WorldWideScience

Sample records for window insulating devices

  1. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  2. Highly Insulating Windows Volume Purchase Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.

  3. Insulation structure of thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Usami, Saburo; Tsukamoto, Hideo; Kikuchi, Mitsuru

    1998-01-01

    The present invention provides an insulating structure of a thermonuclear device, in which insulation materials between toroidal coils are not broken even if superconductive toroidal coils are used. Namely, a tokamak type thermonuclear device of an insulating structure type comprises superconductive toroidal coils for confining plasmas arranged in a circular shape directing the center each at a predetermined angle, and the toroidal coils are insulated from each other. The insulation materials are formed by using a biaxially oriented fiber reinforced plastics. The contact surface of the toroidal coils and the insulating materials are arranged so that they are contact at a woven surface of the fiber reinforced plastics. Either or both of the contact surfaces of the fiber reinforced plastics and the toroidal coils are coated with a high molecular compound having a low friction coefficient. With such a constitution, since the interlayer shearing strength of the biaxially oriented fiber reinforced plastics is about 1/10 of the compression strength, the shearing stress exerted on the insulation material is reduced. Since a static friction coefficient on the contact surface is reduced to provide a structure causing slipping, shearing stress does not exceeds a predetermined limit. As a result, breakage of the insulation materials between the toroidal coils can be prevented. (I.S.)

  4. Using of Aerogel to Improve Thermal Insulating Properties of Windows

    Science.gov (United States)

    Valachova, Denisa; Zdrazilova, Nada; Panovec, Vladan; Skotnicova, Iveta

    2018-06-01

    For the best possible thermal-technical properties of building structures it is necessary to use materials with very low thermal conductivity. Due to the increasing thermal-technical requirements for building structures, the insulating materials are developed. One of the modern thermal insulating materials is so-called aerogel. Unfortunately, this material is not used in the field of external thermal insulation composite systems because of its price and its properties. The aim of this paper is to present possibilities of using this insulating material in the civil engineering - specifically a usage of aerogel in the production of windows.

  5. Prototype solid-state electrochromic window devices

    International Nuclear Information System (INIS)

    Dao, L.H.; Nguyen, M.T.

    1989-01-01

    This paper discusses electrochromic smart windows which are prospective devices for the control of light transmission in response to the variation of brightness of the environment. The fabrication of electrochromic windows based on cathodically coloring transition metal oxides and anodically coloring conducting polymers are described. The device consists of gel or glassy polymer electrolytes sandwiches by a pair of transparent conducting glass coated respectively with a thin film of WO 3 or MoO 3 prepared by electrodeposition, and with a thin film of ploy(aniline) derivatives obtained by electropolymerization or solution casting. The electrochromic properties of the five-layer smart window devices are presented

  6. Topological Insulators and Superconductors for Innovative Devices

    Science.gov (United States)

    2015-03-20

    Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices

  7. USB Storage Device Forensics for Windows 10.

    Science.gov (United States)

    Arshad, Ayesha; Iqbal, Waseem; Abbas, Haider

    2018-05-01

    Significantly increased use of USB devices due to their user-friendliness and large storage capacities poses various threats for many users/companies in terms of data theft that becomes easier due to their efficient mobility. Investigations for such data theft activities would require gathering critical digital information capable of recovering digital forensics artifacts like date, time, and device information. This research gathers three sets of registry and logs data: first, before insertion; second, during insertion; and the third, after removal of a USB device. These sets are analyzed to gather evidentiary information from Registry and Windows Event log that helps in tracking a USB device. This research furthers the prior research on earlier versions of Microsoft Windows and compares it with latest Windows 10 system. Comparison of Windows 8 and Windows 10 does not show much difference except for new subkey under USB Key in registry. However, comparison of Windows 7 with latest version indicates significant variances. © 2017 American Academy of Forensic Sciences.

  8. Supporting Multiple Pointing Devices in Microsoft Windows

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2002-01-01

    In this paper the implementation of a Microsoft Windows driver including APIs supporting multiple pointing devices is presented. Microsoft Windows does not natively support multiple pointing devices controlling independent cursors, and a number of solutions to this have been implemented by us and...... and others. Here we motivate and describe a general solution, and how user applications can use it by means of a framework. The device driver and the supporting APIs will be made available free of charge. Interested parties can contact the author for more information....

  9. High Reliability R-10 Windows Using Vacuum Insulating Glass Units

    Energy Technology Data Exchange (ETDEWEB)

    Stark, David

    2012-08-16

    The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ≤ 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where the unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.

  10. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Eames, Philip C.; Hyde, Trevor J. [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, N. Ireland BT37 0QB (United Kingdom); Norton, Brian [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5m by 0.5m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32mm diameter pillars spaced 25mm apart, contiguously sealed by a 10mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  11. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Yueping Fang; Eames, P.C.; Hyde, T.J. [University of Ulster, Newtonabbey (United Kingdom). Centre for Sustainable Technologies; Norton, B. [Dublin Institute of Technology, Dublin (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5 m by 0.5 m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32 mm diameter pillars spaced 25 mm apart, contiguously sealed by a 10 mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  12. Investigating the impact of noise incidence angle on the sound insulation of a supply air window

    DEFF Research Database (Denmark)

    Hansen, Morten B.; Tambo, Torben

    2015-01-01

    for the highest frequencies are less than the sound insulation of the same window measured in the laboratory. The aim of this paper is through simulations in the geometric acoustic simulation software ODEON, to investigate the impact of noise incidence angle on the sound insulation of the Supply Air Window......The Danish Environmental Agency introduced in 2007 a guideline “Noise from roads”, in which noise limits for open windows were introduced. This guideline has led to investigations of open windows with good sound insulation, and among one of these windows are the “Supply Air Window”. Prior sound...... insulation measurements of the Supply Air Window show a difference in the frequency range above 2 kHz, for field measurements carried out according to EN ISO 140-5 and laboratory measurements carried out according to EN ISO 10140-2. It is found that the sound insulation measured in the field setup...

  13. Experiences with sound insulating open windows in traffic noise exposed housing

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2015-01-01

    windows are open, not least to reduce sleep disturbance. Unfortunately, such window solutions are complicated and expensive and practical experience limited. Nevertheless, they have been included in some Danish projects. To support further development and use, experience from seven field cases......Sound insulating windows are widely used in traffic noise exposed residential areas to reduce indoor noise levels to acceptable levels. However, such windows are typically only designed to provide sound insulation in closed position, and many people prefer open windows parts of time for ventilation...... purposes, including during night, or simply because it’s a good feeling to have windows open to be in contact with the surroundings. High noise exposure can lead to adverse effects on comfort and health, and thus, there is a need for sound insulating open windows to reduce noise exposure in homes, when...

  14. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  15. Aerodynamic window for a laser fusion device

    International Nuclear Information System (INIS)

    Masuda, Wataru

    1983-01-01

    Since the window of a laser system absorbs a part of the laser energy, the output power is determined by the characteristics of the window. The use of an aerodynamic window has been studied. The required characteristics are to keep the large pressure difference. An equation of motion of a vortex was presented and analyzed. The operation power of the system was studied. A multi-stage aerodynamic window was proposed to reduce the power. When the jet flow of 0.3 of the Mach number is used, the operation power will be several Megawatt, and the length of an optical path will be about 100 m. (Kato, T.)

  16. A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry

    Science.gov (United States)

    Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi

    2016-05-01

    Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.

  17. [Preventive effects of sound insulation windows on the indoor noise levels in a street residential building in Beijing].

    Science.gov (United States)

    Guo, Bin; Huang, Jing; Guo, Xin-biao

    2015-06-18

    To evaluate the preventive effects of sound insulation windows on traffic noise. Indoor noise levels of the residential rooms (on both the North 4th ring road side and the campus side) with closed sound insulation windows were measured using the sound level meter, and comparisons with the simultaneously measured outdoor noise levels were made. In addition, differences of indoor noise levels between rooms with closed sound insulation windows and open sound insulation windows were also compared. The average outdoor noise levels of the North 4th ring road was higher than 70 dB(A), which exceeded the limitation stated in the "Environmental Quality Standard for Noise" (GB 3096-2008) in our country. However, with the sound insulation windows closed, the indoor noise levels reduced significantly to the level under 35 dB(A) (Pwindows had significant influence on the indoor noise levels (Pwindow, when the sound insulation windows were closed, the indoor noise levels reduced 18.8 dB(A) and 8.3 dB(A) in residential rooms facing North 4th ring road side and campus side, respectively. The results indicated that installation of insulation windows had significant noise reduction effects on street residential buildings especially on the rooms facing major traffic roads. Installation of the sound insulation windows has significant preventive effects on indoor noise in the street residential building.

  18. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  19. Development of windows based on highly insulating aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    2004-01-01

    of buildings, the window area is the weakest part with respect to the heat loss, but at the same time, it also provides e.g. solar energy gain. Glazing prototypes have been made of aerogel tiles of about 55 cm sq. (elaborated within the projects). Those tiles are quickly evacuated and easily sealed between two...... glass panes and a specific rim seal. A heat treatment phase (after the supercritical CO2 drying) of the aerogel is currently being developed in order to improve its optical quality. This step increases the solar transmittance about 6 percent points. For glazing prototypes with an aerogel thickness...... of approx. 15 mm, a centre heat loss coefficient of below 0.7 W/m² K and a solar transmittance of 76% have been obtained. The research is funded in part by the European Commission within the frameworks of the Non-Nuclear Energy Programme – JOULE III and the Energy, Environment and Sustainable Development...

  20. The influence of the thermo-phono-insulating glazing structure configuration of some PVC profile windows on the airborne sound insulation – case study

    Directory of Open Access Journals (Sweden)

    Marta Cristina ZAHARIA

    2012-12-01

    Full Text Available After conducting laboratory acoustic measurements of airborne sound insulation for several windows with the same type of PVC profiles, equipped with different types of phono- and thermal - insulating glazings, the influence of the window’s glazed part (glass structure configuration on airborne sound insulation was analyzed. The configuration of the structure’s glazed part requires its composition of glass sheets with different thicknesses or intermediate layers of air with different thicknesses. This configuration has an important influence on the acoustic response of windows, namely on the index of air noise sound insulation, Rw, and on the behavior of the entire measurement frequency range.

  1. Materials And Devices In Electrochromic Window Development

    Science.gov (United States)

    Cogan, Stuart F.; Anderson, Elizabeth J.; Plante, Timothy D.; Rauh, R. David

    1985-12-01

    Windows with switchable electrochromic glazings are potentially useful for regulating solar input to building interiors. In this article, we describe the structure and operation of a proposed solid-state electrochromic glazing based on crystalline LixWO3 (c-LiXWO3) and a low coloration efficiency counter electrode material such as amorphous Nb2O5 (a-Nb2O5). The importance of reversibility in electrochromic glazing operation is emphasized, and optical switching experiments that demonstrate reversible lithium insertion/extraction in c-LixW03, a-LixWO3, and a-LixNb2O5 are described. Additional optical switching experiments in tandem electrochromic cells comprised of c-LixWO3/a-Nb2O5 and a-LixWO3/a-Nb2O5 demonstrated the proposed design, indicating reversible optical switching over 500 and 200 complete cycles, respectively, without degradation. Optical data on the evolution of reflective and absorp-tive modulation in c-LixWO3 are presented and solar attenuation results are used to demon-strate the advantage of using crystalline electrochromics to conserve daylighting during electrochromic window operation.

  2. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  3. Simple Design Tool for Development of Well Insulated Window Frames and Optimization of the Frame Geometry

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2012-01-01

    in order to approach an optimal solution. The program was also used to conduct an optimization process of the frame geometry. A large number of various window frame designs were created and evaluated, based on their insulation properties. The paper presents the investigation process and some of the best......This paper describes a design tool created with the purpose of designing highly insulated window frames. The design tool is based on a parametric model of the frame geometry, where various parameters describing the frame can be easily changed by the user. Based on this input, geometry of the frame...... is generated by the program and is used by the finite element simulator to calculate the thermal performance of the frame (the U value). After the initial design is evaluated, the user can quickly modify chosen parameters and generate a new design. This process can then be repeated in multiple iterations...

  4. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows (HILIT+)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    2005-01-01

    batch. Furthermore the production time has been reduced to 1/3 of the initial production time through detailed theoretical and experimental analyses of especially the supercritical washing step included in the drying phase. At the same time the production plant have been modified to recycle most...... insulation purposes. The edge seal solution shows only a very limited thermal bridge effect. The final glazing has a total solar energy transmittance above 85% and a U-value of 0.7 W/m2 K for about 14 mm aerogel thickness, which for a 20 mm thickness corresponds to a U-value of approximately 0.5 W/m2K...

  5. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows (HILIT+)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Kristiansen, Finn Harken; Schultz, Jørgen Munthe

    2005-01-01

    to 1000 m²/g), the material is proposed to serve as substrate for catalytic materials. • The special pore structure of aerogel could be used for gas filters in the 20 to 100 nm region. • The sound velocity within aerogel is in the range of 100 to 300 m/s, which should be one of the lowest for an inorganic......-free nano-structured aerogel materials through a reasonably fast and reproducible process. The applicative part of this project aimed at elaborating, studying and optimising “state-of-the-art” (0.5 W/m2 K) aerogel glazings for windows. An important issue was the risk of outside condensation and rime and its....... No other known glazing exhibits such an excellent combination of solar transmittance and heat loss coefficient. The annual energy savings compared to triple low energy glazing is in the range of 10 – 20% depending on type of building. Beside the application in glazing production the HILIT+ aerogel material...

  6. Dark current of organic heterostructure devices with insulating spacer layers

    Science.gov (United States)

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul

    2015-03-01

    The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.

  7. Design principles for HgTe based topological insulator devices

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Povolotskyi, Michael; Klimeck, Gerhard

    2013-07-01

    The topological insulator properties of CdTe/HgTe/CdTe quantum wells are theoretically studied. The CdTe/HgTe/CdTe quantum well behaves as a topological insulator beyond a critical well width dimension. It is shown that if the barrier (CdTe) and well-region (HgTe) are altered by replacing them with the alloy CdxHg1-xTe of various stoichiometries, the critical width can be changed. The critical quantum well width is shown to depend on temperature, applied stress, growth directions, and external electric fields. Based on these results, a novel device concept is proposed that allows to switch between a normal semiconducting and topological insulator state through application of moderate external electric fields.

  8. Phase coherent transport in hybrid superconductor-topological insulator devices

    Science.gov (United States)

    Finck, Aaron

    2015-03-01

    Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.

  9. Electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Abe, Tetsuya; Murakami, Yoshio [Japan Atomic Energy Research Inst., Naka (Japan)

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al{sub 2}O{sub 3}, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs.

  10. Electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  11. Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate

    Directory of Open Access Journals (Sweden)

    Takayoshi Katase

    2017-05-01

    Full Text Available Infrared (IR transmittance tunable metal-insulator conversion was demonstrated on a glass substrate by using thermochromic vanadium dioxide (VO2 as the active layer in a three-terminal thin-film-transistor-type device with water-infiltrated glass as the gate insulator. Alternative positive/negative gate-voltage applications induce the reversible protonation/deprotonation of a VO2 channel, and two-orders of magnitude modulation of sheet-resistance and 49% modulation of IR-transmittance were simultaneously demonstrated at room temperature by the metal-insulator phase conversion of VO2 in a non-volatile manner. The present device is operable by the room-temperature protonation in an all-solid-state structure, and thus it will provide a new gateway to future energy-saving technology as an advanced smart window.

  12. BIPV-powered smart windows utilizing photovoltaic and electrochromic devices.

    Science.gov (United States)

    Ma, Rong-Hua; Chen, Yu-Chia

    2012-01-01

    A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV) panel and an all-solid-state electrochromic (EC) stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO(3)/Ta(2)O(5)/ITO and one stack comprising ITO/WO(3)/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO(3)/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V). The experimental results show that the smart window incorporating an ITO/WO(3)/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750-1,500 Lux under typical summertime conditions in Taiwan.

  13. BIPV-Powered Smart Windows Utilizing Photovoltaic and Electrochromic Devices

    Directory of Open Access Journals (Sweden)

    Yu-Chia Chen

    2011-12-01

    Full Text Available A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV panel and an all-solid-state electrochromic (EC stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO3/Ta2O5/ITO and one stack comprising ITO/WO3/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO3/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V. The experimental results show that the smart window incorporating an ITO/WO3/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750–1,500 Lux under typical summertime conditions in Taiwan.

  14. Thermal insulation layer for the vacuum containers of a thermonuclear device

    International Nuclear Information System (INIS)

    Nishikawa, Masana; Yamada, Masao; Kameari, Akihisa; Niikura, Setsuo.

    1980-01-01

    Purpose: To prevent temperature rise of a thermal insulation layer for a vacuum container of a thermonuclear device higher than allowable value when irradiated by neutron by constructing the layer of a cooling unit in thermal insulation material. Constitution: A metal plate attached with cooling pipes is buried in a thermal insulation material forming a thermal insulation layer to form the layer provided between a vacuum container of a thermonuclear device and a shield. (Yoshihara, H.)

  15. Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Svidt, Kjeld; Nielsen, Peter V.

    In natural ventilation systems fresh air is often provided through opening of windows. However, the knowledge of the performance of windows is rather limited. Computation of natural ventilation air flow through windows is most commonly made using discharge coefficients, that are regarded as being...... constant. The reported results show that the discharge coefficient for a window opening cannot be regarded as a constant and that it varies considerably with the size of the opening area, the window type and the temperature difference. Therefore, the use of a constant value can lead to serious errors...

  16. Consumer protection issues in energy: a guide for attorneys general. Insulation, solar, automobile device, home devices

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Harry I.; Hulse, William S.; Jones, Robert R.; Langer, Robert M.; Petrucelli, Paul J.; Schroeder, Robert J.

    1979-11-01

    The guide attempts to bring together two important and current issues: energy and consumer protection. Perhaps the most basic consumer-protection issue in the energy area is assuring adequate supplies at adequate prices. It is anticipated, though, that consumers will want to consider new ways to lower enegy consumption and cost, and will thus be susceptible to fraudulent energy claims. Information is prepared on insulation, solar, energy-saving devices for the home, and energy-saving devices for the automobile.

  17. 24 CFR 3280.106 - Exit facilities; egress windows and devices.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Exit facilities; egress windows and... § 3280.106 Exit facilities; egress windows and devices. (a) Every room designed expressly for sleeping purposes, unless it has an exit door (see § 3280.105), shall have at least one outside window or approved...

  18. Development of Enhanced Window layers for CIGS Photovoltaic Devices

    Science.gov (United States)

    Alexander, J. Nicholas

    One of the most promising thin film devices right now is the Copper Indium Gallium Selenide (CIGS) solar cell with maximum reported power conversion efficiency of 22.3%. The Transparent Conducting Oxide (TCO) which is the top layer of the CIGS device also known as the window layer, is responsible for collecting the electrons generated in the CIGS device and conducting them to the circuit. Development of a very low resistivity film with a high optical transmission is crucial for optimal performance of devices as well as the ability to be deployed without changes to their properties for several decades. Current TCOs such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) are met with limitations with either using large amounts of expensive materials such as indium, often requiring and anneal step to obtain good conductivity, or have shown poor long term reliability. This thesis is focused on development of InZnO and zirconium doped InZnO as a potential replacement TCO to obtain high conductivity and high transmission like the leading TCOs without needing heated depositions, post deposition annealing, and maintain a good film reliability. Zirconium doping was employed to farther enhance both the optical and electrical properties through enhancement of the films high frequency permittivity of InZnO while providing improved reliability to the film. The films were grown through a mix of DC and RF co-sputtering. InZnO films were deposited at varying indium concentration ( 10-30%) and samples were able to achieve low resistivity ( 7x10-4 O-cm), high mobility (>30 cm2/v.s), high carrier concentration (>10 20 cm-3), while maintaining high transmission (> 80%) in the visible and near-infrared region. After zirconium was incorporated into the InZnO films by replacement of the ZnO target with a ZrO2/ZnO (5:95) target, films of Zr:InZnO were deposit through the same method to achieve films that maintained very similar electrical and optical properties. The little

  19. Laboratory testing of joints between windows and highly insulated cavity walls. Investigations of tightness against rain and wind

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, A

    1983-10-01

    In the Danish energy research programme, 1EFP 80, a number of laboratory tests have been carried out on models of highly insulated cavity brick walls in order to study rain- and wind tightness of the joints between windows and such walls. Tests have been carried out with joints tightened only with a rain barrier as well as with joints according to the two stage joint principle. In the exterior part of the joint has in both cases been used a mortar, and expanding gasket, an EPDM-profile and wooden battens. Further an experiment has been carried out on a plastic window, where mastic was used as well in the exterior as the interior part of the joint. The findings were that a two-stage joint gives the best performance as well regarding air tightness as rain tightness. Further the experiments have shown that a window frame should have a depth of at least 90 mm in order to design a joint between window and wall, which is satisfactory as well regarding thermal insulation as resistance to rain and wind.

  20. A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Arinaga, Kenji [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Hansen, Allan [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Tornow, Marc [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2007-07-25

    A novel concept for metal electrodes with few 10 nm separation for electrical conductance measurements in an aqueous electrolyte environment is presented. Silicon-on-insulator (SOI) material with 10 nm buried silicon dioxide serves as a base substrate for the formation of SOI plateau structures which, after recess-etching the thin oxide layer, thermal oxidation and subsequent metal thin film evaporation, feature vertically oriented nanogap electrodes at their exposed sidewalls. During fabrication only standard silicon process technology without any high-resolution nanolithographic techniques is employed. The vertical concept allows an array-like parallel processing of many individual devices on the same substrate chip. As analysed by cross-sectional TEM analysis the devices exhibit a well-defined material layer architecture, determined by the chosen material thicknesses and process parameters. To investigate the device in aqueous solution, we passivated the sample surface by a polymer layer, leaving a micrometre-size fluid access window to the nanogap region only. First current-voltage characteristics of a 65 nm gap device measured in 60 mM buffer solution reveal excellent electrical isolation behaviour which suggests applications in the field of biomolecular electronics in a natural environment.

  1. Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    SINTEF Building and Infrastructure; Norwegian University of Science and Technology (NTNU); Bergh, Sofie Van Den; Hart, Robert; Jelle, Bjrn Petter; Gustavsen, Arild

    2013-01-31

    Insulating glass (IG) units typically consist of multiple glass panes that are sealed and held together structurally along their perimeters. This report describes a study of edge seals in IG units. First, we summarize the components, requirements, and desired properties of edge construction in IG units, based on a survey of the available literature. Second, we review commercially available window edge seals and describe their properties, to provide an easily accessible reference for research and commercial purposes. Finally, based on the literature survey and review of current commercial edge seal systems, we identify research opportunities for future edge seal improvements and solutions.

  2. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    Energy Technology Data Exchange (ETDEWEB)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while

  3. High power RF window deposition apparatus, method, and device

    Science.gov (United States)

    Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel

    2017-07-04

    A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.

  4. Nanoporous Insulating Oxide Deionization Device Having Asymmetric Electrodes and Method of Use Thereof

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A nanoporous insulating oxide deionization device, method of manufacture and method of use thereof for deionizing a water supply (such as a hard water supply), for...

  5. Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes.

    Science.gov (United States)

    Lang, Augustus W; Li, Yuanyuan; De Keersmaecker, Michel; Shen, D Eric; Österholm, Anna M; Berglund, Lars; Reynolds, John R

    2018-03-09

    Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a transparent conducting electrode. These ECDs exhibit a vibrant magenta-to-clear color change that results from a remarkably colorless bleached state. Furthermore, they require low energy and power inputs of 3 mWh m -2 at 2 W m -2 to switch due to a high coloration efficiency (590 cm 2  C -1 ) and low driving voltage (0.8 V). Each device component is processed with high-throughput methods, which highlights the opportunity to apply this approach to fabricate mechanically robust, energy-efficient smart windows on a large scale. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Effect on the insulation material of a MOSFET device submitted to a standard diagnostic radiation beam

    International Nuclear Information System (INIS)

    De Magalhaes, C M S; Dos Santos, L A P; Souza, D do N; Maia, A F

    2010-01-01

    MOSFET electronic devices have been used for dosimetry in radiology and radiotherapy. Several communications show that due to the radiation exposure defects appear on the semiconductor crystal lattice. Actually, the structure of a MOSFET consists of three materials: a semiconductor, a metal and an insulator between them. The MOSFET is a quadripolar device with a common terminal: gate-source is the input; drain-source is the output. The gate controls the electrical current passing through semiconductor medium by the field effect because the silicon oxide acts as insulating material. The proposal of this work is to show some radiation effects on the insulator of a MOSFET device. A 6430 Keithley sub-femtoamp SourceMeter was used to verify how the insulating material layer in the structure of the device varies with the radiation exposure. We have used the IEC 61267 standard radiation X-ray beams generated from a Pantak industrial unit in the radiation energy range of computed tomography. This range was chosen because we are using the MOSFET device as radiation detector for dosimetry in computed tomography. The results showed that the behaviour of the electrical current of the device is different in the insulator and semiconductor structures.

  7. Selective Excitation of Window and Buffer Layers in Chalcopyrite Devices and Modules

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, Stephen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burst, James M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beall, Carolyn L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bowers, Karen A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mansfield, Lorelle M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-02

    Window and buffer layers in chalcopyrite devices are well known to affect junctions, conduction, and photo-absorption properties of the device. Some of these layers, particularly 'buffers,' which are deposited directly on top of the absorber, exhibit metastable effects upon exposure to light. Thus, to understand device performance and/or metastability, it is sometimes desirable to selectively excite different layers in the device stack. Absorption characteristics of various window and buffer layers used in chalcopyrite devices are measured. These characteristics are compared with emission spectra of common and available light sources that might be used to optically excite such layers. Effects of the window and buffer absorption on device quantum efficiency and metastability are discussed. For the case of bath-deposited Zn(O,S) buffers, we conclude that this layer is not optically excited in research devices or modules. This provides a complimentary mechanism to the chemical differences that may cause long time constants (compared to devices with CdS buffers) associated with reaching a stable 'light-soaked' state.

