WorldWideScience

Sample records for window thermal performance

  1. WINDOW 4. 0: Program description. A PC program for analyzing the thermal performance of fenestration products

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  2. Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver

    International Nuclear Information System (INIS)

    Wang, P.; Li, J.B.; Bai, F.W.; Liu, D.Y.; Xu, C.; Zhao, L.; Wang, Z.F.

    2017-01-01

    In the present work, we carried out an experimental analysis on the thermal performance of a windowed volumetric solar receiver (WVSR). A prototype was designed and tested in a dish concentrator system. Three silicon carbide (SiC) absorber slabs with different typical pore structures were tested. A unified theoretical model adequately considering the overall heat transfer processes for the WVSR is first put forward. The key component, a windowed cavity incorporated with the irradiated surface of the absorber was modeled in a coupled radiative-convection boundary condition, which detailedly concerning the porous surface structure of the absorber under local thermal non-equilibrium conditions. Model authentication was achieved by comparing the experimental and theoretical results. The maximum temperature of the outlet air was over 1003 K, and the best thermal efficiency (solar to thermal) obtained was 63.61%. The maximum deviations in the results were 9.4% and 2.3% for the temperature of the back wall and the outlet air, respectively. In terms of the thermal efficiency, the maximum deviation was 5.35%. These results demonstrate the feasibility of our model applied to describe the overall transport process from solar to thermal energy in a receiver. - Highlights: • A prototype test is presented on a windowed volumetric solar receiver (WVSR). • A uniform theoretical heat transfer model for WVSR is first put forward. • Boundary condition coupling the porous absorber surface and window is developed. • Model validation is finished by comparing the experimental and numerical results.

  3. Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian; Arasteh P.E., Dariush; Uvslokk, Sivert; Talev, Goce; Petter Jelle Ph.D., Bjorn

    2010-06-17

    While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulations according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.

  4. Thermal windows and metabolic performance curves in a developing Antarctic fish.

    Science.gov (United States)

    Flynn, Erin E; Todgham, Anne E

    2017-10-07

    For ectotherms, temperature modifies the rate of physiological function across a temperature tolerance window depending on thermal history, ontogeny, and evolutionary history. Some adult Antarctic fishes, with comparatively narrow thermal windows, exhibit thermal plasticity in standard metabolic rate; however, little is known about the shape or breadth of thermal performance curves of earlier life stages of Antarctic fishes. We tested the effects of acute warming (- 1 to 8 °C) and temperature acclimation (2 weeks at - 1, 2, 4 °C) on survival and standard metabolic rate in early embryos of the dragonfish Gymnodraco acuticeps from McMurdo Sound, Ross Island, Antarctica. Contrary to predictions, embryos acclimated to warmer temperatures did not experience greater mortality and nearly all embryos survived acute warming to 8 °C. Metabolic performance curve height and shape were both significantly altered after 2 weeks of development at - 1 °C, with further increase in curve height, but not alteration of shape, with warm temperature acclimation. Overall metabolic rate temperature sensitivity (Q 10 ) from - 1 to 8 °C varied from 2.6 to 3.6, with the greatest thermal sensitivity exhibited by embryos at earlier developmental stages. Interclutch variation in metabolic rates, mass, and development of simultaneously collected embryos was also documented. Taken together, metabolic performance curves provide insight into the costs of early development under warming temperatures, with the potential for thermal sensitivity to be modified by dragonfish phenology and magnitude of seasonal changes in temperature.

  5. Thermal performance of natural airflow window in subtropical and temperate climate zones - A comparative study

    International Nuclear Information System (INIS)

    Chow Tintai; Lin Zhang; Fong Kwongfai; Chan Lokshun; He Miaomiao

    2009-01-01

    Airflow window is highly useful in conserving building energy, and lessens the comfort problems caused by glazing. In this study, the thermal performance of a natural airflow window was examined through the use of a dynamic model, developed based on the integrated energy balance and airflow networks. The validity of the model was first tested by measured data obtained from a prototype installed at an environmental chamber. The application in the subtropical and temperate climate zones were then examined with the typical weather data of Hong Kong and Beijing. The findings confirmed that the natural airflow window can achieve substantial energy saving in both cities, and the reversible window frame is only required for Beijing, a location with hot summer and cold winter. The space cooling load via fenestration in Hong Kong, a subtropical city, can be reduced to 60% of the commonly used single absorptive glazing. In Beijing, as an example of the temperate climate, this can be reduced to 75% of the commonly used double glazing configuration in the summer period, and the space heat gain can be improved by 46% in the winter period.

  6. WINDOW 4.0: Program description. A PC program for analyzing the thermal performance of fenestration products

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  7. Thermal Bridge Effects in Window Grooves

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report thermal bridge effects in window grooves are analyzed. The analysis is performed using different thicknesses of the window groove insulation, to evaluate what the optimal solution is.All analysis in the report is performed using both 2- and 3-dimensional numerical analysis....

  8. Thermal bridges of modern windows

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker

    2013-01-01

    With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even if the wi......With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even...... if the window has an U-factor of 1 W/(m2·K) or lower. This paper describes the development of modern, energy efficient Danish windows with reduced thermal bridges. It focuses on materials, geometry, and sealing of window panes based on a literature review. Examples of modern windows are presented. Experience...... been an important driver for the development of new window solutions in Denmark, increasing the inner-surface temperature at the sealing of window panes. However, it will not stop complaints fromconsumers, as this temperature is calculated under standardized conditions. Increasing requirements...

  9. Modeling study on the thermal performance of a modified cavity receiver with glass window and secondary reflector

    International Nuclear Information System (INIS)

    Chang, Huawei; Duan, Chen; Wen, Ke; Liu, Yuting; Xiang, Can; Wan, Zhongmin; He, Sinian; Jing, Changwei; Shu, Shuiming

    2015-01-01

    Highlights: • A modified cavity receiver with glass window and secondary reflector is presented. • Optical and thermal performance of the modified cavity receiver is investigated. • Effects of glass window and secondary reflector are analyzed with comparison study. - Abstract: The development of a cavity receiver for a 1 kW beta type solar Stirling engine is presented in this work. The proposed receiver is composed of an additional quartz glass window and a secondary reflector aiming at improving the thermal performance. Monte-Carlo ray-tracing method is adopted to study the optical property and calculate radiative exchange factors of the solar collector system. The results show that the radiation flux sent to the proposed cavity receiver is 5003 W, and the optical efficiency of this receiver is 70.8%. Numerical simulation is conducted to investigate the thermal performance of this modified receiver. The proposed receiver is also compared with other three simulated receivers combining the presence and absence of the quartz glass window and the secondary reflector. The numerical simulation results show that the modified receiver with both quartz glass window and secondary trumpet reflector outperformed other designs, and its heat loss is reduced about 56% compared to the initial receiver without both quartz glass window and secondary reflector. Hence, the impact factors on the modified receiver radiation and convection heat transfer are well analyzed including temperature, the inner surface orientation and emissivity. The research indicates that the proposed cavity receiver can efficiently reduce the heat loss from cavity and is suitable for Stirling engine applications.

  10. Thermal monitoring of gyrotron windows

    International Nuclear Information System (INIS)

    Huey, H.E.; Choi, E.; Hu, G.; Mundie, L.

    1983-01-01

    In a practical gyrotron device, the design of a reliable vacuum window to withstand high mean power densities is of utmost importance. Computer modelling of an actual window assumes a number of conditions including the power density profile, the electromagnetic wave attenuation constant of the window material and heat transfer coefficients. The last two factors can vary significantly with temperature. A technique for actually monitoring the real time temperature distribution over the window surface with an IR camera while the gyrotron is in operation has been developed. This measurement serves as an aid for developing the analysis of window designs. The ability to observe small hot spots due to tiny metallic specks on the window surface is also of great value in quality control and window failure prevention. The experimental arrangement involves an infrared camera (AGA780) with an indium antimonide detector (3-5 μm) observing the window through a grid pattern of tiny holes (cutoff for the 3rd harmonic of 60 GHz). A 12 0 FOV lens with a 12mm extension ring was used to defocus the grid. The thermal emissivity E /sub w/ approx. = 0.95. Thus, an IR measurement of the window is a surface temperature measurement. To minimize the problem of external reflections, the outside surface of the waveguide was painted black. This then requires a cool waveguide; room temperature is sufficient

  11. High Performance Window Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2∙ F∙h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  12. Windows with improved energy performances

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2003-01-01

    Heat loss through windows represents a considerable part of the total heat loss from houses. However, apart from providing daylight access and view, windows offer a unique potential for solar gain to be exploited during the heating season. Until now valuation of the energy performance of windows...... has primary focused on the heat loss coefficient, U-value. However, as the U-value, especially for the glazing part, has improved considerably during the last years, the total solar energy transmittance, g-value, has become equally important to the total energy performance of windows. Improved energy...... performance of windows can be reached by development of each element of the window, but to gain a considerable improvement in the overall energy performance all elements of the windows need to be examined together and the construction optimised. This paper describes potential improvements of window elements...

  13. Windows with improved energy performance

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    . Heat loss through windows represents a considerably part of the total heat loss from houses. However windows provide a unique potential of solar energy gain to the building besides from providing daylight access and view. This results in a need for development of windows with improved energy...... performances. During the last 20 years the U-value of the glazing part of windows has been improved considerably, but the frame part has not followed the same development with respect to energy performance. Therefore an increasingly large part of the total heat loss through windows is relating to the frame...... part, for which reason, as far as energy efficiency and total economy are concerned, it has become more interesting to further develop frame structures. Traditionally, the energy performance of windows has primarily been characterised by the heat loss coefficient, U-value. However as the heat loss has...

  14. Assessing Thermal Comfort Due to a Ventilated Double Window

    Science.gov (United States)

    Carlos, Jorge S.; Corvacho, Helena

    2017-10-01

    Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.

  15. Measure Guideline. Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, John [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR; Haglund, Kerry [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  16. Carbon Footprint versus Performance of Aluminum, Plastic, and Wood Window Frames from Cradle to Gate

    Directory of Open Access Journals (Sweden)

    Andreja Kutnar

    2012-12-01

    Full Text Available Window frame material has significant impact on the thermal performance of the window. Moreover, with sustainable design becoming a necessity, window frame materials need to have higher levels of environmental performance to be considered sustainable. As a result, a holistic performance metric is needed to assess window frame material. Three similar frames were considered, manufactured from aluminum, polyvinyl chloride (PVC, and wood. First their thermal performance was evaluated and compared using a heat transfer model. Then, carbon footprints of the three materials were considered for 1m2 of window area with a similar thermal performance. It was found that the thermal, as well as the environmental, performance of the wooden window frame was superior to those of aluminum and PVC. On the other hand aluminum frames had high environmental impacts and comparatively lower thermal performance. This study provides a holistic viewpoint on window frames by considering both environmental and thermal performance.

  17. Energy performance of windows based on the net energy gain

    DEFF Research Database (Denmark)

    Svendsen, Svend; Kragh, Jesper; Laustsen, Jacob Birck

    2005-01-01

    The paper presents a new method to set up energy performance requirements and energy classes for windows of all dimensions and configurations. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating season. The net energy gain can be calculated for one...... orientation or averaged over different orientations. The averaged value may be used for energy labeling of windows of standard size. Requirements in building codes may also be based on the net energy gain instead of the thermal transmittance of the window. The size and the configuration of the window, i.......e. number of glazing units, have a very large effect on the net energy gain. Therefore the energy labeling or the requirements based on the standard size may not give valid information on the energy performance of windows of non-standard size. The paper presents a method to set up requirements and classes...

  18. Measure Guideline: Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  19. Modeling Windows in Energy Plus with Simple Performance Indices

    Energy Technology Data Exchange (ETDEWEB)

    Arasteh, Dariush; Kohler, Christian; Griffith, Brent

    2009-10-12

    The building energy simulation program, Energy Plus (E+), cannot use standard window performance indices (U, SHGC, VT) to model window energy impacts. Rather, E+ uses more accurate methods which require a physical description of the window. E+ needs to be able to accept U and SHGC indices as window descriptors because, often, these are all that is known about a window and because building codes, standards, and voluntary programs are developed using these terms. This paper outlines a procedure, developed for E+, which will allow it to use standard window performance indices to model window energy impacts. In this 'Block' model, a given U, SHGC, VT are mapped to the properties of a fictitious 'layer' in E+. For thermal conductance calculations, the 'Block' functions as a single solid layer. For solar optical calculations, the model begins by defining a solar transmittance (Ts) at normal incidence based on the SHGC. For properties at non-normal incidence angles, the 'Block' takes on the angular properties of multiple glazing layers; the number and type of layers defined by the U and SHGC. While this procedure is specific to E+, parts of it may have applicability to other window/building simulation programs.

  20. Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Svidt, Kjeld; Nielsen, Peter V.

    In natural ventilation systems fresh air is often provided through opening of windows. However, the knowledge of the performance of windows is rather limited. Computation of natural ventilation air flow through windows is most commonly made using discharge coefficients, that are regarded as being...... constant. The reported results show that the discharge coefficient for a window opening cannot be regarded as a constant and that it varies considerably with the size of the opening area, the window type and the temperature difference. Therefore, the use of a constant value can lead to serious errors...

  1. High performance solar control office windows

    Energy Technology Data Exchange (ETDEWEB)

    King, W.J.

    1977-12-01

    Investigations conducted over a 9 month period on the use of ion beam sputtering methods for the fabrication of solar control windows for energy conservation are described. Principal emphasis was placed on colored, reflecting, heat rejecting, office building windows for reducing air conditioning loads and to aid in the design of energy conserving buildings. The coating techniques were developed primarily for use with conventional absorbing plate glass such as PPG solarbronze, but were also demonstrated on plastic substrates for retrofit applications. Extensive material investigations were conducted to determine the optimum obtainable characteristics, with associated weathering studies as appropriate aimed at achieving a 20 year minimum life. Conservative estimates indicate that successful commercialization of the windows developed under this program would result in energy savings of 16,000,000 barrels of oil/year by 1990 if installation were only 10 percent of new commercial building stock. These estimates are relative to existing design for energy conserving windows. Installation in a greater percentage of new stock and for retrofit applications could lead to proportionately greater energy savings. All such installations are projected as cost effective as well as energy effective. A secondary program was carried out to modify the techniques to yield thermal control windows for residential applications. These windows were designed to provide a high heat retention capability without seriously affecting their transmission of incident solar radiation, thereby enhancing the greenhouse effect. This part of the program was successful in producing a window form which could be interchanged for standard residential window material in a cost and energy effective manner. The only variation from standard stock in appearance is a very light rose or neutral gray coloring.

  2. Experimental and Numerical Research of the Thermal Properties of a PCM Window Panel

    Directory of Open Access Journals (Sweden)

    Martin Koláček

    2017-07-01

    Full Text Available This paper reports the experimental and simulation analysis of a window system incorporating Phase Change Materials (PCMs. In this study, the latent heat storage material is exploited to increase the thermal mass of the building component. A PCM-filled window can increase the possibilities of storage energy from solar radiation and reduce the heating cooling demand. The presented measurements were performed on a specific window panel that integrates a PCM. The PCM window panel consists of four panes of safety glass with three gaps, of which the first one contains a prismatic glass, the second a krypton gas, and the last one a PCM. New PCM window panel technology uses the placement of the PCM in the whole space of the window cavity. This technology improves the thermal performance and storage mass of the window panel. The results show the incongruent melting of salt hydrates and the high thermal inertia of the PCM window panel. The simulation data showed that the PCM window panel and the double glazing panel markedly reduced the peak temperature on the interior surface, reduced the air temperature inside the room, and also considerably improved the thermal mass of the building. This means that the heat energy entering the building through the panel is reduced by 66% in the summer cycle.

  3. Analysis of Energy Saving Potential and Optimization of Thermally Broken Fiberglass Window Frames

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2011-01-01

    This paper elaborates on the energy saving potential and development process of fiberglass window frames, with intention for application in cold climates. A method is presented, where different means of improving thermal performance of a window frame are evaluated. Firstly, very simple geometries...

  4. Performance of the Analog Moving Window Detector

    DEFF Research Database (Denmark)

    Hansen, V. Gregers

    1970-01-01

    A type of analog integrating moving window detector for use with a scanning pulse radar is examined. A performance analysis is carried out, which takes into account both the radiation pattern of the antenna and the dynamic character of the detection process due to the angular scanning of the ante......A type of analog integrating moving window detector for use with a scanning pulse radar is examined. A performance analysis is carried out, which takes into account both the radiation pattern of the antenna and the dynamic character of the detection process due to the angular scanning....... Finally the influence on detection performance of the width used for the moving window is investigated....

  5. A variable thickness window: Thermal and structural analyses

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.

    1994-01-01

    In this paper, the finite difference formulations for variable thickness thermal analysis and variable thickness plane stress analysis are presented. In heat transfer analysis, radiation effects and temperature-dependent thermal conductivity are taken into account. While in thermal stress analysis, the thermal expansion coefficient is considered as temperature dependent. An application of the variable thickness window to an Advanced Photon Source beamline is presented

  6. A Simplified Tool for Predicting the Thermal Behavior and the Energy Saving Potential of Ventilated Windows

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Larsen, Olena Kalyanova

    2016-01-01

    Currently, the studies of ventilated windows mainly rely on complex fluid and thermal simulation software, which require extensive information, data and are very time consuming. The aim of this paper is to develop a simplified tool to assess the thermal behavior and energy performance of ventilat...

  7. Teleoperator performance with virtual window display

    Science.gov (United States)

    Cole, Robert E.; Merritt, John O.; Coleman, Richard; Ikehara, Curtis S.

    1991-08-01

    The virtual window display is a hybrid of the head-coupled, helmet-mounted display and the fixed CRT mounted on a tabletop. Moving the CRTs from the operator''s head retains the benefits of motion parallax while providing higher quality color images, greater comfort and fewer restrictions on the operator''s view of the control site. A prototype virtual window display was constructed with direct mechanical linkage to servo camera movements to the operator''s head motions. This apparatus was used to compare remote performance with and without motion parallax, paired with either stereoscopic or monoscopic views. Mean stereoacuity and depth scaling responses for six observers of a Howard-Dolman apparatus showed improved performance when motion parallax accompanied monoscopic, but not stereoscopic view. Mean performance times for six observers retrieving objects from a wire maze show similar, though not significant, improvement when motion parallax accompanies monoscopic view. Observers report that manipulator requirements for hand steadiness reduce the opportunity to get depth information from head movements. The use of motion parallax information in a monoscopic virtual window display can improve teleoperator performance.

  8. Analysis of Energy Saving Potential and Optimization of Thermally Broken Fiberglass Window Frames

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2011-01-01

    of a window frame can be significantly reduced by these means. Performance of an actual fiberglass frame optimized in this work is significantly improved, but still not competitive against state of the art frames. This indicates that more drastic improvements need to be done in order to achieve satisfying......This paper elaborates on the energy saving potential and development process of fiberglass window frames, with intention for application in cold climates. A method is presented, where different means of improving thermal performance of a window frame are evaluated. Firstly, very simple geometries...

  9. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    ) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations.......The study in this article investigates 15 ventilated window typologies with different pane configurations and glazing types in climates of four European countries (United Kingdom, Denmark, France and Germany) in order to identify the optimum typology with regard to their energy balance and impact...

  10. Theoretical Predictions and Experimental Assessments of the Performance of Alumina RF Windows

    Energy Technology Data Exchange (ETDEWEB)

    Karen Ann Cummings

    1998-07-01

    Radio frequency (RF) windows are the most likely place for catastrophic failure to occur in input power couplers for particle accelerators. Reliable RF windows are essential for the success of the Accelerator Production of Tritium (APT) program because there are over 1000 windows on the accelerator, and it takes more than one day to recover from a window failure. The goals of this research are to analytically predict the lifetime of the windows, to develop a conditioning procedure, and to evaluate the performance of the RF windows. The analytical goal is to predict the lifetime of the windows. The probability of failure is predicted by the combination of a finite element model of the window, Weibull probabilistic analysis, and fracture mechanics. The window assembly is modeled in a finite element electromagnetic code in order to calculate the electric fields in the window. The geometry (i.e. mesh) and electric fields are input into a translator program to generate the mesh and boundary conditions for a finite element thermal structural code. The temperatures and stresses are determined in the thermal/structural code. The geometry and thermal structural results are input into another translator program to generate an input file for the reliability code. Material, geometry and service data are also input into the reliability code. To obtain accurate Weibull and fatigue data for the analytical model, four point bend tests were done. The analytical model is validated by comparing the measurements to the calculations. The lifetime of the windows is then determined using the reliability code. The analytical model shows the window has a good thermal mechanical design and that fast fracture is unlikely to occur below a power level of 9 Mw. The experimental goal is to develop a conditioning procedure and evaluate the performance of RF windows. During the experimental evaluation, much was learned about processing of the windows to improve the RF performance. Methods of

  11. Advanced windows Information System (WIS): A uniform European tool to calculate the thermal and solar properties of windows

    NARCIS (Netherlands)

    Bakker, L.G.; Dijk, H.A.L. van

    1996-01-01

    WIS is a uniform, user friendly, PC-based, European software tool to determine the thermal and solar character-istics of window systems (glazing, frames, solar shading, etc.) and window components. WIS includes databases with component properties and routines for calculation of the thermal-optical

  12. Advanced windows Information System (WIS): A uniform European tool to calculate the thermal and solar properties of windows

    NARCIS (Netherlands)

    Bakker, L.G.; Dijk, H.A.L. van; Geus, A.C. de

    1996-01-01

    WIS is a uniform, user friendly, PC-based, European software tool to determine the thermal and solar characteristics of window systems (glazing, frames, solar shading, etc.) and window components. WIS includes databases with component propertjes and routines for calculation of the thermal-optical

  13. Characterisation of advanced windows. Determination of thermal properties by measurements

    Energy Technology Data Exchange (ETDEWEB)

    Duer, K.

    2001-04-01

    This report describes work carried out with the aim of facilitating a full energy performance characterisation of advanced windows and glazings by means of measurements. The energy performance of windows and glazings are characterised by two parameters: The thermal transmittance (U-value) and the total solar energy transmittance (g-value) and methods to determine these two parameters by measurements have been investigated. This process has included the improvement of existing equipment and existing measuring methods as well as the development of new measuring equipment and new methods of measuring and data treatment. Measurements of the thermal transmittance of windows and glazings in a guarded hot box have been investigated. The calibration and measuring procedures for determining the U-values of facade windows were analysed and a suggestion for a new calibration and measuring procedure for determining the U-values of roof windows in a guarded hot box was elaborated. The accuracy of the guarded hot box measurements was examined by comparisons to measurements in a hot-plate device and excellent agreement between the results was obtained. Analysis showed that the expected uncertainty in the U-value measurement is about 5% for a specimen with a U-value of 1.75 W/m{sup 2}K. The U-values of three different windows were measured in two separate round robin tests applying two different calibration procedures. The windows U-values where ranging from 1.1 to 2.5 W/m{sup 2}K and all measured results were within the expected uncertainties of the measurements. On the basis of the investigations on hot box measurements a high degree of confidence in the measurement accuracy and the measuring procedure of the guarded hot box at the Department of Buildings and Energy has been obtained. Indoor g-value measurements in a calorimetric test facility (the METSET) mounted in a solar simulator have been investigated and a number of problems regarding these measurements have been

  14. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

    2011-03-28

    The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

  15. Diving through the thermal window: implications for a warming world.

    Science.gov (United States)

    Campbell, Hamish A; Dwyer, Ross G; Gordos, Matthew; Franklin, Craig E

    2010-12-22

    Population decline and a shift in the geographical distribution of some ectothermic animals have been attributed to climatic warming. Here, we show that rises in water temperature of a few degrees, while within the thermal window for locomotor performance, may be detrimental to diving behaviour in air-breathing ectotherms (turtles, crocodilians, marine iguanas, amphibians, snakes and lizards). Submergence times and internal and external body temperature were remotely recorded from freshwater crocodiles (Crocodylus johnstoni) while they free-ranged throughout their natural habitat in summer and winter. During summer, the crocodiles' mean body temperature was 5.2±0.1°C higher than in winter and the largest proportion of total dive time was composed of dive durations approximately 15 min less than in winter. Diving beyond 40 min during summer required the crocodiles to exponentially increase the time they spent on the surface after the dive, presumably to clear anaerobic debt. The relationship was not as significant in winter, even though a greater proportion of dives were of a longer duration, suggesting that diving lactate threshold (DLT) was reduced in summer compared with winter. Additional evidence for a reduced DLT in summer was derived from the stronger influence body mass exerted upon dive duration, compared to winter. The results demonstrate that the higher summer body temperature increased oxygen demand during the dive, implying that thermal acclimatization of the diving metabolic rate was inadequate. If the study findings are common among air-breathing diving ectotherms, then long-term warming of the aquatic environment may be detrimental to behavioural function and survivorship.

  16. NOUR. Daylighting and thermal effects of windows in desert houses

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Djamel

    1999-07-01

    This study is on a combined effect of window, the daylighting and the thermal effects, in desert houses. It is comprised of two complementary studies. In the introduction a historical review on the development of using daylight has been carried out in order to place the case study in a historical perspective. The first study is comprehensive and contains two main parts. In the first part a study was carried out on the people and history of the town of Ghardaia in Southern Algeria. This was done in order to understand the architectural form of that region. The second part is experimental and consists of two field studies carried out in Ghardaia. Their aim was to investigate the influence of daylight and temperature on the use of residential houses. This investigation included both traditional and 'modern' houses, the modern having relatively large windows similar to those of the northern part of Algeria, the traditional ones having small or no windows. The second study is also experimental consisting of computer parametric studies on window design from two standpoints, namely daylighting level and thermal effects of windows in desert houses. A typical traditional house is described as it was observed. Then the recorded light values are presented and commented upon. In the second part, three types of modern houses observed in the field studies are presented and compared to the traditional archetype. The comparison especially dwells on the relative effectiveness of the two systems of daylighting. In the third part, focusing on various issues of lighting, the results of interviews with the inhabitants are presented. The historical studies indicate that the process of housing development, in several respects, has reached a certain quality (social, technology, and adaptation to climate) appropriate to the local original context, but that development has slowed down. The results of the lighting study indicate that the use of more windows in modern houses

  17. Evaluation of Energy Efficiency Performance of Heated Windows

    Science.gov (United States)

    Jammulamadaka, Hari Swarup

    The study about the evaluation of the performance of the heated windows was funded by the WVU Research Office as a technical assistance award at the 2014 TransTech Energy Business Development Conference to the Green Heated Glass company/project owned by Frank Dlubak. The award supports a WVU researcher to conduct a project important for commercialization. This project was awarded to the WVU Industrial Assessment Center in 2015. The current study attempted to evaluate the performance of the heated windows by developing an experimental setup to test the window at various temperatures by varying the current input to the window. The heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel based ice packs. The other face of the window was heated by passing current at different wattages through the window. The temperature of the inside and outside panes, current and voltage input, room and box temperature were recorded, and used to calculate the apparent R-value of the window when not being heated vs when being heated. It has been concluded from the study that the heated double pane window is more effective in reducing heat losses by as much as 50% than a non-heated double pane window, if the window temperature is maintained close to the room temperature. If the temperature of the window is much higher than the room temperature, the losses through the window appear to increase beyond that of a non-heated counterpart. The issues encountered during the current round of experiments are noted, and recommendations provided for future studies.

  18. Thermal damage study of beryllium windows used as vacuum barriers in synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Holdener, F.R.; Johnson, G.L.; Karpenko, V.P.; Wiggins, R.K.; Cerino, J.A.; Dormiani, M.T.; Youngman, B.P.; Hoyt, E.W.

    1987-01-01

    An experimental study to investigate thermal-induced damage to SSRL-designed beryllium foil windows was performed at LLNL's Laser Welding Research Facility. The primary goal of this study was to determine the threshold at which thermal-stress-induced damage occurs in these commonly used vacuum barriers. An Nd:Yag pulsed laser with cylindrical optics and a carefully designed test cell provided a test environment that closely resembles the actual beamline conditions at SSRL. Tests performed on two beryllium window geometries, with different vertical aperture dimensions but equal foil thicknesses of 0.254 mm, resulted in two focused total-power thresholds at which incipient damage was determined. For a beam spot size similar to that of the Beamline-X Wiggler Line, onset of surface damage for a 5-mm by 25-mm aperture window was observed at 170 W after 174,000 laser pulses (1.2-ms pulse at 100 pps). A second window with double the vertical aperture dimension (10 mm by 25 mm) was observed to have surface cracking after 180,000 laser pulses with 85 W impinging its front surface. It failed after approximately 1,000,000 pulses. Another window of the same type (10 mm by 25 mm) received 2,160,000 laser pulses at 74.4 W, and subsequent metallographic sectioning revealed no signs of through-thickness damage. Comparison of windows with equal foil thicknesses and aperture dimensions has effectively identified the heat flux limit for incipient failure. The data show that halving the aperture's vertical dimension allows doubling the total incident power for equivalent onsets of thermal-induced damage

  19. Characterization of Energy Savings and Thermal Comfort Improvements Derived from Using Interior Storm Windows

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Jake R.; Widder, Sarah H.

    2013-09-30

    This field study of a single historic home in Seattle, WA documents the performance of Indow Windows’s interior storm window inserts. Energy use and the temperature profile of the house were monitored before and after the installation of the window inserts and changes in the two recorded metrics were examined. Using the defined analysis approach, it was determined that the interior storm windows produced a 22% reduction of the HVAC energy bill and had an undetermined effect on the thermal comfort in the house. Although there was no measurable changes in the thermal comfort of the house, the occupant noted the house to be “warmer in the winter and cooler in the summer” and that the “temperatures are more even (throughout the house).” The interior storm windows were found to be not cost effective, largely due to the retrofits completed on its heating system. However, if the economic analysis was conducted based on the old heating system, a 72% efficient oil fired furnace, the Indow Windows proved to be economical and had a simple payback period of 9.0 years.

  20. Performance Evaluation of Vinyl Replacement Windows.

    Science.gov (United States)

    1980-07-15

    Grids, Nikolaev Branch of Odessa Div., Engineering Inst., UKR SSR, 1979. Grandjean, E., The Ergonomics of the Hone, Halsted Pr., New York, 1974. Griffin...Richard H.; Marshall, Stephen J., Infrared Thermography of Buildings: Qualitative Analysis of Window Infiltration Loss, Federal Office Building, Burlington

  1. Thermal hydraulic analysis of window target unit for LBE cooled XADS

    International Nuclear Information System (INIS)

    Tak, N.I.; Neitzel, H.J.; Chen, H.Y.; Cheng, X.

    2004-10-01

    A window target unit for a LBE cooled primary core is one of the basic options considered in the framework of the Preliminary Design Study of eXperimental Accelerator Driven System (PDS-XADS). In the present work, thermal hydraulic analysis has been performed for this option focusing on the window cooling. At first system analysis has been performed for the entire target unit using the one-dimensional system code, HERETA. Then Computational Fluid Dynamics (CFD) analysis has been carried out for lower part of the target to study the cooling capability of the window. The CFX 5.6 code has been applied using an advanced turbulence model, called Sheer Stress Transport (SST) model, combined with the advanced wall treatment available in the new CFX 5 version. The results of the HERETA calculations show that a stable natural circulation flow, with a steady state flow rate of 192 kg/s, is established. No temperature peak is observed by a start up procedure with beam ramp having a period of 200 s. It is found, however, a start up procedure with beam jump has to be avoided to prevent the overheating of the window. Based on the results of CFX 5.6 calculations, the window thickness is reduced to 2 mm in the center from the initial proposal of 3 mm in order to satisfy the thermal design limit. The maximum temperature change rate of the window under beam trips is predicted as high as 412 C/s after 0.1 s of the beam interrupt. It is judged that beam trips with a beam interrupt duration less than 1 s could also be crucial to the integrity of the window. Finally, three postulated accidents (i.e., beam focusing, loss of heat sink, and unexpected beam jump) have been analyzed to find out the time for the beam to be switched off in order to avoid window failure. The present results show that window failure occurs in 0.1∝0.8 second after the start of the beam focusing and in about 200 seconds after loss of heat sink. However, window failure is not expected for a beam jump scenario

  2. Assessing cooling energy performance of windows for residential buildings in the Mediterranean zone

    International Nuclear Information System (INIS)

    Tsikaloudaki, K.; Theodosiou, Th.; Laskos, K.; Bikas, D.

    2012-01-01

    Highlights: ► Cooling energy performance of residential windows in warm climates is studied. ► It is primarily determined by the window’s solar transmittance g and orientation. ► Advanced windows perform worse when compared to conventional ones with the same g. ► Shading contributes notably in decreasing the cooling loads attributed to the window. ► Equations for predicting the cooling energy performance of windows were developed. - Abstract: Heat transfer through windows accounts for a significant proportion of energy used in the building sector for covering both heating and cooling needs, since the optical and the thermal characteristics of conventional fenestration products constitute them more “vulnerable” in energy flows when compared to opaque building elements. In this study, an approach for evaluating the cooling energy performance of residential windows is presented. It is based on a parametric study, which aims at highlighting the impact of the window configuration on its energy behavior in terms of geometrical characteristics, thermophysical and optical properties, as well as orientation and shading levels. The results underlined the magnitude of the relationship between the thermal and optical properties of the transparent elements with respect to their orientation; especially for residential buildings, the solar transmittance determines at a considerable extent the cooling energy performance of fenestration, at least in the warmest part of Europe. Furthermore, the statistical analysis of the derived data provided mathematical expressions, which can be used in praxis for predicting the cooling energy performance of windows with respect to their thermal and optical characteristics.

  3. An Intelligent Window for Optimal Ventilation and Minimum Thermal Loss

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rose, Jørgen; Liu, Mingzhe

    This report compares the simulation results of 12 window typologies for four countries on four selected days. The simulation results are used to select the window frame construction including glazing type and pane configuration.......This report compares the simulation results of 12 window typologies for four countries on four selected days. The simulation results are used to select the window frame construction including glazing type and pane configuration....

  4. Preliminary thermal and stress analysis of the SINQ window

    International Nuclear Information System (INIS)

    Heidenreich, G.

    1991-01-01

    Preliminary results of a finite element analysis for the SINQ proton beam window are presented. Temperatures and stresses are calculated in an axisymmetric model. As a result of these calculations, the H 2 O-cooled window (safety window) could be redesigned in such a way that plastic deformation resulting from excessive stress in some areas is avoided. (author)

  5. Thermal and Optical Properties of Low-E Storm Windows and Panels

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-17

    Installing low-emissivity (low-E) storm windows and panels over existing windows has been identified as a cost-effective new approach for improving the energy efficiency of existing buildings where window replacement is impractical or too expensive. As such, it is desirable to characterize the key energy performance properties of low-E storm windows and panels when installed over different types of existing primary windows. this paper presents the representative U-factors, solar heat gain coefficients (SGHCs) and visible transmittance properties of the combined assemblies of various storm windows and panel types installed over different primary windows.

  6. Thermal/structural/optical integrated design for optical window of a high-speed aerial optical camera

    Science.gov (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Shi, Kui; Wu, Dengshan; Qiao, Mingrui

    2015-10-01

    In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 149.6 nm, which is under PV <=1 4λ .The simulation result meets the requirements of optical design very well. The above study can be used as an important reference for other optical window designs.

  7. Optical Characterization and Energy Simulation of Glazing for High-Performance Windows

    International Nuclear Information System (INIS)

    Jonsson, Andreas

    2010-01-01

    This thesis focuses on one important component of the energy system - the window. Windows are installed in buildings mainly to create visual contact with the surroundings and to let in daylight, and should also be heat and sound insulating. This thesis covers four important aspects of windows: antireflection and switchable coatings, energy simulations and optical measurements. Energy simulations have been used to compare different windows and also to estimate the performance of smart or switchable windows, whose transmittance can be regulated. The results from this thesis show the potential of the emerging technology of smart windows, not only from a daylight and an energy perspective, but also for comfort and well-being. The importance of a well functioning control system for such windows, is pointed out. To fulfill all requirements of modern windows, they often have two or more panes. Each glass surface leads to reflection of light and therefore less daylight is transmitted. It is therefore of interest to find ways to increase the transmittance. In this thesis antireflection coatings, similar to those found on eye-glasses and LCD screens, have been investigated. For large area applications such as windows, it is necessary to use techniques which can easily be adapted to large scale manufacturing at low cost. Such a technique is dip-coating in a sol-gel of porous silica. Antireflection coatings have been deposited on glass and plastic materials to study both visual and energy performance and it has been shown that antireflection coatings increase the transmittance of windows without negatively affecting the thermal insulation and the energy efficiency. Optical measurements are important for quantifying product properties for comparisons and evaluations. It is important that new measurement routines are simple and applicable to standard commercial instruments. Different systematic error sources for optical measurements of patterned light diffusing samples using

  8. Early Observations on the Performance of Windows Azure

    Directory of Open Access Journals (Sweden)

    Zach Hill

    2011-01-01

    Full Text Available A significant open issue in cloud computing is the real performance of the infrastructure. Few, if any, cloud providers or technologies offer quantitative performance guarantees. Regardless of the potential advantages of the cloud in comparison to enterprise-deployed applications, cloud infrastructures may ultimately fail if deployed applications cannot predictably meet behavioral requirements. In this paper, we present the results of comprehensive performance experiments we conducted on Windows Azure from October 2009 to February 2010. In general, we have observed good performance of the Windows Azure mechanisms, although the average 10 min VM startup time must be accounted for in application design. We also present performance and reliability observations and analysis from our deployment of a large-scale scientific application hosted on Azure, called ModisAzure, that show unusual and sporadic VM execution slowdown of over 4× in some cases and affected up to 16% of task executions at times. In addition to a detailed performance evaluation of Windows Azure, we provide recommendations for potential users of Windows Azure based on these early observations. Although the discussion and analysis is tailored to scientific applications, the results are broadly applicable to the range of existing and future applications running in Windows Azure.

  9. Mechanical and thermal analysis of beryllium windows for RF cavities in a muon cooling channel

    International Nuclear Information System (INIS)

    Li, Derun; Ladran, A.; Lozano, D.; Rimmer, R.

    2002-01-01

    Thin beryllium windows (foils) may be utilized to increase shunt impedance of closed-cell RF cavities. These windows are subject to ohmic heating from RF currents. The resulting temperature gradients in the windows can produce out of plane displacements that detune the cavity frequency. The window displacement can be reduced or eliminated by pre-stressing the foils in tension. Because of possible variations during manufacture, it is important to quantify the actual prestress of a Be window before it is put into service. We present the thermal and mechanical analyses of such windows under typical operating conditions and describe a simple non-destructive means to quantify the pre-stress using the acoustic signature of a window. Using finite element analysis, thin plate theory and physical measurements of the vibration modes of a window we attempted to characterize the actual Be window pre-stress in a small number of commercially sourced windows (30% of yield strength is typical). This method can be used for any window material and size, but this study focused on 16 cm diameter Be Windows ranging in thickness from 125 microns to 508 microns and with varying pre-stresses. The method can be used to nondestructively test future Be windows for the desired prestress

  10. A dome-shaped BE window for x-rays and its thermal and thermal stress analysis

    International Nuclear Information System (INIS)

    Wang, Z.; Kuzay, T.M.

    1994-01-01

    Synchrotron x-ray windows are vacuum separators and are usually made of thin (about 10 μm to 300 μm in thickness) beryllium foil that is brazed onto a cooled frame. Beryllium (Be) is a low-atomic-number material so that a thin beryllium window will let useful x-rays pass through. Because beryllium has a relatively high strength and good plasticity, the thin beryllium window can keep the vacuum system tight without failure when carefully engineered. Even if the majority of high-energy photons from x-rays is transmitted through the window, some low-energy photons will be absorbed. This absorbed part turns into heat in the window. A good design of a beryllium window should be as thin as possible so that more low-energy photons can be transmitted through the window while it can still withstand the heat load and vacuum pressure. Due to the high heat load from the third-generation synchrotron radiation X-ray beams, it becomes a very challenging problem to design a safe window. This paper presents a new dome-shaped Be window concept. A novel dome-shaped Be window design with varying cross section is proposed, and its thermal and thermal stress analyses are presented in this paper. All the safety criteria for the window are checked after a full understanding of this window's behavior under heat and pressure. The dome Be window analyses are based on the assumption that the low-energy photon transmission at the first harmonic of APS Undulator A (4.09 keV) through the filter/window assembly should be at least 50 percent of the original photon flux. The results promise that a feasible filter/window assembly for APS Undulator A can be designed and built

  11. Development of design window evaluation and display system. 1. System development and performance confirmation

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Yamaguchi, Akira

    2003-07-01

    Purpose: The work was performed to develop a design window evaluation and display system for the purpose of obtaining the effects of various design parameters on the typical thermal hydraulic issues resulting from a use of various kind of working fluid etc. easily. Method: The function of the system were 'confirmation of design margin' of the present design, 'confirmation of the affected design zone' when a designer changed some design parameter, and search for an design improvement' for design optimization. The system was developed using existing soft wares on PC and the database relating analytical results of typical thermal hydraulic issues provided by separate work. Results: (1) System design: In order to develop a design window evaluation and display system, 'numerical analysis unit', 'statistical analysis unit', 'MMI unit', 'optimization unit' were designed based on the result of selected optimization procedure and display visualization. Further, total system design was performed combining these units. Typical thermal hydraulic issues to be considered are upper plenum thermal hydraulics, thermal stratification, free surface sloshing, flow-induced vibration of a heat exchanger and thermal striping in the T-junction piping systems. (2) Development of prototype system and a functional check: A prototype system of a design window evaluation and display system was developed and the functions were confirmed as was planned. (author)

  12. THERMAL SHOCK ANALYSIS OF WINDOWS INTERACTING WITH ENERGETIC, FOCUSED BEAM OF THE BNL MUON TARGET EXPERIMENT

    International Nuclear Information System (INIS)

    SIMOS, N.; KIRK, H.; PRIGL, R.; BROWN, K.; MCDONALD, K.

    2001-01-01

    In this paper, issues associated with the interaction of a proton beam with windows designed for the muon targetry experiment E951 at BNL are explored. Specifically, a 24 GeV proton beam up to 16 TP per pulse and a pulse length of 100 ns is tightly focused (to 0.5 mm rms radius) on an experimental target. The need to maintain an enclosed environment around the target implies the use of beam windows that will survive the passage of the proton beam. The required beam parameters in such a setting will induce very high thermal, quasi-static and shock stresses in the window structure that exceed the strength of most common materials. In this effort, a detailed analysis of the thermal/shock response of beam windows is attempted through a transient thermal and stress wave propagation formulation that incorporates energy deposition rates calculated the by hadron interaction code MARS. The thermal response of the window structure and the subsequent stress wave generation and propagation are computed using the finite element analysis procedures of the ANSYS code. This analysis attempts to address issues pertaining to an optimal combination of material, window thickness and pulse structure that will allow for a window to safely survive the extreme demands of the experiment

  13. Impact of window selection on the energy performance of residential buildings in South Korea

    International Nuclear Information System (INIS)

    Ihm, Pyeongchan; Park, Lyool; Krarti, Moncef; Seo, Donghyun

    2012-01-01

    With rapidly increasing energy consumption attributed to residential buildings in South Korea, there is a need to update requirements of the building energy code in order to improve the energy performance of buildings. This paper provides some guidelines to improve the building energy code to better select glazing types that minimize total energy use of residential buildings in Korea. In particular, detailed energy simulation analyses coupled with economical and environmental assessments are carried out to assess the thermal, economical, and environmental impacts of glazing thermal characteristics as well as window sizes associated with housing units in various representative climates within South Korea. The results of the analyses have clearly indicated that selecting glazing with low solar heat gain coefficient is highly beneficial especially for large windows and for mild climates. In particular, it is found that using any double-pane low-e glazing would provide better performance for windows in residential buildings than the clear double-pane glazing, currently required by the Korean building energy code. - Highlights: ► Results show that windows can be energy neutral for residential buildings. ► In Korea, double-pane low-e glazing would provide better energy performance. ► Double low-e clear filled with argon gas glazing is the most cost-effective.

  14. Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Phillips, W.

    1992-01-01

    Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows

  15. An in-orbit Thermal Design of Optical Window in Space Solar Telescope

    Science.gov (United States)

    Zhu, Ran; Zhang, Hai-ying

    2017-10-01

    A complex space environment will influence a space solar telescope during its in-orbit operation, and the temperature change of the optical window will affect directly the imaging quality of the optical system behind it. The purpose of the thermal design is to ensure that all the parts of the optical window keep their temperature in a normal range, more importantly, to ensure that the window can rapidly return to its working state as soon as the Earth shadowing is ended, and to complete the operation in a whole period. In order to obtain the temperature distribution and the temperature variation of the window under the space thermal load in the whole period, we have made the steady-state simulation analysis and transient-state simulation analysis of the window with and without heating during the Earth-shadow time. A good thermal control result is obtained by comparing the two kinds of transient state simulation results of the temperature distribution, and by accordingly taking the appropriate thermal control measures on the window.

