WorldWideScience

Sample records for windows calorimeter control

  1. Windows Calorimeter Control (WinCal) system configuration control board (SCCB) operating procedure

    International Nuclear Information System (INIS)

    Westsik, G.A.

    1997-01-01

    This document describes the operating procedure for the System Configuration Control Board (SCCB) performed in support of the Windows Calorimeter Control (WinCal) system. This board will consist of representatives from Babcock and Wilcox Hanford Company Babcock and Wilcox Protec, Inc.; and Lockheed Martin Services, Inc. In accordance with agreements for the joint use of the Babcock and Wilcox Hanford Company calorimeters located in the Hanford Site Plutonium Finishing Plant (PFP) Nondestructive Assay Laboratory, concurrence regarding changes to the WinCal system will be obtained from the International Atomic Energy Agency (IAEA). Further, changes to the WinCal software will be communicated to Los Alamos National Laboratory

  2. Windows Calorimeter Control (WinCal) program computer software design description

    International Nuclear Information System (INIS)

    Pertzborn, N.F.

    1997-01-01

    The Windows Calorimeter Control (WinCal) Program System Design Description contains a discussion of the design details for the WinCal product. Information in this document will assist a developer in maintaining the WinCal system. The content of this document follows the guidance in WHC-CM-3-10, Software Engineering Standards, Standard for Software User Documentation

  3. Windows Calorimeter Control (WinCal) program computer software test plan

    International Nuclear Information System (INIS)

    Pertzborn, N.F.

    1997-01-01

    This document provides the information and guidelines necessary to conduct all the required testing of the Windows Calorimeter Control (WinCal) system. The strategy and essential components for testing the WinCal System Project are described in this test plan. The purpose of this test plan is to provide the customer and performing organizations with specific procedures for testing the specified system's functions

  4. Windows Calorimeter Control (WinCal) program computer software configuration management plan

    International Nuclear Information System (INIS)

    1997-01-01

    This document describes the system configuration management activities performed in support of the Windows Calorimeter Control (WinCal) system, in accordance with Site procedures based on Institute of Electrical and Electronic Engineers (IEEE) Standard 828-1990, Standard for Software Configuration Management Plans (IEEE 1990) and IEEE Standard 1042-1987, Guide to Software Configuration Management (IEEE 1987)

  5. Study of Various Photomultiplier Tubes for Window Events: Upgrade R\\&D for CMS Hadron Forward Calorimeters

    CERN Document Server

    Bilki, Burak

    2010-01-01

    The PMTs of the CMS Hadron Forward calorimeter were found to generate a large amount of signal when their windows were traversed by energetic charged particles. This signal, which is due to \\u{C}erenkov light production at the PMT window, could interfere with the calorimeter signal and mislead the measurements. In order to find a viable solution to this problem, the response of different types of PMTs to muons traversing their windows at different orientations is measured at the H2 beam-line at CERN. Certain kinds of PMTs with thinner windows show significantly lower response to direct muon incidence. For one specific type -the four anode PMT- a simple and powerful algorithm to identify such events and recover the PMT signal using the signals of the quadrants without window hits is also presented. For the measurement of PMT responses to \\u{C}erenkov light, the Hadron Forward calorimeter signal was mimicked by two different setups in electron beams and the PMT performances were compared with each other. Superi...

  6. Evaluation of the Argonne National Laboratory servo-controlled calorimeter system

    International Nuclear Information System (INIS)

    Foster, L.A.

    1997-01-01

    The control system of a replacement mode, twin-bridge, water-bath calorimeter originally built by Mound EG ampersand G Applied Technologies was modified by Argonne National Laboratory. The calorimeter was upgraded with a PC-based computer control and data acquisition system. The system was redesigned to operate in a servo-control mode, and a preheater was constructed to allow pre-equilibration of samples. The instrument was sent to the Plutonium Facility at Los Alamos National Laboratory for testing and evaluation of its performance in the field using heat source standards and plutonium process materials. The important parameters for calorimeter operation necessary to satisfy the nuclear materials control and accountability requirements of the Plutonium Facility were evaluated over a period of several months. These parameters include calorimeter stability, measurement precision and accuracy, and average measurement time. The observed measurement precision and accuracy were found to be acceptable for most accountability measurements, although they were slightly larger than the values for calorimeters in routine use at the Plutonium Facility. Average measurement times were significantly shorter than measurement times for identical items in the Plutonium Facility calorimeters. Unexplained shifts in the baseline measurements were observed on numerous occasions. These shifts could lead to substantial measurement errors if they are not very carefully monitored by the operating facility. Detailed results of the experimental evaluation are presented in this report

  7. Phase1 upgrade of the CMS-HF Calorimeter

    CERN Document Server

    Gulmez, Erhan

    2016-01-01

    In this presentation, results of the Phase I upgrade of the CMS Hadron Forward Calorimeter (HF) are discussed. The CMS-HF Calorimeter was using regular PMTs. Cherenkov light produced in the quartz fibers embedded in the iron absorber was read out with the PMTs. However, occasionally, stray muons hitting the PMT windows cause Cherenkov radiation in the PMT itself and produce large signals. These large signals mimic a very high-energy particle and are tagged as important by the trigger. To reduce this problem, PMTs had to be replaced. The four-anode PMTs that were chosen have thinner windows; thereby reducing the Cherenkov radiation in the PMT window. As part of the upgrade, the read-out electronics is to be replaced so that the PMTs are read out in two channels by connecting each pair of anodes to a single channel. Information provided by these two channels will help us reject the false signals due to the stray muons since the Cherenkov radiation in the PMT window is more likely to produce a signal only in one...

  8. Development of real-time low energy electron calorimeter

    International Nuclear Information System (INIS)

    Noriah Mod Ali; Smith, F.A.

    1999-01-01

    A low energy electron beam calorimeter with a thin film window has been fabricated to facilitate a reliable method of dose assessment for electron beam energies down to 200 keV. The system was designed to incorporate a data-logger in order that it could be used on the self-shielded 200 keV facility at MINT. In use, the calorimeter started logging temperature a short time before it passed under the beam and it continued taking data until well after the end of the irradiation. Data could be retrieved at any time after the calorimeter had emerged from the irradiator

  9. A real-time low energy electron calorimeter

    International Nuclear Information System (INIS)

    Mod Ali, N.; Smith, F.A.

    1999-01-01

    A real-time low energy electron calorimeter with a thin film window has been designed and fabricated to facilitate a reliable method of dose assessment for electron beam energies down to 200 keV. The work was initiated by the Radiation Physics Group of Queen Mary and Westfield College in collaboration with the National Physical Laboratory (NPL), Teddington. Irradiations were performed on the low and medium electron energy electron accelerators at the Malaysian Institute for Nuclear Technology Research (MINT). Calorimeter response was initially tested using the on-line temperature measurements for a 500-keV electron beam. The system was later redesigned by incorporating a data-logger to use on the self-shielded 200-keV beam. In use, the final version of the calorimeter could start logging temperature a short time before the calorimeter passed under the beam and continue measurements throughout the irradiation. Data could be easily retrieved at the end of the exposure. (author)

  10. Automatic low-temperature calorimeter

    International Nuclear Information System (INIS)

    Malyshev, V.M.; Mil'ner, G.A.; Shibakin, V.F.; Sorkin, E.L.

    1986-01-01

    This paper describes a low-temperature adiabatic calorimeter with a range of 1.5-500K. The system for maintaining adiabatic conditions is implemented by two resitance thermometers, whose sensitivity at low temperatures is several orders higher than that of thermocouples. The calorimeter cryostat is installed in an STG-40 portable Dewar flask. The calorimeter is controlled by an Elektronika-60 microcomputer. Standard platinum and germanium thermometers were placed inside of the calorimeter to calibrate the thermometers of the calorimeter and the shield, and the specific heats of specimens of OSCh 11-4 copper and KTP-8 paste were measured to demonstrate the possibilities of the described calorimeter. Experience with the calorimeter has shown that a thorough study of the dependence of heat capacity on temperature (over 100 points for one specimen) can be performed in one or two dats

  11. ATLAS tile calorimeter cesium calibration control and analysis software

    International Nuclear Information System (INIS)

    Solovyanov, O; Solodkov, A; Starchenko, E; Karyukhin, A; Isaev, A; Shalanda, N

    2008-01-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented

  12. ATLAS tile calorimeter cesium calibration control and analysis software

    Energy Technology Data Exchange (ETDEWEB)

    Solovyanov, O; Solodkov, A; Starchenko, E; Karyukhin, A; Isaev, A; Shalanda, N [Institute for High Energy Physics, Protvino 142281 (Russian Federation)], E-mail: Oleg.Solovyanov@ihep.ru

    2008-07-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented.

  13. Commissioning of CMS Forward Hadron Calorimeters with Upgraded Multi-anode PMTs and uTCA Readout

    CERN Document Server

    Tiras, Emrah; Onel, Yasar

    2016-01-01

    The high flux of charged particles interacting with the CMS Forward Hadron Calorimeter PMT windows introduced a significant background for the trigger and offline data analysis. During Long Shutdown 1, all of the original PMTs were replaced with multi-anode, thin window photomultiplier tubes. At the same time, the back-end electronic readout system was upgraded to uTCA readout. The experience with commissioning and calibration of the Forward Hadron Calorimeter is described as well as the uTCA system. The upgrade was successful and provided quality data for Run 2 data-analysis at 13 TeV.

  14. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    International Nuclear Information System (INIS)

    Machefert, F.

    2011-01-01

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the pre-shower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure this tolerance are also given. The second part of this document concerns both the identification of the photons with LHCb and the calibration of the calorimeters. The photon identification method is presented and the performances given. Finally, the absolute energy calibration of the PRS and ECAL, based on the data stored in 2010 is explained. (author)

  15. Phase 1 upgrade of the CMS forward hadronic calorimeter

    CERN Document Server

    Noonan, Daniel Christopher

    2017-01-01

    The CMS experiment at the Large Hadron Collider at CERN is upgrading the photo- detection and readout system of the forward hadronic calorimeter. The phase 1 upgrade of the CMS forward calorimeter requires the replacement of the current photomultiplier tubes, as well as the installation of a new front-end readout system. The new photomultiplier tubes contain a thinner window as well as multi-anode readout. The front-end electronics will use the QIE10 ASIC which combines signal digitization with timing information. The major components of the upgrade as well as the current status are described in this paper.

  16. Detector Upgrade R\\&D of the CMS Hadronic Endcap and Forward Calorimeters

    CERN Document Server

    Akgun, Ugur

    2010-01-01

    The CMS Hadronic Endcap (HE) and Hadronic Forward (HF) calorimeters cover the pseudorapidity range of from 1.4 to 5 on both sides of the CMS detector, contributing to superior jet and missing transverse energy resolutions. Here we discuss possible upgrade scenarios for both calorimeters. Recent studies revealed abnormally high amplitude signals due to punch through charged particles, mostly muons, producing Cherenkov photons at the HF calorimeter PMT window. Our studies show that these events can be eliminated either by using the timing properties, or replacing the HF PMTs with new generation four anode PMTs. As the integrated luminosity of the LHC increases, the scintillator tiles used in the CMS Hadronic Endcap calorimeter will lose their efficiency. This report outlines two possible radiation hard upgrade scenarios based on replacing the HE scintillators with quartz plates.

  17. Pilot case-control study of paediatric falls from windows.

    Science.gov (United States)

    Johnston, Brian D; Quistberg, D Alexander; Shandro, Jamie R; Partridge, Rebecca L; Song, Hyun Rae; Ebel, Beth E

    2011-12-01

    Unintentional falls from windows are an important cause of paediatric morbidity. There have been no controlled studies to identify modifiable environmental risk factors for window falls in young children. The authors have piloted a case-control study to test procedures for case identification, subject enrolment, and environmental data collection. Case windows were identified when a child 0-9 years old presented for care after a fall from that window. Control windows were identified (1) from the child's home and (2) from the home of an age- and gender-matched child seeking care for an injury diagnosis not related to a window fall. Study staff visited enrolled homes to collect window measurements and conduct window screen performance tests. The authors enrolled and collected data on 18 case windows, 18 in-home controls, and 14 matched community controls. Six potential community controls were contacted for every one enrolled. Families who completed the home visit viewed study procedures positively. Case windows were more likely than community controls to be horizontal sliders (100% vs 50%), to have deeper sills (6.28 vs 4.31 inches), to be higher above the exterior surface (183 vs 82 inches), and to have screens that failed below a threshold derived from the static pressure of a 3-year-old leaning against the mesh (60.0% vs 16.7%). Case windows varied very little from in-home controls. Case-control methodology can be used to study risk factors for paediatric falls from windows. Recruitment of community controls is challenging but essential, because in-home controls tend to be over-matched on important variables. A home visit allows direct measurement of window type, height, sill depth, and screen performance. These variables should all be investigated in subsequent, larger studies covering major housing markets.

  18. Phase I Upgrade of the CMS Hadron Calorimeter

    CERN Document Server

    Cooper, Seth Isaac

    2014-01-01

    In preparation for Run 2 (2015) and Run 3 of the LHC (2019), the CMS hadron calorimeter has begun a series of ambitious upgrades. These include new photodetectors in addition to improved front-end and back-end readout electronics. In the hadron forward calorimeter, the existing photomultiplier tubes are being replaced with thinner window, multi-anode readout models, while in the central region, the hybrid photodiodes will be replaced with silicon photomultipliers. The front-end electronics will include high precision timing readout, and the backend electronics will handle the increased data bandwidth. The barrel and endcap longitudinal segmentation will also be increased. This report will describe the motivation for the upgrade, its major components, and its current status.

  19. The CDF calorimeter upgrade for RunIIb

    CERN Document Server

    Huston, J; Kuhlmann, S; Lami, S; Miller, R; Paoletti, R; Turini, N; Ukegawa, F

    2004-01-01

    The physics program at the Fermilab Tevatron Collider will continue to explore the high energy elementary particle physics until the LHC commissioning. The upgrade of the CDF calorimeter opens a new window for improving the jet energy resolution, important in finding various signals such as Higgs by correcting the energy loss in the dead material and adding information in the jet algorithms using charged particles. It plays an important role in soft electron tagging of b- jets and photon identification in SUSY. The upgrade of the CDF calorimeter includes: a) the replacement of slow gas detector on the front face of the Central Calorimeter with Preshower (CPR) based on 2cm thick scintillator tiles segmented in eta and Phi and read out by WLS fibers running into a groove on the surface of each tiles. The WLS fibers are placed to clear fibers after leaving the tiles; b) the replacement of the Central Crack Chamber (CCR) with 5mm thick scintillator tiles read with the same technique: To finalize the design parame...

  20. Specific features of thermocouple calorimeter application for measurements of pulsed X-ray emission from plasma

    International Nuclear Information System (INIS)

    Gavrilov, V. V.; Fasakhov, I. K.

    2012-01-01

    It is shown that the accuracy of time-integrated measurements of pulsed X-ray emission from hot plasma with calibrated thermocouple calorimeters is mainly determined by two factors. The first and the most important factor is heating of the filter by the absorbed X-rays; as a result, the calorimeter measures the thermal radiation of the filter, which causes appreciable distortion of the temporal profile and amplitude of the recorded signal. The second factor is the dependence of the effective depth of X-ray absorption in the dielectric that covers the entrance window of the calorimeter on the energy of X-ray photons, i.e., on the recorded radiation spectrum. The results of model calculations of the calorimeter signal are compared with the experimental data.

  1. Large capacity water and air bath calorimeters

    International Nuclear Information System (INIS)

    James, S.J.; Kasperski, P.W.; Renz, D.P.; Wetzel, J.R.

    1993-01-01

    EG and G Mound Applied Technologies has developed an 11 in. x 17 in. sample size water bath and an 11 in. x 17 in. sample size air bath calorimeter which both function under servo control mode of operation. The water bath calorimeter has four air bath preconditioners to increase sample throughput and the air bath calorimeter has two air bath preconditioners. The large capacity calorimeters and preconditioners were unique to Mound design which brought about unique design challenges. Both large capacity systems calculate the optimum set temperature for each preconditioner which is available to the operator. Each system is controlled by a personal computer under DOS which allows the operator to download data to commercial software packages when the calorimeter is idle. Qualification testing yielded a one standard deviation of 0.6% for 0.2W to 3.0W Pu-238 heat standard range in the water bath calorimeter and a one standard deviation of 0.3% for the 6.0W to 20.0W Pu-238 heat standard range in the air bath calorimeter

  2. Feasibility of a Mound-designed transportable calorimeter

    International Nuclear Information System (INIS)

    Duff, M.F.; Fellers, C.L.

    1979-01-01

    The feasibility of operating a Mound twin resistance bridge calorimeter outside a temperature-controlled water bath was demonstrated. An existing calorimeter was retrofit with two additional jackets through which water was transferred from an external reservoir. Comparison of test results collected before and after the retrofit indicated that the calorimeter performance was not degraded by this modification. Similarly designed calorimeters have potential applications in laboratories where equipment space is limited for inspectors who are required to transport their assay instrumentation

  3. Modeling response variation for radiometric calorimeters

    International Nuclear Information System (INIS)

    Mayer, R.L. II.

    1986-01-01

    Radiometric calorimeters are widely used in the DOE complex for accountability measurements of plutonium and tritium. Proper characterization of response variation for these instruments is, therefore, vital for accurate assessment of measurement control as well as for propagation of error calculations. This is not difficult for instruments used to measure items within a narrow range of power values; however, when a single instrument is used to measure items over a wide range of power values, improper estimates of uncertainty can result since traditional error models for radiometric calorimeters assume that uncertainty is not a function of sample power. This paper describes methods which can be used to accurately estimate random response variation for calorimeters used to measure items over a wide range of sample powers. The model is applicable to the two most common modes of calorimeter operation: heater replacement and servo control. 5 refs., 4 figs., 1 tab

  4. Control, Test and Monitoring Software Framework for the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Achenbach, R; Aharrouche, M; Andrei, V; Åsman, B; Barnett, B M; Bauss, B; Bendel, M; Bohm, C; Booth, J R A; Bracinik, J; Brawn, I P; Charlton, D G; Childers, J T; Collins, N J; Curtis, C J; Davis, A O; Eckweiler, S; Eisenhandler, E F; Faulkner, P J W; Fleckner, J; Föhlisch, F; Gee, C N P; Gillman, A R; Goringer, C; Groll, M; Hadley, D R; Hanke, P; Hellman, S; Hidvegi, A; Hillier, S J; Johansen, M; Kluge, E E; Kühl, T; Landon, M; Lendermann, V; Lilley, J N; Mahboubi, K; Mahout, G; Meier, K; Middleton, R P; Moa, T; Morris, J D; Müller, F; Neusiedl, A; Ohm, C; Oltmann, B; Perera, V J O; Prieur, D P F; Qian, W; Rieke, S; Rühr, F; Sankey, D P C; Schäfer, U; Schmitt, K; Schultz-Coulon, H C; Silverstein, S; Sjölin, J; Staley, R J; Stamen, R; Stockton, M C; Tan, C L A; Tapprogge, S; Thomas, J P; Thompson, P D; Watkins, P M; Watson, A; Weber, P; Wessels, M; Wildt, M

    2008-01-01

    The ATLAS first-level calorimeter trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates and to measure total and missing ET in the ATLAS calorimeters. The complete trigger system consists of over 300 customdesignedVME modules of varying complexity. These modules are based around FPGAs or ASICs with many configurable parameters, both to initialize the system with correct calibrations and timings and to allow flexibility in the trigger algorithms. The control, testing and monitoring of these modules requires a comprehensive, but well-designed and modular, software framework, which we will describe in this paper.

  5. A water flow calorimeter calibration system

    International Nuclear Information System (INIS)

    Ullrich, F.T.

    1983-01-01

    Neutral beam systems are instrumented by several water flow calorimeter systems, and some means is needed to verify the accuracy of such systems and diagnose their failures. This report describes a calibration system for these calorimeters. The calibrator consists of two 24 kilowatt circulation water heaters, with associated controls and instrumentation. The unit can supply power from 0 to 48 kW in five coarse steps and one fine range. Energy is controlled by varying the power and the time of operation of the heaters. The power is measured by means of precision power transducers, and the energy is measured by integrating the power with respect to time. The accuracy of the energy measurement is better than 0.5% when the power supplied is near full scale, and the energy resolution is better than 1 kilojoule. The maximum energy delivered is approximately 50 megajoules. The calorimetry loop to be calibrated is opened, and the calibrator is put in series with the calorimeter heat source. The calorimeter is then operated in its normal fashion, with the calibrator used as the heat source. The calibrator can also be used in a stand alone mode to calibrate calorimeter sensors removed from systems

  6. Recent developments in crystal calorimeters (featuring the CMS PbWO4 electromagnetic calorimeter)

    International Nuclear Information System (INIS)

    Gascon-Shotkin, S.

    2003-01-01

    In the mass range of 110-150 GeV the favored process for Higgs boson detection via p-p collisions is via its decay into two photons, which demands a very high-resolution electromagnetic calorimeter. This physics goal plus the Large Hadron Calorimeter (LHC)-imposed design constraints of 25ns bunch spacing and a hostile radiation environment have led the Compact Muon Solenoid (CMS) collaboration to the choice of lead tungstate (PbWO 4 ) crystals. These factors plus the presence of a 4T magnetic field and the relatively low room-temperature scintillation photon yield of PbWO 4 make photo detection a real challenge, which CMS has met via the choice of devices providing gain amplification: Avalanche photodiodes (APD) in the central barrel region and vacuum phototriodes (VPT) in the forward and backward endcap regions. In the past year the CMS electromagnetic calorimeter has entered the construction phase. We review progress in the areas of crystals, barrel and endcap photo detection devices, plans for detector calibration as well as the status of assembly and quality control. We also invoke relevant developments in other crystal calorimeters currently in operation or under development. Crystal calorimeters remain the medium of choice for precision energy and position measurements in high energy physics

  7. The concept and science process skills analysis in bomb calorimeter experiment as a foundation for the development of virtual laboratory of bomb calorimeter

    Science.gov (United States)

    Kurniati, D. R.; Rohman, I.

    2018-05-01

    This study aims to analyze the concepts and science process skills in bomb calorimeter experiment as a basis for developing the virtual laboratory of bomb calorimeter. This study employed research and development method (R&D) to gain the answer to the proposed problems. This paper discussed the concepts and process skills analysis. The essential concepts and process skills associated with bomb calorimeter are analyze by optimizing the bomb calorimeter experiment. The concepts analysis found seven fundamental concepts to be concerned in developing the virtual laboratory that are internal energy, burning heat, perfect combustion, incomplete combustion, calorimeter constant, bomb calorimeter, and Black principle. Since the concept of bomb calorimeter, perfect and incomplete combustion created to figure out the real situation and contain controllable variables, in virtual the concepts displayed in the form of simulation. Meanwhile, the last four concepts presented in the form of animation because no variable found to be controlled. The process skills analysis detect four notable skills to be developed that are ability to observe, design experiment, interpretation, and communication skills.

  8. Commissioning of Upgrade Forward Hadron Calorimeters of CMS

    CERN Document Server

    Bilki, Burak

    2016-01-01

    The CMS experiment at the Large Hadron Collider (LHC) at CERN is upgrading the photo-detection and readout system of the forward hadron calorimeter (HF). During Long Shutdown 1, all of the original PMTs were replaced with multi-anode, thin window photomultipliers. At the same time, the back-end readout system was upgraded to micro-TCA readout. Here we report on the experience with commissioning and calibrating the HF front-end as well as the online operational challenges of the micro-TCA system.

  9. Development of a portable graphite calorimeter for photons and electrons

    International Nuclear Information System (INIS)

    McEwen, M.R.; Duane, S.

    1999-01-01

    The aim of this project is to develop a calorimeter for use in both electron and photon beams. The calorimeter should be more robust than the present NPL primary standard X-ray calorimeter and is designed to be sufficiently portable to enable measurements at clinical accelerators away from NPL. Although intended for therapy-level dosimetry, the new calorimeter can also be used for high-dose measurements at industrial facilities. The system consists of a front end (the calorimeter itself), means for thermal isolation and temperature control, and a measurement system based on thermistors in a DC Wheatstone bridge. The early part of the project focused on the development of a temperature control system sensitive enough to allow measurements of temperature rises of the order of 1 mK. The control system responds to the calorimeter, phantom and air temperatures and maintains the temperature of the calorimeter to within ± 0.2 mK over several hours. Initial operation at NPL in 6, 10 and 16 MV X-ray beams show that the system is capable of measurements of 1 Gy at 2 Gy/min with a random uncertainty of ± 0.5% (1 standard deviation). (author)

  10. X-Window for process control in a mixed hardware environment

    International Nuclear Information System (INIS)

    Clausen, M.; Rehlich, K.

    1992-01-01

    X-Window is a common standard for display purposes on the current workstations. The possibility to create more than one window on a single screen enables the operators to gain more information about the process. Multiple windows from different control systems using mixed hardware is one of the problems this paper will describe. The experience shows that X-Window is a standard per definition, but not in any case. But it is an excellent tool to separate data-acquisition and display from each other over long distances using different types of hardware and software for communications and display. Our experience with X-Window displays for the cryogenic control system and the vacuum control system at HERA on DEC and SUN hardware will be described. (author)

  11. CDF End Plug calorimeter Upgrade Project

    International Nuclear Information System (INIS)

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R ampersand D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R ampersand D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, γ and π 0 has been designed. Its performance requirements, R ampersand D results and mechanical design are discussed

  12. Plutonium assay calorimeters

    International Nuclear Information System (INIS)

    Perry, R.B.

    1978-01-01

    Three calorimeters were developed for the IAEA: a small-sample portable calorimeter, a bulk calorimeter for up to 2 kg Pu in cans and capable of measuring up to 25 watts, and a calorimeter for 4-m long LWR Pu-recycle fuel roads. Design parameters and performance capability are given, and the instruments are compared with those developed for NRC

  13. ALICE Zero Degree Calorimeter

    CERN Multimedia

    De Marco, N

    2013-01-01

    Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.

  14. Transportable high sensitivity small sample radiometric calorimeter

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Biddle, R.S.; Cordova, B.S.; Sampson, T.E.; Dye, H.R.; McDow, J.G.

    1998-01-01

    A new small-sample, high-sensitivity transportable radiometric calorimeter, which can be operated in different modes, contains an electrical calibration method, and can be used to develop secondary standards, will be described in this presentation. The data taken from preliminary tests will be presented to indicate the precision and accuracy of the instrument. The calorimeter and temperature-controlled bath, at present, require only a 30-in. by 20-in. tabletop area. The calorimeter is operated from a laptop computer system using unique measurement module capable of monitoring all necessary calorimeter signals. The calorimeter can be operated in the normal calorimeter equilibration mode, as a comparison instrument, using twin chambers and an external electrical calibration method. The sample chamber is 0.75 in (1.9 cm) in diameter by 2.5 in. (6.35 cm) long. This size will accommodate most 238 Pu heat standards manufactured in the past. The power range runs from 0.001 W to <20 W. The high end is only limited by sample size

  15. Preliminary study on field buses for the control system of the high voltage of the ATLAS hadronic calorimeter

    International Nuclear Information System (INIS)

    Drevet, F.; Chadelas, R.; Montarou, G.

    1996-01-01

    We present here after a preliminary study on field buses for the control system of the high voltage of the photomultipliers of the TILECAL calorimeter. After some generalities, different commercial buses are reviewed (CAN, ARCET, WorldFIP, Profibus and LonWorks). The Profibus and LonWorks solution are more extensively studies as a possible solution for the high voltage system of the TILE hadronic calorimeter. (authors)

  16. Catalog of Window Taper Functions for Sidelobe Control

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2017-04-01

    Window taper functions of finite apertures are well-known to control undesirable sidelobes, albeit with performance trades. A plethora of various taper functions have been developed over the years to achieve various optimizations. We herein catalog a number of window functions, and com pare principal characteristics.

  17. A completely automated flow, heat-capacity, calorimeter for use at high temperatures and pressures

    Science.gov (United States)

    Rogers, P. S. Z.; Sandarusi, Jamal

    1990-11-01

    An automated, flow calorimeter has been constructed to measure the isobaric heat capacities of concentrated, aqueous electrolyte solutions using a differential calorimetry technique. The calorimeter is capable of operation to 700 K and 40 MPa with a measurement accuracy of 0.03% relative to the heat capacity of the pure reference fluid (water). A novel design encloses the calorimeter within a double set of separately controlled, copper, adiabatic shields that minimize calorimeter heat losses and precisely control the temperature of the inlet fluids. A multistage preheat train, used to efficiently heat the flowing fluid, includes a counter-current heat exchanger for the inlet and outlet fluid streams in tandem with two calorimeter preheaters. Complete system automation is accomplished with a distributed control scheme using multiple processors, allowing the major control tasks of calorimeter operation and control, data logging and display, and pump control to be performed simultaneously. A sophisticated pumping strategy for the two separate syringe pumps allows continuous fluid delivery. This automation system enables the calorimeter to operate unattended except for the reloading of sample fluids. In addition, automation has allowed the development and implementation of an improved heat loss calibration method that provides calorimeter calibration with absolute accuracy comparable to the overall measurement precision, even for very concentrated solutions.

  18. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    International Nuclear Information System (INIS)

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors

  19. Design of viewing windows for controlled-atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    A guide to the design of safe viewing windows is presented. Design criteria, the properties of materials, the problems of structural design in unreliable materials such as glass, the mathematics of reliability and redundance, and problems associated with testing windows are discussed, and formulas are presented for the design of windows. Criteria adopted at ORNL for controlled-atmosphere chambers are presented, a program for surveying and upgrading the safety of existing facilities is described, and the results of this program are reported

  20. Thermal dynamics of bomb calorimeters.

    Science.gov (United States)

    Lyon, Richard E

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter.

  1. PANDA electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Semenov, P.A.; Kharlov, Yu.V.; Uzunian, A.V.; Chernichenko, S.K.; Derevschikov, A.A.; Davidenko, A.M.; Goncharenko, Y.M.; Kachanov, V.A.; Konstantinov, A.S.; Kormilitsin, V.A.; Matulenko, Yu.A.; Meschanin, A.P.; Melnick, Y.M.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Novotny, R.W.; Ryazantsev, A.A.; Soldatov, A.P.; Soloviev, L.F.

    2009-01-01

    PANDA is a challenging experimental setup to be implemented at the high-energy storage ring (HESR) at the international facility FAIR, GSI (Germany). PANDA physics program relies heavily on the capability to measure photons with excellent energy, position and timing resolution. For this purpose PANDA proposed to employ electromagnetic calorimeters using two different technologies: compact crystal calorimeter cooled to -25 deg. C around target and lead-scintillator sandwich calorimeter with optical fibers light collection (so-called shashlyk calorimeter) in the forward region. Institute for High Energy Physics (IHEP) PANDA group reports on two types of measurements performed at IHEP, Protvino: radiation hardness of the PWO crystals at -25 deg. C and testbeam studies of the energy and position resolution of the shashlyk calorimeter prototype in the energy range up to 19 GeV.

  2. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  3. The timing control unit (TCU) and the fan-out (FO) for the DELPHI SAT calorimeter

    International Nuclear Information System (INIS)

    Wikne, J.C.

    1991-07-01

    Two specially developed fastbus modules for readout control and monitoring of the SAT calorimeter detector in the DELPHI experiment at CERN are described. The report is intended as a complete technical manual for these modules. 14 refs

  4. The CMS Hadron Forward Calorimeter Upgrade during Phase I

    CERN Document Server

    Gulmez, Erhan

    2014-01-01

    The CMS Hadron Forward Calorimeter will be upgraded during phase 1. The upgrade will include the replacement of the current PMTs with the 4-anode ones and the readout electronics. Currently, stray muons hitting the PMT windows produce Cherenkov light causing erroneous signals. These signals are detrimental to the triggering and physic results, since such signals mimic very high energy events. The new 4-anode PMTs are selected because of their thin windows to reduce the Cherenkov light production. Additional anodes also provide information to eliminate such signals. These new PMTs have been tested extensively to understand their characteristics and to develop the algorithms to eliminate the unwanted signals. Eventually, the current read out will be replaced with two-channel readout electronics for each PMT. The overall expected improvement on the physics results will also be discussed.

  5. Proportional wire calorimeters at ISABELLE

    International Nuclear Information System (INIS)

    Matthews, J.A.J.

    1979-01-01

    Gas calorimeters have recently increased in popularity because they provide a simple method of achieving a high degree of calorimeter segmentation with only a modest loss in energy resolution compared with liquid argon or scintillator calorimeters. High radiation levels at ISABELLE will result in gas calorimeter lifetimes similar to those of MWPCs, although the intermediate speed of these devices may cause some resolution degradation due to signal pileup. Schemes for calibration and monitoring gas calorimeters in situ must be evolved and will presumably utilize a combination of pulsers, imbedded 55 Fe sources, etc. Most of the recent development work on gas calorimeters has been centered on electromagnetic (em) calorimetry for large detectors at CESR and PEP. Data on the performance of gas calorimeters are given and compared with the liquid argon results of Hitlin et al. The hadronic gas calorimeter results of Anderson et al. are shown along with typical energy resolution results from various scintillator and liquid argon steel calorimeters

  6. Peltier ac calorimeter

    OpenAIRE

    Jung, D. H.; Moon, I. K.; Jeong, Y. H.

    2001-01-01

    A new ac calorimeter, utilizing the Peltier effect of a thermocouple junction as an ac power source, is described. This Peltier ac calorimeter allows to measure the absolute value of heat capacity of small solid samples with sub-milligrams of mass. The calorimeter can also be used as a dynamic one with a dynamic range of several decades at low frequencies.

  7. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Eames, Philip C.; Hyde, Trevor J. [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, N. Ireland BT37 0QB (United Kingdom); Norton, Brian [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5m by 0.5m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32mm diameter pillars spaced 25mm apart, contiguously sealed by a 10mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  8. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Yueping Fang; Eames, P.C.; Hyde, T.J. [University of Ulster, Newtonabbey (United Kingdom). Centre for Sustainable Technologies; Norton, B. [Dublin Institute of Technology, Dublin (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5 m by 0.5 m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32 mm diameter pillars spaced 25 mm apart, contiguously sealed by a 10 mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  9. Magnetically Coupled Calorimeters

    Science.gov (United States)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  10. Automated roof window control system to address overheating on renovated houses

    DEFF Research Database (Denmark)

    Psomas, Theofanis Ch.; Heiselberg, Per Kvols; Lyme, Thøger

    2017-01-01

    Highlights •Manually controlled passive cooling system do not assure high quality environment. •Automated window system reduces overheating risk in houses of temperate climates. •Window system offers similar indoor air quality with mechanical ventilation system. •User behavior on window system...

  11. CMS Central Hadron Calorimeter

    OpenAIRE

    Budd, Howard S.

    2001-01-01

    We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.

  12. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Windows and air ports in fire control boundaries. 116... CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.433 Windows and air ports in fire control boundaries. (a) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches) in...

  13. Liquid xenon/krypton scintillation calorimeter

    International Nuclear Information System (INIS)

    Akimov, D.Yu.; Bolozdynya, A.I.; Brastilov, A.D.

    1994-01-01

    A scintillating LXe/LKr electromagnetic calorimeter has been built at the ITEP and tested at the BATES (MIT) accelerator. The detector consists of PMT matrix and 45 light collecting cells made of aluminized 50 microns Mylar partially covered with p-terphenyl as a wavelength-shifter. Each pyramidal cell has (2.1 x 2.1) x 40 x (4.15 x 4.15) cm dimensions and is viewed by FEU-85 glass-window photomultiplier. The detector has been exposed at 106-348 MeV electron beam. The energy resolution σ E /E ≅ 5% √ E at 100 - 350 MeV range in LXe, the coordinate resolution τ x ≅ 0.7 cm, the time resolution for single cell ≅ 0.6 ns have been obtained. Possible ways to improve energy resolution are discussed. 8 refs., 15 figs

  14. Differential calorimeter and temperature controller for stored energy measurements in irradiated alkali halides

    International Nuclear Information System (INIS)

    Delgado Martinez, L.

    1977-01-01

    The design and performance of a simple temperature-controlled differential calorimeter are presented. This system allows to measure radiation-induced stored energy in insulators, above room temperature with a differential thermal analysis method. With platelets of KC1 single crystals, the base lines obtained for T 2 T 1 (with T 2 : irradiated sample temperature and T 1 : reference sample temperature) show a smooth drift less of 0,2 degree centigree in the interval from 25 to 400 degree centigree. The discrepancy between two consecutive base lines is less than ± 0,02 degree centigree which implies a calorimeter sensitivity of about ±0,004 cal/g. This sensitivity allows to measure stored energy release in samples with a color center concentration low enough to be directly measured with a spectrophotometer so that a search for correlations among the features of the stored energy spectrum and the color center annealing can be made. (Author) 13 refs

  15. International workshop on calorimeter simulation

    International Nuclear Information System (INIS)

    Filges, D.; Cloth, P.

    1988-10-01

    The aim of the Juelich workshop was to provide an overview of the state of calorimeter simulation and the methods used. This resulted in 29 contributions to the following topics: Code systems relevant to calorimeter simulation, vectorization and code speed-up, simulation of calorimeter experiments, special applications of calorimeter simulation. This report presents the viewgraphs of the given talks. (orig./HSI)

  16. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  17. AIDA: concerted calorimeter development

    CERN Multimedia

    Felix Sefkow

    2013-01-01

    AIDA – the EU-funded project bringing together more than 80 institutes worldwide – aims at developing new detector solutions for future accelerators. Among the highlights reported at AIDA’s recent annual meeting in Frascati was the completion of an impressive calorimeter test beam programme, conducted by the CALICE collaboration over the past two years at CERN’s PS and SPS beam lines.   The CALICE tungsten calorimeter prototype under test at CERN. This cubic-metre hadron calorimeter prototype has almost 500,000 individually read-out electronics channels – more than all the calorimeters of ATLAS and CMS put together. Calorimeter development in AIDA is mainly motivated by experiments at possible future electron-positron colliders, namely ILC or CLIC. The physics requirements of such future machines demand extremely high-performance calorimetry. This is best achieved using a finely segmented system that reconstructs events using the so-called pa...

  18. 15 years of experience with quality control of WLS fibres for the ATLAS Tile Calorimeter

    CERN Document Server

    David, M; Maio, A; Pina, J; Tomé, B

    2007-01-01

    We describe a test bench to measure the optical properties of scintillating and Wavelength-Shifting fibers, called the Fibrometer. The accuracy, stability and reproducibility were assessed, and the quality control of WLS fibers for the upgrade of the STIC luminosity monitor at DELPHI and for the Tile calorimeter of ATLAS is reported.

  19. Implementation of linear bias corrections for calorimeters at Mound

    International Nuclear Information System (INIS)

    Barnett, T.M.

    1993-01-01

    In the past, Mound has generally made relative bias corrections as part of the calibration of individual calorimeters. The correction made was the same over the entire operating range of the calorimeter, regardless of the magnitude of the range. Recently, an investigation was performed to check the relevancy of using linear bias corrections to calibrate the calorimeters. The bias is obtained by measuring calibrated plutonium and/or electrical heat standards over the operating range of the calorimeter. The bias correction is then calculated using a simple least squares fit (y = mx + b) of the bias in milliwatts over the operating range of the calorimeter in watts. The equation used is B i = B 0 + (B w * W m ), where B i is the bias at any given power in milliwatts, B 0 is the intercept (absolute bias in milliwatts), B w is the slope (relative bias in milliwatts per watt), and W m is the measured power in watts. The results of the study showed a decrease in the random error of bias corrected data for most of the calorimeters which are operated over a large wattage range (greater than an order of magnitude). The linear technique for bias correction has been fully implemented at Mound and has been included in the Technical Manual, ''A Measurement Control Program for Radiometric Calorimeters at Mound'' (MD-21900)

  20. Module control of the jFEX for the ATLAS calorimeter trigger upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spreckels, Rouven; Degele, Reinhold; Schaefer, Ulrich; Tapprogge, Stefan [Johannes Gutenberg University of Mainz (Germany)

    2016-07-01

    The jFEX (jet Feature EXtractor) will identify jets and τ particles and calculate energy sums with the data received from electromagnetic and hadronic calorimeters by running its algorithms on multiple processor FPGAs. The firmware and configuration of these algorithms are provided by a single control FPGA accessed through a central Ethernet port. For reasons of flexibility this control FPGA is placed on a mezzanine card based on a hybrid SoC (System on Chip) combining an FPGA and a CPU inside a single chip with many interconnects in between. This talk presents the design of this mezzanine card and the usage of the hybrid SoC approach.

  1. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Roger Rusack

    Occupancy of the trigger primitives during a global run: the observed pattern is consistent with the polar angle dependence of the transverse energy equivalent of the electronic noise in the endcaps.   Progress on ECAL since the last CMS week has been mostly on three major fronts: we have continued with the installation and commissioning of the preshower detectors; the endcap calorimeter trigger has been installed and tested; and there have been many changes to the calorimeter detector control and safety systems. Both Preshower (ES) endcaps were installed in CMS on schedule, just before Easter. There followed a campaign of "first commissioning" to ensure that all services were correctly connected (electrical, optical, cooling, etc.). Apart from some optical ribbons that had to be replaced the process went rather smoothly, finishing on 23rd April. All power supplies are installed and operational. The cooling system (two branches of the joint Tracker-Preshower system) is fully fun...

  2. Calorimeters for Precision Power Dissipation Measurements on Controlled-Temperature Superconducting Radiofrequency Samples

    International Nuclear Information System (INIS)

    Xiao, Binping P.; Kelley, Michael J.; Reece, Charles E.; Phillips, H. L.

    2012-01-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the surface impedance characterization (SIC) system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm dia. disk sample which is thermally isolated from the RF portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency (SRF) materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analysed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al 2 O 3 , Cu, MgO, Nb and Si

  3. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  4. Precision titration mini-calorimeter

    International Nuclear Information System (INIS)

    Ensor, D.; Kullberg, L.; Choppin, G.