  8. Development of electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Tsujimura, S. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Toyoda, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Inoue, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Abe, T. [Japan Atomic Energy Research Inst., Naka (Japan); Murakami, Y. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al{sub 2}O{sub 3} has been selected as an insulation material, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.).

  9. Development of electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Tsujimura, S.; Toyoda, M.; Inoue, M.; Abe, T.; Murakami, Y.

    1995-01-01

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al 2 O 3 has been selected as an insulation material, while Cr 3 C 2 -NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.)

  10. Compare of Energy Efficiency of Windows in Aalborg and Chongqing

    DEFF Research Database (Denmark)

    Lin, Zhenguo; Heiselberg, Per; Yao, Runming

    2007-01-01

    Focus on window's energy efficiency, this paper compared the difference of windows in Aalborg and Chongqing. The author analysed the designing process, the thermal insulation performances, the sun shading devices and the ventilation of windows in Aalborg and Chongqing respectively. Furthermore......, the author explored the reasons for window problems in Chongqing, found out the main barriers to overcome and measures to take for solving the problem. Deeper analysis should be made before the energy efficient windows of Aalborg used in Chongqing....

  11. Design of device driver program for PCI data acquisition adapters based on WDM of windows 2000

    International Nuclear Information System (INIS)

    Yuan Weihua; Qiao Weimin; Jing Lan; Zhu Haijun

    2003-01-01

    The paper describes the design of device driver program for PCI data acquisition adapters based on WDM of Windows 2000. Give an actual example of PCI6208. Now, several data acquisition adapters based in this method are using in national big science engineer HIRFL-CSR. (authors)

  12. Heat insulation device for reactor pressure vessel in water

    International Nuclear Information System (INIS)

    Nakamura, Heiichiro; Tanaka, Yoshimi.

    1993-01-01

    Outer walls of a reactor pressure vessel are covered with water-tight walls made of metals. A heat insulation metal material is disposed between them. The water tight walls are joined by welding and flanges. A supply pipeline for filling gases and a discharge pipeline are in communication with the inside of the water tight walls. Further, a water detector is disposed in the midway of the gas discharge pipeline. With such a constitution, the following advantages can be attained. (1) Heat transfer from the reactor pressure vessel to water of a reactor container can be suppressed by filled gases and heat insulation metal material. (2) Since the pressure at the inside of the water tight walls can be equalized with the pressure of the inside of the reactor container, the thickness of the water-tight walls can be reduced. (3) Since intrusion of water to the inside of the walls due to rupture of the water tight walls is detected by the water detector, reactor scram can be conducted rapidly. (4) The sealing property of the flange joint portion is sufficient and detaching operation thereof is easy. (I.S.)

  13. Study on Automatic Solar Heat Insulated and Cooling Device of Car

    Directory of Open Access Journals (Sweden)

    Chen Gui-Yue

    2017-01-01

    Full Text Available In view of the common device for heat insulated and cooling of car, an improved new scheme which drove by solar energy is put forward. In this study, the transmission device are arranged inside the automobile, the thin-film solar is composited into the heat insulated and cooling material. Thus, the whole device can be driven by the energy from the photovoltaic conversion, which is clear and zero-pollution. The theoretical energy consumptions and preventable gas emissions are calculated to verify the environmental savings of the device. The results show that it has promising application prospect since it is not only environmentally friendly but also save and convenient as compared to the conventional device.

  14. Memory window engineering of Ta2O5-x oxide-based resistive switches via incorporation of various insulating frames

    Science.gov (United States)

    Lee, Ah Rahm; Baek, Gwang Ho; Kim, Tae Yoon; Ko, Won Bae; Yang, Seung Mo; Kim, Jongmin; Im, Hyun Sik; Hong, Jin Pyo

    2016-07-01

    Three-dimensional (3D) stackable memory frames, including nano-scaled crossbar arrays, are one of the most reliable building blocks to meet the demand of high-density non-volatile memory electronics. However, their utilization has the disadvantage of introducing issues related to sneak paths, which can negatively impact device performance. We address the enhancement of complementary resistive switching (CRS) features via the incorporation of insulating frames as a generic approach to extend their use; here, a Pt/Ta2O5-x/Ta/Ta2O5-x/Pt frame is chosen as the basic CRS cell. The incorporation of Ta/Ta2O5-x/Ta or Pt/amorphous TaN/Pt insulting frames into the basic CRS cell ensures the appreciably advanced memory features of CRS cells including higher on/off ratios, improved read margins, and increased selectivity without reliability degradation. Experimental observations identified that a suitable insulating frame is crucial for adjusting the abrupt reset events of the switching element, thereby facilitating the enhanced electrical characteristics of CRS cells that are suitable for practical applications.

  15. Phase Coherence and Andreev Reflection in Topological Insulator Devices

    Directory of Open Access Journals (Sweden)

    A. D. K. Finck

    2014-11-01

    Full Text Available Topological insulators (TIs have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results demonstrate that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.

  16. Review of window and filter requirements for commissioning of the Advanced Photon Source insertion device beamlines

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Wang, Zhibi.

    1994-01-01

    The Advanced Photon Source (APS) is building 16 insertion device (ID) front ends for the first phase of the project. Eleven of these are to be equipped with the APS Undulator A and the other five with a Wiggler-A-type source. The Undulator A front ends are designed to operate in a ''windowless'' mode using an APS-designed differential pump. However, during beamline commissioning and early operations of the storage ring, it is prudent to install windows to ensure storage ring vacuum safety before easing into windowless operation. However, the window designed for this interim period may not meet all the needs of a user's scientific program. In the early phases of the project through commissioning and start of operations, such a window will permit the user to prepare for his program, while allowing both the user and the facility operators to gain experience for safe phasing into eventual windowless operations. In this report, we will present analysis and design options for a variety of windows particularly suited to either the APS Undulator A front ends or as user windows located in the first optics enclosure (FOE)

  17. Solvothermal Synthesis of One-Dimensional Transition Metal Doped ZnO Nanocrystals and Their Applications in Smart Window Devices

    OpenAIRE

    Šutka, A; Timusk, M; Kisand, V; Saal, K; Joost, U; Lõhmus, R

    2015-01-01

    Oxide semiconductor nanowire (NW) suspension based devices have been attracted growing interest in smart window applications due to their great controllability of light transmittance, simplicity and long term stability. Recently, we demonstrated smart window device using the suspension of electrospun TiO2 or solvothermally synthesized ZnO NWs in viscous polydimethylsiloxane (PDMS) matrix. The operating principle of the oxide semiconductor NW and PDMS device is based on the alterable orientati...

  18. All-optical bit magnitude comparator device using metal-insulator-metal plasmonic waveguide

    Science.gov (United States)

    Kumar, Santosh; Singh, Lokendra; Chen, Nan-Kuang

    2017-12-01

    A plasmonic metal-insulator-metal (MIM) waveguide has great success in confining the surface plasmon up to a deep subwavelength scale. The structure of a nonlinear Mach-Zehnder interferometer (MZI) using a plasmonic MIM waveguide has been analyzed. A one-bit magnitude comparator has been designed using an MZI and two linear control waveguides. The device works on the Kerr effect inside the plasmonics waveguide. The mathematical description of the device is explained. The simulation of the device is done using MATLAB® and the finite-difference time-domain (FDTD) method.

  19. Complex studies of mockups of electric insulators of cryoresistive coils of the T-15 device electromagnet system

    International Nuclear Information System (INIS)

    Aksenov, O.E.; Gringof, V.G.; Il'in, G.V.; Lapenas, A.A.; Stepanov, A.N.; Ulmanis, U.A.

    1982-01-01

    The test results are presented for multilayer electrical insulation of coils in the T-15 thermonuclear device electromagnet system. The insulation is made ion the base of polyimide tape with adhesive coating. In the 77-93 K range the tape insulating strength is 35 MV/m, the dielectric loss tangent is less than 10 -5 , dielectric permeability is 2.5, volume resistivity is more than 10 5 Ohmxcm. The insulation has been tested for radiation effects in the IRT-2000 nuclear reactor. Different batches of insulation mockups 0.7 mm thick have been irradiated up to the integral fast neutron flux within the 10 16 -5x10 18 neutr./cm 2 range (E >= 0.1 MeV), (J=10 11 -10 12 neutr./cm 2 xs) at the corresponding temperature between 390 and 420 K. The given data on insulating strength point to a high radiation resistance of the multilayer polyimide insulation. To make sure finally that the developed insulation system meets the requirements of the operating conditions for thermonuclear device electromagnet system coils the device has been tested for operational life. On the basis of the test results a conclusion can be made that at the present development stage the multilayer polyimide insulation based on the adhesive tape meets to the utmost degree the requirements corresponding to the complicated operating conditions of the T-15 thermonuclear devices

  20. Metal insulator semiconductor solar cell devices based on a Cu2O substrate utilizing h-BN as an insulating and passivating layer

    International Nuclear Information System (INIS)

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Zettl, Alex; Regan, William Raymond

    2015-01-01

    We demonstrate cuprous oxide (Cu 2 O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu 2 O layer. The devices are the most efficient of any Cu 2 O based MIS-Schottky solar cells reported to date

  1. Metal insulator semiconductor solar cell devices based on a Cu{sub 2}O substrate utilizing h-BN as an insulating and passivating layer

    Energy Technology Data Exchange (ETDEWEB)

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Zettl, Alex, E-mail: azettl@berkeley.edu [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Regan, William Raymond [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-03-09

    We demonstrate cuprous oxide (Cu{sub 2}O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu{sub 2}O layer. The devices are the most efficient of any Cu{sub 2}O based MIS-Schottky solar cells reported to date.

  2. Device Performance of the Mott InsulatorDevice Performance of the Mott Insulator LaVO3 as a Photovoltaic Material

    KAUST Repository

    Wang, Lingfei

    2015-06-22

    Searching for solar-absorbing materials containing earth-abundant elements with chemical stability is of critical importance for advancing photovoltaic technologies. Mott insulators have been theoretically proposed as potential photovoltaic materials. In this paper, we evaluate their performance in solar cells by exploring the photovoltaic properties of Mott insulator LaVO3 (LVO). LVO films show an indirect band gap of 1.08 eV as well as strong light absorption over a wide wavelength range in the solar spectrum. First-principles calculations on the band structure of LVO further reveal that the d−d transitions within the upper and lower Mott-Hubbard bands and p−d transitions between the O 2p and V 3d band contribute to the absorption in visible and ultraviolet ranges, respectively. Transport measurements indicate strong carrier trapping and the formation of polarons in LVO. To utilize the strong light absorption of LVO and to overcome its poor carrier transport, we incorporate it as a light absorber in solar cells in conjunction with carrier transporters and evaluate its device performance. Our complementary experimental and theoretical results on such prototypical solar cells made of Mott-Hubbard transition-metal oxides pave the road for developing light-absorbing materials and photovoltaic devices based on strongly correlated electrons.

  3. Filter and window assemblies for high power insertion device synchrotron radiation sources

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Viccaro, P.J.; Kuzay, T.M.

    1992-01-01

    The powerful beams of x-ray radiation generated by insertion devices at high power synchrotron facilities deposit substantial amounts of localized heat in the front end and optical components that they intercept. X-ray beams from undulator sources, in particular, are confined to very narrow solid angles and therefore impose very high absorbed heat fluxes. This paper is devoted to a detailed study of the design of windows for the Advanced Photon Source undulators and wigglers, emphasizing alternative design concepts, material considerations, and cooling techniques necessary for handling the high heat load of the insertion devices. Various designs are thermally and structurally analyzed by numerically simulating full-power operating conditions. This analysis also has relevance to the design and development of other beam line components which are subjected to the high heat loads of insertion devices

  4. Electrochromics for smart windows: Oxide-based thin films and devices

    International Nuclear Information System (INIS)

    Granqvist, Claes G.

    2014-01-01

    Electrochromic (EC) smart windows are able to vary their throughput of visible light and solar energy by the application of an electrical voltage and are able to provide energy efficiency and indoor comfort in buildings. Section 1 explains why this technology is important and timely by first outlining today's precarious situation concerning increasing energy use and associated effects on the world's climate, and this section also underscores the great importance of enhancing the energy efficiency of buildings by letting them function more in harmony with the environment—particularly its varying temperature—than is possible with current mainstream technologies. This same chapter also surveys recent work on the energy savings and other benefits that are possible with EC-based technologies. Section 2 then provides some notes on the history of the EC effect and its applications. Section 3 presents a generic design for the oxide-based EC devices that are most in focus for present-day applications and research. This design includes five superimposed layers with a centrally-positioned electrolyte connecting two oxide films—at least one of which having EC properties—and with transparent electrical conductors surrounding the three-layer structure in the middle. It is emphasized that this construction can be viewed as a thin-film electrical battery whose charging state is manifested as optical absorption. Also discussed are six well known hurdles for the implementation of these EC devices, as well as a number of practical constructions of EC-based smart windows. Section 4 is an in-depth discussion of various aspects of EC oxides. It begins with a literature survey for 2007–2013, which updates earlier reviews, and is followed by a general discussion of optical and electronic effects and, specifically, on charge transfer absorption in tungsten oxide. Ionic effects are then treated with foci on the inherent nanoporosity of the important EC oxides and on the

  5. Electrochromics for smart windows: Oxide-based thin films and devices

    Energy Technology Data Exchange (ETDEWEB)

    Granqvist, Claes G.

    2014-08-01

    Electrochromic (EC) smart windows are able to vary their throughput of visible light and solar energy by the application of an electrical voltage and are able to provide energy efficiency and indoor comfort in buildings. Section 1 explains why this technology is important and timely by first outlining today's precarious situation concerning increasing energy use and associated effects on the world's climate, and this section also underscores the great importance of enhancing the energy efficiency of buildings by letting them function more in harmony with the environment—particularly its varying temperature—than is possible with current mainstream technologies. This same chapter also surveys recent work on the energy savings and other benefits that are possible with EC-based technologies. Section 2 then provides some notes on the history of the EC effect and its applications. Section 3 presents a generic design for the oxide-based EC devices that are most in focus for present-day applications and research. This design includes five superimposed layers with a centrally-positioned electrolyte connecting two oxide films—at least one of which having EC properties—and with transparent electrical conductors surrounding the three-layer structure in the middle. It is emphasized that this construction can be viewed as a thin-film electrical battery whose charging state is manifested as optical absorption. Also discussed are six well known hurdles for the implementation of these EC devices, as well as a number of practical constructions of EC-based smart windows. Section 4 is an in-depth discussion of various aspects of EC oxides. It begins with a literature survey for 2007–2013, which updates earlier reviews, and is followed by a general discussion of optical and electronic effects and, specifically, on charge transfer absorption in tungsten oxide. Ionic effects are then treated with foci on the inherent nanoporosity of the important EC oxides and on the

  6. Door and window image-based measurement using a mobile device

    Science.gov (United States)

    Ma, Guangyao; Janakaraj, Manishankar; Agam, Gady

    2015-03-01

    We present a system for door and window image-based measurement using an Android mobile device. In this system a user takes an image of a door or window that needs to be measured and using interaction measures specific dimensions of the object. The existing object is removed from the image and a 3D model of a replacement is rendered onto the image. The visualization provides a 3D model with which the user can interact. When tested on a mobile Android platform with an 8MP camera we obtain an average measurement error of roughly 0.5%. This error rate is stable across a range of view angles, distances from the object, and image resolutions. The main advantages of our mobile device application for image measurement include measuring objects for which physical access is not readily available, documenting in a precise manner the locations in the scene where the measurements were taken, and visualizing a new object with custom selections inside the original view.

  7. Solar Heat Gain Reduction of Ventilated Double Skin Windows without a Shading Device

    Directory of Open Access Journals (Sweden)

    Bokyoung Koo

    2017-12-01

    Full Text Available With global efforts to strengthen various energy-saving policies for buildings to reduce greenhouse gas emissions, in South Korea, new laws and regulations have been in force since May 2015 to install shading devices in public buildings and to include the solar heat gain coefficient (SHGC reduction performance of shading devices in the evaluation of building performance. By making a ventilated air layer outer glass and inner glass to lower the temperatures of the air layer and glass surface, it is possible to reduce the amount of heat flowing into the building while maintaining the same level of light transmission as plain window systems. This study proposes a double-skin façade window with a 20 mm ventilated air cavity, and assumes that insolation inflow indoors would be reduced through ventilation in the air cavity. The artificial solar lab test results show that the SHGC can be lowered through ventilation by 28% to 52.9%. Additionally, in an outdoor test cell experiment, the results show that the mean temperature was 0.6 K and the peak temperature was 0.9 K lower with ventilation in the air cavity than that without ventilation in the air cavity.

  8. Contact spectroscopy on S/TI/N devices: Induced pairing on the surface of a topological insulator

    Science.gov (United States)

    Stehno, Martin P.; Ngabonziza, Prosper; Snelder, Marieke; Myoren, Hiroaki; Pan, Yu; de Visser, Anne; Huang, Y.; Golden, Mark S.; Brinkman, Alexander

    Translating concepts of topological quantum computation into applications requires fine-tuning of parameters in the model Hamiltonians of candidate systems. Such level of control has proven difficult to achieve in devices where superconductors are used to induce pairing in topological insulator (TI) materials. While local probe experiments have indicated features of p-wave superconducting correlations in TIs (as suggested by theory), results on extended devices often remain ambiguous. We present contact spectroscopy data on superconductor/topological insulator/normal metal devices with bulk-insulating TI material and compare these with bulk conducting samples. We discuss the magnitude of the induced gap and unusual features in the conductance traces of the bulk-insulating samples that may suggest the presence of p-wave type correlations in the TI. This work is financially supported by the Dutch Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC).

  9. Thermal insulation with glazings and windows. Implementation of requirements and outlook on future development; Waermeschutz mit Verglasungen und Fenstern. Umsetzung der Anforderungen und Ausblick auf Weiterentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Froelich, H. [Institut fuer Fenstertechnik e.V., Rosenheim (Germany)

    1997-06-01

    In the past, windows and glazings were often considered as being a weak point as regards thermal insulation in the external envelope of a building. Increasing demands on thermal insulation in construction have been seen as a challenge by all those involved. The development of new glazings and of improved frames made it possible to use large sized windows and glazed facade elements even after the new Heat Loss Regulation (Waermeschutzverordnung) dated 1st January 1995 came into effect. In this connection, the possible consideration of energy gain from the outside via transparent building elements is very important. The individual components of windows, window elements and light facades such as frames, glazings, panels and additional components e.g. roller shutters have to be designed very precisely now. Apart from thermal properties the other criteria such as fire resistance, sound insulation, solar protection and safety have to be taken into account. The new Building Regulations of the Laender (Landesbauordnung) and the Building Products Regulation (Bauregelliste) of the Deutsches Institut fuer Bautechnik regulate which evidence of usability and conformity are necessary for the various building products such as frame, glass, window, roller shutter, radiator guards, etc. For the time being, it is still mainly referred to national regulations. In future, an increasing number of European standards will be completed and also implemented. There will also be some decisive changes as regards windows and glazings. To a larger extent the effects of thermal bridges will be taken into account. For determining thermal properties there increasingly exists the possibility of carrying out calculations. As regards thermal insulation today, windows and glazings are highly developed building products when correctly designed and manufactured. These building products enable energy saving construction also of large sized dimensions. (orig.) [Deutsch] Fenster und Verglasungen wurden in

  10. Micro knife-edge optical measurement device in a silicon-on-insulator substrate.

    Science.gov (United States)

    Chiu, Yi; Pan, Jiun-Hung

    2007-05-14

    The knife-edge method is a commonly used technique to characterize the optical profiles of laser beams or focused spots. In this paper, we present a micro knife-edge scanner fabricated in a silicon-on-insulator substrate using the micro-electromechanical-system technology. A photo detector can be fabricated in the device to allow further integration with on-chip signal conditioning circuitry. A novel backside deep reactive ion etching process is proposed to solve the residual stress effect due to the buried oxide layer. Focused optical spot profile measurement is demonstrated.

  11. The Use of Ferroelectrics and Dipeptides as Insulators in Organic Field-Effect Transistor Devices

    Science.gov (United States)

    Knotts, Grant

    While the electrical transport characteristics of organic electronic devices are generally inferior to their inorganic counterparts, organic materials offer many advantages over inorganics. The materials used in organic devices can often be deposited using cheap and simple processing techniques such as spincoating, inkjet printing, or roll-to-roll processing; allow for large-scale, flexible devices; and can have the added benefits of being transparent or biodegradable. In this manuscript, we examine the role of solvents in the performance of pentacene-based devices using the ferroelectric copolymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFe) as a gate insulating layer. High dipole moment solvents, such as dimethyl sulfoxide, used to dissolve the copolymer for spincoating increase the charge carrier mobility in field-effect transistors (FETs) by nearly an order of magnitude as compared to lower dipole moment solvents. The polarization in Al/PVDF-TrFe/Au metal-ferroelectric-metal devices also shows an increase in remnant polarization of 20% in the sample using dimethyl sulfoxide as the solvent for the ferroelectric. Interestingly, at low applied electric fields of 100 MV/m a remnant polarization is seen in the high dipole moment device that is nearly 3.5 times larger than the value observed in the lower dipole moment samples, suggesting that the degree of dipolar order is higher at low operating voltages for the high dipole moment device. We will also discuss the use of peptide-based nanostructures derived from natural amino acids as building blocks for biocompatible devices. These peptides can be used in a bottom-up process without the need for expensive lithography. Thin films of L,L-diphenylalanine micro/nanostructures (FF-MNSs) were used as the dielectric layer in pentacene-based FETs and metal-insulator-semiconductor diodes both in bottom-gate and top-gate structures. It is demonstrated that the FFMNSs can be functionalized for detection of enzyme

  12. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    Science.gov (United States)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  13. Space and military radiation effects in silicon-on-insulator devices

    International Nuclear Information System (INIS)

    Schwank, J.R.

    1996-09-01

    Advantages in transient ionizing and single-event upset (SEU) radiation hardness of silicon-on-insulator (SOI) technology spurred much of its early development. Both of these advantages are a direct result of the reduced charge collection volume inherent to SOI technology. The fact that SOI transistor structures do not include parasitic n-p-n-p paths makes them immune to latchup. Even though considerable improvement in transient and single-event radiation hardness can be obtained by using SOI technology, there are some attributes of SOI devices and circuits that tend to limit their overall hardness. These attributes include the bipolar effect that can ultimately reduce the hardness of SOI ICs to SEU and transient ionizing radiation, and charge buildup in buried and sidewall oxides that can degrade the total-dose hardness of SOI devices. Nevertheless, high-performance SOI circuits can be fabricated that are hardened to both space and nuclear radiation environments, and radiation-hardened systems remain an active market for SOI devices. The effects of radiation on SOI MOS devices are reviewed

  14. Evaluation of mechanical and thermal properties of insulation materials for HTS power devices at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyung Seop; Diaz, Mark Angelo [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of)

    2017-06-15

    In superconducting power devices including power cables in which high temperature superconducting (HTS) tapes are utilized, a reliable electrical insulation should be achieved for its maximum performance. For an efficient design of HTS superconducting devices, a comparative evaluation of the mechanical and thermal propperties for various insulation materials at cryogenic temperatures is required. Especially, in the process of the property evaluation of the sheet-shaped insulation materials, anisotropy according to the machining direction should be considered because the mechanical and thermal properties are significantly influenced by the sample orientation. In this study, the cryogenic thermal and mechanical properties of various insulation material sheets such as PPLP, Cryoflex, Teflon, and Kapton were determined considering sample orientation. All samples tested at cryogenic temperature showed significantly higher tensile strength as compared with that of room temperature. The ultimate tensile strength at both temperature conditions significantly depended upon the sample orientation. The thermal properties of the insulation materials exhibited a slight difference among samples depending on the orientation: for the PPLP and Cryoflex, the CD orientation showed larger thermal contraction up to 77 K as compared to the MD one. MD samples in PPLP and Cryoflex showed a lower CTE and thermal contraction which made it more promising as an insulation material due to its comparable CTE with HTS CC tapes.

  15. Device intended for measurement of induced trapped charge in insulating materials under electron irradiation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Belkorissat, R; Benramdane, N; Jbara, O; Rondot, S; Hadjadj, A; Belhaj, M

    2013-01-01

    A device for simultaneously measuring two currents (i.e. leakage and displacement currents) induced in insulating materials under electron irradiation has been built. The device, suitably mounted on the sample holder of a scanning electron microscope (SEM), allows a wider investigation of charging and discharging phenomena that take place in any type of insulator during its electron irradiation and to determine accurately the corresponding time constants. The measurement of displacement current is based on the principle of the image charge due to the electrostatic influence phenomena. We are reporting the basic concept and test results of the device that we have built using, among others, the finite element method for its calibration. This last method takes into account the specimen chamber geometry, the geometry of the device and the physical properties of the sample. In order to show the possibilities of the designed device, various applications under different experimental conditions are explored. (paper)

  16. Al transmon qubits on silicon-on-insulator for quantum device integration

    Science.gov (United States)

    Keller, Andrew J.; Dieterle, Paul B.; Fang, Michael; Berger, Brett; Fink, Johannes M.; Painter, Oskar

    2017-07-01

    We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T2* = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon.

  17. Variable range hopping in TiO2 insulating layers for oxide electronic devices

    Directory of Open Access Journals (Sweden)

    Y. L. Zhao

    2012-03-01

    Full Text Available TiO2 thin films are of importance in oxide electronics, e.g., Pt/TiO2/Pt for memristors and Co-TiO2/TiO2/Co-TiO2 for spin tunneling devices. When such structures are deposited at a variety of oxygen pressures, how does TiO2 behave as an insulator? We report the discovery of an anomalous resistivity minimum in a TiO2 film at low pressure (not strongly dependent on deposition temperature. Hall measurements rule out band transport and in most of the pressure range the transport is variable range hopping (VRH though below 20 K it was difficult to differentiate between Mott and Efros-Shklovskii's (ES mechanism. Magnetoresistance (MR of the sample with lowest resistivity was positive at low temperature (for VRH but negative above 10 K indicating quantum interference effects.