  16. Infrared thermography: A non-invasive window into thermal physiology.

    Science.gov (United States)

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Irradiation effects on the optical and mechanical performance of ITER prototype window assemblies

    International Nuclear Information System (INIS)

    Gusarov, A.

    2013-01-01

    Highlights: ► Assessment of the diagnostics windows assembly technologies under ITER relevant conditions. ► Reactor irradiation of prototype ITER-compatible window assemblies up to up to a total fast (E > 0.1 MeV) fluence of ∼2 × 10 20 n/m 2 . ► Vacuum leak testing at normal and elevated temperatures before and following reactor irradiation. ► Push-out mechanical testing including the final destructive test. -- Abstract: We investigated how simulated ITER environment can influence the mechanical stability and optical characteristics of ITER prototype window assemblies. Such assemblies must transmit diagnostic signals while maintaining the vacuum boundaries continuously during the operating life of ITER. A high reliability of the window assemblies is a must. Prototype assemblies with the transmission element made of Si 3 N 4 , silica, or sapphire diffusion bonded or brazed to a stainless steel or Ti ferrule were studied in the present work. Irradiation was performed in the BR1 reactor of SCK•CEN in Mol at 150 °C during 5.5 months up to a total fast fluence of ∼2 × 10 20 n/m 2 . Post-irradiation thermo-mechanical and the He-leak tests were performed in a hot cell. The examination was concluded with the destructive push-out test. Different damage patterns were observed for different window assemblies. The general conclusion is that after thermal cycling and reactor irradiation the windows remain sufficiently strong to sustain mechanical loads relevant for the ITER operation

  18. Thermally Responsive Composite Hydrogel via Self-Assembly for Smart Window Applications

    Directory of Open Access Journals (Sweden)

    Yibo Feng

    2016-01-01

    Full Text Available A novel thermally responsive hydrogel (TRH has been demonstrated by confining poly(ethylene oxide, poly(propylene oxide, and poly(ethylene oxide triblock-copolymer (EPE molecules into the pores of polymer framework. Aqueous EPE copolymer molecule had a tendency to aggregate to form clusters gradually and precipitated from water when the temperature is above a cloudy point. By adding EPE molecules into the acrylamide (AM monomer solution, the mixture can be fabricated as uniform and transparent hydrogel via controlled radical polymerization. The polyacrylamide hydrogel is produced with a switchable optical property when subjecting to temperature variation. Such reversible thermally responsive material can be utilized as a functional material for smart window application. Additionally, the thermal responsive hydrogel is an inexpensive material, which is readily applicable as smart windows with significant reduction in material cost.

  19. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tianhuan [LBL, Berkeley; Li, D. [LBL, Berkeley; Virostek, S. [LBL, Berkeley; Palmer, R. [Brookhaven; Stratakis, Diktys [Brookhaven; Bowring, D. [Fermilab

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  20. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    Energy Technology Data Exchange (ETDEWEB)

    Luo, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratakis, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Virostek, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bowring, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  1. Experimental analysis of energy performance of a ventilated window for heat recovery under controlled conditions

    DEFF Research Database (Denmark)

    Appelfeld, David; Svendsen, Svend

    2011-01-01

    transmittance introduced by the ventilation was higher than the effect of heat recovery. Accordingly, the use of the ventilated windows might be most suitable for window unit with low ventilation rates. The results correlated with theoretical calculations in standards and software. However, the concept......A ventilated window in cold climates can be considered as a passive heat recovery system. This study carried out tests to determine the thermal transmittance of ventilated windows by using the Guarded Hot Box. By testing under defined boundary conditions, the investigation described the heat...

  2. Sliding Window Empirical Mode Decomposition -its performance and quality

    Directory of Open Access Journals (Sweden)

    Stepien Pawel

    2014-12-01

    Proposed algorithm speeds up (about 10 times the computation with acceptable quality of decomposition. Conclusions Sliding Window EMD algorithm is suitable for decomposition of long signals with high sampling frequency.

  3. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.

    Science.gov (United States)

    Karelitz, Sam E; Uthicke, Sven; Foo, Shawna A; Barker, Mike F; Byrne, Maria; Pecorino, Danilo; Lamare, Miles D

    2017-02-01

    As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting distributions of species under climate change scenarios. The effects of reduced seawater pH on the thermal windows of fertilization, embryology and larval morphology were examined using five echinoderm species: two polar (Sterechinus neumayeri and Odontaster validus), two temperate (Fellaster zelandiae and Patiriella regularis) and one tropical (Arachnoides placenta). Responses were examined across 12-13 temperatures ranging from -1.1 °C to 5.7 °C (S. neumayeri), -0.5 °C to 10.7 °C (O. validus), 5.8 °C to 27 °C (F. zelandiae), 6.0 °C to 27.1 °C (P. regularis) and 13.9 °C to 34.8 °C (A. placenta) under present-day and near-future (2100+) ocean acidification conditions (-0.3 pH units) and for three important early developmental stages 1) fertilization, 2) embryo (prehatching) and 3) larval development. Thermal windows for fertilization were broad and were not influenced by a pH decrease. Embryological development was less thermotolerant. For O. validus, P. regularis and A. placenta, low pH reduced normal development, albeit with no effect on thermal windows. Larval development in all five species was affected by both temperature and pH; however, thermal tolerance was not reduced by pH. Results of this study suggest that in terms of fertilization and development, temperature will remain as the most important factor influencing species' latitudinal distributions as the ocean continues to warm and decrease in pH, and that there is little evidence of a synergistic effect of temperature and ocean acidification on the thermal control of species ranges. © 2016 John Wiley & Sons Ltd.

  4. Investigation and Prediction of RF Window Performance in APT Accelerators

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1997-01-01

    The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate β superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electron multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak-RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak-RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak-RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics

  5. Thermal Performance Benchmarking: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center

    2017-10-19

    In FY16, the thermal performance of the 2014 Honda Accord Hybrid power electronics thermal management systems were benchmarked. Both experiments and numerical simulation were utilized to thoroughly study the thermal resistances and temperature distribution in the power module. Experimental results obtained from the water-ethylene glycol tests provided the junction-to-liquid thermal resistance. The finite element analysis (FEA) and computational fluid dynamics (CFD) models were found to yield a good match with experimental results. Both experimental and modeling results demonstrate that the passive stack is the dominant thermal resistance for both the motor and power electronics systems. The 2014 Accord power electronics systems yield steady-state thermal resistance values around 42- 50 mm to the 2nd power K/W, depending on the flow rates. At a typical flow rate of 10 liters per minute, the thermal resistance of the Accord system was found to be about 44 percent lower than that of the 2012 Nissan LEAF system that was benchmarked in FY15. The main reason for the difference is that the Accord power module used a metalized-ceramic substrate and eliminated the thermal interface material layers. FEA models were developed to study the transient performance of 2012 Nissan LEAF, 2014 Accord, and two other systems that feature conventional power module designs. The simulation results indicate that the 2012 LEAF power module has lowest thermal impedance at a time scale less than one second. This is probably due to moving low thermally conductive materials further away from the heat source and enhancing the heat spreading effect from the copper-molybdenum plate close to the insulated gate bipolar transistors. When approaching steady state, the Honda system shows lower thermal impedance. Measurement results of the thermal resistance of the 2015 BMW i3 power electronic system indicate that the i3 insulated gate bipolar transistor module has significantly lower junction

  6. Thermal Performance Benchmarking: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert

    2016-04-08

    The goal for this project is to thoroughly characterize the performance of state-of-the-art (SOA) automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: Evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The performance results combined with component efficiency and heat generation information obtained by Oak Ridge National Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY15, the 2012 Nissan LEAF power electronics and electric motor thermal management systems were benchmarked. Testing of the 2014 Honda Accord Hybrid power electronics thermal management system started in FY15; however, due to time constraints it was not possible to include results for this system in this report. The focus of this project is to benchmark the thermal aspects of the systems. ORNL's benchmarking of electric and hybrid electric vehicle technology reports provide detailed descriptions of the electrical and packaging aspects of these automotive systems.

  7. Experimental Investigation of Thermal Behaviors in Window Systems by Monitoring of Surface Condensation Using Full-Scale Measurements and Simulation Tools

    Directory of Open Access Journals (Sweden)

    Goopyo Hong

    2016-11-01

    Full Text Available The aim of the present study was to investigate the thermal performance of window systems using full-scale measurements and simulation tools. A chamber was installed on the balcony of an apartment to control the temperatures which can create condensation on the interior surfaces of window systems. The condensation process on the window was carefully scrutinized when outdoor and indoor temperature and indoor relative humidity ranged from −15 °C to −20 °C, 23 °C to 24 °C, and 50% to 65%, respectively. The results of these investigations were analyzed to determine how the moisture is influenced by changing temperatures. It appears that the glass-edge was highly susceptible to the temperature variations and the lowest temperature on the glass edge was caused by the heat transfer through the spacer, between the two glass panels of the window. The results from the simulation used in this study confirm that the thermal performance of window systems can be improved the use of super insulated or thermally broken spacers. If the values of the indoor humidity and temperature are given, then the outdoor temperature when condensation forms can be obtained by using Temperature Difference Ratio (TDR. This methodology can be employed to predict the possible occurrence of condensation.

  8. Thermal performance monitoring and optimisation

    International Nuclear Information System (INIS)

    Sunde, Svein; Berg; Oeyvind

    1998-01-01

    Monitoring of the thermal efficiency of nuclear power plants is expected to become increasingly important as energy-market liberalisation exposes plants to increasing availability requirements and fiercer competition. The general goal in thermal performance monitoring is straightforward: to maximise the ratio of profit to cost under the constraints of safe operation. One may perceive this goal to be pursued in two ways, one oriented towards fault detection and cost-optimal predictive maintenance, and another determined at optimising target values of parameters in response to any component degradation detected, changes in ambient conditions, or the like. Annual savings associated with effective thermal-performance monitoring are expected to be in the order of $ 100 000 for power plants of representative size. A literature review shows that a number of computer systems for thermal-performance monitoring exists, either as prototypes or commercially available. The characteristics and needs of power plants may vary widely, however, and decisions concerning the exact scope, content and configuration of a thermal-performance monitor may well follow a heuristic approach. Furthermore, re-use of existing software modules may be desirable. Therefore, we suggest here the design of a flexible workbench for easy assembly of an experimental thermal-performance monitor at the Halden Project. The suggested design draws heavily on our extended experience in implementing control-room systems featured by assets like high levels of customisation, flexibility in configuration and modularity in structure, and on a number of relevant adjoining activities. The design includes a multi-computer communication system and a graphical user's interface, and aims at a system adaptable to any combination of in-house or end user's modules, as well as commercially available software. (author)

  9. Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test

    Directory of Open Access Journals (Sweden)

    Ludovico Danza

    2016-01-01

    Full Text Available The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.

  10. Data in support of energy performance of double-glazed windows

    Directory of Open Access Journals (Sweden)

    Mahmoud Shakouri

    2016-06-01

    Full Text Available This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy (“Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network” (Shakouri Hassanabadi and Banihashemi Namini, 2012 [1], “Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates” (Banihashemi et al., 2015 [2]. A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.

  11. Performance of Thin-Window Silicon Drift Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, , G.A.; Chen, W.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister; J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2008-10-20

    Several sets of hexagonal Silicon Drift Detector (SDD) arrays were produced at BNL and by a commercial vendor, KETEK. Each array consists of 14 independent detectors (pixels) and two additional test pixels at two of the corners. The side of the detector upon which the X-ray radiation is incident (window side) has a thin junction covering the entire active area. The opposite side (device side) contains a drift-field electrode structure in the form of a hexagonal spiral and an electron collecting anode. There are 4 guard rings surrounding the 14-pixel array area on both sides of the detector. Within each array, 7 of the pixels have an aluminum field plate - interrupted spirals that stabilize the electric potential under the Si-SiO2 interface, while the other 7 do not. The drift field in the silicon volume is controlled by three biases: one is applied to a rectifying contact, one to the detector entrance window, and the third to a contact on the outer portion of the spiral common to all pixels in the array. Some arrays have been newly measured in NSLS beam line U3C at BNL. The complete assemblies were installed in the vacuum and cooled to ?27 C. During this run, spectra for energies ranging between 400 and 900 eV were collected in several pixels, some with field plates and others without. The detailed testing results of several arrays are reported here.

  12. EFFECT OF THE FILL VENTILATION WINDOW ON PERFORMANCE OF A NATURAL DRAFT COOLING TOWER SUBJECTED TO CROSS-WINDS

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2016-01-01

    Full Text Available Various aerodynamic design elements and technics (wind deflectors, wind walls, etc. are utilized for improvement of the thermal efficiency of the natural draft cooling towers, particularly in conditions of cross wind. One of the technical methods, proposed by engineers of Belarus Academy of Sciences, is installation of the ventilation window in the center of the fill. This method is substantiated by the fact that the flow of cooling gas obtains maximum temperature and humidity near the center of the under-fill space of cooling tower and, as a consequence, performs minimal heat exchange. The influence of the fill ventilation window and wind deflectors in the inlet windows of the cooling tower on its thermal performance in condition of cross-wind is investigated in the paper numerically. The cooling tower of the “Woo-Jin” power plant (China 150 m of the height and 114 m of the base diameter was taken as a prototype. The analogy (equivalence between the heat and mass transfer was taken into consideration, which enabled us to consider single-phase flow and perform complicated 3D simulation by using modern personal computers. Heat transfer coefficient for the fill and its hydrodynamic resistance were defined by using actual data on total flow rate in the cooling tower. The numerical model and computational methods were tested and verified in numerous previous works. The non-linear dependence of the thermal performance of the cooling tower on wind velocity (with the minimum in vicinity of Ucr ~ 8 m/s for the simulated system was demonstrated. Calculations show that in the condition of the average wind speed the fill ventilation window doesn’t improve, but slightly decrease (by 3–7 % performance of the cooling tower. Situation changes in the condition of strong winds Ucw > 12 m/s, which are not typical for Belarus. Utilization of airflow deflectors at the inlet windows of cooling tower, conversely, increases thermal performance of the

  13. Experimental studies on improvement of coefficient of performance of window air conditioning unit

    Directory of Open Access Journals (Sweden)

    Tharves Mohideen Sheik Ismail

    2017-01-01

    Full Text Available This paper presents the performance analysis of a window air conditioner unit incorporated with wick less loop heat pipes (WLHP. The WLHP are located on the evaporator side of the air conditioning unit. The working medium for the WLHP is R134a refrigerant gas, an alternate refrigerant. The supply and return humidity of room air, the heat removal rat, and the coefficient of performance of the unit are analyzed for various ambient and room temperatures before and after incorporation of WLHP. The performance curves are drawn by comparing the power consumption and humidity collection rates for various room and ambient temperatures. The results show that coefficient of performance of the unit is improved by 18% to 20% after incorporation of WLHP due to pre-cooling of return air by WLHP, which reduces the thermal load on compressor. Similarly, the energy consumption is reduced by 20% to 25% due to higher thermostat setting and the humidity collection is improved by 35% due to pre-cooling effect of WLHP. The results are tabulated and conclusion drawn is presented based on the performance.

  14. Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates

    International Nuclear Information System (INIS)

    Tavares, P.F.; Gaspar, A.R.; Martins, A.G.; Frontini, F.

    2014-01-01

    Old buildings refurbishment is essential for the global improvement of building energy indicators. Within this context, the paper focuses on the energy savings that may occur when using electrochromic (EC) windows, an interesting emerging technology alternative to shading devices to control solar gain in buildings located in Mediterranean climates. The EC windows technology is briefly presented and the optical properties adjustments of the glasses are discussed according to the operated range. The EC window dynamic behavior and the different control strategies are modeled and implemented in the ESP-r building simulation program. The EC window impact in the energy needs for heating and cooling is studied, considering different ambient parameters (exterior dry bulb temperature, interior dry bulb temperature and incident radiation) and set points for the EC control. A comparison of several windows solutions (single, double-glazing and EC windows), the type of building, internal gains from occupancy, lighting and equipment and the orientation of windows are considered for discussion through the analysis of the energy needs for heating and cooling. It is concluded that for this climate the best positive results are obtained when the EC are used in the west façade. For the south façade the results show no significant advantages in using EC windows. - Highlights: • Energy performance analysis of Electrochromic (EC) windows is carried out. • EC glass and control strategies are modeled and implemented in ESP-r. • EC windows are evaluated, on a test prototype, as an alternative to shading devices. • Set-points and measured variables are used to control optical properties of EC glass. • The most effective results are obtained when EC windows are used in the west façade

  15. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    considerably by reducing the frame width, which results in a larger transparent area causing a larger solar gain but still main-taining a low thermal transmittance. Using three layers of glass with large gaps, using very slim frame profiles, and omitting the edge constructions that normally causes thermal...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focused on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy performance of windows in a simple...

  16. Improved performance thermal barrier coatings

    International Nuclear Information System (INIS)

    Levine, S.R.; Miller, R.A.; Stecura, S.

    1983-01-01

    Thermal barrier coatings offer an attractive approach to improving the durability and efficiency of the hot section of heat engines. The coatings typically consist of an inner alloy bond coating about 0.01 cm thick resistant to oxidation and hot corrosion and an outer ceramic layer, usually a stabilized zirconia, 0.01-0.05 cm thick. Here, the materials, thermomechanical stress, and hot corrosion problems associated with thermal barrier coatings are reviewed along with the capabilities and limitations of current technology. The coatings discussed include ZrO2-Y2O3/NiCrAlY, ZrO2-Y2O3/NiCoCrAlY, ZrO2-MgO/NiCoCrAlY, CaO-SiO2/Co-Cr-Al-Y, and CaO-SiO2/NiCrAlY systems. It is emphasized that the performance of thermal barrier coatings is governed by many complex and interrelated factors, so that optimization of these coatings always involves certain tradeoffs. 27 references

  17. Thermal and structural behavior of filters and windows for synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Wang, Z.; Hahn, U.; Dejus, R.; Kuzay, T.

    1993-01-01

    This report contains the following discussions: Introduction: Use of filters and windows in the front end designs; An interactive code for 3D graphic viewing of absorbed power in filters/windows and a new heat load generation algorithm for the finite element analysis; Failure criteria and analysis methods for the filter and window assembly; Comparison with test data and existing devices in HASYLAB; Cooling the filter: Radiation cooling or conduction cooling?; Consideration of window and filter thickness: Thicker or thinner?; Material selection criteria for filters/windows; Photon transmission through filters/windows; Window and filter design for APS undulators; Window and filter design for APS wigglers; and Window design for APS bending magnet front ends

  18. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  19. Monitored Energy Performance of Electrochromic Windows Controlledfor Daylight and Visual Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

    2005-09-23

    A 20-month field study was conducted to measure the energy performance of south-facing large-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office setting. The EC windows were controlled by a variety of means to bring in daylight while minimizing window glare. For some cases, a Venetian blind was coupled with the EC window to block direct sun. Some tests also involved dividing the EC window wall into zones where the upper EC zone was controlled to admit daylight while the lower zone was controlled to prevent glare yet permit view. If visual comfort requirements are addressed by EC control and Venetian blinds, a 2-zone EC window configuration provided average daily lighting energy savings of 10 {+-} 15% compared to the reference case with fully lowered Venetian blinds. Cooling load reductions were 0 {+-} 3%. If the reference case assumes no daylighting controls, lighting energy savings would be 44 {+-} 11%. Peak demand reductions due to window cooling load, given a critical demand-response mode, were 19-26% maximum on clear sunny days. Peak demand reductions in lighting energy use were 0% or 72-100% compared to a reference case with and without daylighting controls, respectively. Lighting energy use was found to be very sensitive to how glare and sun is controlled. Additional research should be conducted to fine-tune EC control for visual comfort based on solar conditions so as to increase lighting energy savings.

  20. Impact of window decrement rate on TCP performance in an adhoc network

    Science.gov (United States)

    Suherman; Hutasuhut, Arief T. W.; Badra, Khaldun; Al-Akaidi, Marwan

    2017-09-01

    Transmission control protocol (TCP) is a reliable transport protocol handling end to end connection in TCP/IP stack. It works well in copper or optical fibre link, but experiences increasing delay in wireless network. Further, TCP experiences multiple retransmissions due to higher collision probability within wireless network. The situation may get worsen in an ad hoc network. This paper examines the impact half window or window reduction rate to the overall TCP performances. The evaluation using NS-2 simulator shows that the smaller the window decrement rate results the smaller end to end delay. Delay is reduced to 17.05% in average when window decrement rate decreases. Average jitter also decreases 4.15%, while packet loss is not affected.

  1. Performance modelling for product development of advanced window systems

    DEFF Research Database (Denmark)

    Appelfeld, David

    The research presented in this doctoral thesis shows how the product development (PD) of Complex Fenestration Systems (CFSs) can be facilitated by computer-based analysis to improve the energy efficiency of fenestration systems as well as to improve the indoor environment. The first chapter defines...... and methods,which can address interrelated performance parameters of CFS, are sought. It is possible to evaluate such systems by measurements, however the high cost and complexity of the measurements are limiting factors. The studies in this thesis confirmed that the results from the performance measurements...... of CFSs can be interpreted by simulations and hence simulations can be used for the performance analysis of new CFSs. An advanced simulation model must be often developed and needs to be validated by measurements before the model can be reused. The validation of simulations against the measurements proved...

  2. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    A large part of the energy consumption in countries in Nordic and Arctic climates is used for space heating in buildings. In typical buildings the windows are responsible for a con-siderable part of the heat losses. Therefore there is a large potential for energy savings by developing and using...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focused on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy performance of windows in a simple...

  3. Influence of the observation window size on the performance of multilayer traffic engineering

    Science.gov (United States)

    Yan, Qiang; De Maesschalck, Sophie; Colle, Didier; Puype, Bart; Lievens, Ilse; Pickavet, Mario; Demeester, Piet

    2003-08-01

    Although the Optical Transport Network, based on technologies such as Wavelength Division Multiplexing and Optical Cross-Connects, offers tremendous transportation capacity, its management requires frequent manual intervention. However, as the traffic pattern offered to today's transport networks is subject to continuous changes due to the Internet traffic dominance, an optical transport network with a smart, automatic and real-time control system, denoted as Intelligent Optical Network (ION) or Automatic Switched Optical Network (ASON), is desired by network operators. Duly and correctly retrieving the changing traffic load information is a very important factor for the successful deployment of an ION. In this paper, we discuss the influence of the observation window size used for collecting the traffic load information, on the performance of an ION. By comparing the performance of an ION using different traffic observation window sizes, we show that a smaller observation window harms the network stability; while a too large observation window worsens the network reliability. We demonstrate that a suitable traffic observation window size improves the offered Quality of Service (QoS) by reconfiguring the logical layer network at the right time and in the right way.

  4. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    Directory of Open Access Journals (Sweden)

    S. Amos-Abanyie

    2013-01-01

    Full Text Available Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+ simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT. An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses.

  5. Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies; Skarning, Gunnlaug Cecilie Jensen; Hviid, Christian Anker

    2015-01-01

    a solution space defined by targets for daylighting and thermal comfort. In contrast with existing guidelines, the results show an upper limit for energy savings and utilisation of solar gains in south-oriented rooms. Instead, low U-values are needed in both north- and south oriented rooms before large......Appropriate window solutions are decisive for the design of 'nearly zero-energy' buildings with healthy and comfortable indoor environment. This paper focuses on the relationship between size, orientation and glazing properties of façade windows for different side-lit room geometries in Danish...... 'nearly zero-energy' houses. The effect of these parameters on space heating demand, daylighting and thermal environment is evaluated by means of EnergyPlus and DAYSIM and presented in charts illustrating how combinations of design parameters with minimum space heating demand can be selected within...

  6. Compare of Energy Efficiency of Windows in Aalborg and Chongqing

    DEFF Research Database (Denmark)

    Lin, Zhenguo; Heiselberg, Per; Yao, Runming

    2007-01-01

    Focus on window's energy efficiency, this paper compared the difference of windows in Aalborg and Chongqing. The author analysed the designing process, the thermal insulation performances, the sun shading devices and the ventilation of windows in Aalborg and Chongqing respectively. Furthermore......, the author explored the reasons for window problems in Chongqing, found out the main barriers to overcome and measures to take for solving the problem. Deeper analysis should be made before the energy efficient windows of Aalborg used in Chongqing....

  7. MHTGR thermal performance envelopes: Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.B.

    1992-05-01

    This document discusses thermal performance envelopes which are used to specify steady-state design requirements for the systems of the Modular High Temperature Gas-Cooled Reactor to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point accounting for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion

  8. Design and engineering of IZO/Ag/glass solar filters for low-emissivity window performance

    Science.gov (United States)

    Hernandez-Mainet, Luis C.; Aguilar, Miguel A.; Tamargo, Maria C.; Falcony, Ciro

    2017-10-01

    The electricity consumption in houses and commercial buildings generates about 18% of greenhouse gas emission. A critical issue of building energy consumption is heat and cooling loss through the window. Low-emissivity windows control thermal radiation through glass without decreasing the intensity of visible light. They are made up of optical filter coatings grown on a flat glass surface. Solar filters based on Ag/IZO multilayer films are grown and simulated on glass substrate. The targeted structure designs are grown by a sputtering system and characterized by scanning electron microscopy and x-ray diffraction techniques. To accurately simulate transmission spectrum, silver (Ag) and IZO optical constants were estimated by fitting ellipsometric data at different thicknesses. Transmission spectrum shows a good agreement among experiment and simulation. In addition, optical constant curves strongly show layer thickness dependence in both materials. In particular, the ultrathin Ag layer displays a percolation threshold in the vicinity of 15 nm, which leads to surface plasmon resonance with absorption at about 450 nm. These types of optical filter coatings would have potential applications as low-emission windows.

  9. Natural selection on thermal performance in a novel thermal environment.

    Science.gov (United States)

    Logan, Michael L; Cox, Robert M; Calsbeek, Ryan

    2014-09-30

    Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming.

  10. Material Behavior of Window 7 Carrier Panel Tiles and Thermal Pane Fragments Recovered from the Space Shuttle Columbia

    Science.gov (United States)

    Arellano, Brenda R.

    Since the end of the space shuttle program, a new generation spacecraft has been developed to transport humans back into space. NASA's Orion will carry a crew beyond low-earth orbit and the exploration of Mars may be possible in the future. Space safety becomes significant with human spaceflight and the risks are high. However, aerospace materials may provide opportunities to prevent future disasters. When the space shuttle Columbia disintegrated during re-entry in 2001, thousands of debris were collected for analysis. In contrast, when the Challenger space shuttle broke apart in 1986, all shuttle debris were buried. These tragic disasters are reminders of the importance of proper material selection and the concern of their performance in service. This research focused on investigating the effects of the debris recovered from the Columbia space shuttle after re-entry and break-up. Many of the components encountered unforeseen extreme temperatures, vibrations, and high stresses. The Columbia debris contained unique characteristics that have yet to be examined and the components for this study are the thermal protection system (TPS) carrier panel tiles and the thermal pane glass from the starboard orbiter Window 7. The alterations endured by the debris was studied through forensic materials characterization to investigate material interactions, material degradation, and thermal consequences. These materials played an essential role in the operation of the orbiter as they protected the underlying structural materials of the shuttle and underwent extreme temperatures. The methods and procedures for analyzing the debris included non-destructive and destructive evaluations. Non-destructive evaluations involved visual inspection, photographic documentation, 3D modeling, and surface elemental composition. The destructive analysis consisted of sectioning, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy

  11. Thermal resistant efficiency of Nb-doped TiO2 thin film based glass window

    Directory of Open Access Journals (Sweden)

    Luu Manh Quynh

    2017-09-01

    Full Text Available The proportional relationship between the infrared (IR transmittance of a transparent material and its IR-induced heat transfer can be explained via a simple model. An agreement between the theory and the experimental work was examined by measuring the temperature rising inside a heat-insulated box with glass windows under IR irradiation, where the material of the glass windows was modified from corning glass (CG to 9 at% Nb-doped TiO2 (TNO fabricated by sputtering deposition. The fabricated TNO thin film was mostly transparent in a visible region and had a low transparency in the IR region, which, in turn, produced the self-cooling effect inside the insulated box. In comparison to the window glass made by CG, the temperature increase inside the box would be 24% less if the window was made by CG coated by TNO (TNO on CG. This suggests the possibility of manufacturing products with desirable features in the energy-cut cooling. The energy-cut was found to decline proportionally to the decrease of the glass window area.

  12. Design of a test-bench to validate a model of a thermal window design; Diseno de un banco de ensayos para la validacion de un modelo de diseno termico de ventanas

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra O, Claudio; Fissore Sch, Adelqui; Mottard, Jean-Michel [Universidad de Concepcion (Chile). Facultad de Ingenieria. Dept. de Ingenieria Mecanica]. E-mail: clsaaved @udec.cl; afissore@udec.cl

    2000-07-01

    Paper presents the design of a test-bench and instrumentation to validate a window thermal mathematical model. The test-bench simulate the thermal performance of a office with a only one wall in directly contact with outdoors, where a single glass window is mounted. To obtain a similar heat transfer relation as the real building, the chamber has been designed and manufactured with an inner and an outer envelope, and with an air spacing maintaining at the same temperature that the test chamber. To change the window size, the test-bench is equipped with a single modifiable outer wall. Instrumentation and methods of measurement for solar radiation, infra red outdoor radiation, indoor and outdoor air temperatures, wind velocity, heat transfer, air ventilating flow and temperature, wall temperatures, etc. are specified. (author)

  13. Thermal Conductivity of Diamond - Effect of Neutron Irradiation on Gyrotron Windows for use in Fusion Reactors. Final Report

    International Nuclear Information System (INIS)

    White, Douglas P.

    2005-01-01

    The development of dielectric materials for transmission windows in electron cyclotron resonance heating (ECRH) systems for fusion reactors has recently focused on chemical-vapor-deposited (CVD) diamond. Advances in CVD-diamond processing have made it possible to manufacture gyrotron windows with sufficient thickness (5mm or more) to provide the mechanical strength necessary for this application. A theoretical description of the thermal conductivity changes expected in neutron irradiated diamond at high temperature using the Callaway method is presented. Phonon scattering by radiation induced vacancies and regions of disordered carbon are considered. In addition scattering by boundaries, isotopes and three-phonon normal and umklapp processes are considered. It was found that the higher thermal conductivity advantage gained by isotopically enriching the diamond to 0.1% 13 C, a 32% increase at 300K, was reduced to a 5% increase at 300K upon irradiation to 3.0 x 10 20 n/m 2 . It was found that diamond with the naturally occurring isotope concentration of 1.1% 13 C will experience an 84% decrease in thermal conductivity at 300K and a 62% decrease at 700K upon irradiation to a neutron fluence of 4.5 x 10 22 n/m 2 .

  14. Diamond Windows for High Powered Microwave Transmission. Final Report

    International Nuclear Information System (INIS)

    Gat, R.

    2011-01-01

    This phase II SBIR developed technology for manufacturing diamond windows for use in high energy density photon transmission e.g. microwave or laser light photons. Microwave sources used in fusion research require microwave extraction windows with high thermal conductivity, low microwave absorption, and low resistance to thermal cracking. Newly developed, man made diamond windows have all three of these properties, but these windows are prohibitively expensive. This limits the natural progress of these important technologies to higher powers and slows the development of additional applications. This project developed a lower cost process for manufacturing diamond windows using microwave plasma. Diamond windows were deposited. A grinding process was used to provide optical smoothness for 2 cm diameter diamond windows that met the parallelism specifications for fusion beam windows. The microwave transmission performance (loss tangent) of one of the windows was measured at 95GHz to be less than 10-4, meeting specifications for utilization in the ITER tokamak.

  15. Energy performance analysis of electrochromic windows in New York commercial office buildings; FINAL

    International Nuclear Information System (INIS)

    Lee, E.S.; Zhou, L.; Yazdanian, M.; Inkarojrit, V.; Slack, J.; Rubin, M.; Selkowitz, S.E.

    2002-01-01

    A DOE-2.1E energy simulation analysis of a switchable electrochromic (EC) glazing with daylighting controls has been conducted for prototypical office buildings in New York (NY). The modeling included four types of office buildings: ''old'' and ''new'' vintages and large (10,405 m(sup 2) , 112,000 ft(sup 2)) and small (502 m(sup 2), 5400 ft(sup 2)) buildings. Five commercially-available, base case windows with and without interior shades were modeled. Window area varied from 0 to 60% of the exterior floor-to-floor wall area. The electric lighting had either no controls or continuous daylighting controls. The prototypes were modeled in New York City or Buffalo. Energy performance data are given for each of the four perimeter zones. Data are presented as a function of window-to-wall ratio in order to better understand the interactions between (1) electric lighting energy use and daylight admission and (2) solar heat gains and space-conditioning energy use. Maximum and minimum reductions in energy use between the EC glazing and all other base case conditions are also presented. Projected energy use reductions relative to typical specified NY office buildings are presented as an indication of the potential impacts EC glazings might have in retrofit and new construction. The energy and demand reductions provided by EC glazings with daylighting controls relative to what is typically specified in office buildings in NY are quite substantial. EC glazings will also dampen fluctuations in interior daylight levels and window brightness, potentially increasing visual comfort

  16. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    International Nuclear Information System (INIS)

    Thiede, Christian; Schmidt, Anke B.; Donath, Markus

    2015-01-01

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters

  17. Thermal performance of the ATST secondary mirror

    Science.gov (United States)

    Cho, Myung K.; DeVries, Joe; Hansen, Eric

    2007-12-01

    The Advanced Technology Solar Telescope (ATST) has a 4.24m off-axis primary mirror designed to deliver diffractionlimited images of the sun. Its baseline secondary mirror (M2) design uses a 0.65m diameter Silicon Carbide mirror mounted kinematically by a bi-pod flexure mechanism at three equally spaced locations. Unlike other common telescopes, the ATST M2 is to be exposed to a significant solar heat loading. A thermal management system (TMS) will be developed to accommodate the solar loading and minimize "mirror seeing effect" by controlling the temperature difference between the M2 optical surface and the ambient air at the site. Thermo-elastic analyses for steady state thermal behaviors of the ATST secondary mirror was performed using finite element analysis by I-DEAS TM and PCRINGE TM for the optical analysis. We examined extensive heat transfer simulation cases and their results were discussed. The goal of this study is to establish thermal models by I-DEAS for an adequate thermal environment. These thermal models will be useful for estimating segment thermal responses. Current study assumes a few sample time dependent thermal loadings to synthesize the operational environment.

  18. At the edge of the thermal window: effects of elevated temperature on the resting metabolism, hypoxia tolerance and upper critical thermal limit of a widespread African cichlid.

    Science.gov (United States)

    McDonnell, Laura H; Chapman, Lauren J

    2015-01-01

    Tropical inland fishes are predicted to be especially vulnerable to thermal stress because they experience small temperature fluctuations that may select for narrow thermal windows. In this study, we measured resting metabolic rate (RMR), critical oxygen tension (P crit) and critical thermal maximum (CTMax) of the widespread African cichlid (Pseudocrenilabrus multicolor victoriae) in response to short-term acclimation to temperatures within and above their natural thermal range. Pseudocrenilabrus multicolor collected in Lake Kayanja, Uganda, a population living near the upper thermal range of the species, were acclimated to 23, 26, 29 and 32°C for 3 days directly after capture, and RMR and P crit were then quantified. In a second group of P. multicolor from the same population, CTMax and the thermal onset of agitation were determined for fish acclimated to 26, 29 and 32°C for 7 days. Both RMR and P crit were significantly higher in fish acclimated to 32°C, indicating decreased tolerance to hypoxia and increased metabolic requirements at temperatures only slightly (∼1°C) above their natural thermal range. The CTMax increased with acclimation temperature, indicating some degree of thermal compensation induced by short-term exposure to higher temperatures. However, agitation temperature (likely to represent an avoidance response to increased temperature during CTMax trials) showed no increase with acclimation temperature. Overall, the results of this study demonstrate that P. multicolor is able to maintain its RMR and P crit across the range of temperatures characteristic of its natural habitat, but incurs a higher cost of resting metabolism and reduced hypoxia tolerance at temperatures slightly above its present range.

  19. Performance Analysis of an Optical CDMA MAC Protocol With Variable-Size Sliding Window

    Science.gov (United States)

    Mohamed, Mohamed Aly A.; Shalaby, Hossam M. H.; Abdel-Moety El-Badawy, El-Sayed

    2006-10-01

    A media access control protocol for optical code-division multiple-access packet networks with variable length data traffic is proposed. This protocol exhibits a sliding window with variable size. A model for interference-level fluctuation and an accurate analysis for channel usage are presented. Both multiple-access interference (MAI) and photodetector's shot noise are considered. Both chip-level and correlation receivers are adopted. The system performance is evaluated using a traditional average system throughput and average delay. Finally, in order to enhance the overall performance, error control codes (ECCs) are applied. The results indicate that the performance can be enhanced to reach its peak using the ECC with an optimum number of correctable errors. Furthermore, chip-level receivers are shown to give much higher performance than that of correlation receivers. Also, it has been shown that MAI is the main source of signal degradation.

  20. Thermal Performance Testing of Cryogenic Insulation Systems

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  1. Parametric optimization of daylight and thermal performance ...

    African Journals Online (AJOL)

    The results of the paper show that there are meaningful optimum parameters which may help for better thermal performance through louvers in hot and dry climate of Tehran. The results indicate impressive efficiency in building industry in contemporary architecture of developing countries especially in Iran and west of Asia.

  2. Thermal analysis of a solar collector with a standard approach and software used to study windows

    Energy Technology Data Exchange (ETDEWEB)

    Simko, T.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering

    2007-07-01

    A method of calculating the overall heat loss coefficient of a solar collector was presented. The method was based on a standard approach used to obtain total window U-values. A model of the solar collector was developed with a finite element analysis (FEA) program. Heat loss from the solar collector was represented as the gross collector area; the overall heat loss coefficient; and the difference between the assumed mean absorber plate temperature and ambient temperature. The edge heat loss coefficient was approximated by assuming that there was a 1-D sideways heat flow through the edge area of the collector. Regional heat loss coefficients obtained with the model were then used to calculate the overall heat loss coefficient. Equations used for parallel tube type collectors were applied to the serpentine tube collector. The sightline of the solar collector was defined as being the position along the top cover below absorber plate. The same definitions for the extents of the frame, edge and center-of-glass regions for a window were applied to the collector. Multiple U-values were defined to account for heat flows outward across the top, bottom, and side surfaces of the collector. The absorber plate was simulated as being isothermal. Results were then compared with an experimental study in order to validate the method. The method was also compared with results obtained from a conventional analysis for estimating heat loss coefficients. It was concluded that the new method provided more accurate results than those obtained using the conventional method. 16 refs., 1 tab., 5 figs.

  3. Spectrophotometric evaluation of optical performances of polarizing technologies for smart window applications

    Science.gov (United States)

    Levati, N.; Vitali, L.; Fustinoni, D.; Niro, A.

    2014-11-01

    In recent years, window-integrated solar protection systems are used and studied as a promising energy saving technology, both for cold and hot climates. In particular, smart windows, whose optical proprieties in the solar wavelength range can somehow be controlled, show interesting results, especially in reducing the air conditioning power consumption. With the improvement of nanolithography techniques as well as with the possibility of designing polarization intervals, coupled polarizing films show a good potential as a dynamic and wavelength-selective shading technology. In this paper, UV-Vis-NIR spectrophotometric measurements are carried out on two polarizing technologies, Polaroid crystalline polarizer and Wire Grid broadband polarizer, in single- and double- film layout, to evaluate their optical performances, i.e. spectral transmittance, reflectance and absorptivity. The solar radiation glazing factors, according to the standard UNI EN 410, are calculated. The measured data are also analyzed in detail to emphasize the optical peculiarities of the materials under study that do not stand out from the standard parameters, as well as the specific problems that arise in spectrophotometric evaluations of polarizing films.

  4. Thermal interface pastes nanostructured for high performance

    Science.gov (United States)

    Lin, Chuangang

    Thermal interface materials in the form of pastes are needed to improve thermal contacts, such as that between a microprocessor and a heat sink of a computer. High-performance and low-cost thermal pastes have been developed in this dissertation by using polyol esters as the vehicle and various nanoscale solid components. The proportion of a solid component needs to be optimized, as an excessive amount degrades the performance, due to the increase in the bond line thickness. The optimum solid volume fraction tends to be lower when the mating surfaces are smoother, and higher when the thermal conductivity is higher. Both a low bond line thickness and a high thermal conductivity help the performance. When the surfaces are smooth, a low bond line thickness can be even more important than a high thermal conductivity, as shown by the outstanding performance of the nanoclay paste of low thermal conductivity in the smooth case (0.009 mum), with the bond line thickness less than 1 mum, as enabled by low storage modulus G', low loss modulus G" and high tan delta. However, for rough surfaces, the thermal conductivity is important. The rheology affects the bond line thickness, but it does not correlate well with the performance. This study found that the structure of carbon black is an important parameter that governs the effectiveness of a carbon black for use in a thermal paste. By using a carbon black with a lower structure (i.e., a lower DBP value), a thermal paste that is more effective than the previously reported carbon black paste was obtained. Graphite nanoplatelet (GNP) was found to be comparable in effectiveness to carbon black (CB) pastes for rough surfaces, but it is less effective for smooth surfaces. At the same filler volume fraction, GNP gives higher thermal conductivity than carbon black paste. At the same pressure, GNP gives higher bond line thickness than CB (Tokai or Cabot). The effectiveness of GNP is limited, due to the high bond line thickness. A

  5. Research on the aero-thermal effects by 3D analysis model of the optical window of the infrared imaging guidance

    Science.gov (United States)

    Xu, Bo; Li, Lin; Zhu, Ying

    2014-11-01

    Researches on hypersonic vehicles have been a hotspot in the field of aerospace because of the pursuits for higher speed by human being. Infrared imaging guidance is playing a very important role in modern warfare. When an Infrared Ray(IR) imaging guided missile is flying in the air at high speed, its optical dome suffers from serious aero-optic effects because of air flow. The turbulence around the dome and the thermal effects of the optical window would cause disturbance to the wavefront from the target. Therefore, detected images will be biased, dithered and blurred, and the capabilities of the seeker for detecting, tracking and recognizing are weakened. In this paper, methods for thermal and structural analysis with Heat Transfer and Elastic Mechanics are introduced. By studying the aero-thermal effects and aero-thermal radiation effects of the optical window, a 3D analysis model of the optical window is established by using finite element method. The direct coupling analysis is employed as a solving strategy. The variation regularity of the temperature field is obtained. For light with different incident angles, the influence on the ray propagation caused by window deformation is analyzed with theoretical calculation and optical/thermal/structural integrated analysis method respectively.

  6. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  7. Thermal operating window for PEDOT:PSS films and its related thermoelectric properties

    DEFF Research Database (Denmark)

    Stepien, Lukas; Roch, Aljoscha; Tkachov, Roman

    2017-01-01

    The intrinsically conducting polymer PEDOT:PSS is widely used and has found high recognition due to its excellent electrical conductivity. Its potential applications cover many fields, e.g. thermoelectric energy conversion. Therefore we compared the thermoelectric properties ofpristine and DMSO...... treated PEDOT:PSS films at potential operating temperatures. Here we observed the electrical degradation of the film up to complete failure. Further, the thermal aging of PEDOT:PSS still lacks of understanding. It is pointed out that PEDOT:PSS films show a complex degradation mechanism which includes...

  8. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security......Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...

  9. Building thermal performance in Saharan climate

    Energy Technology Data Exchange (ETDEWEB)

    Belgaid, Brahim [Department of architecture, University of Batna, 05000- Batna (Algeria)

    2011-07-01

    The aim of this study is to present an analytical method of the contribution of the building's shape and orientation in the definition of a comfortable microclimate for the inhabitants of the warm regions of Algerian Sahara. Study is made by using the overheating, a concept allowing a fast estimation of the level of internal temperature. Calculations were performed for summer hot period for Biskra (a city of southern Algeria), situated in Sahara and characterized with a hot and dry climate. The influence of the shape and the orientation of the building are examined as a solution to improve the building's thermal performance.