    1977-01-01

    The design and test of a small volume calorimeter of high precision and simple design is described. The calorimeter operates with solution sample volumes in the range of 3 to 5 ml. The results of experiments on the entropy changes for two standard reactions: (1) reaction of tris(hydroxymethyl)aminomethane with hydrochloric acid and (2) reaction between mercury(II) and bromide ions are reported to confirm the accuracy and overall performance of the calorimeter

  5. Design and performance of a vacuum-bottle solid-state calorimeter

    International Nuclear Information System (INIS)

    Bracken, D.S.; Biddle, R.; Cech, R.

    1997-01-01

    EG and G Mound Applied Technologies calorimetry personnel have developed a small, thermos-bottle solid-state calorimeter, which is now undergoing performance testing at Los Alamos National Laboratory. The thermos-bottle solid-state calorimeter is an evaluation prototype for characterizing the heat output of small heat standards and other homogeneous heat sources. The current maximum sample size is 3.5 in. long with a diameter of 0.8 in. The overall size of the thermos bottle and thermoelectric cooling device is 9.25 in. high by 3.75 in. diameter and less than 3 lb. Coupling this unit with compact electronics and a laptop computer makes this calorimeter easily hand carried by a single individual. This compactness was achieved by servo controlling the reference temperature below room temperature and replacing the water bath used in conventional calorimeter design with the thermos-bottle insulator. Other design features will also be discussed. The performance of the calorimeter will be presented

  6. Performance of the DELPHI small angle tile calorimeter

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1996-01-01

    The DELPHI STIC detector is a lead-scintillator sampling calorimeter with wave length shifting optical fibers used for light collection. The main goal of the calorimeter at LEP100 is to measure the luminosity with an accuracy better than 0.1%. The detector has been in operation since the 1994 LEP run. Presented here is the performance measured during the 1994--1995 LEP runs, with the emphasis on the achieved energy and space resolution, the long-term stability and the efficiency of the detector. The new bunchtrains mode of LEP requires a rather sophisticated trigger and timing scheme which is also presented. To control the trigger efficiency and stability of the calorimeter channels, a LED-based monitoring system has been developed

  7. Barrel calorimeter of the CMD-3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, V. E., E-mail: V.E.Shebalin@inp.nsk.su; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Epifanov, D. A. [University of Tokyo, Department of Physics (Japan); Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  8. Barrel calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Shebalin, V. E.; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2015-01-01

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV

  9. Family reunion for the UA2 calorimeter

    CERN Multimedia

    Abha Eli Phoboo

    2015-01-01

    After many years in CERN’s Microcosm exhibition, the last surviving UA2 central calorimeter module has been moved to Hall 175, the technical development laboratory of the ATLAS Tile Hadronic Calorimeter (Tilecal). The UA2 and ATLAS calorimeters are cousins, as both were designed by Otto Gildemeister. Now side by side, the calorimeters illustrate the progress made in sampling organic scintillator calorimeters over the past 35 years.   The ATLAS Tile Calorimeter prototypes (left) and the UA2 central calorimeter (right) in Hall 175. (Image: Mario Campanelli/ATLAS.) From 1981 to 1990, the UA2 experiment was one of the two detectors on CERN’s flagship accelerator, the SPS. At the heart of the UA2 detector was the central calorimeter. It was made up of 24 slices – each weighing four tonnes – arranged like orange segments around the collision point. These calorimeter slices played a central role in the research carried out by UA2 for the discovery of W bosons...

  10. Channel control ASIC for the CMS hadron calorimeter front end readout module

    International Nuclear Information System (INIS)

    Ray Yarema et al.

    2002-01-01

    The Channel Control ASIC (CCA) is used along with a custom Charge Integrator and Encoder (QIE) ASIC to digitize signals from the hybrid photo diodes (HPDs) and photomultiplier tubes (PMTs) in the CMS hadron calorimeter. The CCA sits between the QIE and the data acquisition system. All digital signals to and from the QIE pass through the CCA chip. One CCA chip interfaces with two QIE channels. The CCA provides individually delayed clocks to each of the QIE chips in addition to various control signals. The QIE sends digitized PMT or HPD signals and time slice information to the CCA, which sends the data to the data acquisition system through an optical link

  11. A highly segmented and compact liquid argon calorimeter for the LHC the TGT calorimeter

    CERN Document Server

    Berger, C; Geulig, H; Pierschel, G; Siedling, R; Tutas, J; Wlochal, M; Wotschack, J; Cheplakov, A P; Eremeev, R V; Feshchenko, A; Gavrishchuk, O P; Kazarinov, Yu M; Khrenov, Yu V; Kukhtin, V V; Ladygin, E; Obudovskij, V; Shalyugin, A N; Tolmachev, V T; Volodko, A G; Geweniger, C; Hanke, P; Kluge, E E; Krause, J; Putzer, A; Tittel, K; Wunsch, M; Bán, J; Bruncko, Dusan; Kriván, F; Kurca, T; Murín, P; Sándor, L; Spalek, J; Aderholz, Michael; Brettel, H; Dydak, Friedrich; Fent, J; Huber, J; Hajduk, L; Jakobs, K; Kiesling, C; Oberlack, H; Schacht, P; Stiegler, U; Bogolyubsky, M Yu; Chekulaev, S V; Kiryunin, A E; Kurchaninov, L L; Levitsky, M S; Maximov, V V; Minaenko, A A; Moiseev, A M; Semenov, P A; CERN. Geneva. Detector Research and Development Committee

    1992-01-01

    The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter is proposed as an R&D project for an LHC calorimeter with full rapidity coverage. The proposed ``Thin Gap Turbine'' (TGT) calorimeter offers uniform energy response and constant energy resolution independent of the production angle of the impinging particle and of its impact position at the calorimeter. An important aspect of the project is the development of electronics for fast signal processing matched to the short charge collection time in the TGT read-out cell. The system aspects of the integration of a high degree of signal processing into the liquid argon would be investigated.

  12. Bulk-assay calorimeter: Part 1. System design and operation. Part 2. Calibration and testing

    International Nuclear Information System (INIS)

    Perry, R.B.; Roche, C.T.; Harkness, A.L.; Winslow, G.H.; Youngdahl, G.A.; Lewis, R.N.; Jung, E.A.

    1982-01-01

    The Bulk-Assay Calorimeter is designed to measure the thermal power emitted by plutonium-containing samples. The sample power range of the instrument is 1.4 to 22.4 W. The instrument package consists of the calorimeter measurement chamber, the control circuit power bin, and the data acquisition system. Two sample preheating chambers and five calorimeter canisters for containing the samples are included. A set of 32 test points which monitor voltages at points within the calorimeter and its control circuitry are accessed by the data acquisition system. The use of the test points is described. System start-up and checkout are described. Sample assay and preheater operation procedures are given. The data acquisition system and data analysis software are described. The calorimeter was calibrated at 23 points with heat sources from 1.4 to 22.4 watts. The combined measurement error varied with sample power from 1.4% to 0.1% over the range of calibration measurements. Circuit diagrams for the calorimeter and schematics for the data acquisition system are included

  13. The ATLAS Level-1 Calorimeter Trigger

    International Nuclear Information System (INIS)

    Achenbach, R; Andrei, V; Adragna, P; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P; Asman, B; Bohm, C; Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S; Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J

    2008-01-01

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, τ leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 μs, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern

  14. The ATLAS Level-1 Calorimeter Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, R; Andrei, V [Kirchhoff-Institut fuer Physik, University of Heidelberg, D-69120 Heidelberg (Germany); Adragna, P [Physics Department, Queen Mary, University of London, London E1 4NS (United Kingdom); Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Asman, B; Bohm, C [Fysikum, Stockholm University, SE-106 91 Stockholm (Sweden); Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S [Institut fuer Physik, University of Mainz, D-55099 Mainz (Germany); Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)], E-mail: e.eisenhandler@qmul.ac.uk (and others)

    2008-03-15

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, {tau} leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 {mu}s, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern.

  15. ATLAS Level-1 Calorimeter Trigger Subsystem Tests of a Prototype Cluster Processor Module

    CERN Document Server

    Garvey, J; Apostologlou, P; Ay, C; Barnett, B M; Bauss, B; Brawn, I P; Bohm, C; Dahlhoff, A; Davis, A O; Edwards, J; Eisenhandler, E F; Gee, C N P; Gillman, A R; Hanke, P; Hellman, S; Hidévgi, A; Hillier, S J; Jakobs, K; Kluge, E E; Landon, M; Mahboubi, K; Mahout, G; Meier, K; Meshkov, P; Moye, T H; Mills, D; Moyse, E; Nix, O; Penno, K; Perera, V J O; Qian, W; Schmitt, K; Schäfer, U; Silverstein, S; Staley, R J; Thomas, J; Trefzger, T M; Watkins, P M; Watson, A; 9th Workshop On Electronics For LHC Experiments - LECC 2003

    2003-01-01

    The Level-1 Calorimeter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce trigger multiplicity and Region-of-Interest (RoI) information. The trigger will also provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purposes by using Readout Driver (ROD) Modules. The CP Modules (CPM) are designed to find isolated electron/photon and hadron/tau clusters in overlapping windows of trigger towers. Each pipelined CPM processes 8-bit data from a total of 128 trigger towers at each LHC crossing. Four full-specification prototypes of CPMs have been built and results of complete tests on individual boards will be presented. These modules were then integrated with other modules to build an ATLAS Level-1 Calorimeter Trigger subsystem test bench. Realtime data were exchanged between modules, and time-slice readout data were tagged and transferr...

  16. Installing the ATLAS calorimeter

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The eight toroid magnets can be seen surrounding the calorimeter that is later moved into the middle of the detector. This calorimeter will measure the energies of particles produced when protons collide in the centre of the detector.

  17. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2017-01-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  18. The new ATLAS Fast Calorimeter Simulation

    Science.gov (United States)

    Schaarschmidt, J.; ATLAS Collaboration

    2017-10-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  19. Low voltage control for the liquid argon hadronic end-cap calorimeter of ATLAS

    CERN Document Server

    Brettel, H; Habring, J; Oberlack, H; Schacht, P

    2002-01-01

    At the ATLAS detector a SCADA system surveys and controls the sub- detectors. The link is realized by PVSS2 software and a CanBus hardware system. The low voltages for the Hadronic Endcaps of the liquid argon calorimeter are produced by DC/DC-converters in the power boxes and split into 320 channels corresponding to the pre- amplifier and summing boards in the cryostat. Six units of a prototype distribution board are currently under test. Each of it contains 2 ELMBs as CanBus interface, a FPGA of type QL3012 for digital control and 30 low voltage regulators for the individual fine adjustments of the outputs.

  20. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  1. Advanced Thin Ionization Calorimeter (ATIC)

    Science.gov (United States)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  2. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  3. Integrated guidance and control design of a flight vehicle with side-window detection

    Directory of Open Access Journals (Sweden)

    Tianyu ZHENG

    2018-04-01

    Full Text Available This paper considers the guidance and control problem of a flight vehicle with side-window detection. In order to guarantee the target remaining in the seeker's sight of view, the line of sight and the attitude of the flight vehicle should be under some constraints caused by the side-window, which leads to coupling between the guidance and the attitude dynamics model. To deal with the side-window constraints and the coupling, a novel Integrated Guidance and Control (IGC design approach is proposed. Firstly, the relative motion equations are derived in the body-Line of Sight (LOS coordinate system. And the guidance and control problem of the flight vehicle is formulated into an IGC problem with state constraints. Then, based on the singular perturbation method, the IGC problem is decomposed into the control design of the quasi-steady-state subsystem and the boundary-layer subsystem which can be designed separately. Finally, the receding horizon control is applied to the control design for the two subsystems. Simulation results show the effectiveness of the proposed approach. Keywords: Integrated guidance and control, Receding horizon control, Side-window detection, Singular perturbation, Terminal guidance

  4. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  5. The CMS Electromagnetic Calorimeter: Results on Crystal Measurements, Quality Control and Data Management in the Rome Regional Center

    CERN Document Server

    Costantini, S

    2004-01-01

    The barrel of the CMS electromagnetic calorimeter is currently under construction and will contain 61200 PbWO4 crystals. Half of them are being fully characterized for dimensions, optical properties and light yield in the INFN-ENEA Regional Center near Rome. We describe the setup of an automatic quality control system for the crystal measurements and the present results on their qualification, as well as the REDACLE project, which has been developed to control and ease the production process. As it will not be possible to precalibrate the whole calorimeter,the crystal measurements and quality checks performed at the Regional Center will be crucial to provide a basis for fast in-situ calibration with particles. REDACLE is at the same time a fast database and a data management system, where the database and the workflow structures are decoupled, in order to obtain the best flexibility.

  6. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  7. Some possible improvements in scintillation calorimeters

    International Nuclear Information System (INIS)

    Lorenz, E.

    1985-03-01

    Two ideas for improvements of scintillation calorimeters will be presented: a) improved readout of scintillating, totally active electromagnetic calorimeters with combinations of silicon photodiodes and fluorescent panel collectors, b) use of time structure analysis on calorimetry, both for higher rate applications and improved resolution for hadron calorimeters. (orig.)

  8. An instant dose obtainable in situ calorimeter

    International Nuclear Information System (INIS)

    Kubo, H.; Mento, D.

    1984-01-01

    The development of a computer-linked water calorimeter is described. The advantages of this system are twofold: (i) instant dose determination is possible; and (ii) the calorimeter operation is much simpler than conventional null balance techniques. The entire calorimeter measurement procedure from the set-up to the dose determination for 10 runs was finished in approximately 2 1/2 h. A smaller calorimeter which could be kept in the treatment room for equilibrium, should permit further reduction of the time. The use of a smaller, portable computer would allow local data taking and analysis, eliminating the need for modems, phone lines and long cables. This would lead to a completely self-contained set-up at the treatment room. Although the technique is described for a polystyrene-water calorimeter, it should be equally applicable for a water calorimeter as well as a conventional isolated calorimeter. (author)

  9. Dynamic Allan Variance Analysis Method with Time-Variant Window Length Based on Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Shanshan Gu

    2015-01-01

    Full Text Available To solve the problem that dynamic Allan variance (DAVAR with fixed length of window cannot meet the identification accuracy requirement of fiber optic gyro (FOG signal over all time domains, a dynamic Allan variance analysis method with time-variant window length based on fuzzy control is proposed. According to the characteristic of FOG signal, a fuzzy controller with the inputs of the first and second derivatives of FOG signal is designed to estimate the window length of the DAVAR. Then the Allan variances of the signals during the time-variant window are simulated to obtain the DAVAR of the FOG signal to describe the dynamic characteristic of the time-varying FOG signal. Additionally, a performance evaluation index of the algorithm based on radar chart is proposed. Experiment results show that, compared with different fixed window lengths DAVAR methods, the change of FOG signal with time can be identified effectively and the evaluation index of performance can be enhanced by 30% at least by the DAVAR method with time-variant window length based on fuzzy control.

  10. Overview of the Calorimeter Readout Upgrades

    CERN Document Server

    Straessner, Arno; The ATLAS collaboration

    2018-01-01

    The ATLAS and CMS calorimeter electronics will be upgraded for the HL-LHC data taking phase to cope with higher event pile-up and to allow improved trigger strategies. This presentations gives an overview of the ongoing developments for the CMS barrel calorimeters and the ATLAS LAr and Tile calorimeters.

  11. Fpga As A Part Of Ms Windows Control Environment

    Directory of Open Access Journals (Sweden)

    Krzysztof Kołek

    2007-01-01

    Full Text Available The attention is focused on the Windows operating system (OS used as a control and measurementenvironment. Windows OS due to extensions becomes a real-time OS (RTOS.Benefits and drawbacks of typical software extensions are compared. As far as hardwaresolutions are concerned the field programmable gate arrays FPGA technology is proposed toensure fast time-critical operations. FPGA-based parallel execution and hardware implementationof the data processing algorithms significantly outperform the classical microprocessoroperating modes. Suitability of the RTOS for a particular application and FPGA hardwaremaintenance is studied.

  12. High precision laser control of the ATLAS tile-calorimeter module mass production at JINR

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, Yu.; Flyagin, V.; Khubua, D.; Lomakin, Yu.; Lyablin, M.; Rusakovich, N.; Shabalin, D.; Topilin, N.; Nessi, M.

    2001-01-01

    We present a short description of our last few years experience in the quality control of the ATLAS hadron barrel tile-calorimeter module mass production at JINR. A Laser Measurement System (LMS) proposed and realized in Dubna guarantees a high-precision module assembly. The non-planarity of module size surfaces (1.9x5.6 m) controlled area is well within the required ±0.6 mm tolerance for each of JINR assembled modules. The module assembly technique achieved with the LMS system allows us to deliver to CERN one module every 2 weeks. This laser-based measurement system could be used in future for the control measurement of other large-scale units during the ATLAS assembly

  13. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1981-01-01

    At our current understanding of elementary particle physics, the fundamental constituents are the photon, quarks, gluons and leptons with a few highly forecasted heavy bosons. Calorimeters are essential for detecting all of these particles. Quarks and gluons fragment into many particles - at high energies, so many particles that one may not want to measure each one separately. This group of both charged and neutral particles can only be measured by calorimeters. The energy of an electron needs to be measured by a calorimeter and muon identification is enhanced by the recognition of a minimum ionizing particle passing through the calorimeter. Sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers - are reviewed. What follows is a very cursory overview of some fundamental aspects of sampling calorimeters. First, the properties of shower development are described for both the electromagnetic and hadronic cases. Then, examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described. 21 references

  14. Detailed GEANT description of the SDC central calorimeters

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Li, W.

    1994-01-01

    This article represents the very detailed simulation model of the SDC central calorimeters and some results which were obtained using that model. The central calorimeters structure was coded on the GEANT 3.15 base in the frame of the SDCSIM environment. The SDCSIM is the general shell for simulation of the SDC set-up. The calorimeters geometry has been coded according to the FNAL and ANL engineering drawings and engineering data file. SDC central calorimeters detailed description is extremely useful for different simulation tasks, for fast simulation program parameters tuning, for different geometry especially studying (local response nonuniformity from bulkheads in the e.m. calorimeter and from coil supports and many others) and for the interpretation of the experimental data from the calorimeters. This simulation model is very useful for tasks of the test beam modules calorimeter calibration and for calorimeter in situ calibration. 3 refs., 8 figs

  15. Signal processing for liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Cleland, W.E.; Stern, E.G.

    1992-01-01

    We present the results of a study of the effects of thermal and pileup noise in liquid ionization calorimeters operating in a high luminosity calorimeters operating in a high luminosity environment. The method of optimal filtering of multiply-sampled signals which may be used to improve the timing and amplitude resolution of calorimeter signals is described, and its implications for signal shaping functions are examined. The dependence of the time and amplitude resolution on the relative strength of the pileup and thermal noise, which varies with such parameters as luminosity, rapidity and calorimeter cell size, is examined

  16. The Dynamic Characteristic Analysis of Mini Gamma Calorimeter

    International Nuclear Information System (INIS)

    Setiyanto

    2004-01-01

    The gamma calorimeter is a facility to measure the gamma heating in the nuclear reactor. The dimensions of the conventional calorimeters are in general too large, that is an inconvenience if those calorimeters will be applied in the high temperature reactor as a nuclear power plant. To avoid that inconvenience, it is necessary to propose the innovation on the feature of the existing calorimeter. The basic idea of the innovation is to create the small type of calorimeter without the absorbed material. The last analysis was realized to determine of the static calorimeter characteristic or sensitivities as a function of the dimension and the material of gas isolations. Based on those results, the analyses is reasonably to be continued to determine the dynamic characteristic or period of calorimeter. The analysis was performed using the finite difference method, two dimension simplified. It can be concluded that the mini gamma calorimeter proposed is reasonable to be made. (author)

  17. Secondary Emission Calorimeter Sensor Development

    Science.gov (United States)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is

  18. Beam tests of the ZEUS barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Bienz, T; Caldwell, A; Chen, L; Derrick, M; Gialas, I; Hamri, A; Imlay, R; Kartik, S; Kim, H J; Kinnel, T; Kreutzmann, H; Li, C G; Lim, J N; Loveless, R; Lu, B; Mallik, U; McLean, K W; McNeil, R; Metcalf, W; Musgrave, B; Oh, B Y; Park, S; Parsons, J A; Reeder, D; Repond, J; Ritz, S; Roco, M T.P.; Sandler, P H; Sciulli, F; Smith, W H; Talaga, R L; Tzanakos, G; Wai, L; Wang, M Z; Whitmore, J; Wu, J; Yang, S [Argonne National Lab., IL (United States) Columbia Univ., New York, NY (United States) Nevis Labs., Irvington-on-Hudson, NY (United States) Univ. of Iowa, Iowa City, IA (United States) Louisiana State Univ., Baton Rouge, LA (United States) Ohio State Univ., Columbus, OH (United States) Pennsylvania State Univ., University Park, PA (United States) Virginia Polytechnic Inst., and State Univ., Blacksburg, VA (United States) Univ. of Wisconsin, Madison, WI (United States)

    1993-11-15

    A fully compensating uranium-scintillator calorimeter was constructed for the ZEUS detector at HERA. Several of the barrel calorimeter modules were subjected to beam tests at Fermilab before shipping them to DESY for installation. The calibrations of the modules used beams of electrons and hadrons, measuring the uniformity of the response, and checking the resolution. The runs also provided opportunity to test a large fraction of the actual ZEUS calorimeter readout system in an integrated beam environment more than one year before HERA turn on. The experiment utilized two computer controlled mechanical structures, one of which was capable of holding up to four modules in order to study shower containment, and a magnetic spectrometer with a high resolution beam tracking system. During two running periods, beams of 6 to 110 GeV containing e, [mu], [pi], and anti p were used. The results show energy resolutions of 35%/[radical]E for hadrons and 19%/[radical]E for electrons, uniformities at the 1% level, energy nonlinearity less than 1%, and equal response for electrons and hadrons. (orig.)

  19. The ATLAS Liquid Argon Calorimeters: integration, installation and commissioning

    International Nuclear Information System (INIS)

    Tikhonov, Yu.

    2008-01-01

    The ATLAS liquid argon calorimeter system consists of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters positioned in three cryostats. Since May 2006 the LAr barrel calorimeter records regular calibration runs and takes cosmic muon data together with tile hadronic calorimeter in the ATLAS cavern. The cosmic runs with end-cap calorimeters started in April 2007. First results of these combined runs are presented

  20. CsI Calorimeter for a Compton-Pair Telescope

    Science.gov (United States)

    Grove, Eric J.

    -reduction prototype telescope, Proto-ComPair. We will: 1. Purchase CsI(Tl) crystals, Silicon Photomultipliers (SiPMs), and components for the analog and digital readout of the SiPMs; 2. Assemble and test Crystal Detector Elements (CDEs) from crystals, SiPMs and optical wrap; 3. Assemble and test analog and digital front-end and readout control boards; 4. Fabricate the mechanical structure that supports and contains the CDEs and electronics boards; and 5. Assemble and test the CsI calorimeter, and integrate it with the remainder of the Proto-ComPair subsystems. The PI team for this proposal conceived, designed, developed, assembled, tested, and currently operates the LAT calorimeter and is uniquely qualified to leverage the experience gained from that effort for ComPair.

  1. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1991-07-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN-SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  2. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1992-01-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  3. CsI calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Bondar, A.E.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.; Epifanov, D.A.

    2015-01-01

    The VEPP-2000 e + e − collider has been operated at Budker Institute of Nuclear Physics since 2010. The experiments are performed with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon Calorimeter and crystal CsI calorimeter, and endcap calorimeter with BGO crystals. This paper describes the CsI calorimeter of the CMD-3 detector. The calorimeter design, its electronics and calibration procedures are discussed

  4. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2013-01-01

    This work summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  5. Calibration of Tilecal hadronic calorimeter of the ATLAS

    International Nuclear Information System (INIS)

    Batkova, L.

    2009-01-01

    The aim of a precise calibration of a calorimeter is to get the best response relationship between the calorimeter and the energy of incident particles. Different types of particles interact through various types of interactions with the environment. Therefore, calorimeters are optimized to detect one type of particle (electromagnetic particles and hadrons). Within current high energy physics experiments, where the detectors reached gigantic proportions, calorimeters hold two important features: - serve to measure power showers by complete absorption method; - reconstruct a direction of showers of particles after their interaction with the environment of calorimeter. To deterioration of the resolving power of the hadronic calorimeter contributes incompensation of its response to hadrons and electromagnetic particles (e, μ). They record more energy from electrons as from pions of the same nominal power. During building of experiment of the ATLAS the prototypes of Tile calorimeter were calibrated using Cs and then were tested by means of calibration particle beams (e, μ, π). The work is aimed to evaluation of the response of the muon beam calibration experiment ATLAS. The scope of the work is to determine correction factors for the calibration constants obtained from the primary calibration of the calorimeter by cesium for end Tilecal calorimeter modules. Tile calorimeter modules consist of three layers A, BC and D. A correction factor for calibration constant for A layer was determined by electron beam firing angle less than 20 grad. Muons are used to determine correction factors for the remaining two layers of the end calorimeter module, where the electrons of given energy do not penetrate. (author)

  6. The ATLAS Tile Calorimeter

    CERN Document Server

    Henriques Correia, Ana Maria

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics.

  7. The ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Henriques, A.

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)

  8. Production and quality control of optical elements for the end cap hadron calorimeter of the CMS setup

    CERN Document Server

    Abramov, V V; Korablev, A V; Korneev, Yu P; Krinitsyn, A N; Kryshkin, V I; Markov, A A; Talov, VV; Turchanovich, L K; Volkov, A A; Zaichenko, A A

    2005-01-01

    An end cap hadron calorimeter, in which scintillators with wavelength-shifting fibers are used as the active elements, has been designed for the compact muon spectrometer (CMS) now under construction at CERN. A total of 1368 optical elements containing 21 096 scintillators have already been manufactured. The production and quality control procedures for these optical elements are described. copy 2005 Pleiades Publishing, Inc.

  9. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  10. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Van Daalen, Tal Roelof; The ATLAS collaboration

    2018-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for the reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized every 25 ns by sampling the signal. About 10000 channels of the front-end electronics measure the signals of the calorimeter with energies ranging from ~30 MeV to ~2 TeV. Each step of the signal reconstruction from scintillation light to the digital pulse reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations...

  11. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  12. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.J.

    1983-12-01

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (author)

  13. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.J.; Ellis, N.N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.J.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Barnes, G.; Bowcock, T.J.V.; Eisenhandler, E.; Gibson, W.R.; Honma, A.K.; Kalmus, P.I.P.; Keeler, R.K.; Pritchard, T.W.; Salvi, G.A.P.; Thompson, G.; Arnison, G.T.J.; Astbury, A.; Cash, A.R.; Grayer, G.H.; Haynes, W.J.; Hill, D.L.; Moore, D.R.; Nandi, A.K.; Percival, M.D.; Roberts, J.H.C.; Scott, W.G.; Shah, T.P.; Stanhope, R.J.; White, D.E.A.

    1985-01-01

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (orig.)

  14. Upgrading the Atlas Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    Tile Calorimeter is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2024, after the upgrade of the LHC the peak luminosity will increase by a factor of 5 compared to the design value, thus requiring an upgrade of the Tile Calorimeter readout electronics. Except the photomultipliers tubes (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at the front-end level and sending them with 10 Gb/s optical links to the back-end electronics. One demonstrator prototype module is planned to be inserted in Tile Calorimeter in 2015 that will include hybrid electronic components able to probe the new design.

  15. International Atomic Energy Agency/Hanford Site shared use of calorimeters

    International Nuclear Information System (INIS)

    Welsh, T.L.

    1997-01-01

    Hanford Site operators combine gamma ray isotopic and calorimetry measurements for nondestructive plutonium assay. Such measurements offer lower variability (particularly for heterogeneous materials) and decreased radiation exposure, cost, waste, intrusiveness, and material handling compared to destructive analysis. Until now, the International Atomic Energy Agency (IAEA) has relied on destructive analysis to perform the most accurate verification requirements for plutonium stored under safeguards at the Hanford Site. It was recognized that using calorimetry could significantly reduce the need for the IAEA to perform destructive analysis. To authorize the operator's calorimeters for routine IAEA use, however, it was necessary to develop authentication features and perform independent 1558 testing. Authentication features include IAEA control of the hardware and calorimeter operating system software, measurement of certified IAEA standards, sealing of calorimeter chambers, and limited destructive analysis of IAEA selected items. A field test of these authentication features was performed at the Hanford Site in June 1997. The field test also was meant to enhance the credibility the IAEA imputes to calorimetry prior to its implementation. Progress in shared use of the Hanford Site calorimeters is reported

  16. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    P. De Barbaro and J. Mans.

    2013-01-01

      After the successful operation of the HCAL sub-detector during the proton-proton run in 2012 and heavy-ion run at the beginning of 2013, the group is now focusing on the following four LS1 tasks: ·       Replacement of present, thick-window, single-anode photomultipliers on HF with new, thin-window, multi-anode PMTs. The replacement of photomultipliers will reduce rate of punch-through window hits. All needed PMTs and baseboards have been delivered to CERN. A quality control station has been set up in B904. ·       Replacement of boards responsible for clock distribution in all HBHE and HO Clock and Control Modules (CCMs).  CCMs reside in each Readout Box and are only accessible when the CMS detector is open.  The installation of new CCMs will allow us to eliminate data loss caused by single-event upsets (SEUs) experienced during the 2011&ndash...

  17. A prospective randomized controlled trial of the two-window technique without membrane versus the solo-window technique with membrane over the osteotomy window for maxillary sinus augmentation.

    Science.gov (United States)

    Yu, Huajie; He, Danqing; Qiu, Lixin

    2017-12-01

    Maturation of the grafted volume after lateral sinus elevation is crucial for the long-term survival of dental implants. To compare endo-sinus histomorphometric bone formation between the solo- and two-window maxillary sinus augmentation techniques with or without membrane coverage for the rehabilitation of multiple missing posterior teeth. Patients with severely atrophic posterior maxillae were randomized to receive lateral sinus floor elevation via the solo-window technique with membrane coverage (Control Group) or the two-window technique without coverage (Test Group). Six months after surgery, bone core specimens harvested from the lateral aspect were histomorphometrically analyzed. Ten patients in each group underwent 21 maxillary sinus augmentations. Histomorphometric analysis revealed mean newly formed bone values of 26.08 ± 16.23% and 27.14 ± 18.11%, mean connective tissue values of 59.34 ± 12.42% and 50.03 ± 17.13%, and mean residual graft material values of 14.6 ± 14.56% and 22.78 ± 10.83% in the Test and Control Groups, respectively, with no significant differences. The two-window technique obtained comparative maturation of the grafted volume even without membrane coverage, and is a viable alternative for the rehabilitation of severely atrophic posterior maxillae with multiple missing posterior teeth. © 2017 Wiley Periodicals, Inc.

  18. Concerning background from calorimeter ports

    International Nuclear Information System (INIS)

    Digiacomo, N.J.

    1985-01-01

    Any detector system viewing a port or slit in a calorimeter wall will see, in addition to the primary particles of interest, a background of charged and neutral particles and photons generated by scattering from the port walls and by leakage from incompletely contained primary particle showers in the calorimeter near the port. The signal to noise ratio attainable outside the port is a complex function of the primary source spectrum, the calorimeter and port design and, of course, the nature and acceptance of the detector system that views the port. Rather than making general statements about the overall suitability (or lack thereof) of calorimeter ports, we offer here a specific example based on the external spectrometer and slit of the NA34 experiment. This combination of slit and spectrometer is designed for fixed-target work, so that the primary particle momentum spectrum contains higher momentum particles than expected in a heavy ion colliding beam environment. The results are, nevertheless, quite relevant for the collider case

  19. Upgrading the Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    The tremendous need for simulated samples now and even more so in the future, encourage the development of fast simulation techniques. The Fast Calorimeter Simulation is a faster though less accurate alternative to the full calorimeter simulation with Geant4. It is based on parametrizing the longitudunal and lateral energy deposits of single particles in the ATLAS calorimeter. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. The parametrizations are expanded to cover very high energies and very forward detector regions, to increase the applicability of the tool. A prototype of this upgraded Fast Calorimeter Simulation has been developed and first validations with single particles show substantial improvements over the previous version.

  20. Non-compensation of the ATLAS barrel combined calorimeter prototype

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.A.; Kuz'min, M.V.

    1998-01-01

    The e / π ratio for the ATLAS Barrel Combined Calorimeter Prototype, composed from electromagnetic LArg calorimeter and hadronic Tile calorimeter was investigated. Response of Combined Calorimeter on pions and electrons in the energy region of 20-300 GeV was studied. Found e / h = 1.37 ± 0.01 ± 0.02 is in good agreement with the results from previous Combined Calorimeter tests but has more precisions

  1. LHCb Calorimeter modules arrive at CERN

    CERN Multimedia

    2002-01-01

    Two of the three components of the LHCb Calorimeter system have started to arrive from Russia. Members of the LHCb Calorimeter group with the ECAL and HCAL modules that have just arrived at CERN. The first two of the 56 Hadron Calorimeter (HCAL) modules and 1200 of the 3300 modules of the Electromagnetic Calorimeter (ECAL) have reached CERN from Russia. The third part of the system, the Preshower detector, is still being prepared in Russia. The calorimeter system identifies and triggers on high-energy particles, namely electrons, hadrons and photons by measuring their positions and energies. The HCAL is going to be a pure trigger device. The ECAL will also be used in the triggering, but in addition it will reconstruct neutral pions and photons from B meson decays. One of the major aims of the LHCb experiment is to study CP violation through B meson decays including Bs mesons with high statistics in different decay modes. CP violation (violation of charge and parity) is necessary to explain why the Universe...

  2. Performance of the ATLAS Tile Calorimeter

    Science.gov (United States)

    Hrynevich, A.

    2017-06-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC . Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV . Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response and its modelling by the Monte Carlo simulations. The calorimeter time resolution is studied with multijet events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  3. Calorimeters for diagnosis of laser-fusion experiments

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1976-01-01

    A variety of calorimeters have been developed for measuring ions, x-rays, and scattered radiation emanating from laser-pulse-imploded fusion targets. The ion and x-ray calorimeters use metal or glass absorbers to reflect or transmit most of the scattered laser radiation; the versions using metal absorbers also incorporate a differential construction to compensate for the fraction of the scattered laser radiation that is absorbed. The scattered-radiation calorimeters use colored glass to absorb the radiation and a transparent glass shield to remove ions and x rays. Most of the calorimeters use commercial semiconductor thermoelectric modules as the temperature sensors

  4. The spaghetti calorimeter. Research, development, application

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, C V

    1994-12-22

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from {Sigma} decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at {sigma}/E=12.9%/{radical}E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/{radical}E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam {Sigma}{sup -}particles via its decay {Sigma}{sup -}{yields}n{pi}{sup -}. Details of the calibration of SPACAL with electrons and protons are presented. (orig.).

  5. The spaghetti calorimeter. Research, development, application

    International Nuclear Information System (INIS)

    Scheel, C.V.

    1994-01-01

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from Σ decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at σ/E=12.9%/√E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/√E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam Σ - particles via its decay Σ - →nπ - . Details of the calibration of SPACAL with electrons and protons are presented. (orig.)

  6. Gas calorimeter workshop: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Gas calorimeters combining functions of energy measurement and fine tracking have become more and more popular in the past few years. They help identify muons, gammas, electrons, and hadrons within dense tracks from transverse and longitudinal shower development. Fine segmentation capability using pads and strips on the cathodes have made gas-sampling calorimeters very attractive for colliding-beam detectors where a large multiplicity of particles are detected in a projected geometry. Linearity, energy resolution, shower position resolution, multishower resolution, and calibration questions were discussed in detail at the workshop. Ease of energy calibration by monitoring radioactive sources, good gain uniformity, and gain stability obtained were among the topics of the speakers. There was a discussion session on the operation mode of wire chambers. Gas calorimeters have been used successfully at CERN, Cornell, Fermilab, and SLAC for experiments. Some of the results from those large-scale devices were reported. Future usage of gas-sampling calorimeters for colliding-beam experiments at Fermilab and CERN were discussed. Wire chambers using extruded conductive plastic tubes have made construction easy of pads and strips which can conveniently read out induced signals from the cathode. The results of extensive studies on such devices were discussed. Separate entries were prepared for the data base for the 17 papers presented

  7. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials

    Science.gov (United States)

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman

    2015-01-01

    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  8. Upgrade of the ATLAS Tile Calorimeter Electronics

    International Nuclear Information System (INIS)

    Carrió, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year

  9. A digital calorimeter

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1983-01-01

    The paper describes a calorimeter which is used to determine the particle flux of an accelerator. It incorporates as its principal feature a Peltier module which is operated in a constant current pulse mode. Via a feedback arrangement, the Peltier module thermally compensates the heat generated by the particle beam by supplying discrete 'cooling quanta'. The number of 'quanta' generated per unit time is measured with a frequency counter and is proportional to the beam power. The calorimeter can be calibrated via internal resistors which dissipate a precisely known amount of power in the target. (orig.)

  10. Some hadron calorimeter properties relevant to storage rings

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.; Ellis, N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Eisenhandler, E.; Gibson, W.R.; Kalmus, P.I.P.; Thompson, G.; Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Hill, D.; Nandi, A.K.; Roberts, C.; Shah, T.P.

    1982-01-01

    At wide angles in a storage ring environment, a substantial part of the energy seen by a hadron calorimeter can be in the form of very low momentum particles such as jet fragments or resonance cascade decay products. Data are presented on the deviations from Gaussian resolution and linear response for such low momentum particles. The differing responses to incident e - , μ - , π +- , K +- , p and anti p at momenta below 10 GeV/c are also compared. In addition, the authors discuss the significance of angle effects for a 4π calorimeter, and the problems of combining data from calorimeters with different physical characteristics. Experimental data are presented on the difference in hadron response between a fine grain (electromagnetic) lead calorimeter and a coarser (hadron) iron calorimeter, and on the dependence of the response on the energy sharing between the two calorimeters. (Auth.)

  11. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  12. Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. It is 500 times faster than full simulation in the calorimeter system. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of mach...

  13. Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Anderson, E Walter; Antchev, Georgy; Arcidy, M; Ayan, S; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baden, Drew; Bakirci, Mustafa Numan; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barnes, Virgil E; Bawa, Harinder Singh; Baiatian, G; Bencze, Gyorgy; Beri, Suman Bala; Berntzon, Lisa; Bhatnagar, Vipin; Bhatti, Anwar; Bodek, Arie; Bose, Suvadeep; Bose, Tulika; Budd, Howard; Burchesky, Kyle; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Cerci, Salim; Chendvankar, Sanjay; Chung, Yeon Sei; Clarida, Warren; Cremaldi, Lucien Marcus; Cushman, Priscilla; Damgov, Jordan; De Barbaro, Pawel; Debbins, Paul; Deliomeroglu, Mehmet; Demianov, A; de Visser, Theo; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Dimitrov, Lubomir; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Efthymiopoulos, I; Elias, John E; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Fenyvesi, Andras; Fisher, Wade Cameron; Freeman, Jim; Ganguli, Som N; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Genchev, Vladimir; Gleyzer, Sergei V; Golutvin, Igor; Goncharov, Petr; Grassi, Tullio; Green, Dan; Gribushin, Andrey; Grinev, B; Gurtu, Atul; Murat Güler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Halyo, Valerie; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heering, Arjan Hendrix; Heister, Arno; Hunt, Adam; Ilyina, N; Ingram, D; Isiksal, Engin; Jarvis, Chad; Jeong, Chiyoung; Johnson, Kurtis F; Jones, John; Kaftanov, Vitali; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kodolova, Olga; Kohli, Jatinder Mohan; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krinitsyn, Alexander; Krishnaswamy, Marthi Ramaswamy; Krokhotin, Andrey; Kryshkin, V; Kuleshov, Sergey; Kumar, Arun; Kunori, Shuichi; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lee, Sang Joon; Levchuk, Leonid; Linn, Stephan; Litvintsev, Dmitri; Lobolo, L; Los, Serguei; Lubinsky, V; Lukanin, Vladimir; Ma, Yousi; Machado, Emanuel; Maity, Manas; Majumder, Gobinda; Mans, Jeremy; Marlow, Daniel; Markowitz, Pete; Martínez, German; Mazumdar, Kajari; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Miller, Michael; Möller, A; Mohammadi-Najafabadi, M; Moissenz, P; Mondal, Naba Kumar; Mossolov, Vladimir; Nagaraj, P; Narasimham, Vemuri Syamala; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Onengüt, G; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paktinat, S; Pal, Andras; Patil, Mandakini Ravindra; Penzo, Aldo; Petrushanko, Sergey; Petrosian, A; Pikalov, Vladimir; Piperov, Stefan; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Qian, Weiming; Ralich, Robert; Reddy, L; Reidy, Jim; Rogalev, Evgueni; Roh, Youn; Rohlf, James; Ronzhin, Anatoly; Ruchti, Randy; Ryazanov, Anton; Safronov, Grigory; Sanders, David A; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schmidt, Ianos; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Singh, B; Singh, Jas Bir; Sirunyan, Albert M; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shumeiko, Nikolai; Smirnov, Vitaly; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Stefanovich, R; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suzuki, Ichiro; Talov, Vladimir; Teplov, Konstantin; Thomas, Ray; Tonwar, Suresh C; Topakli, Huseyin; Tully, Christopher; Turchanovich, L; Ulyanov, A; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Vergili, Mehmet; Verma, Piyush; Vesztergombi, Gyorgy; Vidal, Richard; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Wang, Lei; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Whitmore, Juliana; Wu, Shouxiang; Yazgan, Efe; Yetkin, Taylan; Zálán, Peter; Zarubin, Anatoli; Zeyrek, Mehmet

    2008-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS.

  14. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2014-01-01

    This presentation summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2024. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  15. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  16. Data acquisition system for LHCb calorimeter

    International Nuclear Information System (INIS)

    Dai Gang; Gong Guanghua; Shao Beibei

    2007-01-01

    LHCb Calorimeter system is mainly used to identify and measure the energy of the photon, electron, hadron produced by the collision of proton. TELL1 is a common data acquisition platform based on FPGA for LHCb experiment. It is used to adopt custom data acquisition and process method for every detector and provide the data standard for the CPU matrix. This paper provides a novel DAQ and data process model in VHDL for Calorimeter. According to this model. We have built an effective Calorimeter DAQ system, which would be used in LHCb Experiment. (authors)

  17. Monte Carlo simulation of a gas-sampled hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C Y; Kunori, S; Rapp, P; Talaga, R; Steinberg, P; Tylka, A J; Wang, Z M

    1988-02-15

    A prototype of the OPAL barrel hadron calorimeter, which is a gas-sampled calorimeter using plastic streamer tubes, was exposed to pions at energies between 1 and 7 GeV. The response of the detector was simulated using the CERN GEANT3 Monte Carlo program. By using the observed high energy muon signals to deduce details of the streamer formation, the Monte Carlo program was able to reproduce the observed calorimeter response. The behavior of the hadron calorimeter when placed behind a lead glass electromagnetic calorimeter was also investigated.