  18. Application of diamond window for infrared laser diagnostics in a tokamak device

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2004-01-01

    Chemical vapor deposited diamond disks have been successfully applied as the vacuum windows for infrared CO 2 laser interferometry and polarimetry used in electron density measurement in the JT-60U tokamak. In comparison with the conventional zinc-selenide windows, the Faraday rotation component of diamond windows was negligible. This results in an improvement of the Faraday rotation measurement of tokamak plasma by polarimetry

  19. Device characteristics of antenna-coupled metal-insulator-metal diodes (rectenna) using Al2O3, TiO2, and Cr2O3 as insulator layer for energy harvesting applications

    Science.gov (United States)

    Inac, Mesut; Shafique, Atia; Ozcan, Meric; Gurbuz, Yasar

    2015-09-01

    Antenna-coupled metal-insulator-metal devices are most potent candidate for future energy harvesting devices. The reason for that they are ultra-high speed devices that can rectify the electromagnetic radiation at high frequencies. In addition to their speed, they are also small devices that can have more number of devices in unit area. In this work, it is aimed design and develop a device which can harvest and detect IR radiation.

  20. Thermal processing of strained silicon-on-insulator for atomically precise silicon device fabrication

    International Nuclear Information System (INIS)

    Lee, W.C.T.; Bishop, N.; Thompson, D.L.; Xue, K.; Scappucci, G.; Cederberg, J.G.; Gray, J.K.; Han, S.M.; Celler, G.K.; Carroll, M.S.; Simmons, M.Y.

    2013-01-01

    Highlights: ► Strained silicon-on-insulator (sSOI) samples were flash-annealed at high temperature under ultra-high vacuum conditions. ► The extend of surface strain relaxation depends on the annealing temperature with no strain relaxation observed below 1020 °C. ► A 2 × 1 reconstructed surface with low defect density can be achieved. ► The annealed sSOI surface shows enhanced step undulations due to the unique energetics caused by surface strain. - Abstract: We investigate the ability to reconstruct strained silicon-on-insulator (sSOI) substrates in ultra-high vacuum for use in atomic scale device fabrication. Characterisation of the starting sSOI substrate using μRaman shows an average tensile strain of 0.8%, with clear strain modulation in a crosshatch pattern across the surface. The surfaces were heated in ultra-high vacuum from temperatures of 900 °C to 1100 °C and subsequently imaged using scanning tunnelling microscopy (STM). The initial strain modulation on the surface is observed to promote silicon migration and the formation of crosshatched surface features whose height and pitch increases with increasing annealing temperature. STM images reveal alternating narrow straight S A steps and triangular wavy S B steps attributed to the spontaneous faceting of S B and preferential adatom attachment on S B under biaxial tensile strain. Raman spectroscopy shows that despite these high temperature anneals no strain relaxation of the substrate is observed up to temperatures of 1020 °C. Above 1100 °C, strain relaxation is evident but is confined to the surface.

  1. Influence of Insulation Monitoring Devices on the Operation of DC Control Circuits

    Energy Technology Data Exchange (ETDEWEB)

    Olszowiec, Piotr, E-mail: olpio@o2.pl [Erea Polaniec (Poland)

    2017-03-15

    The insulation level of DC control circuits is an important safety-critical factor and, thus, should be subject to continuous and periodic monitoring. The methods used for monitoring the insulation in live circuits may, however, disturb the reliable operation of control relays. The risks of misoperation and failure to reset of relays posed by the operation of various insulation monitoring and fault location systems are evaluated.

  2. Performance of current-in-plane pseudo-spin-valve devices on CMOS silicon-on-insulator underlayers

    Science.gov (United States)

    Katti, R. R.; Zou, D.; Reed, D.; Schipper, D.; Hynes, O.; Shaw, G.; Kaakani, H.

    2003-05-01

    Prior work has shown that current-in-plane (CIP) giant magnetoresistive (GMR) pseudo-spin-valve (PSV) devices grown on bulk Si wafers and bulk complementary metal-oxide semiconductor (CMOS) underlayers exhibit write and read characteristics that are suitable for application as nonvolatile memory devices. In this work, CIP GMR PSV devices fabricated on silicon-on-insulator CMOS underlayers are shown to support write and read performance. Reading and writing fields for selected devices are shown to be approximately 25%-50% that of unselected devices, which provides a margin for reading and writing specific bits in a memory without overwriting bits and without disturbing other bits. The switching characteristics of experimental devices were compared to and found to be similar with Landau-Lifschitz-Gilbert micromagnetic modeling results, which allowed inferring regions of reversible and irreversible rotations in magnetic reversal processes.

  3. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    Science.gov (United States)

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  4. Device Performance of the Mott InsulatorDevice Performance of the Mott Insulator LaVO3 as a Photovoltaic Material

    KAUST Repository

    Wang, Lingfei; Li, Yongfeng; Bera, Ashok; Ma, Chun; Jin, Feng; Yuan, Kaidi; Yin, Wanjian; David, Adrian; Chen, Wei; Wu, Wenbin; Prellier, Wilfrid; Wei, Suhuai; Wu, Tao

    2015-01-01

    in solar cells in conjunction with carrier transporters and evaluate its device performance. Our complementary experimental and theoretical results on such prototypical solar cells made of Mott-Hubbard transition-metal oxides pave the road for developing

  5. A prospective window into medical device-related pressure ulcers in intensive care.

    Science.gov (United States)

    Coyer, Fiona M; Stotts, Nancy A; Blackman, Virginia Schmied

    2014-12-01

    The aim of this study was to determine the prevalence, severity, location, aetiology, treatment and healing of medical device-related pressure ulcers (PUs) in intensive care patients for up to 7 days. A prospective repeated measures study design was used. Patients in six intensive care units of two major medical centres, one each in Australia and the USA, were screened 1 day per month for 6 months. Those with device-related ulcers were followed daily for up to 7 days. The outcome measures were device-related ulcer prevalence, pain, infection, treatment and healing. Fifteen of 483 patients had device-related ulcers and 9 of 15 with 11 ulcers were followed beyond screening. Their mean age was 60·5 years, and most were men, overweight and at increased risk of PU. Endotracheal (ET) and nasogastric (NG) tubes were the cause of most device-related ulcers. Repositioning was the most frequent treatment. Four of 11 ulcers healed within the 7-day observation period. In conclusion, device-related ulcer prevalence was 3·1%, similar to that reported in the limited literature available, indicating an ongoing problem. Systematic assessment and repositioning of devices are the mainstays of care. We recommend continued prevalence determination and that nurses remain vigilant to prevent device-related ulcers, especially in patients with NG and ET tubes. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices.

    Science.gov (United States)

    Dong, Tao; Barbosa, Cátia

    2015-01-26

    Microfluidic two-phase flow detection has attracted plenty of interest in various areas of biology, medicine and chemistry. This work presents a capacitive sensor using insulated interdigital electrodes (IDEs) to detect the presence of droplets in a microchannel. This droplet sensor is composed of a glass substrate, patterned gold electrodes and an insulation layer. A polydimethylsiloxane (PDMS) cover bonded to the multilayered structure forms a microchannel. Capacitance variation induced by the droplet passage was thoroughly investigated with both simulation and experimental work. Olive oil and deionized water were employed as the working fluids in the experiments to demonstrate the droplet sensor. The results show a good sensitivity of the droplet with the appropriate measurement connection. This capacitive droplet sensor is promising to be integrated into a lab-on-chip device for in situ monitoring/counting of droplets or bubbles.

  7. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.

    Science.gov (United States)

    Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro

    2016-03-01

    Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the

  8. Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array

    International Nuclear Information System (INIS)

    Cho, Ikjun; Cho, Jinhan; Kim, Beom Joon; Cho, Jeong Ho; Ryu, Sook Won

    2014-01-01

    Organic field-effect transistor (OFET) memories have rapidly evolved from low-cost and flexible electronics with relatively low-memory capacities to memory devices that require high-capacity memory such as smart memory cards or solid-state hard drives. Here, we report the high-capacity OFET memories based on the multilayer stacking of densely packed hydrophobic metal NP layers in place of the traditional transistor memory systems based on a single charge trapping layer. We demonstrated that the memory performances of devices could be significantly enhanced by controlling the adsorption isotherm behavior, multilayer stacking structure and hydrophobicity of the metal NPs. For this study, tetraoctylammonium (TOA)-stabilized Au nanoparticles (TOA-Au NPs ) were consecutively layer-by-layer (LbL) assembled with an amine-functionalized poly(amidoamine) dendrimer (PAD). The formed (PAD/TOA-Au NP ) n films were used as a multilayer stacked charge trapping layer at the interface between the tunneling dielectric layer and the SiO 2 gate dielectric layer. For a single Au NP layer (i.e. PAD/TOA-Au NP ) 1 ) with a number density of 1.82 × 10 12 cm −2 , the memory window of the OFET memory device was measured to be approximately 97 V. The multilayer stacked OFET memory devices prepared with four Au NP layers exhibited excellent programmable memory properties (i.e. a large memory window (ΔV th ) exceeding 145 V, a fast switching speed (1 μs), a high program/erase (P/E) current ratio (greater than 10 6 ) and good electrical reliability) during writing and erasing over a relatively short time scale under an operation voltage of 100 V applied at the gate. (paper)

  9. Fabrication, structural and electrical properties of (1 1 0) localized silicon-on-insulator devices

    International Nuclear Information System (INIS)

    Destefanis, V; Huguenin, J L; Samson, M P; Morand, Y; Arvet, C; Monfray, S; Skotnicki, T; Hartmann, J M; Delaye, V; Boulitreau, P; Brianceau, P; Gautier, P

    2010-01-01

    The aim being to fabricate (1 1 0) localized silicon-on-insulator (L-SOI) devices, we have first of all completed the Semicond. Sci. Technol. 23 105018 (2008) study of the differences between (1 1 0) and (1 0 0) surfaces in terms of (i) HCl etch kinetics and (ii) SiGe growth kinetics (with a chlorinated chemistry). The core layers of a L-SOI device are indeed obtained thanks to the in situ HCl etching (on patterned wafers) of the Si active areas followed by the selective epitaxial growth of a Si 0.7 Ge 0.3 /Si stack. Given that SiGe(1 1 0) layers grown at 650 °C in windows of patterned wafers are rough, we have first of all studied the 600 °C growth kinetics of SiGe(1 1 0). As expected, the SiGe growth rate decreases as the growth temperature decreases from 650 °C down to 600 °C (irrespective of the surface orientation). The SiGe(1 0 0) growth rate increases linearly with the germane mass flow. Meanwhile, the SiGe(1 1 0) growth rate increases in a sub-linear fashion and then saturates at much lower values than on (1 0 0). The Ge concentration x dependence on the F(GeH 4 )/F(SiH 2 Cl 2 ) mass flow ratio is parabolic on (1 0 0) and linear on (1 1 0), with lower values on the latter than on the former. We have then used those data to fabricate (1 0 0) and (1 1 0) L-SOI structures. The high HCl partial pressure recessing of the Si(1 1 0) and Si(1 0 0) active areas was performed at 675 °C and 725 °C, respectively. An increase of both the Si(1 1 0) HCl etch rate and the SiGe growth rate (be it at 650 °C on (1 0 0) or at 600 °C on (1 1 0)) was noticed when switching from blanket to patterned wafers (factors of 2.5–3 for HCI and 1.5 for SiGe). Finally, Si(1 1 0) growth times were multiplied by 4/3 compared to the Si(1 0 0) growth time in order to obtain similar thickness Si caps. Subsequent process steps were very similar on (1 0 0) and (1 1 0). Almost the same etch rates were

  10. Multi Channels PWM Controller for Thermoelectric Cooler Using a Programmable Logic Device and Lab-Windows CVI

    Directory of Open Access Journals (Sweden)

    Eli FLAXER

    2008-09-01

    Full Text Available We present a complete design of a multi channels PID controller for Thermoelectric Cooler (TEC using a pulse width modulation (PWM technique implemented by a dedicated programmable logic device (PLD programmed by VHDL. The PID control loop is implemented by software written by National Instrument Lab-Windows CVI. Due to the fact that the implementation is by a VHDL and PLD the design is modular, as a result, the circuit is very compact in size and very low cost as compared to any commercial product. In addition, since the control loop is implemented by software running on a personal computer (PC using a C language, it is easy to adjust the controller to various environmental conditions and for a width range of sensors like: a thermo couple (TC, thermistor, resistance temperature detectors (RTD etc. We demonstrate the performance of this circuit as a controller for a small incubator using thermistor as the temperature sensor.

  11. Studies on hand-held visual communication device for the deaf and speech-impaired I. Visual display window size.

    Science.gov (United States)

    Thurlow, W R

    1980-01-01

    Messages were presented which moved from right to left along an electronic alphabetic display which was varied in "window" size from 4 through 32 letter spaces. Deaf subjects signed the messages they perceived. Relatively few errors were made even at the highest rate of presentation, which corresponded to a typing rate of 60 words/min. It is concluded that many deaf persons can make effective use of a small visual display. A reduced cost is then possible for visual communication instruments for these people through reduced display size. Deaf subjects who can profit from a small display can be located by a sentence test administered by tape recorder which drives the display of the communication device by means of the standard code of the deaf teletype network.

  12. Synchronization of pairwise-coupled, identical, relaxation oscillators based on metal-insulator phase transition devices: A model study

    Science.gov (United States)

    Parihar, Abhinav; Shukla, Nikhil; Datta, Suman; Raychowdhury, Arijit

    2015-02-01

    Computing with networks of synchronous oscillators has attracted wide-spread attention as novel materials and device topologies have enabled realization of compact, scalable and low-power coupled oscillatory systems. Of particular interest are compact and low-power relaxation oscillators that have been recently demonstrated using MIT (metal-insulator-transition) devices using properties of correlated oxides. Further the computational capability of pairwise coupled relaxation oscillators has also been shown to outperform traditional Boolean digital logic circuits. This paper presents an analysis of the dynamics and synchronization of a system of two such identical coupled relaxation oscillators implemented with MIT devices. We focus on two implementations of the oscillator: (a) a D-D configuration where complementary MIT devices (D) are connected in series to provide oscillations and (b) a D-R configuration where it is composed of a resistor (R) in series with a voltage-triggered state changing MIT device (D). The MIT device acts like a hysteresis resistor with different resistances in the two different states. The synchronization dynamics of such a system has been analyzed with purely charge based coupling using a resistive (RC) and a capacitive (CC) element in parallel. It is shown that in a D-D configuration symmetric, identical and capacitively coupled relaxation oscillator system synchronizes to an anti-phase locking state, whereas when coupled resistively the system locks in phase. Further, we demonstrate that for certain range of values of RC and CC, a bistable system is possible which can have potential applications in associative computing. In D-R configuration, we demonstrate the existence of rich dynamics including non-monotonic flows and complex phase relationship governed by the ratios of the coupling impedance. Finally, the developed theoretical formulations have been shown to explain experimentally measured waveforms of such pairwise coupled

  13. Understanding Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. Atomic layer deposition of HfO{sub 2} for integration into three-dimensional metal-insulator-metal devices

    Energy Technology Data Exchange (ETDEWEB)

    Assaud, Loic [Aix Marseille Univ, CNRS, CINAM, Marseille (France); ICMMO-ERIEE, Universite Paris-Sud / Universite Paris-Saclay, CNRS, Orsay (France); Pitzschel, Kristina; Barr, Maissa K.S.; Petit, Matthieu; Hanbuecken, Margrit; Santinacci, Lionel [Aix Marseille Univ, CNRS, CINAM, Marseille (France); Monier, Guillaume [Universite Clermont Auvergne, Universite Blaise Pascal, CNRS, Institut Pascal, Clermont-Ferrand (France)

    2017-12-15

    HfO{sub 2} nanotubes have been fabricated via a template-assisted deposition process for further use in three-dimensional metal-insulator-metal (MIM) devices. HfO{sub 2} thin layers were grown by Atomic Layer Deposition (ALD) in anodic alumina membranes (AAM). The ALD was carried out using tetrakis(ethylmethylamino)hafnium and water as Hf and O sources, respectively. Long exposure durations to the precursors have been used to maximize the penetration depth of the HfO{sub 2} layer within the AAM and the effect of the process temperature was investigated. The morphology, the chemical composition, and the crystal structure were studied as a function of the deposition parameters using transmission and scanning electron microscopies, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. As expected, the HfO{sub 2} layers grown at low-temperature (T = 150 C) were amorphous, while for a higher temperature (T = 250 C), polycrystalline films were observed. The electrical characterizations have shown better insulating properties for the layers grown at low temperature. Finally, TiN/HfO{sub 2}/TiN multilayers were grown in an AAM as proof-of-concept for three-dimensional MIM nanostructures. (orig.)

  15. Insulator-metal transition in substrate-independent VO2 thin film for phase-change devices.

    Science.gov (United States)

    Taha, Mohammad; Walia, Sumeet; Ahmed, Taimur; Headland, Daniel; Withayachumnankul, Withawat; Sriram, Sharath; Bhaskaran, Madhu

    2017-12-20

    Vanadium has 11 oxide phases, with the binary VO 2 presenting stimuli-dependent phase transitions that manifest as switchable electronic and optical features. An elevated temperature induces an insulator-to-metal transition (IMT) as the crystal reorients from a monoclinic state (insulator) to a tetragonal arrangement (metallic). This transition is accompanied by a simultaneous change in optical properties making VO 2 a versatile optoelectronic material. However, its deployment in scalable devices suffers because of the requirement of specialised substrates to retain the functionality of the material. Sensitivity to oxygen concentration and larger-scale VO 2 synthesis have also been standing issues in VO 2 fabrication. Here, we address these major challenges in harnessing the functionality in VO 2 by demonstrating an approach that enables crystalline, switchable VO 2 on any substrate. Glass, silicon, and quartz are used as model platforms to show the effectiveness of the process. Temperature-dependent electrical and optical characterisation is used demonstrating three to four orders of magnitude in resistive switching, >60% chromic discrimination at infrared wavelengths, and terahertz property extraction. This capability will significantly broaden the horizon of applications that have been envisioned but remained unrealised due to the lack of ability to realise VO 2 on any substrate, thereby exploiting its untapped potential.

  16. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    International Nuclear Information System (INIS)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-01-01

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  17. Suspended graphene devices with local gate control on an insulating substrate

    International Nuclear Information System (INIS)

    Ong, Florian R; Cui, Zheng; Vojvodin, Cameron; Papaj, Michał; Deng, Chunqing; Bal, Mustafa; Lupascu, Adrian; Yurtalan, Muhammet A; Orgiazzi, Jean-Luc F X

    2015-01-01

    We present a fabrication process for graphene-based devices where a graphene monolayer is suspended above a local metallic gate placed in a trench. As an example we detail the fabrication steps of a graphene field-effect transistor. The devices are built on a bare high-resistivity silicon substrate. At temperatures of 77 K and below, we observe the field-effect modulation of the graphene resistivity by a voltage applied to the gate. This fabrication approach enables new experiments involving graphene-based superconducting qubits and nano-electromechanical resonators. The method is applicable to other two-dimensional materials. (paper)

  18. Effect of Various External Shading Devices on Windows for Minimum Heat Gain and Adequate Day lighting into Buildings of Hot and Dry Climatic Zone in India

    Directory of Open Access Journals (Sweden)

    Kirankumar Gorantla

    2018-01-01

    Full Text Available Glass is the major component of the building envelope to provide visual comfort to inside the buildings. In général clear and bronze glass was used as a main building envelope for both residential and commercial buildings to provide better day lighting into the buildings. If we use more glass area as a building envelope more radiation allows into the buildings. So that it is necessary to reduce more solar radiation and provide sufficient daylight factor inside the building's through glass windows with the help of external devices called shading devices. In this work four shading devices was tried on bronze glass window to find the heat gain and daylighting into buildings. This paper presents the experimental measurement of spectral characteristics of bronze glass which include transmission and reflection in entire solar spectrum region (300nm-2500nm based on ASTM standards. A MATLAB code was developed to compute visible and solar optical properties as per the British standards. A building model was designed by design builder software tool. 40% window to wall ratio was considered for building models, thermal and day lighting analysis of buildings through windows was carried out in Energy plus software tool for hot and dry climatic zone of India.

  19. A device for thermally insulating a concrete wall covered with a thermal plate

    International Nuclear Information System (INIS)

    Cornille, Yvon; Felten, Paul.

    1973-01-01

    The device is characterized in that it comprises a stack of bricks of parallelepipedic shape of cellular silica, bound to one another and to a metal plate by means of a silica-mortar layer and of anchoring keys welded to the metal plate, at one end thereof, and embedded in at least two juxtaposed bricks, at the other end thereof. This can be used for unsulating the cavity located under the core of a high temperature reactor [fr

  20. Maximum magnitude in bias-dependent spin accumulation signals of CoFe/MgO/Si on insulator devices

    International Nuclear Information System (INIS)

    Ishikawa, M.; Sugiyama, H.; Inokuchi, T.; Tanamoto, T.; Saito, Y.; Hamaya, K.; Tezuka, N.

    2013-01-01

    We study in detail how the bias voltage (V bias ) and interface resistance (RA) depend on the magnitude of spin accumulation signals (|ΔV| or |ΔV|/I, where I is current) as detected by three-terminal Hanle measurements in CoFe/MgO/Si on insulator (SOI) devices with various MgO layer thicknesses and SOI carrier densities. We find the apparent maximum magnitude of spin polarization as a function of V bias and the correlation between the magnitude of spin accumulation signals and the shape of differential conductance (dI/dV) curves within the framework of the standard spin diffusion model. All of the experimental results can be explained by taking into account the density of states (DOS) in CoFe under the influence of the applied V bias and the quality of MgO tunnel barrier. These results indicate that it is important to consider the DOS of the ferromagnetic materials under the influence of an applied V bias and the quality of tunnel barrier when observing large spin accumulation signals in Si

  1. Insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor devices with Al2O3 or AlTiO gate dielectrics

    Science.gov (United States)

    Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu

    2018-01-01

    We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.

  2. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  3. Design and implementation of I2Vote-An interactive image-based voting system using windows mobile devices

    NARCIS (Netherlands)

    van Ooijen, P. M. A.; Broekema, A.; Oudkerk, M.

    Purpose: To develop, implement and test a novel audience response system (ARS) that allows image based interaction for radiology education. Methods: The ARS developed in this project is based on standard Personal Digital Assistants (PDAs) (HP iPAQ 114 classic handheld) running Microsoft (R) Windows

  4. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer

    International Nuclear Information System (INIS)

    Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan

    2009-01-01

    The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.

  5. Windows Azure

    CERN Document Server

    Johnson, Bruce; Chambers, James; Garber, Danny; Malik, Jamal; Fazio, Adam

    2013-01-01

    A collection of five must-have Azure titles, from some of the biggest names in the field Available individually, but at a discounted rate for the collection, this bundle of five e-books covers key developer and IT topics of Windows Azure, including ASP.NET, mobile services, web sites, data storage, and the hybrid cloud. A host of Microsoft employees and MPVs come together to cover the biggest challenges that professionals face when working with Windows Azure. The e-books included are as follows: Windows Azure and ASP.NET MVC MigrationWindows Azure Mobile ServicesWindows Azure Web SitesWindows

  6. Silicon on ferroelectic insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    Science.gov (United States)

    Es-Sakhi, Azzedin D.

    concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-low-power applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.

  7. Window Stories

    DEFF Research Database (Denmark)

    Hauge, Bettina

    This research project has investigated 17 households in Germany (cities and rural areas). The main aim was to learn about the significance of the window to these people: What they think of their windows, how, when and why they use them in their everyday life, if they have a favorite window and wh...

  8. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    Directory of Open Access Journals (Sweden)

    K. Piskorski

    2018-05-01

    Full Text Available We report on the advantages of using Graphene-Insulator-Semiconductor (GIS instead of Metal-Insulator-Semiconductor (MIS structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I. Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  9. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    Science.gov (United States)

    Piskorski, K.; Passi, V.; Ruhkopf, J.; Lemme, M. C.; Przewlocki, H. M.

    2018-05-01

    We report on the advantages of using Graphene-Insulator-Semiconductor (GIS) instead of Metal-Insulator-Semiconductor (MIS) structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I). Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I) = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  10. Design and implementation of I2Vote--an interactive image-based voting system using windows mobile devices.

    Science.gov (United States)

    van Ooijen, P M A; Broekema, A; Oudkerk, M

    2011-08-01

    To develop, implement and test a novel audience response system (ARS) that allows image based interaction for radiology education. The ARS developed in this project is based on standard Personal Digital Assistants (PDAs) (HP iPAQ 114 classic handheld) running Microsoft® Windows Mobile® 6 Classic with a large 3.5 in. TFT touch screen (320×240 pixel resolution), high luminance and integrated IEEE 802.11b/g wireless. For software development Visual Studio 2008 professional (Microsoft) was used and all components were written in C#. Two test sessions were conducted to test the software technically followed by two real classroom tests in a radiology class for medical students on thoracic radiology. The novel ARS, called I2Vote, was successfully implemented and provided an easy to use, stable setup. The acceptance of both students and teachers was very high and the interaction with the students improved because of the anonymous interaction possibility. An easy to use handheld based ARS that enables interactive, image-based, teaching is achieved. The system effectively adds an extra dimension to the use of an ARS. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Thermal Bridge Effects in Window Grooves

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report thermal bridge effects in window grooves are analyzed. The analysis is performed using different thicknesses of the window groove insulation, to evaluate what the optimal solution is.All analysis in the report is performed using both 2- and 3-dimensional numerical analysis....