  10. Thermal Performance of Ablative/ Ceramic Composite

    Directory of Open Access Journals (Sweden)

    Adriana STEFAN

    2014-12-01

    Full Text Available A hybrid thermal protection system for atmospheric earth re-entry based on ablative materials on top of ceramic matrix composites is investigated for the protection of the metallic structure in oxidative and high temperature environment of the space vehicles. The paper focuses on the joints of ablative material (carbon fiber based CALCARB® or cork based NORCOAT TM and Ceramic Matrix Composite (CMC material (carbon fibers embedded in silicon carbide matrix, Cf/SiC, SICARBON TM or C/C-SiC using commercial high temperature inorganic adhesives. To study the thermal performance of the bonded materials the joints were tested under thermal shock at the QTS facility. For carrying out the test, the sample is mounted into a holder and transferred from outside the oven at room temperature, inside the oven at the set testing temperature (1100°C, at a heating rate that was determined during the calibration stage. The dwell time at the test temperature is up to 2 min at 1100ºC at an increasing rate of temperature up to ~ 9,5°C/s. Evaluating the atmospheric re-entry real conditions we found that the most suited cooling method is the natural cooling in air environment as the materials re-entering the Earth atmosphere are subjected to similar conditions. The average weigh loss was calculated for all the samples from one set, without differentiating the adhesive used as the weight loss is due to the ablative material consumption that is the same in all the samples and is up to 2%. The thermal shock test proves that, thermally, all joints behaved similarly, the two parts withstanding the test successfully and the assembly maintaining its integrity.

  11. Shuttle TPS thermal performance and analysis methodology

    Science.gov (United States)

    Neuenschwander, W. E.; Mcbride, D. U.; Armour, G. A.

    1983-01-01

    Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program.

  12. Availability Performance Analysis of Thermal Power Plants

    Science.gov (United States)

    Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.

    2018-03-01

    This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.

  13. Thermal performance of the MFTF magnets

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1983-01-01

    A yin-yang pair of liquid-helium (LHe) cooled, superconducting magnets were tested last year at the Lawrence Livermore National Laboratory (LLNL) as part of a series of tests with the Mirror Fusion Test Facility (MFTF). These tests were performed to determine the success of engineering design used in major systems of the MFTF and to provide a technical base for rescoping from a single-mirror facility to the large tandem-mirror configuration (MFTF-B) now under construction. The magnets were cooled, operated at their design current and magnetic field, and warmed to atmospheric temperature. In this report, we describe their thermal behavior during these tests

  14. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    Science.gov (United States)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  15. Thermal performance and heat transport in aquifer thermal energy storage

    NARCIS (Netherlands)

    Sommer, W.T.; Doornenbal, P.J.; Drijver, B.C.; Gaans, van P.F.M.; Leusbrock, I.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as

  16. Transparent Yttria for IR Windows and Domes - Past and Present

    National Research Council Canada - National Science Library

    Hogan, Patrick; Stefanik, Todd; Willingham, Charles; Gentilman, Richard

    2004-01-01

    ... (sapphire, ALON, spinel), its thermal shock performance is similar. In fact, 7 out of 7 flat yttria windows were successfully wind-tunnel tested under hypersonic conditions simulating representative surface-to-air interceptor missile flights...

  17. ACCESS: Thermal Mechanical Design, Performance, and Status

    Science.gov (United States)

    Kaiser, Mary Elizabeth; Morris, M. J.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Bohlin, R.; Kurucz, R. L.; Riess, A. G.; Pelton, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Benford, D. J.; Gardner, J. P.; Feldman, P. D.; Moos, H. W.; Lampton, M.; Perlmutter, S.; Woodgate, B. E.

    2014-01-01

    Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, are now rivaling and exceeding the statistical errors associated with these measurements. ACCESS: Absolute Color Calibration Experiment for Standard Stars is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 - 1.7μm bandpass. Achieving this level of accuracy requires characterization and stability of the instrument and detector including a thermal background that contributes less than 1% to the flux per resolution element in the NIR. We will present the instrument and calibration status with a focus on the thermal mechanical design and associated performance data. The detector control and performance will be presented in a companion poster (Morris, et al). NASA APRA sounding rocket grant NNX08AI65G supports this work.

  18. Evaluation of the Performance of the LCC Windows for Use in Laser Doppler Velocimetry

    National Research Council Canada - National Science Library

    Chesnakas, Christopher J

    2008-01-01

    .... The glass windows were found to show benefits for use with LDV in increased measurement accuracy, increased access to the flowfield, decreased time to obtain measurements, and increased capability...

  19. Windows NT Workstation Performance Evaluation Based on Pro/E 2000i BENCHMARK

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS,SEAN M.

    2000-08-02

    A performance evaluation of several computers was necessary, so an evaluation program, or benchmark, was run on each computer to determine maximum possible performance. The program was used to test the Computer Aided Drafting (CAD) ability of each computer by monitoring the speed with which several functions were executed. The main objective of the benchmarking program was to record assembly loading times and image regeneration times and then compile a composite score that could be compared with the same tests on other computers. The three computers that were tested were the Compaq AP550, the SGI 230, and the Hewlett-PackardP750C. The Compaq and SGI computers each had a Pentium III 733mhz processor, while the Hewlett-Packard had a Pentium III 750mhz processor. The size and speed of Random Access Memory (RAM) in each computer varied, as did the type of graphics card. Each computer that was tested was using Windows NT 4.0 and Pro/ENGINEER{trademark} 2000i CAD benchmark software provided by Standard Performance Evaluation Corporation (SPEC). The benchmarking program came with its own assembly, automatically loaded and ran tests on the assembly, then compiled the time each test took to complete. Due to the automation of the tests, any sort of user error affecting test scores was virtually eliminated. After all the tests were completed, scores were then compiled and compared. The Silicon Graphics 230 was by far the overall winner with a composite score of 8.57. The Compaq AP550 was next with a score of 5.19, while the Hewlett-Packard P750C performed dismally, achieving a score of 3.34. Several factors, including motherboard chipset, graphics card, and the size and speed of RAM, were involved in the differing scores of the three machines. Surprisingly the Hewlett-Packard, which had the fastest processor, came back with the lowest score. The above factors most likely contributed to the poor performance of the Hewlett-Packard. Based on the results of the benchmark test

  20. Evaluation of Round Window Stimulation Performance in Otosclerosis Using Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    Shanguo Yang

    2016-01-01

    Full Text Available Round window (RW stimulation is a new type of middle ear implant’s application for treating patients with middle ear disease, such as otosclerosis. However, clinical outcomes show a substantial degree of variability. One source of variability is the variation in the material properties of the ear components caused by the disease. To investigate the influence of the otosclerosis on the performance of the RW stimulation, a human ear finite element model including middle ear and cochlea was established based on a set of microcomputerized tomography section images of a human temporal bone. Three characteristic changes of the otosclerosis in the auditory system were simulated in the FE model: stapedial annular ligament stiffness enlargement, stapedial abnormal bone growth, and partial fixation of the malleus. The FE model was verified by comparing the model-predicted results with published experimental measurements. The equivalent sound pressure (ESP of RW stimulation was calculated via comparing the differential intracochlear pressure produced by the RW stimulation and the normal eardrum sound stimulation. The results show that the increase of stapedial annular ligament and partial fixation of the malleus decreases RW stimulation’s ESP prominently at lower frequencies. In contrast, the stapedial abnormal bone growth deteriorates RW stimulation’s ESP severely at higher frequencies.

  1. The effect of windowing on the performance of the CA-CFAR and OS-CFAR algorithms

    CSIR Research Space (South Africa)

    Melebari, A

    2015-10-01

    Full Text Available the sidelobes in both the slant-range and the Doppler domain. A Monte Carlo simulation was used to investigate the performance of Cell Averaging CFAR (CA-CFAR) and Ordered Statistic CFAR (OS-CFAR) algorithms. Results show that the windowing operation induces...

  2. A Novel Feature Extraction Approach Using Window Function Capturing and QPSO-SVM for Enhancing Electronic Nose Performance.

    Science.gov (United States)

    Guo, Xiuzhen; Peng, Chao; Zhang, Songlin; Yan, Jia; Duan, Shukai; Wang, Lidan; Jia, Pengfei; Tian, Fengchun

    2015-06-29

    In this paper, a novel feature extraction approach which can be referred to as moving window function capturing (MWFC) has been proposed to analyze signals of an electronic nose (E-nose) used for detecting types of infectious pathogens in rat wounds. Meanwhile, a quantum-behaved particle swarm optimization (QPSO) algorithm is implemented in conjunction with support vector machine (SVM) for realizing a synchronization optimization of the sensor array and SVM model parameters. The results prove the efficacy of the proposed method for E-nose feature extraction, which can lead to a higher classification accuracy rate compared to other established techniques. Meanwhile it is interesting to note that different classification results can be obtained by changing the types, widths or positions of windows. By selecting the optimum window function for the sensor response, the performance of an E-nose can be enhanced.

  3. A Novel Feature Extraction Approach Using Window Function Capturing and QPSO-SVM for Enhancing Electronic Nose Performance

    Directory of Open Access Journals (Sweden)

    Xiuzhen Guo

    2015-06-01

    Full Text Available In this paper, a novel feature extraction approach which can be referred to as moving window function capturing (MWFC has been proposed to analyze signals of an electronic nose (E-nose used for detecting types of infectious pathogens in rat wounds. Meanwhile, a quantum-behaved particle swarm optimization (QPSO algorithm is implemented in conjunction with support vector machine (SVM for realizing a synchronization optimization of the sensor array and SVM model parameters. The results prove the efficacy of the proposed method for E-nose feature extraction, which can lead to a higher classification accuracy rate compared to other established techniques. Meanwhile it is interesting to note that different classification results can be obtained by changing the types, widths or positions of windows. By selecting the optimum window function for the sensor response, the performance of an E-nose can be enhanced.

  4. Selecting windows for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

  5. Simple cryogenic infrared window

    NARCIS (Netherlands)

    Hartemink, M.; Hartemink, M.; Godfried, H.P; Godfried, Herman

    1991-01-01

    A simple, cheap technique is reported that allows materials with both large and small thermal expansion coefficients to be mounted as windows in low temperature cryostats while at the same time avoiding thermal stresses. The construction may be thermally cycled many times with no change in its

  6. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    Science.gov (United States)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura

    2013-01-01

    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more

  7. Porous, Dexamethasone-loaded polyurethane coatings extend performance window of implantable glucose sensors in vivo.

    Science.gov (United States)

    Vallejo-Heligon, Suzana G; Brown, Nga L; Reichert, William M; Klitzman, Bruce

    2016-01-01

    Continuous glucose sensors offer the promise of tight glycemic control for insulin dependent diabetics; however, utilization of such systems has been hindered by issues of tissue compatibility. Here we report on the in vivo performance of implanted glucose sensors coated with Dexamethasone-loaded (Dex-loaded) porous coatings employed to mediate the tissue-sensor interface. Two animal studies were conducted to (1) characterize the tissue modifying effects of the porous Dex-loaded coatings deployed on sensor surrogate implants and (2) investigate the effects of the same coatings on the in vivo performance of Medtronic MiniMed SOF-SENSOR™ glucose sensors. The tissue response to implants was evaluated by quantifying macrophage infiltration, blood vessel formation, and collagen density around implants. Sensor function was assessed by measuring changes in sensor sensitivity and time lag, calculating the Mean Absolute Relative Difference (MARD) for each sensor treatment, and performing functional glucose challenge test at relevant time points. Implants treated with porous Dex-loaded coatings diminished inflammation and enhanced vascularization of the tissue surrounding the implants. Functional sensors with Dex-loaded porous coatings showed enhanced sensor sensitivity over a 21-day period when compared to controls. Enhanced sensor sensitivity was accompanied with an increase in sensor signal lag and MARD score. These results indicate that Dex-loaded porous coatings were able to elicit an attenuated tissue response, and that such tissue microenvironment could be conducive towards extending the performance window of glucose sensors in vivo. In the present article, a coating to extend the functionality of implantable glucose sensors in vivo was developed. Our study showed that the delivery of an anti-inflammatory agent with the presentation of micro-sized topographical cues from coatings may lead to improved long-term glucose sensor function in vivo. We believe that

  8. Thermal performances of an insulating structure for a reactor vessel

    International Nuclear Information System (INIS)

    Aranovitch, E.; Crutzen, S.; Le Det, M.; Denis, R.

    1974-12-01

    This report describes the thermal and technological tests performed on a multilayer thermal insulation system for high temperature gas reactors. It includes the description of test facilities, global tests, interpretation of data, and technological tests. Results obtained make it possible to predetermine with a satisfactory precision thermal performances under various nominal conditions

  9. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-04-01

    Full Text Available The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST. However, calibration notices issued by the United States Geological Survey (USGS indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial

  10. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  11. The future 2015 Danish Building Regulations concerning energy performance of multi framed windows

    DEFF Research Database (Denmark)

    Hacksen Kampmann, Thomas

    The future Danish Building Regulation BR 2015 will reduce energy consumption within the overall building stock. Regarding the very important field windows, it seems that BR 2015 will be based on the same rules as today, except for a simple reduction of the limits for energy loss. Since a big part...

  12. Comparison between lighting performance of a virtual natural lighting solutions prototype and a real window based on computer simulation

    Directory of Open Access Journals (Sweden)

    R.A. Mangkuto

    2014-12-01

    Full Text Available This article discusses the measurement and simulation of a first generation prototype of Virtual Natural Lighting Solutions (VNLS, which are systems that can artificially provide natural lighting as well as a realistic outside view, with properties comparable to those of real windows and skylights. Examples of employing Radiance as a simulation tool to predict the lighting performance of such solutions are shown, for a particular case study of a VNLS prototype displaying variations of a simplified view of overcast, clear, and partly cloudy skies. Measurement and simulation were conducted to evaluate the illuminance distribution on workplane level. The key point of this study is to show that simulations can be used to compare an actual VNLS prototype with a hypothetical real window under the same sky scenes, which was physically not possible, since the test room was not located at the building׳s façade. It is found that the investigated prototype yields a less rapidly drop illuminance distribution and a larger average illuminance than the corresponding real window, under the overcast (52 lx compared to 28 lx and partly cloudy (102 lx compared to 80 lx sky scenes. Under the clear sky scene, the real window yields a larger average illuminance (97 lx compared to the prototype (71 lx, due to the influence of direct sunlight.

  13. External perforated window Solar Screens: The effect of screen depth and perforation ratio on energy performance in extreme desert environments

    KAUST Repository

    Sherif, A.

    2012-09-01

    In hot arid desert environments, the solar radiation passing through windows increases the cooling loads and the energy consumption of buildings. Shading of windows can reduce these loads. Unlike the woven solar screens, wooden solar screens have a thickness that provides selective shading properties. Perforated wooden solar screens were traditionally used for windows shading. Developing modern types of these shading systems can lead to significant energy savings. The paper addresses the influence of changing the perforation percentage and depth of these screens on the annual energy loads, hence defining the optimum depth/perforation configurations for various window orientations. Series of experiments were performed using the EnergyPlus simulation software for a typical residential building in the Kharga Oasis, located in the Egyptian desert. A range of perforation percentages and depths were tested. Conclusions prove that external fixed deep perforated solar screens could effectively achieve energy savings up to 30% of the total energy consumption in the West and South orientations. Optimum range of depths and perforation percentages were recommended. These are: 80-90% perforation rate and 1:1 depth/opening width ratio. These lighter and deeper solar screen configurations were found to be more efficient in energy consumption in comparison with the traditional ones. © 2012 Elsevier B.V. All rights reserved.

  14. High Power Coax Window

    International Nuclear Information System (INIS)

    Neubauer, M.L.; Dudas, A.; Sah, R.; Elliott, T.S.; Rimmer, R.A.; Stirbet, M.

    2010-01-01

    A superconducting RF (SRF) power coupler capable of handling 500 kW CW RF power is required for present and future storage rings and linacs. There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Coupler windows vary from cylinders to cones to disks, and RF power couplers are limited by the ability of ceramic windows to withstand the stresses due to heating and mechanical flexure. We propose a novel robust co-axial SRF coupler design which uses compressed window technology. This technology will allow the use of highly thermally conductive materials for cryogenic windows. Using compressed window techniques on disk co-axial windows will make significant improvements in the power handling of SRF couplers. We present the bench test results of two window assemblies back to back, as well as individual window VSWR in EIA3.125 coax. A vacuum test assembly was made and the windows baked out at 155C. The processes used to build windows is scalable to larger diameter coax and to higher power levels.

  15. Simulation and experimental study of thermal performance of a ...

    Indian Academy of Sciences (India)

    and solidification cycles (Hashem & Esam 2013). Pasupathy & Velraj (2008) presented the thermal performance of an inorganic eutectic PCM based thermal storage system for thermal management in a residential building. Esam & Hashem. (2011) incorporated the PCM into the roof structure with vertical cone frustum holes ...

  16. Thermal imaging cameras characteristics and performance

    CERN Document Server

    Williams, Thomas

    2009-01-01

    The ability to see through smoke and mist and the ability to use the variances in temperature to differentiate between targets and their backgrounds are invaluable in military applications and have become major motivators for the further development of thermal imagers. As the potential of thermal imaging is more clearly understood and the cost decreases, the number of industrial and civil applications being exploited is growing quickly. In order to evaluate the suitability of particular thermal imaging cameras for particular applications, it is important to have the means to specify and measur

  17. Windows® Internals

    CERN Document Server

    Russinovich, Mark E; Ionescu, Alex

    2009-01-01

    See how the core components of the Windows operating system work behind the scenes-guided by a team of internationally renowned internals experts. Fully updated for Windows Server 2008 and Windows Vista, this classic guide delivers key architectural insights on system design, debugging, performance, and support-along with hands-on experiments to experience Windows internal behavior firsthand.Delve inside Windows architecture and internals:Understand how the core system and management mechanisms work-from the object manager to services to the registryExplore internal system data structures usin

  18. Windows Azure

    CERN Document Server

    Johnson, Bruce; Chambers, James; Garber, Danny; Malik, Jamal; Fazio, Adam

    2013-01-01

    A collection of five must-have Azure titles, from some of the biggest names in the field Available individually, but at a discounted rate for the collection, this bundle of five e-books covers key developer and IT topics of Windows Azure, including ASP.NET, mobile services, web sites, data storage, and the hybrid cloud. A host of Microsoft employees and MPVs come together to cover the biggest challenges that professionals face when working with Windows Azure. The e-books included are as follows: Windows Azure and ASP.NET MVC MigrationWindows Azure Mobile ServicesWindows Azure Web SitesWindows

  19. Composite materials for thermal energy storage: enhancing performance through microstructures.

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  1. Investigation of the Mechanical Performance of Compliant Thermal Barriers

    Science.gov (United States)

    DeMange, Jeffrey J.; Bott, Robert J.; Dunlap, Patrick H.

    2011-01-01

    Compliant thermal barriers play a pivotal role in the thermal protection systems of advanced aerospace vehicles. Both the thermal properties and mechanical performance of these barriers are critical in determining their successful implementation. Due to the custom nature of many thermal barriers, designers of advanced spacecraft have little guidance as to the design, selection, and implementation of these elements. As part of an effort to develop a more fundamental understanding of the interrelationship between thermal barrier design and performance, mechanical testing of thermal barriers was conducted. Two different types of thermal barriers with several core insulation density levels ranging from 62 to 141 kg/cu m were investigated. Room-temperature compression tests were conducted on samples to determine load performance and assess thermal barrier resiliency. Results showed that the loading behavior of these thermal barriers was similar to other porous, low-density, compliant materials, such as elastomeric foams. Additionally, the insulation density level had a significant non-linear impact on the stiffness and peak loads of the thermal barriers. In contrast, neither the thermal barrier type nor the level of insulation density significantly influenced the room-temperature resiliency of the samples.

  2. Extending Our Understanding of Compliant Thermal Barrier Performance

    Science.gov (United States)

    Demange, Jeffrey J.; Finkbeiner, Joshua R.; Dunlap, Patrick H.

    2014-01-01

    Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize the flow of hot gases through interfaces and protect underlying temperature-sensitive components and systems. Although thermal barriers have been used extensively on many aerospace vehicles, the factors affecting their thermal and mechanical performance are not well-understood. Because of this, vehicle TPS designers are often left with little guidance on how to properly design and optimize these barriers. An ongoing effort to better understand thermal barrier performance and develop models and design tools is in progress at the NASA Glenn Research Center. Testing has been conducted to understand the degree to which insulation density influences structural performance and permeability. In addition, the development of both thermal and mechanical models is ongoing with the goal of providing an improved ability to design and implement these critical TPS components.

  3. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... that for temperature levels higher than about 55°C the thermal performance of a solar collector field based on concentrating tracking solar collectors is higher than the thermal performance of a solar collector field based on flat plate collectors. It is estimated that there are potentials for further improvements...... by parallel theoretical and experimental approach to investigate in detail the thermal performance of differently designed solar collector fields in such a way that their thermal performance can be determined by theoretical calculations in the future. This will be useful in connection with development...

  4. How reliable are geometry-based building indices as thermal performance indicators?

    International Nuclear Information System (INIS)

    Rodrigues, Eugénio; Amaral, Ana Rita; Gaspar, Adélio Rodrigues; Gomes, Álvaro

    2015-01-01

    Highlights: • Geometry-based building indices are tested in different European climate regions. • Building design programs are used to randomly generate sets of simulation models. • Some indices correlate in specific climates and design programs. • Shape-based Relative Compactness presented the best correlation of all indices. • Window-to-Surface Ratio was the window-based index with best correlation. - Abstract: Architects and urban planners have been relying on geometry-based indices to design more energy efficient buildings for years. The advantage of such indices is their ease of use and capability to capture the relation of a few geometric variables with the building’s performance. However, such relation is usually found using only a few simple building models and considering only a few climate regions. This paper presents the analysis of six geometry-based building indices to determine their adequacy in eight different climate regions in Europe. For each location, three residential building design programs were used as building specifications. Two algorithms were employed to randomly generate and assess the thermal performance of three sets of 500 alternative building models. The results show that geometry-based indices only correlate with the buildings’ thermal performance according to specific climate regions and building design programs

  5. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  6. Performance of a Thin-Window Silicon Drift Detector X-Ray Fluorescence Spectrometer

    Science.gov (United States)

    Carini, Gabriella A.; Chen, Wei; De Geronimo, Gianluigi; Gaskin, Jessica A.; Keister, Jeffrey W.; Li, Zheng; Ramsey, Brian D.; Rehak, Pavel; Siddons, David P.

    2009-10-01

    Several sets of hexagonal Silicon Drift Detector (SDD) arrays were produced by Brookhaven National Laboratory (BNL) and by the commercial vendor, KETEK. These detector arrays were tested at BNL. Each array consists of 14 independent SDD detectors (pixels) and two additional test pixels located at two corners of the array. The side of the detector upon which the X-ray radiation is incident (window side) has a thin junction covering the entire active area. The opposite side (device side) contains a drift-field electrode structure in the form of a hexagonal spiral and an electron collecting anode. There are four guard rings surrounding the 14-pixel array area on each side of the detector. Within each array, seven pixels have aluminum field plates - interrupted spirals that stabilize the electric potential under the Si- SiO2 interface, while the other seven do not. Three bias voltages are applied to control the drift field in the silicon volume; one is applied to a rectifying contact surrounding the central anode (one for each pixel), one is applied to the detector entrance window (common to the full array), and a third bias is applied to a contact on the outer portion of the spiral, common to all pixels in the array. Some arrays were recently tested in NSLS beam line U3C at BNL. For this work, we installed the complete assemblies in the vacuum and cooled them to -27degC. During this beam run, we collected spectra for energies ranging between 350 and 900 eV in several pixels, some with field plates and others without. The detailed testing results of several arrays are reported here.

  7. Measuremental analysis of thermal performance of direct gain houses in Kanto district. Effects of thermal mass and caves; Kanto chiho ni tatsu direct gain jutaku no netsuseino jissoku. Netsuyoryo to hisashi no koka

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, K.; Sunaga, N.; Muro, K. [Tokyo Metropolitan University, Tokyo (Japan)

    1996-10-27

    The thermal performance of direct gain passive solar houses was measured. Mr. M`s two-storied RC residence with double glazing windows and thermal storage floors, walls and ceilings of brick or concrete was provided for measurement. Its double eaves of the south window and both SE and SW overhanging exterior walls play a role in sunshade. Mr. I`s two-storied wooden residence with thermal storage RC floors and brick walls, and no eaves of the south window and no overhanging exterior walls was also provided. The summer and winter measurement results were in complete contrast between the residences. In summer, large thermal mass and eaves of Mr. M`s residence were effective, while in winter, small thermal mass and no eaves of Mr. I`s residence were effective. The following ideas are important in design from the viewpoint of indoor thermal environment: a movable sunshade for taking in solar radiation as much as possible in winter, well-balanced arrangement of thermal storage parts with suitable thermal mass corresponding to movement of the sun, a large screen door for cross ventilation in summer, and a night insulation shutter for reducing heat loss in winter. 2 refs., 10 figs., 1 tab.

  8. Optical performance of the SO/PHI full disk telescope due to temperature gradients effect on the heat rejection entrance window

    Science.gov (United States)

    Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.

    2017-11-01

    The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude

  9. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  10. Performance reliability prediction for thermal aging based on kalman filtering

    International Nuclear Information System (INIS)

    Ren Shuhong; Wen Zhenhua; Xue Fei; Zhao Wensheng

    2015-01-01

    The performance reliability of the nuclear power plant main pipeline that failed due to thermal aging was studied by the performance degradation theory. Firstly, through the data obtained from the accelerated thermal aging experiments, the degradation process of the impact strength and fracture toughness of austenitic stainless steel material of the main pipeline was analyzed. The time-varying performance degradation model based on the state space method was built, and the performance trends were predicted by using Kalman filtering. Then, the multi-parameter and real-time performance reliability prediction model for the main pipeline thermal aging was developed by considering the correlation between the impact properties and fracture toughness, and by using the stochastic process theory. Thus, the thermal aging performance reliability and reliability life of the main pipeline with multi-parameter were obtained, which provides the scientific basis for the optimization management of the aging maintenance decision making for nuclear power plant main pipelines. (authors)

  11. Photodetachment neutralizer development: Laser window design study: Volume 2, Window design details: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    During 1983, TRW conducted a photodetachment neutralizer development (PDN) - Laser Resonator study. The emphasis of this contract was to assess a technology base of the PDN concept. Three technology assessments were conducted: Mirror Technology assessments, Window Engineering Analysis/Technology assessment, and COIL medium modeling with emphasis on PDN issues. Based on the results of these technology assessments the follow-on contract was funded to develop a technology verification. Due to funding limitations this technology verification program was divided into two separate follow-on contracts. Under this follow-on contract, the following tasks were performed: Measure Attenuation Coefficient of 3M FC-104, FC-77, FC-43 with temperature and attenuation coefficient of sapphire, generate finite element/finite difference thermal/structural model of the HEX double window, determine thermal/structural response from the proposed operating conditions, develop option response data from the deflection/stress inputs, recommend design and operating parameters for demonstrator and operational HEX double window, generate Level 1 layouts and drawings of double paned demonstrator window and window mount/manifold, and generate preliminary layout drawings of shutter. Thermal and structural analyses were conducted for both the operational and demonstrator window heat exchanger (HEX) designs and operating conditions

  12. Design considerations for foil windows for PET radioisotope targets

    International Nuclear Information System (INIS)

    Hughey, B.J.; Shefer, R.E.; Klinkowstein, R.E.; Welch, M.J.

    1992-01-01

    This paper describes the results of a study performed at SRL to develop analytical and computational techniques for optimizing the design of conduction-cooled foil windows for PET targets. Single foil conduction cooled windows have been found to be good target entrance windows for both low energy accelerators and medium energy cyclotrons. Detailed thermal analysis has given an approximate analytical expression for the maximum temperature reached in a foil window under conditions of realistic ion beam bombardment. The effects of 'hot spots' in the beam density profile were investigated. It was shown that a factor of two safety margin in window design should be adequate to compensate for any possible beam hot spots. In addition, the reduction of foil stress by slack mounting was verified by experiments. The properties of conventional and novel foil materials were investigated for use in conduction cooled windows. Novel foil materials include two-component Al/Ti and Al/Havar foil. Results on the testing of candidate foil materials for thermal conductivity and mechanical strength at elevated temperature were presented. Two optimum foil window geometries were analyzed: a high aspect ratio window and a multiply slotted window. The multiply slotted window combines the advantages of a high aspect ratio foil window with a circular beam strike and is a promising window design for both TCA and cyclotron targets. A multiply slotted window for a N 2 gas target for 15 O production was designed using the methodologies discussed above. This prototype target was successfully tested using the TCA beam at SRL. (author) 6 figs., 3 tabs., 10 refs

  13. Natural selection on thermal preference, critical thermal maxima and locomotor performance.

    Science.gov (United States)

    Gilbert, Anthony L; Miles, Donald B

    2017-08-16

    Climate change is resulting in a radical transformation of the thermal quality of habitats across the globe. Whereas species have altered their distributions to cope with changing environments, the evidence for adaptation in response to rising temperatures is limited. However, to determine the potential of adaptation in response to thermal variation, we need estimates of the magnitude and direction of natural selection on traits that are assumed to increase persistence in warmer environments. Most inferences regarding physiological adaptation are based on interspecific analyses, and those of selection on thermal traits are scarce. Here, we estimate natural selection on major thermal traits used to assess the vulnerability of ectothermic organisms to altered thermal niches. We detected significant directional selection favouring lizards with higher thermal preferences and faster sprint performance at their optimal temperature. Our analyses also revealed correlational selection between thermal preference and critical thermal maxima, where individuals that preferred warmer body temperatures with cooler critical thermal maxima were favoured by selection. Recent published estimates of heritability for thermal traits suggest that, in concert with the strong selective pressures we demonstrate here, evolutionary adaptation may promote long-term persistence of ectotherms in altered thermal environments. © 2017 The Author(s).

  14. Predicting thermal performance in occupied dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, E.; Givoni, B. [Energy Engineering Section, Department of Mechanical Engineering, Technical University of Denmark, Lyngby (Denmark)

    2004-07-01

    The main purpose of formulating methodologies for building systems' evaluation in low-cost housing is to find an effective solution for the huge Brazilian housing deficit of approximately five million housing units, mainly due to an accelerated population growth in urban centers. Low-cost housing programs are usually implemented in a broad sense, with no regard to local specific conditions. Thus, building systems of quite similar characteristics are employed in places with different climatic conditions, which leads to low-quality houses that do not respond to the users' needs. In this paper, the results of the application of formulas to predict daily indoor temperatures in three monitored low-cost houses in Curitiba, Brazil, are presented. The houses were occupied by families having neither cooling nor heating devices and are built of different building materials with different thermal properties. The monitoring of the houses took place both in winter and in summer. Measured data were also compared with simulated data. In this case, the French software COMFIE was used. Finally, the results of the thermal simulations were compared with those of predictive formulas developed by Givoni. (author)

  15. Flight performance: Frigatebirds ride high on thermals

    Science.gov (United States)

    Weimerskirch, Henri; Chastel, Olivier; Barbraud, Christophe; Tostain, Olivier

    2003-01-01

    Aspects of the morphology and life history of frigatebirds verge on the extreme, and how they spend their time at sea has been a mystery until now. Here we use data collected by altimeters and satellite transmitters attached to individual frigatebirds to show that these birds are continuously on the wing, day and night - they fly in a succession of climbs and descents, soaring in circles on thermals to heights of up to 2,500 m and gliding down in the direction of travel. The birds' curious morphology and flight patterns result in extremely low costs of foraging, but they also cause them to travel slowly over large distances, putting frigatebirds at an evolutionary extreme that enables them to exploit tropical waters in which prey is scarce.

  16. Performance monitoring pavements with thermal segregation in Texas.

    Science.gov (United States)

    2012-04-01

    This project conducted work to investigate the performance of asphalt surface mixtures that exhibited : thermal segregation during construction. From 2004 to 2009, a total of 14 construction projects were : identified for monitoring. Five of these pr...

  17. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  18. Analysis of Thermal Performance in a Bidirectional Thermocycler by Including Thermal Contact Characteristics

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-12-01

    Full Text Available This paper illustrates an application of a technique for predicting the thermal characteristics of a bidirectional thermocycling device for polymerase chain reaction (PCR. The micromilling chamber is oscillated by a servo motor and contacted with different isothermal heating blocks to successfully amplify the DNA templates. Because a comprehensive database of contact resistance factors does not exist, it causes researchers to not take thermal contact resistance into consideration at all. We are motivated to accurately determine the thermal characteristics of the reaction chamber with thermal contact effects existing between the heater surface and the chamber surface. Numerical results show that the thermal contact effects between the heating blocks and the reaction chamber dominate the temperature variations and the ramping rates inside the PCR chamber. However, the influences of various temperatures of the ambient conditions on the sample temperature during three PCR steps can be negligible. The experimental temperature profiles are compared well with the numerical simulations by considering the thermal contact conductance coefficient which is empirical by the experimental fitting. To take thermal contact conductance coefficients into consideration in the thermal simulation is recommended to predict a reasonable temperature profile of the reaction chamber during various thermal cycling processes. Finally, the PCR experiments present that Hygromycin B DNA templates are amplified successfully. Furthermore, our group is the first group to introduce the thermal contact effect into theoretical study that has been applied to the design of a PCR device, and to perform the PCR process in a bidirectional thermocycler.

  19. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  20. Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System

    Science.gov (United States)

    Ganguly, Sayantan

    2017-04-01

    Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.

  1. GA microwave window development

    International Nuclear Information System (INIS)

    Moeller, C.P.; Kasugai, A.; Sakamoto, K.; Takahashi, K.

    1994-10-01

    The GA prototype distributed window was tested in a 32 mm diam. waveguide system at a power density suitable for a MW gyrotron, using the JAERI/Toshiba 110 GHz long pulse internal converter gyrotron in the JAERI test stand. The presence of the untilted distributed window had no adverse effect on the gyrotron operation. A pulse length of 10 times the calculated thermal equilibrium time (1/e time) of 30 msec was reached, and the window passed at least 750 pulses greater than 30 msec and 343 pulses greater than 60 msec. Beyond 100 msec, the window calorimetry reached steady state, allowing the window dissipation to be measured in a single pulse. The measured loss of 4.0% agrees both with the estimated loss, on which the stress calculations are based, and with the attenuation measured at low power in the HE 11 mode. After the end of the tests, the window was examined; no evidence of arcing air coating was found in the part of the window directly illuminated by the microwaves, although there was discoloration in a recess containing an optical diagnostic which outgassed, causing a local discharge to occur in that recess. Finally, there was no failure of the metal-sapphire joints during a total operating time of 50 seconds consisting of pulses longer than 30 msec

  2. CAVE WINDOW

    Science.gov (United States)

    Levenson, M.

    1960-10-25

    A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

  3. Performance evaluation of cost-optimized thermal cycler.

    Science.gov (United States)

    Park, Chan-Young; Park, Young-Hyun; Kim, Yu-Seop; Song, Hye-Jeong; Kim, Jong-Dae

    2015-01-01

    A polymerase chain reaction is a test method currently used in almost all process steps of a genetic manipulation experiment. It involves the amplification of the given genetic material targeted by the detection test. In consideration of the graphical user interface development environment or user accessibility, if a PC with the windows operating system or its embedded version can be employed as a host, it will contribute significantly to resource saving, including development-related human resources and time, along with enabling a broad use of the product. In this study, we focus on the low cost implementation of a PCR thermal cycler for the personal usage. It is aimed to drastically reduce the product development time and maintenance/repair costs. To achieve this, we implement the functions for biochemical process in a local embedded system, and the functions of data management, including the PCR protocol, and user-interface management are implemented on a PC.

  4. Thermo-mechanical failure criteria for x-ray windows and filters and comparison with experiments

    International Nuclear Information System (INIS)

    Wang, Z.; Kuzay, T.M.

    1993-01-01

    Synchrotron x-ray windows are vacuum separators and are usually made of thin beryllium metal. Filters are provided upstream of the window to filter out the soft x-rays to protect the window from overheating and failing. The filters are made of thin carbon products or sometimes beryllium, the same material as the window. Because the window is a vacuum separator, understanding its potential structural failure under thermal load is very important. Current structural failure models for the brazed windows and filters under thermal stresses are not very accurate. Existing models have been carefully examined and found to be inconsistent with the actual failure modes of windows tested. Due to the thinness of the filter/window, the most likely failure mode is thermal buckling. In fact, recent synchrotron tests conducted in Japan on window failures bear out this position. In this paper, failure criteria for filters/windows are proposed, and analyses are performed and compared with the experimental results from various sources. A consistent result is found between the analysis and reported experiments. A series of additional analyses based on the proposed failure criteria is also carried out for filter and window designs for the third generation synchrotron beamline front ends. Comparative results are presented here

  5. Window Stories

    DEFF Research Database (Denmark)

    Hauge, Bettina

    This research project has investigated 17 households in Germany (cities and rural areas). The main aim was to learn about the significance of the window to these people: What they think of their windows, how, when and why they use them in their everyday life, if they have a favorite window and why......, as well as the opposite. The report also includes a special focus on overheating and people’s strategies against this. Knowing about what people appreciate in a window and their actual practices and the reasons for their behaviour may be useful in many different ways, for instance to inform public...... of ethnographic tools that required their involvement, such as making a diary of their heating experiences during a random week in the summer of 2014, taking photos of windows and sending postcards with specific tasks....

  6. A balanced strategy in managing steam generator thermal performance

    International Nuclear Information System (INIS)

    Hu, M. H.; Nelson, P. R.

    2009-01-01

    This paper presents a balanced strategy in managing thermal performance of steam generator designed to deliver rated megawatt thermal (MWt) and megawatt electric (MWe) power without loss with some amount of thermal margin. A steam generator (SG) is a boiling heat exchanger whose thermal performance may degrade because of steam pressure loss. In other words, steam pressure loss is an indicator of thermal performance degradation. Steam pressure loss is mainly a result of either 1) tube scale induced poor boiling or 2) tube plugging historically resulting from tubing corrosion, wear due to flow induced tube vibration or loose parts impact. Thermal performance degradation was historically due to tube plugging but more recently it is due to poor boiling caused by more bad than good constituents of feedwater impurities. The whole SG industry still concentrates solely on maintenance programs towards preventing causes for tube plugging and yet almost no programs on maintaining adequate boiling of fouled tubes. There can be an acceptable amount of tube scale that provides excellent boiling capacity without tubing corrosion, as operational experience has repeatedly demonstrated. Therefore, future maintenance has to come up balanced programs for allocating limited resources in both maintaining good boiling capacity and preventing tube plugging. This paper discusses also thermal performance degradation due to feedwater impurity induced blockage of tube support plate and thus subsequent water level oscillations, and how to mitigate them. This paper provides a predictive management of tube scale for maintaining adequate steam pressure and stable water level without loss in MWt/MWe or recovering from steam pressure loss or water level oscillations. This paper offers a balanced strategy in managing SG thermal performance to fulfill its mission. Such a strategy is even more important in view of the industry trend in pursuing extended power uprate as high as 20 percent

  7. A Window on the Study of Aversive Instrumental Learning: Strains, Performance, Neuroendocrine and Immunologic Systems

    Directory of Open Access Journals (Sweden)

    Caroline Cruz Oliveira

    2016-08-01

    Full Text Available The avoidance response is present in pathological anxiety and interferes with normal daily functions. The aim of this article is to shed light on performance markers of active avoidance (AA using two different rat strains, Sprague-Dawley (SD and Wistar. Specifically, good and poor performers were evaluated regarding anxiety traits exhibited in the elevated plus maze (EPM and corticosterone levels and motor activity in the open field test. In addition, the plasma levels of Interleukin-6 (IL-6, Interleukin-1Beta (IL-1beta, Nerve Growth Factor Beta (NGF-beta, Tumor Necrosis Factor-Alpha (TNF-alpha and cytokine-induced neutrophil chemoattractant 1 (CINC-1 were compared in the good and poor performers to better understand the role of the immunologic system in aversive learning. Behavioral criteria were employed to identify subpopulations of SD and Wistar rats based on their behavioral scores during a two-way AA test. The animals were tested for anxiety-like behavior in the EPM and motor activity in the open-field test. Plasma corticosterone levels were measured at the end of the avoidance test. Cytokine levels of IL-6, IL-1beta, NGF-beta, TNF-alpha and CINC-1 were measured in the plasma of the Wistar rats. Sixty-six percent of the Wistar rats and 35% of the SD rats exhibited a poor performance. This feature was associated with a decrease in anxiety-like behavior in the EPM. The poor and good performers exhibited lower levels of corticosterone compared with the control animals, which suggests that training alters corticosterone levels, thereby leading to hypocortisolism, independent of the performance. The CINC-1 levels were increased in the poor performers, which reinforces the role of immunologic system activation in learning deficits. Our study provides a better understanding of the complex interactions that underlie neuroimmune consequences and their implications for performance.

  8. Operation window and part-load performance study of a syngas fired gas turbine

    International Nuclear Information System (INIS)

    He, Fen; Li, Zheng; Liu, Pei; Ma, Linwei; Pistikopoulos, Efstratios N.

    2012-01-01

    Integrated coal gasification combined cycle (IGCC) provides a great opportunity for clean utilization of coal while maintaining the advantage of high energy efficiency brought by gas turbines. A challenging problem arising from the integration of an existing gas turbine to an IGCC system is the performance change of the gas turbine due to the shift of fuel from natural gas to synthesis gas, or syngas, mainly consisting of carbon monoxide and hydrogen. Besides the change of base-load performance, which has been extensively studied, the change of part-load performance is also of great significance for the operation of a gas turbine and an IGCC plant. In this paper, a detailed mathematical model of a syngas fired gas turbine is developed to study its part-load performance. A baseline is firstly established using the part-load performance of a natural gas fired gas turbine, then the part-load performance of the gas turbine running with different compositions of syngas is investigated and compared with the baseline. Particularly, the impacts of the variable inlet guide vane, the degree of fuel dilution, and the degree of air bleed are investigated. Results indicate that insufficient cooling of turbine blades and a reduced compressor surge margin are the major factors that constrain the part-load performance of a syngas fired gas turbine. Results also show that air bleed from the compressor can greatly improve the working condition of a syngas fired gas turbine, especially for those fired with low lower heating value syngas. The regulating strategy of a syngas fired gas turbine should also be adjusted in accordance to the changes of part-load performance, and a reduced scope of constant TAT (turbine exhaust temperature) control mode is required.

  9. Beryllium window for an APS diagnostics beamline

    International Nuclear Information System (INIS)

    Sheng, I.C.; Yang, B.X.; Sharma, Y.S.

    1997-01-01

    A beryllium (Be) window for an Advanced Photon Source (APS) diagnostics beamline has been designed and built. The window, which has a double concave axisymmetrical profile with a thickness of 0.5 mm at the center, receives 160 W/mm 2 (7 GeV/100 mA stored beam) from an undulator beam. The window design as well as thermal and thermomechanical analyses, including thermal buckling of the Be window, are presented

  10. Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures.

    Science.gov (United States)

    Cavieres, G; Bogdanovich, J M; Bozinovic, F

    2016-07-01

    Early experience and environmental conditions during ontogeny may affect organismal structure, physiology and fitness. Here, we assessed the effect of developmental acclimation to environmental thermal variability on walking speed in Drosophila melanogaster adults. Our results showed a shift in the performance curve to the right. Thus, upper and lower thermal limits exhibited developmental plasticity. Additionally, in constant and variable climatic scenarios, flies shifted to the right the optimum temperature but the maximum performance decreased only in flies reared on high temperatures and high thermal variability. Overall, we showed that environmental cues during ontogeny might help to construct phenotypic variation, which supports the hypothesis of ontogenetic dependence of thermal tolerances. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  11. System performance modeling of extreme ultraviolet lithographic thermal issues

    International Nuclear Information System (INIS)

    Spence, P. A.; Gianoulakis, S. E.; Moen, C. D.; Kanouff, M. P.; Fisher, A.; Ray-Chaudhuri, A. K.

    1999-01-01

    Numerical simulation is used in the development of an extreme ultraviolet lithography Engineering Test Stand. Extensive modeling was applied to predict the impact of thermal loads on key lithographic parameters such as image placement error, focal shift, and loss of CD control. We show that thermal issues can be effectively managed to ensure that their impact on lithographic performance is maintained within design error budgets. (c) 1999 American Vacuum Society

  12. Thermal and Hygric Expansion of High Performance Concrete

    OpenAIRE

    J. Toman; R. Černý

    2001-01-01

    The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on th...