  18. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Marjanovic, Marija; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of the full readout chain during the data taking, a set of calibration sub-systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements, and an integrator based readout system. Combined information from all systems allows to monitor and to equalize the calorimeter response at each stage of the signal evolution, from scintillation light to digitization. Calibration runs are monitored from a data quality perspective and u...

  19. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  20. The large hadron collider beauty experiment calorimeters

    International Nuclear Information System (INIS)

    Martens, A.; LHCb Collaboration; Martens, A.

    2010-01-01

    The Large Hadron Collider beauty experiment (LHCb), one of the four largest experiments at the LHC at CERN, is dedicated to precision studies of CP violation and other rare effects, in particular in the b and c quark sectors. It aims at precisely measuring the Standard Model parameters and searching for effects inconsistent with this picture. The LHCb calorimeter system comprises a scintillating pad detector, a pre-shower (PS), electromagnetic (ECAL) and hadronic calorimeters, all of these employing the principle of transporting the light from scintillating layers with wavelength shifting fibers to photomultipliers. The fast response of the calorimeters ensures their key role in the LHCb trigger, which has to cope with the LHC collision rate of 40MHz. After discussing the design and expected performance of the LHCb calorimeter system, one addresses the time and energy calibration issues. The results obtained with the calorimeter system from the first LHC data will be shown.

  1. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  2. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  3. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  4. Comparison of the NPL water calorimeter with other dosimetric techniques for high energy photon beams

    International Nuclear Information System (INIS)

    Rosser, K.E.; Williams, A.J.

    1999-01-01

    At present, the primary standard of absorbed dose to water at NPL in high energy photon beams is a graphite calorimeter. However the quantity of interest in radiation dosimetry is absorbed dose to water. Therefore, a new absorbed dose to water standard based on water calorimetry is being developed at NPL. The calorimeter operates at 4 deg. C, with temperature control being provided by a combination of liquid and air cooling. The sealed glass inner vessel of the calorimeter has been designed to minimise the effect of non-water materials on the measurement of absorbed dose. Measurements of absorbed dose to water made in 6, 10 and 19 MV photon beams agreed within the measurement uncertainties with those determined using the primary standard graphite calorimeter. Also the absorbed dose to water measured using the water calorimeter agrees with that based on the air kerma standards for 60 Co γ-radiation within the uncertainties. The development of the water calorimeter will lead to a very robust dosimetry system at NPL, where the absorbed dose to water can be determined using three independent techniques. (author)

  5. Rugged calorimeter with a fast rise time

    International Nuclear Information System (INIS)

    McMurtry, W.M.; Dolce, S.R.

    1980-01-01

    An intrinsic 1-mil-thick gold foil calorimeter has been developed which rises to 95% of the energy deposited in less than 2 microseconds. This calorimeter is very rugged, and can withstand rough handling without damage. The time constant is long, in the millisecond range, because of its unique construction. Use of this calorimeter has produced 100% data recovery, and agreement with true deposition to less than 10%

  6. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    International Nuclear Information System (INIS)

    Nigmanov, T. S.; Gustafson, H. R.; Longo, M. J.; Rajaram, D.

    2006-01-01

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons produced in π, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The purpose of the calorimeters is to measure the production of forward-going photons and neutrons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. We collected data with a variety of targets with beam energies from 5 GeV/c up to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons and protons is discussed. The performance of the calorimeters was tested on a neutron sample

  7. The ATLAS hadronic tile calorimeter from construction toward physics

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Binet, S; Biscarat, C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, Yu A; Caloba, L; Calvet, D; Carvalho, J; Castelo, J; Castillo, M V; Sforza, M C; Cavasinni, V; Cerqueira, A S; Chadelas, R; Costanzo, D; Cogswell, F; Constantinescu, S; Crouau, M; Cuenca, C; Damazio, D O; Daudon, F; David, M; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Fedorko, I; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Fullana, E; Garde, V; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giangiobbe, V; Giokaris, N; Gomes, A; González, V; Grabskii, V; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Henriques, A; Higón, E; Holmgren, S O; Hurwitz, M; Huston, J; Iglesias, C; And, K J; Junk, T; Karyukhin, A N; Khubua, J; Klereborn, J; Korolkov, I Ya; Krivkova, P; Kulchitskii, Yu A; Kurochkin, Yu; Kuzhir, P; Lambert, D; Le Compte, T; Lefèvre, R; Leitner, R; Lembesi, M; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Amengual, J M L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Montarou, G; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I A; Miralles, L; Némécek, S; Nessi, M; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M J; Pantea, D; Pallin, D; Pilcher, J E; Pina, J; Pinhão, J; Podlyski, F; Portell, X; Poveda, J; Price, L E; Pribyl, L; Proudfoot, J; Ramstedt, M; Reinmuth, G; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Rumiantsau, V; Russakovich, N; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Satsunkevich, I S; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shevtsov, P; Shochet, M; Da Silva, P; Silva, J; Simaitis, V; Sissakian, A N; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Stanek, R; Starchenko, E A; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tsulaia, V; Underwood, D; Usai, G; Valkár, S; Valls, J A; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2006-01-01

    The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. The construction phase of the calorimeter is nearly complete, and most of the effort now is directed toward the final assembly and commissioning in the underground experimental hall. The layout of the calorimeter and the tasks carried out during construction are described, first with a brief reminder of the requirements that drove the calorimeter design. During the last few years a comprehensive test-beam program has been followed in order to establish the calorimeter electromagnetic energy scale, to study its uniformity, and to compare real data to Monte Carlo simulation. The test-beam setup and first results from the data are described. During the test-beam period in 2004, lasting several months, data have been acquired with a complete slice of the central ATLAS calorimeter. The data collected in the test-beam are crucial in order to study...

  8. The CHORUS calorimeter: test results

    International Nuclear Information System (INIS)

    Buontempo, S.; Capone, A.; Cocco, A.G.; De Pedis, D.; Di Capua, E.; Dore, U.; Ereditato, A.; Ferroni, M.; Fiorillo, G.; Loverre, P.F.; Luppi, C.; Macina, D.; Mazzoni, M.A.; Migliozzi, P.; Palladino, V.; Piredda, G.; Riccardi, F.; Righini, P.P.; Saitta, B.; Santacesaria, R.; Strolin, P.; Zucchelli, P.

    1995-01-01

    In the framework of the CHORUS experiment for the search of ν μ ν τ oscillations at CERN, we have built the high resolution calorimeter, intended for the measurement of the energy of hadronic showers produced in neutrino interactions. The calorimeter consists of three parts. The first two are made of lead and plastic scintillating fibers in the volume ratio 4 : 1, such as to achieve compensation. The third is a sandwich of lead plates and scintillator strips in the same volume ratio. The techniques used for the construction of the calorimeter are described, as well as its performance in shower and muon detection. We used electron, pion and muon beams in the energy range 2-100 GeV for this purpose. (orig.)

  9. The CMS crystal calorimeter

    CERN Document Server

    Lustermann, W

    2004-01-01

    The measurement of the energy of electrons and photons with very high accuracy is of primary importance far the study of many physics processes at the Large Hadron Collider (LHC), in particular for the search of the Higgs Boson. The CMS experiment will use a crystal calorimeter with pointing geometry, almost covering 4p, as it offers a very good energy resolution. It is divided into a barrel composed of 61200 lead tungstate crystals, two end-caps with 14648 crystals and a pre-shower detector in front of the end-cap. The challenges of the calorimeter design arise from the high radiation environment, the 4 Tesla magnetic eld, the high bunch crossing rate of 40 MHz and the large dynamic range, requiring the development of fast, radiation hard crystals, photo-detectors and readout electronics. An overview of the construction and design of the calorimeter will be presented, with emphasis on some of the details required to meet the demanding performance goals. 19 Refs.

  10. METROLOGICAL PERFORMANCES OF BOMB CALORIMETERS AT REAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Yu. V. Maksimuk

    2016-01-01

    Full Text Available The high-usage measurement equipment for heat of combustion of organic fuels are bomb isoperibol calorimeters with a water thermostat. The stability of work of calorimeters at real conditions is important for maintenance of reliability of measurement results. The article purpose – the analysis of stability for parameters of calorimeters to environment changes. In this work influence room temperature (Тк and heat exchange conditions on metrological characteristics of two models of calorimeters is considered with different degree of thermal protection: V-08МА and BIC 100. For calorimeters V-08МА the increase in a effective heat capacity (W on 0,1 % by growth of Tк on everyone 5 °С is established. To use value W in all interval laboratory temperatures Tк = 14–28 °С it is necessary to correct W on 2,8 J/°C on everyone 1 °С changes of Tк. Updating W is required, if the correction exceeds error in determination W. For calorimeter BIC 100 it is not revealed dependences W from Tк. BIC 100 have constant-temperature cap, high stability a temperature in thermostat and stabilized heat exchange. It is established that an standard deviation of cooling constant for all calorimeters in direct proportional to standard deviation W. 

  11. Manufacturing of a graphite calorimeter at Yazd Radiation Processing Center

    International Nuclear Information System (INIS)

    Ziaie, F.

    2004-01-01

    In this work, a few quasi-adiabatic graphite calorimeters of different dimensions are described. The calorimeters have been manufactured by ourselves and studied for accurate absorbed dose measurements in 10 MeV electron beam. In order to prove the accuracy and reliability of dose measurements with the use of self designed graphite calorimeters (SCD), an inter comparison study was performed on these calorimeters and Risoe graphite calorimeters (SC,standard calorimeter) at different doses by using Rhodothron accelerator. The comparison shows conclusively of the optimal size, the results agreeing with those obtained with the Sc within 1%. (author)

  12. Commissioning and calibration of the Zero Degree Calorimeters for the ALICE experiment

    International Nuclear Information System (INIS)

    Gemme, R.; Arnaldi, R.; Chiavassa, E.; Cicalo, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; De Marco, N.; Ferretti, A.; Floris, M.; Gagliardi, M.; Gallio, M.; Luparello, G.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Puddu, G.

    2009-01-01

    The ALICE experiment at the CERN LHC will study the properties of matter at the extreme temperature and energy density conditions produced in heavy ion collisions. The impact parameter of the collision will be estimated by means of the Zero Degree Calorimeters (ZDC), that measure the energy carried away by the non-interacting (spectator) nucleons. All the spectator nucleons have the same energy, therefore the calorimeter response is proportional to their number, providing a direct information on the centrality of the collision. Two identical sets of hadronic calorimeters are located at opposite sides with respect to the interaction point, 116 m away from it, where the two LHC beams circulate in two different pipes. Each set of detectors consists of a neutron (ZN) calorimeter, placed between the two beam pipes and a proton (ZP) calorimeter, positioned externally to the outgoing beam pipe. The ZDC are spaghetti calorimeters, which detect the Cherenkov light produced by the charged particles of the shower in the quartz fibers, acting as the active material embedded in a dense absorber matrix. In summer 2007 the ZN and ZP calorimeters have been placed on a movable platform and then installed in the LHC tunnel. The results of the commissioning studies are shown. The monitoring systems adopted to control the stability of the PMT responses, i.e. light injection with a laser diode and cosmic rays, are described in detail. The foreseen calibration with e.m. dissociation events in Pb-Pb collisions will also be discussed. Finally the first measurements carried out during the commissioning in the LHC tunnel will be presented.

  13. MARK II end cap calorimeter electronics

    International Nuclear Information System (INIS)

    Jared, R.C.; Haggerty, J.S.; Herrup, D.A.; Kirsten, F.A.; Lee, K.L.; Olson, S.R.; Wood, D.R.

    1985-10-01

    An end cap calorimeter system has been added to the MARK II detector in preparation for its use at the SLAC Linear Collider. The calorimeter uses 8744 rectangular proportional counter tubes. This paper describes the design features of the data acquisition electronics that has been installed on the calorimeter. The design and use of computer-based test stands for the amplification and signal-shaping components is also covered. A portion of the complete system has been tested in a beam at SLAC. In these initial tests, using only the calibration provided by the test stands, a resolution of 18%/√E was achieved

  14. New high-gain thin-gap detector for the OPAL hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Dado, S; Goldberg, J; Lupu, N; Mincer, A I; Alexander, G; Bella, G; Gnat, Y; Grunhaus, J; Levy, A; Cohen, J

    1986-12-01

    A new type of thin-gap multiwire gas detector operating in a high-gain mode was developed for use in the OPAL pole-tip calorimeter. The detector thickness is only 6.6 mm and its area is 0.61 m/sup 2/. The induced pad readout provides high output pulses that require no amplification. The setup for the detector mass production and quality-control test is described. Results from a test beam setup that simulates the OPAL pole-tip calorimeter are presented and compared with computer simulations.

  15. Upgrading the ATLAS Tile Calorimeter Electronics

    Directory of Open Access Journals (Sweden)

    Carrió Fernando

    2013-11-01

    Full Text Available This work summarizes the status of the on-detector and off-detector electronics developments for the Phase 2 Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in the middle of 2014 during the first Long Shutdown. For the on-detector readout, three different front-end boards (FEB alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The Main Board will provide communication and control to the FEBs and the Daughter Board will transmit the digitized data to the off-detector electronics in the counting room, where the super Read-Out Driver (sROD will perform processing tasks on them and will be the interface to the trigger levels 0, 1 and 2.

  16. 3-D heat transfer computer calculations of the performance of the IAEA's air-bath calorimeters

    International Nuclear Information System (INIS)

    Elias, E.; Kaizermann, S.; Perry, R.B.; Fiarman, S.

    1989-01-01

    A three dimensional (3-D) heat transfer computer code was developed to study and optimize the design parameters and to better understand the performance characteristics of the IAEA's air-bath calorimeters. The computer model accounts for heat conduction and radiation in the complex materials of the calorimeter and for heat convection and radiation at its outer surface. The temperature servo controller is modelled as an integral part of the heat balance equations in the system. The model predictions will be validated against test data using the ANL bulk calorimeter. 11 refs., 6 figs

  17. Dead Time in the LAr Calorimeter Front-End Readout

    CERN Document Server

    Gingrich, D M

    2002-01-01

    We present readout time, latency, buffering, and dead-time calculations for the switched capacitor array controllers of the LAr calorimeter. The dead time is compared with algorithms for the dead-time generation in the level-1 central trigger processor.

  18. High luminosity liquid-argon calorimeter test beam

    Energy Technology Data Exchange (ETDEWEB)

    Novgorodova, Olga; Straessner, Arno [TU Dresden, IKTP (Germany)

    2016-07-01

    In the future HL-LHC the luminosity will increase by factor of 5-7 with respect to the original LHC design. The HiLum collaboration studied the impact on small-sized modules of the ATLAS electromagnetic, hadronic, and forward calorimeters also instrumented by various intensity and position detectors. The intensity of beam varied over a wide range (10{sup 6} to 10{sup 12} p/s) and beyond the maximum expected at HL-LHC for these calorimeters. Results from the last test beam campaign in 2013 on the signal shape analysis from the calorimeter modules are compared with MC simulations. The correlation between high-voltage return currents of the electromagnetic calorimeter and beam intensity is used to estimate critical parameters and compared with predictions.

  19. The ZEUS uranium-scintillator calorimeter for HERA

    International Nuclear Information System (INIS)

    Hilger, E.

    1987-01-01

    The high resolution calorimeter for the ZEUS detector at HERA is presented. The choice of a sandwich calorimeter from depleted uranium plates and plastic scintillator was made to accomplish compensation and thus the best possible energy resolution for hadrons and jets. The calorimeter is segmented transversely into towers and longitudinally into an electromagnetic and one or two hadronic sections. It is divided in a forward, barrel and rear part which surround hermetically the interaction region and the inner detectors. The expected energy resolutions are for electrons σ(E)/E = 0.15/√E, and for hadrons σ(E)/E = 0.35/√E, with a constant term of maximum 2% added in quadrature. First results from calorimeter test measurements are presented. (orig.)

  20. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  1. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. The new ATLAS Fast Calorimeter Simulation (FastCaloSim) is an improved parametrisation compared to the one used in the LHC Run-1. It provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The new FastCaloSim incorporates developments in geometry and physics lists of the last five years and benefit...

  2. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00176100; The ATLAS collaboration

    2016-01-01

    The physics and performance studies of the ATLAS detector at the Large Hadron Collider re- quire a large number of simulated events. A GEANT4 based detailed simulation of the ATLAS calorimeter systems is highly CPU intensive and such resolution is often unnecessary. To reduce the calorimeter simulation time by a few orders of magnitude, fast simulation tools have been developed. The Fast Calorimeter Simulation (FastCaloSim) provides a parameterised simulation of the particle energy response at the calorimeter read-out cell level. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: it incorporates developments in geometry and physics lists during the last five years and benefits from the knowledge acquired from the Run 1 data. The algorithm uses machine learning techniques to improve the parameterisations and to optimise the amount of information to be stored in the...

  3. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Hrynevich, Aliaksei; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadr...

  4. Upgrading the ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The original version of FastCaloSim has been very important in the LHC Run-1, with several billion events simulated. An improved parametrisation is being developed, to eventually address shortcomings of the original version. It incorporates developme...

  5. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Dias, Flavia; The ATLAS collaboration

    2016-01-01

    A very large number of simulated events is required for physics and performance studies with the ATLAS detector at the Large Hadron Collider. Producing these with the full GEANT4 detector simulation is highly CPU intensive. As a very detailed detector simulation is not always required, fast simulation tools have been developed to reduce the calorimeter simulation time by a few orders of magnitude. The fast simulation of ATLAS for the calorimeter systems used in Run 1, called Fast Calorimeter Simulation (FastCaloSim), provides a parameterized simulation of the particle energy response at the calorimeter read-out cell level. It is then interfaced to the ATLAS digitization and reconstruction software. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: It incorporates developments in geometry and physics lists of the last five years and benefits from knowledge acquire...

  6. Reactor Gamma Heat Measurements with Calorimeters and Thermoluminescence Dosimeters

    DEFF Research Database (Denmark)

    Haack, Karsten; Majborn, Benny

    1973-01-01

    Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than calorimet......Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than...... calorimeters, but possess advantages such as a small probe size and the possibility of making simultaneous measurements at many different positions. Hence, thermoluminescence dosimeters may constitute a valuable supplement to calorimeters for reactor γ-ray heating measurements....

  7. Performance of the SLD Warm Iron Calorimeter prototype

    International Nuclear Information System (INIS)

    Callegari, G.; Piemontese, L.; De Sangro, R.; Peruzzi, I.; Piccolo, M.; Busza, W.; Friedman, J.; Johnson, A.; Kendall, H.; Kistiakowsky, V.

    1986-03-01

    A prototype hadron calorimeter, of similar design to the Warm Iron Calorimeter (WIC) planned for the SLD experiment, has been built and its performance has been studied in a test beam. The WIC is an iron sampling calorimeter whose active elements are plastic streamer tubes similar to those used for the Mont-Blanc proton decay experiment. The construction and operation of the tubes will be briefly described together with their use in an iron calorimeter - muon tracker. Efficiency, resolution and linearity have been measured in a hadron/muon beam up to 11 GeV. The measured values correspond to the SLD design goals

  8. Preliminary study on field buses for the control system of the high voltage of the ATLAS hadronic calorimeter; Etude preliminaire d`un reseau de terrain pour le systeme de controle des hautes tensions du calorimetre hadronique d`Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Drevet, F.; Chadelas, R.; Montarou, G.

    1996-12-31

    We present here after a preliminary study on field buses for the control system of the high voltage of the photomultipliers of the TILECAL calorimeter. After some generalities, different commercial buses are reviewed (CAN, ARCET, WorldFIP, Profibus and LonWorks). The Profibus and LonWorks solution are more extensively studies as a possible solution for the high voltage system of the TILE hadronic calorimeter. (authors).

  9. A calorimeter for the electrolytic cell and other open systems

    International Nuclear Information System (INIS)

    Ferrari, C.; Papucci, F.; Salvetti, G.; Tognoni, E.; Tombari, E.

    1996-01-01

    It is presented a calorimetric method and the construction details of a differential calorimeter use full for studying the reaction in an electrolytic cell and more generally slow chemico-physical processes occurring in the thermodynamically open systems. The method allows measurements of the heat balance of the cell, from which the enthalpy change of the process under investigation can be calculated. the theoretical description of the calorimetric cell and the results of several studies planned to describe the performances of the instrument up to the boiling point of the electrolytic solution are reported. The features of this calorimeter fulfill most of the requirements of 'cold fusion' experiments, where the heat production is the fundamental and controversial aspect. By controlling both the heat and the matter exchanged, the calorimeter can be utilised also to study bio energetic processes, e. g. fermentation, microbial metabolism and biodegradation, and liquid phase chemical reactions, involving gases as reactants and/or products

  10. Modeling of Reaction Calorimeter

    OpenAIRE

    Farzad, Reza

    2014-01-01

    The purpose of this project was to model the reaction calorimeter in order to calculate the heat of absorption which is the most important parameter in this work. Reaction calorimeter is an apparatus which is used in measuring the heat of absorption of CO2 as well as the total pressure in vapor phase based on vapor-liquid equilibrium state. Mixture of monoethanolamine (MEA) and water was used as a solvent to absorb the CO2.Project was divided in to three parts in order to make the programming...

  11. The SDC central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Proudfoot, J.

    1992-01-01

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design.

  12. The SDC central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Proudfoot, J.; The SDC Collaboration

    1992-11-01

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R&D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design.

  13. New high gain thin gap detector for the OPAL hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Dado, S; Goldberg, J; Lupu, N; Mincer, A I; Alexander, G; Bella, G; Gnat, Y; Grunhaus, J; Levy, A; Cohen, J

    1986-12-01

    A new type of thin gap multiwire gas detector operating in a high gain mode has been developed for use in the OPAL pole tip calorimeter. The detector thickness is only 6.6 mm and its area is 0.61 m/sup 2/. The induced pad readout provides high output pulses which require no amplification. The set-up for the detector mass production and quality control test is described. Results from a test beam set-up that simulates the OPAL pole tip calorimeter are presented and compared with computer simulations.

  14. Results from an expanded combined test of an EM LAr calorimeter with a hadronic scintillating-tile calorimeter

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Boldea, V.; Constantinescu, S.; Dita, S.; Pantea, V.

    1999-01-01

    The future ATLAS experiment at the CERN Large Hadron Collider (LHC) will include in the central ('barrel') region a calorimeter system composed of two separate units: a liquid argon (LAr) electromagnetic calorimeter and a scintillating-tile hadronic calorimeter. This system must be capable of identifying electrons, photons, and jets and of reconstructing their energies and angles, as well as of measuring missing transverse energy in the event. Over the past few years, several prototypes of the two calorimeters went through a series of separate tests, carried out at CERN SPS in beams of pions, muons and electrons at several values for incident momenta in the range 10 - 300 GeV/c. The barrel calorimeters were tested as well in a combined mode. An azimuthal sector of the ATLAS barrel calorimeter was reproduced by placing the hadronic device downstream of the electromagnetic calorimeter. The first combined test has been done in 1994 and a second one, with the same prototypes, in 1996. The experimental setup is shown. In order to try to understand the energy loss in dead material between the active part of the LAr and the Tile detectors in 1996 test, a layer of scintillator was installed, called the midsampler. It consists of five scintillators, 20 cm x 100 cm each, fastened directly to the front face of the Tile modules. The scintillator is 1 cm thick, and is readout using ten 1 mm WLS fibers on each of the long sides. Electrons were reconstructed in the EM calorimeter for two purposes: to estimate the electron response in the EM section for the evaluation of the e/h ratio and to measure the energy resolution and linearity in order to verify the quality of the response. The fitted energy resolution, corrected for a beam momentum spread of 0.3 %, is: σ E /E (12.15 ± 0.23)%/ √E + (0.0 ± 0.20) % + (374 ± 54) MeV/E. The linearity is, within errors, better than 1%. The energy resolution for hadrons is affected by several factors: sampling fluctuations, the electronic

  15. ALICE Zero Degree Calorimeter (ZDC), General Pictures.

    CERN Multimedia

    2003-01-01

    The ZDC Calorimeter for spectator neutrons is made by 44 slabs of W-alloy; each slab has 44 grooves where quartz fibres are placed. The charged particles of the hadronic shower generated by the neutrons make Cerenkov light in the fibres and the light is collected by photomultipliers. Photos from 1 to 9 show the front-face of the calorimeter. Photo n. 10 shows the rear of the calorimeter where the fibres are divided in several groups to go to the different PMs.

  16. Vacuum-jacketed hydrofluoric acid solution calorimeter

    Science.gov (United States)

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  17. Calorimeter prediction based on multiple exponentials

    International Nuclear Information System (INIS)

    Smith, M.K.; Bracken, D.S.

    2002-01-01

    Calorimetry allows very precise measurements of nuclear material to be carried out, but it also requires relatively long measurement times to do so. The ability to accurately predict the equilibrium response of a calorimeter would significantly reduce the amount of time required for calorimetric assays. An algorithm has been developed that is effective at predicting the equilibrium response. This multi-exponential prediction algorithm is based on an iterative technique using commercial fitting routines that fit a constant plus a variable number of exponential terms to calorimeter data. Details of the implementation and the results of trials on a large number of calorimeter data sets will be presented

  18. CMS Calorimeter Trigger Phase I upgrade

    International Nuclear Information System (INIS)

    Klabbers, P; Gorski, T; Bachtis, M; Dasu, S; Fobes, R; Grothe, M; Ross, I; Smith, W H; Compton, K; Farmahini-Farahani, A; Gregerson, A; Seemuth, D; Schulte, M

    2012-01-01

    We present a design for the Phase-1 upgrade of the Compact Muon Solenoid (CMS) calorimeter trigger system composed of FPGAs and Multi-GBit/sec links that adhere to the μTCA crate Telecom standard. The upgrade calorimeter trigger will implement algorithms that create collections of isolated and non-isolated electromagnetic objects, isolated and non-isolated tau objects and jet objects. The algorithms are organized in several steps with progressive data reduction. These include a particle cluster finder that reconstructs overlapping clusters of 2x2 calorimeter towers and applies electron identification, a cluster overlap filter, particle isolation determination, jet reconstruction, particle separation and sorting.

  19. Graphite calorimeter, the primary standard of absorbed dose at BNM-LNHB

    International Nuclear Information System (INIS)

    Daures, J.; Ostrowsky, A.; Chauvenet, B.

    2002-01-01

    The graphite calorimeter is the standard for absorbed dose to water at BNM-LNHB. The transfer from absorbed dose to graphite to absorbed dose to water is then performed by means of chemical dosimeters and ionisation chamber measurements. Therefore the quality of graphite calorimeter measurements is essential. The present graphite calorimeter is described. The characteristics of this calorimeter are pointed out. Special attention is given to the thermal feedback of the core, which is the main difference with the Domen-type calorimeter. The repeatability and reproducibility of the mean absorbed dose in the calorimeter core are presented in detail. As an example, individual measurements in the 20 MV photon beam from our Saturne 43 linac are given. The y-axis quantity is the mean absorbed dose in the core divided by the reference ionisation chamber charge. Both are normalised to the monitor ionisation chamber charge. The standard deviation (of the distribution itself) is 0.12 % for the first set of measurements performed in 1999. In 2002, for each different series, the standard deviation is 0.03%. The improvement on the 2002 standard deviation is mainly due to the change of the ionisation chamber used for the beam monitoring of the linac. Some benefit also comes from changes on the thermal control and measuring systems (nanovoltmeters, Wheatstone bridges, power supplies, determination of the measuring bridge sensitivity (V/Ω.) ). The maximum difference between the means of the three series is 0.08%. This difference is due to the variation of not only the calorimetric measurements but also of the reference ionisation chamber response, of the position of the assembly and of the monitoring of the beam. The stability of the linac (electron energy, photon beam shape) has to be very good too in order to obtain this global performance. The correction factors necessary to determine the absorbed dose to graphite at the reference point in an homogeneous phantom from the

  20. Radiation-Hard Quartz Cerenkov Calorimeters

    International Nuclear Information System (INIS)

    Akgun, U.; Onel, Y.

    2006-01-01

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment

  1. Assembly of the CMS hadronic calorimeter

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  2. Performance evaluation of a commercially available heat flow calorimeter and applicability assessment for safeguarding special nuclear materials

    International Nuclear Information System (INIS)

    Bracken, D.S.; Biddle, R.; Rudy, C.

    1998-01-01

    The performance characteristics of a commercially available heat-flow calorimeter will be presented. The heat-flow sensors within the calorimeter are based on thermopile technology with a vendor-quoted sensitivity of 150 microV/mW. The calorimeter is a full-twin design to compensate for ambient temperature fluctuations. The efficacy of temperature fluctuation compensations will also be detailed. Finally, an assessment of design applicability to special nuclear materials control and accountability and safeguarding will be presented

  3. Study of a novel electromagnetic liquid argon calorimeter TGT

    International Nuclear Information System (INIS)

    Berger, C.; Braunschweig, W.; Geulig, E.

    1994-01-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a test beam exposure. 15 refs., 16 figs., 2 tabs

  4. Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Ajaltouni, Ziad J; Alifanov, A; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K J; Astvatsaturov, A R; Aubert, Bernard; Augé, E; Autiero, D; Azuelos, Georges; Badaud, F; Baisin, L; Battistoni, G; Bazan, A; Bee, C P; Bellettini, Giorgio; Berglund, S R; Berset, J C; Blaj, C; Blanchot, G; Blucher, E; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bouhemaid, N; Brette, P; Bromberg, C; Brossard, M; Budagov, Yu A; Buono, S; Calôba, L P; Camin, D V; Canton, B; Casado, M P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chase, Robert L; Chekhtman, A; Chevaleyre, J C; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Cozzi, L; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; de La Taille, C; Del Prete, T; Depommier, P; de Saintignon, P; De Santo, A; Dinkespiler, B; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Fassnacht, P; Fedyakin, N N; Ferrari, A; Ferreira, P; Ferrer, A; Flaminio, Vincenzo; Fouchez, D; Fournier, D; Fumagalli, G; Gallas, E J; Gaspar, M; Gianotti, F; Gildemeister, O; Gingrich, D M; Glagolev, V V; Golubev, V B; Gómez, A; González, J; Gordon, H A; Grabskii, V; Hakopian, H H; Haney, M; Hellman, S; Henriques, A; Holmgren, S O; Honoré, P F; Hostachy, J Y; Huston, J; Ivanyushenkov, Yu M; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Khokhlov, Yu A; Klioukhine, V I; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Laborie, G; Lami, S; Lapin, V; Lebedev, A; Lefebvre, M; Le Flour, T; Leitner, R; León-Florián, E; Leroy, C; Le Van-Suu, A; Li, J; Liba, I; Linossier, O; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; Lund-Jensen, B; Mahout, G; Maio, A; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marroquin, F; Martin, L; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miotto, A; Miralles, L; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Muanza, G S; Nagy, E; Némécek, S; Nessi, Marzio; Nicoleau, S; Noppe, J M; Olivetto, C; Orteu, S; Padilla, C; Pallin, D; Pantea, D; Parrour, G; Pereira, A; Perini, L; Perlas, J A; Pétroff, P; Pilcher, J E; Pinfold, James L; Poggioli, Luc; Poirot, S; Polesello, G; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Resconi, S; Richards, R; Riu, I; Romanov, V; Ronceux, B; Rumyantsev, V; Rusakovitch, N A; Sala, P R; Sanders, H; Sauvage, G; Savard, P; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Scheel, C V; Schwemling, P; Schindling, J; Seguin-Moreau, N; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shchelchkov, A S; Shevtsov, V P; Shochet, M J; Sidorov, V; Simaitis, V J; Simion, S; Sissakian, A N; Solodkov, A A; Sonderegger, P; Soustruznik, K; Stanek, R; Starchenko, E A; Stephani, D; Stephens, R; Studenov, S; Suk, M; Surkov, A; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Tisserant, S; Tokár, S; Topilin, N D; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Wagner, D; White, Alan R; Wingerter-Seez, I; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zdrazil, M; Zitoun, R; Zolnierowski, Y

    1996-01-01

    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle $\\theta$ of about 11$^\\circ$ is well-described by the expression $\\sigma/E = ((46.5 \\pm 6.0)\\%/\\sqrt{E} +(1.2 \\pm 0.3)\\%) \\oplus (3.2 \\pm 0.4)~\\mbox{GeV}/E$. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied.

  5. Measurements with the Hungarian Heat-Flow Calorimeter

    International Nuclear Information System (INIS)

    Bod, L.

    1970-01-01

    This calorimeter, like the others, consists of three essential parts: 1) the calorimetric sample; the radiation energy absorbed therein is to be determined; 2) the jacket; a well defined environment which includes the calorimetric sample; 3) the heat transfer medium, separating the former two. The measurement with this calorimeter consists of the determination of the equilibrium temperature difference between the calorimetric sample and the jacket of the calorimeter in the radiation field. From this the radiation energy absorbed in the calorimetric sample can be evaluated

  6. ANL four-meter calorimeter design and operation manual

    International Nuclear Information System (INIS)

    Perry, R.B.; Lewis, R.N.; Youngdahl, G.A.; Jung, E.A.; Roche, C.T.

    1980-02-01

    The four-meter fuel rod calorimetric system measures the thermal power produced by radioactive decay of fuel rods containing Pu. The Pu mass is related to the measured power through the weighted average of the product of the isotopic decay energies and the decay constants of the Pu isotopes present. U content has no effect since the thermal power produced by the U nuclides is insignificant when compared to Pu. Radiations from Pu are alpha particles and low-energy photons. This calorimeter will measure samples producing power up to 1.5 watts at a rate of one sample every 120 min. The instrument consists of a data-acquisition module made up of a microprocessor, with an 8K-byte nonvolatile memory, a control cabinet and the calorimeter chamber

  7. Analytical heat transfer modeling of a new radiation calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)

    2016-06-10

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  8. Analytical heat transfer modeling of a new radiation calorimeter

    International Nuclear Information System (INIS)

    Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric

    2016-01-01

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  9. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  10. LHCb: Physics with the LHCb calorimeter

    CERN Multimedia

    Barsuk, S

    2007-01-01

    The LHCb calorimeter comprises the scintillator pad detector (SPD), preshower (PS), electromagnetic Shashlyk type (ECAL) and hadronichadronic Tile (HCAL) calorimeters, arranged in pseudo-projective geometry. All the four detectors follow the general principle of reading the light from scintillator tiles with wave length shifting fibers, and transporting the light towards photomultipliers (25 ns R/O).

  11. The H1 lead/scintillating-fibre calorimeter

    International Nuclear Information System (INIS)

    Appuhn, R.D.; Arndt, C.; Barrelet, E.

    1996-08-01

    The backward region of the H1 detector has been upgraded in order to provide improved measurement of the scattered electron in deep inelastic scattering events. The centerpiece of the upgrade is a high-resolution lead/scintillating-fibre calorimeter. The main design goals of the calorimeter are: good coverage of the region close to the beam pipe, high angular resolution and energy resolution of better than 2% for 30 GeV electrons. The calorimeter should be capable of providing coarse hadronic energy measurement and precise time information to suppress out-of-time background events at the first trigger level. It must be compact due to space restrictions. These requirements were fulfilled by constructing two separate calorimeter sections. The inner electromagnetic section is made of 0.5 mm scintillating plastic fibres embedded in a lead matrix. Its lead-to-fibre ratio is 2.3:1 by volume. The outer hadronic section consists of 1.0 mm diameter fibres with a lead-to-fibre ratio of 3.4:1. The mechanical construction of the new calorimeter and its assembly in the H1 detector are described. (orig.)

  12. The H1 lead/scintillating-fibre calorimeter

    International Nuclear Information System (INIS)

    Appuhn, R.-D.; Arndt, C.; Barrelet, E.

    1997-01-01

    The backward region of the H1 detector has been upgraded in order to provide improved measurement of the scattered electron in deep inelastic scattering events. The centerpiece of the upgrade is a high-resolution lead/scintillating-fibre calorimeter. The main design goals of the calorimeter are: good coverage of the region close to the beam pipe, high angular resolution and energy resolution of better than 2% for 30 GeV electrons. The calorimeter should be capable of providing coarse hadronic energy measurement and precise time information to suppress out-of-time background events at the first trigger level. It must be compact due to space restrictions. These requirements were fulfilled by constructing two separate calorimeter sections. The inner electromagnetic section is made of 0.5 mm scintillating plastic fibres embedded in a lead matrix. Its lead-to-fibre ratio is 2.3:1 by volume. The outer hadronic section consists of 1.0 mm diameter fibres with a lead-to-fibre ratio of 3.4:1. The mechanical construction of the new calorimeter and its assembly in the H1 detector are described. (orig.)

  13. ATLAS Tile calorimeter calibration and monitoring systems

    Science.gov (United States)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  14. The Compact Muon Solenoid (CMS) hadron calorimeter

    International Nuclear Information System (INIS)

    Hagopian, Vasken

    1999-01-01

    The Hadron Calorimeter of the CMS detector for the CERN LHC accelerator is designed to measure hadron jets as well as single hadrons. It has six segments. The central barrel made of brass and scintillators covers the vertical bar η vertical bar range of about 0 to 1.3. Two End Caps, also made of brass and scintillators extends the vertical bar η vertical bar range to 3.0. Two Forward calorimeters made of iron and quartz fibers cover the range 3.0 to 5.0. Since the barrel portion of the calorimeter is only 6.5 interaction lengths, the outer barrel will sample, by scintillators, outside the magnet coil and cryostat. Progress has been made on all subsystems and prototypes have been built. We now have a better understanding of magnetic field effects on calorimeters

  15. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00304670; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  16. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  17. The development of Windows based control system for the tele-robotics

    International Nuclear Information System (INIS)

    Kim, Byung Soo; Kim, Seung Ho; Seo, Yong Chil; Kim, Ki Ho; Hwang, Suk Yeoung; Kim, Chang Hoi; Jung, Seung Ho; Lee, Young Kwang

    1998-03-01

    The WSCS (Windows-based Supervisory Control System) has been developed for the efficient control of the mobile robot in the hazardous area, such as reactor surroundings of HPWR (Heavy Pressurized Water Reactor). The WSCS is basically computer program which consists windows menu-program, socket-based communication program, force reflection joystick program, and OpenGL-based 3D graphic program. Also, the WSCS includes the force control algorithm of a master control device ( in this case, joystick) for the enhanced operability. To evaluate the effectiveness of the designed WSCS and the force reflection control algorithm, a series of experiments has been made in such a way that human operators command the desired motion of robot by manipulating the joystick in the virtual environment. As a result, it was proven that the designed WSCS is very easy-to-use and effective. Also, the developed force reflection algorithm is more efficient than that of general tele-operation, even though there are some difference in human dexterity. In near future, the WSCS will be applied in the next version of KAEROT. (author). 11 refs., 14 tabs., 1 fig

  18. First results from the SLD silicon calorimeters

    International Nuclear Information System (INIS)

    Berridge, S.C.; Bugg, W.M.; Kroeger, R.S.; Weidemann, A.W.; White, S.L.

    1992-07-01

    The small-angle calorimeters of the SLD were successfully operated during the recent SLC engineering run. The Luminosity Monitor and Small-Angle Tagger (LMSAT) covers the angular region between 28 and 68 milliradians from the beam axis, while the Medium-Angle Silicon Calorimeter (MASC) covers the 68--190 milliradian region. Both are silicon-tungsten sampling calorimeters; the LMSAT employs 23 layers of 0.86 X 0 sampling, while the MASC has 10 layers of 1.74 X 0 sampling. We present results from the first run of the SLC with the SLD on beamline

  19. Beginning Windows 8

    CERN Document Server

    Halsey, Mike

    2012-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever. Beginning Windows 8 takes you through the new features and helps you get more out of the familiar to reveal the possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes with it. From tips and tweaks to easy-to-follow guides and d

  20. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer componentsThe Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  1. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  2. The optical instrumentation of the ATLAS Tile Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J [IFIC, Centro Mixto Universidad de Valencia-CSIC, E46100 Burjassot, Valencia (Spain); Adragna, P; Bosi, F [Pisa University and INFN, Pisa (Italy); Alexa, C; Boldea, V [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Alves, R [LIP and FCTUC Univ. of Coimbra (Portugal); Amaral, P; Andresen, X [CERN, Geneva (Switzerland); Ananiev, A [LIP and IDMEC-IST, Lisbon (Portugal); Anderson, K [University of Chicago, Chicago, Illinois 60637 (United States); Antonaki, A [University of Athens, Athens (Greece); Batusov, V [JINR, Dubna (Russian Federation); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas, E; Bohm, C [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal / CNRS-IN2P3, Clermont-Ferrand (France); Blanch, O; Blanchot, G; Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, Michigan 48824 (United States); others, and

    2013-01-15

    The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of {+-}1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.

  3. Design, Construction and Commissioning of the Digital Hadron Calorimeter - DHCAL

    CERN Document Server

    Adams, C; Bilki, B.; Butler, J.; Corriveau, F.; Cundiff, T.; Drake, G.; Francis, K.; Furst, B.; Guarino, V.; Haberichter, B.; Hazen, E.; Hoff, J.; Holm, S.; Kreps, A.; DeLurgio, P.; Matijas, Z.; Monte, L.Dal; Mucia, N.; Norbeck, E.; Northacker, D.; Onel, Y.; Pollack, B.; Repond, J.; Schlereth, J.; Skrzecz, F.; Smith, J.R.; Trojand, D.; Underwood, D.; Velasco, M.; Walendziak, J.; Wood, K.; Wu, S.; Xia, L.; Zhang, Q.; Zhao, A.

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.

  4. New approach to the readout system for a very large bismuth germanate calorimeter

    International Nuclear Information System (INIS)

    Sumner, R.