  12. Proper Installation of Replacement Windows | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  13. Window Glazing Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. Window Frame Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Performance Standards for Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. Benefits of Efficient Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. Assessing Window Replacement Options | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Windows for New Construction | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. Window Operator Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  20. Insulator applications in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-06-01

    Insulators, among which insulators ceramics, have great potential applications in fusion reactors. They will be used for all plasma-facing components as protection and, magnetic fusion devices being subject to large electrical currents flowing in any parts of the device, for their electrical insulating properties

  1. Electrical insulation for large multiaxis superconducting magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.; Rinde, J.A.

    1975-01-01

    The selection of interturn and interlayer insulation for superconducting magnets is discussed. The magnet problems of the Baseball II device are described. Manufacture of the insulation and radiation damage are mentioned. A planned experimental program is outlined

  2. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng; De La Cruz, Joshua A.; Hess, Andrew J.; Yang, Ronggui; Smalyukh, Ivan I.

    2018-06-01

    Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels. Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.

  3. SEMICONDUCTOR DEVICES: Two-dimensional threshold voltage analytical model of DMG strained-silicon-on-insulator MOSFETs

    Science.gov (United States)

    Jin, Li; Hongxia, Liu; Bin, Li; Lei, Cao; Bo, Yuan

    2010-08-01

    For the first time, a simple and accurate two-dimensional analytical model for the surface potential variation along the channel in fully depleted dual-material gate strained-Si-on-insulator (DMG SSOI) MOSFETs is developed. We investigate the improved short channel effect (SCE), hot carrier effect (HCE), drain-induced barrier-lowering (DIBL) and carrier transport efficiency for the novel structure MOSFET. The analytical model takes into account the effects of different metal gate lengths, work functions, the drain bias and Ge mole fraction in the relaxed SiGe buffer. The surface potential in the channel region exhibits a step potential, which can suppress SCE, HCE and DIBL. Also, strained-Si and SOI structure can improve the carrier transport efficiency, with strained-Si being particularly effective. Further, the threshold voltage model correctly predicts a “rollup" in threshold voltage with decreasing channel length ratios or Ge mole fraction in the relaxed SiGe buffer. The validity of the two-dimensional analytical model is verified using numerical simulations.

  4. Graphene/semiconductor silicon modified BiFeO{sub 3}/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Medwal, Rohit, E-mail: rohitmedwal@gmail.com; Limbu, Tej B.; Katiyar, Rajesh K.; Pavunny, Shojan P.; Morell, G.; Katiyar, R. S., E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2015-08-10

    We report photovoltaic response of highly transparent graphene/BiFe{sub 0.95}Si{sub 0.05}O{sub 3} (BFSiO)/ITO/glass derived from bottom-up spin coating technique. The device exhibits short-circuit-current (I{sub SC} 0.75 mA) with 1000 fold upsurge and open-circuit-voltage (V{sub OC} ∼ 0.45 V) under standard AM 1.5 illumination through graphene. In combination, I{sub SC} of 0.63 mA and V{sub OC} of 0.35 V for same illumination through ITO, reveals the prospects of harvesting indoor light. Also, crystallographic structure, red shift in band gap, leakage behavior, and ferroelectric characteristics of BFSiO thin films are reported. Reproducible transient response of I{sub SC} and V{sub OC} with quick switching (<100 ms) for 20 consecutive cycles and stability (95%) over test period of 16 weeks signifies high endurance and retentivity, promising for building integrated self-powered windows.

  5. Graphene/semiconductor silicon modified BiFeO3/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Medwal, Rohit; Limbu, Tej B.; Katiyar, Rajesh K.; Pavunny, Shojan P.; Morell, G.; Katiyar, R. S.; Tomar, Monika; Gupta, Vinay

    2015-01-01

    We report photovoltaic response of highly transparent graphene/BiFe 0.95 Si 0.05 O 3 (BFSiO)/ITO/glass derived from bottom-up spin coating technique. The device exhibits short-circuit-current (I SC 0.75 mA) with 1000 fold upsurge and open-circuit-voltage (V OC  ∼ 0.45 V) under standard AM 1.5 illumination through graphene. In combination, I SC of 0.63 mA and V OC of 0.35 V for same illumination through ITO, reveals the prospects of harvesting indoor light. Also, crystallographic structure, red shift in band gap, leakage behavior, and ferroelectric characteristics of BFSiO thin films are reported. Reproducible transient response of I SC and V OC with quick switching (<100 ms) for 20 consecutive cycles and stability (95%) over test period of 16 weeks signifies high endurance and retentivity, promising for building integrated self-powered windows

  6. Energy efficiency façade design in high-rise apartment buildings using the calculation of solar heat transfer through windows with shading devices

    Science.gov (United States)

    Ha, P. T. H.

    2018-04-01

    The architectural design orientation at the first design stage plays a key role and has a great impact on the energy consumption of a building throughout its life-cycle. To provide designers with a simple and useful tool in quantitatively determining and simply optimizing the energy efficiency of a building at the very first stage of conceptual design, a factor namely building envelope energy efficiency (Khqnl ) should be investigated and proposed. Heat transfer through windows and other glazed areas of mezzanine floors accounts for 86% of overall thermal transfer through building envelope, so the factor Khqnl of high-rise buildings largely depends on shading solutions. The author has established tables and charts to make reference to the values of Khqnl factor in certain high-rise apartment buildings in Hanoi calculated with a software program subject to various inputs including: types and sizes of shading devices, building orientations and at different points of time to be respectively analyzed. It is possible and easier for architects to refer to these tables and charts in façade design for a higher level of energy efficiency.

  7. Evaluation of stability of polymeric insulation materials in radiation fields and development of radiation stable PVC and polypropylene for medical devices

    International Nuclear Information System (INIS)

    Gonzalez, M.E.; Docters, A.S.

    1999-01-01

    Radiation stability of polypropylene and polyvinylchloride medical products of local origin was evaluated, establishing their functionality by appropriate methods. A device for a mechanical test of syringes and another device for puncture testing of plastic films were constructed and tested. Shelf-life anticipation of irradiated products was examined by treating to high doses and in other cases by storing irradiated products at high temperatures. In both cases negative results would anticipate no functionality for real time aged products. Radiation stability improvement was tried by incorporating light protectors and antioxidants into polypropylene homopolymer. A composition with added light protector was obtained that did not discolor and that kept mechanical stability during aging. Polyvinylchloride tubing was examined and found stable in comparison with imported materials. A non-discoloring product could not be obtained. Evaluation of local commercial polyvinylchloride insulations of wires similar to the wires used in the conveyor system of the Irradiation Facility of Ezeiza Atomic Center suggested that the limit of 50 % reduction in elongation to break in relation to control samples as an indication of failure is too conservative, because this limit was reached much earlier than the actual period of use of installed wires. (author)

  8. Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Liu, Xinjun; Venkatachalam, Dinesh Kumar; Elliman, Robert Glen

    2015-01-01

    The threshold current for inducing the metal–insulator transition in a NbO 2−x selector element is shown to be affected by the properties of an adjacent memory element when integrated into a hybrid selector-memory device structure. Experimental results are reported for homogeneous NbO 2−x /Nb 2 O 5−y and heterogeneous NbO 2−x /HfO 2 device structures, and show that the threshold current is lower in both hybrid structures than in the selector element alone, and is lower in the heterogeneous structure than in the homogeneous structure. Finite element modeling of the selector-memory structure shows that this results primarily from current confinement produced by the filamentary conduction path in the resistive-switching memory layer (i.e. Nb 2 O 5−y or HfO 2 ), an observation that further implies a smaller diameter filament in HfO 2 than in Nb 2 O 5−y . The thermal and electrical conductivities of the memory layer are also shown to influence the threshold current, but to a lesser extent. (paper)

  9. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  10. Development of insulating substrates for multilayer thermoelectric devices; Elaboration d'elements de support dans des dispositifs thermoelectriques multicouches

    Energy Technology Data Exchange (ETDEWEB)

    Kadiebu Kandolo, St

    2005-10-15

    The design and fabrication of a high performance thermoelectric generator based on ceramic technology is envisaged. The system consists of n and p-type semi-conducting layers deposited on a thermally insulating dielectric substrate. The present work is devoted to the choice and preparation of the material for the substrate. The desired characteristics for a low thermal conductivity are an amorphous solid with a porous microstructure. Two raw materials were selected as candidates. The first is a clay, made of layered minerals for which de-hydroxylation at 600 deg. C leads to a disordered structure and the second is diatomite, a material constituted of amorphous silica with and inherent natural porosity inside plate like grains. Sintering the clay at 800 deg. C yields a material with thermal conductivity of 0.21 W/m.K at room temperature increasing to 0.26 W/m.K at 600 deg. C. In an attempt to decrease the thermal conductivity, the clay was mixed with fine amorphous silica or zircon. The zircon based mixture was the most effective giving a thermal conductivity of 0.19 W/m.K which remains constant with temperature. In addition to a low thermal conductivity, diatomite presents another interesting advantage. First, tape casting was used to obtain porous layers yielding a thermal conductivity as low as 0.08 W/m.K at room temperature. Then it was found that under certain preparation conditions, the tape cast diatomite formed with a thin dense layer at the surface. This facilitates deposition of the active semi-conductor layer by avoiding loss from penetration through the open porosity of the substrate. (author)

  11. Development of insulating substrates for multilayer thermoelectric devices; Elaboration d'elements de support dans des dispositifs thermoelectriques multicouches

    Energy Technology Data Exchange (ETDEWEB)

    Kadiebu Kandolo, St.

    2005-10-15

    The design and fabrication of a high performance thermoelectric generator based on ceramic technology is envisaged. The system consists of n and p-type semi-conducting layers deposited on a thermally insulating dielectric substrate. The present work is devoted to the choice and preparation of the material for the substrate. The desired characteristics for a low thermal conductivity are an amorphous solid with a porous microstructure. Two raw materials were selected as candidates. The first is a clay, made of layered minerals for which de-hydroxylation at 600 deg. C leads to a disordered structure and the second is diatomite, a material constituted of amorphous silica with and inherent natural porosity inside plate like grains. Sintering the clay at 800 deg. C yields a material with thermal conductivity of 0.21 W/m.K at room temperature increasing to 0.26 W/m.K at 600 deg. C. In an attempt to decrease the thermal conductivity, the clay was mixed with fine amorphous silica or zircon. The zircon based mixture was the most effective giving a thermal conductivity of 0.19 W/m.K which remains constant with temperature. In addition to a low thermal conductivity, diatomite presents another interesting advantage. First, tape casting was used to obtain porous layers yielding a thermal conductivity as low as 0.08 W/m.K at room temperature. Then it was found that under certain preparation conditions, the tape cast diatomite formed with a thin dense layer at the surface. This facilitates deposition of the active semi-conductor layer by avoiding loss from penetration through the open porosity of the substrate. (author)

  12. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  13. Device for protecting the section of the airline electricity transmission with insulated neutral from incomplete phase modes

    Energy Technology Data Exchange (ETDEWEB)

    Sagutdinov, R.Sh.; Batoyev, D.

    1982-01-01

    The device for USSR certificate of authorship 792439 is improved in order to raise reliability of isolating the damage zone by including into operation an antenna filter for voltage of zero sequence (AFNIP) only during the operating time of the electrical unit in incomplete phase mode. The newly introduced circuit breaker contract of the inlet relay of the voltage filter for reverse sequence is connected between the outlet of the AFNIP and the ground. The device additionally has a time relay which is connected to the outlet of the voltage filter of reverse sequence. The circuit breaker contact of the inlet relay AFNIP is connected in series to the closure contact of the time relay and the winding of the second outlet relay of the actuating mechanism.

  14. Resources | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Links | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. Efficient Windows Collaborative | Home

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. FAQ | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Glossary | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  20. Renovation and design of double casement windows with regard to the occurrence of water vapour condensation or mould on the interior surface of the window jamb

    Science.gov (United States)

    Kudrnacova, L.; Balik, L.

    2017-10-01

    The condensation of water vapour on the interior surface is an indicator of construction dysfunction or ignoring of the surroundings temperature and relative humidity. This paper deals with analysis of the occurrence of condensation on the jamb of double casement windows (windows with two window casements). More precisely, this is a surface in the interior where water vapour condensation or mould occur. For the renovation of existing double casement windows, there are different solutions based on window design: application of double insulating glazing on the interior window casement, application of double insulating glazing on the exterior casement, or installation of a simple window. We first describe measurement of an existing double casement window located in a mountain cottage. Second, the results and comparison of 2D thermal model of different types of double casement window construction. Also, the external insulation of the peripheral wall was included in the model.

  1. Window shopping

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    'A large window for surprises' was how Gordon Kane of Michigan summarized the potential of the proposed 84-kilometre US Superconducting Supercollider (SSC). With George Trilling of Berkeley unable to attend this year's High Energy Physics Conference at Vanderbilt University, Nashville, Tennessee, from 8-10 October, Kane played a dual role - looking ahead to SSC physics, and summarizing the meeting

  2. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  3. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  4. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  5. Strategic Windows

    DEFF Research Database (Denmark)

    Risberg, Annette; King, David R.; Meglio, Olimpia

    We examine the importance of speed and timing in acquisitions with a framework that identifies management considerations for three interrelated acquisition phases (selection, deal closure and integration) from an acquiring firm’s perspective. Using a process perspective, we pinpoint items within ...... acquisition phases that relate to speed. In particular, we present the idea of time-bounded strategic windows in acquisitions consistent with the notion of kairòs, where opportunities appear and must be pursued at the right time for success to occur....

  6. Window shopping

    OpenAIRE

    Oz Shy

    2013-01-01

    The terms "window shopping" and "showrooming" refer to the activity in which potential buyers visit a brick-and-mortar store to examine a product but end up either not buying it or buying the product from an online retailer. This paper analyzes potential buyers who differ in their preference for after-sale service that is not offered by online retailers. For some buyers, making a trip to the brick-and-mortar store is costly; however, going to the store to examine the product has the advantage...

  7. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  8. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    Science.gov (United States)

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  9. Windows Phone 7 Made Simple

    CERN Document Server

    Trautschold, Martin

    2011-01-01

    With Windows Phone 7, Microsoft has created a completely new smartphone operating system that focuses on allowing users to be productive with their smartphone in new ways, while offering seamless integration and use of Microsoft Office Mobile as well as other productivity apps available in the Microsoft App Store. Windows Phone 7 Made Simple offers a clear, visual, step-by-step approach to using your Windows Phone 7 smartphone, no matter what the manufacturer. Author Jon Westfall is an expert in mobile devices, recognized by Microsoft as a "Most Valuable Professional" with experience

  10. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  11. Reflecting variable opening insulating panel

    International Nuclear Information System (INIS)

    Nungesser, W.T.

    1976-01-01

    A description is given of a reflecting variable opening insulating panel assembly, comprising a static panel assembly of reflecting insulation sheets forming a cavity along one side of the panel and a movable panel opening out by sliding from the cavity of the static panel, and a locking device for holding the movable panel in a position extending from the cavity of the static panel. This can apply to a nuclear reactor of which the base might require maintenance and periodical checking and for which it is desirable to have available certain processes for the partial dismantling of the insulation [fr

  12. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  13. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Yazdanian, Mehry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2009-10-01

    Windows play a significant role in commercial buildings targeting the goal of net zero energy. This report summarizes research methodology and findings in evaluating the energy impact of windows technologies for commercial buildings. The large office prototypical building, chosen from the DOE commercial building benchmarks, was used as the baseline model which met the prescriptive requirements of ASHRAE Standard 90.1-2004. The building simulations were performed with EnergyPlus and TMY3 weather data for five typical US climates to calculate the energy savings potentials of six windows technologies when compared with the ASHRAE 90.1-2004 baseline windows. The six windows cover existing, new, and emerging technologies, including ASHRAE 189.1 baseline windows, triple pane low-e windows, clear and tinted double pane highly insulating low-e windows, electrochromic (EC) windows, and highly insulating EC windows representing the hypothetically feasible optimum windows. The existing stocks based on average commercial windows sales are included in the analysis for benchmarking purposes.

  14. Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3 and ferroelectric polymer

    International Nuclear Information System (INIS)

    Yoon, Sung-Min; Yang, Shin-Hyuk; Ko Park, Sang-Hee; Jung, Soon-Won; Cho, Doo-Hee; Byun, Chun-Won; Kang, Seung-Youl; Hwang, Chi-Sun; Yu, Byoung-Gon

    2009-01-01

    Poly(vinylidene fluoride trifluoroethylene) and ZnO were employed for nonvolatile memory thin film transistors as ferroelectric gate insulator and oxide semiconducting channel layers, respectively. It was proposed that the thickness of the ZnO layer be carefully controlled for realizing the lower programming voltage, because the serially connected capacitor by the formation of a fully depleted ZnO channel had a critical effect on the off programming voltage. The fabricated memory transistor with Al/P(VDF-TrFE) (80 nm)/Al 2 O 3 (4 nm)/ZnO (5 nm) exhibits encouraging behaviour such as a memory window of 3.8 V at the gate voltage of -10 to 12 V, and 10 7 on/off ratio, and a gate leakage current of 10 -11 A.

  15. Radioconductivity of insulators: their potential for ionographic imaging

    International Nuclear Information System (INIS)

    DeWerd, L.A.; Moran, P.R.

    1975-01-01

    Measurements of the radioconductivity and thermocurrent properties of relatively pure insulating solids indicate charge collection yields which compare favorably to materials presently used for ionography. The radioconductivity varies with temperature giving rise to temperature windows of feasible use

  16. Energy-efficient window systems. Effects on energy use and daylight in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buelow-Huebe, H.

    2001-11-01

    This thesis deals with energy-efficient windows in Swedish buildings. Parametric studies were performed in the dynamic energy simulation tool Derob-LTH in order to study the effects of window choices on energy use and indoor climate for both residential and office buildings. A steady-state program was used to evaluate two years of measurements of energy use and indoor temperatures of an energy-efficient row-house. Two behavioural studies regarding (1) daylight transmittance, view and room perception using super-insulated windows and (2) the satisfaction with the daylight environment and the use of shading devices in response to daylight/sunlight were conducted in full-scale laboratory environments exposed to the natural climate. Results show that as the energy-efficiency of buildings increase, window U-values must decrease in order not to increase the annual heating demand, since the heating season is shortened, and useful solar gains become smaller. For single-family houses with a window-to-floor area ratio of 15 % and insulated according the current Swedish building code, the U-values should thus on average be lower than 1.0 W/m{sup 2}K. For houses insulated according to 1960s standard, the U-value may on average be 1.6 W/m{sup 2}K. For colder climates (northern Sweden), the U-values should be somewhat lower, while slightly higher U-values can be tolerated in milder climates of south Sweden. Thermal comfort during winter is improved for energy-efficient windows. However, overheating problems exist for both super-insulated houses and highly glazed office buildings showing a need for very low U-values in combination with low g-values. Daylight experiments indicate that the use of two low-emittance coatings tints the transmitted daylight enough to be appreciated, and colours may be perceived as more drab and rooms more enclosed. A compromise between energy-efficiency and daylighting may be needed, and it is suggested that only one coating be used except when very

  17. Heat insulating plates

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J.A.F.

    1976-10-28

    Micro-porous insulation plates are dealt with, for example, how they are used in the insulation of heat storage devices. Since one side of such plates is exposed to a temperature of over 700/sup 0/C, a shrinkage of the glass texture of the covering can occur, which can exceed the shrinkage of the inner micro-porous material, so that cracks and splits in the high temperature side of the covering can come about. The task of the invention is to design the plate in such a way as to prevent this from happening. For this purpose the plate is provided, according to invention specifications, with flutes, waves, ribs, waffle or grid patterns and the covering is set into the recesses originating from this.

  18. Windows Vista Administrator's Pocket Guide

    CERN Document Server

    Stanek, William R

    2007-01-01

    Portable and precise, this pocket-sized guide delivers immediate answers for the day-to-day administration of Windows Vista. Zero in on core support and maintenance tasks using quick-reference tables, instructions, and lists. You'll get the precise information you need to solve problems and get the job done-whether you're at your desk or in the field! Get fast facts to: Install and configure Windows Vista-and optimize the user workspaceMaintain operating system components, hardware devices, and driversCreate user and group accounts-and control rights and permissionsAdminister group policy se

  19. Windows server cookbook for Windows server 2003 and Windows 2000

    CERN Document Server

    Allen, Robbie

    2005-01-01

    This practical reference guide offers hundreds of useful tasks for managing Windows 2000 and Windows Server 2003, Microsoft's latest server. These concise, on-the-job solutions to common problems are certain to save you many hours of time searching through Microsoft documentation. Topics include files, event logs, security, DHCP, DNS, backup/restore, and more

  20. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  1. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  2. Design Guidance for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Selection Process for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  4. Selection Process for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  5. Design Guidance for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  6. Replacement Windows for Existing Homes Homes | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  7. Proper Installation of New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  8. Insulating process for HT-7U central solenoid model coils

    International Nuclear Information System (INIS)

    Cui Yimin; Pan Wanjiang; Wu Songtao; Wan Yuanxi

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the super-conducting experiment condition

  9. Handleable shapes of thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J. T.

    1989-01-17

    Handleable and machineable shapes of thermal insulation material are made by compacting finely divided thermal insulation material into the cells of a reinforcing honeycomb insulation material into the cells of a reinforcing honeycomb structure. The finely divided thermal insulation material may be, for example, silica aerogel, pyrogenic silica, carbon black, silica gel, volatilised silica, calcium silicate, vermiculate or perlite, or finely divided metal oxides such as alumina or titania. The finely divided thermal insulation material may include an infra-red opacifier and/or reinforcing fibres. The reinforcing honeycomb structure may be made from, for example, metals such as aluminium foil, inorganic materials such as ceramics, organic materials such as plastics materials, woven fabrics or paper. A rigidiser may be employed. The shapes of thermal insulation material are substantially rigid and may be machines, for example by mechanical or laser cutting devices, or may be formed, for example by rolling, into curved or other shaped materials. 12 figs.

  10. Characterization of gold nanoparticle pentacene memory device with polymer dielectric layer

    International Nuclear Information System (INIS)

    Kim, Hyung-Jun; Jung, Sung Mok; Kim, Yo-Han; Kim, Bong-Jin; Ha, Sanghyub; Kim, Yong-Sang; Yoon, Tae-Sik; Lee, Hyun Ho

    2011-01-01

    We report on the electrical behavior of gold nanoparticles (Au NPs) intervened metal-pentacene-insulator-semiconductor structures. The structure adopts polyvinyl alcohol (PVA) and pentacene as gate insulator and semiconductor, respectively. On the PVA (250 nm) film which was spin-coated and UV cross-linked, 3-aminopropyl triethoxysilane was functionalized for self assembling of the Au NPs monolayer. The devices exhibited clockwise hysteresis in their capacitance-voltage characteristics, with a memory window depending on the range of the voltage sweep. A relatively large memory window of about 4.7 V, which was deduced from control devices, was achieved with voltage sweep of (-/+)7 V. Formation of the monolayered Au NPs was confirmed by field effect scanning electron microscopy and atomic force microscopy.

  11. Provide Views | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  12. Reduced Fading | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  13. EWC Members | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. Visible Transmittance | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Gas Fills | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. EWC Membership | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. Reducing Condensation | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Improved Comfort | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. Financing & Incentives | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  20. Tools & Resources | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  1. Books & Publications | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  2. Design Considerations | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Thermal insulation system design and fabrication specification (nuclear) for the Clinch River Breeder Reactor plant

    International Nuclear Information System (INIS)

    1978-01-01

    This specification defines the design, analysis, fabrication, testing, shipping, and quality requirements of the Insulation System for the Clinch River Breeder Reactor Plant (CRBRP), near Oak Ridge, Tennessee. The Insulation System includes all supports, convection barriers, jacketing, insulation, penetrations, fasteners, or other insulation support material or devices required to insulate the piping and equipment cryogenic and other special applications excluded. Site storage, handling and installation of the Insulation System are under the cognizance of the Purchaser

  4. Vacuum window glazings for energy-efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. (Solar Energy Research Inst., Golden, CO (USA)); Soule, D.E. (Western Illinois Univ., Macomb, IL (USA))

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  5. Windows and doors

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    A complete manual is presented on windows and doors for the housing contractor. In order to understand the role of windows and doors in a house's energy performance, an introduction explains the house as a system of components that can have effects on each other. Further chapters explain in detail the parts of a window, window types and RSI values; window servicing and repair; window replacement; parts of a door, door types and RSI values; door service and repair, including weatherstripping; door replacement; and how to ensure quality, service, and customer satisfaction. A glossary of terms is included. 61 figs., 3 tabs.