  13. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  14. Thermal Performance of the Storage Brick Containing Microencapsulated PCM

    International Nuclear Information System (INIS)

    Lee, Dong Gyu

    1998-02-01

    The utilization of microencapsulated phase change materials(PCMs) provides several advantages over conventional PCM application. The heat storage system, as well as heat recovery system, can be built to a smaller size than the normal systems for a given thermal cycling capacity. This microencapsulated PCM technique has not yet been commercialized, however. In this work sodium acetate trihydrate(CH 3 COONa · 3H 2 O) was selected for the PCM and was encapsulated. This microencapsulated PCM was mixed with cement mortar for utilization as a floor heating system. In this experiment performed here the main purpose was to investigate the thermal performance of a storage brick with microencapsulated PCM concentration. The thermal performance of this storage brick is dependent on PCM concentration, flow rate and cooling temperature of the heat transfer fluid, etc. The results showed that cycle time was shortened as the PCM content was increased and as the mass flow rate was increased. The same effect was obtained when the cooling temperature was decreased. For each thermal storage brick the overall heat transfer coefficient(U-value) was constant for a 0% brick, but was increased with time for the bricks containing microencapsulated PCM. For the same mass flow rate, as the cooling temperature decreased, the amount of heat withdrawn increased, and in particular a critical cooling temperature was found for each thermal storage brick. The average effectiveness of each thermal storage brick was found to be approximately 48%, 51% and 58% respectively

  15. Long term energy performance analysis of Egbin thermal power ...

    African Journals Online (AJOL)

    This study is aimed at providing an energy performance analysis of Egbin thermal power plant. The plant operates on Regenerative Rankine cycle with steam as its working fluid .The model equations were formulated based on some performance parameters used in power plant analysis. The considered criteria were plant ...

  16. Dynamic thermal performance of alveolar brick construction system

    International Nuclear Information System (INIS)

    Gracia, A. de; Castell, A.; Medrano, M.; Cabeza, L.F.

    2011-01-01

    Highlights: → Even though U-value does not measure thermal inertia, it is the commonly used parameter. → The thermal performance analysis of buildings must include the evaluation of transient parameters. → Transient parameters of alveolar brick constructive system show good agreement with its low energy consumption. -- Abstract: Alveolar bricks are being introduced in building sector due to the simplicity of their construction system and to the elimination of the insulation material. Nevertheless, it is not clear if this new system is energetically efficient and which is its thermal behaviour. This paper presents an experimental and theoretical study to evaluate the thermal behaviour of the alveolar brick construction system, compared with a traditional Mediterranean brick system with insulation. The experimental study consists of measuring the thermal performance of four real house-like cubicles. The thermal transmittance in steady-state, also known as U-value, is calculated theoretically and experimentally for each cubicle, presenting the insulated cubicles as the best construction system, with differences around 45% in comparison to the alveolar one. On the other hand, experimental results show significantly smaller differences on the energy consumption between the alveolar and insulated construction systems during summer period (around 13% higher for the alveolar cubicle). These values demonstrate the high thermal efficiency of the alveolar system. In addition, the lack of agreement between the measured energy consumption and the calculated U-values, guides the authors to analyze the thermal inertia of the different building components. Therefore, several transient parameters, extracted from the heat transfer matrix and from experimental data, are also evaluated. It can be concluded that the alveolar brick construction system presents higher thermal inertia than the insulated one, justifying the low measured energy consumption.

  17. Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  18. Air transparent soundproof window

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Hoon, E-mail: shkim@mmu.ac.kr [Division of Marine Engineering, Mokpo National Maritime University, Mokpo 530-729, R. O. Korea (Korea, Republic of); Lee, Seong-Hyun [Korea Institute of Machinery and Materials, Yuseong-Gu, Daejeon 305-343, R. O. Korea (Korea, Republic of)

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  19. Air transparent soundproof window

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Kim

    2014-11-01

    Full Text Available A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  20. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Energy Technology Data Exchange (ETDEWEB)

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  1. Performance of see-through prism CPV module for window integrated photovoltaics.

    Science.gov (United States)

    Yamada, Noboru; Kanno, Kosuke; Hayashi, Kentaro; Tokimitsu, Toru

    2011-07-04

    We have examined the performance of a see-through photovoltaics module that uses a low-concentration prism concentrator by undertaking ray-tracing analysis and an on-site experiment. The incident angle dependency of the prism concentrator makes it possible to concentrate direct solar radiation onto solar cells and transmit diffuse solar radiation. Fewer solar cells can then be used without sacrificing the conversion efficiency or lighting performance. The module generates approximately 1.15 more electricity than a conventional module while operating with 63% less solar cell area. We also introduce a design method for the concentrator geometry that adjusts the incident angle dependency for different latitude and tilt angles.

  2. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  3. Thermal Performance Benchmarking; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert

    2015-06-09

    This project proposes to seek out the SOA power electronics and motor technologies to thermally benchmark their performance. The benchmarking will focus on the thermal aspects of the system. System metrics including the junction-to-coolant thermal resistance and the parasitic power consumption (i.e., coolant flow rates and pressure drop performance) of the heat exchanger will be measured. The type of heat exchanger (i.e., channel flow, brazed, folded-fin) and any enhancement features (i.e., enhanced surfaces) will be identified and evaluated to understand their effect on performance. Additionally, the thermal resistance/conductivity of the power module’s passive stack and motor’s laminations and copper winding bundles will also be measured. The research conducted will allow insight into the various cooling strategies to understand which heat exchangers are most effective in terms of thermal performance and efficiency. Modeling analysis and fluid-flow visualization may also be carried out to better understand the heat transfer and fluid dynamics of the systems.

  4. FOCUSED R&D FOR ELECTROCHROMIC SMART WINDOWS: SIGNIFICANT PERFORMANCE AND YIELD ENHANCEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Marcus Milling

    2004-09-23

    Developments made under this program will play a key role in underpinning the technology for producing EC devices. It is anticipated that the work begun during this period will continue to improve materials properties, and drive yields up and costs down, increase durability and make manufacture simpler and more cost effective. It is hoped that this will contribute to a successful and profitable industry, which will help reduce energy consumption and improve comfort for building occupants worldwide. The first major task involved improvements to the materials used in the process. The improvements made as a result of the work done during this project have contributed to the enhanced performance, including dynamic range, uniformity and electrical characteristics. Another major objective of the project was to develop technology to improve yield, reduce cost, and facilitate manufacturing of EC products. Improvements directly attributable to the work carried out as part of this project and seen in the overall EC device performance, have been accompanied by an improvement in the repeatability and consistency of the production process. Innovative test facilities for characterizing devices in a timely and well-defined manner have been developed. The equipment has been designed in such a way as to make scaling-up to accommodate higher throughput necessary for manufacturing relatively straightforward. Finally, the third major goal was to assure the durability of the EC product, both by developments aimed at improving the product performance, as well as development of novel procedures to test the durability of this new product. Both aspects have been demonstrated, both by carrying out a number of different durability tests, both in-house and by independent third-party testers, and also developing several novel durability tests.

  5. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  6. Utility of the Lateral Base Dural Tacking Method in Cord Tumor Surgery Performed Using Unilateral Hemilaminectomy: A Comparison of Dural Window Widths.

    Science.gov (United States)

    Lee, Seong-Jong; Im, Soo Bin; Jeong, Je Hoon; Chung, Moonyoung; Kim, Bum-Tae; Hwang, Sun-Chul; Shin, Dong-Seong

    2018-02-01

    Unilateral hemilaminectomy, which is used to remove spinal cord tumors, is simpler than laminoplastic laminotomy and affords certain biomechanical advantages. However, both incomplete tumor removal and inadvertent infliction of spinal cord damage attributable to the narrow surgical corridor remain of concern. When a spinal cord tumor is to be removed, it is important to ensure that the dural window along the surgical corridor is of adequate width. This study aimed to determine that the utility of lateral base dural tacking (LBT) method when cord tumor surgery is performed using a unilateral hemilaminectomy-a comparison of dural window widths with a traditional dural tack-up and a suspending-out (DSO) method with the aid of digital image-analysis software. Twenty-one consecutive patients who had intradural-extramedullary spinal cord tumors removed using a unilateral hemilaminectomy were included in the study and analyzed retrospectively. We acquired DSO and LBT dural window images using surgical microscopes under identical conditions in consecutive order and then removed the tumors using the LBT method. We used digital image-analysis software to analyze the images quantitatively. The pixel numbers of LBT and DSO window were compared using a paired t test. Twenty-one tumorous lesions were successfully removed without any major problems using a unilateral hemilaminectomy through LBT windows. The mean pixel numbers of the LBT and DSO windows were 126,787 ± 41,938 and 85,940 ± 21,638. The LBT windows were 46% larger than the DSO windows (P < 0.001). We objectively proved that the utility of the LBT method for widening the surgical corridor created during hemilaminectomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Thermal performance of the Atlas SCT forward modules

    CERN Document Server

    Clark, A; Nasteva, I; Snow, S W; Wallny, R; Wilmut, I

    2003-01-01

    We describe the thermal design of the Atlas SCT forward modules and their cooling blocks. We report on the performance of the $C_3 F_8$ evaporative cooling system and the blocks alone, then on the performance of an irradiated inner module mounted on two alternative prototype cooling blocks (baseline and PEEK split). Runs are presented at different cooling conditions, representative of those expected to be used in the final experiment. We have also measured thermal runaway, with the module mounted on the PEEK split block and cooled with liquid cooling.

  8. Optical distortion coefficients of laser windows

    International Nuclear Information System (INIS)

    Klein, C.A.

    1989-01-01

    This paper addresses the problem of describing and evaluating thermal lensing phenomena that occur as a result of the absorption of laser light in solid windows. The aberration-function expansion method is applied for deriving the two optical distortion coefficients χ + and χ - that characterize the degradation in light intensity at the Gaussian focus of an initially diffraction-limited laser beam passing through a weakly absorbing stress-birefringent window. In a pulsed mode of operation, the concept of an effective optical distortion coefficient. χ eff, which properly combines the coefficients χ + and χ - in terms of potential impact on focal irradiances, then leads to the definition of a figure of merit for distortion. The theory and the calculations presented in this papers provide simple analytical tools for predicting the optical performance of a window-material candidate in a specific system's environment

  9. Performance Analysis of Window Type Air Conditioning with Addition of Heat Exchanger Equipment

    Directory of Open Access Journals (Sweden)

    I Ketut Gede Wirawan

    2012-11-01

    Full Text Available One manner to be used to increase refregration effect is by flowing hot refrigerant out from condensor, it is then touched with the refrigerant out from evaporator on a heat exchanger of counterflow type. Experiment was done by taking samples of pressure at suction (p1 and discharge (p2 of compressor and box temperature (Tr1, Tr2, Tr3, Tr4. By knowing of pressure at suction (p1, the enthalpy into compressor is known. By assuming the process is isentropic (compressor, isobar (condenser and evaporator, and isenthalpy (expansion valve, the enthalpy into condensor, expansion valve and evaporator were known. In 60 minutes, compression work of air conditioning with heat exchanger is 31,588 kJ/kg, and without heat exchanger is 33,796 kJ/kg. Effect refrigeration average with modification is 155,55 kJ/kg and without modification was 153,40 kJ/kg so that coefficient of performance with modification more than without modification. Air conditioning with modification had initial refrigration rate was 67,193 J/s and 0,043 J/s at the end minute, meanwhile, refrigeration without modification had cooling rate at start 66,538 J/s and 0,935 J/s at the end.

  10. Performance of thermal conductivity probes for planetary applications

    Directory of Open Access Journals (Sweden)

    E. S. Hütter

    2012-05-01

    Full Text Available This work aims to contribute to the development of in situ instruments feasible for space application. Commercial as well as custom-made thermal sensors, based on the transient hot wire technique and suitable for direct measurement of the effective thermal conductivity of granular media, were tested for application under airless conditions. In order to check the ability of custom-made sensors to measure the thermal conductivity of planetary surface layers, detailed numerical simulations predicting the response of the different sensors have been performed. These simulations reveal that for investigations under high vacuum conditions (as they prevail, e.g. on the lunar surface, the derived thermal conductivity values can significantly depend on sensor geometry, axial heat flow, and the thermal contact between probe and surrounding material. Therefore, a careful calibration of each particular sensor is necessary in order to obtain reliable thermal conductivity measurements. The custom-made sensors presented in this work can serve as prototypes for payload to be flown on future planetary lander missions, in particular for airless bodies like the Moon, asteroids and comets, but also for Mars.

  11. CT in acute stroke: improved detection of dense intracranial arteries by varying window parameters and performing a thin-slice helical scan

    International Nuclear Information System (INIS)

    Gadda, D.; Vannucchi, L.; Niccolai, F.; Neri, A.T.; Carmignani, L.; Pacini, P.

    2002-01-01

    We evaluated the possibility of improving detection of a dense intracranial artery on CT in acute stroke by narrowing window width, varying window level and performing a thin-slice helical scan for the circle of Willis, in some cases followed by postprocessing maximum-intensity projections. We carried out 32 examinations of 31 patients with a documented cerebral ischaemic attack, performing cranial CT within 6 h of the onset of symptoms. Patients with intracranial haemorrhage were excluded, as were patients who went on to thrombolytic therapy. Varying window width and centre level on standard 5 mm thick contiguous axial slices, we detected a dense proximal middle cerebral artery (MCA) in a higher proportion of patients. A 1.1 mm thick helical scan through the circle of Willis improved recognition of a dense distal horizontal segment and the temporoinsular branches of the MCA and of a dense posterior cerebral artery. (orig.)

  12. Thermal Performance of Wood-Particles on a Household Stove ...

    African Journals Online (AJOL)

    This paper describes an experimental study aimed at determining thermal performance of a household fuelwood stove before and after some modifications were made on the existing cooker stove. Generally, the results revealed that internal lining of household stove with 25 mm thick refractory material improved the burnout ...

  13. Beam line windows at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.; Lambert, J.E.

    1985-01-01

    The A-6 main beam-line window at LAMPF separates the vacuum of the main beam line from the isotope production station, proton irradiation ports, and the beam stop, which operate in air. This window must withstand the design beam current of 1 mA at 800 MeV for periods of at least 3000 hours without failure. The window is water cooled and must be strong enough to withstand the 2.1 MPa (300 psig) cooling water pressure, as well as beam-induced thermal stresses. Two designs have been used to meet these goals, a stepped-plate window and a hemispherical window, both made from a precipitation-hardened nickel base alloy, Alloy 718. Calculations of the temperatures and stresses in each of these windows are presented

  14. Thermal Hydraulic and Structural Analysis of Liquid Metal Target System

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Chung, Chang Hyun

    2002-01-01

    A subcritical transmutation reactor research is in progress for treatment of spent fuel. The subcritical transmutation reactor needs target system to produce high-energy neutrons. In target system, beam window is subject to high thermal field, because it interacts with high energy proton beam. In this study, target was designed based on thermal-hydraulic analysis, and thermal-structural analysis of window was performed. Preliminary design and mechanical analysis of liquid Pb-Bi target and 9Cr-2WVTa window were performed. Target was designed in a way to decrease window temperature. Installation of diffuse plate which has higher porosity in central zone was considered. Temperature and stress of window were analyzed varying minimum window thickness, beam power, and coolant flow rate. Thermal-bending stress was generated in window because of temperature gradient along the thickness of window. Coolant flow rate had insignificant effect on window stresses. It can be concluded that the target and window can be used in transmutation reactor operating condition (1 GeV, 6.78 mA). In this study, only static analysis has been made. But, accelerator beam trip can frequently occur in accelerator operation, so window and target container dynamic stress analysis will be needed. Furthermore, study about corrosion or irradiation characteristics of window will be needed in designing target and window. (authors)

  15. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    design ensures an excellent thermal stratification in the tank. The solar heating system was installed in May 2000. The thermal performance of the solar heating system has been measured in the first two years of operation. Compared to other large Danish solar domestic hot water systems the system...... is performing well in spite of the fact that the solar collectors are far from being orientated optimally. The utilization of the solar radiation on the collectors is higher, 46% in the second year of operation, than for any other system earlier investigated in Denmark, 16%-34%. The reason for the good thermal......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...

  16. Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles.

    Science.gov (United States)

    Bartheld, José L; Artacho, Paulina; Bacigalupe, Leonardo

    2017-12-01

    Most research in physiological ecology has focused on the effects of mean changes in temperature under the classic "hot vs cold" acclimation treatment; however, current evidence suggests that an increment in both the mean and variance of temperature could act synergistically to amplify the negative effects of global temperature increase and how it would affect fitness and performance-related traits in ectothermic organisms. We assessed the effects of acclimation to daily variance of temperature on thermal performance curves of swimming speed in helmeted water toad tadpoles (Calyptocephalella gayi). Acclimation treatments were 20°C ± 0.1 SD (constant) and 20°C ± 1.5 SD (fluctuating). We draw two key findings: first, tadpoles exposed to daily temperature fluctuation had reduced maximal performance (Z max ), and flattened thermal performance curves, thus supporting the "vertical shift or faster-slower" hypothesis, and suggesting that overall swimming performance would be lower through an examination of temperatures under more realistic and ecologically-relevant fluctuating regimens; second, there was significant interindividual variation in performance traits by means of significant repeatability estimates. Our present results suggest that the widespread use of constant acclimation temperatures in laboratory experiments to estimate thermal performance curves (TPCs) may lead to an overestimation of actual organismal performance. We encourage the use of temperature fluctuation acclimation treatments to better understand the variability of physiological traits, which predict ecological and evolutionary responses to global change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  18. Thermal performance test for steam turbine of nuclear power plants

    International Nuclear Information System (INIS)

    Bu Yubing; Xu Zongfu; Wang Shiyong

    2014-01-01

    Through study of steam turbine thermal performance test of CPR1000 nuclear power plant, we solve the enthalpy calculation problems of the steam turbine in wet steam zone using heat balance method which can help to figure out the real overall heat balance diagram for the first time, and we develop a useful software for thermal heat balance calculation. Ling'ao phase II as an example, this paper includes test instrument layout, system isolation, risk control, data acquisition, wetness measurement, heat balance calculation, etc. (authors)

  19. Thermal and Hygric Expansion of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    J. Toman

    2001-01-01

    Full Text Available The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on the values of linear hygric expansion coefficients are very significant and cannot be neglected in practical applications.

  20. Thermal performance envelopes for MHTGRs - Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.

    1992-01-01

    Thermal performance envelopes are used to specify steady-state design requirements for the systems of the modular high-temperature gas-cooled reactor (MHTGR) to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point to account for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion. This is accomplished by coordinating these requirements with the various system and component designers in the early stages of the design, applying the principles of total quality management. The design is challenged by the more complex requirements associated with a range of operating conditions, but in return, high probability of delivering reliable performance throughout the plant life is ensured

  1. Window modelling in Syrthes

    Energy Technology Data Exchange (ETDEWEB)

    Manias, V.; Peniguel, C. [Electricite de France, 78 - Chatou (France); Rupp, I. [Simulog, N3S, Estet, Simail, 78 - Saint Quentin en Yvelyne (France)

    1997-12-31

    Developments to take into account windows from a thermal point of view have been implemented in SYRTHES. Windows are discretized along their lateral surfaces in several independent patches. Then a one-dimensional analytical model solves the semi-transparent radiation and conduction problem occurring across the window for each patch. The spectral dependence of the absorption coefficient (`non grey` medium) is taken into account through a multi-band model. This window model is coupled with the conduction and radiation capabilities already existing in SYRTHES. When convection is taking place, it is handled by ESTET. This development will be applied to an infra-red system designed to dry paper. The simplified test case presented here consists very schematically in two cavities separated by a window (vitro-ceramic). The top cavity contains a very hot tungsten wire (the infrared source) surrounded by a tube made of quartz. The bottom cavity is where the fast moving sheet of paper will be located. Of Course the real geometry is much more complex. (authors)

  2. Thermal Performance of the LHC Short Straight Section Cryostat

    CERN Document Server

    Bergot, J B; Nielsen, L; Parma, Vittorio; Rohmig, P; Roy, E

    2002-01-01

    The LHC Short Straight Section (SSS) cryostat houses and thermally protects in vacuum the cold mass which contains a twin-aperture superconducting quadrupole magnet and superconducting corrector magnets operating at 1.9 K in superfluid helium. In addition to mechanical requirements, the cryostat is designed to minimize the heat in-leak from the ambient temperature to the cold mass. Mechanical components linking the cold mass to the vacuum vessel such as support posts and an insulation vacuum barrier are designed to have minimum heat conductivity with efficient thermalisations for heat interception. Heat in-leak by radiation is reduced by employing multilayer insulation wrapped around the cold mass and an actively cooled aluminium thermal shield. The recent commissioning and operation of two SSS prototypes in the LHC Test String 2 have given a first experimental validation of the thermal performance of the SSS cryostat in nominal operating conditions. Temperature sensors mounted in critical locations provide a...

  3. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    International Nuclear Information System (INIS)

    Petrosky, L.J.; Disney, R.K.; Mangus, J.D.; Gunn, S.A.; Zweig, H.R.

    1993-01-01

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements

  4. Optimal thermal-hydraulic performance for helium-cooled divertors

    International Nuclear Information System (INIS)

    Izenson, M.G.; Martin, J.L.

    1996-01-01

    Normal flow heat exchanger (NFHX) technology offers the potential for cooling divertor panels with reduced pressure drops (<0.5% Δp/p), reduced pumping power (<0.75% pumping/thermal power), and smaller duct sizes than conventional helium heat exchangers. Furthermore, the NFHX can easily be fabricated in the large sizes required for divertors in large tokamaks. Recent experimental and computational results from a program to develop NFHX technology for divertor coolings using porous metal heat transfer media are described. We have tested the thermal and flow characteristics of porous metals and identified the optimal heat transfer material for the divertor heat exchanger. Methods have been developed to create highly conductive thermal bonds between the porous material and a solid substrate. Computational fluid dynamics calculations of flow and heat transfer in the porous metal layer have shown the capability of high thermal effectiveness. An 18-kW NFHX, designed to meet specifications for the international Thermonuclear Experimental Reactor divertor, has been fabricated and tested for thermal and flow performance. Preliminary results confirm design and fabrication methods. 11 refs., 12 figs., 1 tab

  5. Mechanical and Thermal Performance of Transverse Flux Machines

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hasan, Iftekhar [University of Akron; Husain, Tausif [University of Akron; Sozer, Yilmaz [University of Akron; Husain, Iqbal [North Carolina State University

    2017-11-07

    This research examines the vibration and thermal characteristics of double-sided flux concentrating Transverse Flux Machines (TFM), designed for direct drive application. Two TFM prototypes with different stator cores, one with Quasi U-Core and the other with E-Core, has been used for the study. 3D Finite Element Analysis (FEA) has been carried out to determine the no-load and with load performance of the TFMs along with their fluctuating axial electromagnetic force densities acting on the stator teeth. The deformation response of the stator cores was observed in the static structural analysis. Thermal analysis for the TFM was performed through FEA based on copper and iron losses in the machine to examine the temperature rise in different parts of the machine structure. Acceleration and noise measurements were experimentally obtained to characterize the vibrational performance of the prototypes.

  6. Thermal-visible registration of human silhouettes: A similarity measure performance evaluation

    Science.gov (United States)

    Bilodeau, Guillaume-Alexandre; Torabi, Atousa; St-Charles, Pierre-Luc; Riahi, Dorra

    2014-05-01

    When dealing with the registration of information from different image sources, the de facto similarity measure used is Mutual Information (MI). Although MI gives good performance in many image registration applications, recent works in thermal-visible registration have shown that other similarity measures can give results that are as accurate, if not more than MI. Furthermore, some of these measures also have the advantage of being calculated independently from each image to register, which allows them to be integrated more easily in energy minimization frameworks. In this article, we investigate the accuracy of similarity measures for thermal-visible image registration of human silhouettes, including MI, Sum of Squared Differences (SSD), Normalized Cross-Correlation (NCC), Histograms of Oriented Gradients (HOG), Local Self-Similarity (LSS), Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), Census, Fast Retina Keypoint (FREAK), and Binary Robust Independent Elementary Feature (BRIEF). We tested the various similarity measures in dense stereo matching tasks over 25,000 windows to have statistically significant results. To do so, we created a new dataset in which one to five humans are walking in a scene in various depth planes. Results show that even if MI is a very strong performer, particularly for large regions of interest (ROI), LSS gives better accuracies when ROI are small or segmented into small fragments because of its ability to capture shape. The other tested similarity measures did not give consistently accurate results.

  7. Electrical and Thermal Performance Analysis for a Highly Concentrating Photovoltaic/Thermal System

    Directory of Open Access Journals (Sweden)

    Ning Xu

    2015-01-01

    Full Text Available A 30 kW highly concentrating photovoltaic/thermal (HCPV/T system has been constructed and tested outdoors. The HCPV/T system consists of 32 modules, each of which consists of point-focus Fresnel lens and triple-junction solar cells with a geometric concentrating ratio of 1090x. The modules are connected to produce both electrical and thermal energy. Performance analysis has been conducted from the viewpoint of thermodynamics. The experimental results show that highest photovoltaic efficiency of 30% and instantaneous thermal efficiency of 30% can be achieved at the same time, which means the total solar energy conversion efficiency of the HCPV/T system is higher than 60%. The photovoltaic efficiency increases with direct irradiance when the direct irradiance is below 580 W/m2, but it remains nearly unchanged when the direct irradiation is higher than 580 W/m2. The instantaneous thermal efficiency decreases during water heating process. However, the electrical performance of the system is not affected obviously by water temperature. Highest exergetic efficiency of 35.4% can be produced by the HCPV/T system. The exergetic efficiency is mainly affected by irradiation level, which is similar to the characteristics of photovoltaic performance.

  8. Thermal Performance Analyses of Multiborehole Ground Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Wanjing Luo

    2017-01-01

    Full Text Available Geothermal energy known as a clean, renewable energy resource is widely available and reliable. Ground heat exchangers (GHEs can assist the development of geothermal energy by reducing the capital cost and greenhouse gas emission. In this paper, a novel semianalytical method was developed to study the thermal performance of multiborehole ground heat exchangers (GHEs with arbitrary configurations. By assuming a uniform inlet fluid temperature (UIFT, instead of uniform heat flux (UHF, the effects of thermal interference and the thermal performance difference between different boreholes can be examined. Simulation results indicate that the monthly average outlet fluid temperatures of GHEs will increase gradually while the annual cooling load of the GHEs is greater than the annual heating load. Besides, two mechanisms, the thermal dissipation and the heat storage effect, will determine the heat transfer underground, which can be further divided into four stages. Moreover, some boreholes will be malfunctioned; that is, boreholes can absorb heat from ground when the GHEs are under the cooling mode. However, as indicated by further investigations, this malfunction can be avoided by increasing borehole spacing.

  9. Thermal performance analysis of a phase change thermal storage unit for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W. [Institute for Sustainable Systems and Technologies School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2011-01-15

    This paper presents the results of a comprehensive numerical study on the thermal performance of an air based phase change thermal storage unit (TSU) for space heating. The unit is designed for integration into space heating and cooling systems. The unit consists of a number of one dimensional phase change material (PCM) slabs contained in a rectangular duct where air passes between the slabs. The numerical analysis was based on an experimentally validated model. A parametric study has been carried out including the study on the effects of charge and discharge temperature differences, air mass flow rate, slab thicknesses, air gaps and slab dimensions on the air outlet temperatures and heat transfer rates of the thermal storage unit. The paper introduces and discusses quantities called charge and discharge temperature differences which play an important role in the melting and freezing processes. (author)

  10. Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines

    International Nuclear Information System (INIS)

    Babaelahi, Mojtaba; Sayyaadi, Hoseyn

    2014-01-01

    A new thermal model called Simple-II was presented based on modification of the original Simple analysis. First, the engine was modeled considering adiabatic expansion and compression spaces, in which effect of gas leakage from cylinder to buffer space and shuttle effect of displacer were implemented in the basic differential equations. Moreover, non-ideal thermal operation of the regenerator and the longitudinal heat conduction between heater and cooler through the regenerator wall were considered. Based on the magnitudes of pressure drops in heat exchangers, values of pressure in the expansion and compression spaces were corrected. Furthermore, based on the theory of finite speed thermodynamics (FST), the corresponding power loss due to the piston motion and also the mechanical friction were considered. Simple-II was employed for thermal simulation of a prototype Stirling engine. Finally, result of the new model was evaluated by comprehensive comparison of experimental results with those of the previous models. The output power and thermal efficiency were predicted with +20.7% and +7.1% errors, respectively. Also, the regenerator was demonstrated to be the main source of power and heat losses; nevertheless, other loss mechanisms have reasonable effects on output power and/or thermal efficiency of Stirling engines. - Highlights: • A new thermal model was presented based on various loss mechanisms. • Shuttle effect and mass leakage were integrated into differential equations. • FST, mechanical friction and longitudinal conduction losses were considered. • A methodology was presented for numerical solution and correcting results based on losses. • The new model predicted thermal performance of engine with higher accuracy

  11. Sunlight Responsive Thermochromic Window System

    Energy Technology Data Exchange (ETDEWEB)

    Millett, F,A; Byker,H, J

    2006-10-27

    Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose their desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,

  12. Performance maps for the control of thermal energy storage

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Zeiler, Wim

    2017-01-01

    Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change mat...... material tanks, and thermochemical material tanks. The results show that these performance maps can fully account for the dynamics of thermal energy storage tanks.......Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change...

  13. Thermal performance measurements on ultimate heat sinks--cooling ponds

    International Nuclear Information System (INIS)

    Hadlock, R.K.; Abbey, O.B.

    1977-12-01

    The primary objective of the studies described is to obtain the requisite data, with respect to modeling requirements, to characterize thermal performance of heat sinks for nuclear facilities existing at elevated water temperatures in result of experiencing a genuinely large heat load and responding to meteorological influence. The data should reflect thermal performance for combinations leading to worst-case meteorological influence. A geothermal water retention basin has been chosen as the site for the first measurement program and data have been obtained in the first of several experiments scheduled to be performed there. These data illustrate the thermal and water budgets during episodes of cooling from an initially high pond water bulk temperature. Monitoring proceeded while the pond experienced only meteorological and seepage influence. The data are discussed and are presented as a data volume which may be used for calculation purposes. Suggestions for future measurement programs are stated with the intent to maintain and improve relevance to nuclear ultimate heat sinks while continuing to examine the performance of the analog geothermal pond. It is further suggested that the geothermal pond, with some modification, may be a suitable site for spray pond measurements

  14. Thermal-Hydraulic Performance of Scrubbing Nozzle Used for CFVS

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Doo Yong; Jung, Woo Young; Lee, Jong Chan; Kim, Gyu Tae

    2016-01-01

    A Containment Filtered Venting System (CFVS) is the most interested device to mitigate a threat against containment integrity under the severe accident of nuclear power plant by venting with the filtration of the fission products. FNC technology and partners have been developed the self-priming scrubbing nozzle used for the CFVS which is based on the venturi effect. The thermal-hydraulic performances such as passive scrubbing water suction as well as pressure drop across the nozzle have been tested under various thermal-hydraulic conditions. The two types of test section have been built for testing the thermal-hydraulic performance of the self-priming scrubbing nozzle. Through the visualization loop, the liquid suction performance through the slit, pressure drop across the nozzle are measured. The passive water suction flow through the suction slit at the throat is important parameter to define the scrubbing performance of the self-priming scrubbing nozzle. The water suction flow is increased with the increase of the overhead water level at the same inlet gas flow. It is not so much changed with the change of inlet gas flow at the overhead water level.

  15. Experimental Investigation of Thermal Performance in a Vehicle Cabin Test Setup With Pcm in the Roof

    Science.gov (United States)

    Purusothaman, M.; kota, Saichand; Cornilius, C. Sam; Siva, R.

    2017-05-01

    Heat flow from the roof with radiation through glass windows obviously high level that contributes to the total heat gained of a vehicle cabin. The cabin temperature of closed stationary vehicles in direct sunlight can quickly rise to a very level that may damage property and harm children or pets left in the vehicle. The problem that is faced by many car users today is very hot interior after certain minutes or hours of parking in open or un-shaded parking area. The heat accumulated inside the vehicle with undesired temperature rise would cause the parts of the car’s interior to degrade. Even the passengers are affected with the thermal condition inside the vehicle itself. The passenger has to wait for a certain time before getting into the car to cool down the interior condition either by lowering down the window or switching on the air conditioner at high speed that really affect the fuel consumption. A new roofing structure to improve its total thermal resistance is developed. Its uses phase change material properties to trap the heat from solar radiation and then release it back to the outer atmosphere by external convection when the vehicle is in use or during the nocturnal cycle. Phase change material, which has become an attractive means to store. Thermal energy, which has a wide range of applications, has been used. Phase change material has a high heat of fusion which is able to store and release large amount of energy. This PCM has been insulated in the roof of the vehicle to arrest the heat entering into the vehicle cabin. Experimental and numerical analyses have been conducted to compare the thermal performance of the new roofing structure and the normal roofing. By this experiment, the cooling process of the cabin could be much lower. The experimental investigation revealed that, on a hot day, the interior temperature of the vehicles cabin was approximately 22ºCe higher than the ambient temperature. The results show that the new roofing structure

  16. Design of a new ceramic window in 3.7 GHz LHCD transmission system

    International Nuclear Information System (INIS)

    Liu Liang; Shan Jiafang; Liu Fukun; Kuang Guangli

    2007-01-01

    According to the theory of ceramic window design, using electromagnetic field simulator, CST, and finite element method analysis software, ANSYS, the electromagnetic and thermal performances of LHCD new ceramic window have been calculated and simulated. BeO is used as windows body material for its high conductivity. Within the bandwidth of more than 300 MHz, the stationary wave ratio is below 1.1, and the maximum temperature rising is 11.7 degree C on the center of the ceramic window. (authors)

  17. Transient thermal performance analysis of micro heat pipes

    International Nuclear Information System (INIS)

    Liu, Xiangdong; Chen, Yongping

    2013-01-01

    A theoretical analysis of transient fluid flow and heat transfer in a triangular micro heat pipes (MHP) has been conducted to study the thermal response characteristics. By introducing the system identification theory, the quantitative evaluation of the MHP's transient thermal performance is realized. The results indicate that the evaporation and condensation processes are both extended into the adiabatic section. During the start-up process, the capillary radius along axial direction of MHP decreases drastically while the liquid velocity increases quickly at the early transient stage and an approximately linear decrease in wall temperature arises along the axial direction. The MHP behaves as a first-order LTI control system with the constant input power as the 'step input' and the evaporator wall temperature as the 'output'. Two corresponding evaluation criteria derived from the control theory, time constant and temperature constant, are able to quantitatively evaluate the thermal response speed and temperature level of MHP under start-up, which show that a larger triangular groove's hydraulic diameter within 0.18–0.42 mm is able to accelerate the start-up and decrease the start-up temperature level of MHP. Additionally, the MHP starts up fastest using the fluid of ethanol and most slowly using the working fluid of methanol, and the start-up temperature reaches maximum level for acetone and minimum level for the methanol. -- Highlights: • Transient thermal response of micro heat pipe is simulated by an improved model. • Control theory is introduced to quantify the thermal response of micro heat pipe. • Evaluation criteria are proposed to represent thermal response of micro heat pipe. • Effects of groove dimensions and working fluids on start-up of micro heat pipe are evaluated

  18. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  19. A very thin havar film vacuum window for heavy ions to perform radiobiology studies at the BNL Tandem

    Energy Technology Data Exchange (ETDEWEB)

    Thieberger, P.; Abendroth, H.; Alessi, J.; Cannizzo, L.; Carlson, C.; Gustavsson, A.; Minty, M.; Snydstrup, L.

    2011-03-28

    Heavy ion beams from the BNL Tandem Van de Graaff accelerators will be made available for radiobiology studies on cell cultures. Beam energy losses need to be minimized both in the vacuum window and in the air in order to achieve the ranges required for the cells to be studied. This is particularly challenging for ions heavier than iron. The design is presented of a 0.4-inch diameter Havar film window that will satisfy these requirements. Films as thin as 80 microinches were successfully pressure tested. The final thickness to be used may be slightly larger to help in achieving pin hole free windows. We discuss design considerations and present pressure and vacuum test results as well as tests with heavy ion beams.

  20. Thermal performance test of the hot gas ducts of HENDEL

    International Nuclear Information System (INIS)

    Hishida, M.; Kunitomi, K.; Ioka, I.; Umenishi, K.; Tanaka, T.; Shimomura, H.; Sanokawa, K.

    1984-01-01

    A hot gas duct provided with internal thermal insulation is to be used for high-temperature gas-cooled reactors (HTGR). This type of hot gas duct has not been used so far in industrial facilities, and only a couple of tests on such a large-scale model of a hot gas duct have been conducted. The present report deals with the results of the thermal performance of the single tube type hot gas ducts which are installed as parts of a helium engineering demonstration loop (HENDEL). Uniform temperature and heat flux distribution at the surface of the duct were observed, the experimental correlations being obtained for the effective thermal conductivity of the internal thermal insulation layer. The measured temperature distribution of the pressure tube was in good agreement with the calculation by a TRUMP heat transfer computer code. The temperature distribution of the inner tube of the co-axial hot gas duct was evaluated and no hot spot was detected. These results would be very valuable for the design and development of HTGR. (orig.)

  1. Physiological performance and thermal tolerance of major Red Sea macrophytes

    KAUST Repository

    Weinzierl, Michael S.

    2017-12-01

    As anthropogenically-forced ocean temperatures continue to rise, the physiological response of marine macrophytes becomes exceedingly relevant. The Red Sea is a semi-isolated sea- the warmest in the world (SST up to 34°C) - already exhibiting signs of rapid warming rates exceeding those of other tropical oceans. This will have profound effects on the physiology of marine organisms, specifically marine macrophytes, which have direct influence on the dynamic carbonate system of the Red Sea. The aim of this paper is to define the physiological capability and thermal optima and limits of six ecologically important Red Sea macrophytes- ranging from seagrasses to calcifying and non-calcifying algae- and to describe the effects of increasing thermal stress on the performance and limits of each macrophyte in terms of activation energy. Of the species considered, Halophila stipulacae, Halimeda optunia, Halimeda monile and Padina pavonica thrive in thermal extremes and may be more successful in future Red Sea warming scenarios. Specifically, Halimeda opuntia increased productivity and calcification rates up to 38°C, making it the most thermally resilient macrophyte. Halophila stipulacae is the most productive seagrass, and hence has the greatest positive effect on Omega saturation state and offers chemical buffer capacity to future ocean acidification.

  2. Investigation of Retrofit Solutions of Window-Wall Assembly Based on FMEA, Energy Performance and Indoor Environment

    DEFF Research Database (Denmark)

    Morelli, Martin; Lauritsen, Diana; Svendsen, Svend

    2011-01-01

    to moisture from the inside. The box window has the lowest temperatures on the cavity surface and is therefore more vulnerable toward condensation. The basis of the rational optimisation approach is the total economy considering the initial, operational and maintenance costs over the lifetime of the building...

  3. THERMAL PERFORMANCE OF CONTEMPORARY HOUSE IN THE CITY OF DHAKA

    Directory of Open Access Journals (Sweden)

    Rumana Rashid

    2008-01-01

    Full Text Available A contemporary house located within a dense area of Dhaka, the capital city of Bangladesh was selected to evaluate its thermal performance. The study was based on the field measurements conducted during selected days in the summer period. The field survey was conducted using one set of thermal data logger installed in the selected house to record the air temperature and relative humidity of both indoor and outdoor spaces. The research result concluded that the contemporary house experienced much higher temperature during night and early morning. The indoor air temperature during the daytime was equal to the outdoor or sometime higher illustrating that it was overheating. On the other hand, previous study on traditional house within the same area showed that indoor air temperature was lower than outdoor air temperature, something that the contemporary house failed to achieve.

  4. Strategic Windows

    DEFF Research Database (Denmark)

    Risberg, Annette; King, David R.; Meglio, Olimpia

    We examine the importance of speed and timing in acquisitions with a framework that identifies management considerations for three interrelated acquisition phases (selection, deal closure and integration) from an acquiring firm’s perspective. Using a process perspective, we pinpoint items within...... acquisition phases that relate to speed. In particular, we present the idea of time-bounded strategic windows in acquisitions consistent with the notion of kairòs, where opportunities appear and must be pursued at the right time for success to occur....

  5. Window shopping

    OpenAIRE

    Oz Shy

    2013-01-01

    The terms "window shopping" and "showrooming" refer to the activity in which potential buyers visit a brick-and-mortar store to examine a product but end up either not buying it or buying the product from an online retailer. This paper analyzes potential buyers who differ in their preference for after-sale service that is not offered by online retailers. For some buyers, making a trip to the brick-and-mortar store is costly; however, going to the store to examine the product has the advantage...

  6. Influence of Courtyard Ventilation on Thermal Performance of Office Building in Hot-Humid Climate: A Case Study

    Science.gov (United States)

    Abbaas, Esra'a. Sh.; Saif, Ala'eddin A.; Munaaim, MAC; Azree Othuman Mydin, Md.

    2018-03-01

    The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.

  7. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  8. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  9. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  10. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.

    Science.gov (United States)

    Excoffier, Laurent; Lischer, Heidi E L

    2010-05-01

    We present here a new version of the Arlequin program available under three different forms: a Windows graphical version (Winarl35), a console version of Arlequin (arlecore), and a specific console version to compute summary statistics (arlsumstat). The command-line versions run under both Linux and Windows. The main innovations of the new version include enhanced outputs in XML format, the possibility to embed graphics displaying computation results directly into output files, and the implementation of a new method to detect loci under selection from genome scans. Command-line versions are designed to handle large series of files, and arlsumstat can be used to generate summary statistics from simulated data sets within an Approximate Bayesian Computation framework. © 2010 Blackwell Publishing Ltd.

  11. Sintered Ag die attach as a solution to improve thermal performance of high power modules

    Science.gov (United States)

    Mansi, Mohammed S.

    The move to smaller electronics packages with higher numbers of I/Os has significantly increased power densities. The increase of power density puts more emphasis on finding solutions to improve the thermal performance of electronics packages. In wire bonded chips, the die attach layer plays a significant role in thermal performance as it establishes the main heat dissipation path from the chip. The use of sintered Ag as a die attach material to improve thermal performance is investigated in this research. A thermal simulation tool (FloTHERM) was used to study the thermal performance of five different sintered Ag die attach materials and compare their performance to the performance of silver filled epoxy die attach. Thermal simulation results showed low thermal improvement in the Theta-JA (thetaJA) value while higher thermal improvement in the Theta-JC (thetaJC) value was observed. Also, this research correlates the thermal simulation results with real-world measurements.

  12. Thermal performance of Danish solar combi systems in practice and in theory

    DEFF Research Database (Denmark)

    Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon

    2004-01-01

    An overview of measured thermal performances of Danish solar combi systems in practice is given. The thermal performance varies greatly from system to system. Measured and calculated thermal performances of different solar combi systems are compared and the main reasons for the different thermal...... performances are given. Further, a parametric study on two solar combi system types is performed. Based on the investigation it can be concluded that the thermal performance first of all is influenced by the space heating consumption during the summer period and that the systems in practice perform...

  13. Parenthetical Windows

    DEFF Research Database (Denmark)

    Lemi, Esther; Triantafyllidis, Georgios

    2016-01-01

    artificial from natural stimuli and detects common and individual needs by measuring heart pulse and body temperature. The focal point here is light and how light affects human perception while at the same time the perception of sound and how gesture can provide the best possible cognition of actual needs...... light is a form that adapts natures’ properties and modifies the artificial environment as a stage direction, implying at the same time mood and modifying it in collaboration with sound. Having evaluated how this affects the body and human perception in this particular time that we experience nowadays......Parenthetical Window is a project that engages scientific research in human perception providing a platform for users to experience their own limits and needs in their individual circadian rhythm. The presentation focuses on a case study in a community of dancers where the individual needs in light...

  14. Experimental investigation on the thermal performance of a closed oscillating heat pipe in thermal management

    Science.gov (United States)

    Rao, Zhonghao; Wang, Qingchao; Zhao, Jiateng; Huang, Congliang

    2017-10-01

    To investigate the thermal performance of the closed oscillating heat pipe (OHP) as a passive heat transfer device in thermal management system, the gravitation force, surface tension, cooling section position and inclination angle were discussed with applied heating power ranging from 5 to 65 W. The deionized water was chosen as the working fluid and liquid-filling ratio was 50 ± 5%. The operation of the OHP mainly depends on the phase change of the working fluid. The working fluid within the OHP was constantly evaporated and cooled. The results show that the movement of the working fluid was similar to the forced damped mechanical vibration, it has to overcome the capillary resistance force and the stable oscillation should be that the OHP could successful startup. The oscillation frequency slowed and oscillation amplitude decreased when the inclination angle of the OHP increased. However, the thermal resistance increased. With the increment of the heating power, the average temperature of the evaporation and condensation section would be close. If the heating power was further increased, dry-out phenomenon within the OHP would appeared. With the decrement of the L, the start-up heating power also decreased and stable oscillation would be formed.

