Central Tropical Pacific are the pre-cursor and the main driver of the El Nino events. Here we use observations from NASA's RapidScat, EUMETSAT's ASCAT and also from collocated ECMWF analysis to monitor the evolution of the anomalous winds associated with the 2015-16 El Niño. To detect the El Nino signal, we first compute monthly means of the wind speed, wind components and wind convergence. We then perform a low-pass filter to extract the components of the larger-scale circulation and compute the 2015-2016 anomalies with respect to the corresponding months of 2014-2015. We find fast-evolving wind anomalies and relate them to the evolution of the SST field as depicted in the observations-based OSTIA product. Furthermore, we investigate the relationship between the GPM-observed precipitation and the surface wind convergence observed by the scatterometers. El Niño is known to have basin to global scale teleconnections. In addition to the characterization of the changes in the tropical Pacific, we will also describe the associated changes in the North and South Pacific. In particular, a strong anticyclonic anomaly is observed in the north-eastern Pacific. This anomalous circulation is likely associated with the subsidence (divergent) region of a stronger-than-normal Hadley cell, leading to modification of the midlatitude storm tracks and the related precipitation anomalies. Furthermore, these

  17. Demonstration of an efficient interpolation technique of inverse time and distance for Oceansat-2 wind measurements at 6-hourly intervals

    Directory of Open Access Journals (Sweden)

    J Swain

    2017-12-01

    Full Text Available Indian Space Research Organization had launched Oceansat-2 on 23 September 2009, and the scatterometer onboard was a space-borne sensor capable of providing ocean surface winds (both speed and direction over the globe for a mission life of 5 years. The observations of ocean surface winds from such a space-borne sensor are the potential source of data covering the global oceans and useful for driving the state-of-the-art numerical models for simulating ocean state if assimilated/blended with weather prediction model products. In this study, an efficient interpolation technique of inverse distance and time is demonstrated using the Oceansat-2 wind measurements alone for a selected month of June 2010 to generate gridded outputs. As the data are available only along the satellite tracks and there are obvious data gaps due to various other reasons, Oceansat-2 winds were subjected to spatio-temporal interpolation, and 6-hour global wind fields for the global oceans were generated over 1 × 1 degree grid resolution. Such interpolated wind fields can be used to drive the state-of-the-art numerical models to predict/hindcast ocean-state so as to experiment and test the utility/performance of satellite measurements alone in the absence of blended fields. The technique can be tested for other satellites, which provide wind speed as well as direction data. However, the accuracy of input winds is obviously expected to have a perceptible influence on the predicted ocean-state parameters. Here, some attempts are also made to compare the interpolated Oceansat-2 winds with available buoy measurements and it was found that they are reasonably in good agreement with a correlation coefficient of R  > 0.8 and mean deviation 1.04 m/s and 25° for wind speed and direction, respectively.

  18. Wind Speed Influences on Marine Aerosol Optical Depth

    Directory of Open Access Journals (Sweden)

    Colin O'Dowd

    2010-01-01

    Full Text Available The Mulcahy (Mulcahy et al., 2008 power-law parameterization, derived at the coastal Atlantic station Mace Head, between clean marine aerosol optical depth (AOD and wind speed is compared to open ocean MODIS-derived AOD versus wind speed. The reported AOD versus wind speed (U was a function of ∼U2. The open ocean MODIS-derived AOD at 550 nm and 860 nm wavelengths, while in good agreement with the general magnitude of the Mulcahy parameterization, follows a power-law with the exponent ranging from 0.72 to 2.47 for a wind speed range of 2–18 m s−1. For the four cases examined, some MODIS cases underestimated AOD while other cases overestimated AOD relative to the Mulcahy scheme. Overall, the results from MODIS support the general power-law relationship of Mulcahy, although some linear cases were also encountered in the MODIS dataset. Deviations also arise between MODIS and Mulcahy at higher wind speeds (>15 m s−1, where MODIS-derived AOD returns lower values as compared to Mulcahy. The results also support the suggestion than wind generated sea spray, under moderately high winds, can rival anthropogenic pollution plumes advecting out into marine environments with wind driven AOD contributing to AOD values approaching 0.3.

  19. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias

    Science.gov (United States)

    Kajtar, Jules B.; Santoso, Agus; McGregor, Shayne; England, Matthew H.; Baillie, Zak

    2018-02-01

    The strengthening of the Pacific trade winds in recent decades has been unmatched in the observational record stretching back to the early twentieth century. This wind strengthening has been connected with numerous climate-related phenomena, including accelerated sea-level rise in the western Pacific, alterations to Indo-Pacific ocean currents, increased ocean heat uptake, and a slow-down in the rate of global-mean surface warming. Here we show that models in the Coupled Model Intercomparison Project phase 5 underestimate the observed range of decadal trends in the Pacific trade winds, despite capturing the range in decadal sea surface temperature (SST) variability. Analysis of observational data suggests that tropical Atlantic SST contributes considerably to the Pacific trade wind trends, whereas the Atlantic feedback in coupled models is muted. Atmosphere-only simulations forced by observed SST are capable of recovering the time-variation and the magnitude of the trade wind trends. Hence, we explore whether it is the biases in the mean or in the anomalous SST patterns that are responsible for the under-representation in fully coupled models. Over interannual time-scales, we find that model biases in the patterns of Atlantic SST anomalies are the strongest source of error in the precipitation and atmospheric circulation response. In contrast, on decadal time-scales, the magnitude of the model biases in Atlantic mean SST are directly linked with the trade wind variability response.

  20. Solar wind and seasonal influence on ionospheric currents from Swarm and CHAMP measurements

    DEFF Research Database (Denmark)

    Laundal, K. M.; Finlay, C. C.; Olsen, N.

    2018-01-01

    the ionosphere with the magnetosphere. The model provides ionospheric current values at any location as continuous functions of solar wind speed, interplanetary magnetic field (IMF), dipole tilt angle, and the F10.7 index of solar flux. Geometric distortions due to variations in the Earth's main magnetic field...