  6. Windows 10 simplified

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 quickly and painlessly with this beginner's guide Windows 10 Simplified is your absolute beginner's guide to the ins and outs of Windows. Fully updated to cover Windows 10, this highly visual guide covers all the new features in addition to the basics, giving you a one-stop resource for complete Windows 10 mastery. Every page features step-by-step screen shots and plain-English instructions that walk you through everything you need to know, no matter how new you are to Windows. You'll master the basics as you learn how to navigate the user interface, work with files, create

  7. Windows 10 for dummies

    CERN Document Server

    Rathbone, Andy

    2015-01-01

    The fast and easy way to get up and running with Windows 10 Windows 10 For Dummies covers the latest version of Windows and gets you up and running with the changes and new features you'll find in this updated operating system. Packed with time-saving tips to help you get the most out of the software, this helpful Windows 10 guide shows you how to manage Windows tasks like navigating the interface with a mouse or touchscreen, connecting to the web, and troubleshooting problems and making quick fixes. Assuming no prior knowledge of the software, Windows 10 For Dummies addresses the updates to

  8. PREFACE: INERA Workshop: Transition Metal Oxide Thin Films-functional Layers in "Smart windows" and Water Splitting Devices. Parallel session of the 18th International School on Condensed Matter Physics

    Science.gov (United States)

    2014-11-01

    The Special issue presents the papers for the INERA Workshop entitled "Transition Metal Oxides as Functional Layers in Smart windows and Water Splitting Devices", which was held in Varna, St. Konstantin and Elena, Bulgaria, from the 4th-6th September 2014. The Workshop is organized within the context of the INERA "Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures", FP7 Project REGPOT 316309 program, European project of the Institute of Solid State Physics at the Bulgarian Academy of Sciences. There were 42 participants at the workshop, 16 from Sweden, Germany, Romania and Hungary, 11 invited lecturers, and 28 young participants. There were researchers present from prestigious European laboratories which are leaders in the field of transition metal oxide thin film technologies. The event contributed to training young researchers in innovative thin film technologies, as well as thin films characterization techniques. The topics of the Workshop cover the field of technology and investigation of thin oxide films as functional layers in "Smart windows" and "Water splitting" devices. The topics are related to the application of novel technologies for the preparation of transition metal oxide films and the modification of chromogenic properties towards the improvement of electrochromic and termochromic device parameters for possible industrial deployment. The Workshop addressed the following topics: Metal oxide films-functional layers in energy efficient devices; Photocatalysts and chemical sensing; Novel thin film technologies and applications; Methods of thin films characterizations; From the 37 abstracts sent, 21 manuscripts were written and later refereed. We appreciate the comments from all the referees, and we are grateful for their valuable contributions. Guest Editors: Assoc. Prof. Dr.Tatyana Ivanova Prof. DSc Kostadinka Gesheva Prof. DSc Hassan Chamatti Assoc. Prof. Dr. Georgi Popkirov Workshop Organizing Committee Prof

  9. Si3N4/Si/In0.05Ga0.95As/n endash GaAs metal endash insulator endash semiconductor devices

    International Nuclear Information System (INIS)

    Park, D.; Li, D.; Tao, M.; Fan, Z.; Botchkarev, A.E.; Mohammad, S.N.; Morkoc, H.

    1997-01-01

    We report a novel metal endash insulator endash semiconductor (MIS) structure exhibiting a pseudomorphic In 0.05 Ga 0.95 As layer on GaAs with interface state densities in the low 10 11 eV -1 cm -2 . The structure was grown by a combination of molecular beam epitaxy and chemical vapor deposition methods. The hysteresis and frequency dispersion of the MIS capacitor were lower than 100 mV, some of them as low as 30 mV under a field swing of about ±1.3 MV/cm. The 150-Angstrom-thick In 0.05 Ga 0.95 As channel between Si and GaAs is found to bring about a change in the minority carrier recombination behavior of the GaAs channel, in the same way as done by In 0.53 Ga 0.47 As channel MIS structures. Self-aligned gate depletion mode In 0.05 Ga 0.95 As metal endash insulator endash semiconductor field-effect transistors having 3 μm gate lengths exhibited field-effect bulk mobility of 1400 cm 2 /Vs and transconductances of about 170 mS/mm. copyright 1997 American Institute of Physics

  10. Schematic Window Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this IRAD is to produce a generic launch window analyzer (SWM) that allows for large-scale rapid analysis of a launch window and orbit design trade space....

  11. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  12. Heat transport and solar transmission through a window system with low-emitting coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, B; Ribbing, C G

    1977-12-01

    Heat transfer processes through a double-glazed window system are examined. Network calculations show the good insulation properties of a double-glazed window system including at least one low-emitting film. When the insolation is taken into consideration, absorption in the panes change the heat-balance and a heat-transfer coefficient can not be defined. The thermal and optical properties of windows with low-emitting metallic films are investigated. These windows depress the heat-losses but show a relatively low solar transmission. They are suitable for reducing intense sunlight during the summer period, together with good thermal insulation during periods with low insolation.

  13. Window Selection Tool | Efficient Windows Collaborative

    Science.gov (United States)

    Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Window Selection Tool will take you through a series of design conditions pertaining to your design and

  14. Windows for Intel Macs

    CERN Document Server

    Ogasawara, Todd

    2008-01-01

    Even the most devoted Mac OS X user may need to use Windows XP, or may just be curious about XP and its applications. This Short Cut is a concise guide for OS X users who need to quickly get comfortable and become productive with Windows XP basics on their Macs. It covers: Security Networking ApplicationsMac users can easily install and use Windows thanks to Boot Camp and Parallels Desktop for Mac. Boot Camp lets an Intel-based Mac install and boot Windows XP on its own hard drive partition. Parallels Desktop for Mac uses virtualization technology to run Windows XP (or other operating systems

  15. Windows® Internals

    CERN Document Server

    Russinovich, Mark E; Ionescu, Alex

    2009-01-01

    See how the core components of the Windows operating system work behind the scenes-guided by a team of internationally renowned internals experts. Fully updated for Windows Server 2008 and Windows Vista, this classic guide delivers key architectural insights on system design, debugging, performance, and support-along with hands-on experiments to experience Windows internal behavior firsthand.Delve inside Windows architecture and internals:Understand how the core system and management mechanisms work-from the object manager to services to the registryExplore internal system data structures usin

  16. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...... energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  17. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... minus the heat loss integrated over the heating season. It is assumed that in northern cold climates all of the solar gain during the heating season can be utilized for space heating. Problems with overheating in the summer period must be solved with overhang or moveable solar shading devices. Two...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  18. Compact UHV valve with field replaceable windows

    International Nuclear Information System (INIS)

    Johnson, E.D.; Freeman, J.; Powell, F.

    1991-01-01

    There are many applications in synchrotron radiation research where window valves can be usefully employed. Examples include gas cells for monochromator calibration, filters for high order light rejection, and as vacuum isolation elements between machine and experimental vacua. Often these devices are fairly expensive, and have only fixed (ie non-removable) windows. The development of a new type of seal technology by VAT for their series 01 valves provides a gate surface which is free from obstructions due to internal mechanical elements. This feature allows a threaded recess to be machined into the gate to receive a removable window frame which can carry standard size Luxel thin film windows. The combination of these features results in a DN 40 (2.75in. conflat flange) valve which provides a clear aperture of 21mm diameter for the window material. 8 refs., 2 figs

  19. Windows in Low Energy Houses. Size Matters

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Mari-Louise

    2004-06-01

    A generally accepted way of building passive houses has been to have small windows facing north and a large glass facade to the south. This is to minimize losses on the north side while gaining as much solar heat as possible on the south. In spring 2001, twenty terraced houses were built outside Goeteborg partly in this way. The indoor temperature is kept at a comfortable level by passive methods, using solar gains and internal gains from household appliances and occupants. Heat losses are very low, since the building envelope is well insulated and since modern coated triple-glazed windows have been installed. The purpose of this work is to investigate how decreasing the window size facing south and increasing the window size facing north in low energy houses will influence the energy consumption and maximum power needed to keep the indoor temperature between 23 and 26 deg C. Different climates and orientations have been investigated and so have the influence of occupancy and window type. A dynamic building simulation tool, DEROB, has been used and the simulations indicate an extremely low energy demand for the houses. The results show that the size of the energy efficient windows does not have a major influence on the heating demand in winter, but is of relevant signification looking at the cooling need in summer. This indicates that instead of the traditional technique of building passive houses it is possible to enlarge the window area facing north and get better lighting conditions. To decrease the energy need for cooling, there is an optimal window size facing south that is smaller than the original size of the investigated buildings.

  20. Evaluation of Energy Efficiency Performance of Heated Windows

    Science.gov (United States)

    Jammulamadaka, Hari Swarup

    The study about the evaluation of the performance of the heated windows was funded by the WVU Research Office as a technical assistance award at the 2014 TransTech Energy Business Development Conference to the Green Heated Glass company/project owned by Frank Dlubak. The award supports a WVU researcher to conduct a project important for commercialization. This project was awarded to the WVU Industrial Assessment Center in 2015. The current study attempted to evaluate the performance of the heated windows by developing an experimental setup to test the window at various temperatures by varying the current input to the window. The heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel based ice packs. The other face of the window was heated by passing current at different wattages through the window. The temperature of the inside and outside panes, current and voltage input, room and box temperature were recorded, and used to calculate the apparent R-value of the window when not being heated vs when being heated. It has been concluded from the study that the heated double pane window is more effective in reducing heat losses by as much as 50% than a non-heated double pane window, if the window temperature is maintained close to the room temperature. If the temperature of the window is much higher than the room temperature, the losses through the window appear to increase beyond that of a non-heated counterpart. The issues encountered during the current round of experiments are noted, and recommendations provided for future studies.

  1. Teach yourself visually Windows 8 tablets

    CERN Document Server

    McFedries, Paul

    2012-01-01

    A visual guide to all the features of the new Windows 8 Tablet This must-have resource features visually rich, step-by-step instructions that show you how to get the most enjoyment from your Windows 8 tablet. Learn about the exciting new Metro UI, optimized specifically for touch devices. The most popular and commonly used apps and functions are covered too, along with the basics of syncing with a network, setting up e-mail, watching videos, listening to music, and common productivity tasks. This book provides all the guidance needed to enjoy all the best the new Windows 8 tablets have to offe

  2. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  3. Optimising the performance of the window

    Energy Technology Data Exchange (ETDEWEB)

    Luther, M.B. [Deakin Univ., Geelong, VIC (Australia); Boland, J. [South Australia Univ., Adelaide, SA (Australia)

    1996-12-31

    Glass is a versatile material in the design and performance of windows. Advancements in the technologies of the glass material have produced variable degrees of window thermal performance. A closer look at the glazing system itself in reference to overall building thermal performance will hopefully explain when, where and how the window is a benefit under specific climatic conditions. The optimization of equatorially facing window area for either single or double glazing systems is investigated in another paper in this conference, and it is now queried as to how the design of the window itself can benefit the annual performance of a residence. Two locations were investigated, each for a hot summer and cold winter week. Separate glazing analysis programs are also used independent of the thermal residential program CHEETAH. Three glazing systems, single 3 mm, double 3 mm, and a spectrally-selective double 3 mm system were investigated. There appears to be little difference in the total overall performance between a clear and a selective double insulated glazing system. It is further suggested that there is room for future improvement to thermal simulation programs by incorporating rigorous glazing simulation. 9 figs., 8 refs.

  4. Electrochromic Windows: Advanced Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  5. Windows 8 secrets

    CERN Document Server

    Thurrott, Paul

    2012-01-01

    Tips, tricks, treats, and secrets revealed on Windows 8 Microsoft is introducing a major new release of its Windows operating system, Windows 8, and what better way to learn all its ins and outs than from two internationally recognized Windows experts and Microsoft insiders, authors Paul Thurrott and Rafael Rivera? They cut through the hype to get at useful information you'll not find anywhere else, including what role this new OS plays in a mobile and tablet world. Regardless of your level of knowledge, you'll discover little-known facts about how things work, what's new and different, and h

  6. Mastering Windows 7 Deployment

    CERN Document Server

    Finn, Aidan; van Surksum, Kenneth

    2011-01-01

    Get professional-level instruction on Windows 7 deployment tools Enterprise-level operating system deployment is challenging and requires knowledge of specific tools. It is expected that Windows 7 will be extensively deployed in businesses worldwide. This comprehensive Sybex guide provides thorough coverage of the Microsoft deployment tools that were specifically created for Windows 7, preparing system administrators, MIS professionals, and corporate programmers to tackle the task effectively.Companies worldwide are expected to deploy Windows 7 as their enterprise operating system; system admi

  7. Programming Windows Azure

    CERN Document Server

    Krishnan, Sriram

    2010-01-01

    Learn the nuts and bolts of cloud computing with Windows Azure, Microsoft's new Internet services platform. Written by a key member of the product development team, this book shows you how to build, deploy, host, and manage applications using Windows Azure's programming model and essential storage services. Chapters in Programming Windows Azure are organized to reflect the platform's buffet of services. The book's first half focuses on how to write and host application code on Windows Azure, while the second half explains all of the options you have for storing and accessing data on the plat

  8. Beginning Windows 8

    CERN Document Server

    Halsey, Mike

    2012-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever. Beginning Windows 8 takes you through the new features and helps you get more out of the familiar to reveal the possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes with it. From tips and tweaks to easy-to-follow guides and d

  9. Windows 8 tweaks

    CERN Document Server

    Sinchak, Steve

    2013-01-01

    Acres of Windows 8 tweaks from a Microsoft MVP and creator of Tweaks.com! From a Microsoft MVP, who is also the savvy creator of Tweaks.com, comes this ultimate collection of Windows 8 workarounds. Steve Sinchak takes you way beyond default system settings, deep under the hood of Windows 8, down to the hidden gems that let you customize your Windows 8 system like you wouldn't believe. From helping you customize the appearance to setting up home networking, sharing media, and squeezing every ounce of performance out of the OS, this book delivers. Get ready to rock and roll with Wind

  10. An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need.

    Science.gov (United States)

    Wilkes, Rebecca P; Lee, Pei-Yu A; Tsai, Yun-Long; Tsai, Chuan-Fu; Chang, Hsiu-Hui; Chang, Hsiao-Fen G; Wang, Hwa-Tang T

    2015-08-01

    Canine parvovirus type 2 (CPV-2), including subtypes 2a, 2b and 2c, causes an acute enteric disease in both domestic and wild animals. Rapid and sensitive diagnosis aids effective disease management at points of need (PON). A commercially available, field-deployable and user-friendly system, designed with insulated isothermal PCR (iiPCR) technology, displays excellent sensitivity and specificity for nucleic acid detection. An iiPCR method was developed for on-site detection of all circulating CPV-2 strains. Limit of detection was determined using plasmid DNA. CPV-2a, 2b and 2c strains, a feline panleukopenia virus (FPV) strain, and nine canine pathogens were tested to evaluate assay specificity. Reaction sensitivity and performance were compared with an in-house real-time PCR using serial dilutions of a CPV-2b strain and 100 canine fecal clinical samples collected from 2010 to 2014, respectively. The 95% limit of detection of the iiPCR method was 13 copies of standard DNA and detection limits for CPV-2b DNA were equivalent for iiPCR and real-time PCR. The iiPCR reaction detected CPV-2a, 2b and 2c and FPV. Non-targeted pathogens were not detected. Test results of real-time PCR and iiPCR from 99 fecal samples agreed with each other, while one real-time PCR-positive sample tested negative by iiPCR. Therefore, excellent agreement (k = 0.98) with sensitivity of 98.41% and specificity of 100% in detecting CPV-2 in feces was found between the two methods. In conclusion, the iiPCR system has potential to serve as a useful tool for rapid and accurate PON, molecular detection of CPV-2. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices

    Science.gov (United States)

    Chen, Yu-Ze; Medina, Henry; Lin, Hung-Chiao; Tsai, Hung-Wei; Su, Teng-Yu; Chueh, Yu-Lun

    2015-01-01

    Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a

  12. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  13. Measure Guideline. Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, John [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR; Haglund, Kerry [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  14. Color Wheel Windows

    Science.gov (United States)

    Leonard, Stephanie

    2012-01-01

    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  15. Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  16. Visual merchandising window display

    Directory of Open Access Journals (Sweden)

    Opris (Cas. Stanila M.

    2013-12-01

    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  17. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  18. Thermonuclear device

    International Nuclear Information System (INIS)

    Takano, Hirohisa; Nakamoto, Kazunari; Hanai, Satoshi.

    1984-01-01

    Purpose: To provide coils of high mechanical strength for use at the center of a torus type thermonuclear device. Constitution: A plurality of copper plates having cooling holes and bolt holes and insulation paper sheets of the same shape are prepared. The copper plate is different from the insulation paper sheet only in that the position-phase angle of the opening portion is larger by 15 - 30 0 . The copper plates and the insulation paper sheets are alternately stacked by a required number of turns while displacing the angle, and then clamped by bolts to form a mechanically strong coil with no metallurgical joining. Further, since the insulation paper sheets are not present in the radial direction and only one insulation paper sheet is inserted for each turn in the direction of the coil height, the space occupied by the coil can be decreased. According to this invention, the magnetic flux density at the center of the device can be increased as compared with the conventional case to thereby apply a higher voltage on the side of plasmas. (Moriyama, K.)

  19. GA microwave window development

    International Nuclear Information System (INIS)

    Moeller, C.P.; Kasugai, A.; Sakamoto, K.; Takahashi, K.

    1994-10-01

    The GA prototype distributed window was tested in a 32 mm diam. waveguide system at a power density suitable for a MW gyrotron, using the JAERI/Toshiba 110 GHz long pulse internal converter gyrotron in the JAERI test stand. The presence of the untilted distributed window had no adverse effect on the gyrotron operation. A pulse length of 10 times the calculated thermal equilibrium time (1/e time) of 30 msec was reached, and the window passed at least 750 pulses greater than 30 msec and 343 pulses greater than 60 msec. Beyond 100 msec, the window calorimetry reached steady state, allowing the window dissipation to be measured in a single pulse. The measured loss of 4.0% agrees both with the estimated loss, on which the stress calculations are based, and with the attenuation measured at low power in the HE 11 mode. After the end of the tests, the window was examined; no evidence of arcing air coating was found in the part of the window directly illuminated by the microwaves, although there was discoloration in a recess containing an optical diagnostic which outgassed, causing a local discharge to occur in that recess. Finally, there was no failure of the metal-sapphire joints during a total operating time of 50 seconds consisting of pulses longer than 30 msec

  20. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  1. Windows 8 simplified

    CERN Document Server

    McFedries, Paul

    2012-01-01

    The easiest way for visual learners to get started with Windows 8 The popular Simplified series makes visual learning easier than ever, and with more than 360,000 copies sold, previous Windows editions are among the bestselling Visual books. This guide goes straight to the point with easy-to-follow, two-page tutorials for each task. With full-color screen shots and step-by-step directions, it gets beginners up and running on the newest version of Windows right away. Learn to work with the new interface and improved Internet Explorer, manage files, share your computer, and much more. Perfect fo

  2. Windows 95 Beslutningsguide

    DEFF Research Database (Denmark)

    Sørensen, Jens Otto

    1996-01-01

    Mange virksomheder der bruger pc'er står netop nu over for valget: Skal vi fortsætte med DOS/Windows 3.x som operativsystem, eller skal vi skifte til efterfølgeren Windows 95? Skal vi/kan vi skifte successivt, eller skal det være en "alt eller intet beslutning". Hvornår er det rigtige tidspunkt...... at skifte? Denne artikel vil forsøge at give en baggrundsviden om Windows 95, der kan hjælpe virksomhederne igennem denne beslutningsfase....

  3. Rails on Windows

    CERN Document Server

    Hibbs, Curt

    2007-01-01

    It's no secret that the entire Ruby onRails core team uses OS X as their preferreddevelopment environment. Becauseof this, it is very easy to findauthoritative information on the webabout using Rails on OS X. But the truthis that Windows developers using Railsprobably outnumber those using otherplatforms. A Windows development environmentcan be just as productive asany other platform. This is a guide to developing with Rubyon Rails under Windows. It won't teachyou how to write Ruby on Rails web applications,but it will show you what toolsto use and how to set them up to createa complete Rail

  4. The Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  5. Windows 7 resource kit

    CERN Document Server

    Northrup, Tony; Honeycutt, Jerry; Wilson, Ed

    2009-01-01

    In-depth and comprehensive, this RESOURCE KIT delivers the information you need to administer your Windows 7 system. You get authoritative technical guidance from those who know the technology best-Microsoft Most Valuable Professionals (MVPs) and the Windows 7 product team-along with essential scripts and resources. In addition, "Direct from the Source" sidebars offer deep insights and troubleshooting tips from the Windows 7 team. Get expert guidance on how to: Use Microsoft Deployment Toolkit best practices and tools. Plan user-state migration and test application compatibility.

  6. SAF for Windows

    DEFF Research Database (Denmark)

    Hansen, Timme

    2001-01-01

    SAF for Windows er et computerprogram til parametrisk konstruktion af translationsskaller. Skaloverfladernes tredimensionelle, facetterede form fremkommer ved en kombination af to todimensionelle formbestemmende kurver, som kan vælges og redigeres af brugeren. Programmet kan udfolde de genererede...

  7. Windows Security patch required

    CERN Multimedia

    3004-01-01

    This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables,... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  8. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  9. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  10. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  11. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  12. Lateral topological crystalline insulator heterostructure

    Science.gov (United States)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  13. Development and Measurement of Strain Free RF Photoinjector Vacuum Windows

    CERN Document Server

    Biedron, Sandra G

    2004-01-01

    RF photoinjectors produce the highest brightness electron bunches only under nearly ideal illumination by a drive laser. The vacuum window used to introduce the laser beam is an essential element that may potentially degrade any distribution, making it difficult or impossible to know the actual uniformity achieved at the cathode. Because of the necessity to obtain ultrahigh vacuum near the photoinjector, some restrictions are imposed on the fabrication technology available to manufacture distortion-free windows. At the UV wavelengths commonly used for photoinjectors, it is challenging to measure and eliminate degradation caused by vacuum windows. Here, we discuss the initial laser-based measurements of a strain-free, coated, UHV window manufactured by Insulator Seal in collaboration with members of Brookhaven and Argonne National Laboratories.

  14. Thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Shohei

    1988-01-01

    Purpose: To obtain high voltage withstanding current introduction terminals not suffering from the effects of the reduction in the creeping voltage withstanding property by the application of magnetic fields. Constitution: This invention concerns a current introduction terminal for supplying electric current to coils for use in a thermonuclear device, etc. The conductor of the current introduction terminal on the side of vacuum is completely covered with solid insulator. This can eliminate the portion of securing the creeping withstanding voltage. The voltage withstanding characteristics of the solid insulator covering the portion of the conductor on the side of vacuum has a constant value irrespective of the atmosphere or the absence or presence of magnetic fields. Accordingly, the voltage withstanding characteristics of the current introduction terminal on the side of vacuum are determined by the property of the solid insulator, which is not reduced by the application of magnetic fields. (Ikeda, J.)

  15. Analysis and comparison of magnetic sheet insulation tests

    Science.gov (United States)

    Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.

    1994-05-01

    Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.

  16. High performance sapphire windows

    Science.gov (United States)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  17. Mastering Microsoft Windows Small Business Server 2008

    CERN Document Server

    Johnson, Steven

    2010-01-01

    A complete, winning approach to the number one small business solution. Do you have 75 or fewer users or devices on your small-business network? Find out how to integrate everything you need for your mini-enterprise with Microsoft's new Windows Server 2008 Small Business Server, a custom collection of server and management technologies designed to help small operations run smoothly without a giant IT department. This comprehensive guide shows you how to master all SBS components as well as handle integration with other Microsoft technologies.: Focuses on Windows Server 2008 Small Business Serv

  18. Adaptive Liquid Crystal Windows

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  19. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  20. Windows 8.1 bible

    CERN Document Server

    Boyce, Jim; Tidrow, Rob

    2014-01-01

    Windows 8.1 coverage that goes above and beyond all competitors? Serving as an evolutionary update to Windows 8, Windows 8.1 provides critical changes to parts of Windows 8, such as greater customization of the interface and boot operations, return of a 'start button' that reveals apps, greater integration between the two interfaces, and updates to apps. Weighing in at nearly 1000 pages, Windows 8.1 Bible provides deeper Windows insight than any other book on the market. It's valuable for both professionals needing a guide to the nooks and crannies of Windows and regular users wanting a wide

  1. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2010-01-01

    The Azure Services Platform is a brand-new cloud-computing technology from Microsoft. It is composed of four core components-Windows Azure, .NET Services, SQL Services, and Live Services-each with a unique role in the functioning of your cloud service. It is the goal of this book to show you how to use these components, both separately and together, to build flawless cloud services. At its heart Windows Azure Platform is a down-to-earth, code-centric book. This book aims to show you precisely how the components are employed and to demonstrate the techniques and best practices you need to know

  2. Microsoft Windows Security Essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    Windows security concepts and technologies for IT beginners IT security can be a complex topic, especially for those new to the field of IT. This full-color book, with a focus on the Microsoft Technology Associate (MTA) program, offers a clear and easy-to-understand approach to Windows security risks and attacks for newcomers to the world of IT. By paring down to just the essentials, beginners gain a solid foundation of security concepts upon which more advanced topics and technologies can be built. This straightforward guide begins each chapter by laying out a list of topics to be discussed,

  3. Microsoft Windows networking essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    The core concepts and technologies of Windows networking Networking can be a complex topic, especially for those new to the field of IT. This focused, full-color book takes a unique approach to teaching Windows networking to beginners by stripping down a network to its bare basics, thereby making each topic clear and easy to understand. Focusing on the new Microsoft Technology Associate (MTA) program, this book pares down to just the essentials, showing beginners how to gain a solid foundation for understanding networking concepts upon which more advanced topics and technologies can be built.

  4. The Development and Application of Simulative Insulation Resistance Tester

    Science.gov (United States)

    Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao

    2018-02-01

    The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.

  5. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  6. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    window is made of fiber-reinforced plastic (plastic reinforced by fine fibers made of glass). This composite material is a weatherproof material with very low thermal conductivity and high mechanical strength. These properties make the material very suitable for frame profiles due to lower heat loss...... minus the heat loss integrated over the heating season. It is assumed that in northern cold climates all of the solar gain during the heating season can be utilized for space heating. Problems with overheating in the summer period must be solved with overhang or moveable solar shading devices. Two...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  7. Exploring Shop Window Displays

    Science.gov (United States)

    Christopoulou, Martha

    2011-01-01

    Using visual resources from everyday life in art lessons can enrich students' knowledge about the creation of visual images, artifacts, and sites, and develop their critical understanding about the cultural impact of these images and their effects on people's lives. Through examining an exhibition in the windows of Selfridges department store in…

  8. Windows and lighting program

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

  9. Measure Guideline: Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  10. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  11. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to

  12. Lower HVAC Costs | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  13. Increased Light & View | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. Condensation Resistance (CR) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Fact Sheets & Publications | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. State Fact Sheets | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. State Code Guides | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Low Conductance Spacers | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. National Fenestration Rating Council (NFRC) | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  20. Energy & Cost Savings | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  1. Provide Natural Light | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  2. Provide Fresh Air | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Air Leakage (AL) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  4. Vacuum foil insulation system

    International Nuclear Information System (INIS)

    Hanson, J.P.; Sabolcik, R.E.; Svedberg, R.C.