  15. Windows 7 is supported at CERN

    CERN Multimedia

    IT Department

    2010-01-01

    The new version of the Windows operating system - Windows 7 - is now officially supported at CERN. Windows 7 32-bit is now the default operating system for the new computers at CERN. What’s new in Windows 7 Users of Windows XP will find many new features and options. Users of Windows Vista will feel very familiar with one major difference: higher performance and better responsiveness of the operating system. Other enhancements include: refined Aero desktop that makes it easier to navigate between your different application windows; new snapping windows that allows user to resize a window simply by dragging it to the edge of the screen and “pin” that allows grouping and arranging often accessed applications on the taskbar. Windows 7 introduces the new concept of libraries – containers for user files that have links to different local or network folders. By default, users can see four libraries: Documents, Music, Pictures and Videos. These libraries point to the cor...

  16. The economics of window selection: An incremental approach

    International Nuclear Information System (INIS)

    Dixon, W.T.

    1993-01-01

    The options available to Energy Service Companies when improving the energy performance of an existing building are often driven by short-term payback cycles. The value of a measure is based on how quickly it pays for itself. The more quickly the energy savings created by the measure exceed the cost of purchasing and installing the measure, the more comfortable the engineer feels recommending that improvement. In the best cases, the short-term approach will quickly retire the debts associated with a particular retrofit and provide a dependable, albeit limited net savings stream for the property owner. The engineer has obtained energy savings for his client. The problem with this short-term approach is that it automatically eliminates other conservation measures which, over longer time horizons, could add far more value for the customer. The installation of new, extremely energy efficient replacement windows is a case in point. During preliminary discussions with our clients, (typically Public Housing Authorities or owners of subsidized, multi-family housing), the conversation eventually turns to the issue of replacement windows. The perception is that new windows are a luxury. The decision to install new windows is driven by maintenance costs and, in some cases, resident complaints over operability or draftiness associated with the existing windows. Typically the windows are not handled as part of the mainstream energy conservation program. If the client has already installed new windows, he probably based his selection on the low bidder of a unit that has marginal thermal performance. Every property has a budget and compromises must often be made to meet budgets. The purchaser may have not gotten the Cadillac of windows, but at least he got a good deal on the window that he did buy. His maintenance problems have been solved for the near term and resident complaints have gone down, for now

  17. Analysis on fuel thermal conductivity model of the computer code for performance prediction of fuel rods

    International Nuclear Information System (INIS)

    Li Hai; Huang Chen; Du Aibing; Xu Baoyu

    2014-01-01

    The thermal conductivity is one of the most important parameters in the computer code for performance prediction for fuel rods. Several fuel thermal conductivity models used in foreign computer code, including thermal conductivity models for MOX fuel and UO 2 fuel were introduced in this paper. Thermal conductivities were calculated by using these models, and the results were compared and analyzed. Finally, the thermal conductivity model for the native computer code for performance prediction for fuel rods in fast reactor was recommended. (authors)

  18. A Parametric Study of Thermal Performance of an Exterior Wall Insulated with Vacuum Insulation Panels

    OpenAIRE

    Ciobanu, Adrian-Alexandru; Iacob, Adrian

    2013-01-01

    The requirements regarding thermal insulation of the new buildings and thermal rehabilitation of the existing buildings tend to reach a threshold of insulation which allows to fulfill the necessary requirements for a low-energy building. To achieve this level of thermal insulation involves using either thick layers of conventional insulation (polystyrene, mineral wool, etc.) or high thermal performance materials. Vacuum insulation panels are high performance thermal insulation characteri...

  19. Thermal Performance Analysis of Staging Effect of Solar Thermal Absorber with Cross Design

    International Nuclear Information System (INIS)

    Amir Abdul Razak; Zafri Azran Abdul Majid; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-01-01

    The type and shape of solar thermal absorber materials will impact on the operating temperature and thermal energy storage effect of a solar air thermal collector. For a standard flat-plate design, energy gain can be increased by expanding the thermal absorber area along the collector plane, subject to area limitation. This paper focuses on the staging effect of a metal hollow square rod absorber of aluminium, stainless steel, and a combination of the two with a cross design, for the heat gain and temperature characteristics of a solar air collector. Experiments were carried out with three cross design set-ups, with 30 minutes of heating and cooling, phase, respectively, under 485 W/ m 2 solar irradiance value, and at a constant air speed at 0.38 m/ s. One set aluminium set-up delivered the highest output temperature of 41.8 degree Celsius, followed by two-sets aluminium and one aluminium set + one stainless steel set at 39.3 and 38.2 degree Celsius, respectively. The lowest peak temperature is recorded on three sets of the aluminium absorber at 35 degree Celsius. The bi-metallic set-up performed better than the two aluminium set-up where each set-up obtained a temperature drop against heat gain gradient value of -0.4186 degree Celsius/ W and -0.4917 degree Celsius/ W, respectively. Results concluded that by increasing the number of sets, the volume and surface areas of the absorber material are also increased, and lead to a decrease in peak temperature output for each increase of sets. (author)

  20. Analytical study of nozzle performance for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Davidian, K.O.; Kacynski, K.J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively

  1. PREDICTING THERMAL PERFORMANCE OF ROOFING SYSTEMS IN SURABAYA

    Directory of Open Access Journals (Sweden)

    MINTOROGO Danny Santoso

    2015-07-01

    Full Text Available Traditional roofing systems in the developing country likes Indonesia are still be dominated by the 30o, 45o, and more pitched angle roofs; the roofing cover materials are widely used to traditional clay roof tiles, then modern concrete roof tiles, and ceramic roof tiles. In the 90’s decay, shop houses are prosperous built with flat concrete roofs dominant. Green roofs and roof ponds are almost rarely built to meet the sustainable environmental issues. Some tested various roof systems in Surabaya were carried out to observe the roof thermal performances. Mathematical equation model from three references are also performed in order to compare with the real project tested. Calculated with equation (Kabre et al., the 30o pitched concrete-roof-tile, 30o clay-roof-tile, 45o pitched concrete-roof-tile are the worst thermal heat flux coming to room respectively. In contrast, the bare soil concrete roof and roof pond system are the least heat flux streamed onto room. Based on predicted calculation without insulation and cross-ventilation attic space, the roof pond and bare soil concrete roof (greenery roof are the appropriate roof systems for the Surabaya’s climate; meanwhile the most un-recommended roof is pitched 30o or 45o angle with concrete-roof tiles roofing systems.

  2. Thermal Performance of a Cryogenic Fluid Management Cubesat Mission

    Science.gov (United States)

    Berg, J. J.; Oliveira, J. M.; Congiardo, J. F.; Walls, L. K.; Putman, P. T.; Haberbusch, M. S.

    2013-01-01

    Development for an in-space demonstration of a CubeS at as a Cryogenic Fluid Management (CFM) test bed is currently underway. The favorable economics of CubeSats make them appealing for technology development activity. While their size limits testing to smaller scales, many of the regimes relevant to CFM can still be achieved. The first demo flight of this concept, CryoCube®-1, will focus on oxygen liquefaction and low-gravity level sensing using Reduced Gravity CryoTracker®. An extensive thermal modeling effort has been underway to both demonstrate concept feasibility and drive the prototype design. The satellite will utilize both a sun- and earth-shield to passively cool its experimental tank below 115 K. An on-board gas generator will create high pressure gaseous oxygen, which will be throttled into a bottle in the experimental node and condensed. The resulting liquid will be used to perform various experiments related to level sensing. Modeling efforts have focused on the spacecraft thermal performance and its effects on condensation in the experimental node. Parametric analyses for both optimal and suboptimal conditions have been considered and are presented herein.

  3. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atchley, Jerald Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  4. Thermal Performance Analysis of a Geologic Borehole Repository

    Energy Technology Data Exchange (ETDEWEB)

    Reagin, Lauren [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-16

    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of two WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to

  5. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    The market for solar heating plants connected to district heating systems is expanding rapidly in Denmark. It is expected that by the end of 2014 the 10 largest solar heating plants in Europe will be located in Denmark. Measurements from 23 Danish solar heating plants, all based on flat plate solar...... collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... of the cost/performance ratio for solar collector fields, both with flat plate collectors and with concentrating tracking solar collectors. It is recommended to continue monitoring and analysis of all large solar heating plants to document the reliability of the solar heating plants. It is also recommended...

  6. Thermal-Performance Instability in Piezoresistive Sensors: Inducement and Improvement

    Science.gov (United States)

    Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Fang, Xuan

    2016-01-01

    The field of piezoresistive sensors has been undergoing a significant revolution in terms of design methodology, material technology and micromachining process. However, the temperature dependence of sensor characteristics remains a hurdle to cross. This review focuses on the issues in thermal-performance instability of piezoresistive sensors. Based on the operation fundamental, inducements to the instability are investigated in detail and correspondingly available ameliorative methods are presented. Pros and cons of each improvement approach are also summarized. Though several schemes have been proposed and put into reality with favorable achievements, the schemes featuring simple implementation and excellent compatibility with existing techniques are still emergently demanded to construct a piezoresistive sensor with excellent comprehensive performance. PMID:27886125

  7. Standard Guide for Specifying Thermal Performance of Geothermal Power Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  8. Assessing the performance of windowed 1H CRAMPS methods, on biological solids, at high-field and MAS up to 35 kHz

    Science.gov (United States)

    Mafra, Luís; Coelho, Cristina; Siegel, Renée; Rocha, João

    2009-03-01

    The performance of various high-resolution 1D 1H CRAMPS pulse schemes at moderate and high static magnetic fields (400 MHz and 800 1H Larmor frequencies) and spinning rates up to 35 kHz, using state-of-the-art electronics is compared. The performance of the 1H windowed acquisition decoupling schemes, wDUMBO, wPMLG3 and wSAM3 is investigated using their effective z-rotation variants on glycine and other small biological molecules, tripeptide reduced glutathione and nucleoside uridine. 1H CRAMPS spectra, recorded with windowed 1H- 1H decoupling methods and fast MAS (35 kHz) and high-field are reported for the first time. 1H spectra exhibiting outstanding resolution and completely free from any artifact are also shown. The effect on spectra quality of the decoupling rf cycle and rotor periods ratio ( τC/τR) and the power requirements needed for each windowed 1H CRAMPS methods are discussed.

  9. The Effect of Geometry Parameters on Energy and Thermal Performance of School Buildings in Cold Climates of China

    NARCIS (Netherlands)

    Zhang, A.; Bokel, R.M.J.; van den Dobbelsteen, A.A.J.F.; Sun, Y.; Huang, Q; Zhang, Qi

    2017-01-01

    This paper discusses the role of geometry parameters including building shape, window to wall ratio, room depth, and orientation on the energy use and thermal comfort of school buildings in cold climates of China. The annual total energy demand and summer thermal discomfort time were compared

  10. Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings

    Science.gov (United States)

    Johnson, Wesley Louis

    2010-01-01

    Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be

  11. Thermal analysis of the effect of thick thermal barrier coatings on diesel engine performance

    International Nuclear Information System (INIS)

    Hoag, K.L.; Frisch, S.R.; Yonushonis, T.M.

    1986-01-01

    The reduction of heat rejection from the diesel engine combustion chamber has been the subject of a great deal of focus in recent years. In the pursuit of this goal, Cummins Engine Company has received a contract from the Department of Energy for the development of thick thermal barrier coatings for combustion chamber surfaces. This contract involves the analysis of the impact of coatings on diesel engine performance, bench test evaluation of various coating designs, and single cylinder engine tests. The efforts reported in this paper center on the analysis of the effects of coatings on engine performance and heat rejection. For this analysis the conventional water cooled engine was compared with an engine having limited oil cooling, and utilizing zirocnia coated cylinder had firedecks and piston crowns. The analysis showed little or no benefits of similarly coating the valves or cylinder liner

  12. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    is performing well in spite of the fact that the solar collectors are far from being orientated optimally. The utilization of the solar radiation on the collectors is higher, 46% in the second year of operation, than for any other system earlier investigated in Denmark, 16%-34%. The reason for the good thermal...... performance and for the excellent utilization of the solar radiation is the high hot-water consumption and the good system design making use of external heat exchangers and stratification inlet pipes.......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...

  13. COMMIX analysis of four constant flow thermal upramp experiments performed in a thermal hydraulic model of an advanced LMR

    International Nuclear Information System (INIS)

    Yarlagadda, B.S.

    1989-04-01

    The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs

  14. SRF Performance of CEBAF After Thermal Cycle to Ambient Temperature

    International Nuclear Information System (INIS)

    Robert Rimmer; Jay Benesch; Joseph Preble; Charles Reece

    2005-01-01

    In September 2003, in the wake of Hurricane Isabel, JLab was without power for four days after a tree fell on the main power lines feeding the site. This was long enough to lose insulating vacuum in the cryomodules and cryogenic systems resulting in the whole accelerator warming up and the total loss of the liquid helium inventory. This thermal cycle stressed many of the cryomodule components causing several cavities to become inoperable due to helium to vacuum leaks. At the same time the thermal cycle released years of adsorbed gas from the cold surfaces. Over the next days and weeks this gas was pumped away, the insulating vacuum was restored and the machine was cooled back down and re-commissioned. In a testament to the robustness of SRF technology, only a small loss in energy capability was apparent, although individual cavities had quite different field-emission characteristics compared to before the event. In Summer 2004 a section of the machine was again cycled to room temperature during the long maintenance shutdown. We report on the overall SRF performance of the machine after these major disturbances and on efforts to characterize and optimize the new behavior for high-energy running

  15. Thermal expansion behaviour of high performance PEEK matrix composites

    International Nuclear Information System (INIS)

    Goyal, R K; Mulik, U P; Tiwari, A N; Negi, Y S

    2008-01-01

    The thermal expansion behaviour of high performance poly(ether-ether-ketone) (PEEK) composites reinforced with micro- (8 μm) and nano- (39 nm) sized Al 2 O 3 particles was studied. The distribution of Al 2 O 3 in the PEEK matrix was studied by scanning electron microscopy and transmission electron microscopy. The coefficient of thermal expansion (CTE) was reduced from 58 x 10 -6 deg. C -1 for pure PEEK to 22 x 10 -6 deg. C -1 at 43 vol% micro-Al 2 O 3 and to 23 x 10 -6 deg. C -1 at 12 vol% nano-Al 2 O 3 composites. For a given volume fraction, nano-Al 2 O 3 particles are more effective in reducing the CTE of composites than that of micro-Al 2 O 3 particles. This may be attributed to the much higher interfacial area or volume of nanocomposites than that of microcomposites. The upper limit and lower limit of the Schapery model separately fit closely the CTE of the micro- and nano-composites, respectively. Other models such as the rule of mixture and Kerner and Turner models were also correlated with the data

  16. Documentation of Calculation Program and Guideline for Optimal Window Design

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies; Svendsen, Svend

    . A user-friendly calculation program based on simple input data has recently been developed to assist engineers and architects during the process of selecting suitable windows for residential building design. The program is organised in four steps, which together represent an analysis of how windows...... in a specific building design perform with regard to energy consumption, thermal indoor environment, and cost. The analyses in the steps gradually increase in level of detail and support the design decisions throughout the design process. This document presents work done to validate the program and demonstrates...

  17. Loads and Coupling Modalities Influence the Performance of the Floating Mass Transducer as a Round Window Driver.

    Science.gov (United States)

    Gostian, Antoniu Oreste; Pazen, David; Ortmann, Magdalene; Anagiotos, Andreas; Schwarz, David; Hüttenbrink, Karl Bernd; Beutner, Dirk

    2016-06-01

    High loads forcing the floating mass transducer (FMT) of a single active middle ear implant toward the round window membrane (RWM) affect the backward stimulation of the cochlea. Various factors influence the backward stimulation of the cochlea. We investigated the effects of various loads applied to the FMT together with different coupling techniques at the fully exposed RWM on the vibration transmission. Experimental study on temporal bones with the FMT linked to a load cell mounted on a translation stage moving it against the fully exposed RWM with increasing loads up to 200 mN by itself, with interposed perichondrium, cartilage or connected to the round window coupler. Cochlear stimulation is measured by the volume velocities of the stapes footplate using LASER-Doppler-vibrometry. Loads ranging from 5 to 20 mN induce the highest volume velocities of the stapes footplate. Increasing loads decrease the transmission of vibration in the low-frequency range but enhance the transmission of high frequencies. The interposition of perichondrium and cartilage proved to be advantageous. The load applied to the FMT distinctly affects the backward stimulation of the cochlea. Although increasing loads have inverse effects on the transmission of low and high frequencies, high loads lead to an overall decrease of cochlear stimulation. Out of the applied coupling techniques interposed perichondrium and cartilage allow for the most efficient stimulation.

  18. Performance of beryllium, carbon, and tungsten under intense thermal fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J. [Association Euratom-Forschungszentrum Juelich GmbH (Germany); Akiba, M. [Japan Atomic Energy Research Institute, Naka, Ibaraki 311-01 (Japan); Bolt, H. [Association Euratom-Forschungszentrum Juelich GmbH (Germany); Breitbach, G. [Association Euratom-Forschungszentrum Juelich GmbH (Germany); Duwe, R. [Association Euratom-Forschungszentrum Juelich GmbH (Germany); Makhankov, A. [D.V. Efremov Institute, St. Petersburg 189 631 (Russian Federation); Ovchinnikov, I. [D.V. Efremov Institute, St. Petersburg 189 631 (Russian Federation); Roedig, M. [Association Euratom-Forschungszentrum Juelich GmbH (Germany); Wallura, E. [Association Euratom-Forschungszentrum Juelich GmbH (Germany)

    1997-02-01

    Transient heat loads on a millisecond timescale with deposited energy densities beyond 1 MJ m{sup -2} have been simulated in a plasma accelerator facility (VIKA) and in two high power electron beam teststands (JUDITH, JEBIS). Main objective of these experiments was to study and to compare the behaviour of different plasma facing materials (Be, CFC, W) under heat loads which occur during disruptions in future thermonuclear fusion reactors such as ITER. In these tests special attention was paid to the thermal shock resistance, the processes during melt layer formation, and the resulting material erosion. To perform these tests specific loading techniques and diagnostics have been developed and applied. Among these are high heat flux loading experiments at elevated temperatures (T>DBTT) of the test coupons, fast surface pyrometry, and reliable techniques for the quantification of the absorbed energy. (orig.).

  19. Unit thermal performance of atmospheric spray cooling systems

    International Nuclear Information System (INIS)

    Porter, R.W.; Jain, M.; Chaturvedi, S.K.

    1980-01-01

    Thermal performance of an open atmospheric spray pond or canal depends on the direct-contact evaporative cooling of an individual spray unit (spray nozzle or module) and the interference caused by local heating and humidification. Droplet parameters may be combined into a dimensionless group, number of transfer units (NTU) or equivalent, whereas large-scale air-vapor dynamics determine interference through the local wet-bulb temperature. Quantity NTU were implied from field experiments for a floating module used in steam-condenser spray canals. Previous data were available for a fixed-pipe nozzle assembly used in spray ponds. Quantity NTU were also predicted using the Ranz-Marshall correlations with the Sauter-mean diameter used as the characteristic length. Good agreement with experiments was shown for diameters of 1--1.1 cm (module) and 1.9 mm

  20. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  1. Thermal modelling of PV module performance under high ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.

  2. Development of fuel performance and thermal hydraulic technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Ho; Song, K. N.; Kim, H. K. and others

    2000-03-01

    Space grid in LWR fuel assembly is a key structural component to support fuel rods and to enhance heat transfer from fuel rod to the coolant. Therefore, the original spacer grid has been developed. In addition, new phenomena in fuel behavior occurs at the high burnup, so that models to analyze those new phenomena were developed. Results of this project can be summarized as follows. - Seven different spacer grid candidates have been invented and submitted for domestic and US patents. Spacer grid test specimen(3x3 array and 5x5 array) were fabricated for each candidate and the mechanical tests were performed. - Basic technologies in the mechanical and thermal hydraulic behavior in the spacer grid development are studied and relevant test facilities were established - Fuel performance analysis models and programs were developed for the high burnup pellet and cladding, and fuel performance data base were compiled - Procedures of fuel characterization and in-/out of-pile tests were prepared - Conceptual design of fuel rod for integral PWR was carried out. (author)

  3. The Fuel Performance Analysis of LWR Fuel containing High Thermal Conductivity Reinforcements

    International Nuclear Information System (INIS)

    Kim, Seung Su; Ryu, Ho Jin

    2015-01-01

    The thermal conductivity of fuel affects many performance parameters including the fuel centerline temperature, fission gas release and internal pressure. In addition, enhanced safety margin of fuel might be expected when the thermal conductivity of fuel is improved by the addition of high thermal conductivity reinforcements. Therefore, the effects of thermal conductivity enhancement on the fuel performance of reinforced UO2 fuel with high thermal conductivity compounds should be analyzed. In this study, we analyzed the fuel performance of modified UO2 fuel with high thermal conductivity reinforcements by using the FRAPCON-3.5 code. The fissile density and mechanical properties of the modified fuel are considered the same with the standard UO2 fuel. The fuel performance of modified UO2 with high thermal conductivity reinforcements were analyzed by using the FRAPCON-3.5 code. The thermal conductivity enhancement factors of the modified fuels were obtained from the Maxwell model considering the volume fraction of reinforcements

  4. Performance computation of window air conditioner with very low GWP near azeotropic refrigerant mixtures as a drop in Substitutes to R22

    Directory of Open Access Journals (Sweden)

    Vali Shaik Sharmas

    2018-01-01

    Full Text Available The principal objective of the present study is to compute the thermodynamic performance of window air conditioner based on standard vapour compression refrigeration cycle using R22, R407C and nineteen refrigerant mixtures. In this work nineteen R290/R1270 blends at different compositions are developed. A MATLAB code is developed to compute the thermodynamic performance parameters of all the studied refrigerants at condensing and evaporating temperatures of 54.4°C and 7.2°C respectively. The performance parameters are cooling effect, compressor work, COP, compressor discharge temperature, power per ton of refrigeration and volumetric cooling capacity respectively. Analytical results revealed that COP of new binary mixture R290/R1270 (90/10 by mass % is 2.82% higher among R22, R407C and nineteen studied refrigerants. Energy required by the compressor per ton of refrigeration for R290/R1270 (90/10 by mass % is 2.73% lower among R22, R407C and nineteen studied fluids. The discharge temperature of the compressor for all the nineteen investigated blends are reduced by 6.0-8.9oC compared to R22. Overall thermodynamic performance of window air conditioner with R290/R1270 (90/10 by mass % is better than R22 with significant savings in energy consumption and hence it is an energy efficient ecofriendly refrigerant mixture as a drop in substitute to R22.

  5. Handbook on Windows and Energy

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    transmission through windows is described in detail including radiation, convection and conduction as well as solar transmittance of window glazing. The most used terms related to characterization of window energy performance are defined and calculation methods according to international standards...... flow and detailed calculation of light and solar transmittance is given.Different measurement techniques for characterization of window heat loss coefficient and total solar energy transmittance is described and references to interantional standards are given.Finally, the handbook includes...... a comprehensive list of window related standards and a list of Nordic research and development projects.Two programs are encloased in the handbook for calculation of solar radiation on inclined surfaces including a shadow correction and a simple program for evaluation of energy savings and risk of overtemperature....

  6. Electromagnetic and mechanical design of gridded radio-frequency cavity windows

    Energy Technology Data Exchange (ETDEWEB)

    Alsharo' a, Mohammad M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2004-12-01

    Electromagnetic, thermal and structural analyses of radio-frequency (RF) cavities were performed as part of a developmental RF cavity program for muon cooling. RF cavities are necessary to provide longitudinal focusing of the muons and to compensate for their energy loss. Closing the cavity ends by electrically conducting windows reduces the power requirement and increases the on-axis electric field for a given maximum surface electric field. Many factors must be considered in the design of RF cavity windows. RF heating can cause the windows to deform in the axial direction of the cavity. The resulting thermal stresses in the window must be maintained below the yield stress of the window material. The out-of-plane deflection must be small enough so that the consequent frequency shift is tolerable. For example, for an 805 MHz cavity, the out-of-plane deflection must be kept below 25 microns to prevent the frequency of the cavity from shifting more than 10 kHz. In addition, the window design should yield smooth electric and magnetic fields, terminate field leakage beyond the window, and minimize beam scattering. In the present thesis, gridded-tube window designs were considered because of their high structural integrity. As a starting point in the analysis, a cylindrical pillbox cavity was considered as a benchmark problem. Analytical and finite element solutions were obtained for the electric and magnetic fields, power loss density, and temperature profile. Excellent agreement was obtained between the analytical and finite element results. The finite element method was then used to study a variety of gridded-tube windows. It was found that cooling of the gridded-tube windows by passing helium gas inside the tubes significantly reduces the out-of-plane deflection and the thermal stresses. Certain tube geometries and grid patterns were found to satisfy all of the design requirements.

  7. Electromagnetic and mechanical design of gridded radio-frequency cavity windows

    International Nuclear Information System (INIS)

    Alsharoa, Mohammad M.

    2004-01-01

    Electromagnetic, thermal and structural analyses of radio-frequency (RF) cavities were performed as part of a developmental RF cavity program for muon cooling. RF cavities are necessary to provide longitudinal focusing of the muons and to compensate for their energy loss. Closing the cavity ends by electrically conducting windows reduces the power requirement and increases the on-axis electric field for a given maximum surface electric field. Many factors must be considered in the design of RF cavity windows. RF heating can cause the windows to deform in the axial direction of the cavity. The resulting thermal stresses in the window must be maintained below the yield stress of the window material. The out-of-plane deflection must be small enough so that the consequent frequency shift is tolerable. For example, for an 805 MHz cavity, the out-of-plane deflection must be kept below 25 microns to prevent the frequency of the cavity from shifting more than 10 kHz. In addition, the window design should yield smooth electric and magnetic fields, terminate field leakage beyond the window, and minimize beam scattering. In the present thesis, gridded-tube window designs were considered because of their high structural integrity. As a starting point in the analysis, a cylindrical pillbox cavity was considered as a benchmark problem. Analytical and finite element solutions were obtained for the electric and magnetic fields, power loss density, and temperature profile. Excellent agreement was obtained between the analytical and finite element results. The finite element method was then used to study a variety of gridded-tube windows. It was found that cooling of the gridded-tube windows by passing helium gas inside the tubes significantly reduces the out-of-plane deflection and the thermal stresses. Certain tube geometries and grid patterns were found to satisfy all of the design requirements

  8. Method to evaluate window products with respect to a specific application

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    1997-01-01

    A two-node model of a room has been implemented in a computer program, WinSim, de-veloped for evaluation of thermal window performance in new buildings and in case of ret-rofitting. The program calculates the annual heating demand and the number of hours with indoor temperatures higher than a user...... building simulation program. Good agreement has been found between the two programs with respect to cal-culated annual heating demand and energy savings due to window exchange, and also the calculated indoor thermal comfort level is in the same range. Based on the limited examples used for the comparison...... it can be concluded that WinSim is well suited for a fast and realis-tic evaluation of thermal window performance....

  9. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [ORNL; Todosow, Michael [Brookhaven National Laboratory (BNL)

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  10. High performance thermal stress analysis on the earth simulator

    International Nuclear Information System (INIS)

    Noriyuki, Kushida; Hiroshi, Okuda; Genki, Yagawa

    2003-01-01

    In this study, the thermal stress finite element analysis code optimized for the earth simulator was developed. A processor node of which of the earth simulator is the 8-way vector processor, and each processor can communicate using the message passing interface. Thus, there are two ways to parallelize the finite element method on the earth simulator. The first method is to assign one processor for one sub-domain, and the second method is to assign one node (=8 processors) for one sub-domain considering the shared memory type parallelization. Considering that the preconditioned conjugate gradient (PCG) method, which is one of the suitable linear equation solvers for the large-scale parallel finite element methods, shows the better convergence behavior if the number of domains is the smaller, we have determined to employ PCG and the hybrid parallelization, which is based on the shared and distributed memory type parallelization. It has been said that it is hard to obtain the good parallel or vector performance, since the finite element method is based on unstructured grids. In such situation, the reordering is inevitable to improve the computational performance [2]. In this study, we used three reordering methods, i.e. Reverse Cuthil-McKee (RCM), cyclic multicolor (CM) and diagonal jagged descending storage (DJDS)[3]. RCM provides the good convergence of the incomplete lower-upper (ILU) PCG, but causes the load imbalance. On the other hand, CM provides the good load balance, but worsens the convergence of ILU PCG if the vector length is so long. Therefore, we used the combined-method of RCM and CM. DJDS is the method to store the sparse matrices such that longer vector length can be obtained. For attaining the efficient inter-node parallelization, such partitioning methods as the recursive coordinate bisection (RCM) or MeTIS have been used. Computational performance of the practical large-scale engineering problems will be shown at the meeting. (author)

  11. Establishment of a Rating Program for Pre- and Post-Fabricated Windows

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Graham B.; Mapes, Terry S.; Shah, B.; Bloyd, Cary N.

    2011-08-01

    This document was prepared to support the Smart Buildings-Material Testing and Rating Centres (SB-2) activity of the Asia-Pacific Economic Cooperation (APEC) Energy Smart Communities Initiative (ESCI). The ESCI was put forward by APEC Leaders at the 2010 meeting in Japan. APEC is the premier forum for facilitating economic growth, cooperation, trade and investment in the Asia-Pacific region. This document addresses the testing and certification of building products and equipment to support building energy codes, focusing specifically on energy-efficient factory-built windows. It sets forth a proposed structure for an APEC economy to establish a testing, rating, certification, and labeling program for efficient factory-built windows. In the context of this document, efficient windows would be windows made with insulating glass (IG) and an efficient frame assembly. The minimum efficiency metric (or thermal performance) for these windows is not quantified in this document and would generally be established by a governmental agency.

  12. Advanced Control of Electrochromic Windows

    OpenAIRE

    Scartezzini, Jean-Louis; Zarkadis, Nikos; Morel, Nicolas

    2013-01-01

    In our research we use the technology of electrochromic (EC) glazing to maximize the use of daylight and minimize the energy consumption in buildings while preserving visual and thermal comfort of the users. We propose an advanced automatic control of EC windows coupled with an anidolic daylighting system (ADS), blinds and dimmable fluorescent lights. EC windows with a visible transmittance range (Tv) of 0.15 – 0.50 were installed on the southern façade of an office room of the LESO experimen...

  13. Effect of thermal acclimation on thermal preference, resistance and locomotor performance of hatchling soft-shelled turtle

    Directory of Open Access Journals (Sweden)

    Mei-Xian WU,Ling-Jun HU, Wei DANG, Hong-Liang LU, Wei-Guo DU

    2013-12-01

    Full Text Available The significant influence of thermal acclimation on physiological and behavioral performance has been documented in many ectothermic animals, but such studies are still limited in turtle species. We acclimated hatchling soft-shelled turtles Pelodiscus sinensis under three thermal conditions (10, 20 and 30 °C for 4 weeks, and then measured selected body temperature (Tsel, critical thermal minimum (CTMin and maximum (CTMax, and locomotor performance at different body temperatures. Thermal acclimation significantly affected thermal preference and resistance of P. sinensis hatchlings. Hatchling turtles acclimated to 10 °C selected relatively lower body temperatures and were less resistant to high temperatures than those acclimated to 20 °C and 30 °C. The turtles’ resistance to low temperatures increased with a decreasing acclimation temperature. The thermal resistance range (i.e. the difference between CTMax and CTMin, TRR was widest in turtles acclimated to 20 °C, and narrowest in those acclimated to 10 °C. The locomotor performance of turtles was affected by both body temperature and acclimation temperature. Hatchling turtles acclimated to relatively higher temperatures swam faster than did those acclimated to lower temperatures. Accordingly, hatchling turtles acclimated to a particular temperature may not enhance the performance at that temperature. Instead, hatchlings acclimated to relatively warm temperatures have a better performance, supporting the “hotter is better” hypothesis [Current Zoology 59 (6 : 718–724, 2013 ].

  14. Simulation and experimental study of thermal performance of a ...

    Indian Academy of Sciences (India)

    Building energy conservation; phase change material; concrete roof with PCM. 1. Introduction. In hot climates ... The latent heat thermal energy storage with a phase change material (PCM) is an effective way of thermal storage system due to its ..... Renewable and Sustainable Energy Rev. 18: 607–625. Atul Sharma, Tyagi ...

  15. Thermal performance of a vegetated cladding system on facade walls

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Y.; Chu, L.M. [Department of Biology, The Chinese University of Hong Kong, Science Center, Shatin, NT, Hong Kong (China); Cheung, Ken K.S. [Housing Department, Hong Kong SAR Government, Kowloon, Hong Kong (China)

    2010-08-15

    An experimental approach is used to assess the effect of vegetation on the thermal performance of a vertical greening system, which comprised of turf-based vertical planting modules, on an elevated facade wall of a public housing apartment. Despite temperature fluctuations in the various compartments external and internal to a concrete wall, the vegetated cladding reduced interior temperatures and delayed the transfer of solar heat, which consequently reduced power consumption in air-conditioning compared with a building envelope with bare concrete. Vegetation cover led to a different pattern of temperature fluctuations on wall surfaces, which may affect the comfort of occupants even after sunset. The cooling effect which was closely associated with the area covered by living plants and moisture in the growth medium, demonstrated the value of maintaining a healthy vegetation cover beyond visual amenity. Marked variation in moisture distribution along the vertical profile of the growth medium highlighted a concern rarely addressed in planting on ground. Substrate moisture measured at randomly selected locations would underestimate the water stress in some plants and impair their survival. (author)

  16. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... window is made of fiber-reinforced plastic (plastic reinforced by fine fibers made of glass). This composite material is a weatherproof material with very low thermal conductivity and high mechanical strength. These properties make the material very suitable for frame profiles due to lower heat loss...

  17. Thermal Performance of a Multi-Evaporator Loop Heat Pipe with Thermal Masses and Thermoelectric Coolers

    Science.gov (United States)

    Ku, Jen-Tung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermoelectric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of the condensers is fully utilized. Ammonia was used as the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 10W even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/- 0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling

  18. An Experimental and Analytical Evaluation of Wall And Window Retrofit Configurations: Supporting the Residential Retrofit Best Practices Guide

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Petrie, Thomas [ORNL; Kosny, Jan [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Hulvey, Kimberly D [ORNL

    2007-11-01

    A Retrofit Best Practices Guide was developed to encourage homeowners to consider energy conservation issues whenever they modify their siding or windows. In support of this guide, an experimental program was implemented to measure the performance of a number of possible wall siding and window retrofit configurations. Both thermal and air-leakage measurements were made for a 2.4 x 2.4 m (8 x 8 ft) wall section with and without a 0.9 x 1.2 m (3 x 4 ft) window. The windows tested were previously well-characterized at a dedicated window test facility. A computer model was also used to provide information for the Best Practices Guide. The experimental data for walls and windows were used in conjunction with this model to estimate the total annual energy savings for several typical houses in a number of different locations.

  19. Windows 8 visual quick tips

    CERN Document Server

    McFedries, Paul

    2012-01-01

    Easy-in, easy-out format covers all the bells and whistles of Windows 8 If you want to learn how to work smarter and faster in Microsoft's Windows 8 operating system, this easy-to-use, compact guide delivers the goods. Designed for visual learners, it features short explanations and full-color screen shots on almost every page, and it's packed with timesaving tips and helpful productivity tricks. From enhancing performance and managing digital content to setting up security and much more, this handy guide will help you get more out of Windows 8. Uses full-color screen shots and short, step-by-

  20. Holography through optically active windows

    Science.gov (United States)

    Decker, A. J.

    1979-01-01

    By using two orthogonally polarized reference beams, holograms can be recorded through stressed windows and the reconstructed virtual image will show no stress pattern. As shown analytically, the stress-pattern-free hologram is recordable for any polarization state of the object illumination. Hence, the more efficient nondepolarizing diffuser can be used in performing holography through stressed windows if two reference beams are used. Results are presented for a pair of machined polysulfone windows intended for use in a holographic flow-visualization setup in a single-stage-compressor test rig.

  1. Preparation and thermal performance of paraffin/Nano-SiO2 nanocomposite for passive thermal protection of electronic devices

    International Nuclear Information System (INIS)

    Wang, Yaqin; Gao, Xuenong; Chen, Peng; Huang, Zhaowen; Xu, Tao; Fang, Yutang; Zhang, Zhengguo

    2016-01-01

    Highlights: • Three types of paraffin/nano-SiO 2 nanocomposites were prepared and characterized. • Thermo-physical properties of these composites were determined and compared. • One composite with lower thermal conductivity showed better thermal insulation properties. • This composite was identified as thermal insulation material for electronic components. - Abstract: In this paper, three grades of nano silicon dioxide (nano-SiO 2 ), NS1, NS2 and NS3, were mixed into paraffin to prepare nanocomposites as novel insulation materials for electronic passive thermal protection applications. The optimal mass percentages of paraffin for the three composites, NS1P, NS2P and NS3P, were determined to be 75%, 70% and 65%, respectively. Investigations by means of scanning electron micrographs (SEM), differential scanning calorimeter (DSC), thermogravimetric analysis (TG), hot disk analyzer and thermal protection performance tests were devoted to the morphology, thermal properties and thermal protection performance analysis of composites. Experimental results showed that paraffin uniformly distributed into the pores and on the surface of nano-SiO 2 . Melting points of composites declined and experimental latent heat became lower than the calculated values with the decrease of nano-SiO 2 pore size. The NS1P composite had larger thermal storage capacity, better reliability and stability compared with NS2P and NS3P. In addition, compared with 90% wt.% paraffin/EG composite, the incorporation of NS1 (25 wt.%) into paraffin caused not only 63.2% reduction in thermal conductivity, but also 21.8% increase in thermal protection time affected by the ambient temperature. Thus those good properties confirmed that NS1P (75 wt.%) composite was a viable candidate for protecting electronic devices under high temperature environment.

  2. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Yueping Fang; Eames, P.C.; Hyde, T.J. [University of Ulster, Newtonabbey (United Kingdom). Centre for Sustainable Technologies; Norton, B. [Dublin Institute of Technology, Dublin (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5 m by 0.5 m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32 mm diameter pillars spaced 25 mm apart, contiguously sealed by a 10 mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  3. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Eames, Philip C.; Hyde, Trevor J. [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, N. Ireland BT37 0QB (United Kingdom); Norton, Brian [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5m by 0.5m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32mm diameter pillars spaced 25mm apart, contiguously sealed by a 10mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  4. The Adaptive Thermal Comfort model may not always predict thermal effects on performance

    DEFF Research Database (Denmark)

    Wyon, David Peter; Wargocki, Pawel

    2014-01-01

    A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues.......A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues....

  5. Performance of modified greenhouse dryer with thermal energy storage

    Directory of Open Access Journals (Sweden)

    Om Prakash

    2016-11-01

    Full Text Available In this attempt, the main goal is to do annual performance, environomical analysis, energy analysis and exergy analysis of the modified greenhouse dryer (MGD operating under active mode (AM and passive mode (PM. Thermal storage is being applied on the ground of MGD. It is applied in three different ways namely barren floor, floor covered with black PVC sheet (PVC and Black Coated. Experimental study of dryers in no-load conditions reveals that floor covered with a black PVC sheet is more conducive for drying purpose than other floors. The MGD under AM is found to be more effective as compared to PM for tomato and capsicum, which are high moisture content crops. For medium moisture content crop (potato chips, both dryers show relatively similar drying performance. Crops dried inside the greenhouse dryer are found to be more nutrient than open sun dried crops. The payback period of the modified greenhouse dryer under passive mode is found to be 1.11 years. However, for the active mode of the modified greenhouse dryer is only 1.89 years. The embodied energy of the passive mode of the dryer is a 480.277 kWh and 628.73 kWh for the active mode of the dryer. The CO2 emissions per annum for passive and active mode greenhouse dryers are found to be 13.45 kg and 17.6 kg respectively. The energy payback time, carbon mitigation and carbon credit have been calculated based type of crop dried. The range of exergy efficiency is 29%–86% in MGD under PM and 30%–78% in the MGD under AM. The variation of Heat utilization factor (HUF for MGD under PM is 0.12–0.38 and 0.26–0.53 for MGD under AM. The range of co-efficient of performances (COP for MGD under PM is 0.55–0.87 and 0.58–0.73 for MGD under AM.

  6. Thermal Performance of Microencapsulated Phase Change Material Survey

    National Research Council Canada - National Science Library

    Alvarado, Jorge L; Jones, Barclay G; Marsh, Charles P; Kessler, David A; Sohn, Chang W; Feickert, Carl A; Phetteplace, Gary E; Crowley, Eric D; Franks, Ryan J; Carlson, Thomas A

    2008-01-01

    ...). Because PCMs have greater thermal capacity than the carrier fluid, owing to their latent heat of phase change, they can increase the amount of heat transfer at equivalent volumetric flow in a heat...

  7. Performance Limits and Opportunities for Low Temperature Thermal Desalination

    OpenAIRE

    Nayar, Kishor Govind; Swaminathan, Jaichander; Warsinger, David Elan Martin; Lienhard, John H.

    2015-01-01

    Conventional low temperature thermal desalination (LTTD) uses ocean thermal temperature gradients to drive a single stage flash distillation process to produce pure water from seawater. While the temperature difference in the ocean drives distillation and provides cooling in LTTD, external electrical energy is required to pump the water streams from the ocean and to maintain a near vacuum in the flash chamber. In this work, an LTTD process from the literature is compared against, the thermody...

  8. Thermal performance of marketed SDHW systems under laboratory conditions

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Fan, Jianhua

    A test facility for solar domestic hot water systems, SDHW systems was established at the Technical University of Denmark in 1992. During the period 1992-2012 21 marketed SDHW systems, 16 systems from Danish manufacturers and 5 systems from manufacturers from abroad, have been tested in the test...... comfort, avoiding simple errors, using the low flow principle and heat stores with a high degree of thermal stratification and by using components with good thermal characteristics....

  9. The thermal performance monitoring and optimisation system (TEMPO): lessons learnt

    International Nuclear Information System (INIS)

    Beere, W.H.Aa.

    2005-09-01

    The goal of condition monitoring, fault detection and diagnosis is to ensure the success of planned operations by recognizing anomalies in a plant. This is achieved by monitoring the condition of equipment and instrumentation, and by detection, identification, diagnosis and removal of faults. The method of using physical modelling for condition monitoring has been investigated at the Institutt for energiteknikk since 1998. The result of this work was the development of the TEMPO (ThErMal Performance monitoring and Optimisation) toolbox. In this toolbox plant wide models are built up of unit sub-models. These are then linked to measurements by using data reconciliation. This enables the comparison of calculated to measured values as well as an indication of the significance of any deviation. It also allows the calculation of unmeasured variables as well as an overall 'goodness of fit' indicator. Since its first release in 2000 the TEMPO toolbox has been used to model the turbine cycles of several NPPs. Installations include Forsmark 3 and Loviisa 2 with feasibility studies for Dukovany, Olkiluoto 2, Almaraz and Paks. The experience from creating and installing TEMPO at these plants has now been collated and is presented in this report. This experience is used to indicate which direction the further development of TEMPO should take. The experience of using TEMPO has shown that the data-reconciliation method can be applied to the turbine cycles of NPPs. Problems that have arose have primarily been connected to the usability of the toolbox. This has prompted a shift in the development emphasis from the task of developing the method to that of developing its usability. A summary of improvement proposals is given in this paper. The reader is welcome to comment on these proposals or to suggest alternative improvements. (Author)

  10. Analysis of a grid window structure for RF cavities in a Muon cooling channel

    International Nuclear Information System (INIS)

    Ladran, A.; Li, D.; Moretti, A.; Rimmer, R.; Staples, J.; Virostek, S.; Zisman, M.