    1982-01-01

    This note presents a possible solution to the problem of data acquisition and control for a very large array of BGO crystals. The array is a total energy calorimeter, which is a part of a detector being designed for LEPC. After a brief description of the environment, we present a working definition of the calorimeter, followed by a statement of the desirable characteristics of the readout system. After a discussion of some alternatives, a complete system is described

  5. Study of response nonuniformity for the LHCb calorimeter module and the prototype of the CBM calorimeter module

    International Nuclear Information System (INIS)

    Korolko, I. E.; Prokudin, M. S.

    2009-01-01

    A spatial nonuniformity of the response to high-energy muons is studied in the modules of the LHCb electromagnetic calorimeter and the prototype of the calorimeter module with lead plates and scintillator tiles 0.5 mm thick. The nonuniformity of the response of the inner LHCb modules to 50-GeV electrons is also measured. Software is developed for a thorough simulation of light collection in scintillator plates of a shashlik calorimeter. A model is elaborated to describe light transmission from the initial scintillation to the wavelength-shifting fiber with a subsequent reradiation and propagation of light over the fiber to the photodetector. The results of the simulation are in good agreement with data.

  6. Portable calorimeter system for nondestructive assay of mixed-oxide fuels

    International Nuclear Information System (INIS)

    Roche, C.T.; Perry, R.B.; Lewis, R.N.; Jung, E.A.; Haumann, J.R.

    1978-04-01

    Calorimetric assay provides a precise, nondestructive method to determine sample Pu content based on the heat emitted by decaying radionuclides. This measurement, in combination with a gamma-spectrometer analysis of sample isotopic content, yields the total sample Pu mass. The technique is applicable to sealed containers and is essentially independent of sample matrix configuration and elemental composition. Conventional calorimeter designs employ large water-bath heat sinks and lack the portability needed by inspection personnel. The ANL air-chamber isothermal calorimeters are low-thermal-capacitance devices which eliminate the need for large constant-temperature heat sinks. These instruments are designed to use a feedback system that applies power to maintain the sample chamber at a constant electrical resistance and, therefore, at a constant temperature. The applied-power difference between a Pu-containing sample and a blank determines the radioactive-decay power. The operating characteristics of a calorimeter designed for assaying mixed-oxide powders, fuel pellets, and Pu-containing solutions are discussed. This device consists of the calorimeter, sample preheatr, and a microprocessor-controlled data-acquisition system. The small-sample device weighs 18 kg and has a measurement cycle of 20 min, with a precision of 0.1% at 10 mW. A 100-min gamma-ray measurement gives the specific power with a precision of better than 1% for samples containing 1 to 2 g of plutonium

  7. Design and construction of a prototype vaporization calorimeter for the assay of radioisotopic samples

    International Nuclear Information System (INIS)

    Tormey, T.V.

    1979-10-01

    A prototype vaporization calorimeter has been designed and constructed for use in the assay of low power output radioisotopic samples. The prototype calorimeter design was based on that of a previous experimental instrument used by H.P. Stephens, to establish the feasibility of the vaporization calorimetry technique for this type of power measurement. The calorimeter is composed of a mechanical calorimeter assembly together with a data acquisition and control system. Detailed drawings of the calorimeter assembly are included and additional drawings are referenced. The data acquisition system is based on an HP 9825A programmable calculator. A description of the hardware is provided together with a listing of all system software programs. The operating procedure is outlined, including initial setup and operation of all related equipment. Preliminary system performance was evaluated by making a series of four measurements on two nominal 1.5W samples and on a nominal 0.75W sample. Data for these measurements indicate that the absolute accuracy (one standard deviation) is approx. = 0.0035W in this power range, resulting in an estimated relative one standard deviation accuracy of 0.24% at 1.5W and 0.48% at 0.75W

  8. Development of a semi-adiabatic isoperibol solution calorimeter.

    Science.gov (United States)

    Venkata Krishnan, R; Jogeswararao, G; Parthasarathy, R; Premalatha, S; Prabhakar Rao, J; Gunasekaran, G; Ananthasivan, K

    2014-12-01

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.

  9. Development of a semi-adiabatic isoperibol solution calorimeter

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.

    2014-01-01

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%

  10. Development of a semi-adiabatic isoperibol solution calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K., E-mail: asivan@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India)

    2014-12-15

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.

  11. Calorimeters for biotechnology

    International Nuclear Information System (INIS)

    Russell, Donald J.; Hansen, Lee D.

    2006-01-01

    The isothermal and temperature scanning calorimeters manufactured by Calorimetry Sciences Corporation are briefly described. Applications of calorimetry to determine thermodynamics and kinetics of reactions of interest in biotechnology are described with illustrative examples

  12. ATLAS calorimeters: Run-2 performances and Phase-II upgrades

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} cm^{-2} s^{-1}$. A Liquid Argon-lead sampling (LAr) calorimeter is employed as electromagnetic and hadronic calorimeters, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. This presentation gives first an overview of the detector operation and data quality, as well as of the achieved performances of the ATLAS calorimetry system. Additionally the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) are presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to $L \\simeq 7.5 × 10^{34} cm^{-2} s^{-1}$ and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope with longer latenc...

  13. Cone calorimeter tests of wood composites

    Science.gov (United States)

    Robert H. White; Kuma Sumathipala

    2013-01-01

    The cone calorimeter is widely used for the determination of the heat release rate (HRR) of building products and other materials. As part of an effort to increase the availability of cone calorimeter data on wood products, the U.S. Forest Products Laboratory and the American Wood Council conducted this study on composite wood products in cooperation with the Composite...

  14. Status of the ATLAS hadronic tile calorimeter

    International Nuclear Information System (INIS)

    Leitner, R.

    2005-01-01

    Short status of the Tile Calorimeter project is given. Major achievements in the mechanical construction of the detector modules, their instrumentation, cylinders assembly, as well as the principles of the detector front-end electronics, are described. The ideas of Tile Calorimeter module calibration are presented

  15. Several versions of forward gas ionization calorimeter

    International Nuclear Information System (INIS)

    Babintsev, V.V.; Kholodenko, A.G.; Rodnov, Yu.V.

    1994-01-01

    The properties of several versions of a gas ionization calorimeter are analyzed by means of the simulation with the GEANT code. The jet energy and coordinate resolutions are evaluated. Some versions of the forward calorimeter meet the ATLAS requirements. 13 refs., 15 figs., 7 tabs

  16. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Braunschweig, W. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Geulig, E. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Schoentag, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Siedling, R. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Wlochal, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Putzer, A. [European Organization for Nuclear Research, Geneva (Switzerland); Wotschack, J. [European Organization for Nuclear Research, Geneva (Switzerland); Cheplakov, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Feshchenko, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kazarinov, M. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kukhtin, V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Ladygin, E. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Obudovskij, V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Geweniger, C. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Hanke, P. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Kluge, E.E. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Krause, J. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Schmidt, M. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Stenzel, H. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Tittel, K. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Wunsch, M. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Zerwas, D. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Bruncko, D. [Slovenska Akademia Vied, Kosice (Slovakia). Ustav Experimentalnej Fyziky; Jusko, A. [Slovenska Akademia Vied, Kosice (Slovakia). Ustav Experimentalnej Fyziky; Kocper, B.; RD33 Collaboration

    1994-11-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. (orig.)

  17. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C.; Braunschweig, W.; Geulig, E. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.] [and others

    1995-04-21

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. ((orig.)).

  18. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    International Nuclear Information System (INIS)

    Berger, C.; Braunschweig, W.; Geulig, E.

    1995-01-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. ((orig.))

  19. Continued studies of calorimeter performance at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Steward, S.A.; Tsugawa, R.T.

    1975-01-01

    Calibrations of two calorimeters used for tritium and plutonium assays were made. Data from three new standards of about 0.5, 1, and 5 W were added to the results of a previous report and analyzed together. The accuracies of both calorimeters appear to fall within the specified 0.5 percent, although the data now available for the large calorimeter is insufficient to permit a more definite conclusion. An expression of the bias correction for each calorimeter with respect to the sample power cannot be determined. The bias of the medium thermopile-type calorimeter tends to be positive, however, and that of the large resistance-bridge design appears to be negative

  20. Calibration and performance of the CHORUS calorimeter

    International Nuclear Information System (INIS)

    Buontempo, S.; Capone, A.; Cocco, A.G.; De Pedis, D.; Di Capua, E.; Dore, U.; Ereditato, A.; Ferroni, M.; Fiorillo, G.; Loverre, P.F.; Luppi, C.; Macina, D.; Marchetti-Stasi, F.; Mazzoni, M.A.; Migliozzi, P.; Palladino, V.; Piredda, G.; Ricciardi, S.; Righini, P.P.; Saitta, B.; Santacesaria, R.; Strolin, P.; Zucchelli, P.

    1995-01-01

    A high resolution calorimeter has been built for CHORUS, an experiment which searches for ν μ →ν τ oscillation in the CERN neutrino beam. Aim of the calorimeter is to measure the energy and direction of hadronic showers produced in interactions of the neutrinos in a nuclear emulsion target and to track through-going muons. It is a longitudinally segmented sampling device made of lead and scintillating fibers or strips. This detector has been exposed to beams of pions and electrons of defined momentum for calibration. The method used for energy calibration and results on the calorimeter performance are reported. (orig.)

  1. Performance of a shashlik calorimeter at LEP II

    CERN Document Server

    Ferrari, P; Klovning, A; Maeland, O A; Stugu, B; Benvenuti, Alberto C; Giordano, V; Guerzoni, M; Navarria, Francesco Luigi; Verardi, M G; Camporesi, T; Bozzo, M; Cereseto, R; Barreira, G; Espirito-Santo, M C; Maio, A; Onofre, A; Peralta, L; Pimenta, M; Tomé, B; Carling, H; Falk, E; Hedberg, V; Jarlskog, G; Kronkvist, I J; Bonesini, M; Chignoli, F; Gumenyuk, S A; Leoni, R; Mazza, R; Negri, P; Paganoni, M; Petrovykh, L P; Terranova, F; Dharmasiri, D R; Nossum, B; Read, A L; Skaali, T B; Castellani, L; Pegoraro, M; Fenyuk, A; Guz, Yu; Karyukhin, A N; Konoplyannikov, A K; Obraztsov, V F; Shalanda, N A; Vlasov, E; Zaitsev, A; Bigi, M; Cassio, V; Gamba, D; Migliore, E; Romero, A; Simonetti, L; Torassa, E; Trapani, P P; Bari, M D; Della Ricca, G; Lanceri, L; Poropat, P; Prest, M; Vallazza, E

    1999-01-01

    The small angle tile calorimeter (STIC) is a sampling lead- scintillator calorimeter, built with "shashlik" technique. Results are presented from extensive studies of the detector performance at LEP. (5 refs).

  2. Understanding Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Hadron showers in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Lutz, Benjamin

    2010-11-01

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  4. Hadron showers in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Benjamin

    2010-11-15

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  5. The optical instrumentation of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Abdallah, J; Adragna, P; Bosi, F; Alexa, C; Boldea, V; Alves, R; Amaral, P; Andresen, X; Ananiev, A; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Bohm, C; Biscarat, C; Blanch, O; Blanchot, G; Bosman, M; Bromberg, C

    2013-01-01

    The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of ±1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.

  6. Design and construction of the ZEUS barrel calorimeter

    International Nuclear Information System (INIS)

    Repond, J.

    1990-01-01

    The mechanical design and construction techniques of the barrel calorimeter for the ZEUS detector are presented. The calorimeter uses alternate layers of depleted uranium and scintillator with one radiation length sampling. The unit cell has e/h = 1 which yields an optimal energy resolution for hadronic jets. We discuss the placing of the structural components and cracks between modules. Details of the construction and assembly effort needed to realize the total calorimeter are reported. 4 figs., 1 tab

  7. Radioactively induced noise in gas-sampling uranium calorimeters

    International Nuclear Information System (INIS)

    Gordon, H.A.; Rehak, P.

    1982-01-01

    The signal induced by radioactivity of a U 238 absorber in a cell of a gas-sampling uranium calorimeter was studied. By means of Campbell's theorem, the levels of the radioactively induced noise in uranium gas-sampling calorimeters was calculated. It was shown that in order to obtain similar radioactive noise performance as U-liquid argon or U-scintillator combinations, the α-particles from the uranium must be stopped before entering the sensing volume of gas-uranium calorimeters

  8. The ATLAS liquid argon calorimeter--status and expected performance

    International Nuclear Information System (INIS)

    Schacht, Peter

    2004-01-01

    For the ATLAS detector at the LHC, the liquid argon technique is exploited for the electromagnetic calorimetry in the central part and for the electromagnetic and hadronic calorimetry in the forward and backward regions. The construction of the calorimeter is well advanced with full cold tests of the barrel calorimeter and first endcap calorimeter only months away. The status of the project is discussed as well as the related results from beam test studies of the various calorimeter subdetectors. The results show that the expected performance meets the ATLAS requirements as specified in the ATLAS Technical Design Report

  9. Upgrading ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of s...

  10. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  11. SLD liquid argon calorimeter

    International Nuclear Information System (INIS)

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z 0 decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z 0 events) is discussed

  12. What's new with the CMS hadron calorimeter

    CERN Document Server

    Hagopian, V

    2002-01-01

    The CMS Hadron Calorimeter is designed to measure hadron jets, single hadrons and single mu 's. The central barrel and the two end caps, made of brass and scintillators cover the ¿ eta ¿ range of 0.0 to 3.0. The two forward calorimeters made of iron and quartz fibers extend the ¿ eta ¿ range to 5.0. Scintillators are also placed outside of the magnet coil, within the muon system to measure the energy leakage from the central barrel. The construction of the calorimeter is about 50% complete. Several design changes were made to simplify the calorimeter and reduce the cost. The longitudinal segmentation of the central barrel and end caps was reduced by one unit. The quartz fiber diameter was doubled from 300 to 600 microns. Improvements were made to the hybrid photodetectors (HPD) and various other components. The special purpose ADC (QIE) and other electronics are in prototype stage. (3 refs).

  13. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum fro...

  14. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum from elec...

  15. Performance of the ATLAS Zero Degree Calorimeter

    CERN Document Server

    Leite, M; The ATLAS collaboration

    2013-01-01

    The ATLAS Zero Degree Calorimeter (ZDC) at the Large Hadron Collider (LHC) is a set of two sampling calorimeters modules symmetrically located at 140m from the ATLAS interaction point. The ZDC covers a pseudorapidity range of |eta| > 8.3 and it is both longitudinally and transversely segmented, thus providing energy and position information of the incident particles. The ZDC is installed between the two LHC beam pipes, in a configuration such that only the neutral particles produced at the interaction region can reach this calorimeter. The ZDC uses Tungsten plates as absorber material and rods made of quartz interspersed in the absorber as active media. The energetic charged particles crossing the quartz rods produces Cherenkov light which is then detected by photomultipliers and sent to the front end electronics for processing, in a total of 120 individual electronic channels. The Tungsten plates and quartz rods are arranged in a way to segment the calorimeters in 4 longitudinal sections. The first section (...

  16. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  17. Flow Type Bio-Chemical Calorimeter with Micro Differential Thermopile Sensor.

    Science.gov (United States)

    Saito, Masataka; Nakabeppu, Osamu

    2015-04-01

    Bio-chemical calorimeters with a MEMS (Micro-Electro-Mechanical Systems) thermopile sensor have been studied for monitoring detailed processes of the biochemical reactions of a minute sample with a high temporal resolution. The bio-calorimeters are generally divided into a batch-type and a flow-type. We developed a highly sensitive batch-type calorimeter which can detect a 100 nW level thermal reaction. However it shows a long settling time of 2 hours because of the heat capacity of a whole calorimeter. Thus, the flow-type calorimeters in passive and active mode have been studied for measuring the thermal reactions in an early stage after starting an analysis. The flow-type calorimeter consists of the MEMS differential thermopile sensor, a pair of micro channel reactor in a PDMS (polydimethylsiloxane) sheet in a three-fold thermostat chamber. The calorimeter in the passive mode was tested with dilution reactions of ethanol to water and NaCl aqueous solution to water. It was shown that the calorimeter detects exo- and endothermic reaction over 250 nW at solution flow rate of 0.05 ~ 1 µl/min with a settling time of about 4 minutes. In the active mode, a response test was conducted by using heat removal by water flow from the reactor channel. The active calorimetry enhances the response time about three to four times faster.

  18. Calibration of film dosimeters by means of absorbed dose calorimeters

    International Nuclear Information System (INIS)

    Nikolaev, S.M.; Vanyushkin, B.M.; Kon'kov, N.G.

    1980-01-01

    Methods of graduating film dosimeters by means of calorimeters of absorbed doses, are considered. Graduating of film dosimeters at the energies of accelerated electrons from 4 to 10 MeV can be carried out by means of quasiadiabatic calorimeter of local absorption, the absorber thickness of which should not exceed 5-10% of Rsub(e) value, where Rsub(e) - free electron path of the given energy. In this case film is located inside the calorimeter. For graduating films with thickness not less than (0.1-0.2)Rsub(e) it is suggested to use calorimeter of full absorption; then the graduated dosimeters are located in front of the calorimeter. Graduation of films at small energies of electrons is exercised by means of a package of films, approximately Rsub(e) thick. A design of quasiadiabatic calorimeter, intended for graduating dosimeters within the energy range of electron beam from 4 to 10 MeV, is considered. The quasiadiabatic calorimeter is a thin graphite tablet with heater and thermocouple, surrounded by foam plastic thermostating case. Electricity quantity, accumulated during the radiation field pass, is measured in the case of using the quasiadiabatic calorimeter for film graduating. The results of graduating film dosimeters, obtained using film package with Rsub(e) thickness, are presented. The obtained results coincide within 5% limits with the data known beforehand [ru

  19. QCALT: A tile calorimeter for KLOE-2 upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Balla, A.; Ciambrone, P.; Corradi, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Martini, M., E-mail: matteo.martini@lnf.infn.it [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Università degli studi Guglielmo Marconi, Rome (Italy); Paglia, C.; Pileggi, G.; Ponzio, B.; Saputi, A. [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Tagnani, D. [INFN, Sezione di Roma 3, Rome (Italy)

    2013-08-01

    The upgrade of the DaΦne machine layout requires a modification of the size and position of the inner focusing quadrupoles of KLOE-2, thus asking for the realization of two new calorimeters, named QCALT, covering this area. To improve the reconstruction of K{sub L}→2π{sup 0} events with photons hitting the quadrupoles, a calorimeter with high efficiency to low energy photons (20–300 MeV), time resolution of less than 1 ns and space resolution of few cm, is needed. To match these requirements we are now constructing a scintillator tile calorimeter where each single tile is readout by mean of SiPM for a total granularity of 1760 channels. We show the design of the different calorimeter components and the present status of the construction.

  20. STATUS OF THE ATLAS LIQUID ARGON CALORIMETER AND ITS PERFORMANCE

    CERN Document Server

    Berillari, T; The ATLAS collaboration

    2011-01-01

    The liquid argon (LAr) calorimeters are used in ATLAS for all electromagnetic and for hadron calorimetry. The LAr calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic, hadronic and forward calorimeters. The latest status of the detector as well as problems and solutions addressed during the last years will be presented. Aspects of operation of a large detector over a long time period will be summarized and selected topics showing the performance of the detector will be shown.

  1. Mechanical construction and installation of the ATLAS tile calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J [IFIC, Centro Mixto Universidad de Valencia-CSIC, E46100 Burjassot, Valencia (Spain); Adragna, P; Bosi, F [Pisa University and INFN, Pisa (Italy); Alexa, C; Boldea, V [Institute of Atomic Physics, Bucharest (Romania); Alves, R [LIP and FCTUC University of Coimbra (Portugal); Amaral, P; Andresen, X; Behrens, A; Blocki, J [CERN, Geneva (Switzerland); Ananiev, A [LIP and IDMEC-IST, Lisbon (Portugal); Anderson, K [University of Chicago, Chicago, Illinois (United States); Antonaki, A [University of Athens, Athens (Greece); Batusov, V [JINR, Dubna (Russian Federation); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas, E; Bohm, C [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand (France); Blanch, O; Blanchot, G [Institut de Fisica d' Altes Energies, Universitat Autònoma de Barcelona, Barcelona (Spain); others, and

    2013-11-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.

  2. Mechanical construction and installation of the ATLAS tile calorimeter

    International Nuclear Information System (INIS)

    Abdallah, J; Adragna, P; Bosi, F; Alexa, C; Boldea, V; Alves, R; Amaral, P; Andresen, X; Behrens, A; Blocki, J; Ananiev, A; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Bohm, C; Biscarat, C; Blanch, O; Blanchot, G

    2013-01-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight

  3. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    DEFF Research Database (Denmark)

    Sato, T.; Takahashi, T.; Saito, T.

    1993-01-01

    Graphite and water calorimeters, which were developed for use a 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found...... to be directly proportional to the beam current and the variation among three water calorimeters was less than +/- 2 % in the range of 10 to 40 kGy. CTA, PMMA, RCD dosimeters were calibrated by irradiating the dosimeters and water calorimeters Simultaneously. The water calorimeter was proved to be an useful tool...... at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95 % confidence level) for X-ray measurement....

  4. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    International Nuclear Information System (INIS)

    Sato, Toshio; Takahashi, Toru; Saito, Toshio; Takehisa, Masaaki; Miller, A.

    1993-01-01

    Graphite and water calorimeters, which were developed for use with 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found to be directly proportional to the beam current and the variation among three water calorimeters was less than ± 2% in the range of 10 to 40 kGy. CTA PMMA RCD dosimeters were calibrated by irradiating the dosimeters and water calorimeters simultaneously. The water calorimeter was proved to be an useful tool at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95% confidence level) for X-ray measurement. (Author)

  5. X-ray calorimeters used for measurement in laser-fusion experiments

    International Nuclear Information System (INIS)

    Tang Daorun; China Academy of Engineering Physics, Mianyang; Wu Dengxue; Lin Libin; Sun Kexu; Jiang Shaoen

    2005-01-01

    X-ray calorimeters are ready to measure the total soft X-ray energy emitted from the plasma produced by laser because of their bodily absorption, linear response, insensitivity to the electromagnetic disturbance, and so on. The calorimeters mainly include absorbers, thermocouples, bases and shrouds. When X-rays are deposited in the absorbers, photon energy absorbed is quickly converted into intrinsic energy which simultaneously dissipates by thermal conduction and radiation. The X-ray calorimeters were absolutely on-line calibrated in Shenguang-II laser facility with the X-ray diode array spectrometer which has been absolutely calibrated on Beijing Synchrotron Radiation Facility. 20 shots' experimental results show that the X-ray calorimeters are stable, the sensitivity of calorimeter is (84.1 ± 3.4) μv/mJ and the related combined standard uncertainty in the X-ray energy measure is about 31%. The calorimeters can be applied to measure the X-ray energy. (authors)

  6. The H1 liquid argon calorimeter system

    International Nuclear Information System (INIS)

    Andrieu, B.; Babayev, A.; Ban, J.

    1993-06-01

    The liquid argon calorimeter of the H1 detector presently taking data at the HERA ep - collider at DESY, Hamburg, is described here. The main physics requirements and the most salient design features relevant to this calorimeter are given. The aim to have smooth and hermetic calorimetric coverage over the polar angular range 4 ≤ θ ≤ 154 is achieved by a single liquid argon cryostat containing calorimeter stacks structured in wheels and octants for easy handling. The absorber materials used are lead in the electromagnetic part and stainless steel in the hadronic part. The read-out system is pipelined to reduce the dead time induced by the high trigger rate expected at the HERA collider where consecutive bunches are separated in time by 96 ns. The main elements of the calorimeter, such as the cryostat, with its associated cryogenics, the stack modules, the read-out, calibration and trigger electronics as well as the data acquisition system are described. Performance results from data taken in calibration runs with full size H1 calorimeter stacks at a CERN test beam, as well as results from data collected with the complete H1 detector using cosmic rays during the initial phase of ep operations are presented. The observed energy resolutions and linearities are well in agreement with the requirements. (orig.)

  7. Simulation of secondary emission calorimeter for future colliders

    Science.gov (United States)

    Yetkin, E. A.; Yetkin, T.; Ozok, F.; Iren, E.; Erduran, M. N.

    2018-03-01

    We present updated results from a simulation study of a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. We implemented the secondary electron emission process in Geant4 as a user physics list and produced the energy spectrum and yield of secondary electrons. The energy resolution of the SEE calorimeter was σ/E = (41%) GeV1/2/√E and the response linearity to electromagnetic showers was to within 1.5%. The simulation results were also compared with a traditional scintillator calorimeter.

  8. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1980-01-01

    Attention is given to sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers. A very cursory overview is presented of some fundamental aspects of sampling calorimeters. First the properties of shower development are described for both the electromagnetic and hadronic cases. Then examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described

  9. Event filter monitoring with the ATLAS tile calorimeter

    CERN Document Server

    Fiorini, L

    2008-01-01

    The ATLAS Tile Calorimeter detector is presently involved in an intense phase of subsystems integration and commissioning with muons of cosmic origin. Various monitoring programs have been developed at different levels of the data flow to tune the set-up of the detector running conditions and to provide a fast and reliable assessment of the data quality already during data taking. This paper focuses on the monitoring system integrated in the highest level of the ATLAS trigger system, the Event Filter, and its deployment during the Tile Calorimeter commissioning with cosmic ray muons. The key feature of Event Filter monitoring is the capability of performing detector and data quality control on complete physics events at the trigger level, hence before events are stored on disk. In ATLAS' online data flow, this is the only monitoring system capable of giving a comprehensive event quality feedback.

  10. The upgrade and re-validation of the Compact Muon Solenoid Electromagnetic Calorimeter Control System

    CERN Multimedia

    Holme, Oliver; Di Calafiori, Diogo; Dissertori, Günther; Djambazov, Lubomir; Jovanovic, Dragoslav; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Electromagnetic Calorimeter (ECAL) is one of the sub-detectors of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN. The Detector Control System (DCS) that has been developed and implemented for the CMS ECAL was deployed in accordance with the LHC schedule and has been supporting the CMS data-taking since LHC physics runs started in 2009. During these years, the control system has been regularly adapted according to operational experience and new requirements, always respecting the constraints imposed on significant changes to a running system. Several hardware and software upgrades and system extensions were therefore deferred to the first LHC Long Shutdown (LS1). This paper presents the main architectural differences between the system that supported the CMS ECAL during its first years and the new design for the coming physics runs after LS1. Details on the upgrade planning, including the certification methods performed in the CMS ECAL DCS laboratory facilities, repor...

  11. Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    Marx, M.D.; Rijssenbeek, M.

    1990-01-01

    This report discusses the following topics: the central calorimeter; and installation; commissioning; and calorimeter beam tests; the central drift chamber; cosmic ray and beam tests; chamber installation and commissioning; and software development; and SSC activities: the EMPACT project

  12. Selection and characterization of lead alloys for use in the SDC EM Calorimeter

    International Nuclear Information System (INIS)

    Nasiatka, J.

    1993-01-01

    Lead, because of it's density and ductility, has been used by man for centuries for many things ranging from building materials, to piping; from electrical connections, to radiation shielding, and batteries. However, despite it's extensive and varied use, not much is really known about it's exact physical and structural properties except in a very rudimentary way. The SDC cast lead EM Calorimeter needs to take full advantage of all the properties that the lead alloy has to offer. Hence, a very thorough and detailed understanding of the properties of the lead-absorber structure must be obtained and controlled, so that the integrity of the calorimeter is not compromised. This paper will attempt to detail a series of ongoing experiments used to characterize and define the properties of the Calcium-Tin-Lead alloys for use in the SDC cast lead electromagnetic calorimeter

  13. Electromagnetic response of a highly granular hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Blaha, J.; Blaising, J.J. [Savoie Univ., CNRS/IN2P3, Annecy-le-Vieux (FR). Lab. d' Annecy-le-Vieux de Physique des Particules] (and others)

    2010-12-15

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  14. Electromagnetic response of a highly granular hadronic calorimeter

    International Nuclear Information System (INIS)

    Adloff, C.; Blaha, J.; Blaising, J.J.

    2010-12-01

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  15. Calibration of the ZEUS forward calorimeter

    International Nuclear Information System (INIS)

    Kraemer, M.

    1990-10-01

    The physics at the ep-collider HERA requires high resolution calorimetry calibrated with an accuracy of better than 2%. The ZEUS detector meets these conditions by means of a compensating uranium scintillator sandwich calorimeter with an energy resolution of σ/E = 35%/√E + σ cal , where σ cal is the calibration error. One of the tools to minimize σ cal is the calibration with the signals of the radioactivity of the Uranium plates (UNO). Taking UNO data every 8 hours keeps the calibration stable within ≅ 1%. The muon calibration is done employing an algorithm, that determines the most probable energy loss with a precision of ≅ 1%. The channel-to-channel fluctuations of the ratio μ/UNO for a forward calorimeter (FCAL) prototype show a spread of 5.2% for the electromagnetic calorimeter and ≅ 2.5% for the hadronic sections. Improvements in the construction of the FCAL modules decreased these fluctuations to 2.0% and ≅ 1.8% respectively. The influence of the cracks between the calorimeter modules amounts to ≅ 1.7% on average for the ZEUS geometry, if a 2 mm thick Pb-sheet is introduced between the modules. We conclude that we are able to keep σ cal below 2%. (orig.)

  16. Performance of CREAM Calorimeter Results of Beam Tests

    CERN Document Server

    Ahn, H S; Beatty, J J; Bigongiari, G; Castellina, A; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Hyun, H J; Kang, T G; Kim, H J; Kim, K C; Kim, M Y; Kim, T; Kim, Y J; Lee, J K; Lee, M H; Lutz, L; Maestro, P; Malinine, A; Marrocchesi, P S; Mognet, S I; Nam, S W; Nutter, S; Park, N H; Park, H; Seo, E S; Sina, R; Syed, S; Song, C; Swordy, S; Wu, J; Yang, J; Zhang, H Q; Zei, R; Zinn, S Y

    2005-01-01

    The Cosmic Ray Energetics And Mass (CREAM), a balloon-borne experiment, is under preparation for a flight in Antarctica at the end of 2004. CREAM is planned to measure the energy spectrum and composition of cosmic rays directly at energies between 1 TeV and 1000 TeV. Incident particle energies will be measured by a transition radiation detector and a sampling calorimeter. The calorimeter was constructed at the University of Maryland and tested at CERN in 2003. Performance of the calorimeter during the beam tests is reported.

  17. Solar control window film: report and manual

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A method has been developed by which the energy and energy cost savings associated with application of solar control film to windows of commercial and institutional buildings can be calculated. This method has been prepared as a separate, self-contained user's manual. It is simple and essentially non-technical, based on Toronto conditions, and is sufficiently accurate to provide a basis for economic feasibility analysis. The report explains the method in depth and compares it to alternate methods developed by the solar film industry. Variables which affect film performance, the savings that result, and limitations on the use of solar film as an energy conserving method are discussed. 8 refs., 2 figs., 1 tab.

  18. An overview of CMS central hadron calorimeter

    CERN Document Server

    Katta, S

    2002-01-01

    The central hadron calorimeter for CMS detector is a sampling calorimeter with active medium as scintillator plates interleaved with brass absorber plates. It covers the central pseudorapidity region (¿ eta ¿<3.0). The design and construction aspects are reported. The status of construction and assembly of various subdetectors of HCAL are presented. (5 refs).

  19. Construction and Tests of the Mechanical Structure for a Semi-Digital Hadronic Calorimeter Prototype within the CALICE Collaboration

    International Nuclear Information System (INIS)

    Berenguer, J.

    2014-01-01

    The assembly of a mechanical structure used for a semi-digital hadronic calorimeter prototype, conceived and developed by the SDHCAL group within the CALICE collaboration, is presented in this note. CALICE is an international R and D collaboration dedicated to the development of calorimeters for future linear collider experiments. The design, assembly and quality control of this mechanical structure were entirely carried out at CIEMAT. This document contains a description of the prototype and its detectors, focusing on the design and assembly of the mechanical structure, which acts as well as the calorimeter absorber.. (Author)

  20. The Liquid Argon Calorimeter system for the SLC Large Detector

    International Nuclear Information System (INIS)

    Haller, G.M.; Fox, J.D.; Smith, S.R.

    1988-09-01

    In this paper the physical packaging and the logical organization of the Liquid Argon Calorimeter (LAC) electronics system for the Stanford Linear Collider Large Detector (SLD) at SLAC are described. This system processes signals from approximately 44,000 calorimeter towers and is unusual in that most electronic functions are packaged within the detector itself as opposed to an external electronics support rack. The signal path from the towers in the liquid argon through the vacuum to the outside of the detector is explained. The organization of the control logic, analog electronics, power regulation, analog-to-digital conversion circuits, and fiber optic drivers mounted directly on the detector are described. Redundancy considerations for the electronics and cooling issues are discussed. 12 refs., 5 figs

  1. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  2. Window Glazing Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Window Frame Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  4. Window Operator Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  5. Study of a novel electromagnetic liquid argon calorimeter — the TGT

    Science.gov (United States)

    Berger, C.; Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Putzer, A.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Bruncko, D.; Jusko, A.; Kocper, B.; Lupták, M.; Aderholz, M.; Bán, J.; Brettel, H.; Dydak, F.; Fent, J.; Frey, H.; Huber, J.; Jakobs, K.; Kiesling, C.; Kiryunin, A. E.; Oberlack, H.; Ribarics, P.; Schacht, P.; Stiegler, U.; Bogolyubsky, M. Y.; Buyanov, O. V.; Chekulaev, S. V.; Kurchaninov, L. L.; Levitsky, M. S.; Maximov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.; Straumann, U.

    1995-02-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure.

  6. ATLAS Tile Calorimeter central barrel assembly and installation.

    CERN Multimedia

    nikolai topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  7. Beginning Windows 8.1

    CERN Document Server

    Halsey, Mike

    2013-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever and the 8.1 update enhances the paradigm further. Beginning Windows 8.1 takes you through the new features and helps you get more out of the familiar to reveal the fullest possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes w

  8. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    International Nuclear Information System (INIS)

    Varela Rodriguez, F

    2011-01-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  9. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    Science.gov (United States)

    Varela Rodriguez, F.

    2011-12-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  10. The NA48 liquid krypton calorimeter

    CERN Document Server

    Gorini, B

    1997-01-01

    The NA48 collaboration goal is to measure the CP violation parameter Re(ɛl/ɛ) at the level of 2 × 10−4. The neutral Kaon decays will be reconstructed by an electromagnetic liquid Krypton calorimeter with fine granularity and a volume almost totally sensible, to obtain excellent position and energy resolution, as well as time resolution. A description of the detector, results from tests of a prototype and the status of the final calorimeter are reported.

  11. The performance of the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Crittenden, J.A.

    1994-12-01

    The ZEUS experiment has now completed its third year of operation at the electron-proton collider HERA. The uranium/scintillator sampling calorimeter surrounding the inner tracking detectors has proven an essential component for the online triggering algorithms, for offline event-type identification, for kinematic variable reconstruction, and for a ariety of physics analyses. This paper summarizes the experimental context, the operating characteristics, the calibration techniques, and the performance of the calorimeter during its first three years of operation. (orig.)

  12. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Fopma, J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gurriana, L.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Hollander, D.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manhaes de Andrade Filho, L.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Miller, M.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Ribeiro, N.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Tunnell, C.D.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of the timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design of 1%. The determination of the global energy scale was performed with an uncertainty of 4%.

  13. The optical instrumentation of the ATLAS Tile Calorimeter

    Czech Academy of Sciences Publication Activity Database

    Abdallah, J.; Adragna, P.; Alexa, C.; Lokajíček, Miloš; Němeček, Stanislav; Přibyl, Lukáš

    2013-01-01

    Roč. 8, Jan (2013), P01005 ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : calorimeters * calorimeter methods * scintillators * scintillation and light emission processes * solid, gas and liquid scintillators Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.526, year: 2013

  14. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Akhmadaliev, S Z; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K; Andrieux, M L; Aubert, Bernard; Augé, E; Badaud, F; Baisin, L; Barreiro, F; Battistoni, G; Bazan, A; Bazizi, K; Bee, C P; Belorgey, J; Belymam, A; Benchekroun, D; Berglund, S R; Berset, J C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bonivento, W; Borgeaud, P; Borisov, O N; Bosman, M; Bouhemaid, N; Breton, D; Brette, P; Bromberg, C; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Camin, D V; Canton, B; Caprini, M; Carvalho, J; Casado, M P; Cases, R; Castillo, M V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chalifour, M; Chekhtman, A; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Citterio, M; Cleland, W E; Clément, C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Coulon, J P; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; Delagnes, E; de La Taille, C; Del Peso, J; Del Prete, T; de Saintignon, P; Di Girolamo, B; Dinkespiler, B; Dita, S; Djama, F; Dodd, J; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Eynard, G; Farida, F; Fassnacht, P; Fedyakin, N N; Fernández de Troconiz, J; Ferrari, A; Ferrer, A; Flaminio, Vincenzo; Fournier, D; Fumagalli, G; Gallas, E J; García, G; Gaspar, M; Gianotti, F; Gildemeister, O; Glagolev, V; Glebov, V Yu; Gómez, A; González, V; González de la Hoz, S; Gordeev, A; Gordon, H A; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hébrard, C; Henriques, A; Henry-Coüannier, F; Hervás, L; Higón, E; Holmgren, S O; Hostachy, J Y; Hoummada, A; Huet, M; Huston, J; Imbault, D; Ivanyushenkov, Yu M; Jacquier, Y; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karst, P; Karyukhin, A N; Khokhlov, Yu A; Khubua, J I; Klioukhine, V I; Kolachev, G M; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kozlov, V; Krivkova, P; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Kuzmin, M V; Labarga, L; Laborie, G; Lacour, D; Lami, S; Lapin, V; Le Dortz, O; Lefebvre, M; Le Flour, T; Leitner, R; Leltchouk, M; Le Van-Suu, A; Li, J; Liapis, C; Linossier, O; Lissauer, D; Lobkowicz, F; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; López-Amengual, J M; Lottin, J P; Lund-Jensen, B; Lundqvist, J M; Maio, A; Makowiecki, D S; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marrocchesi, P S; Marroquin, F; Martin, L; Martin, O; Martin, P; Maslennikov, A M; Massol, N; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mirea, A; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Mosidze, M D; Moynot, M; Muanza, G S; Nagy, E; Nayman, P; Némécek, S; Nessi, Marzio; Nicod, D; Nicoleau, S; Niculescu, M; Noppe, J M; Onofre, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Parrour, G; Parsons, J; Pascual, J I; Pereira, A; Perini, L; Perlas, J A; Perrodo, P; Petroff, P; Pilcher, J E; Pinhão, J; Plothow-Besch, Hartmute; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Puzo, P; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Rescia, S; Resconi, S; Richards, R; Richer, J P; Riu, I; Roda, C; Roldán, J; Romance, J B; Romanov, V; Romero, P; Rusakovitch, N A; Sala, P R; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sauvage, D; Sauvage, G; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shaldaev, E; Shchelchkov, A S; Shochet, M J; Sidorov, V; Silva, J; Simaitis, V J; Simion, S; Sissakian, A N; Soloviev, I V; Snopkov, R; Söderqvist, J; Solodkov, A A; Sonderegger, P; Soustruznik, K; Spanó, F; Spiwoks, R; Stanek, R; Starchenko, E A; Stavina, P; Stephens, R; Studenov, S; Suk, M; Surkov, A; Sykora, I; Taguet, J P; Takai, H; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Thion, J; Tikhonov, Yu A; Tisserand, V; Tisserant, S; Tokar, S; Topilin, N D; Trka, Z; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vincent, P; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Walter, C; White, A; Wielers, M; Wingerter-Seez, I; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zitoun, R; Zolnierowski, Y

    2000-01-01

    A new combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 10 to 300 GeV at an incident angle theta of about 12 degrees is well described by the expression sigma /E=((41.9+or-1.6)%/ square root E+(1.8+or-0.1)%)(+) (1.8+or-0.1)/E, where E is in GeV. The response to electrons and muons was evaluated. Shower profiles, shower leakage and the angular resolution of hadronic showers were also studied. Results are compared with those from the previous beam test. (22 refs).

  15. Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton1, D; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Costantini, Silvia; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Debraine, Alain; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl1, J; Gras1, P; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel-de-Montechenault, G; Hansen, Magnus; Heath, Helen F; AHill, J; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, Akli; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman26, H B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Poilleux, Patrick; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; ATriantis, F; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2006-01-01

    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals.

  16. Design, Construction and Testing of the Digital Hadron Calorimeter (DHCAL) Electronics

    CERN Document Server

    Adams, C; Bilki, B; Butler, J; Corriveau, F; Cundiff, T; Drake, G; Francis, K; Guarino, V; Haberichter, B; Hazen, E; Hoff, J; Holm, S; Kreps, A; DeLurgio, P; Monte, L Dal; Mucia, N; Norbeck, E; Northacker, D; Onel, Y; Pollack, B; Repond, J; Schlereth, J; Smith, J R; Trojand, D; Underwood, D; Velasco, M; Walendziak, J; Wood, K; Wu, S; Xia, L; Zhang, Q; Zhao, A

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of the electronic readout system of this prototype calorimeter. The system is based on the DCAL front-end chip and a VME-based back-end.

  17. Closing LHCb's calorimeter around the beam-pipe

    CERN Multimedia

    Kristic, R

    2008-01-01

    Photos 1 and 2 show the pre-shower, lead absorber and the scintillating pad detector layers moving in towards the beam-pipe. Photos 3,4 and 5 show the hadron calorimeter with both halves closed around the beam-pipe, to the left of the picture and, in the centre, half of the electromagnetic calorimeter closed in towards the beam-pipe.

  18. In-depth analysis and discussions of water absorption-typed high power laser calorimeter

    Science.gov (United States)

    Wei, Ji Feng

    2017-02-01

    In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.

  19. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  20. ATLAS Calorimeters: Run-2 performance and Phase-II upgrade

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimter. This presentation will give first an overview of the detector operation and data quality, as well as the achieved performance of the ATLAS calorimetry system. Additionally, the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) will be presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 10^{34} cm^{−2} s^{−1} and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope wit...