    1976-01-01

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly. The insulation is for an implantable nuclear powered artificial heart

  5. Thermal bridges of modern windows

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker

    2013-01-01

    if the window has an U-factor of 1 W/(m2·K) or lower. This paper describes the development of modern, energy efficient Danish windows with reduced thermal bridges. It focuses on materials, geometry, and sealing of window panes based on a literature review. Examples of modern windows are presented. Experience...... been an important driver for the development of new window solutions in Denmark, increasing the inner-surface temperature at the sealing of window panes. However, it will not stop complaints fromconsumers, as this temperature is calculated under standardized conditions. Increasing requirements...

  6. Step tunneling enhanced asymmetry in metal-insulator-insulator-metal (MIIM) diodes for rectenna applications

    Science.gov (United States)

    Alimardani, N.; Conley, J. F.

    2013-09-01

    We combine nanolaminate bilayer insulator tunnel barriers (Al2O3/HfO2, HfO2/Al2O3, Al2O3/ZrO2) deposited via atomic layer deposition (ALD) with asymmetric work function metal electrodes to produce MIIM diodes with enhanced I-V asymmetry and non-linearity. We show that the improvements in MIIM devices are due to step tunneling rather than resonant tunneling. We also investigate conduction processes as a function of temperature in MIM devices with Nb2O5 and Ta2O5 high electron affinity insulators. For both Nb2O5 and Ta2O5 insulators, the dominant conduction process is established as Schottky emission at small biases and Frenkel-Poole emission at large biases. The energy depth of the traps that dominate Frenkel-Poole emission in each material are estimated.

  7. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  8. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  9. Occupants' window opening behaviour

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano

    2012-01-01

    Energy consumption in buildings is influenced by several factors related to the building properties and the building controls, some of them highly connected to the behaviour of their occupants.In this paper, a definition of items referring to occupant behaviour related to the building control...... systems is proposed, based on studies presented in literature and a general process leading to the effects on energy consumptions is identified.Existing studies on the topic of window opening behaviour are highlighted and a theoretical framework to deal with occupants' interactions with building controls......, aimed at improving or maintaining the preferred indoor environmental conditions, is elaborated. This approach is used to look into the drivers for the actions taken by the occupants (windows opening and closing) and to investigate the existing models in literature of these actions for both residential...

  10. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  11. Transparent aerogel Windows

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe

    the supercritical washing step included in the drying phase. At the same time the production plant have been modified to recycle most of the chemicals involved in the production process. A large number of aerogel glazing prototypes have been made with partly evacuated aerogel in between two layers of low iron...... and anti reflection treated glass panes with an airtight edge seal solution based on multi-layered plastic foil developed for vacuum insulation purposes. The edge seal solution shows only a very limited thermal bridge effect. The final glazing has a total solar energy transmittance about 87% and a U...

  12. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  13. Windows with an improved energy balance of 30%

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    means that both energy losses and transmittance of solar radiation is considered.The final goal of the project was to improve the energy balance of a window with at least 30%. As reference is chosen a common low energy glazing mounted in a wooden frame construction measuring 1188 × 1188 mm2...... the main emphasis has been put on improvement of the frame construction and the interaction between frame and glazing. Several theoretical analyses have been carried out and a prototype construction has been made, that meets the goal of a 30% improvement of the energy balance.The prototype has been tested....... A 30% improvement of the energy balance then corresponds to an reduction in net energy loss of 17 kWh/m2 window area.The frame costruction and the joint between glazing and frame is the thermally weak part of modern windows compared to centre values of the new super insulating glazings. As a result...

  14. Infrared plasmonic nano-lasers based on Metal Insulator Metal waveguides

    NARCIS (Netherlands)

    Hill, M.T.

    2010-01-01

    We will present our latest results on metal-insulator-metal waveguide devices, in particular reducing the dimensions of devices and distributed feedback lasers. Also we will examine potential useful applications for metal nano-lasers.

  15. Determining the mode of high voltage breakdowns in vacuum devices

    International Nuclear Information System (INIS)

    Miller, H.C.; Furno, E.J.; Sturtz, J.P.

    1980-01-01

    Devices were constructed which were essentially vacuum diodes equipped with windows allowing observation of high voltage breakdowns. The waveform of the applied voltage was photographed, and the x-ray output was monitored to investigate electrical breakdown in these vacuum diodes. Results indicate that breakdowns may be divided into two types: (1) vacuum (interelectrode) breakdown - characterized by a diffuse moderately bright discharge, a relative slow and smooth voltage collapse, and a large burst of x-rays, and (2) surface (insulator) flashover - characterized by a bright discharge with a very bright filamentary core, a relatively fast and noisy voltage collapse and no x-ray burst. Useful information concerning the type of breakdown in a vacuum device can be obtained by monitoring the voltage (current) waveform and the x-ray output

  16. Photovoltaic Powering And Control System For Electrochromic Windows

    Science.gov (United States)

    Schulz, Stephen C.; Michalski, Lech A.; Volltrauer, Hermann N.; Van Dine, John E.

    2000-04-25

    A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

  17. Thermal and structural behavior of filters and windows for synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Wang, Z.; Hahn, U.; Dejus, R.; Kuzay, T.

    1993-01-01

    This report contains the following discussions: Introduction: Use of filters and windows in the front end designs; An interactive code for 3D graphic viewing of absorbed power in filters/windows and a new heat load generation algorithm for the finite element analysis; Failure criteria and analysis methods for the filter and window assembly; Comparison with test data and existing devices in HASYLAB; Cooling the filter: Radiation cooling or conduction cooling?; Consideration of window and filter thickness: Thicker or thinner?; Material selection criteria for filters/windows; Photon transmission through filters/windows; Window and filter design for APS undulators; Window and filter design for APS wigglers; and Window design for APS bending magnet front ends

  18. Windows Home Server users guide

    CERN Document Server

    Edney, Andrew

    2008-01-01

    Windows Home Server brings the idea of centralized storage, backup and computer management out of the enterprise and into the home. Windows Home Server is built for people with multiple computers at home and helps to synchronize them, keep them updated, stream media between them, and back them up centrally. Built on a similar foundation as the Microsoft server operating products, it's essentially Small Business Server for the home.This book details how to install, configure, and use Windows Home Server and explains how to connect to and manage different clients such as Windows XP, Windows Vist

  19. Teach yourself visually Windows 10

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 visually with step-by-step instructions Teach Yourself VISUALLY Windows 10 is the visual learner's guide to the latest Windows upgrade. Completely updated to cover all the latest features, this book walks you step-by-step through over 150 essential Windows tasks. Using full color screen shots and clear instruction, you'll learn your way around the interface, set up user accounts, play media files, download photos from your camera, go online, set up email, and much more. You'll even learn how to customize Windows 10 to suit the way you work best, troubleshoot and repair common

  20. Tailored plasmon-induced transparency in attenuated total reflection response in a metal-insulator-metal structure.

    Science.gov (United States)

    Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto

    2017-12-19

    We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.

  1. Windows Terminal Servers Orchestration

    Science.gov (United States)

    Bukowiec, Sebastian; Gaspar, Ricardo; Smith, Tim

    2017-10-01

    Windows Terminal Servers provide application gateways for various parts of the CERN accelerator complex, used by hundreds of CERN users every day. The combination of new tools such as Puppet, HAProxy and Microsoft System Center suite enable automation of provisioning workflows to provide a terminal server infrastructure that can scale up and down in an automated manner. The orchestration does not only reduce the time and effort necessary to deploy new instances, but also facilitates operations such as patching, analysis and recreation of compromised nodes as well as catering for workload peaks.

  2. Invariant sets for Windows

    CERN Document Server

    Morozov, Albert D; Dragunov, Timothy N; Malysheva, Olga V

    1999-01-01

    This book deals with the visualization and exploration of invariant sets (fractals, strange attractors, resonance structures, patterns etc.) for various kinds of nonlinear dynamical systems. The authors have created a special Windows 95 application called WInSet, which allows one to visualize the invariant sets. A WInSet installation disk is enclosed with the book.The book consists of two parts. Part I contains a description of WInSet and a list of the built-in invariant sets which can be plotted using the program. This part is intended for a wide audience with interests ranging from dynamical

  3. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2011-01-01

    The Windows Azure Platform has rapidly established itself as one of the most sophisticated cloud computing platforms available. With Microsoft working to continually update their product and keep it at the cutting edge, the future looks bright - if you have the skills to harness it. In particular, new features such as remote desktop access, dynamic content caching and secure content delivery using SSL make the latest version of Azure a more powerful solution than ever before. It's widely agreed that cloud computing has produced a paradigm shift in traditional architectural concepts by providin

  4. Windows Azure web sites

    CERN Document Server

    Chambers, James

    2013-01-01

    A no-nonsense guide to maintaining websites in Windows Azure If you're looking for a straightforward, practical guide to get Azure websites up and running, then this is the book for you. This to-the-point guide provides you with the tools you need to move and maintain a website in the cloud. You'll discover the features that most affect developers and learn how they can be leveraged to work to your advantage. Accompanying projects enhance your learning experience and help you to walk away with a thorough understanding of Azure's supported technologies, site deployment, and manageme

  5. Handbook on Windows and Energy

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    The handbook on windows and energy is a general description of windows with the main focus put on the energy performance. Common window products are described by commonly used nomenclature, description of frame and sash conctructions and description of commonly used glazing types.The energy...... transmission through windows is described in detail including radiation, convection and conduction as well as solar transmittance of window glazing. The most used terms related to characterization of window energy performance are defined and calculation methods according to international standards...... flow and detailed calculation of light and solar transmittance is given.Different measurement techniques for characterization of window heat loss coefficient and total solar energy transmittance is described and references to interantional standards are given.Finally, the handbook includes...

  6. Windows with improved energy performances

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2003-01-01

    Heat loss through windows represents a considerable part of the total heat loss from houses. However, apart from providing daylight access and view, windows offer a unique potential for solar gain to be exploited during the heating season. Until now valuation of the energy performance of windows...... has primary focused on the heat loss coefficient, U-value. However, as the U-value, especially for the glazing part, has improved considerably during the last years, the total solar energy transmittance, g-value, has become equally important to the total energy performance of windows. Improved energy...... resulted in a window with a positive net energy gain (in short the Net Gain Window), which means that it contributes to the space heating of the building. All improvements are based on existing technology and manufacturing methods. The results from this work show that the energy performances of windows can...

  7. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  8. VO2 thermochromic smart window for energy savings and generation

    Science.gov (United States)

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  9. Electrically tuned magnetic order and magnetoresistance in a topological insulator.

    Science.gov (United States)

    Zhang, Zuocheng; Feng, Xiao; Guo, Minghua; Li, Kang; Zhang, Jinsong; Ou, Yunbo; Feng, Yang; Wang, Lili; Chen, Xi; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2014-09-15

    The interplay between topological protection and broken time reversal symmetry in topological insulators may lead to highly unconventional magnetoresistance behaviour that can find unique applications in magnetic sensing and data storage. However, the magnetoresistance of topological insulators with spontaneously broken time reversal symmetry is still poorly understood. In this work, we investigate the transport properties of a ferromagnetic topological insulator thin film fabricated into a field effect transistor device. We observe a complex evolution of gate-tuned magnetoresistance, which is positive when the Fermi level lies close to the Dirac point but becomes negative at higher energies. This trend is opposite to that expected from the Berry phase picture, but is intimately correlated with the gate-tuned magnetic order. The underlying physics is the competition between the topology-induced weak antilocalization and magnetism-induced negative magnetoresistance. The simultaneous electrical control of magnetic order and magnetoresistance facilitates future topological insulator based spintronic devices.

  10. Windows on the axion

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the Θ vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10 6 eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab

  11. WINDOW-CLEANING

    CERN Multimedia

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  12. Organic insulator studies at Los Alamos

    International Nuclear Information System (INIS)

    Parkin, D.M.; Clinard, F.W.

    1981-01-01

    The effects of radiation on the structural and electrical properties of organic insulators to be used in superconducting magnets in fusion devices has been identified as a critical materials problem. These materials will be exposed to both γ-ray and neutron radiation. LANL has been asked by the OFE Materials Branch to look at the relationship between the effects of γ-ray and neutron radiation effects. Some thoughts on planning the program are outlined

  13. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  14. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  15. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  16. Working with Windows 7 at CERN (EN)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Overview of new concepts and user interface changes in Windows 7 as compared with older versions of Windows: XP or Vista. Availability of Windows 7 at CERN and its integration with CERN Windows infrastructure will be discussed.

  17. The cost efficiency of improved roof windows in two well-lit nearly zero-energy houses in Copenhagen

    DEFF Research Database (Denmark)

    Skarning, Gunnlaug Cecilie Jensen; Hviid, Christian Anker; Svendsen, Svend

    2017-01-01

    .The aim of this study was to quantify the scope for investing in improved roof window solutions inbuildings insulated to consume nearly zero-energy. Based on two single-family houses in Copenhagenwith typical roof windows and adequate daylighting, the study identified the prices at which various typesof......Roof windows are efficient and flexible daylight sources that are essential in certain types of houses if theyare to achieve sufficient daylighting throughout. Previous studies have indicated that, for such buildingsto meet nearly zero-energy targets in an easy and robust way without compromising...... roof window improvements would have to be made available to achieve the same cost efficiency asimproved insulation. If the improvements can be made available for less than these prices, the installationof improved roof windows would make it cheaper to construct well-lit and comfortable nearly zero...

  18. Android is the new Windows

    CERN Multimedia

    Computer Security Team

    2013-01-01

    Do you recall the early virus attacks in the early 2000s? “Blaster”, “I love you” and “Slammer” were attacking the pretty much unprotected Microsoft Windows operating system.   While Microsoft has been hit hard in the past, they have tried to improve and are now on a par with other software vendors. Today, they can even be happy that Android is taking over the baton - at least on mobile platforms. According to the Sophos 2013 Security Threat Report “Android [is] today’s the biggest target” and Android devices in Australia and the U.S. experienced even more malware attacks, whether successful or unsuccessful, than PCs during the past three months. The Kaspersky security company recently added that 99% of all mobile threats target Android. Lucky you if you use an iPhone, or a good old Nokia with no Internet connectivity at all. But why is that? It is partly down to the same fac...

  19. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  20. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  1. Beyond insulation and isolation

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær

    2016-01-01

    are insulation and isolation strategies to reduce measurable and perceptual noise levels. However, these strategies do not actively support the need to feel like an integral part of the shared hospital environment, which is a key element in creating healing environments, according to the paradigm of Evidence-Based...

  2. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  3. Windows 7 the definitive guide

    CERN Document Server

    Stanek, William R

    2010-01-01

    This book provides everything you need to manage and maintain Windows 7. You'll learn all of the features and enhancements in complete detail, along with specifics for configuring the operating system to put you in full control. Bestselling author and Windows expert William Stanek doesn't just show you the steps you need to follow, he also tells you how features work, why they work, and how you can customize them to meet your needs. Learn how to squeeze every bit of power out of Windows 7 to take full advantage of its features and programs. Set up, customize, and tune Windows 7-Optimize its

  4. Windows 7 The Missing Manual

    CERN Document Server

    Pogue, David

    2010-01-01

    In early reviews, geeks raved about Windows 7. But if you're an ordinary mortal, learning what this new system is all about will be challenging. Fear not: David Pogue's Windows 7: The Missing Manual comes to the rescue. Like its predecessors, this book illuminates its subject with reader-friendly insight, plenty of wit, and hardnosed objectivity for beginners as well as veteran PC users. Windows 7 fixes many of Vista's most painful shortcomings. It's speedier, has fewer intrusive and nagging screens, and is more compatible with peripherals. Plus, Windows 7 introduces a slew of new features,

  5. Microsoft Windows Operating System Essentials

    CERN Document Server

    Carpenter, Tom

    2012-01-01

    A full-color guide to key Windows 7 administration concepts and topics Windows 7 is the leading desktop software, yet it can be a difficult concept to grasp, especially for those new to the field of IT. Microsoft Windows Operating System Essentials is an ideal resource for anyone new to computer administration and looking for a career in computers. Delving into areas such as fundamental Windows 7 administration concepts and various desktop OS topics, this full-color book addresses the skills necessary for individuals looking to break into a career in IT. Each chapter begins with a list of topi

  6. Beginning Windows 8.1

    CERN Document Server

    Halsey, Mike

    2013-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever and the 8.1 update enhances the paradigm further. Beginning Windows 8.1 takes you through the new features and helps you get more out of the familiar to reveal the fullest possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes w

  7. Live histograms in moving windows

    International Nuclear Information System (INIS)

    Zhil'tsov, V.E.

    1989-01-01

    Application of computer graphics for specific hardware testing is discussed. The hardware is position sensitive detector (multiwire proportional chamber) which is used in high energy physics experiments, and real-out electronics for it. Testing program is described (XPERT), which utilises multi-window user interface. Data are represented as histograms in windows. The windows on the screen may be moved, reordered, their sizes may be changed. Histograms may be put to any window, and hardcopy may be made. Some program internals are discussed. The computer environment is quite simple: MS-DOS IBM PC/XT, 256 KB RAM, CGA, 5.25'' FD, Epson MX. 4 refs.; 7 figs

  8. Integrated Multilayer Insulation

    Science.gov (United States)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  9. Infrared circular photogalvanic effect in topological insulators

    Science.gov (United States)

    Luo, Siyuan

    2018-04-01

    Topological insulators have attracted a lot of attention in recent years due to its unique phenomena. Circular photogalvanic effect (CPGE) is one of the important phenomena in topological insulators. Bi2Se3, as one of the 3D topological insulators, consist of a single Dirac cone at the Γ point in k-space [1], corresponding to the surface states. Controlled by the Berry curvature of the surface band, the dominant photo response due to the interband transition is helicity dependent [2]. In addition, due to the spin-momentum locking in topological insulators' surface, the sign of spin-angular-momentum of obliquely incident light and photo currents are locked together. On the other hand, Bi2Se3 consists of quintuple layers which make it possible to be exfoliated and transferred based on graphene fabrication. In this paper, Bi2Se3 devices were fabricated and Ohm contact was achieved. We experimentally demonstrated the CPGE in Bi2Se3 using 1550nm incident laser.

  10. A dosemeter with a metal-insulator-semiconductor structure

    International Nuclear Information System (INIS)

    Digoy, J.-L.

    1973-01-01

    Description is given of a semiconducting device for measuring irradiation doses, this device being a Mosfet structure, field effect and insulated-gate device of revolution, with a cylindrical effective surface and ring-shaped source and drain. This can be applied to the measurement of doses up to 10 4 rads, for radiations of a few keV, in the field of in-vivo biology, in a flowing fluid [fr

  11. Voltage-driven magnetization control in topological insulator/magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Michael E. Flatté

    2017-05-01

    Full Text Available A major barrier to the development of spin-based electronics is the transition from current-driven spin torque, or magnetic-field-driven magnetization reversal, to a more scalable voltage-driven magnetization reversal. To achieve this, multiferroic materials appear attractive, however the effects in current materials occur at very large voltages or at low temperatures. Here the potential of a new class of hybrid multiferroic materials is described, consisting of a topological insulator adjacent to a magnetic insulator, for which an applied electric field reorients the magnetization. As these materials lack conducting states at the chemical potential in their bulk, no dissipative charge currents flow in the bulk. Surface states at the interface, if present, produce effects similar to surface recombination currents in bipolar devices, but can be passivated using magnetic doping. Even without conducting states at the chemical potential, for a topological insulator there is a finite spin Hall conductivity provided by filled bands below the chemical potential. Spin accumulation at the interface with the magnetic insulator provides a torque on the magnetization. Properly timed voltage pulses can thus reorient the magnetic moment with only the flow of charge current required in the leads to establish the voltage. If the topological insulator is sufficiently thick the resulting low capacitance requires little charge current.

  12. Windows forensic analysis toolkit advanced analysis techniques for Windows 7

    CERN Document Server

    Carvey, Harlan

    2012-01-01

    Now in its third edition, Harlan Carvey has updated "Windows Forensic Analysis Toolkit" to cover Windows 7 systems. The primary focus of this edition is on analyzing Windows 7 systems and on processes using free and open-source tools. The book covers live response, file analysis, malware detection, timeline, and much more. The author presents real-life experiences from the trenches, making the material realistic and showing the why behind the how. New to this edition, the companion and toolkit materials are now hosted online. This material consists of electronic printable checklists, cheat sheets, free custom tools, and walk-through demos. This edition complements "Windows Forensic Analysis Toolkit, 2nd Edition", (ISBN: 9781597494229), which focuses primarily on XP. It includes complete coverage and examples on Windows 7 systems. It contains Lessons from the Field, Case Studies, and War Stories. It features companion online material, including electronic printable checklists, cheat sheets, free custom tools, ...

  13. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate.

    Science.gov (United States)

    Kim, So-Jung; Jeon, Da-Bin; Park, Jung-Ho; Ryu, Min-Ki; Yang, Jong-Heon; Hwang, Chi-Sun; Kim, Gi-Heon; Yoon, Sung-Min

    2015-03-04

    Nonvolatile memory thin-film transistors (TFTs) fabricated on paper substrates were proposed as one of the eco-friendly electronic devices. The gate stack was composed of chicken albumen gate insulator and In-Ga-Zn-O semiconducting channel layers. All the fabrication processes were performed below 120 °C. To improve the process compatibility of the synthethic paper substrate, an Al2O3 thin film was introduced as adhesion and barrier layers by atomic layer deposition. The dielectric properties of biomaterial albumen gate insulator were also enhanced by the preparation of Al2O3 capping layer. The nonvolatile bistabilities were realized by the switching phenomena of residual polarization within the albumen thin film. The fabricated device exhibited a counterclockwise hysteresis with a memory window of 11.8 V, high on/off ratio of approximately 1.1 × 10(6), and high saturation mobility (μsat) of 11.5 cm(2)/(V s). Furthermore, these device characteristics were not markedly degraded even after the delamination and under the bending situration. When the curvature radius was set as 5.3 cm, the ION/IOFF ratio and μsat were obtained to be 5.9 × 10(6) and 7.9 cm(2)/(V s), respectively.

  14. Programming Windows® Embedded CE 60 Developer Reference

    CERN Document Server

    Boling, Douglas

    2010-01-01

    Get the popular, practical reference to developing small footprint applications-now updated for the Windows Embedded CE 6.0 kernel. Written by an authority on embedded application development, this book focuses in on core operating concepts and the Win32 API. It delivers extensive code samples and sample projects-helping you build proficiency creating innovative Windows applications for a new generation of devices. Discover how to: Create complex applications designed for the unique requirements of embedded devicesManage virtual memory, heaps, and the stack to minimize your memory footprintC

  15. A new concept of imaging system: telescope windows

    Science.gov (United States)

    Bourgenot, Cyril; Cowie, Euan; Young, Laura; Love, Gordon; Girkin, John; Courtial, Johannes

    2018-02-01

    A Telescope window is a novel concept of transformation-optics consisting of an array of micro-telescopes, in our configuration, of a Galilean type. When the array is considered as one multifaceted device, it acts as a traditional Galilean telescope with distinctive and attractive properties such as compactness and modularity. Each lenslet, can in principle, be independently designed for a specific optical function. In this paper, we report on the design, manufacture and prototyping, by diamond precision machining, of 2 concepts of telescope windows, and discuss both their performances and limitations with a view to use them as potential low vision aid devices to support patients with macular degeneration.

  16. Learning Windows Azure Mobile Services for Windows 8 and Windows Phone 8

    CERN Document Server

    Webber-Cross, Geoff

    2014-01-01

    This book is based around a case study game which was written for the book. This means that the chapters progress in a logical way and build upon lessons learned as we go. Real-world examples are provided for each topic that are practical and not given out-of-context so they can be applied directly to other applications.If you are a developer who wishes to build Windows 8 and Phone 8 applications and integrate them with Windows Azure Mobile Services, this book is for you. Basic C# and JavaScript skills are advantageous, as well as some knowledge of building Windows 8 or Windows Phone 8 applica

  17. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  18. Rootkit pro MS Windows

    OpenAIRE

    Trutman, Michal

    2012-01-01

    Tato bakalářská práce se zabývá metodami útoků na operační systém MS Windows a přibližuje techniky skrývání výpočetních prostředků používané existujícími rootkity. Práce je rozdělena na teoretickou a praktickou část. První část pojednává o klasifikaci rootkitů, představuje strukturu jádra systému a následně popisuje jednotlivé techniky napadení operačního systému. V praktické části je prezentována implementace a testování vlastního rootkitu. This bachelor's thesis deals with methods of att...

  19. Destiny's Earth Observation Window

    Science.gov (United States)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  20. Optical Characterization and Energy Simulation of Glazing for High-Performance Windows

    International Nuclear Information System (INIS)

    Jonsson, Andreas

    2010-01-01

    This thesis focuses on one important component of the energy system - the window. Windows are installed in buildings mainly to create visual contact with the surroundings and to let in daylight, and should also be heat and sound insulating. This thesis covers four important aspects of windows: antireflection and switchable coatings, energy simulations and optical measurements. Energy simulations have been used to compare different windows and also to estimate the performance of smart or switchable windows, whose transmittance can be regulated. The results from this thesis show the potential of the emerging technology of smart windows, not only from a daylight and an energy perspective, but also for comfort and well-being. The importance of a well functioning control system for such windows, is pointed out. To fulfill all requirements of modern windows, they often have two or more panes. Each glass surface leads to reflection of light and therefore less daylight is transmitted. It is therefore of interest to find ways to increase the transmittance. In this thesis antireflection coatings, similar to those found on eye-glasses and LCD screens, have been investigated. For large area applications such as windows, it is necessary to use techniques which can easily be adapted to large scale manufacturing at low cost. Such a technique is dip-coating in a sol-gel of porous silica. Antireflection coatings have been deposited on glass and plastic materials to study both visual and energy performance and it has been shown that antireflection coatings increase the transmittance of windows without negatively affecting the thermal insulation and the energy efficiency. Optical measurements are important for quantifying product properties for comparisons and evaluations. It is important that new measurement routines are simple and applicable to standard commercial instruments. Different systematic error sources for optical measurements of patterned light diffusing samples using

  1. Window prototypes during the project

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1996-01-01

    The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described.......The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described....