    2003-01-01

    We report on the electromagnetic and thermal analysis of a grid window structure for high gradient, low frequency RF cavities. Windows may be utilized to close the beam iris and increase shunt impedance of closed-cell RF cavities. This work complements previous work presented for windows made of solid beryllium foil. An electromagnetic and thermal analysis of the thin wall tubes in a grid pattern was conducted using both MAFIA4 and ANSYS finite element analyses. The results from both codes agreed well for a variety of grid configurations and spacing. The grid configuration where the crossing tubes touched was found to have acceptable E-Fields and H-Fields performance. The thermal profiles for the grid will also be shown to determine a viable cooling profile

  11. Heat transfer and thermal storage performance of an open thermosyphon type thermal storage unit with tubular phase change material canisters

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Hu, Bo-Wen; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel open heat pipe thermal storage unit is design to improve its performance. • Mechanism of its operation is phase-change heat transfer. • Tubular canisters with phase change material were placed in thermal storage unit. • Experiment and analysis are carried out to investigate its operation properties. - Abstract: A novel open thermosyphon-type thermal storage unit is presented to improve design and performance of heat pipe type thermal storage unit. In the present study, tubular canisters filled with a solid–liquid phase change material are vertically placed in the middle of the thermal storage unit. The phase change material melts at 100 °C. Water is presented as the phase-change heat transfer medium of the thermal storage unit. The tubular canister is wrapped tightly with a layer of stainless steel mesh to increase the surface wettability. The heat transfer mechanism of charging/discharging is similar to that of the thermosyphon. Heat transfer between the heat resource or cold resource and the phase change material in this device occurs in the form of a cyclic phase change of the heat-transfer medium, which occurs on the surface of the copper tubes and has an extremely high heat-transfer coefficient. A series of experiments and theoretical analyses are carried out to investigate the properties of the thermal storage unit, including power distribution, start-up performance, and temperature difference between the phase change material and the surrounding vapor. The results show that the whole system has excellent heat-storage/heat-release performance

  12. Windows Command Line Administration Instant Reference

    CERN Document Server

    Mueller, John Paul

    2010-01-01

    The perfect companion to any book on Windows Server 2008 or Windows 7, and the quickest way to access critical information. Focusing just on the essentials of command-line interface (CLI), Windows Command-Line Administration Instant Reference easily shows how to quickly perform day-to-day tasks of Windows administration without ever touching the graphical user interface (GUI). Specifically designed for busy administrators, Windows Command-Line Administration Instant Reference replaces many tedious GUI steps with just one command at the command-line, while concise, easy to access answers provid

  13. Performance evaluation of a thermal Doppler Michelson interferometer system.

    Science.gov (United States)

    Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen

    2005-11-20

    The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.

  14. Performances and reliability of WC based thermal spray coatings

    International Nuclear Information System (INIS)

    Scrivani, A.; Rosso, M.; Salvarani, L.

    2001-01-01

    Thermal spray processes are used for a lot of traditional and innovative applications and their importance is becoming higher and higher. WC/CoCr based thermal spray coatings represent one of the most important class of coatings that find application in a wide range of industrial sectors. This paper will address a review of current applications and characteristics of this kind of coating. The most important spraying processes, namely HVOF (high velocity oxygen fuel) are examined, the characterization of the coatings from the point of view of corrosion and wear resistance is considered. (author)

  15. Thermal comfort, physiological responses and performance during exposure to a moderate temperature drift

    DEFF Research Database (Denmark)

    Schellen, Lisje; van Marken Lichtenbelt, Wouter; de Wit, Martin

    2008-01-01

    The objective of this research was to study the effects of a moderate temperature drift on human thermal comfort, physiological responses, productivity and performance. A dynamic thermophysiological model was used to examine the possibility of simulating human thermal responses and thermal comfort...... under moderate transient conditions. To examine the influence of a moderate temperature ramp, a climate room set-up with experimental subjects was used. Eight subjects visited the climate room on two occasions: 1) exposure to a transient condition (a moderate temperature ramp) and 2) a steady...... temperature corresponding with a neutral thermal sensation (control situation). During the experiments both physiological responses and thermal sensation were measured. Productivity and performance were assessed with a ‘Remote Performance Measurement’ (RPM) method. Physiological and thermal sensation data...

  16. Grab Windows training opportunities; check CERN Windows roadmap!

    CERN Multimedia

    IT Department

    2011-01-01

    CERN Operating Systems and Information Services group (IT-OIS) actively monitors market trends to check how new software products correspond to CERN needs. In the Windows world, Windows 7 has been a big hit, with over 1500 Windows 7 PCs within less than a year since its support was introduced at CERN. No wonder: Windows XP is nearly 10 years old and is steadily approaching the end of its life-cycle. At CERN, support for Windows XP will stop at the end of December 2012. Compared to Vista, Windows 7 has the same basic hardware requirements, but offers higher performance, so the decision to upgrade is rather straightforward. CERN support for Vista will end in June 2011. In the world of Microsoft Office, version 2007 offers better integration with the central services than the older version 2003. Progressive upgrade from 2003 to 2007 is planned to finish in September 2011, but users are encouraged to pro-actively upgrade at their convenience. Please note that Office 2007 brings an important change in the area of ...

  17. Performance of a thermal imager employing a hybrid pyroelectric detector array with MOSFET readout

    International Nuclear Information System (INIS)

    Watton, R.; Mansi, M.V.

    1988-01-01

    A thermal imager employing a two-dimensional hybrid array of pyroelectric detectors with MOSFET readout has been built. The design and theoretical performance of the detector are discussed, and the results of performance measurements are presented. 8 references

  18. Windows 10 simplified

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 quickly and painlessly with this beginner's guide Windows 10 Simplified is your absolute beginner's guide to the ins and outs of Windows. Fully updated to cover Windows 10, this highly visual guide covers all the new features in addition to the basics, giving you a one-stop resource for complete Windows 10 mastery. Every page features step-by-step screen shots and plain-English instructions that walk you through everything you need to know, no matter how new you are to Windows. You'll master the basics as you learn how to navigate the user interface, work with files, create

  19. Windows 10 for dummies

    CERN Document Server

    Rathbone, Andy

    2015-01-01

    The fast and easy way to get up and running with Windows 10 Windows 10 For Dummies covers the latest version of Windows and gets you up and running with the changes and new features you'll find in this updated operating system. Packed with time-saving tips to help you get the most out of the software, this helpful Windows 10 guide shows you how to manage Windows tasks like navigating the interface with a mouse or touchscreen, connecting to the web, and troubleshooting problems and making quick fixes. Assuming no prior knowledge of the software, Windows 10 For Dummies addresses the updates to

  20. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  1. Simulation and experimental study of thermal performance of a ...

    Indian Academy of Sciences (India)

    Building concrete roof with vertical cylindrical hole of 0.5 × 0.5 m and array of 3 × 3 filled with phase change material (PCM) was considered for analysis. A detailed thermal analysis was carried by both simulation and experimental study. Results showed that this type of PCM room can decrease the indoor air temperature ...

  2. Optical and thermal performance of a three-dimensional compound ...

    Indian Academy of Sciences (India)

    of the steam generation was about 38%, which was one of the possible applications of 3D CPC module. Keywords. Solar concentrator; 3D CPC; optical and thermal efficiency of CPC. 1. Introduction. Depleting fossil fuel reserves, pollutant emissions due to the use of fossil fuels and increased cost of conventional fuels have ...

  3. Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters

    Science.gov (United States)

    Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel

    2013-08-01

    Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.

  4. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  5. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  6. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  7. LaF{sub 3} core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window

    Energy Technology Data Exchange (ETDEWEB)

    Ximendes, Erving Clayton [Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas (Brazil); Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Facultad de Ciencias, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Rocha, Uéslen; Jaque, Daniel, E-mail: daniel.jaque@uam.es [Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Facultad de Ciencias, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Kumar, Kagola Upendra; Jacinto, Carlos [Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas (Brazil)

    2016-06-20

    We report on Ytterbium and Neodymium codoped LaF{sub 3} core/shell nanoparticles capable of simultaneous heating and thermal sensing under single beam infrared laser excitation. Efficient light-to-heat conversion is produced at the Neodymium highly doped shell due to non-radiative de-excitations. Thermal sensing is provided by the temperature dependent Nd{sup 3+} → Yb{sup 3+} energy transfer processes taking place at the core/shell interface. The potential application of these core/shell multifunctional nanoparticles for controlled photothermal subcutaneous treatments is also demonstrated.

  8. Numerical investigation of temperature distribution and thermal performance while charging-discharging thermal energy in aquifer

    NARCIS (Netherlands)

    Ganguly, S.; Mohan Kumar, M.S.; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    A three-dimensional (3D) coupled thermo-hydrogeological numerical model for a confined aquifer thermal energy storage (ATES) system underlain and overlain by rock media has been presented in this paper. The ATES system operates in cyclic mode. The model takes into account heat transport processes of

  9. Schematic Window Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this IRAD is to produce a generic launch window analyzer (SWM) that allows for large-scale rapid analysis of a launch window and orbit design trade space....

  10. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  11. Determination of thermal performance of solar air heater

    OpenAIRE

    Kozak, Christina; Zhelykh, Vasil

    2013-01-01

    Considered the basic aspects of passive solar building. Given the main types of solar air heating systems. Proposed heating and ventilation system at the basis of solar air heater. Constructed fourfactors nomohram for determining thermal power of the thermosiphon heliocollector. Obtained analytical dependence of the amount heat of thermo heliocollector from the differential temprature air inlet and outlet, of the area input and output apertures of solar collector, heat fl...

  12. Evaluation of Strategies to Improve the Thermal Performance of Steel Frames in Curtain Wall Systems

    Directory of Open Access Journals (Sweden)

    Ji Hyun Oh

    2016-12-01

    Full Text Available Recently, metal curtain wall systems have been widely used in high-rise buildings due to many advantages, including being lightweight, rapid construction, and aesthetic features. Since the metal frame may lead to lower energy performance, thermal discomfort, and condensation risk due to the high thermal conductivity, its thermal performance can be important for the improvement of the overall thermal performance of the curtain wall system, as well as the energy efficiency of the building envelope. This study aims to evaluate variety of design strategies to improve the thermal performance of steel curtain wall frames. Five base cases and three further steps were selected for two different head profile shapes based on a state-of-the art technology review, and their thermal transmittances were calculated through simulations according to the ISO 12631 standard which is an international standard for calculating thermal transmittance of curtain wall system. Measured results that were obtained from hot-box tests were compared with the calculated results to validate the simulation method of this study. The shape of the head profile did not strongly influence the overall thermal transmittance, and the choice of strategies for the rabbet space was more important. More effective strategies could be decided according to the steps for variation development. This result can serve as a guideline for the design of high-performance curtain wall frames.

  13. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Matthew R. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Makarov, Nikolay S. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Ramasamy, Karthik [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Jackson, Aaron [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Guglielmetti, Rob [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; McDaniel, Hunter [UbiQD, Inc., Los Alamos, New Mexico 87544, United States

    2018-01-30

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within the existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.

  14. Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage

    Czech Academy of Sciences Publication Activity Database

    Anghel, E.M.; Pavel, P.M.; Constantinescu, M.; Petrescu, S.; Atkinson, I.; Buixaderas, Elena

    2017-01-01

    Roč. 208, Sep (2017), s. 1222-1231 ISSN 0306-2619 Grant - others:AV ČR(CZ) AR-17-02 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : phase change materials * thermal energy storage * modeling Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 7.182, year: 2016

  15. Pengaruh Window Level Dan Window Width Pada Lung Window Dan Mediastinum Window Pada Kualitas Citra CT-Scan Thorax

    OpenAIRE

    Gaol, Syahnaro Lumban

    2015-01-01

    This Research of image CT-SCAN thorax with influence of window level and window width, to obtain, get value of window level and optimal window width lung window and mediastinum window, so that get image of CT-SCAN thorax which with image quality. Image of CT-SCAN thorax obtained for mediastinum window use window width 350, 400, 450, 500 HU. And Window level 50,100,150 HU. While for lung window use window width 1000,1100 HU. The window level - 500-,600,-700,-800,-900,-1000 HU, by three observe...

  16. Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

    2012-01-01

    increase of the supply air temperature causes a decrease in thermal decay. The temperature rise is not significantly affected by the perimeter zone orientation, the internal heat gain and the window-to-wall ratio.

  17. Process of making cryogenically cooled high thermal performance crystal optics

    Science.gov (United States)

    Kuzay, T.M.

    1992-06-23

    A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.

  18. Addressing Thermal and Performance Variability Issues in Dynamic Processors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Kazutomo [Argonne National Lab. (ANL), Argonne, IL (United States); Llopis, Pablo [Univ. Carlos III de Madrid (Spain); Zhang, Kaicheng [Northwestern Univ., Evanston, IL (United States); Luo, Yingyi [Northwestern Univ., Evanston, IL (United States); Ogrenci-Memik, Seda [Northwestern Univ., Evanston, IL (United States); Memik, Gokhan [Northwestern Univ., Evanston, IL (United States); Sankaran, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Beckman, Pete [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    As CMOS scaling nears its end, parameter variations (process, temperature and voltage) are becoming a major concern. To overcome parameter variations and provide stability, modern processors are becoming dynamic, opportunistically adjusting voltage and frequency based on thermal and energy constraints, which negatively impacts traditional bulk-synchronous parallelism-minded hardware and software designs. As node-level architecture is growing in complexity, implementing variation control mechanisms only with hardware can be a challenging task. In this paper we investigate a software strategy to manage hardwareinduced variations, leveraging low-level monitoring/controlling mechanisms.

  19. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  20. Windows for Intel Macs

    CERN Document Server

    Ogasawara, Todd

    2008-01-01

    Even the most devoted Mac OS X user may need to use Windows XP, or may just be curious about XP and its applications. This Short Cut is a concise guide for OS X users who need to quickly get comfortable and become productive with Windows XP basics on their Macs. It covers: Security Networking ApplicationsMac users can easily install and use Windows thanks to Boot Camp and Parallels Desktop for Mac. Boot Camp lets an Intel-based Mac install and boot Windows XP on its own hard drive partition. Parallels Desktop for Mac uses virtualization technology to run Windows XP (or other operating systems

  1. Measure the effects of thermal discomfort on the performance of office work

    DEFF Research Database (Denmark)

    Lan, L.; Wargocki, P.; Lian, Z.W.

    2011-01-01

    . The method was examined through a subjective experiment with thermal environment as the prototypical example. The experimental results indicate that the negative effects of thermal discomfort on human performance were evaluated well by the tasks designed with the proposed method. It provides a useful tool...

  2. Performance results of a solar greenhouse combining electrical and thermal energy production

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Campen, J.B.; Tuijl, van B.A.J.; Janssen, H.J.J.; Bot, G.P.A.

    2010-01-01

    Performance results are given of a new type of greenhouse, which combines reflection of near infrared radiation (NIR) with electrical power generation using hybrid photovoltaic cell/thermal collector modules. Besides the generation of electrical and thermal energy, the reflection of the NIR will

  3. MAPTIP - Marine Aerosol Properties and Thermal Imager Performance : Summary and initial results

    NARCIS (Netherlands)

    Eijk, A.M.J. van; Leeuw, G. de; Jensen, D.R.

    1995-01-01

    The marine aerosol properties and thermal imager performance trial (MAPTIP) was conducted by NATO AC/243 Panel 04/RSG.8 and 04/RSG.5 in the Dutch coastal waters during the fall of 1993. The main objectives of the trial were (1) to assess marine boundary layer effects on thermal imaging systems and

  4. Impedance matching of pillbox-type RF windows and direct measurement of the ceramic relative dielectric constant

    International Nuclear Information System (INIS)

    Ao, Hiroyuki; Asano, Hiroyuki; Naito, Fujio; Ouchi, Nobuo; Tamura, Jun; Takata, Koji

    2014-01-01

    Impedance matching of RF windows that minimizes the RF reflection is necessary to prevent localized standing waves between an RF window and a cavity, which may cause thermal and/or multipactoring issues. It has been observed that the impedance matching condition of the pillbox-type RF window, checked by voltage standing wave ratio (VSWR) measurement, depends on the manufacturing lot of the window ceramic disk made of 95% purity Al 2 O 3 . The present report proposes new procedures for impedance matching as follows: (i) The relative dielectric constant of the ceramic window is directly measured using the resonant frequency of a cavity made by temporarily combining the pillbox part of the RF window and two short-circuiting plates. (ii) The dimensions of the pillbox section including the ceramic disk are fixed on the basis of the measured relative dielectric constant. To confirm this procedure, three RF windows were fabricated using the same type of ceramic material, and successful impedance matching of these windows was performed (VSWR<1.05). The measured results also suggest that the relative dielectric constant increases linearly with increasing density and that the impedance matching condition is mainly affected by variations of the relative dielectric constant due to shrinkage of the alumina during sintering. -- Highlights: • We measured the relative dielectric constant of an RF window ceramic directly. • We used the circular TE011-mode frequency of the pillbox part of an RF window itself. • The dimensions of the pillbox part were fixed on the basis of the measurement result. • Three RF windows were fabricated, and VSWR <1.05 for these windows was performed. • The relative dielectric constant increases linearly with increasing ceramic density

  5. Conceptual design of proton beam window

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  6. Design and fabrication of high power microwave window for 4 MeV LINAC

    International Nuclear Information System (INIS)

    Syunry, T.S.; Bhide, S.S.; Madan, R.S.; Das, S.; D'Sa, J.M.

    1988-01-01

    One of the critical components in the design and fabrication of 4 MeV LINAC is the R.F. window, through which 2 MW pulse R.F. power at 3 GHZ passes from the high pressure side to the chain of cavities under very high vacuum. Readymade windows, which can be incorporated in the LINAC are not easily available. These windows were fabricated inhouse, based upon some standard designs available in literature. However, the fabrication technique proved to be very difficult. The windows have been made successfully and tested for microwave performance. They were also rigorously thermally cycled and pressure tested. Fabrication details, test procedures and data are reported in this paper. (author). 5 figs., 2 tables

  7. SRF Performance of CEBAF After Thermal Cycle to Ambient Temperature

    CERN Document Server

    Rimmer, Robert; Preble, Joseph P; Reece, Charles E

    2005-01-01

    In September 2003, in the wake of Hurricane Isabel, JLab was without power for four days after a tree fell on the main power lines feeding the site. This was long enough to lose insulating vacuum in the cryomodules and cryogenic systems resulting in the whole accelerator warming up and the total loss of the liquid helium inventory. This thermal cycle stressed many of the cryomodule components causing several cavities to become inoperable due to helium to vacuum leaks. At the same time the thermal cycle released years of adsorbed gas from the cold surfaces. Over the next days and weeks this gas was pumped away, the insulating vacuum was restored and the machine was cooled back down and re-commissioned. In a testament to the robustness of SRF technology, only a small loss in energy capability was apparent, although individual cavities had quite different field-emission characteristics compared to before the event. In Summer 2004 a section of the machine was again cycled to room temperature during the long maint...

  8. Thermal Performance of Hollow Clay Brick with Low Emissivity Treatment in Surface Enclosures

    Directory of Open Access Journals (Sweden)

    Roberto Fioretti

    2014-10-01

    Full Text Available External walls made with hollow clay brick or block are widely used for their thermal, acoustic and structural properties. However, the performance of the bricks frequently does not conform with the minimum legal requirements or the values required for high efficiency buildings, and for this reason, they need to be integrated with layers of thermal insulation. In this paper, the thermal behavior of hollow clay block with low emissivity treatment on the internal cavity surfaces has been investigated. The purpose of this application is to obtain a reduction in the thermal conductivity of the block by lowering the radiative heat exchange in the enclosures. The aims of this paper are to indicate a methodology for evaluating the thermal performance of the brick and to provide information about the benefits that should be obtained. Theoretical evaluations are carried out on several bricks (12 geometries simulated with two different thermal conductivities of the clay, using a finite elements model. The heat exchange procedure is implemented in accordance with the standard, so as to obtain standardized values of the thermal characteristics of the block. Several values of emissivity are hypothesized, related to different kinds of coating. Finally, the values of the thermal transmittance of walls built with the evaluated blocks have been calculated and compared. The results show how coating the internal surface of the cavity provides a reduction in the thermal conductivity of the block, of between 26% and 45%, for a surface emissivity of 0.1.

  9. Thermal Performance Analysis of Reinforced Concrete Floor Structure with Radiant Floor Heating System in Apartment Housing

    Directory of Open Access Journals (Sweden)

    Young-Sun Jeong

    2015-01-01

    Full Text Available The use of the resilient materials in the radiant floor heating systems of reinforced concrete floor in apartment housing is closely related to the reduction of the floor impact sound and the heating energy loss. This study examined the thermal conductivity of expanded polystyrene (EPS foam used for the resilient material in South Korea and analysed the thermal transfer of reinforced concrete floor structure according to the thermal conductivity of the resilient materials. 82 EPS specimens were used to measure the thermal conductivity. The measured apparent density of EPS resilient materials ranged between 9.5 and 63.0 kg/m3, and the thermal conductivity ranged between 0.030 and 0.046 W/(m·K. As the density of resilient materials made of expanded polystyrene foam increases, the thermal conductivity tends to proportionately decrease. To set up reasonable thermal insulation requirements for radiant heating floor systems, the thermal properties of floor structure according to thermal insulation materials must be determined. Heat transfer simulations were performed to analyze the surface temperature, heat loss, and heat flow of floor structure with radiant heating system. As the thermal conductivity of EPS resilient material increased 1.6 times, the heat loss was of 3.4% increase.

  10. A Facile Approach to Evaluate Thermal Insulation Performance of Paper Cups

    Directory of Open Access Journals (Sweden)

    Yudi Kuang

    2015-01-01

    Full Text Available Paper cups are ubiquitous in daily life for serving water, soup, coffee, tea, and milk due to their convenience, biodegradability, recyclability, and sustainability. The thermal insulation performance of paper cups is of significance because they are used to supply hot food or drinks. Using an effective thermal conductivity to accurately evaluate the thermal insulation performance of paper cups is complex due to the inclusion of complicated components and a multilayer structure. Moreover, an effective thermal conductivity is unsuitable for evaluating thermal insulation performance of paper cups in the case of fluctuating temperature. In this work, we propose a facile approach to precisely analyze the thermal insulation performance of paper cups in a particular range of temperature by using an evaluation model based on the MISO (Multiple-Input Single-Output technical theory, which includes a characterization parameter (temperature factor and a measurement apparatus. A series of experiments was conducted according to this evaluation model, and the results show that this evaluation model enables accurate characterization of the thermal insulation performance of paper cups and provides an efficient theoretical basis for selecting paper materials for paper cups.

  11. Performance Testing of Thermal Cutting Systems for Sweet Pepper Harvesting Robot in Greenhouse Horticulture

    Science.gov (United States)

    Bachche, Shivaji; Oka, Koichi

    2013-03-01

    This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.

  12. CVD diamond windows for infrared synchrotron applications

    International Nuclear Information System (INIS)

    Sussmann, R.S.; Pickles, C.S.J.; Brandon, J.R.; Wort, C.J.H.; Coe, S.E.; Wasenczuk, A.; Dodge, C.N.; Beale, A.C.; Krehan, A.J.; Dore, P.; Nucara, A.; Calvani, P.

    1998-01-01

    This paper describes the attributes that make diamond a unique material for infrared synchrotron beam experiments. New developments in diamond synthesised by Chemical Vapour Deposition (CVD) promise to extend the range of applications which have been hitherto limited by the availability and cost of large-size single-crystal diamond. Polycrystalline CVD diamond components such as large (100 mm) diameter windows with extremely good transparency over a wide spectral range are now commercially available. Properties of CVD diamond of relevance to optical applications, such as mechanical strength, thermal conductivity and absolute bulk absorption, are discussed. It is shown that although some of the properties of CVD diamond (similar to other polycrystalline industrial ceramics) are affected by the grain structure, currently produced CVD diamond optical components have the quality and performance required for numerous demanding applications

  13. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    . The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The calculations......The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002...... show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30...

  14. Thermal effects on human performance in office environment measured by integrating task speed and accuracy

    DEFF Research Database (Denmark)

    Lan, Li; Wargocki, Pawel; Lian, Zhiwei

    2014-01-01

    only proceed when the errors are corrected. Traditionally, the tasks are presented without giving this feedback and thus the speed and accuracy are treated separately. The method was examined in a subjective experiment with thermal environment as the prototypical example. During exposure in an office......, 12 subjects performed tasks under two thermal conditions (neutral & warm) repeatedly. The tasks were presented with and without feedback on errors committed, as outlined above. The results indicate that there was a greater decrease in task performance due to thermal discomfort when feedback was given...

  15. SNS Proton Beam Window Disposal

    Directory of Open Access Journals (Sweden)

    Popova Irina

    2017-01-01

    Full Text Available In order to support the disposal of the proton beam window assembly of the Spallation Neutron Source beamline to the target station, waste classification analyses are performed. The window has a limited life-time due to radiation-induced material damage. Analyses include calculation of the radionuclide inventory and shielding analyses for the transport package/container to ensure that the container is compliant with the transportation and waste management regulations. In order to automate this procedure and minimize manual work a script in Perl language was written.

  16. Microsoft Windows Server Administration Essentials

    CERN Document Server

    Carpenter, Tom

    2011-01-01

    The core concepts and technologies you need to administer a Windows Server OS Administering a Windows operating system (OS) can be a difficult topic to grasp, particularly if you are new to the field of IT. This full-color resource serves as an approachable introduction to understanding how to install a server, the various roles of a server, and how server performance and maintenance impacts a network. With a special focus placed on the new Microsoft Technology Associate (MTA) certificate, the straightforward, easy-to-understand tone is ideal for anyone new to computer administration looking t

  17. Effect of oral dietary supplement for chicks subjected to thermal oscillation on performance and intestinal morphometry

    Directory of Open Access Journals (Sweden)

    Jovanir Inês Müller Fernandes

    2017-09-01

    Full Text Available The aim of the study was to evaluate the efficacy of a nutritional formulation based on amino acids and vitamins supplemented in the drinking water for chicks in the first week of life subjected to thermal oscillation on performance, organ development and intestinal morphometry from 1 to 21 days. 640-male broiler chicks were distributed in a 2x2 factorial completely randomized design (with or without dietary supplementation and at comfort temperature or thermal oscillation. Chicks subjected to thermal oscillation presented worse performance (p < 0.05 than those under thermal comfort of 1 to 7, 1 to 14 and 1 to 21 days. Nutritional supplementation did not alter the performance (p < 0.05 of the birds, but resulted in a higher body weight (p < 0.05 regardless of the environmental thermal condition. At 7 days, chicks under thermal comfort had better intestinal morphometric parameters (p < 0.05, in relation to birds under thermal oscillation. In conclusion, the temperature oscillations caused negative consequences to the productive performance and the intestinal morphology of chicks for which dietary supplementation was not enough to mitigate the effects of the environmental challenge during the first week of life of the birds.

  18. Oscillatory integration windows in neurons

    Science.gov (United States)

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  19. The workplace window view

    DEFF Research Database (Denmark)

    Lottrup, Lene Birgitte Poulsen; Stigsdotter, Ulrika K.; Meilby, Henrik

    2015-01-01

    Office workers’ job satisfaction and ability to work are two important factors for the viability and competitiveness of most companies, and existing studies in contexts other than workplaces show relationships between a view of natural elements and, for example, student performance...... and neighbourhood satisfaction. This study investigates whether relationships between window view, and work ability and job satisfaction also exist in the context of the workplace by focusing on office workers’ view satisfaction. The results showed that a view of natural elements was related to high view...... satisfaction, and that high view satisfaction was related to high work ability and high job satisfaction. Furthermore, the results indicated that job satisfaction mediated the effect of view satisfaction on work ability. These findings show that a view of a green outdoor environment at the workplace can...

  20. Performance assessment of low pressure nuclear thermal propulsion

    Science.gov (United States)

    Gerrish, H. P., Jr.; Doughty, G. E.

    1993-01-01

    A low pressure nuclear thermal propulsion (LPNTP) system, which takes advantage of hydrogen dissociation/recombination, was proposed as a means of increasing engine specific impulse (Isp). The effect of hydrogen dissociation/recombination on LPNTP Isp is examined. A two-dimensional computer model was used to show that the optimum chamber pressure is approximately 100 psia (at a chamber temperature of 3,000 K), with an Isp approximately 15 s higher than at 1,000 psia. At high chamber temperatures and low chamber pressures, the increase in Isp is due to both lower average molecular weights caused by dissociation and added kinetic energy from monatomic hydrogen recombination. Monatomic hydrogen recombination increases the Isp more then hydrogen dissociation. Variations in the mole fraction of monatomic hydrogen are similar to variations in static pressure along the axial nozzle position. Most recombination occurs close to the nozzle throat. Practical variations in nozzle geometry have minimal impact on recombination. Other models which can simulate a wider range of nozzle designs should be used in the future. The uncertainty of the hydrogen kinetic reaction rates at high temperatures (approximately 3,000 K) affects the accuracy of the analysis and should be verified with simple bench tests.

  1. Thermal Plasmas: Influence of Current Modulation on Process Performance

    Science.gov (United States)

    Schein, Jochen

    2015-09-01

    Due to the widespread industrial use of thermal plasmas in the field of joining, cutting and the application of coatings new challenges arise owed to the advent of new materials or the drive to reduce cost or improve quality. These challenges may be met by using technological innovations like innovative fast power supplies. In the presence of strong gas flows and a fixed cathodic attachment the anode attachment position is determined by an unstable balance between the drag force on the plasma column exerted by the gas and the Lorentz Force due to the system's magnetic field distribution, leading to a constant arc motion and arc voltage fluctuation. Thus by supplying a sufficiently high and steep current pulse a re-positioning might be initiated by a sudden change of the Lorentz Force thus an externally controlled movement of the arc would be possible. In wire arc spraying a pulsed current is imposed upon the DC supply of the wire arc system. It is observed that steep current increases tend to produce sudden current drops, indicating a jump of the arc. For a certain pulse frequency this pulsing leads to a controlled motion of the arc along the electrode surfaces. Coatings produced with this technology exhibited a lower porosity than DC sprayed coatings and a lower oxide content. In collaboration with Alexander Atzberger and Michal Szulc, Universitaet der Bundeswehr Muenchen; Institute for plasma technology and mathematics (LPT) Neubiberg, Germany. This work was supported by AiF (Arbeitsgemeinschaft industrielle Forschung).

  2. Differential thermal performance curves in response to different habitats in the parasitoid Venturia canescens

    Science.gov (United States)

    Foray, Vincent; Gibert, Patricia; Desouhant, Emmanuel

    2011-08-01

    Environmental variability is expected to be important in shaping performance curves, reaction norms of phenotypic traits related to fitness. Models predict that the breadth of performance curves should increase with environmental variability at the expense of maximal performance. In this study, we compared the thermal performance curves of two sympatric populations of the parasitoid Venturia canescens that were observed under contrasting thermal regimes in their respective preferred habitats and differing in their modes of reproduction. Our results confirm the large effect of developmental temperature on phenotypic traits of insects and demonstrate that thelytokous and arrhenotokous wasps respond differently to temperature during development, in agreement with model predictions. For traits related to fecundity, thelytokous parasitoids, which usually occur in stable thermal conditions, exhibit specialist performance curves, maximising their reproductive success under a restricted range of temperature. In contrast, arrhenotokous parasitoids, which occur in variable climates, exhibit generalist performance curves, in keeping with the hypothesis "jack of all temperatures, master of none".

  3. Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures

    International Nuclear Information System (INIS)

    Tsoi, Vadim; Chang, Shyy Woei; Chiang Kuei Feng; Huang, Chuan Chin

    2011-01-01

    This experimental study examines the thermal performance of a newly devised plate-type two-phase loop thermosyphon with cooling applications to electronic boards of telecommunication systems. The evaporation section is configured as the inter-connected multi channels to emulate the bridging boiling mechanism in pulsating thermosyphon. Two thermosyphon plates using water as the coolant with filling ratios (FR) of 0.22 and 0.32 are tested at sub-atmospheric pressures. The vapor-liquid flow images as well as the thermal resistances and effective spreading thermal conductivities are individually measured for each thermosyphon test plate at various heating powers. The high-speed digital images of the vapor-liquid flow structures reveal the characteristic boiling phenomena and the vapor-liquid circulation in the vertical thermosyphon plate, which assist to explore the thermal physics for this type of loop thermosyphon. The bubble agglomeration and pumping action in the inter-connected boiling channels take place at metastable non-equilibrium conditions, leading to the intermittent slug flows with a pulsation character. Such hybrid loop-pulsating thermosyphon permits the vapor-liquid circulation in the horizontal plate. Thermal resistances and spreading thermal conductivities detected from the present thermosyphon plates; the vapor chamber flat plate heat pipe and the copper plate at free and forced convective cooling conditions with both vertical and horizontal orientations are cross-examined. In most telecommunication systems and units, the electrical boards are vertical so that the thermal performance data on the vertical thermosyphon are most relevant to this particular application. - Highlights: → We examine thermal performances of plate-type loop thermosyphon. → Thermal resistances and spreading conductivities are examined. → Bubble agglomeration in inter-connected boiling channels generates intermittent slug flows with pulsations. → Boiling instability

  4. Performance enhancement of solar latent heat thermal storage system with particle dispersion - an exergy approach

    Energy Technology Data Exchange (ETDEWEB)

    Jegadheeswaran, Selvaraj; Pohekar, Sanjay D. [Mechanical Engineering Area, Tolani Maritime Institute, Induri, Pune (India); Kousksou, Tarik [Laboratoire de Thermique Energetique et Procedes, Pau (France)

    2011-10-15

    Phase change material (PCM) employed latent heat thermal storage (LHTS) system has been showing good potential over the years for energy management, particularly in solar energy systems. However, enhancement in thermal conductivity of PCMs is emphasized as PCMs are known for their poor thermal conductivity. In this work, the thermal performance of a shell and tube LHTS module containing PCM-metal particles composite is investigated while charging and is compared with that of pure PCM system. The effect of particle dispersion on latent heat capacity of pure PCM is also analyzed. Enthalpy based governing equations are solved numerically adopting FLUENT code. Exergy based performance evaluation is taken as a main aspect. The numerical results are presented for various operating conditions of heat transfer fluid (HTF) and indicate considerable performance improvement of the system when particles are dispersed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Thermal performance of vertical greening system on the building façade: A review

    Science.gov (United States)

    Sari, Astri Anindya

    2017-09-01

    Over the last decade, research on the application of vertical greening system on the building façade has gained much attention. Those studies proved that installing a vertical greening system on the building facade has many advantages not only for the building but also for the city. Acting as a shading as well as thermal insulation in the building, reducing greenhouse gas emission, and improving the microclimate are some of the advantages of vertical greening system that already being proved. This study aims to review some studies related to the thermal performance of vertical greening system on the building façade. The review will provide comprehensive knowledge about the thermal performance of vertical greening system over different variations including climates, orientations, plant types, and the design of vertical greening system. Furthermore, this review is expected to be a reference in designing such vertical greening system which suitable for certain climate area that able to produce the best thermal performance.

  6. Windows 8 secrets

    CERN Document Server

    Thurrott, Paul

    2012-01-01

    Tips, tricks, treats, and secrets revealed on Windows 8 Microsoft is introducing a major new release of its Windows operating system, Windows 8, and what better way to learn all its ins and outs than from two internationally recognized Windows experts and Microsoft insiders, authors Paul Thurrott and Rafael Rivera? They cut through the hype to get at useful information you'll not find anywhere else, including what role this new OS plays in a mobile and tablet world. Regardless of your level of knowledge, you'll discover little-known facts about how things work, what's new and different, and h

  7. Programming Windows Azure

    CERN Document Server

    Krishnan, Sriram

    2010-01-01

    Learn the nuts and bolts of cloud computing with Windows Azure, Microsoft's new Internet services platform. Written by a key member of the product development team, this book shows you how to build, deploy, host, and manage applications using Windows Azure's programming model and essential storage services. Chapters in Programming Windows Azure are organized to reflect the platform's buffet of services. The book's first half focuses on how to write and host application code on Windows Azure, while the second half explains all of the options you have for storing and accessing data on the plat

  8. Windows Powershell Pocket Reference

    CERN Document Server

    Holmes, Lee

    2009-01-01

    This portable reference to Windows PowerShell summarizes both the command shell and scripting language, and provides a concise reference to the major tasks that make PowerShell so successful. Written by Microsoft PowerShell team member Lee Holmes, and excerpted from his Windows PowerShell Cookbook, Windows PowerShell Pocket Reference offers up-to-date coverage of PowerShell's 1.0 release. It's an ideal on-the-job tool for Windows administrators who don't have time to plow through huge books or search online.

  9. Beginning Windows 8

    CERN Document Server

    Halsey, Mike

    2012-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever. Beginning Windows 8 takes you through the new features and helps you get more out of the familiar to reveal the possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes with it. From tips and tweaks to easy-to-follow guides and d

  10. Mastering Windows 7 Deployment

    CERN Document Server

    Finn, Aidan; van Surksum, Kenneth

    2011-01-01

    Get professional-level instruction on Windows 7 deployment tools Enterprise-level operating system deployment is challenging and requires knowledge of specific tools. It is expected that Windows 7 will be extensively deployed in businesses worldwide. This comprehensive Sybex guide provides thorough coverage of the Microsoft deployment tools that were specifically created for Windows 7, preparing system administrators, MIS professionals, and corporate programmers to tackle the task effectively.Companies worldwide are expected to deploy Windows 7 as their enterprise operating system; system admi

  11. Characteristics of Air Flow through Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Dam, Henrik; Sørensen, Lars C.

    This paper describes the first results of a series of laboratory investigations that is performed to characterise three different window types. The results show the air flow conditions for different ventilation strategies and temperature differences. For one of the windows values of the discharge...

  12. Optical and thermal performance of a three-dimensional compound ...

    Indian Academy of Sciences (India)

    MS received 14 June 2007; revised 3 March 2009. Abstract. For medium range temperature applications, focusing type collectors like Compound Parabolic Concentrator (CPC) are most commonly used. Consi- derable research work has been carried out to improve the performance of the two- dimensional compound ...

  13. Effects of thermal aging on mechanical performance of paper

    Science.gov (United States)

    B.T. Hotle; J.M. Considine; M.J. Wald; R.E. Rowlands; K.T. Turner

    2008-01-01

    A missing element of paper aging research is a description of mechanical performance with aging. Tensile strength cannot be predicted directly from DP measurements, and existing models do not represent the effects of aging on strength and stiffness. The primary aim of the present work is to characterize changes of mechanical properties, such as tensile response and...

  14. Planck early results. II. The thermal performance of Planck

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    The performance of the Planck instruments in space is enabled by their low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to t...

  15. Laser Thermal Shock Experiments - Performance and Evaluation on the Basis of Advanced Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pulz, Robert; Rehmer, Birgit, E-mail: Robert.Pulz@bam.de [Federal Institute for Materials Research and Testing Unter den Eichen 87, 12205 Berlin (Germany)

    2011-10-29

    The thermal shock behaviour in air and vacuum of three different advanced ceramics is investigated by introducing a new testing method. This thermal shock testing system permits the reproducible setting of defined temperature profiles in thin disks. In order to perform heating - up thermal shock experiments under reproducible conditions and to measure the transient temperature fields, a laser beam is directed spirally across the surface of the specimen. In this process, the specimen is heated up faster than the temperature gradient is compensated by thermal conductivity. Resulting temperature fields were recorded space and time resolved. Based on the knowledge of the local temperature distribution at the moment of failure, the critical fracture stress can be calculated. The scatter of thermal shock strength is quantitatively determined for the tested ceramics by using a improved statistical method.

  16. Life stages of an aphid living under similar thermal conditions differ in thermal performance.

    Science.gov (United States)

    Zhao, Fei; Hoffmann, Ary A; Xing, Kun; Ma, Chun-Sen

    2017-05-01

    Heat responses can vary ontogenetically in many insects with complex life cycles, reflecting differences in thermal environments they experience. Such variation has rarely been considered in insects that develop incrementally and experience common microclimates across stages. To test if there is a low level of ontogenetic variation for heat responses in one such species, the English grain aphid Sitobion avenae, basal tolerance [upper lethal temperature (ULT 50 ) and maximum critical temperature (CT max )], hardening capacity (CT max ) and hardening costs (adult longevity and fecundity) were measured across five stages (1st, 2nd, 3rd and 4th-instar nymphs and newly moulted adults). We found large tolerance differences among stages of this global pest species, and a tendency for the stage with lower heat tolerance to show a stronger hardening response. There were also substantial reproductive costs of hardening responses, with the level of stress experienced, and not the proximity of the exposed stage to the reproductive adult stage, influencing the magnitude of this cost. Hence hardening in this aphid may counter inherently low tolerance levels of some life stages but at a cost to adult longevity and fecundity. Our findings highlight the significance of ontogenetic variation in predicting responses of a species to climate change, even in species without a complex life cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparison of the Thermal Performance of Radiative and Convective Terminals

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per

    2012-01-01

    of interest to compare the energy efficiency of the two types of terminals for heating and cooling buildings. Convective terminals (i.e. air conditioning systems) have been widely used in buildings, but the level of comfort is not always acceptable due to high air velocity. On the other hand radiant terminals...... can provide a better indoor climate, and be more energy efficient because they can make use of low-grade sources. The output of this conceptual approach is a better understanding of the advantages and drawbacks of the two technologies under different conditions. The analysis has been performed...... by simulating the energy consumption of an office room, located in Denmark. Different outdoor conditions have been tested, in order to compare their performance during the winter season and the summer season. Different types of activated surface have also been simulated. The results of this analysis show...

  18. Performance of buffer material under radiation and thermal conditions

    International Nuclear Information System (INIS)

    Zhao Shuaiwei; Yang Zhongtian; Liu Wei

    2012-01-01

    Bentonite is generally selected as backfill and buffer material for repositories in the world. Radiation and heat release is the intrinsic properties of high level radioactive waste. This paper made a preliminary research on foreign literature about performance of the engineering barrier material under radiation and at higher temperatures (e. g. above 100℃). As our current research is just budding in this area, we need to draw lessons from foreign experience and methods. (authors)

  19. Effects of Absorber Emissivity on Thermal Performance of a Solar Cavity Receiver

    Directory of Open Access Journals (Sweden)

    Jiabin Fang

    2014-01-01

    Full Text Available Solar cavity receiver is a key component to realize the light-heat conversion in tower-type solar power system. It usually has an aperture for concentrated sunlight coming in, and the heat loss is unavoidable because of this aperture. Generally, in order to improve the thermal efficiency, a layer of coating having high absorptivity for sunlight would be covered on the surface of the absorber tubes inside the cavity receiver. As a result, it is necessary to investigate the effects of the emissivity of absorber tubes on the thermal performance of the receiver. In the present work, the thermal performances of the receiver with different absorber emissivity were numerically simulated. The results showed that the thermal efficiency increases and the total heat loss decreases with increasing emissivity of absorber tubes. However, the thermal efficiency increases by only 1.6% when the emissivity of tubes varies from 0.2 to 0.8. Therefore, the change of absorber emissivity has slight effect on the thermal performance of the receiver. The reason for variation tendency of performance curves was also carefully analyzed. It was found that the temperature reduction of the cavity walls causes the decrease of the radiative heat loss and the convective heat loss.

  20. Vacuum Insulation Panels: Analysis of the Thermal Performance of Both Single Panel and Multilayer Boards

    Directory of Open Access Journals (Sweden)

    Alfonso Capozzoli

    2015-03-01

    Full Text Available The requirements for improvement in the energy efficiency of buildings, mandatory in many EU countries, entail a high level of thermal insulation of the building envelope. In recent years, super-insulation materials with very low thermal conductivity have been developed. These materials provide satisfactory thermal insulation, but allow the total thickness of the envelope components to be kept below a certain thickness. Nevertheless, in order to penetrate the building construction market, some barriers have to be overcome. One of the main issues is that testing procedures and useful data that are able to give a reliable picture of their performance when applied to real buildings have to be provided. Vacuum Insulation Panels (VIPs are one of the most promising high performing technologies. The overall, effective, performance of a panel under actual working conditions is influenced by thermal bridging, due to the edge of the panel envelope and to the type of joint. In this paper, a study on the critical issues related to the laboratory measurement of the equivalent thermal conductivity of VIPs and their performance degradation due to vacuum loss has been carried out utilizing guarded heat flux meter apparatus. A numerical analysis has also been developed to study thermal bridging effect when VIP panels are adopted to create multilayer boards for building applications.

  1. Thermal buffering performance of composite phase change materials applied in low-temperature protective garments

    Science.gov (United States)

    Yang, Kai; Jiao, Mingli; Yu, Yuanyuan; Zhu, Xueying; Liu, Rangtong; Cao, Jian

    2017-07-01

    Phase change material (PCM) is increasingly being applied in the manufacturing of functional thermo-regulated textiles and garments. This paper investigated the thermal buffering performance of different composite PCMs which are suitable for the application in functional low-temperature protective garments. First, according to the criteria selecting PCM for functional textiles/garments, three kinds of pure PCM were selected as samples, which were n-hexadecane, n-octadecane and n-eicosane. To get the adjustable phase change temperature range and higher phase change enthalpy, three kinds of composite PCM were prepared using the above pure PCM. To evaluate the thermal buffering performance of different composite PCM samples, the simulated low-temperature experiments were performed in the climate chamber, and the skin temperature variation curves in three different low temperature conditions were obtained. Finally composite PCM samples’ thermal buffering time, thermal buffering capacity and thermal buffering efficiency were calculated. Results show that the comprehensive thermal buffering performance of n-octadecane and n-eicosane composite PCM is the best.

  2. The windows method

    DEFF Research Database (Denmark)

    Neighbour, Roger; Larsen, Jan-Helge

    2017-01-01

    through in sequence, each one opening a different viewpoint or window on the case. To experienced tutors, the windows method’s prescriptive structure may at first seem somewhat rigid. However, for learners with less experience of reflection and self-disclosure, it provides the security necessary...