  1. Last fibre for the CMS's forward hadronic calorimeter

    CERN Multimedia

    2004-01-01

    In February an important milestone was passed by the CMS's forward hadronic calorimeter project: the last of 450000 quartz fibres was inserted and the wedge preparation phase has now been completed. Ten thousand working hours were spent on inserting 450 000 quartz fibres into the CMS's forward hadronic calorimeter! Patience and meticulous attention to detail were the two qualities required by the five people who undertook this special job at CERN. On 6 February their task was completed. "The CMS's forward hadronic calorimeter (HF) covers the region immediately close to the LHC beam, 0.6 degrees to 6 degrees from the beam line," explains project coordinator Tiziano Camporesi. The detection of high energy jets in this angular region will be very important in helping to identify the signature of the Higgs boson or possibly any new boson produced in proton-proton collision in the LHC. Rita Fodor, 19, is working on one wedge of the CMS's forward hadronic calorimeter in building 186. She and her...

  2. Jet energy measurements with the ZEUS prototype calorimeter

    International Nuclear Information System (INIS)

    Kroeger, W.

    1993-01-01

    The uranium scintillator calorimeter of the ZEUS detector is designed to achieve an excellent energy calibration and the best possible energy resolution for jets. Therefore the response of the prototype calorimeter to jets has been measured using an interaction trigger. The mean response and energy resolution was measured for jets of 50 GeV - 100 GeV and compared to the one for pions. Within the ZEUS detector dead material is placed in front of the calorimeter. The influence of 4 cm and 10 cm thick aluminium absorbers in front of the calorimeter was measured. The charged multiplicity was measured in front and behind the aluminium absorber. With these multiplicities the energy loss in the absorber is corrected. The correction has been done so that the mean response with absorber is equal to the mean response without absorber. The improvement of the energy resolution is investigated. The measured results are compared with Monte Carlo simulations. (orig.) [de

  3. Energy calibration of the barrel calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Anisenkov, A.V.; Aulchenko, V.M.; Bashtovoy, N.S.; Bondar, A.E.; Grebenuk, A.A.; Epifanov, D.A.; Epshteyn, L.B.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Mikhailov, K.Yu.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.

    2017-01-01

    The VEPP-2000 e + e − collider has been operated in the Budker Institute of Nuclear Physics since 2010. Experiments are carried out with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon calorimeter and crystal CsI calorimeter, and end cap calorimeter with BGO crystals. This paper describes the procedures of the energy calibration of the combined barrel calorimeter of the CMD-3 detector.

  4. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL crystal calorimeter (EB + EE) The Barrel and Endcaps ECAL calorimeters have been used routinely in global runs. The CRAFT data have confirmed that ECAL performance is the same with or without magnetic field. The CRUZET and CRAFT runs have allowed experience to be gained with ECAL operation in many areas, in particular for the trigger and the calibration sequence using gap events (laser events and LED pulsing). More details can be found in the Commissioning/DPG report in this bulletin.   The last components remaining to be installed and commissioned are the specific Endcap Trigger modules (TCC-48). Most of the modules have been delivered to LLR and half of them are already at CERN. In parallel, large progress has been made on the validation of the TCC-48 firmware. Preshower (ES) The Preshower project has also made impressive progress during Autumn. All the elements required to complete the detector assembly are at hand. Ladder assembly, test and calibration with cosmic rays at the operating ...

  5. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Central Calorimeter (HB/HE/HO) Photodetectors The main activity of the HCAL group during the present shutdown is the replacement of a small fraction of the Central Calorimeter (HB/HE/HO) photodetectors -- the Hybrid Photo-Detectors (HPDs). During the MTCC of 2006 it was established that all HPDs exhibit a low rate of discharge generating large random pulses. This behaviour persists at the full CMS field. However, at relatively low fields (0.5 Tesla) this discharge rate increases dramatically and becomes very large for a fraction of the HPDs. The HO HPDs which sit in the gap of the return yoke are thus adversly affected. These discharge pulses have been labelled "HPD noise" (which must be distinguished from low level electronic noise which manifests itself as pedestal noise for all HPD readout channels). Additional intermediate level noise can be generated by ion-feedback arising from thermal and field emission electrons. Ion feedback noise never exceeds the equivalent of few 10s of GeV, the...

  6. Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; Davidek, M; David, T; Dawson, J; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovianov, J; Silva, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tr...

  7. The high resolution spaghetti hadron calorimeter

    International Nuclear Information System (INIS)

    Jenni, P.; Sonderegger, P.; Paar, H.P.; Wigmans, R.

    1987-01-01

    It is proposed to build a prototype for a hadron calorimeter with scintillating plastic fibres as active material. The absorber material is lead. Provided that these components are used in the appropriate volume ratio, excellent performance may be expected, e.g. an energy resolution of 30%/√E for jet detection. The proposed design offers additional advantages compared to the classical sandwich calorimeter structures in terms of granularity, hermiticity, uniformity, compactness, readout, radiation resistivity, stability and calibration. 22 refs.; 7 figs

  8. The data-acquisition and second level trigger system for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Lugt, H.J. van der.

    1993-01-01

    ZEUS and HERA are introduced in chapter 1 with emphasis on the ZEUS Calorimeter and the ZEUS trigger system. The analog and digital electronics developed for the readout of the Calorimeter signals, and the hardware for the Calorimeter Second Level Trigger and data-acquisition system, is described in chapter 2. Emphasis is put on the hardware developed at NIKHEF, which is based on the transputer as the main processing element. The ZEUS trigger and data-acquisition environment as well as the calibration procedures needed for the Calorimeter impose several requirements on the design of the data-acquisition system. The requirements, their implications for the design of the transputer network architecture and the design itself, are described in detail in chapter 3. The software developed for the Calorimeter data-acquisition is described in chapter 4. It includes both the software for the Calorimeter data-acquisition as that required for the calibration of the Calorimeter. First experiences with the CAL-SLT algorithms, obtained during the 1992 HERA running periods, are presented in chapter 5. Chapter 6 discusses the performance of the Calorimeter data-acquisition system. (orig.)

  9. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hasib, Ahmed; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of statistical techniques such as principal component analysis, and a neural n...

  10. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Oreglia, M; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The main upgrade will occur for the High Luminosity LHC phase (phase 2) which is scheduled around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to use will be decided after extensive test beam studies. High speed optical links are used to read out all digitized data to the counting room. For the off-detector electronics a new back-end architecture is being developed, including the initial trigger processing and pipeline memories. A demonstrator prototype read-out for a slice of the ...

  11. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the luminosity will have increased 5-fold compared to the design luminosity (1034 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional luminosity increase by a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to u...

  12. The New ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing the CPU requirements when detailed detector simulations are not needed. During Run-1 of the LHC, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitisation and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of...

  13. Performance of the ATLAS Tile calorimeter

    CERN Document Server

    Bertoli, Gabriele; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau­particles and missing transverse energy. TileCal is a scintillator­steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front­end electronics read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read­out system is responsible for reconstructing the data in real­time. The digitized signals are reconstructed with the Optimal Filtering algorithm, which computes for each channel the signal amplitude, time and quality factor at the required high rate. Each stage of the signal production from scintillation light to the signal reconstruc...

  14. Non-compensation of an electromagnetic compartment of a combined calorimeter

    International Nuclear Information System (INIS)

    Kil'chitskij, Yu.A.; Kuz'min, M.V.; Vinogradov, V.B.

    1999-01-01

    The method of extraction of the e/h ratio, the degree of noncompensation of the electromagnetic compartment of the ATLAS barrel combined prototype calorimeter is suggested. The e/h ratio of 1.74 ± 0.04 has been determined on the basis of the 1996 combined calorimeter test beam data. This value agrees with the prediction that e/h > 1.7 for this electromagnetic calorimeter

  15. Maintaining and improving the control and safety systems for the Electromagnetic Calorimeter of the CMS experiment

    CERN Document Server

    Di Calafiori, Diogo Raphael; Dissertori, Günther; Holme, Oliver; Jovanovic, Dragoslav; Lustermann, Werner; Zelepoukine, Serguei

    2012-01-01

    This paper presents the current architecture of the control and safety systems designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). An evaluation of system performance during all CMS physics data taking periods is reported, with emphasis on how software and hardware solutions are used to overcome limitations, whilst maintaining and improving reliability and robustness. The outcomes of the CMS ECAL Detector Control System (DCS) Software Analysis Project were a fundamental step towards the integration of all control system applications and the consequent piece-by-piece software improvements allowed a smooth transition to the latest revision of the system. The ongoing task of keeping the system in-line with new hardware technologies and software platforms specified by the CMS DCS Group is discussed. The structure of the comprehensive support service with detailed incident logging is presented in addition to a complet...

  16. Electromagnetic shower detector-calorimeters

    International Nuclear Information System (INIS)

    Appel, J.A.

    1975-01-01

    A brief review of the state-of-the-art of electromagnetic calorimeters is presented. The choice of detector based on the experimental requirements in cost, spatial resolution, energy resolution, and hadron rejection is discussed

  17. Developing an intelligent control system of automatic window motor ...

    Indian Academy of Sciences (India)

    2Department of Health Risk Management, China Medical University,. No. ..... outdoor close window open window. Figure 5. The comparison of relative humidity of outdoor and two experimental shelters. ... Thus, the benefit of the proposed.

  18. The Small angle TIle Calorimeter project in DELPHI

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-01-01

    The new Small Angle TIle Calorimeter (STIC) covers the forward regions in DELPHI. The main motivation for its construction was to achieve a systematic error of 0.1% on the luminosity determination. This detector consists of a ''shashlik'' type calorimeter, equipped with two planes of silicon pad detectors placed respectively after 4 and 7.4 radiation lengths. A veto counter, composed of two scintillator planes, covers the front of the calorimeter to allow e-γ separation and to provide a neutral energy trigger.The physics motivations for this project, results from extensive testbeam measurements and the performance during the 1994 LEP run are reported here. (orig.)

  19. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H.P.; Bednar, P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.; Bosman, M.; Bromberg, C.; Budagov, J.; Burckhart-Chromek, D.; Caprini, M.

    2009-01-01

    We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was ∼70pe/GeV, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of σ/E=52.9%/√(E)+5.7% was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter.

  20. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adragna, P [Pisa University and INFN, Pisa (Italy); Alexa, C [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Anderson, K [University of Chicago, Chicago, Illinois (United States); Antonaki, A; Arabidze, A [University of Athens, Athens (Greece); Batkova, L [Comenius University, Bratislava (Slovakia); Batusov, V [JINR, Dubna (Russian Federation); Beck, H P [Laboratory for High Energy Physics, University of Bern (Switzerland); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas Kuutmann, E [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal, Clermont-Ferrand (France); Blanchot, G [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bogush, A [Institute of Physics, National Academy of Sciences, Minsk (Belarus); Bohm, C [Stockholm University, Stockholm (Sweden); Boldea, V [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, Michigan (United States); Budagov, J [JINR, Dubna (Russian Federation); Burckhart-Chromek, D [CERN, Geneva (Switzerland); Caprini, M [National Institute for Physics and Nuclear Engineering, Bucharest (Romania)

    2009-07-21

    We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was {approx}70pe/GeV, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of {sigma}/E=52.9%/{radical}(E)+5.7% was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter.

  1. New tools for the simulation and design of calorimeters

    International Nuclear Information System (INIS)

    Womersley, W.J.

    1989-01-01

    Two new approaches to the simulation and design of large hermetic calorimeters are presented. Firstly, the Shower Library scheme used in the fast generation of showers in the Monte Carlo of the calorimeter for the D-Zero experiment at the Fermilab Tevatron is described. Secondly, a tool for the design future calorimeters is described, which can be integrated with a computer aided design system to give engineering designers an immediate idea of the relative physics capabilities of different geometries. 9 refs., 6 figs., 1 tab

  2. Discussion on the electromagnetic calorimeters of ATLAS and CMS

    Energy Technology Data Exchange (ETDEWEB)

    Aleksa, Martin, E-mail: martin.aleksa@cern.ch [CERN, Geneva 23, 1211 Geneva (Switzerland); Diemoz, Marcella [INFN Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy)

    2013-12-21

    This document summarizes a discussion on the electromagnetic calorimeters of ATLAS and CMS, two experiments at the CERN Large Hadron Collider (LHC), that took place at the 13th Vienna Conference on Instrumentation in February 2013. During the discussion each electromagnetic calorimeter and its performance was described in response to ten questions chosen to cover a wide range from the design and construction of the calorimeters over the calibration and performance to their role in the discovery of the Higgs boson and upgrade plans.

  3. Research on calorimeter for high-power microwave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi’an, Shaanxi 710024 (China)

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.

  4. Research on calorimeter for high-power microwave measurements.

    Science.gov (United States)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  5. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Bathe, S.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal-Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans-Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M-A; Dunford, M.; Duperrin, A.; Duran-Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores-Castillo, L.R.; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcí­a, C.; Garcí­a Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques-Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S-C; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles-Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E-E; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora-Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M-A; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa-Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero-Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua-Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C; Schumacher, J.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli-Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra-Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique-Aires-Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J-W; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  6. Prototype tests for a highly granular scintillator-based hadronic calorimeter

    OpenAIRE

    Liu, Yong; Collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future lepton collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "technological prototypes", that are scalable to the full linear collider detector. The Analogue Hadronic Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintill...

  7. Construction of the Zeus forward/rear calorimeter modules at NIKHEF

    International Nuclear Information System (INIS)

    Blankers, R.; Engelen, J.; Geerinck, H.; Homma, J.; Hunck, P.; Koning, N. de; Kooijman, P.; Korporaal, A.; Loos, R.; Straver, J.; Tiecke, H.

    1990-07-01

    ZEUS is one of the two experiments in preparation for studying electron-proton interactions at the HERA e-p collider at DESY in Hamburg. The design value for the energy of the electron beam is 30 GeV and for the proton beam 820 GeV. The asymmetry in the beam particle masses and their energies causes in general a strongly asymmetric energy distribution for the reaction products, in particular most of the energy flow will be in the proton direction. The layout of the ZEUS detector accomodates for this asymmetry. In the proton direction for instance, several wirechambers assure together with the central tracking detector good track reconstruction, in an area where high density of tracks is expected. The tracking detector is placed inside a magnetic field of 1.8 Tesla, provided by a superconducting coil. The interaction point is completely surrounded by a high resolution calorimeter, which in turn is surrounded by a backing calorimeter; this backing calorimeter has to detect late showering particles, has to serve as a muon filter and is also the return yoke for the magnetic field. The ZEUS collaboration has chosen for a type of hadron calorimeter with the best possible energy resolution known to date, a depleted uranium-scintillator sampling calorimeter. The calorimeter has an equal response to electrons and hadrons of the same energy (e/h=1). The sampling thickness is one radiation length. The calorimeter is subdivided in three components, the forward- (in proton direction), the rear- (in electron direction) and the barrel calorimeter, FCAL, RCAL and BCAL. In this report the design and assembly procedure of the FCAL/RCAL is described in detail. Furthermore the transport problems are discussed and the first calibration results obtained with beam particles are shown. (author). 5 refs.; 29 figs.; 1 tab

  8. Proper Installation of Replacement Windows | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  9. The electromagnetic calorimeter of the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Autiero, D; Baldo-Ceolin, M; Barichello, G; Bianchi-Bonaiti, V; Bobisut, F; Cardini, A; Cattaneo, P W; Cavasinni, V; Conta, C; Del Prete, T; De Santo, A; Di Lella, L; Ferrari, R; Flaminio, V; Fraternali, M; Gibin, D; Gninenko, S N; Guglielmi, A; Iacopini, E; Kovzelev, A V; La Rotonda, L; Lanza, A; Laveder, M; Lazzeroni, C; Livan, M; Mezzetto, M; Orestano, D; Pastore, F; Pennacchio, E; Petti, R; Polesello, G; Renzoni, G; Rimoldi, A; Roda, C; Sconza, A; Sobczynski, C; Valdata-Nappi, M; Vascon, M; Vercesi, V; Visentin, L; Volkov, S A [Pisa Univ. (Italy). Dipt. di Fisica; [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, Padova (Italy); [Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia and INFN, Sezione di Pavia, Pavia (Italy); [CERN, Geneva (Switzerland); [Dipartimento di Fisica, Universita di Firenze and INFN, Sezione di Firenze, Firenze (Italy); [Institute of Nuclear Research, INR, Moscow (Russian Federation); [Dipartimento di Fisica, Universita della Calabria and INFN, Gruppo Collegato di Cosenza, Cosenza (Italy)

    1996-05-01

    A description is given of the NOMAD electromagnetic calorimeter, consisting of 875 lead-glass counters read out by two-stage photomultipliers and a low noise electronic chain. The detector operates in a 0.4 T magnetic field transverse to the counter axis. The paper discusses the design criteria, the lead-glass characteristics, the properties of the read out chain and provides a summary of the calorimeter performance. (orig.).

  10. The electromagnetic calorimeter of the NOMAD experiment

    International Nuclear Information System (INIS)

    Autiero, D.; Baldo-Ceolin, M.; Barichello, G.; Bianchi-Bonaiti, V.; Bobisut, F.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Conta, C.; Del Prete, T.; De Santo, A.; Di Lella, L.; Ferrari, R.; Flaminio, V.; Fraternali, M.; Gibin, D.; Gninenko, S.N.; Guglielmi, A.; Iacopini, E.; Kovzelev, A.V.; La Rotonda, L.; Lanza, A.; Laveder, M.; Lazzeroni, C.; Livan, M.; Mezzetto, M.; Orestano, D.; Pastore, F.; Pennacchio, E.; Petti, R.; Polesello, G.; Renzoni, G.; Rimoldi, A.; Roda, C.; Sconza, A.; Sobczynski, C.; Valdata-Nappi, M.; Vascon, M.; Vercesi, V.; Visentin, L.; Volkov, S.A.

    1996-01-01

    A description is given of the NOMAD electromagnetic calorimeter, consisting of 875 lead-glass counters read out by two-stage photomultipliers and a low noise electronic chain. The detector operates in a 0.4 T magnetic field transverse to the counter axis. The paper discusses the design criteria, the lead-glass characteristics, the properties of the read out chain and provides a summary of the calorimeter performance. (orig.)

  11. Design, performance, and calibration of the CMS hadron-outer calorimeter

    International Nuclear Information System (INIS)

    Abdullin, S.; Gavrilov, V.; Ilyina, N.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stolin, V.; Ulyanov, A.; Abramov, V.; Goncharov, P.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A.; Acharya, B.; Aziz, T.; Banerjee, Sudeshna; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P.V.; Dugad, S.; Ganguli, S.N.; Guchait, M.; Gurtu, A.; Kalmani, S.; Krishnaswamy, M.R.; Maity, M.; Majumder, G.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Narasimham, V.S.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Sudhakar, K.; Tonwar, S.; Verma, P.; Adam, N.; Fisher, W.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Landsberg, G.; Marlow, D.; Tully, C.; Werner, J.; Adams, M.; Bard, R.; Burchesky, K.; Qian, W.; Akchurin, N.; Berntzon, L.; Carrell, K.; Guemues, K.; Jeong, C.; Kim, H.; Lee, S.W.; Popescu, S.; Roh, Y.; Spezziga, M.; Thomas, R.; Volobouev, I.; Wigmans, R.; Yazgan, E.; Akgun, U.; Albayrak, E.; Ayan, S.; Clarida, W.; Debbins, P.; Duru, F.; Ingram, D.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Schmidt, I.; Yetkin, T.; Anderson, E.W.; Hauptman, J.; Antchev, G.; Arcidy, M.; Hazen, E.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Posch, C.; Rohlf, J.; Sulak, L.; Varela, F.; Wu, S.X.; Aydin, S.; Bakirci, M.N.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis-Topaksu, A.; Onengut, G.; Ozkurt, H.; Polatoz, A.; Sogut, K.; Topakli, H.; Vergili, M.; Baarmand, M.; Mermerkaya, H.; Ralich, R.M.; Vodopiyanov, I.; Babich, K.; Golutvin, I.; Kalagin, V.; Kosarev, I.; Ladygin, V.; Mescheryakov, G.; Moissenz, P.; Petrosyan, A.; Rogalev, E.; Smirnov, V.; Vishnevskiy, A.; Volodko, A.; Zarubin, A.; Baden, D.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A.; Wang, L.; Wetstein, M.; Barnes, V.; Laasanen, A.; Pompos, A.; Bawa, H.; Beri, S.; Bhandari, V.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, B.; Singh, J.B.; Baiatian, G.; Sirunyan, A.; Bencze, G.; Laszlo, A.; Pal, A.; Vesztergombi, G.; Zalan, P.; Bhatti, A.; Bodek, A.; Budd, H.; Chung, Y.; Barbaro, P. de; Haelen, T.; Bose, T.; Esen, S.; Vanini, A.; Camporesi, T.; Visser, T. de; Efthymiopoulos, I.; Cankocak, K.; Cremaldi, L.; Reidy, J.; Sanders, D.A.; Cushman, P.; Ma, Y.; Sherwood, B.; Damgov, J.; Piperov, S.; Deliomeroglu, M.; Guelmez, E.; Isiksal, E.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Demianov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Petrushanko, S.; Sarycheva, L.; Teplov, K.; Vardanyan, I.; Diaz, J.; Gaultney, V.; Kramer, L.; Linn, S.; Lobolo, L.; Markowitz, P.; Martinez, G.; Dimitrov, L.; Genchev, V.; Vankov, I.; Elias, J.; Elvira, D.; Freeman, J.; Green, D.; Los, S.; Ronzhin, A.; Sergeyev, S.; Suzuki, I.; Vidal, R.; Whitmore, J.; Emeliantchik, I.; Mossolov, V.; Shumeiko, N.; Stefanovich, R.; Fenyvesi, A.; Gamsizkan, H.; Murat Gueler, A.; Ozkan, C.; Sekmen, S.; Serin, M.; Sever, R.; Zeyrek, M.; Gleyzer, S.; Hagopian, S.; Hagopian, V.; Johnson, K.; Grinev, B.; Lubinsky, V.; Senchishin, V.; Hashemi, M.; Mohammadi-Najafabadi, M.; Paktinat, S.; Heering, A.; Karmgard, D.; Ruchti, R.; Levchuk, L.; Sorokin, P.; Litvintsev, D.; Mans, J.; Penzo, A.; Podrasky, V.; Sanzeni, C.; Winn, D.; Vlassov, E.

    2008-01-01

    The Outer Hadron Calorimeter (HCAL HO) of the CMS detector is designed to measure the energy that is not contained by the barrel (HCAL HB) and electromagnetic (ECAL EB) calorimeters. Due to space limitation the barrel calorimeters do not contain completely the hadronic shower and an outer calorimeter (HO) was designed, constructed and inserted in the muon system of CMS to measure the energy leakage. Testing and calibration of the HO was carried out in a 300 GeV/c test beam that improved the linearity and resolution. HO will provide a net improvement in missing E T measurements at LHC energies. Information from HO will also be used for the muon trigger in CMS. (orig.)

  12. Design, performance, and calibration of the CMS hadron-outer calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S.; Gavrilov, V.; Ilyina, N.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stolin, V.; Ulyanov, A. [ITEP, Moscow (Russian Federation); Abramov, V.; Goncharov, P.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A. [IHEP, Protvino (Russian Federation); Acharya, B.; Aziz, T.; Banerjee, Sudeshna; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P.V.; Dugad, S.; Ganguli, S.N.; Guchait, M.; Gurtu, A.; Kalmani, S.; Krishnaswamy, M.R.; Maity, M.; Majumder, G.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Narasimham, V.S.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Sudhakar, K.; Tonwar, S.; Verma, P. [Tata Inst. of Fundamental Research, Mumbai (India); Adam, N.; Fisher, W.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Landsberg, G.; Marlow, D.; Tully, C.; Werner, J. [Princeton Univ., NJ (United States); Adams, M.; Bard, R.; Burchesky, K.; Qian, W. [Univ. of Illinois, Chicago, IL (United States); Akchurin, N.; Berntzon, L.; Carrell, K.; Guemues, K.; Jeong, C.; Kim, H.; Lee, S.W.; Popescu, S.; Roh, Y.; Spezziga, M.; Thomas, R.; Volobouev, I.; Wigmans, R.; Yazgan, E. [Texas Tech Univ., Lubbock, TX (United States); Akgun, U.; Albayrak, E.; Ayan, S.; Clarida, W.; Debbins, P.; Duru, F.; Ingram, D.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Schmidt, I.; Yetkin, T. [Univ. of Iowa, Iowa City, IA (United States); Anderson, E.W.; Hauptman, J. [Iowa State Univ., Ames, IA (United States); Antchev, G.; Arcidy, M.; Hazen, E.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Posch, C.; Rohlf, J.; Sulak, L.; Varela, F.; Wu, S.X. [Boston Univ., MA (United States); Aydin, S.; Bakirci, M.N.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis-Topaksu, A.; Onengut, G.; Ozkurt, H.; Polatoz, A.; Sogut, K. [and others

    2008-10-15

    The Outer Hadron Calorimeter (HCAL HO) of the CMS detector is designed to measure the energy that is not contained by the barrel (HCAL HB) and electromagnetic (ECAL EB) calorimeters. Due to space limitation the barrel calorimeters do not contain completely the hadronic shower and an outer calorimeter (HO) was designed, constructed and inserted in the muon system of CMS to measure the energy leakage. Testing and calibration of the HO was carried out in a 300 GeV/c test beam that improved the linearity and resolution. HO will provide a net improvement in missing E{sub T} measurements at LHC energies. Information from HO will also be used for the muon trigger in CMS. (orig.)

  13. Performance of a highly segmented scintillating fibres electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Asmone, A.; Bertino, M.; Bini, C.; De Zorzi, G.; Diambrini Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Garufi, F.; Gauzzi, P.; Zanello, D.

    1993-01-01

    A prototype of scintillating fibres electromagnetic calorimeter has been constructed and tested with 2, 4 and 8 GeV electron beams at the CERN PS. The calorimeter modules consist of a Bi-Pb-Sn alloy and scintillating fibres. The fibres are parallel to the modules longer axis, and nearly parallel to the incident electrons direction. The calorimeter has two different segmentation regions of 24x24 mm 2 and 8x24 mm 2 cross area respectively. Results on energy and impact point space resolution are obtained and compared for the two different granularities. (orig.)

  14. To the calculation of energy resolution of ionization calorimeter

    International Nuclear Information System (INIS)

    Uchajkin, V.V.; Lagutin, A.A.

    1976-01-01

    The question of energy resolution of the ionization calorimeter is considered analytically. A method is discussed for calculating the probability characteristics (mean value and dispersion) of energy losses of an electron-photon shower by ionization in the calorimeter volume

  15. Performance Standards for Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. Benefits of Efficient Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. Assessing Window Replacement Options | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Windows for New Construction | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. CONSTRUCTION OF A DIFFERENTIAL ISOTHERMAL CALORIMETER OF HIGH SENSITIVITY AND LOW COST.

    OpenAIRE

    Trinca, RB; Perles, CE; Volpe, PLO

    2009-01-01

    CONSTRUCTION OF A DIFFERENTIAL ISOTHERMAL CALORIMETER OF HIGH SENSITIVITY AND LOW COST The high cost of sensitivity commercial calorimeters may represent an obstacle for many calorimetric research groups. This work describes (fie construction and calibration of a batch differential heat conduction calorimeter with sample cells volumes of about 400 mu L. The calorimeter was built using two small high sensibility square Peltier thermoelectric sensors and the total cost was estimated to be about...

  20. Moving one of the ATLAS end-cap calorimeters

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the end-cap calorimeters for the ATLAS experiment is moved using a set of rails. This calorimeter will measure the energy of particles that are produced close to the axis of the beam when two protons collide. It is kept cool inside a cryostat to allow the detector to work at maximum efficiency.

  1. Radiation damage effects on calorimeter compensation

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Handler, T.

    1990-01-01

    An important consideration in the design of a detector that is to be used at the Superconducting Super Collider (SSC) is the response of the calorimeter to electromagnetic and hadronic particles and the equality of those responses for different types of particles at equal incident energies, i.e. compensation. However, as the simulations that are reported show, the compensation characteristics of a calorimeter can be seriously compromised over a relatively short period of time due to the large radiation levels that are expected in the SSC environment. 6 refs., 3 figs

  2. Comparison between calorimeter and HLNC errors

    International Nuclear Information System (INIS)

    Goldman, A.S.; De Ridder, P.; Laszlo, G.

    1991-01-01

    This paper summarizes an error analysis that compares systematic and random errors of total plutonium mass estimated for high-level neutron coincidence counter (HLNC) and calorimeter measurements. This task was part of an International Atomic Energy Agency (IAEA) study on the comparison of the two instruments to determine if HLNC measurement errors met IAEA standards and if the calorimeter gave ''significantly'' better precision. Our analysis was based on propagation of error models that contained all known sources of errors including uncertainties associated with plutonium isotopic measurements. 5 refs., 2 tabs

  3. Controlled time of arrival windows for already initiated energy-neutral continuous descent operations

    OpenAIRE

    Dalmau Codina, Ramon; Prats Menéndez, Xavier

    2017-01-01

    Continuous descent operations with controlled times of arrival at one or several metering fixes could enable environmentally friendly procedures without compromising terminal airspace capacity. This paper focuses on controlled time of arrival updates once the descent has been already initiated, assessing the feasible time window (and associated fuel consumption) of continuous descent operations requiring neither thrust nor speed-brake usage along the whole descent (i.e. only elevator control ...

  4. Hadronic vector boson decay and the art of calorimeter calibration

    Energy Technology Data Exchange (ETDEWEB)

    Lobban, Olga Barbara [Texas Tech Univ., Lubbock, TX (United States)

    2002-12-01

    Presented here are several studies involving the energy measurement of particles using calorimeters. The first study involves the effects of radiation damage on the response of a prototype calorimeter for the Compact Muon Solenoid experiment. We found that the effects of radiation damage on the calorimeter·s response arc dose dependent and that most of the damage will occur in the first year of running at the Large Hadron Collider. Another study involved the assessment of the Energy Flow Method an algorithm which combines the information from the calorimeter system is combined with that from the tracking system in an attmpt to improve the energy resolution for jet measurements. Using the Energy Flow method an improvement of $\\sim30\\%$ is found but this impovement decreases at high energies when the hadronic calorimeter resolution dominates the quality of the jet energy measurements. Finally, we developed a new method to calibrate a longitudinally segnmented calorimeter. This method eliminates problems with the traditional method used for the calorimeters at the Collider Detector at Fermilab. We applied this new method in the search for hadrunic decays of the $W$ and $Z$ bosons in a sample of dijet data taken during Tevatron Run IC. A signal of 9873±3950(sys) ±1130 events was found when the new calibration method was used. This corresponds to a cross section $\\sigma(p\\bar{p} \\to W,Z) \\cdot B(W,Z \\to jets) = 35.6 \\pm 14.2 ({\\rm sys}) \\pm 4.1 (\\rm{stat})$ nb.

  5. Fractal dimension analysis in a highly granular calorimeter

    CERN Document Server

    Ruan, M; Brient, J.C; Jeans, D; Videau, H

    2015-01-01

    The concept of “particle flow” has been developed to optimise the jet energy resolution by distinguishing the different jet components. A highly granular calorimeter designed for the particle flow algorithm provides an unprecedented level of detail for the reconstruction of calorimeter showers and enables new approaches to shower analysis. In this paper the measurement and use of the fractal dimension of showers is described. The fractal dimension is a characteristic number that measures the global compactness of the shower. It is highly dependent on the primary particle type and energy. Its application in identifying particles and estimating their energy is described in the context of a calorimeter designed for the International Linear Collider.

  6. Design of a 2 x 2 scintillating tile package for the SDC barrel electromagnetic tile/fiber calorimeter

    International Nuclear Information System (INIS)

    Hara, K.; Maekoba, H.; Minato, H.; Miyamoto, Y.; Nakano, I.; Okabe, M.; Seiya, Y.; Takano, T.; Takikawa, K.; Yasuoka, K.

    1996-01-01

    We describe R and D results on optical properties of a scintillating tile/fiber system for the SDC barrel electromagnetic calorimeter. The tile/fiber system uses a wavelength shifting fiber to read out the signal of a scintillating plate (tile) and a clear fiber to transmit the signal to a phototube. In the SDC calorimeter design, four of tile/fiber systems are grouped as a 2 x 2 tile package so that the gap width between and the location of the tiles in the absorber slot can be controlled. Optical properties of the tile package such as the light yield, its uniformity, and cross talk were measured in a test bench with a β-ray source and in a 2-GeV/c π + test beam. The performance as an electromagnetic calorimeter was evaluated by a GEANT simulation using the measured response map. We discuss a method of correction for the calorimeter non-uniformity. (orig.)

  7. NA48 prototype calorimeter

    CERN Multimedia

    1990-01-01

    This is a calorimeter, a detector which measures the energy of particles. When in use, it is filled with liquid krypton at -152°C. Electrons and photons passing through interact with the krypton, creating a shower of charged particles which are collected on the copper ribbons. The ribbons are aligned to an accuracy of a tenth of a millimetre. The folding at each end allows them to be kept absolutely flat. Each shower of particles also creates a signal in scintillating material embedded in the support disks. These flashes of light are transmitted to electronics by the optical fibres along the side of the detector. They give the time at which the interaction occurred. The photo shows the calorimeter at NA48, a CERN experiment which is trying to understand the lack of anti-matter in the Universe today.

  8. Application of polystyrene - water calorimeter in determination of absorbed dose. Vol. 4.

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, F A [Nuclear Materials Authority, Maadi, Cairo (Egypt); Ashry, H A; El-Behay, A Z; Abdou, S [National Center, for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The polystyrene-water calorimeter was investigated as a modification of the water calorimeter, where the polystyrene has a low specific heat and negligible known heat defect. This calorimeter was designed, constructed and calibrated for measurement of radiation absorbed dose. The system utilizes a thermistor to detect the radiation-induced temperature rise in the polystyrene absorber at certain point from the radiation source. A temperature stability of as low as 0.0018 degree C/min in a 42.0 degree C environment, and a gamma-radiation sensitivity of as high as 1.9720 ohm/Gy were obtained. Comparisons of the results obtained by using the polystyrene-water calorimeter with those obtained by applying other types of calorimeters i.e., water and graphite calorimeters were also done to aid in the possible realization of an accurate and efficient instrument for use under widely different irradiation conditions. 4 figs., 1 tab.

  9. A 3000 element lead-glass electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Brabson, B.B.; Adams, T.; Bishop, J.M.; Cason, N.M.; LoSecco, J.M.; Manak, J.J.; Sanjari, A.H.; Shephard, W.D.; Steinike, D.L.; Taegar, S.A.; Thompson, D.R.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Brown, D.S.; Pedlar, T.K.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M.

    1997-01-01

    A 3045 element lead glass calorimeter and an associated fast trigger processor have been constructed, tested and implemented in BNL experiment E852 in conjunction with the multi-particle spectrometer (MPS). Approximately, 10 9 all-neutral and neutral plus charged triggers were recorded with this apparatus during data runs in 1994 and 1995. This paper reports on the construction, testing and performance of this lead glass calorimeter and the associated trigger processor. (orig.)

  10. Calibration of the CMS Hadron Calorimeter in Run 2

    CERN Document Server

    Chadeeva, Marina

    2017-01-01

    Various calibration techniques for the CMS Hadron calorimeter in Run2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3\\%. The {\\it in situ} energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Z$\\rightarrow ee$ process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4\\% in the barrel and 2.6\\% in the endcap region (at $\\vert \\eta \\vert < 2$) and is dominated by the systematic uncertainty due to pileup contributions.

  11. Calibration of the CMS hadron calorimeter in Run 2

    Science.gov (United States)

    Chadeeva, M.; Lychkovskaya, N.

    2018-03-01

    Various calibration techniques for the CMS Hadron calorimeter in Run 2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3%. The in situ energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Zarrow ee process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4% in the barrel and 2.6% in the endcap region (at the pseudorapidity range |η|<2) and is dominated by the systematic uncertainty due to pileup contributions.

  12. Electromagnetic calorimeter on liquid krypton

    International Nuclear Information System (INIS)

    Bazzotti, M.; Bianco, G.L.; Lanni, F.; Maggi, B.; Palombo, F.; Sala, A.

    1990-01-01

    This paper reports on use of noble condensed gases as calorimeter media that is attractive due to the possibility to get not only good energy resolution (like in NaI and CsI calorimeters) but better space resolution for photons. Longitudinal segmentation can provide information for particle identification by dE/dx and also e/π-separation based on longitudinal structure of the shower. The best material for this aim is of course liquid Zenon, but it is impossible to get the necessary amount of it in reasonable time. Therefore, the authors have stopped their choice on the next candidate-liquid Krypton (LKr). Its sufficient amount can be obtained before to the beginning of the experiment

  13. Re-integration and Consolidation of the Detector Control System for the Compact Muon Solenoid Electromagnetic Calorimeter

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The current shutdown of the Large Hadron Collider (LHC), following three successful years of physics data-taking, provides an opportunity for major upgrades to be performed on the Detector Control System (DCS) of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment. The upgrades involve changes to both hardware and software, with particular emphasis on taking advantage of more powerful servers and updating third-party software to the latest supported versions. The considerable increase in available processing power enables a reduction from fifteen to three or four servers. To host the control system on fewer machines and to ensure that previously independent software components could run side-by-side without incompatibilities, significant changes in the software and databases were required. Additional work was undertaken to modernise and concentrate I/O interfaces. The challenges to prepare and validate the hardware and software upgrades are described along with details of the ...

  14. Nano-DTA and nano-DSC with cantilever-type calorimeter

    International Nuclear Information System (INIS)

    Nakabeppu, Osamu; Deno, Kohei

    2016-01-01

    Highlights: • Nanocalorimetry with original cantilever type calorimeters. • The calorimeters showed the enthalpy resolution of 200 nJ level. • Nano-DTA of a binary alloy captured a probabilistic peak after solidification. • Power compensation DSC of a microgram level sample was demonstrated. • The DSC and DTA behavior were explained with a lumped model. - Abstract: Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) of the minute samples in the range of microgram to nanogram were studied using original cantilever-type calorimeters. The micro-fabricated calorimeter with a heater and thermal sensors was able to perform a fast temperature scan at above 1000 K/s and a high-resolution heat measurement. The DTA of minuscule metal samples demonstrated some advances such as the thermal analysis of a 20 ng level indium and observation of a strange phase transition of a binary alloy. The power compensation type DSC using a thermal feedback system was also performed. Thermal information of a microgram level sample was observed as splitting into the DSC and DTA signals because of a mismatch between the sample and the calorimeter. Although there remains some room for improvement in terms of the heat flow detection, the behavior of the compensation system in the DSC was theoretically understood through a lumped model. Those experiments also produced some findings, such as a fin effect with sample loading, a measurable weight range, a calibration of the calorimeter and a product design concept. The development of the nano-DTA and nano-DSC will enable breakthroughs for the fast calorimetry of the microscopic size samples.

  15. 3D Numerical study of the external flow effect on the heat transfer in a radiometric calorimeter dedicated to nuclear heating measurements

    International Nuclear Information System (INIS)

    Muraglia, M.; Reynard-Carette, C.; Brun, J.; Carette, M.; Lyoussi, A.

    2013-06-01

    Improvement of measurements in reactor is still a challenge. Thus, this work focuses on numerical studies of one sensor dedicated to nuclear heating measurements: a radiometric complex calorimeter. More precisely, using a simplified conduction heat model, this work presents the first full 3D simulations of a simplified calorimeter reduced to the complex calorimeter head showing that the key parameter for the sensitivity control is the convective heat transfers between the calorimeter and its external surrounding. The effect of external flow velocity on the calorimeter head response is determined for different flow regimes (natural convection, forced convection) and numerical results are found to be in agreement with experimental results under non-irradiated conditions obtained for the complex calorimeter. Moreover, in order to understand and describe fully the mechanisms leading at the different calorimeter heat transfer, the flow velocity dynamics should be added in the model. In a first approach, due to low influence of the flow velocity for tested power range, a static cooling fluid around the calorimeter head is added in the model. Then, in order to get the full flow dynamics, using Boussinesq approximation, a new 2D fluid model, including both temperature field and flow velocity dynamics, is derived taking into account the nuclear heating effect on the flow. (authors)

  16. ELECTROMAGNET CALORIMETER (ECAL)

    CERN Multimedia

    R. Rusack

    Installation is under way of the last piece of the electromagnetic calorimeter. This is the preshower (ES) that sits in front of the two endcap calorimeters. The construction of the ES was completed in December and went through a detailed set of tests in December and January. The two preshower detectors have a total of 4300 silicon sensors with 137,000 strips. After final assembly and system testing in January, only two of the strips were found to be defective. Once CMS was fully opened a new support structure (‘Gazprom’) was put into place underneath the beam pipe, to support the Surkov platform, on which the preshower installation takes place. In the early hours of 26th February the first two Dees, which form the ‘ES+’ endcap,  were transported to P5 , a journey that took two and a half hours. The Dees, still inside environmental protection boxes, were then lowered  underground and moved to the ‘+’ end of CMS. Installation start...

  17. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Souza, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5-fold compared to the design luminosity (10exp34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2023. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. The smallest independent on-detector electronics module has been reduced from 45 channels to 6, greatly reducing the consequences of a failure in the on-detector electronics. The size of t...

  18. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Reed, Robert; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter covering the central region of the ATLAS experiment at LHC. TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC operation (Phase 2 around 2023) where the peak luminosity will increase 5x compared to the design luminosity (10^{34} cm^{-2}s^{-1}) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims to replace the majority of the on- and off-detector electronics so that all calorimeter signals can be digitized and directly sent to the off-detector electronics in the counting room. This will reduce pile-up problems and allow more complex trigger algorithms. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to t...

  19. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase 2) where the peak luminosity will increase 5$\\times$ compared to the design luminosity ($10^{34} cm^{-2}s^{-1}$) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, c...

  20. Thermal performance of a double pane window with a solar control coating for warm climate of Mexico

    International Nuclear Information System (INIS)

    Xamán, J.; Jiménez-Xamán, C.; Álvarez, G.; Zavala-Guillén, I.; Hernández-Pérez, I.; Aguilar, J.O.