  2. Energy-efficient and preservable windows. Measurements and calculations; Energieffektive bevaringsverdige vinduer. Maalinger og beregninger

    Energy Technology Data Exchange (ETDEWEB)

    Homb, Anders; Uvsloekk, Sivert

    2012-11-01

    SINTEF has carried out a project for Cultural Heritage and Enova to document specific qualities of energy-efficient and preservable windows. The work has been based on an older type two-rams window with simple frames and one glass divided into three squares of horizontal crossbars. There were produced two kinds of commodity window, respectively, with single glazing with Insulating. Measurements and calculations have been performed with two different distances from the outer glass to the last frame. The project had the following contents: Measurements of the U-value, Calculation of U-value of accurate and simplified method, Measurements of air density and drying ability, Measurement and evaluation of sound insulation, Estimation of the heat balance (eb)

  3. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    considerably by reducing the frame width, which results in a larger transparent area causing a larger solar gain but still main-taining a low thermal transmittance. Using three layers of glass with large gaps, using very slim frame profiles, and omitting the edge constructions that normally causes thermal...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focused on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy performance of windows in a simple...

  4. Acoustic metamaterials capable of both sound insulation and energy harvesting

    Science.gov (United States)

    Li, Junfei; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2016-04-01

    Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications.

  5. Acoustic metamaterials capable of both sound insulation and energy harvesting

    International Nuclear Information System (INIS)

    Li, Junfei; Zhou, Xiaoming; Hu, Gengkai; Huang, Guoliang

    2016-01-01

    Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications. (paper)

  6. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  7. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  8. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  9. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  10. Insulating materials for optoelectronics

    International Nuclear Information System (INIS)

    Agullo-Lopez, F.

    1990-01-01

    Optoelectronics is an interdisciplinary field. Basic functions of an optoelectronic system include the generator of the optical signal, its transmission and handling and, finally, its detection, storage and display. A large variety of semiconductor and insulating materials are used or are being considered to perform those functions. The authors focus on insulating materials, mostly oxides. For signal generation, tunable solid state lasers, either vibronic or those based oon colour centres are briefly described, and their main operating parameters summarized. Reference is made to some developments on fiber and waveguide lasers. Relevant physical features of the silica fibres used for low-loss, long-band, optical transmission are reviewed, as well as present efforts to further reduce attenuation in the mid-infrared range. Particular attention is paid to photorefractive materials (LiNbO 3 , BGO, BSO, etc.), which are being investigated

  11. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  12. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  13. Pourable Foam Insulation

    Science.gov (United States)

    Harvey, James A.; Butler, John M.; Chartoff, Richard P.

    1989-01-01

    Report describes search for polyisocyanurate/polyurethane foam insulation with superior characteristics. Discusses chemistry of current formulations. Tests of formulations, of individual ingredients and or alternative new formulations described. Search revealed commercially available formulations exhibiting increased thermal stability at temperatures up to 600 degree C, pours readily before curing, presents good appearance after curing, and remains securely bonded to aluminum at cryogenic temperatures. Total of 42 different formulations investigated, 10 found to meet requirements.

  14. Polarization-independent transparency window induced by complementary graphene metasurfaces

    International Nuclear Information System (INIS)

    Lu, Wei Bing; Liu, Ji Long; Zhang, Jin; Wang, Jian; Liu, Zhen Guo

    2017-01-01

    A fourfold symmetric graphene-based complementary metasurface featuring a polarization-independent transparency window is proposed and numerically analysed in this paper. The unit cell of the metamaterial consists of a monolayer graphene perforated with a cross and four identical split-ring resonators deposited on a substrate. Our analysis shows that the transparency window can be interpreted as a plasmonic analogy of Autler–Townes splitting. The polarization independence is achieved due to the fourfold symmetry of graphene’s complementary structure. In addition, the frequency range of the transparency window can be dynamically tuned over a broad band by changing the chemical potential of graphene, and the width of the transparency window can also be controlled by changing the split-gap orientation. This work may lead to potential applications in many area, such as slow-light devices and optical sensing. (paper)

  15. Experimental Characterization and Modeling of Advanced Polymer Composite Window Frames

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub

    Even though the window frames cover a relatively small fraction of the entire building envelope, they are responsible for a major amount of heat loss, due to their poor insulation properties compared to the other envelope elements. With the current trends to reduce energy use in buildings....... Heat transfer through a frame is a combination of conduction, convection and radiation and each of these mechanisms of heat transfer can be diminished in certain ways. An example could be subdividing the cavities to reduce convective heat flow or using low emissivity materials to limit the thermal......, it is obvious that the thermal performance of contemporary frames needs to be improved, so that buildings can fulfill the new, more rigorous demands. This study will focus on improving the thermal performance of window frames made of fiberglass reinforced plastic (FRP). This material has been recently...

  16. Charge transport through superconductor/Anderson-insulator interfaces

    International Nuclear Information System (INIS)

    Frydman, A.; Ovadyahu, Z.

    1997-01-01

    We report on a study of charge transport through superconductor-insulator-superconductor and normal metal endash insulator endash superconductor structures (SIS and NIS junctions, respectively) where the insulator is of the Anderson type. Devices which are characterized by a junction resistance larger than 10 kΩ show behavior which is typical of Giaever tunnel junctions. In structures having smaller resistance, several peculiar features are observed. In the SIS junctions, Josephson coupling is detected over distances much larger then the typical insulator localization length. In addition, a series of resistance peaks appears at voltages of 2Δ/n, where Δ is the superconducting gap. The NIS Junctions exhibit a large resistance dip at subgap bias. We discuss possible interpretations of these findings and suggest that they may result from the presence of high transmission channels through the barrier region. copyright 1997 The American Physical Society

  17. Tokamak physics experiment: Diagnostic windows study

    International Nuclear Information System (INIS)

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented

  18. Transparent solar cell window module

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Joseph Lik Hang; Chen, Ruei-Tang; Hwang, Gan-Lin; Tsai, Ping-Yuan [Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute, Tainan County 709 (China); Lin, Chien-Chu [I-Lai Acrylic Corporation, Tainan City (China)

    2010-03-15

    A transparent solar cell window module based on the integration of traditional silicon solar cells and organic-inorganic nanocomposite material was designed and fabricated. The transparent solar cell window module was composed of a nanocomposite light-guide plate and traditional silicon solar cells. The preparation of the nanocomposite light-guide plate is easy without modification of the traditional casting process, the nanoparticles sol can be added directly to the polymethyl methacrylate (PMMA) monomer syrup during the process. The solar energy collected by this window can be used to power up small household electrical appliances. (author)

  19. Big Book of Windows Hacks

    CERN Document Server

    Gralla, Preston

    2008-01-01

    Bigger, better, and broader in scope, the Big Book of Windows Hacks gives you everything you need to get the most out of your Windows Vista or XP system, including its related applications and the hardware it runs on or connects to. Whether you want to tweak Vista's Aero interface, build customized sidebar gadgets and run them from a USB key, or hack the "unhackable" screensavers, you'll find quick and ingenious ways to bend these recalcitrant operating systems to your will. The Big Book of Windows Hacks focuses on Vista, the new bad boy on Microsoft's block, with hacks and workarounds that

  20. Production management of window handles

    Directory of Open Access Journals (Sweden)

    Manuela Ingaldi

    2014-12-01

    Full Text Available In the chapter a company involved in the production of aluminum window and door handles was presented. The main customers of the company are primarily companies which produce PCV joinery and wholesalers supplying these companies. One chosen product from the research company - a single-arm pin-lift window handle - was described and its production process depicted technologically. The chapter also includes SWOT analysis conducted in the research company and the value stream of the single-arm pin-lift window handle.

  1. Windows 8 visual quick tips

    CERN Document Server

    McFedries, Paul

    2012-01-01

    Easy-in, easy-out format covers all the bells and whistles of Windows 8 If you want to learn how to work smarter and faster in Microsoft's Windows 8 operating system, this easy-to-use, compact guide delivers the goods. Designed for visual learners, it features short explanations and full-color screen shots on almost every page, and it's packed with timesaving tips and helpful productivity tricks. From enhancing performance and managing digital content to setting up security and much more, this handy guide will help you get more out of Windows 8. Uses full-color screen shots and short, step-by-

  2. Holography through optically active windows

    Science.gov (United States)

    Decker, A. J.

    1979-01-01

    By using two orthogonally polarized reference beams, holograms can be recorded through stressed windows and the reconstructed virtual image will show no stress pattern. As shown analytically, the stress-pattern-free hologram is recordable for any polarization state of the object illumination. Hence, the more efficient nondepolarizing diffuser can be used in performing holography through stressed windows if two reference beams are used. Results are presented for a pair of machined polysulfone windows intended for use in a holographic flow-visualization setup in a single-stage-compressor test rig.

  3. Reduction of heat insulation upon soaking of the insulation layer

    Science.gov (United States)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  4. Grab Windows training opportunities; check CERN Windows roadmap!

    CERN Multimedia

    IT Department

    2011-01-01

    CERN Operating Systems and Information Services group (IT-OIS) actively monitors market trends to check how new software products correspond to CERN needs. In the Windows world, Windows 7 has been a big hit, with over 1500 Windows 7 PCs within less than a year since its support was introduced at CERN. No wonder: Windows XP is nearly 10 years old and is steadily approaching the end of its life-cycle. At CERN, support for Windows XP will stop at the end of December 2012. Compared to Vista, Windows 7 has the same basic hardware requirements, but offers higher performance, so the decision to upgrade is rather straightforward. CERN support for Vista will end in June 2011. In the world of Microsoft Office, version 2007 offers better integration with the central services than the older version 2003. Progressive upgrade from 2003 to 2007 is planned to finish in September 2011, but users are encouraged to pro-actively upgrade at their convenience. Please note that Office 2007 brings an important change in the area of ...

  5. Mobile Device Encryption Systems

    OpenAIRE

    Teufl , Peter; Zefferer , Thomas; Stromberger , Christof

    2013-01-01

    Part 4: Software Security; International audience; The initially consumer oriented iOS and Android platforms, and the newly available Windows Phone 8 platform start to play an important role within business related areas. Within the business context, the devices are typically deployed via mobile device management (MDM) solutions, or within the bring-your-own-device (BYOD) context. In both scenarios, the security depends on many platform security functions, such as permission systems, manageme...

  6. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  7. Domestic Refrigeration, Freezer, and Window Air Conditioner Service. Teacher Edition.

    Science.gov (United States)

    Clemons, Mark

    This curriculum guide contains six units of instruction for a course in domestic refrigerator, freezer, and window air conditioner service. The units cover the following topics: (1) service fundamentals; (2) mechanical components and functions; (3) electrical components and control devices; (4) refrigerator and freezer service; (5) domestic ice…

  8. Peliohjelmointi Windows Phone 8:lle

    OpenAIRE

    Bäckström, Toni

    2014-01-01

    Tässä insinöörityössä tutustutaan Windows Phone 8 -mobiilikäyttöjärjestelmään peliohjelmoijan näkökulmasta. Työn tavoitteena oli erityisesti esitellä Microsoftin itse kehittämiä XNA- ja DirectX-peliohjelmointikirjastoja teoriassa ja käytännössä. Työn aluksi käydään läpi hieman Windows Phonen historiaa ja yleisesti kehittämistä Windows Phone 8:lle. Tämän jälkeen luodaan katsaus Windows Phone 8:aan pelialustana. Työn suurin osuus on XNA:n ja DirectX:n esittely teoriassa; kummastakin men...

  9. Nanoscale electron transport at the surface of a topological insulator

    Science.gov (United States)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-04-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  10. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide.

    Science.gov (United States)

    Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.

  11. A window on urban sustainability

    International Nuclear Information System (INIS)

    Stigt, Rien van; Driessen, Peter P.J.; Spit, Tejo J.M.

    2013-01-01

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced

  12. A window on urban sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Stigt, Rien van, E-mail: rien.vanstigt@hu.nl [Research Center for Technology and Innovation, Utrecht University of Applied Sciences, P.O. Box 182, 3500 AD Utrecht (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands); Spit, Tejo J.M., E-mail: T.J.M.Spit@uu.nl [Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands)

    2013-09-15

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

  13. Spintronics Based on Topological Insulators

    Science.gov (United States)

    Fan, Yabin; Wang, Kang L.

    2016-10-01

    Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.

  14. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  15. Mastering Microsoft Windows Server 2008 R2

    CERN Document Server

    Minasi, Mark; Finn, Aidan

    2010-01-01

    The one book you absolutely need to get up and running with Windows Server 2008 R2. One of the world's leading Windows authorities and top-selling author Mark Minasi explores every nook and cranny of the latest version of Microsoft's flagship network operating system, Windows Server 2008 R2, giving you the most in-depth coverage in any book on the market.: Focuses on Windows Windows Server 2008 R2, the newest version of Microsoft's Windows' server line of operating system, and the ideal server for new Windows 7 clients; Author Mark Minasi is one of the world's leading Windows authorities and h

  16. BOA: Pipe asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  17. Magnetically insulated H- diodes

    International Nuclear Information System (INIS)

    Fisher, A.; Bystritskii, V.; Garate, E.; Prohaska, R.; Rostoker, N.

    1993-01-01

    At the Univ. of California, Irvine, the authors have been studying the production of intense H - beams using pulse power techniques for the past 7 years. Previously, current densities of H - ions for various diode designs at UCI have been a few A/cm 2 . Recently, they have developed diodes similar to the coaxial design of the Lebedev Physical Institute, Moscow, USSR, where current densities of up to 200 A/cm 2 were reported using nuclear activation of a carbon target. In experiments at UCI employing the coaxial diode, current densities of up to 35 A/cm 2 from a passive polyethylene cathode loaded with TiH 2 have been measured using a pinhole camera and CR-39 track recording plastic. The authors have also been working on a self-insulating, annular diode which can generate a directed beam of H - ions. In the annular diode experiments a plasma opening switch was used to provide a prepulse and a current path which self-insulated the diode. These experiments were done on the machine APEX, a 1 MV, 50 ns, 7 Ω pulseline with a unipolar negative prepulse of ∼ 100 kV and 400 ns duration. Currently, the authors are modifying the pulseline to include an external LC circuit which can generate a bipolar, 150 kV, 1 μs duration prepulse (similar prepulse characteristic as in the Lebedev Institute experiments cited above)

  18. Smart windows based on cholesteric liquid crystals (Conference Presentation)

    Science.gov (United States)

    Khandelwal, Hitesh; Debije, Michael G.; Schenning, Albert P. H. J.

    2017-02-01

    With increase in global warming, use of active cooling and heating devices are continuously increasing to maintain interior temperature of built environment, greenhouses and cars. To reduce the consumption of tremendous amount of energy on cooling and heating devices we need an improved control of transparent features (i.e. windows). In this respect, smart window which is capable for reflecting solar infrared energy without interfering with the visible light would be very attractive. Most of the technologies developed so far are to control the visible light. These technologies block visual contact to the outside world which cause negative effects on human health. An appealing method to selectively control infrared transmission is via utilizing the reflection properties of cholesteric liquid crystals. In our research, we have fabricated a smart window which is capable of reflecting different amount of solar infrared energy depending on the specific climate conditions. The reflection bandwidth can be tuned from 120 nm to 1100 nm in the infrared region without interfering with the visible solar radiations. Calculations reveal that between 8% and 45% of incident solar infrared light can be reflected with a single cell. Simulation studies predicted that more than 12% of the energy spent on heating, cooling and lighting in the built environment can be saved by using the fabricated smart window compared to standard double glazing window.

  19. Absolute measurement of the thermal conductivity of insulating materials at high temperature

    International Nuclear Information System (INIS)

    Liermann, J.

    1975-01-01

    A device was developed at the CEA for the absolute measurement of the thermal conductivity of insulators. It can operate in controlled atmospheres (air, CO 2 , Ar, He) and between 100 and 1050 deg C [fr

  20. Plastic Materials for Insulating Applications.

    Science.gov (United States)

    Wang, S. F.; Grossman, S. J.

    1987-01-01

    Discusses the production and use of polymer materials as thermal insulators. Lists several materials that provide varying degrees of insulation. Describes the production of polymer foam and focuses on the major applications of polystyrene foam, polyurethane foam, and polyisocyanurate foam. (TW)

  1. Magnetically self-insulated transformers

    International Nuclear Information System (INIS)

    Novac, B.M.; Smith, I.R.; Brown, J.

    2002-01-01

    Magnetic insulation is the only practicable form of insulation for much equipment used in ultrahigh pulsed-power work, including transmission lines and plasma opening switches. It has not however so far been successfully exploited in the transformers that are necessarily involved, and the first proposed design that appeared more than 30 years ago raised apparently insuperable problems. The two novel arrangements for a magnetically insulated transformer described in this paper overcome the problems faced by the earlier designs and also offer considerable scope for development in a number of important areas. Theoretical justification is given for their insulating properties, and this is confirmed by proof-of-principle results obtained from a small-scale experimental prototype in which magnetic insulation was demonstrated at up to 100 kV. (author)

  2. Switchable Materials for Smart Windows.

    Science.gov (United States)

    Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

    2016-06-07

    This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

  3. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    exist when topological insulators are interfaced with superconductors. The observation of Majorana fermions would not only be fundamentally important, but would also lead to applications in fault-tolerant topological quantum computation. By interfacing topological insulator nanoribbons with superconducting electrodes, we observe distinct signatures of proximity-induced superconductivity, which is found to be present in devices with channel lengths that are much longer than the normal transport characteristic lengths. This might suggest preferential coupling of the proximity effect to a ballistic surface channel of the topological insulator. In addition, when the electrodes are in the superconducting state, we observe periodic magnetoresistance oscillations which suggest the formation of vortices in the proximity-induced region of the nanoribbons. Our results demonstrate that proximity-induced superconductivity and vortices can be realized in our nanoribbon geometry, which accomplishes a first important step towards the search for Majorana fermions in condensed matter. In Chapter 5, I will discuss experiments on a magnetically-doped topological insulator (Mn-doped Bi2Se3) to induce a surface state gap. The metallic Dirac cone surface states of a topological insulator are expected to be protected against small perturbations by time-reversal symmetry. However, these surface states can be dramatically modified and a finite energy gap can be opened at the Dirac point by breaking the time-reversal symmetry via magnetic doping. The interplay between magnetism and topological surface states is predicted to yield novel phenomena of fundamental interest such as a topological magneto-electric effect, a quantized anomalous Hall effect, and the induction of magnetic monopoles. Our systematic measurements reveal a close correlation between the onset of ferromagnetism and quantum corrections to diffusive transport, which crosses over from the symplectic (weak anti-localization) to the

  4. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  5. Windows PowerShell desired state configuration revealed

    CERN Document Server

    Chaganti, Ravikanth

    2014-01-01

    Desired State Configuration (DSC) is a powerful new configuration management platform that makes it easier than ever to perform cross-platform configuration management of your infrastructure, whether on-premise or in the cloud. DSC provides the management platform and Application Programming Interface (API) that can be used with any programming language. Windows PowerShell Desired State Configuration Revealed will take you through this new technology from start to finish and demonstrates the DSC interfaces through Windows PowerShell. DSC allows you to manage target devices by simply declarin

  6. Excitons in insulators

    International Nuclear Information System (INIS)

    Grasser, R.; Scharmann, A.

    1983-01-01

    This chapter investigates absorption, reflectivity, and intrinsic luminescence spectra of free and/or self-trapped (localized) excitons in alkali halides and rare gas solids. Introduces the concepts underlying the Wannier-Mott and Frenkel exciton models, two extreme pictures of an exciton in crystalline materials. Discusses the theoretical and experimental background; excitons in alkali halides; and excitons in rare gas solids. Shows that the intrinsic optical behavior of wide gap insulators in the range of the fundamental absorption edge is controlled by modified Wannier-Mott excitons. Finds that while that alkali halides only show free and relaxed molecular-like exciton emission, in rare gas crystals luminescence due to free, single and double centered localized excitons is observed. Indicates that the simultaneous existence of free and self-trapped excitons in these solid requires an energy barrier for self-trapping

  7. Travailler avec Windows 7 au CERN (FR)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Vue d'ensemble des nouveaux concepts et des changements dans l'interface utilisateur survenus dans Windows 7 depuis les versions antérieures de Windows (XP ou Vista). La mise à disposition de Windows 7 au CERN et son intégration dans l’infrastructure de Windows au CERN seront présentées.

  8. Music@Microsoft.Windows: Composing Ambience

    Science.gov (United States)

    Rickert, Thomas

    2010-01-01

    It is well known, of course, that all Windows versions except for 3.1 have a brief (four to six second) piece of music indicating that Windows is booted and ready for use. While the music may indicate Windows has booted, it bears no immediately discernable relation to the various uses we might actually put Windows to--working, gaming,…

  9. Windows Server 2012 R2 administrator cookbook

    CERN Document Server

    Krause, Jordan

    2015-01-01

    This book is intended for system administrators and IT professionals with experience in Windows Server 2008 or Windows Server 2012 environments who are looking to acquire the skills and knowledge necessary to manage and maintain the core infrastructure required for a Windows Server 2012 and Windows Server 2012 R2 environment.

  10. Windows with improved energy performance

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    According to the Danish energy protocol, Energy 21, one of the goals with highest priority is to reduce the CO2-emission. Energy consumption for domestic heating is a major contributor to the CO2-emission; hence one of the primary efforts to reach the goal is by saving energy in the households...... performances. During the last 20 years the U-value of the glazing part of windows has been improved considerably, but the frame part has not followed the same development with respect to energy performance. Therefore an increasingly large part of the total heat loss through windows is relating to the frame...... part, for which reason, as far as energy efficiency and total economy are concerned, it has become more interesting to further develop frame structures. Traditionally, the energy performance of windows has primarily been characterised by the heat loss coefficient, U-value. However as the heat loss has...

  11. Oscillatory integration windows in neurons

    Science.gov (United States)

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  12. Teach yourself visually Windows 8

    CERN Document Server

    McFedries, Paul

    2012-01-01

    A practical guide for visual learners eager to get started with Windows 8 If you learn more quickly when you can see how things are done, this Visual guide is the easiest way to get up and running on Windows 8. It covers more than 150 essential Windows tasks, using full-color screen shots and step-by-step instructions to show you just what to do. Learn your way around the interface and how to install programs, set up user accounts, play music and other media files, download photos from your digital camera, go online, set up and secure an e-mail account, and much more. The tried-and-true format

  13. Electron beam irradiating device

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  14. Windows 7 is supported at CERN

    CERN Multimedia

    IT Department

    2010-01-01

    The new version of the Windows operating system - Windows 7 - is now officially supported at CERN. Windows 7 32-bit is now the default operating system for the new computers at CERN. What’s new in Windows 7 Users of Windows XP will find many new features and options. Users of Windows Vista will feel very familiar with one major difference: higher performance and better responsiveness of the operating system. Other enhancements include: refined Aero desktop that makes it easier to navigate between your different application windows; new snapping windows that allows user to resize a window simply by dragging it to the edge of the screen and “pin” that allows grouping and arranging often accessed applications on the taskbar. Windows 7 introduces the new concept of libraries – containers for user files that have links to different local or network folders. By default, users can see four libraries: Documents, Music, Pictures and Videos. These libraries point to the cor...

  15. *New* CRITICAL Windows Security patch

    CERN Multimedia

    2003-01-01

    On 10 September 2003, Microsoft issued a new CRITICAL security patch, MS03-039. It must be URGENTLY applied on ALL WINDOWS systems, which are not centrally managed for security patches. This includes Experiment computers, Home computers and Windows Portable and Desktop systems not running NICE. Details of the security hole and patch for MS03-039 (which also includes MS03-026) are at: http://cern.ch/it-div/news/hotfix-MS03-039.asp http://www.microsoft.com/technet/security/bulletin/MS03-039.asp

  16. *New*: CRITICAL Windows Security patch

    CERN Multimedia

    2003-01-01

    On 10 September 2003, Microsoft issued a new CRITICAL security patch, MS03-039. It must be URGENTLY applied on ALL WINDOWS systems, which are not centrally managed for security patches. This includes Experiment computers, Home computers and Windows Portable and Desktop systems not running NICE. Details of the security hole and patch for MS03-039 (which also includes MS03-026) are at: http://cern.ch/it-div/news/hotfix-MS03-039.asp http://www.microsoft.com/technet/security/bulletin/MS03-039.asp

  17. Microsoft Windows Server Administration Essentials

    CERN Document Server

    Carpenter, Tom

    2011-01-01

    The core concepts and technologies you need to administer a Windows Server OS Administering a Windows operating system (OS) can be a difficult topic to grasp, particularly if you are new to the field of IT. This full-color resource serves as an approachable introduction to understanding how to install a server, the various roles of a server, and how server performance and maintenance impacts a network. With a special focus placed on the new Microsoft Technology Associate (MTA) certificate, the straightforward, easy-to-understand tone is ideal for anyone new to computer administration looking t

  18. What's New in Windows Vista?

    CERN Document Server

    Culp, Brian

    2006-01-01

    Get ready for a quick blast through this significant change to Windows! This guide will give you a quick look at many of the most significant new features in Vista, Microsoft's first revision of Windows in nearly six years. Starting with the changes to the interface, introducing Aero, and showing you some visuals, we then move on to the completely revamped search options. The new task scheduler and printing gadgets, are next with some cool new changes. Probably the most significant changes, however, come in the area of security and this guide takes a look at them from user priveleges, to

  19. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  20. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  1. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anatasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  2. Fabrication of high gradient insulators by stack compression

    Science.gov (United States)

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  3. Multistage charged particle accelerator, with high-vacuum insulation

    International Nuclear Information System (INIS)

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  4. Nanometric holograms based on a topological insulator material.