  3. Color Wheel Windows

    Science.gov (United States)

    Leonard, Stephanie

    2012-01-01

    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  4. The Luminaire Window

    DEFF Research Database (Denmark)

    Hansen, Ellen Kathrine; Horóczi, Eszter

    2017-01-01

    integrated into the window. A qualitative experiment is carried out by integrating controllable LED in the frame of a façade window in a full-scale mock-up. It is examined how this set-up can support the colour spectrum and intensity of the daylight intake during the transmission time from daylight...

  5. Thermal performance in circular tube fitted with coiled square wires

    International Nuclear Information System (INIS)

    Promvonge, Pongjet

    2008-01-01

    The effects of wires with square cross section forming a coil used as a turbulator on the heat transfer and turbulent flow friction characteristics in a uniform heat flux, circular tube are experimentally investigated in the present work. The experiments are performed for flows with Reynolds numbers ranging from 5000 to 25,000. Two different spring coiled wire pitches are introduced. The results are also compared with those obtained from using a typical coiled circular wire, apart from the smooth tube. The experimental results reveal that the use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube. The Nusselt number increases with the rise of Reynolds number and the reduction of pitch for both circular and square wire coils. The coiled square wire provides higher heat transfer than the circular one under the same conditions. Also, performance evaluation criteria to assess the real benefits in using both coil wires of the enhanced tube are determined

  6. Thermal acclimation of swimming performance in newt larvae: the influence of diel temperature fluctuations during embryogenesis

    Czech Academy of Sciences Publication Activity Database

    Měráková, Eva; Gvoždík, Lumír

    2009-01-01

    Roč. 23, č. 5 (2009), s. 989-995 ISSN 0269-8463 R&D Projects: GA ČR GA206/06/0953; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519 Keywords : acclimation * acclimation * locomotor performance * phenotypic plasticity * thermal biology * thermal reaction norms Subject RIV: EG - Zoology Impact factor: 4.546, year: 2009

  7. Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

  8. Acoustical and thermal performance of multilayer closing panels used in steel-structured buildings

    Directory of Open Access Journals (Sweden)

    Rovadávia Aline de Jesus Ribas

    Full Text Available Abstract This article provides an evaluation of the acoustical and thermal performance of some closing systems by referencing materials such as cement plates, plasterboard walls, precast concrete panels and expanded polystyrene. Reverberation time is calculated by applying an empirical formula, which uses temperature and relative air humidity values obtained from simulations that were conducted using the computational simulation program ESP-r (Energy Simulation Program-research. The internal temperature presented by the ESP-r is an indicator of thermal performance. Using a simplified graphic method, the acoustical performance is also evaluated by estimating the loss of sound transmission that occurs through the closing panels. Combinations of these panels, which form multilayer panels mediated by a layer of air and with or without insulating material between them, are applied. The results show that multilayered closing systems, when filled with insulating material, are an efficient solution than can provide adequate acoustical and thermal performance.

  9. Visual merchandising window display

    Directory of Open Access Journals (Sweden)

    Opris (Cas. Stanila M.

    2013-12-01

    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  10. KENIS: a high-performance thermal imager developed using the OSPREY IR detector

    Science.gov (United States)

    Goss, Tristan M.; Baker, Ian M.

    2000-07-01

    `KENIS', a complete, high performance, compact and lightweight thermal imager, is built around the `OSPREY' infrared detector from BAE systems Infrared Ltd. The `OSPREY' detector uses a 384 X 288 element CMT array with a 20 micrometers pixel size and cooled to 120 K. The relatively small pixel size results in very compact cryogenics and optics, and the relatively high operating temperature provides fast start-up time, low power consumption and long operating life. Requiring single input supply voltage and consuming less than 30 watts of power, the thermal imager generates both analogue and digital format outputs. The `KENIS' lens assembly features a near diffraction limited dual field-of-view optical system that has been designed to be athermalized and switches between fields in less than one second. The `OSPREY' detector produces near background limited performance with few defects and has special, pixel level circuitry to eliminate crosstalk and blooming effects. This, together with signal processing based on an effective two-point fixed pattern noise correction algorithm, results in high quality imagery and a thermal imager that is suitable for most traditional thermal imaging applications. This paper describes the rationale used in the development of the `KENIS' thermal imager, and highlights the potential performance benefits to the user's system, primarily gained by selecting the `OSPREY' infra-red detector within the core of the thermal imager.

  11. Thermal performance of a phase change material on a nickel-plated surface

    International Nuclear Information System (INIS)

    Nurmawati, M.H.; Siow, K.S.; Rasiah, I.J.

    2004-01-01

    Thermal control becomes increasingly vital with IC chips becoming faster and smaller. The need to keep chips within acceptable operating temperatures is a growing challenge. Thermal interface materials (TIM) form the interfaces that improve heat transfer from the heat-generating chip to the heat dissipating thermal solution. One of the most commonly used materials in today's electronics industry is phase change material (PCM). Typically, the heat spreader is a nickel-plated copper surface. The compatibility of the PCM to this surface is crucial to the performance of the TIM. In this paper, we report on the performance of this interface. To that end, an instrument to suitably measure critical parameters, like the apparent and contact thermal resistance of the TIM, is developed according to the ASTM D5470 and calibrated. A brief theory of TIM is described and the properties of the PCM were investigated using the instrument. Thermal resistance measurements were made to investigate the effects of physical parameters like pressure, temperature and supplied power on the thermal performance of the material on nickel-plated surface. Conclusions were drawn on the effectiveness of the interface and their application in IC packages

  12. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly

  13. TOD Predicts Target Acquisition Performance for Staring and Scanning Thermal Imagers

    NARCIS (Netherlands)

    Bijl, P.; Valeton, J.M.; Jong, A.N. de

    2000-01-01

    Identification and recognition performance for four staring and two scanning thermal imagers, were measured in an observer experiment using images that were collected during a NATO field trial in Nettuno, Italy, in 1998. The dataset allows validation of the MRTD and alternative sensor performance

  14. Optimization of the thermal performances of the Alpine Pixel Detector

    CERN Document Server

    Zhang, Zhan; Di Ciaccio, Lucia

    The ATLAS (A Toroidal LHC ApparatuS) detector is the largest detector of the Large Hadron Collider (LHC). One of the most important goals of ATLAS was to search for the missing piece of the Standard Model, the Higgs boson that had been found in 2012. In order to keep looking for the unknowns, it is planned to upgrade the LHC. The High Luminosity LHC (HL-LHC) is a novel configuration of the accelerator, aiming at increasing the luminosity by a factor five or more above the nominal LHC design. In parallel with the accelerator upgrade also the ATLAS will be upgraded to cope with detector aging and to achieve the same or better performance under increased event rate and radiation dose expected at the HL-LHC. This thesis discusses a novel design for the ATLAS Pixel Detector called the "Alpine" layout for the HL-LHC. To support this design, a local support structure is proposed, optimized and tested with an advanced CO2 evaporative cooling system. A numerical program called “CoBra” simulating the twophase heat ...

  15. Thermal performance measurement and application of a multilayer insulator for emergency architecture

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Imperadori, Marco; Scaccabarozzi, Diego; Pusceddu, Cristina

    2015-01-01

    Lightness coupled with a quick assembly method is crucial for emergency architecture in post-disaster area where accessibility and action time play a huge barer to rescue people. In this prospective, the following work analyses the potentiality (technological and thermal performances) of multilayer insulator for a new shelter envelope able to provide superior thermal comfort for the users. The thermal characteristics are derived experimentally by means of a guard ring apparatus under different working temperatures. Tests are performed on the multilayer insulator itself and on a composite structure, made of the multilayer insulator and two air gaps wrapped by a polyester cover, which is the core of a new lightweight emergency architecture. Experimental results show good agreement with literature data, providing a thermal conductivity and transmittance of about 0.04 W/(m °C) and 1.6 W/(m 2  °C) for the tested multilayer. The composite structure called Thermo Reflective Multilayer System (TRMS) shows better insulation performances, providing a thermal transmittance set to 0.85 W/(m 2  °C). A thermal model of an emergency tent based on the new insulating structure (TRMS) has been developed and its thermal performances have been compared with those of a UNHCR traditional emergency shelter. The shelter model was simulated (Trnsys v.17 environment) in the winter season considering the climate of Belgrade and using only the casual gains from occupant and solar radiation through opaque wall. Numerical simulations evidenced that the new insulating composite envelope reduces required heating load of about two and four times with respect to the traditional insulation. The study sets a starting point to develop a lightweight emergency architecture made with a combination between multilayer, air, polyester and vulcanized rubber. - Highlights: • Multilayer insulator tested by means of a guard ring apparatus. • Thermo reflective multilayer system (TRMS) development

  16. Design and application of CVD diamond windows for x-rays at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Jaski, Y.; Cookson, D.

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

  17. Design and Application of CVD Diamond Windows for X-Rays at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Jaski, Yifei; Cookson, David

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented

  18. Parametric Study Of Window Frame Geometry

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    This paper describes a parametric study on window frame geometry with the goal of designing frames with very good thermal properties. Three different parametric frame models are introduced, deseribed by a number of variables. In the first part of the study, a process of sensitivity analysis...

  19. Performance Analysis of a Photovoltaic-Thermal Integrated System

    International Nuclear Information System (INIS)

    Radziemska, E.

    2009-01-01

    The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is highly desirable to obtain efficiency increase. The total efficiency of 60-80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings the destroyed exergy has been called energy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiencies in a system. This information, which cannot be provided by other means (e.g., an energy analysis), is very useful for the improvement and cost-effectiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solar watt module.

  20. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  1. Dynamic window daylighting systems: electropolymeric technology for solar responsive building envelopes

    Science.gov (United States)

    Krietemeyer, Elizabeth A.; Smith, Shane I.; Dyson, Anna H.

    2011-04-01

    Human health and energy problems associated with the lack of control of sunlight in contemporary buildings have necessitated research into dynamic windows for energy efficient buildings. Existing window technologies have made moderate progress towards greater energy performance for facades but remain limited in their response to dynamic solar conditions, building energy requirements, and variable user preferences for visual comfort. Recent developments in electropolymeric display technology provide opportunities to transfer electroactive polymers to windows that can achieve high levels of geometric and spectral selectivity through the building envelope in order to meet the lighting, thermal and user requirements of occupied spaces. Experimental simulations that investigate daylight quality, energy performance, and architectural effects of electropolymeric glazing technology are presented.

  2. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    OpenAIRE

    Zuo, Zheng; Hu, Yu; Li, Qingbin; Zhang, Liyuan

    2014-01-01

    Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting ...

  3. Output performance analyses of solar array on stratospheric airship with thermal effect

    International Nuclear Information System (INIS)

    Li, Jun; Lv, Mingyun; Tan, Dongjie; Zhu, Weiyu; Sun, Kangwen; Zhang, Yuanyuan

    2016-01-01

    Highlights: • A model investigating the output power of solar array is proposed. • The output power in the cruise condition with thermal effect is researched. • The effect of some factors on output performance is discussed in detail. • A suitable transmissivity of external layer is crucial in preliminary design step. - Abstract: Output performance analyses of the solar array are very critical for solving the energy problem of a long endurance stratospheric airship, and the solar cell efficiency is very sensitive to temperature of the solar cell. But the research about output performance of solar array with thermal effect is rare. This paper outlines a numerical model including the thermal model of airship and solar cells, the incident solar radiation model on the solar array, and the power output model. Based on this numerical model, a MATLAB computer program is developed. In the course of the investigation, the comparisons of the simulation results with and without considering thermal effect are reported. Furthermore, effects of the transmissivity of external encapsulation layer of solar array and wind speed on the thermal performance and output power of solar array are discussed in detail. The results indicate that this method is helpful for planning energy management.

  4. Yearly thermal performances of solar heating plants in Denmark – Measured and calculated

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Perers, Bengt

    2018-01-01

    The thermal performance of solar collector fields depends mainly on the mean solar collector fluid temperature of the collector field and on the solar radiation. For Danish solar collector fields for district heating the measured yearly thermal performances per collector area varied in the period...... 2012–2016 between 313 kWh/m2 and 577 kWh/m2, with averages between 411 kWh/m2 and 463 kWh/m2. The percentage difference between the highest and lowest measured yearly thermal performance is about 84%. Calculated yearly thermal performances of typically designed large solar collector fields at six...... different locations in Denmark with measured weather data for the years 2002–2010 vary between 405 kWh/m2 collector and 566 kWh/m2 collector, if a mean solar collector fluid temperature of 60 °C is assumed. This corresponds to a percentage difference between the highest and lowest calculated yearly thermal...

  5. Calculated thermal performance of solar collectors based on measured weather data from 2001-2010

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Andersen, Elsa

    2015-01-01

    This paper presents an investigation of the differences in modeled thermal performance of solar collectors when meteorological reference years are used as input and when mulit-year weather data is used as input. The investigation has shown that using the Danish reference year based on the period...... with an increase in global radiation. This means that besides increasing the thermal performance with increasing the solar radiation, the utilization of the solar radiation also becomes better....... 1975-1990 will result in deviations of up to 39 % compared with thermal performance calculated with multi-year the measured weather data. For the newer local reference years based on the period 2001-2010 the maximum deviation becomes 25 %. The investigation further showed an increase in utilization...

  6. Thin windows for gaseous and liquid targets: an optimization procedure

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Gray, W.H.

    1975-01-01

    Many nuclear physics experiments require cryogenic or high-pressure gas targets with thin windows. To obtain the best data, that is, to reduce background signals, a target window would ideally have zero thickness and zero deflextion. Since this is not possible a trade-off is made among target geometry, window geometry, window material, and window thickness. Measurements of deflexions of a variety of window materials and geometries were performed at room temperature and in liquid nitrogen to aid window design in the future. A simple graphical method for predicting the rupture pressure for several typical window materials is described. The results of the deflexion measurements are compared to a finite element computer programme Membran which predicts window deflexion and material stresses for a uniform applied pressure. (author)

  7. Sphere-cone-polynomial special window with good aberration characteristic

    International Nuclear Information System (INIS)

    Wang Chao; Zhang Xin; Qu He-Meng; Wang Ling-Jie; Wang Yu

    2013-01-01

    Optical windows with external surfaces shaped to satisfy operational environment needs are known as special windows. A novel special window, a sphere-cone-polynomial (SCP) window, is proposed. The formulas of this window shape are given. An SCP MgF 2 window with a fineness ratio of 1.33 is designed as an example. The field-of-regard (FOR) angle is ±75°. From the window system simulation results obtained with the calculated fluid dynamics (CFD) and optical design software, we find that compared to the conventional window forms, the SCP shape can not only introduce relatively less drag in the airflow, but also have the minimal effect on imaging. So the SCP window optical system can achieve a high image quality across a super wide FOR without adding extra aberration correctors. The tolerance analysis results show that the optical performance can be maintained with a reasonable fabricating tolerance to manufacturing errors

  8. Development of vacuum barrier windows for high power gyrotrons

    International Nuclear Information System (INIS)

    Shimozuma, Takashi

    1997-01-01

    Problems in the realization of vacuum barrier windows for 1MW CW gyrotrons are reviewed from the viewpoint of removing heat generation in the window materials. The merits and demerits of various window structures currently in use or under proposal are explained in detail. The design of a multiple disk window, including RF design and thermal stress analysis, is also described. As an example of a recent successful window structure, the experimental results of a forced gas-cooled single disk window with low loss silicon nitride composite are presented. By this window structure, 130kW CW (8kW/cm 2 ) transmission was achieved with an effective diameter of only 88.9 mm. (author)

  9. Ways to improve physical and thermal performance of refractory lining materials

    Directory of Open Access Journals (Sweden)

    Khlystov A.I.

    2017-01-01

    Full Text Available Refractory lining materials, which include ceramic refractories and nonfired heat-resistant concretes, have a very short lifespan during the turnaround time measured in years and sometimes months. Therefore, increasing the service life of thermal generating units by 1.5-2 times will bring significant economic benefits. The main factor that determines the durability of refractory lining materials is the thermal resistance. It is possible to increase the thermal resistance by improving such physical and mechanical properties as strength and density. As for the ceramic refractory performance improvement, such technological methods as their structural and chemical modification by phosphate binder impregnation, as well as introduction of phosphate components into the ceramic batches during the molding process increase, in particular, their thermal stability. The use of aluminous and high-alumina cements contributes to a significant increase of not only strength, but also physical and thermal performance of heat-resistant concretes with different fillers. Switching to the use of chemical binders in the compositions of heat-resistant concretes (liquid glass with effective hardeners; silicate-block and phosphate binders enables to develop high-heat resistant materials which do not soften in a wide range of heating temperatures from 400 °С to 1600 °С. The positive results on increasing the thermal resistance of heat-resistant composites can be obtained by reinforcing them with high temperature fibers.

  10. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  11. Swimming performance and thermal resistance of juvenile and adult newts acclimated to different temperatures

    Directory of Open Access Journals (Sweden)

    Hong-Liang Lu

    2016-12-01

    Full Text Available Thermal acclimatory adjustments of locomotor performance and thermal tolerance occur commonly in ectothermic animals. However, few studies have investigated ontogenetic differences in these acclimatory responses, and thus, their causes remain unclear. In this study, juvenile and adult Chinese fire-bellied newts (Cynops orientalis were acclimated to one of two temperatures (16 or 24 °C for 4 weeks to examine ontogenetic differences in acclimation effect on burst swimming speed, and critical thermal minimum (CTMin and maximum (CTMax. Swimming performance was thermally acclimated in both juvenile and adult C. orientalis. Adult newts had greater absolute swimming speeds than juveniles, which may simply result from their larger sizes. Cold acclimation enhanced low-temperature resistance, and warm acclimation enhanced high-temperature resistance in both juveniles and adults. Despite no ontogenetic difference in CTMin, adult newts had greater CTMax and acclimation response ratio than juveniles, indicating their greater abilities to withstand extreme high temperatures and manage rapid temperature shifts. Ontogenetic change in the thermal acclimatory responses of newts may be related to changes in the thermal environment they experience.

  12. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  13. Heat transfer in window frames with internal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild

    2001-07-01

    Heat transfer in window frames with internal air cavities is studied in this thesis. Investigations focus on two- and three-dimensional natural convection effects inside air cavities, the dependence of the emissivity on the thermal transmittance, and the emissivity of anodized and untreated aluminium profiles. The investigations are mostly conducted on window frames which are the same size as real frames found in residential buildings. Numerical and experimental investigations were performed to study the effectiveness of one commercial Computational Fluid Dynamics (CFD) program for simulating combined natural convection and heat transfer in simple three-dimensional window frames with internal air cavities. The accuracy of the conjugate CFD simulations was evaluated by comparing results for surface temperature on the warm side of the specimens to results from experiments that use infrared (IR) thermography to map surface temperatures during steady-state thermal tests. In general, there was good agreement between the simulations and experiments. Two-dimensional computational fluid dynamic and conduction simulations are performed to study the difference between treating air cavities as a fluid and as a solid when calculating the thermal transmittance of window frames. The simulations show that traditional software codes, simulating only conduction and using equivalent conductivities for the air cavities, give Uvalues that compare well with results from fluid flow simulations. The difference between the two models are mostly limited to the temperature distribution inside air cavities. It is also found that cavities with an interconnection less than about 7 mm can be treated as separate cavities. Three-dimensional natural convection effects in simple and custom-made PVC and thermally broken aluminum window frames with one open internal cavity were studied, with the use of CFD simulations and thermography experiments. Focus was put on corner effects and heat transfer

  14. Using of Multiwall Carbon Nanotube Based Nanofluid in the Heat Pipe to Get Better Thermal Performance

    Directory of Open Access Journals (Sweden)

    Y. Bakhshan

    2014-09-01

    Full Text Available Thermal performance of a cylindrical heat pipe is investigated numerically. Three different types of water based nanofluids, namely, Al2O3 + Water, Diamond + Water, and Multi-Wall Carbon Nano tube (MWCNT + Water, have been used. The influence of using the simple nanofluids and MWCNT nanofluid on the heat pipe characteristics such as liquid velocity, pressure profile, temperature profile, thermal resistance, and heat transfer coefficient of heat pipe has been studied. A new correlation developed by Bakhshan and Saljooghi (2014 for viscosity of nanofluids has been implemented. The results show, a good agreement with the available analytical and experimental data. Also the results show, that the MWCNT based nanofluid has lower thermal resistance, higher heat transfer coefficient, and lower temperature difference between evaporator and condenser sections, so it has good thermal specifications as a working fluid for use in heat pipes. The prepared code has capability for parametric studies also.

  15. Reliability residual-life prediction method for thermal aging based on performance degradation

    International Nuclear Information System (INIS)

    Ren Shuhong; Xue Fei; Yu Weiwei; Ti Wenxin; Liu Xiaotian

    2013-01-01

    The paper makes the study of the nuclear power plant main pipeline. The residual-life of the main pipeline that failed due to thermal aging has been studied by the use of performance degradation theory and Bayesian updating methods. Firstly, the thermal aging impact property degradation process of the main pipeline austenitic stainless steel has been analyzed by the accelerated thermal aging test data. Then, the thermal aging residual-life prediction model based on the impact property degradation data is built by Bayesian updating methods. Finally, these models are applied in practical situations. It is shown that the proposed methods are feasible and the prediction accuracy meets the needs of the project. Also, it provides a foundation for the scientific management of aging management of the main pipeline. (authors)

  16. Characterization of systems for external insulation and retrofitting with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus; Rose, Jørgen

    1999-01-01

    to include the effect of thermal bridges by performing simple calculations, a task which normally requires the use of numerical models. The results show that thermal bridges in external insulation systems may decrease their thermal resistance by more than 25%.Key parameters was calculated by the use...... or unsatisfactory architectural look. One way of solving these problems is by adding a retrofitting system with thermal insulation to the existing building envelope. If external insulation systems are used, a new rain screen is applied on the outside of the insulation. Insulation can be applied either on the inside...... or the outside of the existing building envelope, but internal insulation has many disadvantages compared to external insulation. Several external insulation systems exist, each with different properties making it difficult for building designers to choose between systems in an objective manner.To help...

  17. The Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  18. Rails on Windows

    CERN Document Server

    Hibbs, Curt

    2007-01-01

    It's no secret that the entire Ruby onRails core team uses OS X as their preferreddevelopment environment. Becauseof this, it is very easy to findauthoritative information on the webabout using Rails on OS X. But the truthis that Windows developers using Railsprobably outnumber those using otherplatforms. A Windows development environmentcan be just as productive asany other platform. This is a guide to developing with Rubyon Rails under Windows. It won't teachyou how to write Ruby on Rails web applications,but it will show you what toolsto use and how to set them up to createa complete Rail

  19. Windows 8 simplified

    CERN Document Server

    McFedries, Paul

    2012-01-01

    The easiest way for visual learners to get started with Windows 8 The popular Simplified series makes visual learning easier than ever, and with more than 360,000 copies sold, previous Windows editions are among the bestselling Visual books. This guide goes straight to the point with easy-to-follow, two-page tutorials for each task. With full-color screen shots and step-by-step directions, it gets beginners up and running on the newest version of Windows right away. Learn to work with the new interface and improved Internet Explorer, manage files, share your computer, and much more. Perfect fo

  20. Windows 95 Beslutningsguide

    DEFF Research Database (Denmark)

    Sørensen, Jens Otto

    1996-01-01

    Mange virksomheder der bruger pc'er står netop nu over for valget: Skal vi fortsætte med DOS/Windows 3.x som operativsystem, eller skal vi skifte til efterfølgeren Windows 95? Skal vi/kan vi skifte successivt, eller skal det være en "alt eller intet beslutning". Hvornår er det rigtige tidspunkt...... at skifte? Denne artikel vil forsøge at give en baggrundsviden om Windows 95, der kan hjælpe virksomhederne igennem denne beslutningsfase....

  1. Windows 7 resource kit

    CERN Document Server

    Northrup, Tony; Honeycutt, Jerry; Wilson, Ed

    2009-01-01

    In-depth and comprehensive, this RESOURCE KIT delivers the information you need to administer your Windows 7 system. You get authoritative technical guidance from those who know the technology best-Microsoft Most Valuable Professionals (MVPs) and the Windows 7 product team-along with essential scripts and resources. In addition, "Direct from the Source" sidebars offer deep insights and troubleshooting tips from the Windows 7 team. Get expert guidance on how to: Use Microsoft Deployment Toolkit best practices and tools. Plan user-state migration and test application compatibility.

  2. Thermal performance of capillary micro tubes integrated into the sandwich element made of concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    was studied. Thermal heat flux on the inner surface of HPC element was carefully investigated. Calculations were carried out for different temperatures of the circulating fluid, different spacing between CMT and different thicknesses of the inner HPC layer covering the CMT. This paper shows that CMT......The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of High Performance Concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...

  3. Implications of Steam Generator Fouling on the Degradation of Material and Thermal Performance

    Science.gov (United States)

    Turner, Carl W.

    Fouling of steam generators has a significant negative impact on the material and thermal performance the steam generators of pressurized water reactors. Corrosion products that originate from various components in the steam cycle of a nuclear power plant get pumped forward with the feed water to steam generators where they deposit on the tube bundle, tube support structure and the tube sheet. Heavy accumulation of deposit within the steam generator has led to some serious operational problems, including loss of thermal performance, under deposit corrosion, steam generator level oscillations, flow accelerated corrosion of carbon steel tube support plates and the failure of steam generator tubes due to high cycle fatigue.

  4. Design and simulation of a new energy conscious system, (ventilation and thermal performance simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Gadi, Mohamed B. [Nottingham Univ., School of the Built Environment, Nottingham (United Kingdom)

    2000-04-01

    This paper presents the results of simulating the ventilation and thermal performance of a new passive cooling and heating system. The new systems was integrated into the roof of a typical contemporary North African house, which was modelled and mounted inside a wind tunnel, for natural ventilation simulation. Thermal performance of the new systems was simulated using a new computer programme (BTS), developed by the author. Results are presented in terms of indoor temperature and CATD and HATD, which are newly introduced concepts in defining the building cooling and heating loads. (Author)

  5. Development of windows based on highly insulating aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    2004-01-01

    Within a finished and a current EU project, research and development of monolithic silica aerogel as transparent insulation in windows are being carried out. On behalf of the partners of the two projects, results related to the window application will be presented here. At the thermal envelope...

  6. Window selection for dual photopeak window scatter correction in Tc-99m imaging

    International Nuclear Information System (INIS)

    Vries, D.J. de; King, M.A.

    1994-01-01

    The width and placement of the windows for the dual photopeak window (DPW) scatter subtraction method for Tc-99m imaging is investigated in order to obtain a method that is stable on a multihead detector system for single photon emission computed tomography (SPECT) and is capable of providing a good scatter estimate for extended objects. For various window pairs, stability and noise were examined with experiments using a SPECT system, while Monte Carlo simulations were used to predict the accuracy of scatter estimates for a variety of objects and to guide the development of regression relations for various window pairs. The DPW method that resulted from this study was implemented with a symmetric 20% photopeak window composed of a 15% asymmetric photopeak window and a 5% lower window abutted at 7 keV below the peak. A power function regression was used to relate the scatter-to-total ratio to the lower window-to-total ratio at each pixel, from which an estimated scatter image was calculated. DPW demonstrated good stability, achieved by abutting the two windows away from the peak. Performance was assessed and compared with Compton window subtraction (CWS). For simulated extended objects, DPW generally produced a less biased scatter estimate than the commonly used CWS method with k = 0.5. In acquisitions of a clinical SPECT phantom, contrast recovery was comparable for both DPW and CWS; however, DPW showed greater visual contrast in clinical SPECT bone studies

  7. Effect of aluminum anodizing in phosphoric acid electrolyte on adhesion strength and thermal performance

    Science.gov (United States)

    Lee, Sulki; Kim, Donghyun; Kim, Yonghwan; Jung, Uoochang; Chung, Wonsub

    2016-01-01

    This study examined the adhesive bond strength and thermal performance of the anodized aluminum 6061 in phosphoric acid electrolyte to improve the adhesive bond strength and thermal performance for use in metal core printed circuit boards (MCPCB). The electrolyte temperature and applied voltage were altered to generate varied pore structures. The thickness, porosity and pore diameter of the anodized layer were measured. The pore morphologies were affected most by temperature, which was the driving force for ion transportation. The mechanism of adhesive bond was penetration of the epoxy into the pores. The optimal anodization conditions for maximum adhesive bond strength, 27 MPa, were 293 K and 100V. The maximum thermal conductivity of the epoxy-treated anodized layer was 1.6 W/m·K at 273 K. Compared with the epoxy-treated Al layer used for conventional MCPCBs, the epoxy-treated anodized layer showed advanced thermal performance due to a low difference of thermal resistance and high heat dissipation.

  8. Thermal Performance of Precast Concrete Sandwich Panel (PCSP) Design for Sustainable Built Environment

    Science.gov (United States)

    Ern, Peniel Ang Soon; Ling, Lim Mei; Kasim, Narimah; Hamid, Zuhairi Abd; Masrom, Md Asrul Nasid Bin

    2017-10-01

    Malaysia’s awareness of performance criteria in construction industry towards a sustainable built environment with the use of precast concrete sandwich panel (PCSP) system is applied in the building’s wall to study the structural behaviour. However, very limited studies are conducted on the thermal insulation of exterior and interior panels in PCSP design. In hot countries such as Malaysia, proper designs of panel are important to obtain better thermal insulation for building. This study is based on thermal performance of precast concrete sandwich panel design for sustainable built environment in Malaysia. In this research, three full specimens, which are control specimen (C), foamed concrete (FC) panels and concrete panels with added palm oil fuel ash (FC+ POFA), where FC and FC+POFA sandwiched with gypsum board (G) were produced to investigate their thermal performance. Temperature difference of exterior and interior surface of specimen was used as indicators of thermal-insulating performance of PCSP design. Heat transfer test by halogen lamp was carried out on three specimens where the exterior surface of specimens was exposed to the halogen lamp. The temperature reading of exterior and interior surface for three specimens were recorded with the help of thermocouple. Other factors also studied the workability, compressive strength and axial compressive strength of the specimens. This study has shown that FC + POFA specimen has the strength nearer to normal specimen (C + FC specimen). Meanwhile, the heat transfer results show that the FC+POFA has better thermal insulation performance compared to C and FC specimens with the highest temperature difference, 3.4°C compared to other specimens. The results from this research are useful to be implemented in construction due to its benefits such as reduction of energy consumption in air-conditioning, reduction of construction periods and eco-friendly materials.

  9. Windows 10 Technical Preview

    OpenAIRE

    Jyväsjärvi, Teppo

    2015-01-01

    Tässä opinnäytetyössä tutustaan uuden kesällä 2015 virallisesti julkaistavan Windows 10 -käyttöjärjestelmän Technical Preview -kehitysversioon. Ensimmäinen Technical Preview -versio julkaistiin syksyllä 2014. Opinnäytetyössä tutustaan Windows 10:n uusin ominaisuuksiin ja tehdään vertailua aiemman Windows 8.1 -version kanssa. Työssä Windows 10 Technical Preview asennetaan virtuaalikoneelle, käydään läpi asennuksen eri vaiheet sekä suurimmat muutokset käyttöliittymässä ja sovelluksissa. Op...

  10. SAF for Windows

    DEFF Research Database (Denmark)

    Hansen, Timme

    2001-01-01

    SAF for Windows er et computerprogram til parametrisk konstruktion af translationsskaller. Skaloverfladernes tredimensionelle, facetterede form fremkommer ved en kombination af to todimensionelle formbestemmende kurver, som kan vælges og redigeres af brugeren. Programmet kan udfolde de genererede...

  11. Windows Security patch required

    CERN Multimedia

    3004-01-01

    This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables,... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  12. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  13. Windows Security patch required

    CERN Multimedia

    2003-01-01

    This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables, ... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  14. Windows Security patch required

    CERN Multimedia

    2003-01-01

    This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables,... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  15. Development of Thermal Performance Analysis Computer Program on Turbine Cycle of Yoggwang 3,4 Units

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.Y.; Choi, K.H.; Jee, M.H.; Chung, S.I. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    The objective of the study ''Development of Thermal Performance Analysis Computer Program on Turbine Cycle of Yonggwang 3,4 Units'' is to utilize computerized program to the performance test of the turbine cycle or the analysis of the operational status of the thermal plants. In addition, the result can be applicable to the analysis of the thermal output at the abnormal status and be a powerful tool to find out the main problems for such cases. As a results, the output of this study can supply the way to confirm the technical capability to operate the plants efficiently and to obtain the economic gains remarkably. (author). 27 refs., 73 figs., 6 tabs.

  16. Evaluating the interior thermal performance of mosques in the tropical environment

    Science.gov (United States)

    Nordin, N. I.; Misni, A.

    2018-02-01

    This study introduces the methodology applied in conducting data collection and data analysis. Data collection is the process of gathering and measuring information on targeted variables in an established systematic method. Qualitative and quantitative methods are combined in collecting data from government departments, site experiments and observation. Furthermore, analysing the indoor thermal performance data in the heritage and new mosques were used thermal monitoring tests, while validation will be made by meteorology data. Origin 8 version of the software is used to analyse all the data. Comparison techniques were applied to analyse several factors that influence the indoor thermal performance of mosques, namely building envelope include floor area, opening, and material used. Building orientation, location, surrounding vegetation and water elements are also recorded as supported building primary data. The comparison of primary data using these variables for four mosques include heritage and new buildings were revealed.

  17. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    Science.gov (United States)

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  18. Calorimetric thermal-vacuum performance characterization of the BAe 80K space cryocooler

    International Nuclear Information System (INIS)

    Kotsubo, V.Y.; Johnson, D.L.; Ross, R.G. Jr.

    1992-01-01

    This paper on a comprehensive characterization program which is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precis individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heat-sink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stoke, drive frequency, and piston-displacer dc offset

  19. Numerical Simulation of the Thermal Performance of a Dry Storage Cask for Spent Nuclear Fuel

    Directory of Open Access Journals (Sweden)

    Heui-Yung Chang

    2018-01-01

    Full Text Available In this study, the heat flow characteristics and thermal performance of a dry storage cask were investigated via thermal flow experiments and a computational fluid dynamics (CFD simulation. The results indicate that there are many inner circulations in the flow channel of the cask (the channel width is 10 cm. These circulations affect the channel airflow efficiency, which in turn affects the heat dissipation of the dry storage cask. The daily operating temperatures at the top concrete lid and the upper locations of the concrete cask are higher than those permitted by the design specification. The installation of the salt particle collection device has a limited negative effect on the thermal dissipation performance of the dry storage cask.

  20. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absorbers Design

    Directory of Open Access Journals (Sweden)

    Mustofa Mustofa

    2017-03-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperaturs were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficieny was about 19%, while thermal efficiency of above 50% and correspondeng cell efficiency of 11%, respectively

  1. Thermal stability of phenolic based binders and frictional performance of brake composite materials

    Science.gov (United States)

    Pudhota, Madhuri

    To enhance frictional performance, wear and to obtain improved thermal stability with a reduction of noise, vibration, and harshness (NVH) and provide environment friendly brakes for the increasing needs of the population's comfort and safety requirements this study was initiated. The thermal stability of two different phenolic resins as binder on the frictional performance of brake composite material was studied. The two phenolic resins used are Durite phenolic resin and Bakelite phenolic resins. They were tested for friction, wear, thermal stability and degradation. This was executed by using a universal friction tester (UFT) for testing friction and wear, then on thermo gravimetric analysis (TGA) and the TGA results indicate more mass loss of NB samples contrary to test results. When individual materials were heated, Bakelite lost less mass compared to Durite. The friction test indicates more friction when used the NB samples but they had less wear and more stability nevertheless this could vary for other compositions and conditions.

  2. Numerical Investigation of the Thermal Management Performance of MEPCM Modules for PV Applications

    Directory of Open Access Journals (Sweden)

    Chao-Yang Huang

    2013-08-01

    Full Text Available The efficiency of photovoltaic modules decreases as the cell temperature increases. It is necessary to have an adequate thermal management mechanism for a photovoltaic module, especially when combined with a building construction system. This study aims to investigate via computational fluid dynamics simulations the heat transfer characteristics and thermal management performance of microencapsulated phase change material modules for photovoltaic applications under temporal variations of daily solar irradiation. The results show that the aspect ratio of the microencapsulated phase change material layer has significant effects on the heat transfer characteristics and the overall thermal performance of the two cases examined with different melting points (26 °C and 34 °C are approximately the same.

  3. The research of optical windows used in aircraft sensor systems

    International Nuclear Information System (INIS)

    Zhou Feng; Li Yan; Tang Tian-Jin

    2012-01-01

    The optical windows used in aircrafts protect their imaging sensors from environmental effects. Considering the imaging performance, flat surfaces are traditionally used in the design of optical windows. For aircrafts operating at high speeds, the optical windows should be relatively aerodynamic, but a flat optical window may introduce unacceptably high drag to the airframes. The linear scanning infrared sensors used in aircrafts with, respectively, a flat window, a spherical window and a toric window in front of the aircraft sensors are designed and compared. Simulation results show that the optical design using a toric surface has the integrated advantages of field of regard, aerodynamic drag, narcissus effect, and imaging performance, so the optical window with a toric surface is demonstrated to be suited for this application. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors

    International Nuclear Information System (INIS)

    Daghigh, Ronak; Ibrahim, Adnan; Jin, Goh Li; Ruslan, Mohd Hafidz; Sopian, Kamaruzzaman

    2011-01-01

    BIPVT is an application where solar PV/T modules are integrated into the building structure. System design parameters such as thermal conductivity and fin efficiency, type of cells, type of coolant and operating conditions are factors which influence the performance of BIPVT. Attempts have been made to improve the efficiency of building-integrated photovoltaic thermal (BIPVT). A new design concept of water-based PVT collector for building-integrated applications has been designed and evaluated. The results of simulation study of amorphous silicon (a-Si) PV/T and crystalline silicon (c-Si) module types are based on the metrological condition of Malaysia for a typical day in March. At a flow rate of 0.02 kg/s, solar radiation level between 700 and 900 W/m 2 and ambient temperature between 22 and 32 o C, the electrical, thermal and combined photovoltaic thermal efficiencies for the PV/T (a-Si) were 4.9%, 72% and 77%, respectively. Moreover, the electrical, thermal and combined photovoltaic thermal efficiencies of the PV/T (c-Si) were 11.6%, 51% and 63%.

  5. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  6. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Juan J. [Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València, Valencia 46022 (Spain); Pérez-Cajaraville, Juan J. [Pain Unit and Department of Anesthesia and Critical Care, Clínica Universidad de Navarra, University of Navarra, Pamplona 31008 (Spain); Muñoz, Víctor [Neurotherm Spain, Barcelona 08303 (Spain); Berjano, Enrique, E-mail: eberjano@eln.upv.es [Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València 46022 (Spain)

    2014-07-15

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m{sup −1}) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of

  7. Development of high power windows for ECH(and)CD launchers

    International Nuclear Information System (INIS)

    Roland Heidinger, R.; Danilov, I.; Meier, A.

    2006-01-01

    Electron Cyclotron Heating and Current Drive (ECH(and)CD) systems are a major part of nuclear fusion technology as localised and steerable deposition of high power mm-waves contributes essentially to plasma start-up, plasma heating, shaping of current profiles, and plasma stabilisation. At ITER, the first tritium confinement in the mm-wave launchers will be formed by CVD diamond windows. Based on large area CVD diamond disks and their unparalleled combination of ultralow mm-wave absorption and outstanding thermal conductivity, the window design for front steering (FS) and remote steering (RS) launchers was worked out for a transmission capability of 2 MW at the fixed frequency of 170 GHz. In addition, a torus window was designed for a step-tuneable Electron Cyclotron wave system for ASDEX Upgrade for transmission of up to 1 MW mm-wave power at 4 selected frequencies between 105 - 140 GHz. The designs for the torus windows for the three different launcher concepts account for the specific transmission requirements. For single-frequency operation, a single disk configuration was established. The disk thickness is adapted to provide sufficient safety margin towards pressure rise in the vacuum vessel (0.2 MPa) for the required window aperture. For the RS launcher, the remote steering unit placed in the back-end of the launcher requires a large window aperture (95 mm) to avoid beam vignetting at the extreme steering angles of ±12 o . For the FS launcher with the steering mechanism placed in the front shield of the launcher, the disk size is reduced as the window aperture can be identical to the waveguide inner diameter (63.5 mm). This allows to consider indirect cooling instead of edge cooling and thus to eliminate the risk of tritium contact to the cooling water in case of crack formation in the diamond disk. For the multi-frequency torus window at ASDEX-Upgrade a double disk configuration with the disk separation of 5 mm, fine tuneable over ± 1 mm, is realised. The

  8. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    Science.gov (United States)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  9. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    Science.gov (United States)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-12-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  10. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    Science.gov (United States)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature thermal protection materials (TPM) is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heat shield of Orbiter 105, Endeavour.

  11. Experimental study of the thermal performance of an assisted-gravity ...

    African Journals Online (AJOL)

    In this work, an assisted-gravity heat pipe has been designed and built to study the performance of a thermosyphon of 680 mm overall length of which the lengths of the evaporator and condenser zones are respectively of 41 and 190 mm. The parameters affecting the thermal hydraulic characteristics are the input power (10 ...

  12. Early-in-life thermal performance of UO2--PuO2 fast reactor fuel

    International Nuclear Information System (INIS)

    Baker, R.B.; Leggett, R.D.

    1979-01-01

    Results from the combined analyses of two thermal performance tests, HEDL P-19 and HEDL P-20 are described. The tests were designed to provide data on the power required to cause incipient fuel melting early in life under conditions prototypic of FFTF driver fuel pins and similar FBR fuel systems

  13. quasi-steady state thermal performances of a solar air heater with ...

    African Journals Online (AJOL)

    2017-01-17

    Jan 17, 2017 ... For low temperature solar heating applications two kind of solar air ... very low heat transfer rate because of small exchange surfaces ... In the study, mean temperatures and thermal performances of the solar air heater are modelled in quasi-steady state and compared to experimental data. Nomenclature.

  14. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance

    DEFF Research Database (Denmark)

    Sadeghinezhad, Emad; Mehrali, Mohammad; Rosen, Marc A.

    2016-01-01

    An experimental investigation has been carried out to examine the thermal, performance of a sintered wick heat pipe using aqueous graphene nanoplatelets (GNP) nanofluids. The study focuses on changes in the effects of GNP concentration, heat pipe inclination angle and input heating power. The max...

  15. Quasi-steady state thermal performances of a solar air heater with ...

    African Journals Online (AJOL)

    Quasi-steady state thermal performance of a solar air heater with a combined absorber is studied. The whole energy balance equations related to the system were articulated as a linear system of temperature equations. Solutions to this linear system were assessed from program based on an iterative process. The mean ...

  16. Thermal Performance of the Texas Instruments 1-W Linear Drive Cryocooler

    Science.gov (United States)

    Johnson, D.

    1998-01-01

    The efficiency, of the electronics plays a large part in determining the overall spacecraft power requirements to operate the cooler as well as determining the thermal dissipation characteristics of the various electrical components. The results of all the performance measurements are presented in the paper.

  17. Development of Mitsubishi high thermal performance grid 2 - overview of the development and Dnb test results

    International Nuclear Information System (INIS)

    Hoshi, M.; Imaizumi, M.; Mori, M.; Hori, K.; Ikeda, K.

    2001-01-01

    Spacer grid plays fundamental role in thermal performance of PWR fuel assembly. Grid spacer with higher thermal performance gives greater DNB (Departure from Nucleate Boiling) margin for the core. Mitsubishi has developed a prototype Zircaloy grid with higher thermal performance. In this paper, process of the development and DNB test results of the grid is presented. To achieve a goal to design grid with higher DNB performance, CFD (Computational Fluid Dynamics) and Freon DNB test are employed in the development. It is also concerned that the grid should be hydraulically compatible to existing grid. CFD is used in examining mixing capability and pressure drop for early stage of the development. Freon DNB test is used for preliminary checking of DNB performance for several design of the grids. After the final design is fixed, DNB test has been carried out at a high pressure / high temperature water test loop to verify the DNB performance. Also, hydraulic test has been done in a water test loop. The test results show that the grid has higher DNB performance and lower pressure loss coefficient compared with existing grid. It is also concluded that a combination of CFD and Freon DNB testing is successful tool for designing and development of grid. (authors)

  18. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... was studied. Thermal heat flux on the inner surface of HPC element, and the increase of heat losses to the outside environment were carefully investigated. Calculations were carried out for different temperatures of the circulating fluid, different spacing between CMT and different thicknesses of the inner...... HPC layer covering the CMT. This paper shows that CMT integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating (cooling) and at the same time create the comfortable and healthy environment for the occupants. This solution is very suitable for heating...