    2016-01-01

    Highlights: • Pseudo-transient thermal performance of a double pane window (DPW) was determined. • The DPW was analyzed each 5 s by a period from 8:00 to 18:00 h. • 57,600 computational runs were necessary and the additive correction multigrid was implemented. • Solar control coating (SCC) in a DPW reduces 1073.79 W/m 2 with respect to the DPW without SCC. • SCC is highly recommended in a DPW because it reduces a 53.88% of the amount of energy gained. - Abstract: The pseudo-transient thermal performance (each 5 s) of a double pane window without and with a solar control coating was determined numerically. The study considers warm climatic conditions (Mexico) and a period from 8:00 to 18:00 h. The effect of varying the indoor air temperature (15–30 °C); and the incident solar radiation and the outdoor air temperature as functions of time is analyzed. The simulations were done with a self-developed ForTran program and it was verified with results from the literature. To obtain the results, 57,600 computational runs were necessary. From the results, the double pane window with a solar control coating allows a smaller heat flux to enter into a room than the corresponding without a solar control coating. The solar control coating in double glass window reduces the amount of 1073.79 W h/m 2 with respect to the case without a solar control coating, which represents a reduction of 53.88% of the heat gain.

  1. Design studies and sensor tests for the beam calorimeter of the ILC detector

    International Nuclear Information System (INIS)

    Kuznetsova, E.

    2007-03-01

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  2. Design studies and sensor tests for the beam calorimeter of the ILC detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, E.

    2007-03-15

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  3. Operation and Performance of a new microTCA-based CMS Calorimeter Trigger in LHC Run 2

    CERN Document Server

    Klabbers, Pamela Renee

    2016-01-01

    The Large Hadron Collider (LHC) at CERN is currently increasing the instantaneous luminosity for p-p collisions. In LHC Run 2, the center-of-mass energy has gone from 8 to 13 TeV and the instantaneous luminosity will approximately double for proton collisions. This will make it even more challenging to trigger on interesting events since the number of interactions per crossing (pileup) and the overall trigger rate will be significantly larger than in LHC Run 1. The Compact Muon Solenoid (CMS) experiment has installed the second stage of a two-stage upgrade to the Calorimeter Trigger to ensure that the trigger rates can be controlled and the thresholds kept low, so that physics data will not be compromised. The stage-1, which replaced the original CMS Global Calorimeter Trigger, operated successfully in 2015. The completely new stage-2 has replaced the entire calorimeter trigger in 2016 with AMC form-factor boards and optical links operating in a microTCA chassis. It required that updates to the calorimet...

  4. gFEX, the ATLAS Calorimeter Global Feature Extractor

    CERN Document Server

    Takai, Helio; The ATLAS collaboration; Chen, Hucheng

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1 Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be implemented as a fast reconfigurable processor based on four large FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 264 optical fibers with the data transferred at the 40 MHz LHC clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure FPGAs, monitor board health, and interface to external signals. Although the board is being designed specifically for the ATLAS experiment, it is sufficiently generic that it could be used for fast data processing at other HEP or NP experiments. We will present the design of the gFEX board and discuss how it is being...

  5. The development of low-temperature calorimeter on the Peltier elements

    Science.gov (United States)

    Baturevich, Tatyana; Tyagunin, Anatoly

    2017-09-01

    The article is devoted to the design of low-temperature calorimeter on the Peltier elements. This calorimeter can be used to study the temperature dependence of the specific heat capacity of different substances.

  6. The new RD52 (DREAM) fiber calorimeter

    International Nuclear Information System (INIS)

    Wigmans, Richard

    2012-01-01

    Simultaneous detection of the Cerenkov light and scintillation light produced in hadron showers makes it possible to measure the electromagnetic shower fraction event by event and thus eliminate the detrimental effects of fluctuations in this fraction on the performance of calorimeters. In the RD52 (DREAM) project, the possibilities of this dual-readout calorimetry are investigated and optimized. In this talk, the first test results of prototype modules for the new full-scale fiber calorimeter are presented.

  7. Heavy ion studies with CMS HF calorimeter

    International Nuclear Information System (INIS)

    Damgov, I.; Genchev, V.; Kolosov, V.A.; Lokhtin, I.P.; Petrushanko, S.V.; Sarycheva, L.I.; Teplov, S.Yu.; Shmatov, S.V.; Zarubin, P.I.

    2001-01-01

    The capability of the very forward (HF) calorimeter of the CMS detector at LHC to be applied to specific studies with heavy ion beams is discussed. The simulated responses of the HF calorimeter to nucleus-nucleus collisions are used for the analysis of different problems: reconstruction of the total energy flow in the forward rapidity region, accuracy of determination of the impact parameter of collision, study of fluctuations of the hadronic-to-electromagnetic energy ratio, fast inelastic event selection

  8. The pipelined readout for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Hervas, L.

    1991-01-01

    The electron-proton storage ring complex HERA under construction at DESY in Hamburg is the first machine of a new generation of colliders. Since physics to be studied at HERA (covered in chapter 2) base on the precise measurement of kinematic variables over a very large range of energies, a foremost emphasis is set in calorimetry. After long studies and an ambitious test program, the ZEUS collaboration has built a high resolution depleted uranium-scintillator calorimeter with photomultiplier readout, the state of the art in detectors of this type. In chapter 3 the principles of calorimetry are reviewed and the construction of the ZEUS calorimeter is described. Mainly due to the large dynamic range and the short bunch crossing times a novel concept for the readout in an analog pipelined fashion had to be designed. This concept is explained in chapter 4. The solid state implementation of the pipeline required two integrated circuits which were developed specially for the ZEUS calorimeter in collaboration with an electronics research institute and produced by industry. The design and construction of these devices and the detailed testing which has been performed for properties critical in the readout is covered in chapters 5 and 6. The whole pipelined readout is a complicated setup with many steps and collaborating systems. Its implementation and the information to operate it are covered in chapter 7. Finally the concepts presented and the applications discussed have been installed and tested on a test beam calibration experiment. There, the modules of the calorimeter have been calibrated. Chapter 8 presents results from these measurements which show excellent performance of the electronics as well as optimal properties of the calorimeter modules. (orig./HSI)

  9. Performance of the upgraded small angle tile calorimeter at LEP

    CERN Document Server

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1998-01-01

    The small angle tile calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with so- called "shashlik" technique, $9 allows the insertion of tracking detectors within the sampling structure, in order to make it possible to determine the direction of the showering particle. Presented here are some results demonstrating the performance of the $9 calorimeter and of these tracking detectors at LEP. (5 refs).

  10. Monte-Carlo simulation for the showers in the DELPHI (LEP) hadron calorimeter

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Tkachev, L.G.

    1984-01-01

    Monte-Carlo simulation for shower formation is performed for a hadron calorimeter consisting of iron layers with inserted plastic streamer tubes. It is shown that the dead zone effect localized on anode wires in the places of streamer formation changes essentially both the calorimeter response and the effective transversal size of the shower. The response variation with the value and direction of the magnetic field corresponding to DELPHI hadron calorimeter achieves 2O%, which causes the necessity of additional calorimeter calibration in the magnetic field

  11. CMS Hadronic EndCap Calorimeter Upgrade R&D Studies

    CERN Document Server

    Akgun, Ugur; Onel, Yasar

    2012-01-01

    Due to an expected increase in radiation damage in LHC, we propose to replace the active material of the CMS Hadronic EndCap calorimeters with radiation hard quartz plate. Quartz is proven to be radiation hard with radiation damage tests using electron, proton, neutron and gamma beams. However, the light produced in quartz is from Cerenkov process, which yields drastically fewer photons than scintillators. To increase the light collection efficiency we pursue two separate methods: First method: use wavelength shifting (WLS) fibers, which have been shown to collect efficiently the Cerenkov light generated in quartz plates. A quartz plate calorimeter prototype with WLS fibers has been constructed and tested at CERN that shows this method is feasible. Second proposed solution is to treat the quartz plates with radiation hard wavelength shifters, p-terphenyl, doped zinc oxide, or doped CdS. Another calorimeter prototype has been constructed with p-terphenyl deposited quartz plates, and showed superior calorimeter...

  12. Upgrade of the ATLAS Calorimeters for Higher LHC Luminosities

    CERN Document Server

    Carbone, Ryne Michael; The ATLAS collaboration

    2016-01-01

    The upgrade of the LHC will bring instantaneous and total luminosities which are a factor 5-7 beyond the original design of the ATLAS Liquid Argon (LAr) and Tile Calorimeters and their read-out systems. Due to radiation requirements and a new hardware trigger concept the read-out electronics will be improved in two phases. In Phase-I, a dedicated read-out of the LAr Calorimeters will provide higher granularity input to the trigger, in order to mitigate pile-up effects and to reduce the background rates. In Phase-II, completely new read-out electronics will allow a digital processing of all LAr and Tile Calorimeter channels at the full 40 MHz bunch-crossing frequency and a transfer of calibrated energy inputs to the trigger. Results from system design and performance of the developed read-out components, including fully functioning demonstrator systems already operated on the detector, will be reported. Furthermore, the current Forward Calorimeter (FCal) may suffer from signal degradation and argon bubble form...

  13. Calorimeter measurements of absorbed doses at the heavy water enriched uranium reactor

    International Nuclear Information System (INIS)

    Markovic, V.

    1961-12-01

    Application of calorimetry measurements of absorbed doses was imposed by the need of good knowledge of the absorbed dose values in the reactor experimental channels. Other methods are considered less reliable. The work was done in two phases: calorimetry measurements at lower reactor power (13-80 kW) by isothermal calorimeter, and differential calorimeter constructions for measurements at higher power levels (up to 1 MW). This report includes the following four annexes, papers: Isothermal calorimeter for reactor radiation monitoring, to be published; Calorimeter dosimetry of reactor radiation, presented at the Symposium about nuclear fuel held in april 1961; Radiation dosimetry of the reactor RA at Vinca, published in the Bull. Inst. Nucl. Sci. 1961; Differential calorimeter for reactor radiation dosimetry

  14. Estimation of dosimetry parameters for an EB accelerator using graphite calorimeters of different thickness

    International Nuclear Information System (INIS)

    Benny, P.G.; Khader, S.A.; Sarma, K.S.S.

    2012-01-01

    Graphite calorimeters of different thickness in the range of 0.6 mm to 10 mm have been designed and fabricated for the dosimetry of 2 MeV electron beam accelerator. Average absorbed dose in each of the calorimeters of different thickness has been determined. The paper reports a method for selecting calorimeters with suitable thickness for its application as absorbed dose calorimeters and as total energy absorption calorimeters for an electron beam of particular energy. Also it reports, using calorimeters of different thickness, it is possible to estimate various parameters such as energy fluence, average absorbed dose, absorbed dose at any depth in the medium and practical range.

  15. Rad Hard Active Media For Calorimeters

    CERN Document Server

    Norbeck, E; Möller, A; Onel, Y

    2006-01-01

    Zero-degree calorimeters have limited space and extreme levels of radiation. A simple, low cost, radiation hard design uses tungstenmetal as the absorber and a suitable liquid as the ˇCerenkov radiator. In other applications a PPAC (Parallel Plate Avalanche Counter) operatingwith a suitable atmosphericpressure gas is an attractive active material for a calorimeter. It can be made radiation hard and has sufficient gain in the gas that no electronic components are needed near the detector. It works well even with the highest concentration of shower particles. For this pressure range, R134A (used in auto air conditioners) has many desirable features.

  16. Noise dependency with pile-up in the ATLAS Tile Calorimeter

    CERN Document Server

    Araque Espinosa, Juan Pedro; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment, positioned between the electromagnetic calorimeter and the muon chambers. It comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. These conditions are really challenging when dealing with the energy measurements in the calorimeter since not only the energy from an interesting event will be measured but a component coming from other collisions which are difficult to distinguish from the interesting one will also be present. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects noise under different circumstances are described.

  17. Data acquisition system and link and data aggregator for the CALICE analogue hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, Julien; Adam, Lennart; Bauss, Bruno; Buescher, Volker; Chau, Phi; Degele, Reinhold; Geib, Karl-Heinrich; Krause, Sascha; Liu, Yong; Masetti, Lucia; Schaefer, Ulrich; Spreckels, Rouven; Tapprogge, Stefan; Wanke, Rainer [Johannes-Gutenberg Universitaet, Mainz (Germany); Collaboration: CALICE-D-Collaboration

    2015-07-01

    The Analogue Hadron Calorimeter (AHCAL) is one of the several calorimeter designs developed by the CALICE collaboration for future linear colliders. It is a high granularity sampling calorimeter with plastic scintillator tiles of 3 x 3 cm{sup 2}, adding up to ∝8'000'000 sensors. This large amount of channels requires a powerful data acquisition system (DAQ). In this DAQ system, the Link and Data Aggregator module (LDA) acts as an intermediate component to group together several layers units, dispatching control signals and merging data. A first LDA design (mini-LDA), intended to be flexible but limited to a small number of layers, has been successfully used during the end-of-the-year 2014 CERN Test Beam program. A second prototype (wing-LDA), compatible with a complete detector design, is operating during the Test Beam program of 2015. This talk will present the current status of the DAQ and the LDA, with recent results from Test Beam and future plans.

  18. ''Massless gaps'' for solenoid + calorimeter

    International Nuclear Information System (INIS)

    Marraffino, J.; Wu, W.; Beretvas, A.; Green, D.; Denisenko, K.; Para, A.

    1991-11-01

    The necessary existence of material in front of the first active element in a calorimeter will degrade the performance of that device. The question is by what factor. The follow up question is what can be done to minimize the damage. These questions are usually of primary importance for liquid argon calorimetry because of the necessity of containment dewars. However, the problem is universal. For example, the Solenoid Detector Collaboration, SDC, has proposed a superconducting coil which would be placed in front of the EM calorimeter. Although much effort has been made to minimize the depth of material in the coil, still the resolution and linearity must be optimized if the SDC goal of precision electromagnetic (EM) calorimetry is to be realized

  19. Replacement Windows for Existing Homes Homes | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  20. Proposal for a level 0 calorimeter trigger system for LHCb

    CERN Document Server

    Bertin, A; Capponi, M; D'Antone, I; De Castro, S; Donà, R; Galli, D; Giacobbe, B; Marconi, U; Massa, I; Piccinini, M; Poli, M; Semprini-Cesari, N; Spighi, R; Vecchi, S; Villa, M; Vitale, A; Zoccoli, A; Zoccoli, Antonio

    1999-01-01

    In this note we present a complete system for the Level-0 LHCb calorimeter triggers. The system is derived from the electromagnetic calorimeter pre-trigger developed for the HERA-B experiment. The proposed system follows closely the Level-0 trigger algorithms presented in the LHCb Technical Proposal based on an electromagnetic and hadronic showers analysis performed on 3x3 calorimeter matrix. The general architecture presented is completely synchronous and quite flexible to allow adaptation to further improvements on the Level-0 trigger algorithms.

  1. Hadron calorimeter module prototype for baryonic matter studies at Nuclotron

    OpenAIRE

    Gavrishchuk, O. P.; Ladygin, V. P.; Petukhov, Yu. P.; Sychkov, S. Ya

    2014-01-01

    The prototype of the hadron calorimeter module consisting of 66 scintillator/lead layers with the 15x15 cm^2 cross section and 5 nuclear interaction lengths has been designed and produced for the zero degree calorimeter of the BM@N experiment. The prototype has been tested with high energy muon beam of the U-70 accelerator at IHEP. The results of the beam test for different types of photo multipliers and light guides are presented. The results of the Monte-Carlo simulation of the calorimeter ...

  2. A neutron calorimeter as a fusion diagnostic

    International Nuclear Information System (INIS)

    Proctor, A.E.; Harker, Y.D.; Neischmidt, E.B.

    1986-01-01

    A calorimeter is described which is applicable as a fusion neutron diagnostic. The advantages of the device are discussed, including: low sensitivity to thermal neutrons, no heat loss to surroundings, large dynamic range, small mass resulting in fair time resolution, and small physical size. The heat generation is provided by neutron induced fissions in a foil of 238 U and a calorimeter is isothermal. The effects, advantages and disadvantages of other target materials are discussed. Also discussed are time resolution and calibration

  3. Geometric alignment of the CMD-3 endcap electromagnetic calorimeter using events of two-quantum annihilation

    International Nuclear Information System (INIS)

    Akhmetshin, R.R.; Grigoriev, D.N.; Kazanin, V.F.; Kuzmenko, A.E.; Timofeev, A.V.

    2017-01-01

    Since 2010 the electromagnetic endcap calorimeter based on BGO crystals is used in experiments as one of the systems of the CMD-3 detector. The spacial resolution is one of crucial parameters of the calorimeter. Inaccurate knowledge of the real calorimeter position can limit the resolution. In this work the alignment of the center of the calorimeter with respect to the tracking system of the CMD-3 detector has been performed using events of two-quantum annihilation. The alignment technique that has been used to determine the position of the calorimeter is described. Finally, the improvement in spacial resolution of the calorimeter after applying the correction for the real calorimeter position is shown.

  4. Operation and performance of the ATLAS Tile Calorimeter in Run 1

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Abhayasinghe, Deshan Kavishka; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adiguzel, Aytul; Adye, Tim; Affolder, Tony; Afik, Yoav; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allaire, Corentin; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Álvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Ambroz, Luca; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Amrouche, Cherifa Sabrina; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anelli, Christopher Ryan; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Annovi, Alberto; Antel, Claire; Anthony, Matthew; Antonelli, Mario; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Araujo Pereira, Rodrigo; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Armbruster, Aaron James; Armitage, Lewis James; Armstrong III, Alexander; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asimakopoulou, Eleni Myrto; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkin, Ryan Justin; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Bagnaia, Paolo; Bahmani, Marzieh; Bahrasemani, Sina; Bailey, Adam; Baines, John; Bajic, Milena; Bakalis, Christos; Baker, Oliver Keith; Bakker, Pepijn Johannes; Bakshi Gupta, Debottam; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barbe, William Mickael; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tyler Colt; Barklow, Timothy; Barlow, Nick; Barnea, Rotem; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batlamous, Souad; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bauer, Kevin Thomas; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Beck, Helge Christoph; Becker, Kathrin; Becker, Maurice; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behera, Arabinda; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Bergsten, Laura Jean; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertram, Iain Alexander; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Bethani, Agni; Bethke, Siegfried; Betti, Alessandra; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Biswal, Jyoti Prakash; Bittrich, Carsten; Bjergaard, David Martin; Black, James; Black, Kevin; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Bonilla, Johan Sebastian; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Bouaouda, Khalil; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozson, Adam James; Bracinik, Juraj; Brahimi, Nihal; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Braren, Frued; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Brickwedde, Bernard; Briglin, Daniel Lawrence; Britton, Dave; Britzger, Daniel; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brost, Elizabeth; Broughton, James; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Bruno, Salvatore; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Buschmann, Eric; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabras, Grazia; Cabrera Urbán, Susana; Caforio, Davide; Cai, Huacheng; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Calvetti, Milene; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Cao, Yumeng; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrá, Sonia; Carrillo-Montoya, German D; Carrio Argos, Fernando; Casadei, Diego; Casado, Maria Pilar; Casha, Albert Francis; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo, Florencia Luciana; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, David; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Cheng; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Jue; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Chen, Yu-Heng; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgeniya; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, I-huan; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Yun Sang; Christodoulou, Valentinos; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Cinca, Diane; Cindro, Vladimir; Cioară, Irina Antonela; Ciocio, Alessandra; Ciodaro Xavier, Thiago; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Clark, Allan G; Clark, Michael; Clark, Philip James; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coimbra, Artur Emanuel; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conventi, Francesco; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corrigan, Eric Edward; Corriveau, François; Cortes-Gonzalez, Arely; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Crane, Jonathan; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Curatolo, Maria; Cúth, Jakub; Czekierda, Sabina; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Eramo, Louis; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dahbi, Salah-eddine; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Damp, Johannes Frederic; Dandoy, Jeffrey; Daneri, Maria Florencia; Dang, Nguyen Phuong; Dann, Nick; Danninger, Matthias; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dartsi, Olympia; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Davydov, Yuri; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Dias do Vale, Tiago; Diaz, Marco Aurelio; Dickinson, Jennet; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobre, Monica; Dodsworth, David; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dreyer, Etienne; Dreyer, Timo; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Dubinin, Filipp; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dülsen, Carsten; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duperrin, Arnaud; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dysch, Samuel; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Ennis, Joseph Stanford; Epland, Matthew Berg; Erdmann, Johannes; Ereditato, Antonio; Errede, Steven; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel; Faisca Rodrigues Pereira, Rui Miguel; Fakhrutdinov, Rinat; Falciano, Speranza; Falke, Peter Johannes; Falke, Saskia; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feickert, Matthew; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Minyu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Cora; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores, Lucas Macrorie; Flores Castillo, Luis; Fomin, Nikolai; Forcolin, Giulio Tiziano; Formica, Andrea; Förster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Spolidoro Freund, Werner; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadow, Philipp; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gamboa Goni, Rodrigo; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; García, Carmen; García Navarro, José Enrique; García Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gasnikova, Ksenia; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gavrilyuk, Alexander; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gessner, Gregor; Ghasemi, Sara; Ghasemi Bostanabad, Meisam; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugliarelli, Gilberto; Giugni, Danilo; Giuli, Francesco; Giulini, Maddalena; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; Gonnella, Francesco; Gonski, Julia; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Goy, Corinne; Gozani, Eitan; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Graham, Emily Charlotte; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Grud, Christopher; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guerguichon, Antinea; Guescini, Francesco; Guest, Daniel; Gugel, Ralf; Gui, Bin; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Guo, Ziyu; Gupta, Ruchi; Gurbuz, Saime; Gurriana, Luis; Gustavino, Giuliano; Gutelman, Benjamin Jacque; Gutierrez, Phillip; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Hönle, Andreas; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Han, Kunlin; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hance, Michael; Handl, David Michael; Haney, Bijan; Hankache, Robert; Hanke, Paul; Hansen, Eva; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayden, Daniel; Hayes, Christopher; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Heath, Matthew Peter; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heilman, Jesse; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellesund, Simen; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herr, Holger; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hill, Kurt Keys; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Hohov, Dmytro; Holmes, Tova Ray; Holzbock, Michael; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horn, Philipp; Horton, Arthur James; Horyn, Lesya Anna; Hostachy, Jean-Yves; Hostiuc, Alexandru; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huebner, Michael; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Huhtinen, Mika; Hunter, Robert Francis Holub; Huo, Peng; Hupe, Andre Marc; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Ignazzi, Rosanna; Igonkina, Olga; Iguchi, Ryunosuke; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Iltzsche, Franziska; Introzzi, Gianluca; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivina, Anna; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jacka, Petr; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jäkel, Gunnar; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jen-La Plante, Imai; Jenni, Peter; Jeong, Jihyun; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Morales, Fabricio Andres; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Junggeburth, Johannes Josef; Juste Rozas, Aurelio; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanjir, Luka; Kano, Yuya; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kellermann, Edgar; Kempster, Jacob Julian; Kendrick, James; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kiehn, Moritz; Kilby, Callum; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Klitzner, Felix Fidelio; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinides, Vasilis; Konstantinidis, Nikolaos; Konya, Balazs; Kopeliansky, Revital; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lack, David Philip John; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, Jörn Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Lau, Tak Shun; Laudrain, Antoine; Law, Alexander; Laycock, Paul; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann Miotto, Giovanna; Leight, William Axel; Leisos, Antonios; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Les, Robert; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Quanyin; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liem, Sebastian; Limosani, Antonio; Lin, Chiao-ying; Lin, Kuan-yu; Lin, Tai-Hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Little, Jared David; Liu, Bingxuan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jesse; Liu, Jianbei; Liu, Kun; Liu, Minghui; Liu, Peilian; Liu, Yang; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loesle, Alena; Loew, Kevin Michael; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lou, Xuanhong; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lozano Bahilo, Jose Julio; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Luise, Ilaria; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Madysa, Nico; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Maidantchik, Carmen; Maier, Thomas; Maio, Amélia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantoani, Matteo; Manzoni, Stefano; Marceca, Gino; March, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marin Tobon, Cesar Augusto; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mason, Lara Hannan; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Thomas; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McKay, Madalyn; McLean, Kayla; McMahon, Steve; McNamara, Peter Charles; McNicol, Christopher John; McPherson, Robert; Mdhluli, Joyful Elma; Meadows, Zachary Alden; Meehan, Samuel; Megy, Theo; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Merlassino, Claudia; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Millar, Declan Andrew; Miller, David; Miller, Robert; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mirto, Alessandro; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, Alice Polyxeni; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Mosulishvili, Nugzar; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murin, Pavel; Murray, Bill; Murrone, Alessia; Muškinja, Miha; Mwewa, Chilufya; Myagkov, Alexey; Myers, John; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Napolitano, Fabrizio; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Ng, Sam Yanwing; Nguyen, Duong Hai; Nguyen, Hoang Dai Nghia; Nguyen Manh, Tuan; Nibigira, Emery; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Nodulman, Lawrence; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Nordkvist, Bjoern; Norjoharuddeen, Nurfikri; Novak, Tadej; Novgorodova, Olga; Novotny, Radek; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes De Moura Junior, Natanael; Nurse, Emily; Nuti, Francesco; O'Connor, Kelsey; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Oide, Hideyuki; Okawa, Hideki; Okazaki, Yuta; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver, Jason; Olsson, Joakim; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orgill, Emily Claire; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacey, Holly Ann; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panizzo, Giancarlo; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parida, Bibhuti; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pasuwan, Patrawan; Pataraia, Sophio; Pater, Joleen; Pathak, Atanu; Pauly, Thilo; Pearson, Benjamin; Pedersen, Maiken; Pedraza Diaz, Lucia; Pedraza Lopez, Sebastian; Pedro, Rute; Pedro Martins, Filipe Manuel; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Peralva, Bernardo; Perego, Marta Maria; Pereira Peixoto, Ana Paula; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettee, Mariel; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Pham, Thu; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinfold, James; Pitt, Michael; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pogrebnyak, Ivan; Pohl, David-leon; Pokharel, Ishan; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Portillo Quintero, Dilia María; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potti, Harish; Poulsen, Trine; Poveda, Joaquin; Powell, Thomas Dennis; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puigdengoles, Carles; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Yang; Quadt, Arnulf; Queitsch-Maitland, Michaela; Qureshi, Anum; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravina, Baptiste; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rivera Vergara, Juan Cristobal; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Rodríguez Vera, Ana María; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Röhrig, Rainer; Roland, Christophe Pol A; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossini, Lorenzo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Roy, Debarati; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Rüttinger, Elias Michael; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Sabatini, Paolo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Sahu, Arunika; Sahu, Sushmita; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakharov, Alexander; Salamani, Dalila; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sander, Christian Oliver; Sanders, Harold; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, João; Sargsyan, Laura; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savard, Pierre; Savic, Natascha; Sawada, Ryu; Sawyer, Craig; Sawyer, Lee; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaeffer, Jan; Schaepe, Steffen; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharmberg, Nicolas; Schegelsky, Valery; Scheirich, Daniel; Schenck, Ferdinand; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillaci, Zachary Michael; Schioppa, Enrico Junior; Schioppa, Marco; Schleicher, Katharina; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schulte, Alexandra; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Scyboz, Ludovic Michel; Searcy, Jacob; Sebastiani, Cristiano David; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seiss, Todd; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Sen, Sourav; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Severini, Horst; Šfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shahinian, Jeffrey David; Shaikh, Nabila Wahab; Shalyugin, Andrey; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Sharma, Abhishek; Sharma, Abhishek; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shen, Yu-Ting; Sherafati, Nima; Sherman, Alexander David; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silva Jr, Manuel; Silverstein, Samuel; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simon, Manuel; Simonenko, Alexander; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sivolella Gomes, Andressa; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Soffa, Aaron Michael; Soffer, Abner; Søgaard, Andreas; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solin, Alexandre; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Weimin; Sopczak, Andre; Sopkova, Filomena; Sosa, David; Sotiropoulou, Calliope Louisa; Sottocornola, Simone; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spiteri, Dwayne Patrick; Spousta, Martin; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Stegler, Martin; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Thomas James; Stewart, Graeme; Stockton, Mark; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Stupak, John; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, D M S; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sydorenko, Alexander; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Tahirovic, Elvedin; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeda, Kosuke; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tang, Fukun; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarek Abouelfadl Mohamed, Ahmed; Tarem, Shlomit; Tarna, Grigore; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Alan James; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Tee, Amy Selvi; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Thais, Savannah Jennifer; Theveneaux-Pelzer, Timothée; Thiele, Fabian; Thomas, Juergen; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tian, Yun; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomiwa, Kehinde Gbenga; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Tosciri, Cecilia; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trovatelli, Monica; Trovato, Fabrizio; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsai, Fang-ying; Tseng, Jeffrey; Tsiareshka, Pavel; Tsirintanis, Nikolaos; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tylmad, Maja; Tzovara, Eftychia; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Uno, Kenta; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valente, Marco; Valentinetti, Sara; Valero, Alberto; Valéry, Loïc; Vallance, Robert Adam; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Daalen, Tal Roelof; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Furelos, David; Vazquez Schroeder, Tamara; Veatch, Jason; Vecchio, Valentina; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Vergel Infante, Carlos Miguel; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Viret, Sébastien; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von Buddenbrock, Stefan; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wagner-Kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakamiya, Kotaro; Walbrecht, Verena Maria; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Ann Miao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Peilong; Wang, Qing; Wang, Renjie; Wang, Rongkun; Wang, Rui; Wang, Song-Ming; Wang, Wei; Wang, Weitao; Wang, Wenxiao; Wang, Yufeng; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Weatherly, Pierce; Webb, Aaron Foley; Webb, Samuel; Weber, Christian; Weber, Michele; Weber, Sebastian Mario; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Weston, Thomas; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Wilkins, Lewis Joseph; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Anton; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Woods, Natasha Lee; Worm, Steven; Wosiek, Barbara; Woźniak, Krzysztof; Wraight, Kenneth; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Hanlin; Xu, Lailin; Xu, Tairan; Xu, Wenhao; Yabsley, Bruce; Yacoob, Sahal; Yajima, Kazuki; Yallup, David; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamanaka, Takashi; Yamane, Fumiya; Yamatani, Masahiro; Yamazaki, Tomohiro; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Siqi; Yang, Yi-lin; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Yu, Jaehoon; Yu, Jie; Yue, Xiaoguang; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaffaroni, Ettore; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zambito, Stefano; Zanzi, Daniele; Zaripovas, Donatas Ramilas; Zeißner, Sonja Verena; Zeitnitz, Christian; Zemaityte, Gabija; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zgubič, Miha; Zhang, Dengfeng; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhou, You; Zhu, Cheng Guang; Zhu, Heling; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zhulanov, Vladimir; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zoch, Knut; Zorbas, Theodore Georgio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2018-01-01

    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter's performance during the years 2008-2012 using cosmic-ray muon events and proton-proton collision data at centre-of-mass energies of 7 and 8 TeV with a total integrated luminosity of nearly 30 fb$^{-1}$. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The combination of energy calibration methods and time calibration proved excellent performance, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton-proton collisions is presented. The results demonstrate excellent performance in a...

  5. An investigation into the electron-proton discrimination capabilities of ionization calorimeters

    International Nuclear Information System (INIS)

    Briggs, M.S.

    1982-01-01

    This paper seeks to provide an experimental indication of the rate at which protons mimic electrons in ionization calorimeters. A pseudo-theoretical electron cascade function was fitted to calorimeter events caused by 300 GeV accelerator protons in order to see what fraction of the protons looked like electrons. For calorimeters longer than one nuclear interaction length, the results were in good agreement with the theory which says that one process should make a singificant contribution to the mimicking of electrons by protons: the diffractive excitation of the incident proton, producing a π 0 while the incident proton continues on undeflected without further interactions. For calorimeters shorter than one nuclear interaction length a much higher mimic rate was seen, which is to be expected since hadrons produced with a π 0 can easily pass undetected through the calorimeter. These results can be used to estimate the contamination of the data of past experiments and as support for the prediction being used to design future experiments. (orig.)

  6. A fast DSP-based calorimeter hit scanning system

    International Nuclear Information System (INIS)

    Sekikawa, S.; Arai, I.; Suzuki, A.; Watanabe, A.; Marlow, D.R.; Mindas, C.R.; Wixted, R.L.

    1997-01-01

    A custom made digital signal processor (DSP) based system has been developed to scan calorimeter hits read by a 32-channel FASTBUS waveform recorder board. The scanner system identifies hit calorimeter elements by surveying their discriminated outputs. This information is used to generate a list of addresses, which guides the read-out process. The system is described and measurements of the scan times are given. (orig.)

  7. The small angle tile calorimeter in the DELPHI experiment

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Bari, M.; Barreira, G.; Benvenuti, A.C.; Bigi, M.; Bonesini, M.; Bozzo, M.; Camporesi, T.; Carling, H.; Cassio, V.; Castellani, L.; Cereseto, R.; Chignoli, F.; Della Ricca, G.; Dharmasiri, D.R.; Santo, M.C. Espirito; Falk, E.; Fenyuk, A.; Ferrari, P.; Gamba, D.; Giordano, V.; Gouz, Yu.; Guerzoni, M.; Gumenyuk, S.; Hedberg, V.; Jarlskog, G.; Karyukhin, A.; Klovning, A.; Konoplyannikov, A.; Kronkvist, I.; Lanceri, L.; Leoni, R.; Maeland, O.A.; Maio, A.; Mazza, R.; Migliore, E.; Navarria, F.L.; Negri, P.; Nossum, B.; Obraztsov, V.; Onofre, A.; Paganoni, M.; Pegoraro, M.; Peralta, L.; Petrovykh, L.; Pimenta, M.; Poropat, P.; Prest, M.; Read, A.L.; Romero, A.; Shalanda, N.; Simonetti, L.; Skaali, T.B.; Stugu, B.; Terranova, F.; Tome, B.; Torassa, E.; Trapani, P.P.; Verardi, M.G.; Vallazza, E.; Vlasov, E.; Zaitsev, A.

    1999-01-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called 'shashlik' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e-γ separation. Results are presented from the extensive studies of these detectors in the CERN testbeams prior of installation and of the detector performance at LEP

  8. Performance of ATLAS L1 Calorimeter Trigger with data

    CERN Document Server

    Bracinik, J; The ATLAS collaboration

    2010-01-01

    The ATLAS first-level calorimeter trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates and to measure total and missing ET in the ATLAS calorimeters. After more than two years of commissioning in situ with calibration data and cosmic rays, the system has now been extensively used to select the most interesting proton-proton collision events. Final tuning of timing and energy calibration has been carried out in 2010 to improve the trigger response to physics objects. An analysis of the performance of the level-1 calorimeter trigger will be presented, along with the techniques used to achieve these results.

  9. MAC calorimeters and applications

    International Nuclear Information System (INIS)

    MAC Collaboration.

    1982-03-01

    The MAC detector at PEP features a large solid-angle electromagnetic/hadronic calorimeter system, augmented by magnetic charged-particle tracking, muon analysis and scintillator triggering. Its implementation in the context of electron-positron annihilation physics is described, with emphasis on the utilization of calorimetry

  10. Design Guidance for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  11. Selection Process for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  12. Selection Process for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  13. Design Guidance for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. Proper Installation of New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Simulation and Comparison of the Calorimeters Measuring the Nuclear Heating in the OSIRIS Reactor, with the TRIPOLI-4R Monte-Carlo Code

    International Nuclear Information System (INIS)

    Peron, A.; Malouch, F.; Diop, C.M.

    2013-06-01

    Two calorimeter devices are used in the OSIRIS MTR reactor (CEA-Saclay center) for the nuclear heating measurements. The first one is a fixed five-stage calorimeter device. The second one is an innovative mobile probe called 'CALMOS'. The design of these devices is different (in particular their geometry), implying modifications on the local neutron and photon fluxes and hence on nuclear heating measured values. The measurements performed by the two calorimeter devices cannot directly be compared; this requires perfect irradiation conditions in the reactor core, especially for the core loading and the control element positions. Simulation is here a good help to perform a fully relevant comparison. In this paper, differences between calorimeter devices in terms of nuclear heating and particle fluxes are evaluated using the TRIPOLI-4 Monte-Carlo code. After a description of the OSIRIS reactor and the design of the two calorimeter devices, the nuclear heating calculation scheme used for simulation will be introduced. Different simulations and results will be detailed and analyzed to determine the calorimeter geometry impact on the measured nuclear heating. (authors)

  16. Conclusions from the engineering subgroup of the SSC liquid argon calorimeter working group

    International Nuclear Information System (INIS)

    Bederede, D.; Cooper, W.; Mulholland, G.; Kroon, P.; Guryn, W.; Lobkowicz, F.; Mason, I.; Pohlen, J.; Schindler, R.H.; Scholle, E.A.; Watanabe, Y.; Watt, R.

    1990-01-01

    The SSC Calorimeter Workshop was organized to explore the feasibility of each calorimeter technology for use in a 4π detector at the SSC. The Liquid Argon Calorimeter group further subdivided into four subgroups; Hermeticity, Engineering, Module Details, and Electronics. This is the report of the Engineering Subgroup whose charge was to evaluate the cost, schedule, manpower, safety, and facilities requirements for the construction of a large liquid argon calorimeter for the SSC

  17. Windows 7 the definitive guide

    CERN Document Server

    Stanek, William R

    2010-01-01

    This book provides everything you need to manage and maintain Windows 7. You'll learn all of the features and enhancements in complete detail, along with specifics for configuring the operating system to put you in full control. Bestselling author and Windows expert William Stanek doesn't just show you the steps you need to follow, he also tells you how features work, why they work, and how you can customize them to meet your needs. Learn how to squeeze every bit of power out of Windows 7 to take full advantage of its features and programs. Set up, customize, and tune Windows 7-Optimize its

  18. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...

  19. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  20. Optics robustness of the ATLAS Tile Calorimeter

    CERN Document Server

    Costa Batalha Pedro, Rute; The ATLAS collaboration

    2018-01-01

    TileCal, the central hadronic calorimeter of the ATLAS detector is composed of plastic scintillators interleaved by iron plates, and wavelength shifting optical fibres. The optical properties of these components are known to suffer from natural ageing and degrade due to exposure to radiation. The calorimeter was designed for 10 years of LHC operating at the design luminosity of $10^{34}$ cm$^{-1}$s$^{-1}$. Irradiation tests of scintillators and fibres shown that their light yield decrease about 10 for the maximum dose expected after the 10 years of LHC operation. The robustness of the TileCal optics components is evaluated using the calibration systems of the calorimeter: Cs-137 gamma source, laser light, and integrated photomultiplier signals of particles from collisions. It is observed that the loss of light yield increases with exposure to radiation as expected. The decrease in the light yield during the years 2015-2017 corresponding to the LHC Run 2 will be reported.

  1. Laser calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile calorimeter is achieved with a set of calibration procedures. One step of the calibrtion procedure is based on measurements of the response stability to laser excitation of the photomultipliers (PMTs) that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the test in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the resonse drifts seen with the PMT mounted on the Tile calorimeter in its normal operation during LHC run I and run II. A new statistical approach was developed to measure the drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to the data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  2. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  3. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (P hase - II ) where the pea k luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expe cted to happen around 202 4 . The TileCal upgrade aims at replacing the majority of the on - and off - detector electronics to the extent that all calorimeter signals will be digitized and sent to the off - detector electronics in the counting room. To achieve th e required reliability, redundancy has been introduced at different levels. Three different options are presently being investiga...

  4. First Half Of CMS Hadron Calorimeter Completed

    CERN Multimedia

    2001-01-01

    CMS HCAL electronics coordinator John Elias from Fermilab inspecting the assembled first half of the calorimeter. The first half barrel of the CMS hadron calorimeter was completed last month and assembly work on the elements of the second half commenced just last week. This is not a simple task considering the fact that the constructed half-barrel consists of eighteen 30 tonne segments each made with 0.15 mm tolerance. But through the work of everyone on the CMS hadron calorimeter team it is all moving forward. In the LHC, detection of particles produced in collisions of two proton beams requires measurement of their energy. To do this, the particle energy has to be changed into a form that can be easily measured. This is achieved by stopping the initial particles in a dense medium, where they create a shower of secondary particles. While particles that interact through electromagnetic forces (electrons and positrons) create relatively small showers, the size of showers created by hadrons, particles that i...

  5. A lead-scintillating fiber calorimeter to increase L3 hermeticity

    CERN Document Server

    Basti, G

    1997-01-01

    A lead-scintillating fiber calorimeter has been built to fill the gap between endcap and barrel of the L3 BGO electromagnetic calorimeter. We report details of the construction, as well as results from test-beam and simulation.

  6. Arrival of the last cryostat for the ATLAS LAr calorimeter at CERN

    CERN Multimedia

    Aleksa, M; Oberlack, H

    On Wednesday, 4th June the last cryostat for the ATLAS LAr calorimeter (end-cap A) arrived at CERN and was immediately unloaded from the truck in building 180 (see Figures 1 and 2), where the integration of the LAr calorimeters into their cryostats takes place. The transport from the Italian company SIMIC, where both end-cap calorimeters have been produced took longer than expected due to delays because of the G8 summit. Thanks to the great effort by the CERN Host State office and the French-German steering group that supplies the end-cap cryostat as an in-kind contribution to the LAr collaboration, an exceptional convoy was finally available and the cryostat could make its way to CERN. Fig.1 (left): Truck with the end-cap cryostat. Fig.2 (right): Unloading the cryostat in bldg. 180. Each end-cap cryostat will contain an electromagnetic calorimeter wheel, two wheels of a hadronic calorimeter, and a forward calorimeter. The design of the cryostat as a double vessel structure made of Aluminum fulfills t...

  7. Use of the calorimeter in the dosimetry for electron accelerators

    International Nuclear Information System (INIS)

    Chavez B, A.

    1991-02-01

    The measure of different radiation types, with specific dosemeters, requires that the absorbed dose should be measured with accuracy by some common standard. The existent problem around the dosimetry of accelerated electrons has forced to the development of diverse detector types that after having analyzed the characteristics; dependability and reproducibility are used as dosemeters. Recently the calorimeters have been developed, with the purpose of carrying out dosimetry for electron accelerators. The RISO laboratory in Denmark, in it 10 MeV accelerator had been used for the dosimetry those water calorimeters, later on, using the principle of the water calorimeter, it was designing one similar, for the accelerator of 400 keV. Recently manufactured simple calorimeters of graphite have been used, which can be used in both accelerators of 10 MeV and 400 keV. (Author)

  8. The ZEUS second level calorimeter trigger

    International Nuclear Information System (INIS)

    Jong, S.J. de.

    1990-01-01

    ZEUS is a detector for the HERA ep collider, consisting of several large components. The most important being the inner tracking detectors, which are positioned nearest to the interaction point, the calorimeter surrounding the inner tracking detectors and the muon detectors on the outside of the experimental setup. Each component will deliver a vast amount of information. In order to keep this information manageable, data is preprocessed and condensed per component and then combined to obtain the final global trigger result. The main subject of this thesis is the second level calorimeter trigger processor of the ZEUS detector. In order to be able to reject the unwanted events passing the first level, the topological event signature will have to be used at the second level. The most demanding task of the second level is the recognition of local energy depositions corresponding to isolated electrons and hadron jets. Also part of the work performed by the first level will be repeated with a higher level of accuracy. Additional information not available to the first level trigger will be processed and will be made available to the global second level trigger decision module. For the second level calorimeter trigger processor a special VME module, containing two transputers, has been developed. The second level calorimeter trigger algorithm described in this thesis was tested with simulated events, that were tracked through a computer simulation of the ZEUS detector. A part of this thesis is therefore devoted to the description of the various Monte Carlo models and the justification of the way in which they were used. (author). 132 refs.; 76 figs.; 18 tabs

  9. Calorimeter for thermal sources

    International Nuclear Information System (INIS)

    Shai, I.; Shaham, Ch.; Barnea, I.

    1978-12-01

    A calorimeter was built, enabling the thermal power of radioactive sources to be measured in the range of 50 to 120 mW. The system was calibrated with an electrical heater. The calibration curves serve to determine the power of radioactive sources with a reasonable accuracy

  10. Fast shower simulation in the ATLAS calorimeter

    CERN Document Server

    Barberio, E; Butler, B; Cheung, S L; Dell'Acqua, A; Di Simone, A; Ehrenfeld, W; Gallas, M V; Glazov, A; Marshall, Z; Müller, J; Placakyte, R; Rimoldi, A; Savard, P; Tsulaia, V; Waugh, A; Young, C C

    2008-01-01

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.

  11. Commissioning of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Cooke, M; The ATLAS collaboration

    2009-01-01

    Since the first modules of the ATLAS LAr calorimeters were read out in situ in 2006, commissioning studies have been performed. These studies include the testing of the electronics calibration system, surveys for dead or problematic channels, investigations of the quality of the physics pulse shape prediction , and tests of energy and time reconstruction with cosmic or single beam induced signals. The results of these commissioning studies indicate the LAr calorimeters are prepared for LHC collisions and positioned to meet the physics objectives of the ATLAS experiment.

  12. A prospective randomized controlled trial of two-window versus solo-window technique by lateral sinus floor elevation in atrophic posterior maxilla: Results from a 1-year observational phase.

    Science.gov (United States)

    Yu, Huajie; Qiu, Lixin

    2017-10-01

    Implant failures are more common when multiple missing posterior teeth need lateral sinus floor elevation owing to inadequate tissue maturation after grafting. Effects of lateral window dimensions on vital bone formation have rarely been compared. To compare endo-sinus bone formation between two- and solo-window techniques to rehabilitate multiple missing posterior teeth that need substantial augmentation. Patients with severely atrophic posterior maxilla were randomized to receive lateral sinus floor elevation via solo or two bony windows. Bone core specimens harvested from lateral aspect of the augmentation sites were histomorphometrically analyzed. Proportions of mineralized bone (MB), bone substitute materials (BS), and nonmineralized tissue (NMT) were quantified. Twenty-one patients underwent 23 maxillary sinus augmentations. One patient in each group dropped out during the follow-up period. Lateral window dimensions were 81.65 ± 4.59 and 118.04 ± 19.53 mm 2 in the test and control groups, respectively. Histomorphometric analysis revealed mean MB of 42.32% ± 13.07% and 26.00% ± 15.23%, BS of 40.34% ± 9.52% and 60.03% ± 10.13%, and NMT of 18.14% ± 14.24% and 14.75% ± 10.38% in test and control groups, respectively, with significant differences. The two-window technique could facilitate faster maturation and consolidation of the grafted volume and is an effective alternative for rehabilitation of severely atrophic posterior maxilla with multiple missing posterior teeth. © 2017 Wiley Periodicals, Inc.

  13. Feasibility of the correlation curves method in calorimeters of different types

    OpenAIRE

    Grushevskaya, E. A.; Lebedev, I. A.; Fedosimova, A. I.

    2014-01-01

    The simulation of the development of cascade processes in calorimeters of different types for the implementation of energy measurement by correlation curves method, is carried out. Heterogeneous calorimeter has a significant transient effects, associated with the difference of the critical energy in the absorber and the detector. The best option is a mixed calorimeter, which has a target block, leading to the rapid development of the cascade, and homogeneous measuring unit. Uncertainties of e...

  14. UA2 central calorimeter

    CERN Multimedia

    The UA2 central calorimeter measured the energy of individual particles created in proton-antiproton collisions. Accurate calibration allowed the W and Z masses to be measured with a precision of about 1%. The calorimeter had 24 slices like this one, each weighing 4 tons. The slices were arranged like orange segments around the collision point. Incoming particles produced showers of secondary particles in the layers of heavy material. These showers passed through the layers of plastic scintillator, generating light which was taken by light guides (green) to the data collection electronics. The amount of light was proportional to the energy of the original particle. The inner 23 cm of lead and plastic sandwiches measured electrons and photons; the outer 80 cm of iron and plastic sandwiches measured strongly interacting hadrons. The detector was calibrated by injecting light through optical fibres or by placing a radioactive source in the tube on the bottom edge.

  15. The LHCb hadron calorimeter

    International Nuclear Information System (INIS)

    Dzhelyadin, R.I.

    2002-01-01

    The Hadron Calorimeter (HCAL) is designed for the LHCb experiment. The main purpose of the detector is to provide data for the L0 hadron trigger. The HCAL is designed as consisting of two symmetric movable parts of about 500 ton in total getting in touch in operation position without non-instrumented zones. The lateral dimensions of an active area are X=8.4 m width, Y=6.8 m height, and is distanced from the interaction point at Z=13.33 m. Both halves are assembled from stacked up modules. An internal structure consisting of thin iron plates interspaced with scintillating tiles has been chosen. Attention is paid to optimize the detector according to the requirements of the experiment, reducing the spending needed for its construction. Different construction technologies are being discussed. The calorimeter properties have been extensively studied with a variety of prototype on the accelerator beam. The calibration with a radioactive source and module-0 construction experience is discussed

  16. Structure design and enviromental test of BGO calorimeter for satellite DAMPE

    Science.gov (United States)

    Hu, Yiming; Feng, Changqing; Zhang, Yunlong; Chen, Dengyi; Chang, Jin

    2016-07-01

    The Dark Matter Particle Explorer, DAMPE, is a new designed satellite developed for the new Innovation 2020 program of Chinese Academy of Sciences. As the most important payload of China's first scientific satellite for detecting dark matter, the primary purposes of BGO calorimeter is to measure the energy of incident high energy electrons and gamma rays (5GeV-10TeV) and to identify hadron and electronics. BGO calorimeter also provides an important background discriminator by measuring the energy deposition due to the particle shower that produced by the e^{±}, γ and imaging their shower development profile. Structure design of BGO calorimeter is described in this paper. The new designed BGO calorimeter consists of 308 BGO crystals coupled with photomultiplier tubes on its two ends. The envelop size of the BGO calorimeter is 907.5mm×907.5mm×494.5mm,and the weight of which is 1051.4Kg. The most important purpose of mechanical design is how to package so heavy crystals into a detector as required arrangement and to make sure reliability and safety. This paper describes the results of vibration tests using the Flight Module of the BGO Calorimeter for the DAMPE satellite. During the vibration tests, no degradation of the mechanical assembly was observed. After random or sinusoidal vibrations, there was no significant changes of the frequency signatures observed during the modal surveys. The comparison of results of cosmic ray tests before and after the vibration shows no change in the performance of the BGO calorimeter.

  17. Nonuniformities in organic liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Wenzel, W.A.

    1989-06-01

    Hermeticity and uniformity in SSC calorimeter designs are compromised by structure and modularity. Some of the consequences of the cryogenic needs of liquid argon calorimetry are relatively well known. If the active medium is an organic liquid (TMP, TMS, etc.), a large number of independent liquid volumes is needed for safety and for rapid liquid exchange to eliminate local contamination. Modular construction ordinarily simplifies fabrication, assembly, handling and preliminary testing at the price of additional walls, other dead regions and many nonuniformities. Here we examine ways of minimizing the impact of some generic nonuniformities on the quality of calorimeter performance. 6 refs., 7 figs

  18. The detector control web system of the ATLAS hadronic calorimeter

    International Nuclear Information System (INIS)

    Maidantchik, Carmen; Ferreira, Fernando G.; Marroquim, Fernando

    2011-01-01

    Full text: The hadronic calorimeter (TileCal) of the ATLAS experiment is a sampling device for measuring the energy of particles that cross the detector and is composed by thousands of electronics channels operating over a high rate of acquired events. A complex sourcing mechanism, responsible for powering each channel, comprises low voltages, from 3 V to 15 V, and high voltage, around 800 V, power supplies and a water-based cooling system. The Detector Control System (DCS) is responsible for monitoring and controlling the mechanisms. The good operation of power supplies is really important for the detector data acquisition. A misbehaved power supply can affect the electronic systems or, even in the worst scenario, turn a whole section of the detector off, which would lead to missing events. DCS Web System was developed to provide the required functions to monitor the stability of the power supplies operation by providing a daily or monthly summary of voltages, currents and temperatures. The synopsis is made up by the mean and standard variation of the monitored parameters as well as time plots. The obtained statistics are compared to preset thresholds and the system interface highlight the cases that the collaboration should pay attention. The web system also displays voltage trips, an undesired power-cut that can happen from time to time in some power supplies during their operation. As future steps, the group is developing prediction capabilities based on the analysis of the time series of the monitored parameters. Therefore, it will be possible to indicate which power sources should be replaced during the annual maintenance period, helping to keep a high number of live channels during the data acquisition. This paper describes the DCS Web System and its functionalities, presenting preliminary results from the time series analysis. (author)

  19. Development of the CsI Calorimeter Subsystem for AMEGO

    Science.gov (United States)

    Grove, J. Eric; Woolf, Richard; Johnson, W. Neil; Phlips, Bernard

    2018-01-01

    We report on the development of the thallium-doped cesium iodide (CsI:Tl) calorimeter subsystem for the All-Sky Medium-Energy Gamma-ray Observatory (AMEGO). The CsI calorimeter is one of the three main subsystems that comprise the AMEGO instrument suite; the others include the double-sided silicon strip detector (DSSD) tracker/converter and a cadmium zinc telluride (CZT) calorimeter. Similar to the LAT instrument on Fermi, the hodoscopic calorimeter consists of orthogonally layered CsI bars. Unlike the LAT, which uses PIN photodiodes, the scintillation light readout from each end of the CsI bar is done with recently developed large-area silicon photomultiplier (SiPM) arrays. We currently have an APRA program to develop the calorimeter technology for a larger, future space-based gamma-ray observatory. Under this program, we are building and testing a prototype calorimeter consisting of 24 CsI bars (16.7 mm x 16.7 mm x 100 mm) arranged in 4 layers with 6 bars per layer. The ends of each bar are read out with a 2 x 2 array of 6 mm x 6 mm SensL J series SiPMs. Signal readout and processing is done with the IDEAS SIPHRA (IDE3380) ASIC. Performance testing of this prototype will be done with laboratory sources, a beam test, and a balloon flight in conjunction with the other subsystems led by NASA GSFC. Additionally, we will test 16.7 mm x 16.7 mm x 450 mm CsI bars with SiPM readout to understand the performance of longer bars in advance of the developing the full instrument.Acknowledgement: This work was sponsored by the Chief of Naval Research (CNR) and NASA-APRA (NNH15ZDA001N-APRA).

  20. The Status of GLAST CsI Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chekhtman, A.

    2003-09-18

    GLAST is a gamma-ray observatory for celestial sources in the energy range from 20 MeV to 300 GeV. This is NASA project with launch anticipated in 2006. The principal instrument of the GLAST mission is the Large Area Telescope (LAT), consisting of an Anti Coincidence Detector (ACD), a silicon-strip detector Tracker (TKR) and a hodoscopic CsI Calorimeter (CAL). It consists of 16 identical modules arranged in a 4 x 4 array. Each module has horizontal dimensions 38 x 38 cm{sup 2} and active thickness 8.5 radiation length. It contains 96 CsI (Tl) crystals arranged in 8 layers with 12 crystals per layer. The scintillation light is measured by PIN photodiodes mounted on both ends of each crystal. The sum of signals at the two ends of the crystal provides the energy measurement. The difference in these signals provides the position measurement along the crystal. The calorimeter was designed to meet the goals of good energy resolution (better than 10% for photon energies 100 MeV-100 GeV), position resolution of {approx} 1 mm for photon energies > 1 GeV, and a rejection factor of > 100 for charged cosmic rays, under limitations on calorimeter weight (95 kg per module) and power consumption (6 W per module). The Monte Carlo simulation and prototype beam test results confirm that proposed design meets the requirements. Calorimeter production is planned to start in 2003.

  1. Intercalibration of the longitudinal segments of a calorimeter system

    International Nuclear Information System (INIS)

    Albrow, M.; Aota, S.; Apollinari, G.; Asakawa, T.; Bailey, M.; Barbaro, P. de; Barnes, V.; Benjamin, D.; Blusk, S.; Bodek, A.; Bolla, G.; Budd, H.; Cauz, D.; Demortier, L.; Fukui, Y.; Gotra, Y.; Hahn, S.; Handa, T.; Hatakeyama, K.; Ikeda, H.; Introzzi, G.; Iwai, J.; Kim, S.H.; Koengeter, A.; Kowald, W.; Laasanen, A.; Lamoureux, J.; Lindgren, M.; Liu, J.; Lobban, O.; Melese, P.; Minato, H.; Murgia, S.; Nakada, H.; Patrick, J.; Pauletta, G.; Sakumoto, W.; Santi, L.; Seiya, Y.; Solodsky, A.; Spiegel, L.; Thomas, T.; Vilar, R.; Walsh, A.M.; Wigmans, R.

    2002-01-01

    Three different methods of setting the hadronic energy scale of a longitudinally segmented calorimeter system are compared with each other. The merits of these methods have been studied with test beam data from the CDF Plug Upgrade Calorimeter. It turns out that one of the (commonly used) calibration methods introduces a number of undesirable side effects, such as an increased hadronic signal nonlinearity and trigger biases resulting from the fact that the reconstructed energy of hadrons depends on the starting point of their showers. These problems can be avoided when a different calibration method is used. The results of this study are applied to determine the e/h values of the calorimeter and its segments

  2. The small angle tile calorimeter in the DELPHI experiment

    CERN Document Server

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Negri, P; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1999-01-01

    The {\\bf S}mall angle {\\bf TI}le {\\bf C}alorimeter ({\\bf STIC}) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called ``shashlik'' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e-$\\gamma$ separat ion. Results are presented from the extensive studies of these detectors in the CERN testbeams prior to installation and of the detector performance at LEP.

  3. Intercalibration of the CMS Electromagnetic Calorimeter Using Jet Trigger Events

    CERN Document Server

    Futyan, David

    2004-01-01

    This note describes a strategy for rapidly obtaining electromagnetic calorimeter crystal intercalibration at LHC start-up in the absence of test beam precalibration of the complete detector. In the case of the CMS (Compact Muon Solenoid) Electromagnetic Calorimeter, the limit on the precision to which crystals can be intercalibrated in phi using fully simulated jet trigger events, and assuming complete ignorance of the distribution of material in front of the calorimeter, is determined as a function of the pseudorapidity eta. The value of the limit has been found to be close to 1.5% in the barrel and between 3.0% and 1.0% for the fiducial region of the endcaps. The precision is limited by the inhomogeneity of tracker material. With increasing knowledge of the material distribution in the tracker, the attainable precision of the method will increase, with the potential of providing rapid and repeated calibration of the calorimeter.

  4. A hidden bias in a common calorimeter calibration scheme

    International Nuclear Information System (INIS)

    Lincoln, Don; Morrow, Greg; Kasper, Peter

    1994-01-01

    In this paper, a common calorimeter calibration scheme is explored and a hidden bias found. Since this bias mimics a non-linearity in response in the calorimeter, it must be understood and removed from the calibration before true non-linearities are investigated. The effect and its removal are explored and understood through straightforward calculus and algebra. ((orig.))

  5. Study of characteristics of gamma-irradiated materials for calorimeters

    International Nuclear Information System (INIS)

    Britvich, G.I.; Vasil'chenko, V.G.; Peresypkin, A.I.

    1992-01-01

    The radiation resistance of some structural materials proposed for use in electromagnetic calorimeters is studied. Particular attention is given to the spectral, dose, and other postradiation characteristics of pure heavy fluorides and their solid solutions: The promise of the use of CdF 2 and CdI 2 crystals in calorimeters is noted. 19 refs., 5 figs

  6. First experimental tests of a lead glass drift calorimeter

    International Nuclear Information System (INIS)

    Guerra, A.D.; Bellazzini, R.; Conti, M.; Massai, M.M.; Schwartz, G.; Habel, R.; Mulera, T.; Perez-Mendez, V.

    1985-10-01

    We are building a drift collection calorimeter, which has a combined radiator and electric field shaping structure made of fused lead glass tubing, treated in a H 2 reducing atmosphere. We describe the construction detail of the calorimeter and the experimental measurements on several prototypes with radioative sources and minimum ionizing particles. 9 refs., 11 figs

  7. HARP: high-pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Barranco-Luque, M.; Fabjan, C.W.; Frandsen, P.K.

    1982-01-01

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx. 200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  8. Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Svidt, Kjeld; Nielsen, Peter V.

    In natural ventilation systems fresh air is often provided through opening of windows. However, the knowledge of the performance of windows is rather limited. Computation of natural ventilation air flow through windows is most commonly made using discharge coefficients, that are regarded as being...... constant. The reported results show that the discharge coefficient for a window opening cannot be regarded as a constant and that it varies considerably with the size of the opening area, the window type and the temperature difference. Therefore, the use of a constant value can lead to serious errors...

  9. Tritium calorimeter setup and operation

    International Nuclear Information System (INIS)

    Rodgers, David E.

    2002-01-01

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (3) Install an improved temperature controller, preferably with a built in chiller, capable of temperature control to ±0.001 C

  10. An electron-hadron separator for digital sampling calorimeters

    International Nuclear Information System (INIS)

    Winter, K. de; Geiregat, D.; Vilain, P.; Wilquet, G.; Bergsma, F.; Binder, U.; Burkard, H.; Capone, A.; Ereditato, A.; Flegel, W.; Grote, H.; Nieuwenhuis, C.; Oeveras, H.; Palladino, V.; Panman, J.; Piredda, G.; Winter, K.; Zacek, G.; Zacek, V.; Bauche, T.; Beyer, R.; Blobel, V.; Buesser, F.W.; Foos, C.; Gerland, L.; Niebergall, F.; Staehelin, P.; Tadsen, A.; Gorbunov, P.; Grigoriev, E.; Khovansky, V.; Maslennikov, A.; Rosanov, A.; Lippich, W.; Nathaniel, A.; Staude, A.; De Pedis, D.; Di Capua, E.; Dore, U.; Loverre, P.F.; Rambaldi-Frenkel, A.; Santacesaria, R.; Zanello, D.

    1989-01-01

    A fast and effective algorithm for electromagnetic and hadronic shower separation has been developed for the digital sampling calorimeter of the CHARM II experiment. It is based on a generalization of the minimal spanning tree concept and can be easily applied to other existing calorimeters. In this particular application, which requires the highest efficiency for retaining electromagnetic showers, one gets, for 99% efficiency, a rejection factor of the order of 100 for hadronic showers. (orig.)

  11. Design and performance of an electromagnetic calorimeter for a FCC-hh experiment

    Science.gov (United States)

    Zaborowska, A.

    2018-03-01

    The physics reach and feasibility of the Future Circular Collider are currently under investigation. The goal is to collide protons with centre-of-mass energies up to 100 TeV, extending the research carried out at the current HEP facilities. The detectors designed for the FCC experiments need to tackle harsh conditions of the unprecedented collision energy and luminosity. The baseline technology for the calorimeter system of the FCC-hh detector is described. The electromagnetic calorimeter in the barrel, as well as the electromagnetic and hadronic calorimeters in the endcaps and the forward regions, are based on the liquid argon as active material. The detector layout in the barrel region combines the concept of a high granularity calorimeter with precise energy measurements. The calorimeters have to meet the requirements of high radiation hardness and must be able to deal with a very high number of collisions per bunch crossings (pile-up). A very good energy and angular resolution for a wide range of electrons' and photons' momentum is needed in order to meet the demands based on the physics benchmarks. First results of the performance studies with the new liquid argon calorimeter are presented, meeting the energy resolution goal.

  12. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation, and LHC relative luminosity measurement.

    CERN Document Server

    Arfaoui, Samir; Monnier, E

    2011-01-01

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In oder to do so,it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity ...

  13. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation and LHC relative luminosity measurement

    International Nuclear Information System (INIS)

    Arfaoui, S.

    2011-10-01

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In order to do so, it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity determination. (author)

  14. Improving Code Quality of the Compact Muon Solenoid Electromagnetic Calorimeter Control Software to Increase System Maintainability

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Detector Control System (DCS) software of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at CERN is designed primarily to enable safe and efficient operation of the detector during Large Hadron Collider (LHC) data-taking periods. Through a manual analysis of the code and the adoption of ConQAT [1], a software quality assessment toolkit, the CMS ECAL DCS team has made significant progress in reducing complexity and improving code quality, with observable results in terms of a reduction in the effort dedicated to software maintenance. This paper explains the methodology followed, including the motivation to adopt ConQAT, the specific details of how this toolkit was used and the outcomes that have been achieved. [1] ConQAT, Continuous Quality Assessment Toolkit; https://www.conqat.org/

  15. Noise dependence with pile-up in the ATLAS Tile calorimeter

    CERN Document Server

    Araque Espinosa, Juan Pedro; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment and comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. Under these challenging conditions not only the energy from an interesting event will be measured but also a component coming from other collisions. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects calorimeter noise under different circumstances are described.

  16. Mechanical design and finite element analysis of the SDC central calorimeter

    International Nuclear Information System (INIS)

    Guarino, V.; Hill, N.F.; Nasiatka, J.; Hoecker, D.A.; Hordubay, T.D.; Scherbarth, D.W.; Swensrud, R.L.

    1992-01-01

    When designing scintillating calorimeters for the study of particle interactions resulting from colliding beams, a primary goal is to instrument 100% of the available solid angle. In pursuit of this goal the challenge for mechanical designers is to minimize the amount of structural mass and still maintain acceptable engineering standards in the design. Argonne National Laboratory, High Energy Physics involvement in the design of a central calorimeter for the SSC started in 1989. Our first proposal was to design a depleted uranium scintillator calorimeter similar to the ZEUS detector presently installed at the HERA electron-proton collider in Hamburg, Germany. Argonne was involved at the time in final assembly of modules for ZEUS that had been designed and constructed at ANL. Due to the cost of using depleted uranium, lead was chosen as the absorber material. In collaboration with Westinghouse Science and Technology Center in Pittsburgh, Pennsylvania was embarked on a program to optimize the use of lead or lead alloys in the construction of the calorimeter. A cast lead design for the calorimeter evolved from this effort. Subsequent to this design, further pressure to reduce costs have now dictated a design which contains lead only in the electromagnetic sections of the calorimeter. The finite element analysis we will present here was done using lead for the HAD1 section of the barrel

  17. gFEX, the ATLAS Calorimeter Level-1 Real Time Processor

    CERN Document Server

    AUTHOR|(SzGeCERN)759889; The ATLAS collaboration; Begel, Michael; Chen, Hucheng; Lanni, Francesco; Takai, Helio; Wu, Weihao

    2016-01-01

    The global feature extractor (gFEX) is a component of the Level-1 Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be packaged in an Advanced Telecommunications Computing Architecture (ATCA) module and implemented as a fast reconfigurable processor based on three Xilinx Vertex Ultra-scale FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 276 optical fibers with the data transferred at the 40 MHz Large Hadron Collider (LHC) clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure all the processor Field-Programmable Gate Array (FPGAs), monitor board health, and interface to external signals. Now, the pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA ...

  18. gFEX, the ATLAS Calorimeter Level 1 Real Time Processor

    CERN Document Server

    Tang, Shaochun; The ATLAS collaboration

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be packaged in an Advanced Telecommunications Computing Architecture (ATCA) module and implemented as a fast reconfigurable processor based on three Xilinx Ultra-scale FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 264 optical fibers with the data transferred at the 40 MHz LHC clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure all the processor FPGAs, monitor board health, and interface to external signals. Now, the pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA has been designed for testing and verification. The performance ...

  19. The Moving Window Technique: A Window into Developmental Changes in Attention during Facial Emotion Recognition

    Science.gov (United States)

    Birmingham, Elina; Meixner, Tamara; Iarocci, Grace; Kanan, Christopher; Smilek, Daniel; Tanaka, James W.

    2013-01-01

    The strategies children employ to selectively attend to different parts of the face may reflect important developmental changes in facial emotion recognition. Using the Moving Window Technique (MWT), children aged 5-12 years and adults ("N" = 129) explored faces with a mouse-controlled window in an emotion recognition task. An…

  20. Precision closed bomb calorimeter for testing flame and gas producing initiators

    Science.gov (United States)

    Carpenter, D. R., Jr.; Taylor, A. C., Jr.

    1972-01-01

    A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.

  1. LHCb: First year of running for the LHCb calorimeter system

    CERN Multimedia

    Guz, Y

    2011-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva) [1, 2]. LHCb is a single-arm spectrometer with a forward angular coverage from approximately 10 mrad to 300 mrad. It comprises a calorimeter system composed of four subdetectors [3]. It selects transverse energy hadron, electron and photon candidates for the first trigger level (L0), which makes a decision 4µs after the interaction. It provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The set of constraints resulting from these functionalities defines the general structure and the main characteristics of the calorimeter system and its associated electronics. A classical structure of an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter (HCAL) has been adopted. In addition the system includes in front of them the Scintillating Pad Detector (SPD) and Pre-Showe...

  2. Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnager, V; Kaur, Manjit; Kumar, Arun; Kohli, Jatinder Mohan; Singh, Jas Bir; Acharya, Bannaje Sripathi; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Babich, Kanstantsin; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Ladygin, Vladimir; Meshcheryakov, Gleb; Moissenz, P; Petrosian, A; Rogalev, Evgueni; Sergeyev, S; Smirnov, Vitaly; Vishnevski, A V; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N P; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Oulyanov, A; Safronov, S; Semenov, Sergey; Stolin, Viatcheslav; Gribushin, Andrey; Demianov, A; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, Konstantin; Vardanyan, Irina; Yershov, A A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Korablev, Andrey; Khmelnikov, V A; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L K; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Kuzucu, A; Onengüt, G; Ozdes-Koca, N; Ozkurt, Halil; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankocak, Kerem; Gamsizkan, Halil; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Dindar, Kamile; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchyshyn, Vitaliy; Anderson, E Walter; Hauptman, John M; Elias, John E; Freeman, Jim; Green, Dan; Heering, Arjan Hendrix; Lazic, Dragoslav; Los, Serguei; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Arcidy, M; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Sulak, Lawrence; Varela, F; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Wang, Lei; Wetstein, Matthew; Ayan, S; Akgun, Ugur; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumus, Kazim; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Wigmans, Richard; Baarmand, Marc M; Mermerkaya, Hamit; Vodopyanov, I; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Martínez, German; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Fisher, Wade Cameron; Tully, Christopher; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2008-01-01

    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\\l |\\eta| \\le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \\approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed...

  3. Digital Filter Performance for the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Hadley, D R; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates, and to measure total and missing ET in the ATLAS Liquid Argon and Tile calorimeters. It is a pipelined processor system, with a new set of inputs being evaluated every 25ns. The overall trigger decision has a latency budget of 2µs, including all transmission delays. The calorimeter trigger uses about 7200 reduced granularity analogue signals, which are first digitized at the 40 MHz LHC bunch-crossing frequency, before being passed to a digital Finite Impulse Response (FIR) filter. Due to latency and chip real-estate constraints, only a simple 5-element filter with limited precision can be used. Nevertheless this filter achieves a significant reduction in noise, along with improving the bunch-crossing assignment and energy resolution for small signals. The context in which digital filters are used for the ATLAS Level-1 Calorimeter Trigger will be presented, before describing ...

  4. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    CERN Document Server

    Chen, H; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is one of the two general-purpose detectors designed to study proton-proton collisions (14 TeV in the center of mass) produced at the Large Hadron Collider (LHC) and to explore the full physics potential of the LHC machine at CERN. The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS (and its LAr Calorimeters) has been operating and collecting p-p collisions at LHC since 2009. The on-detector electronics (front-end) part of the current readout electronics of the calorimeters measures the ionization current signals by means of preamplifiers, shapers and digitizers and then transfers the data to the off-detector electronics (back-end) for further elaboration, via optical links. Only the data selected by the level-1 calorimeter trigger system are transferred, achieving a bandwidth reduction to 1.6 Gbps. The analog trigger sum sig...

  5. ATLAS Level-1 Calorimeter Trigger: Initial Timing and Energy Calibration

    CERN Document Server

    Childers, J T; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger identifies high-pT objects in the Liquid Argon and Tile Calorimeters with a fixed latency of ~2.0 µs using a hardware-based, pipelined system built with custom electronics. The Preprocessor Module conditions and digitizes about 7200 pre-summed analogue signals from the calorimeters at the LHC bunch-crossing frequency of 40 MHz, and performs bunch-crossing identification (BCID) and deposited energy measurement for each input signal. This information is passed to further processors for object classification and total energy calculation, and the results used to make the Level-1 trigger decision for the ATLAS detector. The BCID and energy measurement in the trigger depend on precise timing adjustment to achieve correct sampling of the input signal peak. Test pulses from the calorimeters were analysed to derive the initial timing and energy calibration, and first data from the LHC restart in autumn 2009 and early 2010 were used for validation and further optimization. The res...

  6. Measurements with the Chalk River Calorimeters

    International Nuclear Information System (INIS)

    Boyd, A.W.

    1970-01-01

    The Chalk River calorimeters were designed to measure the absorbed dose rate in reactors in materials such as graphite, polyethylene and beryllium in the range 0.01-1 Wg -1 . To eliminate heaters in the sample they were made to operate adiabatically, or more accurately quasi-adiabatically since there is no heater on the jacket. Both the sample and jacket temperatures are recorded from the time of insertion in the reactor flux and the absorbed dose rate is calculated from these data. The advantages of this type of calorimeter are the ease of construction and the absence of a sample heater. The disadvantage is that dose rates below ~ 10 mWg -1 cannot be determined accurately

  7. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5x compared to the design luminosity (10^34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade is expected to happen around 2023. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 ...

  8. Fast shower simulation in the ATLAS calorimeter

    International Nuclear Information System (INIS)

    Barberio, E; Boudreau, J; Mueller, J; Tsulaia, V; Butler, B; Young, C C; Cheung, S L; Savard, P; Dell'Acqua, A; Simone, A D; Gallas, M V; Ehrenfeld, W; Glazov, A; Placakyte, R; Marshall, Z; Rimoldi, A; Waugh, A

    2008-01-01

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ∼ 1GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper

  9. Performance of a scintillating fibres semiprojective electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Bertino, M.; Bini, C.; De Zorzi, G.; Diambrini Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Garufi, F.; Gauzzi, P.; Zanello, D.

    1995-01-01

    A highly segmented scintillating fibres/lead electromagnetic calorimeter has been tested. Each calorimeter module has semiprojective geometry and is shaped as a wedge with an angle of (0.82) . The fibres are however parallel to the wedge axis and the two small lateral regions are not fibre-instrumented. This simple and cheap approach to a projective geometry allows to achieve still good energy and space resolution. Results with electrons in the range 10-100 GeV are presented. ((orig.))

  10. OPAL Forward Calorimeter (half cylinder with lead scintillator)

    CERN Multimedia

    1 half cylinder piece is available for loan. The OPAL forward Detector Calorimeter was made in 4 half cylindrical pieces. Two full cylinders were placed round the LEP beam pipe about 3m downstream of the interaction point. The detector was used primarily to measure the luminosity of LEP (rate of interactions) and also to trigger on 2-photon events. In addition it formed an essential part of the detector coverage which OPAL needed to carry out searches for new particles such as the Higgs boson. The detector is made of scintillators sandwiched between lead sheets. The light from the scintillators passes via bars of wavelength shifter and light guides on its way to be measured by photomultipliers. There is a layer of gas filled tube chambers within the calorimeter. These provide a measure of the position of the particles interacting in the calorimeter.

  11. ATLAS Barrel Hadron Calorimeter: general manufacturing concepts for 300000 absorber plates mass production

    International Nuclear Information System (INIS)

    Alikov, B.A.; Budagov, Yu.A.; Bylinkin, P.M

    1998-01-01

    We summarize a 4-year (1994-1997) experience of design and research efforts which led us to the solution of 2 important tasks of a principal significance for precision assembly of one of major elements of ATLAS, - its Hadron Barrel Tile Calorimeter. These tasks were: - to develop the high tolerances (50-100 microns) technology for about 300000 units of calorimeter nuclear absorber plates mass production, - to choose the best manufacturer(s) able to satisfy shop drawings demands in a reasonable balance with some other significant criteria: production period, price acceptable geography location (transport expenses), available storage area and access ways, reliable quality control etc. For the best absorbers producers our final choice was the TATRA PLANT (Czech Republic) for 1.6 m long plates stamping (40800 units) with Argonne punching die and the MINSK TRACTOR PLANT (Belarus Republic) for smaller size plates stamping (about 240000 units). We exclude noticeable (more than 1% of the day production) tolerances violations by the specially developed QUALITY CONTROL Program

  12. Analysis of transient and thermostatic behavior of water calorimeter for radiation dosimetry

    International Nuclear Information System (INIS)

    Kang, M. Y.; Kim, J. H.; Kim, Jinhyeong; Choi, H. D.; Kim, I. J.

    2015-01-01

    In order to maintain the therapeutic accuracy recommended by the WHO, the American Medical Physics Association has published research results that uncertainty of absorbed dose measurement should be given to less than 3% and many countries are developing the absorbed dose evaluation technique using a calorimeter. Therefore development of water calorimeter and standard measurement method of absorbed dose through the evaluation and ongoing measurement is required in Korea. As an initial step in the development of the water calorimeter by domestic technology, we designed geometry of the phantom and carried out the simulation of the thermal behavior according to the radiation transport and energy deposition by 145TBq KRISS 60 Co beam. The results of this study will be used as the basic data for development of the standard water calorimeter in Korea Research Institute of Standards and Science. Through a parallel development and comparison with the graphite calorimeter, this result is expected to be utilized to improve the standard dosimetry

  13. Characteristics of cell-structure hadron calorimeter on the base of plastic scintillator mouldings

    International Nuclear Information System (INIS)

    Bityukov, S.I.; Semenov, V.K.; Yablokov, A.P.

    1987-01-01

    Design features are considered and the results of measurements of the characteristics of a full-scale hadron calorimeter with 1 m 2 aperture, about 8 t in weight and the 10x10 cm cell are presented. The polysterene scintillator made by the moulding method has been used in the calorimeter. The calorimeter is aimed at measuring neutron energy in experiments with hyperon beams. The calorimeter possesses a good spatial (14 mm at 37.5 GeV energy) and energy (0.7/√E) resolution and permits to detect both charged and neutral hadrons in the wide energy range. The calorimeter is easily producible and reliable in operation. The calorimetr design permits to assemble detectors of a large aperture by joining of some modules with 1x1 m cross section

  14. Adaptive Liquid Crystal Windows

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  15. Electronics calibration board for the ATLAS liquid argon calorimeters

    International Nuclear Information System (INIS)

    Colas, J.; Dumont-Dayot, N.; Marchand, J.F.; Massol, N.; Perrodo, P.; Wingerter-Seez, I.; De La Taille, C.; Imbert, P.; Richer, J.P.; Seguin Moreau, N.; Serin, L.

    2008-01-01

    To calibrate the energy response of the ATLAS liquid argon calorimeter, an electronics calibration board has been designed; it delivers a signal whose shape is close to the calorimeter ionization current signal with amplitude up to 100 mA in 50 Ω with 16 bit dynamic range. The amplitude of this signal is designed to be uniform over all calorimeters channels, stable in time and with an integral linearity much better that the electronics readout. The various R and D phases and most of the difficulties met are discussed and illustrated by many measurements. The custom design circuits are described and the layout of the ATLAS calibration board presented. The procedure used to qualify the boards is explained and the performance obtained illustrated: a dynamic range up to 3 TeV in three energy scales with an integral linearity better than 0.1% in each of them, a response uniformity better than 0.2% and a stability better than 0.1%. The performance of the board is well within the ATLAS requirements. Finally, in situ measurements done on the ATLAS calorimeter are shown to validate these performances

  16. A room-temperature liquid calorimeter prototype for the SSC

    International Nuclear Information System (INIS)

    Brandenburg, G.W.; Geer, S.H.; Oliver, J.; Sadowski, E.; Theriot, D.

    1990-01-01

    Calorimeters will be an extremely important part of SSC detectors as they have been in existing collider detectors. The main issues that need to be addressed are: (1) energy resolution of jets and electrons, (2) segmentation, (3) hermiticity, (4) response time, and (5) radiation resistance. An attractive possibility on all these counts is the use of room-temperature liquids together with uranium, as pioneered by UA1. The authors are planning a prototype calorimeter which consists of a sealed vessel containing both the radiator plates and the readout pads. This geometry has been appropriately named the swimming pool design. The general mechanical starting point is similar to the SLD liquid argon calorimeters. The points they wish to address are the following: (1) Simple and reliable modular construction techniques, (2) Satisfactory electrical connections with minimal geometric impact, (3) The necessity of isolating radiator plates and liquid to maintain purity, (4) What materials can be immersed without compromising the liquid purity. The design and construction of the swimming pool electromagnetic calorimeter prototype is being carried out at the Harvard High Energy Physics Laboratory. This is one of the first attempts to build a full-scale prototype of such a design

  17. Working with Windows Vista at CERN - (IT3T/2007/3)

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    IT3T/2007/3 - Travailler sur Windows Vista au CERN La présentation fournira une introduction à Windows Vista et montrera les nouvelles fonctionnalités comme le nouveau interface d’utilisateur : Windows Aero, le nouveau Windows Desktop Search et les divers améliorations de sécurité comme User Account Control. IT3T/2007/3 - Working with Windows Vista at CERN The presentation will provide a introduction to Windows Vista and demonstrate the new features such as the new Graphical User Interface including Windows Aero, the new Windows Desktop Search and various Security enhancements like the User Account Control.

  18. Sensors for the CMS High Granularity Calorimeter

    CERN Document Server

    Maier, Andreas Alexander

    2017-01-01

    The CMS experiment is currently developing high granularity calorimeter endcapsfor its HL-LHC upgrade. The design foresees silicon sensors as the active material for the high radiation region close to the beampipe. Regions of lower radiation are additionally equipped with plastic scintillator tiles. This technology is similar to the calorimeter prototypes developed in the framework of the Linear Collider by the CALICE collaboration. The current status of the silicon sensor development is presented. Results of single diode measurements are shown as well as tests of full 6-inch hexagonal sensor wafers. A short summary of test beam results concludes the article.

  19. Evaluation of Building Energy Saving Through the Development of Venetian Blinds' Optimal Control Algorithm According to the Orientation and Window-to-Wall Ratio

    Science.gov (United States)

    Kwon, Hyuk Ju; Yeon, Sang Hun; Lee, Keum Ho; Lee, Kwang Ho

    2018-02-01

    As various studies focusing on building energy saving have been continuously conducted, studies utilizing renewable energy sources, instead of fossil fuel, are needed. In particular, studies regarding solar energy are being carried out in the field of building science; in order to utilize such solar energy effectively, solar radiation being brought into the indoors should be acquired and blocked properly. Blinds are a typical solar radiation control device that is capable of controlling indoor thermal and light environments. However, slat-type blinds are manually controlled, giving a negative effect on building energy saving. In this regard, studies regarding the automatic control of slat-type blinds have been carried out for the last couple of decades. Therefore, this study aims to provide preliminary data for optimal control research through the controlling of slat angle in slat-type blinds by comprehensively considering various input variables. The window area ratio and orientation were selected as input variables. It was found that an optimal control algorithm was different among each window-to-wall ratio and window orientation. In addition, through comparing and analyzing the building energy saving performance for each condition by applying the developed algorithms to simulations, up to 20.7 % energy saving was shown in the cooling period and up to 12.3 % energy saving was shown in the heating period. In addition, building energy saving effect was greater as the window area ratio increased given the same orientation, and the effects of window-to-wall ratio in the cooling period were higher than those of window-to-wall ratio in the heating period.

  20. Characterization of an Electromagnetic Calorimeter for the Proposed International Linear Collider

    International Nuclear Information System (INIS)

    Frey, Merideth; Wellesley Coll.; SLAC

    2006-01-01

    The International Linear Collider (ILC) is part of a new generation of accelerators enabling physicists to gain a deeper understanding of the fundamental components of the universe. The proposed ILC will accelerate positrons and electrons towards each other with two facing linear colliders, each twenty kilometers long. Designing and planning for the future accelerator has been undertaken as a global collaboration, with groups working on several possible detectors to be used at the ILC. The following research at the Stanford Linear Accelerator Center (SLAC) pertained to the design of an electromagnetic calorimeter. The energy and spatial resolution of the calorimeter was tested by using computer simulations for proposed detectors. In order to optimize this accuracy, different designs of the electromagnetic calorimeter were investigated along with various methods to analyze the data from the simulated detector. A low-cost calorimeter design was found to provide energy resolution comparable to more expensive designs, and new clustering algorithms offered better spatial resolution. Energy distribution and shape characteristics of electromagnetic showers were also identified to differentiate various showers in the calorimeter. With further research, a well-designed detector will enable the ILC to observe new realms of physics

  1. New heavy scintillating materials for precise heterogeneous EM-calorimeters

    International Nuclear Information System (INIS)

    Britvich, G.I.; Britvich, I.G.; Vasil'chenko, V.G.; Lishin, V.A.; Obraztsov, V.F.; Polyakov, V.A.; Solovjev, A.S.; Ryzhikov, V.D.