  19. The Effect of Particle Size of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Zia-ul-Mustafa M.

    2014-07-01

    Full Text Available Intumescent Fire retardant coatings (IFRC’s are one of the simplest ways to protect substrates exposed to fire. In this study, Wollastonite (W filler of two different particle sizes were used to determine the fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP as acid source, expandable graphite (EG as carbon source, melamine (MEL as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. A series of coating formulations were developed by using different weight percentages of both sized Wollastonite fillers. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. A Comparison of the coatings thermal performance was determined. Wollastonite containing filler particle size 10 μm showed better thermal performance than formulations containing filler’s particle size 44 μm.

  20. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    Science.gov (United States)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  1. Load Responsive MLI: Thermal Insulation with High In-Atmosphere and On-Orbit Performance, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high performance thermal insulation is critical to NASA's next generation Exploration spacecraft. Zero or low cryogenic propellant boiloff is required...

  2. Development and experimental study of beryllium window for ITER radial X-ray camera

    International Nuclear Information System (INIS)

    Chen, Zhaoxi; Jin, Guangxu; Chen, Kaiyun; Chen, Yebin; Song, Yuntao; Hu, Liqun; Niu, Luying; Sheng, Xiuli; Cheng, Yong; Lu, Kun

    2013-01-01

    Highlights: • The thickness of the beryllium foil is chosen as 80 μm to guarantee its safety under high pressure differential in accident events. • Using low purity of beryllium as the transition material, the effect of thermal stress caused by diffusion bonding process can be reduced. • Sealing ring and honeycomb-like supports are designed and used in the mechanical clamped beryllium window to enhance its sealing and safety performance. • The beryllium windows have good performance under severe working conditions like high temperature baking, vibration or impact load. -- Abstract: Radial X-ray camera (RXC) is a diagnostic device planned to be installed in the ITER Equatorial Port no. 12. Beryllium window will be installed between the inner and outer camera of RXC, which severs as the transmission photocathode substrate and also the vacuum isolation component. In this paper the design and manufacture process of two types of beryllium windows were introduced. Although 50 μm thickness of beryllium foil is the best choice, the 80 μm one with X-ray threshold of 1.34 keV was selected for safety consideration. Using the intermediate layer (low purity of beryllium) between the beryllium foil and the stainless steel base flange is an effective strategy to limit the welding thermal deformation and thermal stress of the thin foil caused by bonding between different materials. By using ANSYS software, the feasibility of the aperture design was analyzed and validated. Metal sealing ring was applied in the mechanical clamped beryllium window for its good stability under high temperature and neutron radiation. Although both of the hollow metal sealing ring with 0.03 mm silver coating and the pure silver sealing ring can satisfy the sealing requirement, the later one was chosen to produce the final product. Two hours 240 °C high temperature baking test, two hours 3.3 Hz vibration test and fatigue test were performed on the two types of beryllium windows. Based on the

  3. Performance of Nb3Sn quadrupole magnets under localized thermal load

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.V.; Bossert, r.; Chlachidze, G.; Lamm, M.; Mokhov, N.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2009-06-01

    This paper describes the results of design and analyses performed on 120-mm Nb{sub 3}Sn and NbTi quadrupole magnets with parameters relevant for the LHC IR upgrade. A realistic radiation heat load is evaluated in a wide luminosity range and translated into the magnet quench performance. The simulation results are supported by thermal measurements on a 90-mm Nb{sub 3}Sn quadrupole coil.

  4. Thermal-Hydraulic Performance of a Corrugated Cooling Fin with Louvered Surfaces

    DEFF Research Database (Denmark)

    Sønderby, Simon Kaltoft; Hosseini, Seyed Mojtaba Mir; Rezaniakolaei, Alireza

    2017-01-01

    The main objective of the article is to investigate thermal-hydraulic performance of a corrugated cooling fin with louvered surfaces. The investigation is carried out using the fin geometry of one most commonly used liquid-to-air heat exchangers. The investigation was carried out by numerically s...... between -45.5 % to 86.4 % were reported for the f-factor. The thermal part of the model was validated with good confidence, while the frictional part of the model was validated with a smaller degree of certainty....

  5. Macro-fiber composites performance under thermal cycling for impedance-based SHM applications

    Science.gov (United States)

    Faria, Cassio T.; Owen, Robert B.; Inman, Daniel J.

    2014-03-01

    This work focuses on investigating the effects of thermal cycles in the impedance-based damage detection performance of Macro-Fiber Composites (MFC). A host structure with an MFC bonded to its surface is submitted to a 90 minutes temperature cycle that varies from -20°C to 65° C. After each cycle the electrical impedance of the test sample is measured with and without the presence of a representative damage (an added mass). The results indicate that the thermal cycling affects the smart device by changing its impedance profile, a phenomenon that should be taken into account in damage detection algorithms.

  6. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    Science.gov (United States)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  7. Parametric study on thermal performance of horizontal earth pipe cooling system in summer

    International Nuclear Information System (INIS)

    Ahmed, S.F.; Amanullah, M.T.O.; Khan, M.M.K.; Rasul, M.G.; Hassan, N.M.S.

    2016-01-01

    Highlights: • Horizontal earth pipe cooling (HEPC) performance was investigated by a parametric study. • A thermal model was developed using FLUENT for the parametric study. • Air velocity, pipe length and pipe diameter showed noticeable impact on HEPC performance. • Pipe length greatly influenced the HEPC performance compared to other parameters. - Abstract: Rational use of energy and its associated greenhouse gas emissions has become a key issue for a sustainable environment and economy. A substantial amount of energy is consumed by today’s buildings which are accountable for about 40% of the global energy consumption. There are on-going researches in order to overcome these and find new techniques through energy efficient measures. Passive air cooling of earth pipe cooling technique is one of those which can save energy in buildings with no greenhouse gas emissions. The performance of the earth pipe cooling system is mainly affected by the parameters, namely air velocity, pipe length, pipe diameter, pipe material, and pipe depth. This paper investigates the impact of these parameters on thermal performance of the horizontal earth pipe cooling system in a hot humid subtropical climate at Rockhampton, Australia. For the parametric investigation, a thermal model was developed for the horizontal earth pipe cooling system using the simulation program, FLUENT 15.0. Results showed a significant effect for air velocity, pipe length, and pipe diameter on the earth pipe cooling performance, where the pipe length dominated the other parameters.

  8. APPLICATION OF MONITORING, DIAGNOSIS, AND PROGNOSIS IN THERMAL PERFORMANCE ANALYSIS FOR NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    HYEONMIN KIM

    2014-12-01

    Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

  9. Implementing Boot Control for Windows Vista

    Science.gov (United States)

    Ashino, Yuki; Fujita, Keisuke; Furusawa, Maiko; Uehara, Tetsutaro; Sasaki, Ryoichi

    A digital forensic logging system must prevent the booting of unauthorized programs and the modification of evidence. Our previous research developed Dig-Force2, a boot control system for Windows XP platforms that employs API hooking and a trusted platform module. However, Dig-Force2 cannot be used for Windows Vista systems because the hooked API cannot monitor booting programs in user accounts. This paper describes an enhanced version of Dig-Force2, which uses a TPM and a white list to provide boot control functionality for Windows Vista systems. In addition, the paper presents the results of security and performance evaluations of the boot control system.

  10. Computed Tomography Window Blending: Feasibility in Thoracic Trauma.

    Science.gov (United States)

    Mandell, Jacob C; Wortman, Jeremy R; Rocha, Tatiana C; Folio, Les R; Andriole, Katherine P; Khurana, Bharti

    2018-02-07

    This study aims to demonstrate the feasibility of processing computed tomography (CT) images with a custom window blending algorithm that combines soft-tissue, bone, and lung window settings into a single image; to compare the time for interpretation of chest CT for thoracic trauma with window blending and conventional window settings; and to assess diagnostic performance of both techniques. Adobe Photoshop was scripted to process axial DICOM images from retrospective contrast-enhanced chest CTs performed for trauma with a window-blending algorithm. Two emergency radiologists independently interpreted the axial images from 103 chest CTs with both blended and conventional windows. Interpretation time and diagnostic performance were compared with Wilcoxon signed-rank test and McNemar test, respectively. Agreement with Nexus CT Chest injury severity was assessed with the weighted kappa statistic. A total of 13,295 images were processed without error. Interpretation was faster with window blending, resulting in a 20.3% time saving (P window-blended cases was 82.7%, compared to 81.6% for conventional windows. The specificity of the window-blended cases was 93.1%, compared to 90.5% for conventional windows. All injuries of major clinical significance (per Nexus CT Chest criteria) were correctly identified in all reading sessions, and all negative cases were correctly classified. All readers demonstrated near-perfect agreement with injury severity classification with both window settings. In this pilot study utilizing retrospective data, window blending allows faster preliminary interpretation of axial chest CT performed for trauma, with no significant difference in diagnostic performance compared to conventional window settings. Future studies would be required to assess the utility of window blending in clinical practice. Copyright © 2018 The Association of University Radiologists. All rights reserved.

  11. Current status of design technology on core thermal-hydraulic performance in FLWR

    International Nuclear Information System (INIS)

    Ohnuki, Akira; Kobayashi, Noboru

    2008-01-01

    R and D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Innovative Water Reactor for Flexible Fuel Cycle (FLWR) has been progressed at Japan Atomic Energy Agency in collaboration with power utilities, reactor vendors and universities. The FLWR adopts a triangular tight-lattice rod bundle with around 1mm gap width between rods and the thermal-hydraulic performance is being recognized as one of the major subjects. We have performed the R and D using large-scale test facility (37-rod bundle with full-height and full-pressure), model experiments and advanced numerical simulation technology. This paper described the master plan for the development of design technology and showed an executive summary for this project. The thermal-hydraulic characteristics in the tight-lattice configuration were investigated and the feasibility was confirmed based on the experiments. We have developed the design technology including subchannel and 3-D numerical simulation one to evaluate the effects of geometry/scale on the thermal-hydraulic behaviors. (author)

  12. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall

    Directory of Open Access Journals (Sweden)

    Shiping Huang

    2018-04-01

    Full Text Available The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  13. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study

    Directory of Open Access Journals (Sweden)

    Xiangfei Kong

    2016-01-01

    Full Text Available This study is focused on the preparation and performance of a building energy storage panel (BESP. The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP, which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM was incorporated into expanded perlite (EP through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC, scanning electron microscope (SEM, best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1 the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2 the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3 in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  14. Thermal performance of a micro-combustor for micro-gas turbine system

    International Nuclear Information System (INIS)

    Cao, H.L.; Xu, J.L.

    2007-01-01

    Premixed combustion of hydrogen gas and air was performed in a stainless steel based micro-annular combustor for a micro-gas turbine system. Micro-scale combustion has proved to be stable in the micro-combustor with a gap of 2 mm. The operating range of the micro-combustor was measured, and the maximum excess air ratio is up to 4.5. The distribution of the outer wall temperature and the temperature of exhaust gas of the micro-combustor with excess air ratio were obtained, and the wall temperature of the micro-combustor reaches its maximum value at the excess air ratio of 0.9 instead of 1 (stoichiometric ratio). The heat loss of the micro-combustor to the environment was calculated and even exceeds 70% of the total thermal power computed from the consumed hydrogen mass flow rate. Moreover, radiant heat transfer covers a large fraction of the total heat loss. Measures used to reduce the heat loss were proposed to improve the thermal performance of the micro-combustor. The optimal operating status of the micro-combustor and micro-gas turbine is analyzed and proposed by analyzing the relationship of the temperature of the exhaust gas of the micro-combustor with thermal power and excess air ratio. The investigation of the thermal performance of the micro-combustor is helpful to design an improved micro-combustor

  15. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study.

    Science.gov (United States)

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-25

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  16. Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate

    Directory of Open Access Journals (Sweden)

    Halil Alibaba

    2016-02-01

    Full Text Available Heat loss and gain through windows has a very high impact on the thermal comfort of offices. This paper analyzes a standard low energy consumption university office that has a standard envelope. Dynamic thermal simulations with EDSL Tas software, a predicted mean vote (PMV, and a predicted percentage of dissatisfied (PPD with all local discomfort as stated in ASHRAE, ISO 7730: 2005, EN 15251: 2007 were used for thermal sensation, in order to optimize the best window to external wall proportion in a hot and humid climate that exists in the Famagusta case study. A simulated office building is oriented east to west in order to take advantage of the wind direction. In May 45% (PPD < 6%–0.7% open window, 93% (PPD < 10–0.2 open window, and 97% (PPD < 15%–0.1% open window thermal comfort scores are obtained when the window to external wall ratio (WWR is 10%. In October 43% (PPD < 6%–0.7% open window, 86% (PPD < 10–0.2 open window, and 92% (PPD < 15%–0.1% open window thermal comfort scores are obtained when the WWR is 10%. In September 49% (PPD < 10% full open window and 51% (PPD < 15%–0.1% open window thermal comfort scores are obtained when the WWR is 10%.

  17. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    International Nuclear Information System (INIS)

    Kreider, M.A.; White, G.A.; Varrin, R.D.

    1998-01-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator performance. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. Uncertainty analyses were performed to determine whether the calculated fouling factor for each plant represented significant fouling or whether uncertainty in key variables (e.g., steam pressure or feedwater flow rate) could be responsible for calculated fouling. The methodology was validated using two methods: by predicting the SG pressure following chemical cleaning at San Onofre 2 and also by performing a sensitivity study with the industry-standard thermal-hydraulics code ATHOS to investigate the effects of spatially varying tube scale distributions. This study indicated that the average scale thickness has a greater impact on fouling than the spatial distribution, showing that the assumption of uniform resistance inherent to the global fouling factor is reasonable. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure loss evaluations demonstrated two key points: 1) that the available thermal margin against fouling, which can

  18. Windows with an improved energy balance of 30%

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    The aim of the project has been to investigate and to develop thermally improved windows based on an evaluation of the energy balance of the window, i.e. the total influence of the window on the energy consumption for space heating. The energy balance is the net heat flow per window area which...... carried out in the project. The large glass distance helps to reduce the traditional thermal bridge effect of the spacer and the integrated frame leads to an increase in transmitted solar energy. Furthermore, a controlled air exchange in case of pressure differences between the enclosures in the glazing...... means that both energy losses and transmittance of solar radiation is considered.The final goal of the project was to improve the energy balance of a window with at least 30%. As reference is chosen a common low energy glazing mounted in a wooden frame construction measuring 1188 × 1188 mm2...

  19. The vacuum window - a minimal concept with maximum effect

    Energy Technology Data Exchange (ETDEWEB)

    Bredsdorff, M.; Moltke, I.; Bezzel, E.

    1997-12-01

    The projects primary aim was to develop a production technology in order to produce evacuated panes at a competitive price. Insulating using vacuum is not a new concept. It has been described in patents for over a century. The field of usage of this concept is immense, and the potentials even greater. The general principle of the vacuum window is to have nothing, namely vacuum, in-between two low radiant surfaces, thus obtaining very low heat transmission technique for highly insulating evacuated windows has most certainly been reached. To obtain the mentioned vast improvements in thermal performance of the new generation of glazing there were several technical issues to be dealt with. They have been divided up into 6 tasks: Low emission glass, spacers, tempering, edge seal, evacuation and framing. The target center U-value of the vacuum window was set to be 0.7 W/m{sup 2}K, an ambitious target requiring several previously unsolved details to be solved. The center U-value of 0.7 W/m{sup 2}K has been reached and documented through this project. The production costs compares to that of existing glazing with the same insulating capabilities. (EHS) EFP-93; EFP-94; EFP-95; EFP-96; EU-BRITE-DURAM; 13 refs.

  20. Uncertainties in liquid-metal fusion blanket design windows

    International Nuclear Information System (INIS)

    Garner, J.K.; Abdou, M.A.

    1986-01-01

    Lithium- and lead-lithium (17Li-83Pb)-cooled fusion blankets offer the promise of excellent neutronic performance, high fusion to electrical energy conversion efficiency, and design simplicity. However, interactive effects such as magnetohydrodynamics (MHD) pressure drop, flow distribution, heat transfer, corrosion, and stress appear to have large enough uncertainties to make the presence of a useful design window questionable, especially in large tokamak reactors. The work reported here attempts to: (a) define limits for the design windows for lithium and lead-lithium as breeders and coolants with stainless steel, ferritic steel, and refractory alloy structural materials in various tokamak fusion reactors and (b) quantify the impact of uncertainties in these limits on the design window. Steady-state MHD pressure drop and heat transfer models are developed and used to quantify the effects of varying several tokamak reactor and blanket design parameters and materials properties. Uncertainties in the present pressure drop equations and calculation methods are also considered. Calculations are used to evaluate the impact of the coolant inlet temperature on the thermal cycle efficiency

  1. Experimental and Transient Thermal Analysis of Heat Sink Fin for CPU processor for better performance

    Science.gov (United States)

    Ravikumar, S.; Subash Chandra, Parisaboina; Harish, Remella; Sivaji, Tallapaneni

    2017-05-01

    The advancement of the digital computer and its utilization day by day is rapidly increasing. But the reliability of electronic components is critically affected by the temperature at which the junction operates. The designers are forced to shorten the overall system dimensions, in extracting the heat and controlling the temperature which focus the studies of electronic cooling. In this project Thermal analysis is carried out with a commercial package provided by ANSYS. The geometric variables and design of heat sink for improving the thermal performance is experimented. This project utilizes thermal analysis to identify a cooling solution for a desktop computer, which uses a 5 W CPU. The design is able to cool the chassis with heat sink joined to the CPU is adequate to cool the whole system. This work considers the circular cylindrical pin fins and rectangular plate heat sink fins design with aluminium base plate and the control of CPU heat sink processes.

  2. A new approach to characterize the effect of fabric deformation on thermal protective performance

    International Nuclear Information System (INIS)

    Li, Jun; Li, Xiaohui; Lu, Yehu; Wang, Yunyi

    2012-01-01

    It is very important to evaluate thermal protective performance (TPP) in laboratory-simulated fire scenes as accurately as possible. For this paper, to thoroughly understand the effect of fabric deformation on basic physical properties and TPP of flame-retardant fabrics exposed to flash fire, a new modified TPP testing apparatus was developed. Different extensions were employed to simulate the various extensions displayed during different body motions. The tests were also carried out with different air gaps. The results showed a significant decrease in air permeability after deformation. However, the change of thickness was slight. The fabric deformation had a complicated effect on thermal protection with different air gaps. The change of TPP depended on the balance between the surface contact area and the thermal insulation. The newly developed testing apparatus could be well employed to evaluate the effect of deformation on TPP of flame-resistant fabrics. (paper)

  3. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.; Attenberger, S.E.

    1988-01-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor plasma (Tokamak Ignition/Burn Experimental Reactor) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-dimensional transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alpha concentration significantly influence the ignition and steady-state burn capability

  4. Thermal Performance of Traditional House in the Upland Central Celebes of Indonesia

    Directory of Open Access Journals (Sweden)

    Sri Nastiti N.E Nastiti N.E

    2011-11-01

    Full Text Available House presents special problems for design in relation to climate as it accommodates variety of uses over 24-hour period. It is widely known in the tropical countries that traditional houses are more sensitive to the prevailing climate and able to provide comfortable internal environment for the occupants. Tambi as one of traditional houses in upland Central Celebes Indonesia is believed to be thermally comfortable, yet there still no empirical evidence to approve it. Present study conducted empirical studies on typical traditional Tambi houses to evaluate their thermal performance. External and internal climatic conditions were measured in each house and were analysed. Results of the study showed that typical traditional Tambi house are not able to maintain the internal temperature within the comfort range for a preiod of 24- hours. Thermal quality of the house, however, were improving as indicated by internal temperatures which were more satisfactory than the external temperatures.

  5. Impact of three window configurations on daylight conditions

    DEFF Research Database (Denmark)

    Dubois, Marie-Claude; Sørensen, Karl Grau; Traberg-Borup, Steen

    The report describes the results of a pilot study on daylight conditions in simple rooms of residential buildings. As a tool for the analyses the Radiance Lighting Simulating System was used to simulate one room with three different window configurations, a vertical window, a dormer window......, and a roof window. The simulations were performed for overcast sky conditions and under one sunny sky, for two different times of the day. The study shows that the window configuration affects the daylight conditions (distribution and intensity) significantly. The roof window results in a higher (average......) daylight factor on a horizontal plane, i.e. more than twice as high compared with the vertical window, and more than triple as high compared with the dormer window....

  6. A Study of Thermal Performance of Contemporary Technology-Rich Educational Spaces

    Directory of Open Access Journals (Sweden)

    Sarah Elmasry

    2013-08-01

    Full Text Available One of the most dominant features of a classroom space is its high occupancy, which results in high internal heat gain (approximately 5 KW. Furthermore, installation of educational technologies, such as smart boards, projectors and computers in the spaces increases potential internal heat gain. Previous studies on office buildings indicate that with the introduction of IT equipment in spaces during the last decade, cooling load demands are increasing with an associated increase in summer electrical demand. Due to the fact that educational technologies in specific correspond to pedagogical practices within the space, a lot of variations due to occupancy patterns occur. Also, thermal loads caused by educational technologies are expected to be dependent on spatial configuration, for example, position with respect to the external walls, lighting equipment, mobility of devices. This study explores the thermal impact of educational technologies in 2 typical educational spaces in a facility of higher education; the classroom and the computer lab. The results indicate that a heat gain ranging between 0.06 and 0.095 KWh/m2 is generated in the rooms when educational technologies are in use. The second phase of this study is ongoing, and investigates thermal zones within the rooms due to distribution of educational technologies. Through simulation of thermal performance of the rooms, alternative room configurations are thus recommended in response to the observed thermal zones.

  7. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications

    International Nuclear Information System (INIS)

    Kearney, Daniel J.; Suleman, Omar; Griffin, Justin; Mavrakis, Georgios

    2016-01-01

    Highlights: • Planar, compact PCB embedded pulsating heat pipe for heat spreading applications. • Embedded heat pipe operates at sub-ambient pressure with environmentally. • Compatible fluids. • Range of optimum operating conditions, orientations and fill ratios identified. - Abstract: Low voltage power electronics applications (<1.2 kV) are pushing the design envelope towards increased functionality, better reliability, low profile and reduced cost. One packaging method to enable these constraints is the integration of active power electronic devices into the printed circuit board improving electrical and thermal performance. This development requires a reliable passive thermal management solution to mitigate hot spots due to the increased heat flux density. To this end, a 44 channel open looped pulsating heat pipe (OL-PHP) is experimentally investigated for two independent dielectric working fluids – Novec TM 649 and Novec TM 774 – due to their lower pressure operation and low global warming potential compared to traditional two-phase coolants. The OL-PHP is investigated in vertical (90°) orientation with fill ratios ranging from 0.30 to 0.70. The results highlight the steady state operating conditions for each working fluid with instantaneous plots of pressure, temperature, and thermal resistance; the minimum potential bulk thermal resistance for each fill ratio and the effective thermal conductivity achievable for the OL-PHP.

  8. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  9. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    Science.gov (United States)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  10. Comparative simulation analyses on dynamic performances of photovoltaic–thermal solar collectors with different configurations

    International Nuclear Information System (INIS)

    Shan, Feng; Tang, Fang; Cao, Lei; Fang, Guiyin

    2014-01-01

    Highlights: • Recent developments of the PV/T systems were summarized. • The dynamic model of the PV/T system with different configurations was developed. • The performance parameters were derived to conduct comparative analyses. • The performances of the PV/T system were evaluated and analyzed. • The PV/T configurations have influences on the performances of the PV/T system. - Abstract: The electrical efficiency of photovoltaic (PV) module can be increased by reducing the operating temperature of PV module. The hybrid photovoltaic/thermal (PV/T) solar system consists of conventional PV module and attached heat transfer pipe with internal working fluid flowing to extract heat energy from PV module. This article presents a brief review on the latest researches and applications of the PV/T systems. Afterwards, based on energy-balance equations, mathematical models for several PV/T systems with different configurations are developed. Analytical expressions for both the electrical and thermal performance parameters are derived as functions of climatic and design parameters to conduct comparative analyses. The calculation results indicate that the changes in the PV/T configurations have influences on electrical and thermal performances of the PV/T system. Further suggestions on configurations optimization for practical applications are propounded

  11. Adaptive Liquid Crystal Windows

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  12. Occupants' window opening behaviour

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano

    2012-01-01

    systems is proposed, based on studies presented in literature and a general process leading to the effects on energy consumptions is identified.Existing studies on the topic of window opening behaviour are highlighted and a theoretical framework to deal with occupants' interactions with building controls......, aimed at improving or maintaining the preferred indoor environmental conditions, is elaborated. This approach is used to look into the drivers for the actions taken by the occupants (windows opening and closing) and to investigate the existing models in literature of these actions for both residential...... and office buildings. The analysis of the literature highlights how a shared approach on identifying the driving forces for occupants' window opening and closing behaviour has not yet been reached. However, the reporting of variables found not to be drivers may reveal contradictions in the obtained results...

  13. Windows 8.1 bible

    CERN Document Server

    Boyce, Jim; Tidrow, Rob

    2014-01-01

    Windows 8.1 coverage that goes above and beyond all competitors? Serving as an evolutionary update to Windows 8, Windows 8.1 provides critical changes to parts of Windows 8, such as greater customization of the interface and boot operations, return of a 'start button' that reveals apps, greater integration between the two interfaces, and updates to apps. Weighing in at nearly 1000 pages, Windows 8.1 Bible provides deeper Windows insight than any other book on the market. It's valuable for both professionals needing a guide to the nooks and crannies of Windows and regular users wanting a wide

  14. Renovation and design of double casement windows with regard to the occurrence of water vapour condensation or mould on the interior surface of the window jamb

    Science.gov (United States)

    Kudrnacova, L.; Balik, L.

    2017-10-01

    The condensation of water vapour on the interior surface is an indicator of construction dysfunction or ignoring of the surroundings temperature and relative humidity. This paper deals with analysis of the occurrence of condensation on the jamb of double casement windows (windows with two window casements). More precisely, this is a surface in the interior where water vapour condensation or mould occur. For the renovation of existing double casement windows, there are different solutions based on window design: application of double insulating glazing on the interior window casement, application of double insulating glazing on the exterior casement, or installation of a simple window. We first describe measurement of an existing double casement window located in a mountain cottage. Second, the results and comparison of 2D thermal model of different types of double casement window construction. Also, the external insulation of the peripheral wall was included in the model.

  15. Cascaded Window Memoization for Medical Imaging

    OpenAIRE

    Khalvati , Farzad; Kianpour , Mehdi; Tizhoosh , Hamid ,

    2011-01-01

    Part 12: Medical Applications of ANN and Ethics of AI; International audience; Window Memoization is a performance improvement technique for image processing algorithms. It is based on removing computational redundancy in an algorithm applied to a single image, which is inherited from data redundancy in the image. The technique employs a fuzzy reuse mechanism to eliminate unnecessary computations. This paper extends the window memoization technique such that in addition to exploiting the data...

  16. Windows Deployment Services : Esiasennuspalvelin

    OpenAIRE

    Ahonen, Arto

    2010-01-01

    Opinnäytetyöni aiheena on Windows Deployment Services, jonka tarkoituksena on toimia esiasennus-palvelimena Windows-käyttöjärjestelmien levykuvien jakamiseen sekä asentamiseen. Opinnäytetyö to-teutettiin yhteistyössä Concept.10 IT:n ja tuotannon kanssa. Concept.10:n tuotannon lähtökohtana on valmistaa ja asentaa Suomen markkinoille tietokonelaitteistoja ohjelmistoineen ja tukipalveluineen. Tuo-tantoon olennaisena osana kuuluu esiasennuspalvelin, jolla voidaan asentaa useita tietokoneita samaa...

  17. Microsoft Windows networking essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    The core concepts and technologies of Windows networking Networking can be a complex topic, especially for those new to the field of IT. This focused, full-color book takes a unique approach to teaching Windows networking to beginners by stripping down a network to its bare basics, thereby making each topic clear and easy to understand. Focusing on the new Microsoft Technology Associate (MTA) program, this book pares down to just the essentials, showing beginners how to gain a solid foundation for understanding networking concepts upon which more advanced topics and technologies can be built.

  18. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2010-01-01

    The Azure Services Platform is a brand-new cloud-computing technology from Microsoft. It is composed of four core components-Windows Azure, .NET Services, SQL Services, and Live Services-each with a unique role in the functioning of your cloud service. It is the goal of this book to show you how to use these components, both separately and together, to build flawless cloud services. At its heart Windows Azure Platform is a down-to-earth, code-centric book. This book aims to show you precisely how the components are employed and to demonstrate the techniques and best practices you need to know

  19. Microsoft Windows Security Essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    Windows security concepts and technologies for IT beginners IT security can be a complex topic, especially for those new to the field of IT. This full-color book, with a focus on the Microsoft Technology Associate (MTA) program, offers a clear and easy-to-understand approach to Windows security risks and attacks for newcomers to the world of IT. By paring down to just the essentials, beginners gain a solid foundation of security concepts upon which more advanced topics and technologies can be built. This straightforward guide begins each chapter by laying out a list of topics to be discussed,

  20. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, M.; Li, G.L.; Ji, X.; Yin, F.; Xu, L.

    2011-01-01

    Research highlights: → A 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. → Another 10 m 2 TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. → The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m 2 TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating silicon cell array are 7.51% and 42

  1. Performance and Thermal Stability of a Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    Directory of Open Access Journals (Sweden)

    Joanna McFarlane

    2014-01-01

    Full Text Available Because polyaromatic hydrocarbons show high thermal stability, an example of these compounds, phenylnaphthalene, was tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 ℃ indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. This would indicate that the internal channels of cooler components of trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades to be used in a loop at temperatures significantly greater than the current 400 ℃ maximum for organic fluids. Similar degradation pathways may occur with other organic materials. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of 60% could be achieved using a high efficiency collector and 12 h thermal energy storage when run at a field outlet temperature of 550 ℃.

  2. Thermal mass impact on energy performance of a low, medium and heavy mass building in Belgrade

    Directory of Open Access Journals (Sweden)

    Anđelković Bojan V.

    2012-01-01

    Full Text Available Heavy mass materials used in building structures and architecture can significantly affect building energy performance and occupant comfort. The purpose of this study was to investigate if thermal mass can improve the internal environment of a building, resulting in lower energy requirements from the mechanical systems. The study was focused on passive building energy performance and compared annual space heating and cooling energy requirements for an office building in Belgrade with several different applications of thermal mass. A three-dimensional building model was generated to represent a typical office building. Building shape, orientation, glazing to wall ratio, envelope insulation thickness, and indoor design conditions were held constant while location and thickness of building mass (concrete was varied between cases in a series of energy simulations. The results were compared and discussed in terms of the building space heating and cooling energy and demand affected by thermal mass. The simulation results indicated that with addition of thermal mass to the building envelope and structure: 100% of all simulated cases experienced reduced annual space heating energy requirements, 67% of all simulated cases experienced reduced annual space cooling energy requirements, 83% of all simulated cases experienced reduced peak space heating demand and 50% of all simulated cases experienced reduced peak space cooling demand. The study demonstrated that there exists a potential for reducing space heating and cooling energy requirements with heavy mass construction in the analyzed climate region (Belgrade, Serbia.

  3. High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment

    Science.gov (United States)

    Liu, Baicang; Wang, Shuai; Zhao, Pingju; Liang, Heng; Zhang, Wen; Crittenden, John

    2018-03-01

    Nanofiltration (NF) membranes have many excellent applications (e.g., removing multivalent ions and pretreating water before reverse osmosis, RO), but their relatively high cost limits their application. Especially in recent years, researchers have paid substantial attention to reducing the cost of NF membranes. In this paper, high-performance NF membranes were fabricated using interfacial polymerization (IP) methods. The polymer concentration, IP solution concentration, and thermal treatment conditions were varied. The synthesized membranes were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), a contact angle goniometer, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, and performance tests. The results show that water flux was significantly improved using a hot-water thermal treatment method. Our fabricated thermal-treated NF membrane had an approximately 15% higher water permeability with a value of 13.6 L/(m2 h bar) than that of the commercially available GE HL membrane with a value of 11.8 L/(m2 h bar). Our membranes had the same MgSO4 rejection as that of the GE HL membrane. We found that the thermal treatment causes the NF membrane surface to be smoother and have a high crosslinking degree.

  4. Evaluation of the effects of vegetation and green walls on building thermal performance and energy consumption

    Science.gov (United States)

    Susorova, Irina

    This research explored the use of vegetation in building facades as a potential solution to the problems of urban ecology and the excessive energy consumption in buildings. Vegetated facades substantially reduce building energy use, reduce the urban heat island effect, improve air quality, and increase the biodiversity of plants and animals in cities. The goal of this research was to evaluate the effects of plants on building thermal performance and energy consumption by developing a thermal model of a building facade covered with a layer of plants. The developed mathematical model accounts for thermal physical processes in a vegetated exterior wall including solar radiation, infrared radiative exchange between the facade and sky, the facade and ground, the facade and vegetation layer, convection to and from the facade, evapotranspiration from the plant layer, heat storage in the facade material, and heat conduction through the facade. The model calculates vegetated facade surface temperature and heat flux through the facade for multiple weather conditions, plant physiological characteristics, and facade parameters inputs. The model was validated with the results of a one-week long experiment measuring the thermal properties of bare and vegetated facades on the Illinois Institute of Technology campus. The experiment and subsequent sensitivity analysis demonstrated that a plant layer can effectively reduce the facade exterior surface temperature, daily temperature fluctuations, exterior wall temperature gradient, and, as a result, provide as much additional thermal insulation to the facade as a 2.5 cm layer of expanded polystyrene insulation. The vegetated facade model was also used to analyze the reduction in energy consumption in generic office and residential thermal zones for multiple parameters. The simulations showed that energy reduction could be as high as 6.2% of annual total energy use and 34.6% of cooling energy use in residential thermal zones. Overall

  5. Preliminary tests of a model of cooling-pond thermal performance

    International Nuclear Information System (INIS)

    Hicks, B.B.; Wesely, M.L.; Wilczek, J.

    1975-01-01

    Experiments performed during recent years at the cooling pond complex at the Dresden nuclear power station have been designed to improve our understanding of the fundamental properties of thermal exchange at a warm-water surface. To a considerable extent, the field studies have been successful in that they have shown that modern micrometeorological techniques can be successfully applied to the demanding circumstances of an industrial cooling lake at temperature of at least 40 0 C. The intent of these studies has been to create a set of parameterization schemes good enough to allow simulation of the performance of the Dresden cooling lake without adjustment of numerical constants. An obvious extension of these studies, and one of the goals of the cooling-pond research program as presently stated, is to obtain an accurate numerical simulation of thermal performance of ponds with use of the improved formulations that have resulted from the experimental work at the Dresden lake. The computer model is divided into two sections and can be used to test the sensitivity of predicted performance to variations in procedures for determining the thermal transfer from the surface

  6. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    Science.gov (United States)

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  7. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    Science.gov (United States)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this

  8. Design of the beryllium window for Brookhaven Linac Isotope Producer

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mapes, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raparia, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  9. Design of the beryllium window for Brookhaven Linac Isotope Producer

    International Nuclear Information System (INIS)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-01-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn't been a single window failure since the new design was implemented in 2012.

  10. Effects of vegetation, structural and human factors on the thermal performance of residences in a semi-arid environment

    Science.gov (United States)

    Kliman, Susan Schaefer

    The objectives of the study were to examine and quantify the relationship between vegetation and the thermal performance of residences in a hot arid environment. Also explored were structural and human influences on residential energy consumption. A primary goal was to determine how much energy savings could be realized through strategic planting of vegetation. This study sought to validate previous simulation and modeling studies that documented annual savings of 2--11% on residential cooling loads. Also examined was whether shrubs and grass could provide a benefit similar to that of trees, assessing the importance of evapotranspiration versus shading. An empirical study was conducted using 105 existing homes in the metropolitan area of Tucson, Arizona. Data included construction type, amenities, living habits of occupants, and energy consumption for heating and cooling over a two-year period. These data were analyzed with a combination of bivariate and multivariate analyses to examine direct correlations between specific variables and energy consumption and the relative importance of each variable. These analyses were unable to document any measurable savings in summer cooling loads as a result of vegetation adjacent to the house, and the presence of trees actually increased the winter heating load by 2%. While trees provide important shading benefits, and can reduce the direct solar gain through the windows of a house, analysis demonstrated that structural and human factors were the most important aspects in residential energy consumption. The size of the house is of primary importance. Houses with evaporative cooling consumed significantly less energy than those with air conditioning. Thermostat settings and habits regarding thermostat operation were the most critical human factors. Occupants who adjusted their thermostats a few degrees cooler in winter and warmer in summer realized measurable savings. Occupants who turned their heating and cooling equipment

  11. Window materials for high power gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Afsar, M.N.; Chi, H. [Tufts Univ., Medford, MA (United States)

    1994-07-01

    The room temperature application of sapphire as window material at higher frequencies is not feasible since its absorption coefficient increases almost linearly with increasing frequency in the millimeter wavelength region. At cryogenic temperature the absorption coefficient value decreases only by a few factors (factor of 2 to 3) in the 90-200 GHz region. The earlier reported temperature squared dependence (decrease) in the absorption coefficient or the loss tangent value is totally absent in the broad band continuous wave data the authors are reporting here (at 6.5 K, 35K, 77K and 300K) and one they reported at conferences earlier. These results are verified by another technique. The authors utilize their precision millimeter wave dispersive Fourier transform spectroscopic techniques at room temperature and at cryogenic temperatures. The extra high resistivity single crystal compensated silicon is no doubt the lowest loss material available at room temperature in the entire millimeter wavelength region. At higher millimeter wave frequencies an extra high resistivity silicon window or a window made with extra high resistivity silicon coated with diamond film would certainly make a better candidate in the future. A single free standing synthetic diamond window seems to have higher absorption coefficient values at millimeter wavelength region at this time although it is claimed that it possesses good mechanical strength and higher thermal conductivity characteristics. It certainly does not rule out the use of diamond film on a single crystal high resistivity silicon to improve its mechanical strength and thermal conductivity.

  12. Embryonic developmental temperatures modulate thermal acclimation of performance curves in tadpoles of the frog Limnodynastes peronii.

    Directory of Open Access Journals (Sweden)

    Frank Seebacher

    Full Text Available Performance curves of physiological rates are not fixed, and determining the extent to which thermal performance curves can change in response to environmental signals is essential to understand the effect of climate variability on populations. The aim of this study was to determine whether and how temperatures experienced during early embryonic development affect thermal performance curves of later life history stages in the frog Limnodynastes peronii. We tested the hypotheses that a the embryonic environment affects mean trait values only; b temperature at which performance of tadpoles is maximal shifts with egg incubation temperatures so that performance is maximised at the incubation temperatures, and c incubation temperatures modulate the capacity for reversible acclimation in tadpoles. Growth rates were greater in warm (25°C compared to cold (15°C acclimated (6 weeks tadpoles regardless of egg developmental temperatures (15°C or 25°C, representing seasonal means. The breadth of the performance curve of burst locomotor performance (measured at 10, 15, 20, 25, and 30°C, representing annual range is greatest when egg developmental and acclimation temperatures coincide. The mode of the performance curves shifted with acclimation conditions and maximum performance was always at higher temperatures than acclimation conditions. Performance curves of glycolytic (lactate dehydrogenase activities and mitochondrial (citrate synthase and cytochrome c oxidase enzymes were modulated by interactions between egg incubation and acclimation temperatures. Lactate dehydrogenase activity paralleled patterns seen in burst locomotor performance, but oxygen consumption rates and mitochondrial enzyme activities did not mirror growth or locomotor performance. We show that embryonic developmental conditions can modulate performance curves of later life-history stages, thereby conferring flexibilty to respond to environmental conditions later in life.

  13. Thermal control and performance assessment of a proton exchanger membrane fuel cell generator

    International Nuclear Information System (INIS)

    Hwang, Jenn-Jiang

    2013-01-01

    Highlights: • Thermal control unit along with a smart algorithm is able to limit the fuel cell temperature in a desired range. • Thermal control unit comprises a thermostat, a radiator/fan assembly, a coolant heater, and a convection fan. • The system efficiency is increased with increasing the external load, reaching 46% at 80% load-duty. • The stack coolant inlet temperature is optimized in the range 58–63 °C. - Abstract: An original-designed thermal control scheme that manages the thermal behaviors in a proton exchange membrane (PEM) fuel cell generator has been proposed. It not only keeps the stack from overheating under extreme high external loads, but also prevents the stack from staying too cold in the cold-start conditions. A thermal control unit (TCU) together with a smart control algorithm is able to limit the fuel cell operation temperature in a desired range. The TCU comprises mainly a thermostat, a radiator, and a heater. It divides the stack coolant into a cooling stream and a heating stream that maintains a pre-set coolant temperature before entering the stack. Parametric studies include the external loads (0 L < 4 kW) and the stack coolant inlet temperature (SCIT = 53, 58, and 63 °C). The dynamics of SCIT under different loads are measured to verify the thermal reliability of the fuel cell generator. Then, examining the effect of SCIT on the system efficiency assesses the performance the fuel cell generator. Finally, an empirical correlation for the system efficiency of the PEM fuel cell generator under different SCITs is presented as a function of the external loads

  14. "Stained Glass" Landscape Windows

    Science.gov (United States)

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  15. Exploring Shop Window Displays

    Science.gov (United States)

    Christopoulou, Martha

    2011-01-01

    Using visual resources from everyday life in art lessons can enrich students' knowledge about the creation of visual images, artifacts, and sites, and develop their critical understanding about the cultural impact of these images and their effects on people's lives. Through examining an exhibition in the windows of Selfridges department store in…

  16. Opening the Literature Window

    Science.gov (United States)

    Jago, Carol

    2012-01-01

    Great literature gives students a window to other places and times, but it often requires students to step outside their comfort zones and take on challenges they wouldn't usually attempt. Unfortunately, research shows that many schools are not assigning literature that pushes students beyond their current reading level. Jago encourages teachers…

  17. Analysis of the thermal performance of a life-size prototype of vegetal facade

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, F.; Guerra Aragones, R.; Neila, F.J.; Bedoya, C. [Technical University of Madrid, Madrid (Spain)], email: francesca.olivieri@upm.es

    2010-07-01

    With the increasing concerns about climate change, new ways to reduce energy consumption and thus emissions are being studied. The implementation of green roof systems has been studied for decades but little research has been performed on vegetal facades. The aim of this paper is to assess the energy saving and environmental benefits of installing a vegetal facade instead of a traditional facade. Two facades, one with vegetation, one without, were installed in an experimental building in Colmenar Viejo, Madrid, Spain, and their thermal performance state was monitored by probes and analyzed. Results showed that vegetation provides good solar protection during summer conditions and provides better thermal comfort; however vegetation also reduces the indoor temperature more than a facade without vegetation during sunny winter days. This study highlighted that vegetal facades are better used for areas with hot summer and mild winters.

  18. Simplified approach of predictions of thermal performance for counterflow fully-wet cooling coil

    Science.gov (United States)

    Mansour, M. Khamis; Hassab, M. A.

    2017-06-01

    An innovative correlation associating the effectiveness (ɛ) of the fully-wet cooling coil with its number of transfer unit and vice versa is presented in this work. The thermal performance and design of fully-wet cooling coil can be predicted simply through those correlations. The analytical model was constructed on a basis of solving heat and mass transfer equation "enthalpy potential method" simultaneously coupled with the energy equations. The validity of the new correlations was tested by experimental reported in the available literature. A good agreement with deviation less than 10% was found during the comparison between the output results of the new correlations and those obtained from the literature. The main benefits of those new correlations (1) Its simplicity to be implemented through simple calculations of input parameters (2) It provides helpful guidelines for optimization of wet cooling coil performance during its operation coupling with the thermal system at which the coil is integrated.

  19. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    Science.gov (United States)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  20. Analysis of annual thermal and moisture performance of radiant barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.

    1991-04-01

    This report summarizes a project to model the annual thermal and moisture performance of radiant barrier systems installed in residential attics. A previously developed model for the thermal performance of attics with radiant barriers was modified to allow estimates of moisture condensation on the underside of radiant barriers that are laid directly on top of existing attic insulation. The model was partially validated by comparing its predictions of ceiling heat flows and moisture condensation with data and visual observations made during a field experiment with full-size houses near Knoxville, Tennessee. Since the model predictions were found to be in reasonable agreement with the experimental data, the models were used to estimate annual energy savings and moisture accumulation rates for a wide variety of climatic conditions. The models results have been used to identify locations where radiant barriers are cost effective and also where radiant barriers have potential for causing moisture problems. 58 refs., 20 figs., 32 tabs.