    2001-01-01

    This investigation shows some optical and scintillation properties of new scintillating media, based on heavy composite materials and an inorganic crystal CsI:Br, intended for the creation of precise heterogeneous EM-calorimeters with the energy resolution σ/E congruent with 4-5% E-radical. The possibility to use cheap heavy scintillating plates based on optical ceramics as active media in heterogeneous EM-calorimeters is considered

  2. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Univ. of California, Berkeley, CA (United States)

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  3. On the ionization scintillation calorimeter based on KMgF3 crystal

    International Nuclear Information System (INIS)

    Buzulutskov, A.F.

    1990-01-01

    The development of the ionization scintillation calorimeter, using KMgF 3 crystals and high efficiency photocathodes, is proposed. Some characteristics of such calorimeter are compared with those of the high pressure gas one. 6 refs.; 2 figs.; 2 tabs

  4. A Silicon Hadron Calorimeter Module Operated in a Strong Magnetic Field with VLSI Readout for LHC

    CERN Multimedia

    2002-01-01

    % RD35 \\\\ \\\\ On the basis of a cost optimized Silicon production technology we proposed to build a hadron calorimeter active plane. \\\\ \\\\The production of detectors is closely followed and final quality control is performed according to specifications. \\\\ \\\\The technology designed for the cheap pad detector production is applied for the coarse strip detector manufacturing. These strip detectors will be used in the preshower of the electromagnetic calorimeter of CMS. \\footnote{Research & Prod. Assoc. ELMA, RSFSR} \\footnote{Byelorussian State Univ. Minsk} \\footnote{Research & Prod. Comp. SIAPS, RSFSR} \\footnote{Joffe Physical-Technical Inst. RSFSR} \\footnote{Ansaldo Richerche spa, Genoa} \\footnote{SGS-THOMSON, Castelletto, Milan}

  5. Liquid Krypton Calorimeter Calibration Software

    CERN Document Server

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  6. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, H. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Carlini, R. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Tadevosyan, V., E-mail: tadevosn@jlab.org [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Arrington, J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Asaturyan, A. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Christy, M.E. [Hampton University, Hampton, VA 23668 (United States); Dutta, D. [Triangle Universities Nuclear Laboratory and Duke University, Durham, NC 27708 (United States); Ent, R.; Fenker, H.C.; Gaskell, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Horn, T. [Catholic University of America, Washington, DC 20064 (United States); Jones, M.K. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Keppel, C.E. [Hampton University, Hampton, VA 23668 (United States); Mack, D.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Malace, S.P. [Triangle Universities Nuclear Laboratory and Duke University, Durham, NC 27708 (United States); Mkrtchyan, A. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Niculescu, M.I. [James Madison University, Harrisonburg, VA 22807 (United States); Seely, J. [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA (United States); Tvaskis, V. [Hampton University, Hampton, VA 23668 (United States); Wood, S.A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); and others

    2013-08-11

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing High Momentum Spectrometer (HMS) and Short Orbit Spectrometer (SOS), design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than σ/E∼6%/√(E) and pion/electron (π/e) separation of about 100:1 has been achieved in the energy range of 1–5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined π{sup −} suppression factors by close to a factor of two. For the Super High Momentum Spectrometer (SHMS), presently under construction, details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter. -- Highlights: • Construction and performance of lead glass calorimeters in JLab/Hall C are presented. • ∼5%/√(E) resolution, ∼100:1π/e separation is achieved in HMS calorimeter in GeV range. • Simulated resolution of the HMS calorimeter is in good agreement with experiment. • Simulated pion suppression of the HMS calorimeter exceeds experiment, by less than 2. • Pion suppression of ∼400:1 is predicted in projected SHMS calorimeter by simulations.

  7. Generators, Calorimeter Trigger and J/ψ production at LHCb

    CERN Document Server

    Robbe, P

    This document presents results related to the preparation of the physics program ofLHCb: generator software development, calorimeter trigger commissioning and measurement of J/psi production. A detailed simulation is mandatory to developthe analysis tools needed for this program and a detailed generator framework hasbeen implemented which describes for example B mixing and CP violation in B decays in the LHCb hadronic environment. For hadronic decay modes, the trigger of the experiment is based at the first level on information provided by the calorimeters, and in particular the hadronic calorimeter. The large J/psi production cross-section at the LHC allows to perform, with the first data recorded, a measurement of the J/psi differential cross-section and to confront it with theoretical models to test QCD in the heavy quark sector.

  8. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    During the last 3 months commissioning of HCAL has continued for HO and HE+. We have also started the commissioning of the first wedge of HB+. Progress continues to be made by our Trigger/DAQ, DCS and DPG colleagues. HF will be used to obtain a Luminosity measurement for CMS. A first test of the modifications to the HF electronics was made in the August CMS global run. In addition to installation and commissioning of various parts of HCAL, we also completed a very successful summer Test Beam period which saw measurements of the combined HE/EE/ES calorimeter system in the H2 test beam. Installation and Commissioning a. HB commissioning This week, part of the final water-cooling system for HB was commissioned. Eighteen HB- wedges and two pilot wedges on HB+ have been connected to the water circuit on YB0. On Sept 6, 2007 cabling and commissioning was started for the first HB readout box (RBX) using temporary set of cables. We have connected RBX-17 to the Low Voltage PS and the HCAL Detector Control Sy...

  9. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    D. Green

    The organization of CMS HCAL contains four “geographic” efforts, HB, HO, HE and HF. In addition there are presently five “common” HCAL activities. These ef¬forts are concentrated on electronics, on controls (DCS), on physics objects (JetMet), on Installation and Commissioning (I&C), and on Test Beam (TB) and Cosmic Challenge (MTCC) data taking. HCAL has begun planning to re-organize to be synchronized with the overall CMS management structure. HF The full production of the wedges is completed for some time. The 2004 test beam work has established the radioactive source calibration system for HF works at the 5 % level or better and a note is completed. The calibration of the complete HF is complete. HF is now in the UX cavern and will be hooked up and read out as soon as the services are available. HE The two HE calorimeters are installed and an initial calibration has been established. In the MTCC the HE was read out and muon data was observed. Event b...

  10. R&D proposal the prism plastic calorimeter:PPC

    CERN Document Server

    Dobrzynski, Ludwik; Marchand, P; Nédélec, P; Salin, P; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    This proposal supports two goals: First Goal_Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter (PPC) towers with a new "liquid crystal" type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. Second Goal_ Describe how one can design a warm liquid calorimeter integrated into a LHC detector,and list the advantages of the PPC: low price, minimum of mechanical structures, minimum amount of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronics being outside the liquid and easily accessible, one has maximum flexibility to define them. The R&D program we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  11. Calibration and monitoring of the ATLAS Tile calorimeter

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40~MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  12. ATLAS Level-1 Calorimeter Trigger: Status and Development

    CERN Document Server

    Bracinik, J; The ATLAS collaboration

    2013-01-01

    The ATLAS Level-1 Calorimeter Trigger seeds all the calorimeter-based triggers in the ATLAS experiment at LHC. The inputs to the system are analogue signals of reduced granularity, formed by summing cells from both the ATLAS Liquid Argon and Tile calorimeters. Several stages of analogue then digital processing, largely performed in FPGAs, refine these signals via configurable and flexible algorithms into identified physics objects, for example electron, tau or jet candidates. The complete processing chain is performed in a pipelined system at the LHC bunch-crossing frequency, and with a fixed latency of about 1us. The first LHC run from 2009-2013 provided a varied and challenging environment for first level triggers. While the energy and luminosity were below the LHC design, the pile-up conditions were similar to the nominal conditions. The physics ambitions of the experiment also tested the performance of the Level-1 system while keeping within the rate limits set by detector readout. This presentation will ...

  13. The BaBar electromagnetic calorimeter

    CERN Document Server

    Lewandowski, B

    2002-01-01

    The BaBar electromagnetic calorimeter is a hermetic, total-absorption array of CsI(Tl)-crystals, operated at the asymmetric e sup - e sup + -collider PEP-II at SLAC. The design and the status of the performance as of February 2002 is presented.

  14. ELECTRONICS FOR CALORIMETERS AT LHC

    International Nuclear Information System (INIS)

    Radeka, V.

    2001-01-01

    Some principal design features of front-end electronics for calorimeters in experiments at the LHC will be highlighted. Some concerns arising in the transition from the research and development and design phase to the construction will be discussed. Future challenges will be indicated

  15. An Inexpensive Solution Calorimeter

    Science.gov (United States)

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  16. Precision timing with liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Benary, O.; Cannon, S.; Cleland, W.; Ferguson, I.; Finley, C.; Gordeev, A.; Gordon, H.; Kistenev, E.; Kroon, P.; Letchouk, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Maslennikov, A.; McCorkle, S.; Onoprienko, D.; Onuchin, A.; Oren, Y.; Panin, V.; Parsons, J.; Rabel, J.; Radeka, V.; Rogers, L.; Rahm, D.; Rescia, S.; Rutherfoord, J.; Seman, M.; Smith, M.; Sondericker, J. III; Steiner, R.; Stephani, D.; Stern, E.; Stumer, I.; Takai, H.; Themann, H.; Tikhonov, Y.

    1993-01-01

    We present timing measurements performed with a liquid krypton electromagnetic accordion calorimeter, measured in an electron beam over an energy range of 5-20 GeV. A novel discriminator with an amplitude-independent timing response was used to extract the inherently accurate timing information from the calorimeter. As expected, the timing resolution σ τ is observed to vary inversely with the signal amplitude, which is proportional to the deposited energy E. We measure a resolution of σ τ =4.15±0.06 GeV ns/E for a sum of 5x5 towers with dimensions 2.7x2.5 cm 2 each. From this we deduce that the timing resolution for an individual tower is approximately 0.8 GeV ns/E. (orig.)

  17. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    Renz, D.P.; Wetzel, J.R.; James, S.J.; Kasperski, P.W.; Duff, M.F.

    1991-01-01

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  18. Dynamic Contention Window Control Scheme in IEEE 802.11e EDCA-Based Wireless LANs

    Science.gov (United States)

    Abeysekera, B. A. Hirantha Sithira; Matsuda, Takahiro; Takine, Tetsuya

    In the IEEE 802.11 MAC protocol, access points (APs) are given the same priority as wireless terminals in terms of acquiring the wireless link, even though they aggregate several downlink flows. This feature leads to a serious throughput degradation of downlink flows, compared with uplink flows. In this paper, we propose a dynamic contention window control scheme for the IEEE 802.11e EDCA-based wireless LANs, in order to achieve fairness between uplink and downlink TCP flows while guaranteeing QoS requirements for real-time traffic. The proposed scheme first determines the minimum contention window size in the best-effort access category at APs, based on the number of TCP flows. It then determines the minimum and maximum contention window sizes in higher priority access categories, such as voice and video, so as to guarantee QoS requirements for these real-time traffic. Note that the proposed scheme does not require any modification to the MAC protocol at wireless terminals. Through simulation experiments, we show the effectiveness of the proposed scheme.

  19. Description of a Sensitive Seebeck Calorimeter Used for Cold Fusion Studies

    Science.gov (United States)

    Storms, Edmund

    A sensitive and stable Seebeck calorimeter is described and used to determine the heat of formation of PdD. This determination can be used to show that such calorimeters are sufficiently accurate to measure the LENR effect and give support to the claims.

  20. Testbeam Studies of Production Modules of the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bednar, P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, Yu A; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; David, M; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fedorko, I; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gorini, B; Grenier, P; Gris, P; Gruwé, M; Guarino, V; Guicheney, C; Sen-Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Le Compte, T; Lefèvre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lupi, A; Maidantchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Némécek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J E; Pina, J; Pinhão, J; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L-P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spanó, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Ünel, G; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2009-01-01

    We report test beam studies of {11\\,\\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\\sim 70$~pe/GeV, exceeding the design goal by {40\\,\\%}. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200~calorimeter cells the variation of the response was {2.4\\,\\%}. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5\\,\\% for 91~measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of {1.4\\,\\%} for the modules and projective angles studied. The respon...

  1. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  2. Digital Filtering Performance in the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Hadley, D R; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based system designed to identify high-pT jets, elec- tron/photon and tau candidates, and to measure total and missing ET in the ATLAS Liquid Argon and Tile calorimeters. It is a pipelined processor system, with a new set of inputs being evaluated every 25ns. The overall trigger decision has a latency budget of 2µs, including all transmission delays. The calorimeter trigger uses about 7200 reduced granularity analogue signals, which are first digitized at the 40 MHz LHC bunch-crossing frequency, before being passed to a digital Finite Impulse Re- sponse (FIR) filter. Due to latency and chip real-estate constraints, only a simple 5-element filter with limited precision can be used. Nevertheless, this filter achieves a significant reduction in noise, along with improving the bunch-crossing assignment and energy resolution for small signals. The context in which digital filters are used for the ATLAS Level-1 Calorimeter Trigger is presented, before descr...

  3. Design, construction and beam tests of the high resolution uranium scintillator calorimeter for ZEUS

    International Nuclear Information System (INIS)

    Straver, J.A.

    1991-01-01

    HERA will collide protons and electrons with energies up to 820 GeV and 30 GeV respectively. Therefore it allows measurements at momentum transfers (Q) which greatly surpass the investigations carried out so far. This extended range in Q will allow investigation of the interactions between the quarks and leptons at a distance scale of the order of 10 -18 cm. Two detectors are foreseen at HERA H1 and ZEUS. The design of the ZEUS detector is optimized for the study of neutral and charged current interactions. A calorimeter is a detector which absorbs the total incident energy of a particle while generating a signal proportional to this energy. The ZEUS calorimeter is built of alternating layers of dense absorber plates ( 238 U) and active layers of scintillator material with a fast readout system via wavelength shifters, light guides and photomultiplyers. The main subject of this thesis is the description of this calorimeter and its performance. After a short introduction to HERA and the physics topics, the importance of the quality of a calorimeter is pointed out and a brief overview of the ZEUS detector is given. In ch. 3 the principles of high resolution hadron calorimetry and the studies which led to the design of the ZEUS-calorimeter are discussed. Ch. 4 describes the mechanical design of the ZEUS forward calorimeter, the mechanical finite element calculations, and the production of the calorimeter modules at NIKHEF. Finally ch. 6 and 5 show the results of beam tests of the ZEUS forward calorimeter prototypes and the final full size forward calorimeter modules. (author). 59 refs.; 115 figs.; 29 tabs

  4. The CMS Electromagnetic Calorimeter: Construction, Commissioning and Calibration

    CERN Document Server

    Orimoto, Toyoko

    2009-01-01

    The Compact Muon Solenoid (CMS) detector at the Large Hadron Colider (LHC) is ready for first collisions. The Electromagnetic Calorimeter (ECAL) of CMS, a high resolution detector comprised of nearly 76000 lead tungstate crystals, will play a crucial role in the coming physics searches undertaken by CMS. The design and performance of the CMS ECAL with test beams, cosmic rays, and first single beam data will be presented. In addition, the status of the calorimeter and plans for calibration with first collisions will be discussed.

  5. ATLAS Calorimeter system: Run-2 performance, Phase-1 and Phase-2 upgrades

    CERN Document Server

    Starz, Steffen; The ATLAS collaboration

    2018-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon-lead sampling calorimeter (LAr) is employed as electromagnetic calorimeter and hadronic calorimeter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. ATLAS recorded 87 fb^{-1} of data at a center-of-mass energy of 13 TeV between 2015 and 2017. In order to achieve the level-1 acceptance rate of 100 kHz, certain adjustments have been performed. The calorimetry system performed accordingly to its design values and have played a crucial role in the ATLAS physics programme. This contribution will give an overview of the detector operation, monitoring and data quality, as well as the achieved performance, including the calibration and stability of the energy scale, noise level, response uniformity and time resolution of the ATLAS cal...

  6. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  7. Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Vesztergombi, Gyorgy; Zálán, Peter; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sudhakar, Katta; Verma, Piyush; Paktinat, S; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Mescheryakov, G; Sergeyev, S; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Stolin, Viatcheslav; Ulyanov, A; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Kuzucu-Polatoz, A; Onengüt, G; Ozdes-Koca, N; Cankocak, Kerem; Ozok, Ferhat; Serin-Zeyrek, M; Sever, Ramazan; Zeyrek, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchishin, V; Anderson, E Walter; Hauptman, John M; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Lazic, Dragoslav; Los, Serguei; O'Dell, Vivian; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumu, K; Thomas, Ray; Baarmand, Marc M; Ralich, Robert; Vodopiyanov, Igor; Cushman, Priscilla; Heering, Arjan Hendrix; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Mans, Jeremy; Tully, Christopher; De Barbaro, Pawel; Bodek, Arie; Budd, Howard; Chung, Yeon Sei; Haelen, T; Imboden, Matthias; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2007-01-01

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%.

  8. Calorimeter with capacitance transducer for measurement of SHF radiation power

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, I.N.; Uskov, V.V.

    2005-01-01

    A calorimeter of simple design for measuring total energy of microwave radiation is described. It operates in the energy range of 0.5 J to 6 kJ; water is used as the absorbing material. A capacitive probe is applied to measure changes in the water volume. The energy absorption factor of electromagnetic radiation in the range of 3-60 GHz is at least 0.9. The calorimeter is insensitive to radiation field nonuniformity over the absorber volume. The calorimeter is intended for measuring the radiation energy of beam plasma generators and generators with dielectric structure. Its design makes it possible to simultaneously measure the radiation energy and monitor the beam current [ru

  9. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221190; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton col...

  10. Calibration and Performance of the ATLAS Tile Calorimeter during the LHC Run 2

    CERN Document Server

    Faltova, Jana; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter is established with the large sample of the proton-proton collisions. Isolated hadrons a...

  11. The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab

    International Nuclear Information System (INIS)

    Tadevosyan, V; Mkrtchyan, H; Asaturyan, A; Mkrtchyan, A; Zhamkochyan, S

    2012-01-01

    The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm × 10 cm × 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/√E, and pion/electron (π/e) separation of about 100:1 has been achieved in energy range 1–5 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a “fly's eye” configuration of 14 columns and 16 rows. The active area of 120 × 130 cm 2 will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting

  12. COE1 Calorimeter Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    The purpose of this manual is to describe the operations of the COE1 calorimeter which is used to measure the thermal power generated by the radioactive decay of plutonium-bearing materials for the purposes of assaying the amount of plutonium within the material.

  13. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  14. The contribution to the calibration of LAr calorimeters at the ATLAS experiment

    International Nuclear Information System (INIS)

    Pecsy, M.

    2011-01-01

    The presented thesis brings various contributions to the testing and validation of the ATLAS detector calorimeter calibration. Since the ATLAS calorimeter is non-compensating, the sophisticated software calibration of the calorimeter response is needed. One of the ATLAS official calibration methods is the local hadron calibration. This method is based on detailed simulations providing information about the true deposited energy in calorimeter. Such calibration consists of several independent steps, starting with the basic electromagnetic scale signal calibration and proceeding to the particle energy calibration. Calibration starts from the topological clusters reconstruction and calibration at EM scale. These clusters are classified as EM or hadronic and the hadronic ones receive weights to correct for the invisible energy deposits of hadrons. To get the nal reconstructed energy the out-of-cluster and dead material corrections are applied in next steps. The tests of calorimeter response with the rst real data from cosmic-ray muons and the LHC collisions data are presented in the thesis. The detailed studies of the full hadronic calibration performance in the special combined end-cap calorimeter beam test 2004 are presented as well. To optimise the performance of the calibration, the Monte-Carlo based studies are necessary. Two alternative methods of cluster classification are discussed, and the software tool of particle track extrapolation has been developed. (author)

  15. Determination of the limit of quantification of the calorimeter using a mixture of benzoic acid and silicon dioxide

    Directory of Open Access Journals (Sweden)

    Krstić Vesna R.

    2011-01-01

    Full Text Available In recent years quality control has received a great attention in laboratory work. Implementation of the international standard ISO/IEC 17025 is necessary for any laboratory that wishes to establish quality control in its work. One of the important factors for meeting the requirements of this standard is the usage of the certified reference materials (CRM in laboratory work. In order to determine the performance of the calorimeter, benzoic acid as CRM, from AlliedSignal Riedelda Haen, Ref.: 33045 and SiO2, Pro analyze, in various mass ratios was used. The results showed that benzoic acid can be successfully utilized for the control of the entire technical and instrumental measuring range and resolve the problem of determination of the limit of detection and quantification of the calorimeter.

  16. Test system for the production of the Atlas Tile Calorimeter front-end electronics

    International Nuclear Information System (INIS)

    Calvet, David

    2004-01-01

    The Atlas hadronic Tile Calorimeter front-end electronics is fully included in the so-called 'super-drawers'. The 256 super-drawers needed for the entire calorimeter are assembled and extensively tested in Clermont-Ferrand before being sent to CERN to be inserted in the calorimeter modules. A mobile system has been developed to perform a complete test of the super-drawers during their insertion

  17. Design of readout electronics for a scintillating plate calorimeter

    International Nuclear Information System (INIS)

    Crawley, H.B.; Meyer, W.T.; Rosenberg, E.I.; Thomas, W.D.; Blair, R.E.; Buehring, A.; Dawson, J.; Hill, N.; Noland, R.; Petereit, E.; Price, L.E.; Proudfoot, J.; Spinka, H.; Talaga, R.; Trost, H.J.; Underwood, D.; Wickland, A.B.; Hurlbut, C.; Hagopian, V.; Johnson, K.; Imlay, R.; McNeil, R.; Metcalf, W.; Bolen, L.; Cremaldi, L.; Reidy, J.; Summers, D.; Fu, P.; Gabriel, T.; Handler, T.; Ficenec, J.R.; Lu, B.; Mo, L.; Piilonen, L.E.; Nunamaker, T.; Burke, M.; Hackworth, D.T.; Porter, T.F.; Ravas, R.J.; Scherbarth, D.; Swensrud, R.; Carlsmith, D.; Foudas, C.; Lackey, J.; Loveless, D.; Reeder, D.; Robb, P.; Smith, W.H.

    1990-01-01

    A scintillator calorimeter produces unique problems for the designer of readout electronics. On the one hand the narrow time structure of scintillator pulses, ∼10 nsec, is well matched to the rf structure of the SSC and gives hope of isolating information from individual beam crossings. On the other hand, the compensation mechanism and the need to broaden the pulse shape for use with analog signal sampling devices gives a somewhat wider time structure, ∼50-100 nsec. Furthermore the granularity of such a device implies that the full energy of an electromagnetic shower may be totally contained within one readout channel. If the resolution of the electronics is not to compromise the intrinsic resolution of the calorimeter, assumed to be σ/E ∼ 15%/√E + 1% (E in Gev), coverage of the full dynamic range (40,000:1) requires at least two 12-bit devices with 7 bits of overlap for a linear front-end electronics chain. The positioning of the electronics also is a critical issue. At luminosities of 10 33 cm -2 sec -1 , electronics placed on the calorimeter must withstand doses of at least 10 10 neutron/cm 2 and 2,000 Rad per year at 90 degree. In the past year, the scintillating calorimeter collaboration has begun studying these and related issues. Among the work reported below is: a study related to remote location of the calorimeter electronics, a comprehensive program to evaluate the properties of FADCs capable of operation at 60-80 MHz, design of a analog memory unit and development of a benchmark system to help evaluate components under development both within and outside the authors' collaboration

  18. Description of a sensitive seebeck calorimeter used for cold fusion studies

    International Nuclear Information System (INIS)

    Storms, Edmund

    2006-01-01

    A sensitive and stable Seebeck calorimeter is described and used to determine the heat of formation of PdD. This determination can be used to show that such calorimeters are sufficiently accurate to measure the LENR effect and give support to the claims. (author)

  19. Central Calorimeter configuration: A study report to the SDC Technical Board

    International Nuclear Information System (INIS)

    Kirk, T.B.W.; Wicklund, A.B.

    1991-01-01

    The single most important determinant of the overall Central Calorimeter (CC) shape is the criterion for depth of hadron shower containment. This criterion and its rapidity dependence is discussed in a companion document to this report titled ''Depth Requirements in SSC Calorimeters'' by a D. Green et al., SDC-91-00016. The conclusion reached there is that the calorimeter should be 10 λ thick at η = 0 and increase smoothly to 12 λ at η = 3. We adopt this criterion in this report and discuss the mechanical properties and design details of a CC that meets this condition

  20. The presampler for the forward and rear calorimeter in the ZEUS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, A; Bornheim, A; Crittenden, J; Grabosch, H -J; Grothe, M; Hervas, L; Hilger, E; Holm, U; Horstmann, D; Kaufmann, V; Kharchilava, A; Koetz, U; Kummerow, D; Mallik, U; Meyer, A; Nowoczyn, M; Ossowski, R; Schlenstedt, S; Tiecke, H; Verkerke, W; Vossebeld, J; Vreeswijk, M; Wang, S M; Wu, J [Bonn Univ. (Germany). Phys. Inst.; [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); [DESY-IfH Zeuthen, Zeuthen (Germany); [Fakultaet fuer Physik der Universitaet Freiburg, Freiburg i.Br. (Germany); [Hamburg University, I. Institute of Exp. Physics, Hamburg (Germany); [University of Iowa Physics and Astronomy Dept, Iowa City (United States); [Univer. Autonoma Madrid, Depto de Fisica Teorica, Madrid (Spain); [NIKHEF and University of Amsterdam, Amsterdam (Netherlands)

    1996-11-21

    The ZEUS detector at HERA has been supplemented with a presampler detector in front of the forward and rear calorimeters. It consists of a segmented scintillator array read out with wavelength-shifting fibers. We discuss its design, construction and performance. Test beam data obtained with a prototype presampler and the ZEUS prototype calorimeter demonstrate the main function of this detector, i.e. the correction for the energy lost by an electron interacting in inactive material in front of the calorimeter. (orig.).

  1. Hadronic energy reconstruction in the CALICE combined calorimeter system

    Energy Technology Data Exchange (ETDEWEB)

    Israeli, Yasmine [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    Future linear electron-positron colliders, ILC and CLIC, aim for precision measurements and discoveries beyond and complementary to the program of the LHC. For this purpose, detectors with the capability for sophisticated reconstruction of final states with energy resolutions substantially beyond the current state of the art are being designed. The CALICE collaboration develops highly granular calorimeters for future colliders, among them silicon-tungsten electromagnetic calorimeters and hadronic calorimeters with scintillators read out by SiPMs. Such a combined system was tested with hadrons at CERN as well as at Fermilab. In this contribution, we report on the energy reconstruction in the combined setup, which requires different intercalibration factors to account for the varying longitudinal sampling of sub-detectors. Software compensation methods are applied to improve the energy resolution and to compensate for the different energy deposit of hadronic and electromagnetic showers.

  2. "Finger" structure of tiles in CMS Endcap Hadron Calorimeters

    CERN Document Server

    Afanasiev, Sergey; Danilov, Mikhail; Emeliantchik, Igor; Ershov, Yuri; Golutvin, Igor; Grinyov, B.V; Ibragimova, Elvira; Levchuk, Leonid; Litomin, Aliaksandr; Makankin, Alexander; Malakhov, Alexander; Moisenz, Petr; Nuritdinov, I; Popov, V.F; Rusinov, Vladimir; Shumeiko, Nikolai; Smirnov, Vitaly; Sorokin, Pavlo; Tarkovskiy, Evgueni; Tashmetov, A; Vasiliev, S.E; Yuldashev, Bekhzod; Zamyatin, Nikolay; Zhmurin, Petro

    2015-01-01

    Two CMS Endcap hadron calorimeters (HE) have been in operation for several years and contributed substantially to the success of the CMS Physics Program. The HE calorimeter suffered more from the radiation than it had been anticipated because of rapid degradation of scintillator segments (tiles) which have a high radiation flux of secondary particles. Some investigations of scintillators have shown that the degradation of plastic scintillator increases significantly at low dose rates. A proposal to upgrade up-grade the HE calorimeter has been prepared to provide a solution for survivability of the future LHC at higher luminosity and higher energy. A finger-strip plastic scintillator option has many advantages and is a lower cost alternative to keep the excellent HE performance at high luminosity. Measurements have been performed and this method has proved to be a good upgrade strategy.

  3. The ATLAS High-Level Calorimeter Trigger in Run-2

    CERN Document Server

    Wiglesworth, Craig; The ATLAS collaboration

    2018-01-01

    The ATLAS Experiment uses a two-level triggering system to identify and record collision events containing a wide variety of physics signatures. It reduces the event rate from the bunch-crossing rate of 40 MHz to an average recording rate of 1 kHz, whilst maintaining high efficiency for interesting collision events. It is composed of an initial hardware-based level-1 trigger followed by a software-based high-level trigger. A central component of the high-level trigger is the calorimeter trigger. This is responsible for processing data from the electromagnetic and hadronic calorimeters in order to identify electrons, photons, taus, jets and missing transverse energy. In this talk I will present the performance of the high-level calorimeter trigger in Run-2, noting the improvements that have been made in response to the challenges of operating at high luminosity.

  4. Occupants' window opening behaviour

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano

    2012-01-01

    Energy consumption in buildings is influenced by several factors related to the building properties and the building controls, some of them highly connected to the behaviour of their occupants.In this paper, a definition of items referring to occupant behaviour related to the building control...... systems is proposed, based on studies presented in literature and a general process leading to the effects on energy consumptions is identified.Existing studies on the topic of window opening behaviour are highlighted and a theoretical framework to deal with occupants' interactions with building controls......, aimed at improving or maintaining the preferred indoor environmental conditions, is elaborated. This approach is used to look into the drivers for the actions taken by the occupants (windows opening and closing) and to investigate the existing models in literature of these actions for both residential...

  5. Signal feedthroughs for the ATLAS barrel and endcap calorimeters

    International Nuclear Information System (INIS)

    Axen, D.; Hackenburg, R.; Hoffmann, A.; Kane, S.; Lissauer, D.; Makowiecki, D.; Muller, T.; Pate, D.; Radeka, V.; Rahm, D.; Rehak, M.; Rescia, S.; Sexton, K.; Sondericker, J.; Birney, P.; Dowling, A.W.; Fincke-Keeler, M.; Hodges, T.; Holness, F.; Honkanen, N.

    2005-01-01

    The function, design, construction, testing, and installation of the signal feedthroughs for the barrel and endcap ATLAS liquid argon calorimeters are described. The feedthroughs provide a high density and radiation hard method to extract over 200 000 signals from the cryogenic environment of the calorimeters using an application of a design based on flexible kapton circuit board transmission lines. A model to describe the frequency dependent behavior of the transmission lines is also presented

  6. An open software system based on X Windows for process control and equipment monitoring

    International Nuclear Information System (INIS)

    Aimar, A.; Carlier, E.; Mertens, V.

    1992-01-01

    The construction and application of a configurable open software system for process control and equipment monitoring can speed up and simplify the development and maintenance of equipment specific software as compared to individual solutions. The present paper reports the status of such an approach for the distributed control systems of SPS and LEP beam transfer components, based on X Windows and the OSF/Motif tool kit and applying data modeling and software engineering methods. (author)

  7. In-Situ Calibration of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Futyan, D I

    2003-01-01

    The in-situ intercalibration of the lead tungstate crystals of the CMS electromagnetic calorimeter will be performed using 3 techniques: An energy flow method will be used at startup to intercalibrate to a precision of around 2% within about 3 hours. The energy/momentum measurement of isolated electrons from W decay will then be used to obtain the design goal precision of 0.5% within about 2 months. Global intercalibration of different regions of the calorimeter and the determination of the absolute energy scale will be performed using energetic electrons from Z->ee events.

  8. ANL small-sample calorimeter system design and operation

    International Nuclear Information System (INIS)

    Roche, C.T.; Perry, R.B.; Lewis, R.N.; Jung, E.A.; Haumann, J.R.

    1978-07-01

    The Small-Sample Calorimetric System is a portable instrument designed to measure the thermal power produced by radioactive decay of plutonium-containing fuels. The small-sample calorimeter is capable of measuring samples producing power up to 32 milliwatts at a rate of one sample every 20 min. The instrument is contained in two packages: a data-acquisition module consisting of a microprocessor with an 8K-byte nonvolatile memory, and a measurement module consisting of the calorimeter and a sample preheater. The total weight of the system is 18 kg

  9. Perfomance of a compensating lead-scintillator hadronic calorimeter

    Science.gov (United States)

    Bernardi, E.; Drews, G.; Garcia, M. A.; Klanner, R.; Kötz, U.; Levman, G.; Lomperski, M.; Lüke, D.; Ros, E.; Selonke, F.; Tiecke, H.; Tsirou, M.; Vogel, W.

    1987-12-01

    We have built a sandwich calorimeter consisting of 10 mm thick lead plates and 2.5 mm thick scintillator sheets. The thickness ratio between lead and scintillator was optimized to achieve a good energy resolution for hadrons. We have exposed this calorimeter to electrons, hadrons and muons in the energy range between 3 and 75 GeV, obtaining an average energy resolution of {23%}/{E} for electrons and {44%}/{E} for hadrons. For energies above 10 GeV and after leakage corrections, the ratio of electron response to hardron response is 1.05.

  10. Windows Azure

    CERN Document Server

    Johnson, Bruce; Chambers, James; Garber, Danny; Malik, Jamal; Fazio, Adam

    2013-01-01

    A collection of five must-have Azure titles, from some of the biggest names in the field Available individually, but at a discounted rate for the collection, this bundle of five e-books covers key developer and IT topics of Windows Azure, including ASP.NET, mobile services, web sites, data storage, and the hybrid cloud. A host of Microsoft employees and MPVs come together to cover the biggest challenges that professionals face when working with Windows Azure. The e-books included are as follows: Windows Azure and ASP.NET MVC MigrationWindows Azure Mobile ServicesWindows Azure Web SitesWindows

  11. Performance of the ATLAS Calorimeters and Commissioning for LHC Run-2

    CERN Document Server

    Rossetti, Valerio; The ATLAS collaboration

    2015-01-01

    The ATLAS general-purpose experiment at the Large Hadron Collider (LHC) is equipped with electromagnetic and hadronic liquid-argon (LAr) calorimeters and a hadronic scintillator-steel sampling calorimeter (TileCal) for measuring energy and direction of final state particles in the pseudorapidity range $|\\eta| < 4.9$. The calibration and performance of the calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb$^{-1}$ of data have been collected at the center-of-mass energies of 7 and 8~TeV. Results on the calorimeter operation, monitoring and data quality, as well as their performance will be presented, including the calibration and stability of the electromagnetic scale, response uniformity and time resolution. These results demonstrate that the LAr and Tile calorimeters perform excellently within their design requirements. The calorimetry system thu...

  12. The ATLAS liquid argon calorimeter: upgrade plans for the HL-LHC

    CERN Document Server

    Novgorodova, Olga; The ATLAS collaboration

    2015-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10$^{34}$ cm$^{-2}$s$^{-1}$. Liquid argon (LAr) sampling calorimeters are employed for electromagnetic and hadronic calorimetry. The LAr has to withstand a High Luminosity LHC (HL-LHC) operation of the collider and associated detectors at luminosities of up to (5-7)$\\times$10$^{34}$ cm$^{-2}$s$^{-1}$, with the goal of accumulating an integrated luminosity of 3000 fb$^{-1}$. This is well beyond the values for which the detectors were designed. The electromagnetic and hadronic calorimeters will be able to tolerate the increased particle flux, but the performance of the forward calorimeter (FCal) will be affected. Two possible solutions for keeping the current performance are being discussed. The electronics readout will also need to withstand a 3-5 times larger radiation environment. In the hadronic endcap calorimeter (HEC) cold GaAs preampl...

  13. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and transmitted to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronics are based on the Advanced Telecommunications Computing Architecture (ATCA) standard and are equipped with high performance optical connectors. The system is designed to operate in a high radiation envi...

  14. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS cover-ing the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronic is based on the Advanced Telecommunications Computing Architecture (ATCA) standard and is equipped with high performance optical connectors. The system is designed to operate in a high radiation environmen...

  15. Improving jet substructure in ATLAS using unified track and calorimeter information

    CERN Document Server

    Schramm, Steven; The ATLAS collaboration

    2017-01-01

    Jet substructure techniques play a critical role in ATLAS in searches for new physics, are increasingly important in measurements of the Standard Model, and are being utilized in the trigger. To date, ATLAS has mostly focused on the use of calorimeter-based jet substructure, which works well for jets initiated by particles with low to moderate boost, but which lacks the angular resolution needed to resolve the desired substructure in the highly-boosted regime. We will present a novel approach designed to mitigate the calorimeter angular resolution limitations, thus providing superior performance to prior methods. Similar to previous methods, the superior angular resolution of the tracker is combined with information from the calorimeters. However, the new method is fundamentally different, as it correlates low-level objects as tracks and individual energy deposits in the calorimeter, before running any jet finding algorithms. The resulting objects are used as inputs to jet reconstruction, and in turn result i...

  16. ATLAS level-1 calorimeter trigger hardware: initial timing and energy calibration

    CERN Document Server

    Childers, JT; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger identifies high-pT objects in the Liquid Argon and Tile Calorimeters with a fixed latency of up to 2.4 microseconds using a hardware-based, pipelined system built with custom electronics. The Preprocessor Module conditions and digitizes about 7200 pre-summed analogue signals from the calorimeters at the LHC bunch-crossing frequency of 40 MHz, and performs bunch-crossing identification (BCID) and deposited energy measurement for each input signal. This information is passed to further processors for object classification and total energy calculation, and the results are used to make the Level-1 trigger decision for the ATLAS detector. The BCID and energy measurement in the trigger depend on precise timing adjustments to achieve correct sampling of the input signal peak. Test pulses from the calorimeters were analysed to derive the initial timing and energy calibration, and first data from the LHC restart in autumn 2009 and early 2010 were used for validation and further op...

  17. Design, status and perspective of the Mu2e crystal calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, G. [INFN sezione di Pisa (Italy); Atanov, N. [Joint Institute for Nuclear Research, Dubna (Russia); Baranov, V. [Joint Institute for Nuclear Research, Dubna (Russia); Budagov, J. [Joint Institute for Nuclear Research, Dubna (Russia); Cervelli, F. [INFN sezione di Pisa (Italy); Colao, F. [INFN Laboratori Nazionali di Frascati (Italy); Diociaiuti, E. [INFN Laboratori Nazionali di Frascati (Italy); Cordelli, M. [INFN Laboratori Nazionali di Frascati (Italy); Dane, E. [INFN Laboratori Nazionali di Frascati (Italy); Davydov, Yu. [Joint Institute for Nuclear Research, Dubna (Russia); Donati, S. [Univ. of Pisa (Italy); INFN sezione di Pisa (Italy); Donghia, R. [INFN Laboratori Nazionali di Frascati (Italy); Di Falco, S. [INFN sezione di Pisa (Italy); Echenard, B. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Departement of Physics; Morescalchi, L. [INFN sezione di Pisa (Italy); Giovannella, S. [INFN Laboratori Nazionali di Frascati (Italy); Glagolev, V. [Joint Institute for Nuclear Research, Dubna (Russia); Grancagnolo, F. [INFN sezione di Lecce (Italy); Happacher, F. [INFN Laboratori Nazionali di Frascati (Italy); Hitlin, D. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Departement of Physics; Martini, M. [INFN Laboratori Nazionali di Frascati (Italy); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Miscetti, S. [INFN Laboratori Nazionali di Frascati (Italy); Miyashita, T. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Departement of Physics; Murat, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pedreschi, E. [INFN sezione di Pisa (Italy); Porter, F. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Departement of Physics; Raffaelli, F. [INFN sezione di Pisa (Italy); Ricci, M. [INFN Laboratori Nazionali di Frascati (Italy); Saputi, A. [INFN Laboratori Nazionali di Frascati (Italy); Sarra, I. [INFN Laboratori Nazionali di Frascati (Italy); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Spinella, F. [INFN sezione di Pisa (Italy); Tassielli, G. [INFN sezione di Lecce (Italy); Tereshchenko, V. [Joint Institute for Nuclear Research, Dubna (Russia); Zhu, R. Y. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2018-01-09

    The Mu2e experiment at Fermilab will search for the charged lepton flavor violating process of neutrino-less $\\mu \\to e$ coherent conversion in the field of an aluminum nucleus. Mu2e will reach a single event sensitivity of about $2.5\\cdot 10^{-17}$ that corresponds to four orders of magnitude improvements with respect to the current best limit. The detector system consists of a straw tube tracker and a crystal calorimeter made of undoped CsI coupled with Silicon Photomultipliers. The calorimeter was designed to be operable in a harsh environment where about 10 krad/year will be delivered in the hottest region and work in presence of 1 T magnetic field. The calorimeter role is to perform $\\mu$/e separation to suppress cosmic muons mimiking the signal, while providing a high level trigger and a seeding the track search in the tracker. Here, in this paper we present the calorimeter design and the latest R&D results.

  18. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region |η| < 1.7. Jointly with the other calorimeters it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sa...

  19. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  20. Learning Windows Azure Mobile Services for Windows 8 and Windows Phone 8

    CERN Document Server

    Webber-Cross, Geoff

    2014-01-01

    This book is based around a case study game which was written for the book. This means that the chapters progress in a logical way and build upon lessons learned as we go. Real-world examples are provided for each topic that are practical and not given out-of-context so they can be applied directly to other applications.If you are a developer who wishes to build Windows 8 and Phone 8 applications and integrate them with Windows Azure Mobile Services, this book is for you. Basic C# and JavaScript skills are advantageous, as well as some knowledge of building Windows 8 or Windows Phone 8 applica