    Science.gov (United States)

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-05-18

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.

  5. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  6. Exceptional and Spinorial Conformal Windows

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Ryttov, Thomas

    2012-01-01

    We study the conformal window of gauge theories containing fermionic matter fields, where the gauge group is any of the exceptional groups with the fermions transforming according to the fundamental and adjoint representations and the orthogonal groups where the fermions transform according...

  7. Roadmap for improving roof and façade windows in nearly zero-energy houses in Europe

    DEFF Research Database (Denmark)

    Skarning, Gunnlaug Cecilie Jensen; Hviid, Christian Anker; Svendsen, Svend

    2016-01-01

    Windows are central for the development of liveable nearly zero-energy homes and require careful consideration. Various studies have indicated that the effect of windows on energy consumption may change significantly with improved building insulation levels. Current guidelines on windows may...... comfort in nearly zero-energy houses located in the European cities Rome and Copenhagen. The aim was to identify options that can support the easy and robust design of future homes with typical use of roof and façade windows. Hourly daylight levels were calculated in DAYSIM, while space heating demand...... and operative temperatures were calculated in EnergyPlus. The results support previous findings on the limited ability of nearly zero-energy buildings to utilise solar gains. It was found that U-values are becoming increasingly important for the energy performance of windows. The paper sketches the increased...

  8. Application issues for large-area electrochromic windows incommercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT

  9. Radiation hardening of MOS devices by boron

    International Nuclear Information System (INIS)

    Danchenko, V.

    1975-01-01

    A novel technique is disclosed for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device of the type having a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. In the preferred embodiment, the novel inventive technique contemplates the introduction of boron into the insulating oxide, the boron being introduced within a layer of the oxide of about 100A to 300A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 atoms/ cm 3 . The novel technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations, which accumulations, if not eliminated, would cause shifting of the gate threshold potential of a radiation subjected MOS device, and thus render the device unstable and/or inoperative. (auth)

  10. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  11. COMFORT PROVIDING SYSTEMS IN SPACES WITH ACOUTIC INSULATION

    Directory of Open Access Journals (Sweden)

    Grzegorz KLEKOT

    2014-12-01

    Full Text Available High capacities of currently available devices for sound registering and processing have generated a need for sound insulated spaces dedicated to exchange of confidential information. In such spaces, preventing propagation of vibroacoustic signals both by the way of air and construction elements entails complete insulation of the room. In order to meet this requirement, proper chemical composition of air and stabilized temperature conditions have to be guaranteed. The paper discusses questions related to the process of solving the task of providing thermal comfort and satisfying air quality in a room for confidential discussions. It presents prototype solutions of installations dedicated to stabilize human-friendly conditions inside a modular chamber provided with acoustic insulation.

  12. Certificateless Key-Insulated Generalized Signcryption Scheme without Bilinear Pairings

    Directory of Open Access Journals (Sweden)

    Caixue Zhou

    2017-01-01

    Full Text Available Generalized signcryption (GSC can be applied as an encryption scheme, a signature scheme, or a signcryption scheme with only one algorithm and one key pair. A key-insulated mechanism can resolve the private key exposure problem. To ensure the security of cloud storage, we introduce the key-insulated mechanism into GSC and propose a concrete scheme without bilinear pairings in the certificateless cryptosystem setting. We provide a formal definition and a security model of certificateless key-insulated GSC. Then, we prove that our scheme is confidential under the computational Diffie-Hellman (CDH assumption and unforgeable under the elliptic curve discrete logarithm (EC-DL assumption. Our scheme also supports both random-access key update and secure key update. Finally, we evaluate the efficiency of our scheme and demonstrate that it is highly efficient. Thus, our scheme is more suitable for users who communicate with the cloud using mobile devices.

  13. Solar Heat Gain Coefficient (SHGC) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. U-Factor (U-value) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. The sonic window: second generation results

    Science.gov (United States)

    Walker, William F.; Fuller, Michael I.; Brush, Edward V.; Eames, Matthew D. C.; Owen, Kevin; Ranganathan, Karthik; Blalock, Travis N.; Hossack, John A.

    2006-03-01

    Medical Ultrasound Imaging is widely used clinically because of its relatively low cost, portability, lack of ionizing radiation, and real-time nature. However, even with these advantages ultrasound has failed to permeate the broad array of clinical applications where its use could be of value. A prime example of this untapped potential is the routine use of ultrasound to guide intravenous access. In this particular application existing systems lack the required portability, low cost, and ease-of-use required for widespread acceptance. Our team has been working for a number of years to develop an extremely low-cost, pocket-sized, and intuitive ultrasound imaging system that we refer to as the "Sonic Window." We have previously described the first generation Sonic Window prototype that was a bench-top device using a 1024 element, fully populated array operating at a center frequency of 3.3 MHz. Through a high degree of custom front-end integration combined with multiplexing down to a 2 channel PC based digitizer this system acquired a full set of RF data over a course of 512 transmit events. While initial results were encouraging, this system exhibited limitations resulting from low SNR, relatively coarse array sampling, and relatively slow data acquisition. We have recently begun assembling a second-generation Sonic Window system. This system uses a 3600 element fully sampled array operating at 5.0 MHz with a 300 micron element pitch. This system extends the integration of the first generation system to include front-end protection, pre-amplification, a programmable bandpass filter, four sample and holds, and four A/D converters for all 3600 channels in a set of custom integrated circuits with a combined area smaller than the 1.8 x 1.8 cm footprint of the transducer array. We present initial results from this front-end and present benchmark results from a software beamformer implemented on the Analog Devices BF-561 DSP. We discuss our immediate plans for further

  16. Molecular dewetting on insulators

    International Nuclear Information System (INIS)

    Burke, S A; Topple, J M; Gruetter, P

    2009-01-01

    Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C 60 on alkali halides, and the technologically important system of pentacene on SiO 2 . These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure. (topical review)

  17. Molecular dewetting on insulators.

    Science.gov (United States)

    Burke, S A; Topple, J M; Grütter, P

    2009-10-21

    Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C(60) on alkali halides, and the technologically important system of pentacene on SiO(2). These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure.

  18. Insulating fcc YH

    International Nuclear Information System (INIS)

    Molen, S. J. van der; Nagengast, D. G.; Gogh, A. T. M. van; Kalkman, J.; Kooij, E. S.; Rector, J. H.; Griessen, R.

    2001-01-01

    We study the structural, optical, and electrical properties of Mg z Y 1-z switchable mirrors upon hydrogenation. It is found that the alloys disproportionate into essentially pure YH 3-δ and MgH 2 with the crystal structure of YH 3-δ dependent on the Mg concentration z. For 0 3-δ are observed, whereas for z≥0.1 only cubic YH 3-δ is present. Interestingly, cubic YH 3-δ is expanded compared to YH 2 , in disagreement with theoretical predictions. From optical and electrical measurements we conclude that cubic YH 3-δ is a transparent insulator with properties similar to hexagonal YH 3-δ . Our results are inconsistent with calculations predicting fcc YH 3-δ to be metallic, but they are in good agreement with recent GW calculations on both hcp and fcc YH 3 . Finally, we find an increase in the effective band gap of the hydrided Mg z Y 1-z alloys with increasing z. Possibly this is due to quantum confinement effects in the small YH 3 clusters

  19. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng; Randel, Jason C.; Peng, Hailin; Cha, Judy J.; Meister, Stefan; Lai, Keji; Chen, Yulin; Shen, Zhi-Xun; Manoharan, Hari C.; Cui, Yi

    2010-01-01

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive

  20. Measure Guideline: Basement Insulation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  1. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  2. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  3. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  4. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin

    2009-12-13

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  5. Avalanches in insulating gases

    International Nuclear Information System (INIS)

    Verhaart, H.F.A.

    1982-01-01

    Avalanches of charged particles in gases are often studied with the ''electrical method'', the measurement of the waveform of the current in the external circuit. In this thesis a substantial improvement of the time resolution of the measuring setup, to be used for the electrical method, is reported. The avalanche is started by an N 2 -laser with a pulse duration of only 0.6 ns. With this laser it is possible to release a high number of primary electrons (some 10 8 ) which makes it possible to obtain sizeable signals, even at low E/p values. With the setup it is possible to analyze current waveforms with a time resolution down to 1.4 ns, determined by both the laser and the measuring system. Furthermore it is possible to distinguish between the current caused by the electrons and the current caused by the ions in the avalanche and to monitor these currents simultaneously. Avalanche currents are measured in N 2 , CO 2 , O 2 , H 2 O, air of varying humidity, SF 6 and SF 6 /N 2 mixtures. Depending on the nature of the gas and the experimental conditions, processes as diffusion, ionization, attachment, detachment, conversion and secondary emission are observed. Values of parameters with which these processes can be described, are derived from an analysis of the current waveforms. For this analysis already published theories and new theories described in this thesis are used. The drift velocity of both the electrons and the ions could be easily determined from measured avalanche currents. Special attention is paid to avalanches in air becasue of the practical importance of air insulation. (Auth.)

  6. *NEW* CRITICAL Windows Security patches

    CERN Multimedia

    2003-01-01

    On 3 October and 10 September 2003, Microsoft issued new CRITICAL security patches MS03-040 and MS03-039. They must be URGENTLY applied on ALL WINDOWS systems, which are not centrally managed for security patches. This includes Experiment computers, Home computers and Windows Portable and Desktop systems not running NICE. Details of the security holes and patches are at: MS03-039: http://cern.ch/it-div/news/hotfix-MS03-039.asp http://www.microsoft.com/technet/security/bulletin/MS03-039.asp MS03-040: http://cern.ch/it-div/news/hotfix-MS03-040.asp http://www.microsoft.com/technet/security/bulletin/MS03-040.asp

  7. Migration towards Windows 2000/XP

    International Nuclear Information System (INIS)

    Gal, J.

    2004-01-01

    The article deals with interesting technical solutions used in the project 'Migration towards Windows 2000/XP', which was introduced by the company AITEN, Plc for companies SE Plc, SEPS Plc and TEKO, Plc in the period 2002 and 2003. The contents of the project was migration of about 100 servers and more than 4 000 PC to the Windows 2000 and XP environs. The result of the project is a unified and documented system in the field of file, print and small application servers and PC. It has enabled to increase the system reliability and availability, to decrease the total costs for administration and operation and to establish the steady environs for users of the applications. (author)

  8. Coupling of an applied field magnetically insulated ion diode to a high power magnetically insulated transmission line system

    International Nuclear Information System (INIS)

    Maenchen, J.E.

    1983-01-01

    The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source. A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm 2 dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current after 30 ns, coupling 60% of the diode energy into ions

  9. Linear gate with prescaled window

    Energy Technology Data Exchange (ETDEWEB)

    Koch, J; Bissem, H H; Krause, H; Scobel, W [Hamburg Univ. (Germany, F.R.). 1. Inst. fuer Experimentalphysik

    1978-07-15

    An electronic circuit is described that combines the features of a linear gate, a single channel analyzer and a prescaler. It allows selection of a pulse height region between two adjustable thresholds and scales the intensity of the spectrum within this window down by a factor 2sup(N) (0<=N<=9), whereas the complementary part of the spectrum is transmitted without being affected.

  10. Novel Smart Windows Based on Transparent Phosphorescent OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Brian D' Andrade; Stephen Forest

    2006-09-15

    In this program, Universal Display Corporation (UDC) and Princeton University developed the use of white transparent phosphorescent organic light emitting devices (PHOLEDs{trademark}) to make low-cost ''transparent OLED (TOLED) smart windows'', that switch rapidly from being a highly efficient solid-state light source to being a transparent window. PHOLEDs are ideal for large area devices, and the UDC-Princeton team has demonstrated white PHOLEDs with efficiencies of >24 lm/W at a luminance of 1,000 cd/m{sup 2}. TOLEDs have transparencies >70% over the visible wavelengths of light, but their transparency drops to less than 5% for wavelengths shorter than 350 nm, so they can also be used as ultraviolet (UV) light filters. In addition to controlling the flow of UV radiation, TOLEDs coupled with an electromechanical or electrically activated reflecting shutter on a glass window can be employed to control the flow of heat from infrared (IR) radiation by varying the reflectance/transparency of the glass for wavelengths greater than 800nm. One particularly attractive shutter technology is reversible electrochromic mirrors (REM). Our goal was therefore to integrate two innovative concepts to meet the U.S. Department of Energy goals: high power efficiency TOLEDs, plus electrically controlled reflectors to produce a ''smart window''. Our efforts during this one year program have succeeded in producing a prototype smart window shown in the Fig. I, below. The four states of the smart window are pictured: reflective with lamp on, reflective with lamp off, transparent with lamp on, and transparent with lamp off. In the transparent states, the image is an outdoor setting viewed through the window. In the reflective states, the image is an indoor setting viewed via reflection off the window. We believe that the integration of our high efficiency white phosphorescent TOLED illumination source, with electrically activated shutters represents

  11. Differences between Outdoor and Indoor Sound Levels for Open, Tilted, and Closed Windows.

    Science.gov (United States)

    Locher, Barbara; Piquerez, André; Habermacher, Manuel; Ragettli, Martina; Röösli, Martin; Brink, Mark; Cajochen, Christian; Vienneau, Danielle; Foraster, Maria; Müller, Uwe; Wunderli, Jean Marc

    2018-01-18

    Noise exposure prediction models for health effect studies normally estimate free field exposure levels outside. However, to assess the noise exposure inside dwellings, an estimate of indoor sound levels is necessary. To date, little field data is available about the difference between indoor and outdoor noise levels and factors affecting the damping of outside noise. This is a major cause of uncertainty in indoor noise exposure prediction and may lead to exposure misclassification in health assessments. This study aims to determine sound level differences between the indoors and the outdoors for different window positions and how this sound damping is related to building characteristics. For this purpose, measurements were carried out at home in a sample of 102 Swiss residents exposed to road traffic noise. Sound pressure level recordings were performed outdoors and indoors, in the living room and in the bedroom. Three scenarios-of open, tilted, and closed windows-were recorded for three minutes each. For each situation, data on additional parameters such as the orientation towards the source, floor, and room, as well as sound insulation characteristics were collected. On that basis, linear regression models were established. The median outdoor-indoor sound level differences were of 10 dB(A) for open, 16 dB(A) for tilted, and 28 dB(A) for closed windows. For open and tilted windows, the most relevant parameters affecting the outdoor-indoor differences were the position of the window, the type and volume of the room, and the age of the building. For closed windows, the relevant parameters were the sound level outside, the material of the window frame, the existence of window gaskets, and the number of windows.

  12. Thermonuclear device

    International Nuclear Information System (INIS)

    Kuriyama, Masaaki; Yamamoto, Masahiro; Furuyama, Masayuki; Saito, Ryusei.

    1981-01-01

    Purpose: To enable the efficient and rapid cooling of a vacuum vessel by cooling with gas when the temperature of the vacuum vessel is higher than the boiling point of water and cooling with water when the temperature is lower than the boiling point of water. Constitution: A cooling pipe is provided through an insulating pipe on the outer periphery of a vacuum vessel. The cooling pipe communicates through a cooling gas valve and a coolant valve with a cooling gas supply device and a coolant supply device, and a heat exchanger is disposed at the pipe. When the vessel is higher than the boiling point of the coolant the coolant valve is closed and the cooling gas valve is opened and gas is supplied to cool the vessel. The gas is recoverd through a heat exchanger. On the other hand, when the temperature of vessel is lower than the boiling point of the coolant, the gas valve is closed, the coolant valve is opened, and the vessel is cooled with coolant. The vacuum vessel can be cooled for short time employing both the gas and the coolant together. (Yoshino, Y.)

  13. Solution-Processed Smart Window Platforms Based on Plasmonic Electrochromics

    KAUST Repository

    Abbas, Sara

    2018-04-30

    Electrochromic smart windows offer a viable route to reducing the consumption of buildings energy, which represents about 30% of the worldwide energy consumption. Smart windows are far more compelling than current static windows in that they can dynamically modulate the solar spectrum depending on climate and lighting conditions or simply to meet personal preferences. The latest generation of smart windows relies on nominally transparent metal oxide nanocrystal materials whose chromism can be electrochemically controlled using the plasmonic effect. Plasmonic electrochromic materials selectively control the near infrared (NIR) region of the solar spectrum, responsible for solar heat, without affecting the visible transparency. This is in contrast to conventional electrochromic materials which block both the visible and NIR and thus enables electrochromic devices to reduce the energy consumption of a building or a greenhouse in warm climate regions due to enhancements of both visible lighting and heat blocking. Despite this edge, this technology can benefit from important developments, including low-cost solution-based manufacturing on flexible substrates while maintaining durability and coloration efficiency, demonstration of independent control in the NIR and visible spectra, and demonstration of self-powering capabilities. This thesis is focused on developing low-temperature and all-solution processed plasmonic electrochromic devices and dual-band electrochromic devices. We demonstrate new device fabrication approaches in terms of materials and processes which enhance electrochromic performance all the while maintaining low processing temperatures. Scalable fabrication methods are used to highlight compatibility with high throughput, continuous roll-to-roll fabrication on flexible substrates. In addition, a dualband plasmonic electrochromic device was developed by combining the plasmonic layer with a conventional electrochromic ion storage layer. This enables

  14. Microsoft Windows Intune 20 Quickstart Administration

    CERN Document Server

    Overton, David

    2012-01-01

    This book is a concise and practical tutorial that shows you how to plan, set up and maintain Windows Intune and manage a group of PCs. If you are an administrator or partner who wants to plan, set up and maintain Windows Intune and manage a group of PCs then this book is for you . You should have a basic understanding of Windows administration, however, knowledge of Windows Intune would not be required.

  15. Radiation effects on insulators for superconducting magnets

    International Nuclear Information System (INIS)

    Kernohan, R.H.; Coltman, R.R. Jr.; Long, C.J.

    1978-01-01

    In order to determine the radiation stability of electrical insulation that could be used in a superconducting magnet for containment of the plasma in a fusion energy device, 55 specimens of eight types of organic insulation were irradiated to a dose of about 2 x 10 8 R (2 x 10 6 J/Kg) at a temperature of 4.8 K in the Low-Temperature Irradiation Facility in the Bulk Shielding Reactor at Oak Ridge National Laboratory. Four of the specimens were monitored for changes in electrical resistivity during the irradiation. The initial resistivities, which were of the order of 10 14 Ω cm, decreased to about 10 13 Ω cm under the influence of a weak radiation field. At full-power reactor operation (2 MW), the resistivities dropped to about 10 11 Ω cm, but changed little during the irradiation. After the irradiation the resistivities increased, but not to the initial values, because of residual radioactivity near or in the experiment assembly. Restoration to near the initial resistivity values was later observed upon warming the specimens to room temperature and purging the irradiation chamber. The latter result may be related to outgassing induced by the irradiation

  16. Material-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  17. Variably insulating portable heater/cooler

    Science.gov (United States)

    Potter, T.F.

    1998-09-29

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  18. Radiation-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  19. Asymmetric Cherenkov acoustic reverse in topological insulators

    Science.gov (United States)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  20. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  1. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  2. Travailler avec Windows 7 au CERN

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Vue d'ensemble des nouveaux concepts et des changements dans l'interface utilisateur survenus dans Windows 7 depuis les versions antérieures de Windows (XP ou Vista). Le plan de migration à Windows 7 sera aussi débattu.

  3. Travailler avec Windows 7 au CERN

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Vue d'ensemble des nouveaux concepts et des changements dans l'interface utilisateur survenus dans Windows 7 depuis les versions antérieures de Windows (XP ou Vista). Le plan de migration à Windows 7 sera aussi débattu.

  4. Temperature measuring device

    International Nuclear Information System (INIS)

    Brixy, H.

    1977-01-01

    The temperature measuring device is equipped with an electric resistor installed within a metal shroud tube so as to be insulated from it, the noise voltage of which resistor is fed to a measuring unit. The measuring junctions of one or two thermocouples are connected with the electric resistor and the legs of one or both thermocouples can be connected to the measuring unit by means of a switch. (orig.) [de

  5. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  6. Migration of the Three-dimensional Wind Field (3DWF) Model from Linux to Windows and Mobile Platforms

    Science.gov (United States)

    2017-11-01

    Results in netCDF 11 4.3 Morphological Data Generation 16 5. 3DWF on Mobile Platforms 17 5.1 3DWF on Windows Mobile Devices 18 5.2 3DWF Migration to...Windows and Mobile Platforms by Giap Huynh and Yansen Wang Approved for public release; distribution is unlimited. NOTICES...Migration of the Three-dimensional Wind Field (3DWF) Model from Linux to Windows and Mobile Platforms by Giap Huynh and Yansen Wang

  7. BOA II: pipe-asbestos insulation removal system

    International Nuclear Information System (INIS)

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-01-01

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  8. Positron Annihilation in Insulating Materials

    International Nuclear Information System (INIS)

    Asoka-Kumar, P; Sterne, PA

    2002-01-01

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO 2 . Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO 2 samples

  9. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  10. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  11. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  12. Rigid thin windows for vacuum applications

    Science.gov (United States)

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  13. Purged window apparatus utilizing heated purge gas

    Science.gov (United States)

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  14. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan; Zhang, Zhiyong; Zhu, Zhiyong; Schwingenschlö gl, Udo; Cui, Yi

    2012-01-01

    in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered

  15. Supporting device for Toroidal coils

    International Nuclear Information System (INIS)

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  16. Tritium removal and retention device

    International Nuclear Information System (INIS)

    Boyle, R.F.; Durigon, D.D.

    1980-01-01

    A device is provided for removing and retaining tritium from a gaseous medium, and also a method of manufacturing the device. The device, consists of an inner core of zirconium alloy, preferably Zircaloy-4, and an outer adherent layer of nickel which acts as a selective and protective window for passage of tritium. The tritium then reacts with or is absorbed by the zirconium alloy, and is retained until such time as it is desirable to remove it during reprocessing. (auth)

  17. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunyu; Huang, Xiongyi, E-mail: huangxy@ipp.ac.cn; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-06-15

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  18. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    International Nuclear Information System (INIS)

    Wang, Chunyu; Huang, Xiongyi; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-01-01

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  19. Topological insulators fundamentals and perspectives

    CERN Document Server

    Ortmann, Frank; Valenzuela, Sergio O

    2015-01-01

    There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic

  20. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  1. Handheld White Light Interferometer for Measuring Defect Depth in Windows

    Science.gov (United States)

    Youngquist, Robert; Simmons, Stephen; Cox, Robert

    2010-01-01

    Accurate quantification of defects (scratches and impacts) is vital to the certification of flight hardware and other critical components. The amount of damage to a particular component contributes to the performance, reliability, and safety of a system, which ultimately affects the success or failure of a mission or test. The launch-commit criteria on a Space Shuttle Orbiter window are governed by the depth of the defects that are identified by a visual inspection. This measurement of a defect is not easy to obtain given the environment, size of the defect, and location of the window(s). The determination of depth has typically been performed by taking a mold impression and measuring the impression with an optical profiling instrument. Another method of obtaining an estimate of the depth is by using a refocus microscope. To use a refocus microscope, the surface of the glass and bottom of the defect are, in turn, brought into focus by the operator. The amount of movement between the two points corresponds to the depth of the defect. The refocus microscope requires a skilled operator and has been proven to be unreliable when used on Orbiter windows. White light interferometry was chosen as a candidate to replace the refocus microscope. The White Light Interferometer (WLI) was developed to replace the refocus microscope as the instrument used for measuring the depth of defects in Orbiter windows. The WLI consists of a broadband illumination source, interferometer, detector, motion control, displacement sensor, mechanical housing, and support electronics. The illumination source for the WLI is typically a visible light emitting diode (LED) or a near-infrared superluminescent diode (SLD) with power levels of less than a milliwatt. The interferometer is a Michelson configuration consisting of a 1-in. (2.5-cm) cube beam splitter, a 0.5-in. (1.3-cm) optical window as a movable leg (used to closely match the return intensity of the fixed leg from the window), and a

  2. Windows 2012 Server network security securing your Windows network systems and infrastructure

    CERN Document Server

    Rountree, Derrick

    2013-01-01

    Windows 2012 Server Network Security provides the most in-depth guide to deploying and maintaining a secure Windows network. The book drills down into all the new features of Windows 2012 and provides practical, hands-on methods for securing your Windows systems networks, including: Secure remote access Network vulnerabilities and mitigations DHCP installations configuration MAC filtering DNS server security WINS installation configuration Securing wired and wireless connections Windows personal firewall

  3. Irradiation device

    International Nuclear Information System (INIS)

    Suzuki, Toshimitsu.

    1989-01-01

    In an irradiation device for irradiating radiation rays such as electron beams to pharmaceuticals, etc., since the distribution of scanned electron rays was not monitored, the electron beam intensity could be determined only indirectly and irradiation reliability was not satisfactory. In view of the above, a plurality of monitor wires emitting secondary electrons are disposed in the scanning direction near a beam take-out window of a scanning duct, signals from the monitor wires are inputted into a display device such as a cathode ray tube, as well as signals from the monitor wires at the central portion are inputted into counting rate meters to measure the radiation dose as well. Since secondary electrons are emitted when electron beams pass through the monitor wires and the intensity thereof is in proportion with the intensity of incident electron beams, the distribution of the radiation dose can be monitored by measuring the intensity of the emitted secondary electrons. Further, uneven irradiation, etc. can also be monitored to make the radiation of irradiation rays reliable. (N.H.)

  4. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    Science.gov (United States)

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  5. An Analysis of Insulated Concrete Forms for use in Sustainable Military Construction

    Science.gov (United States)

    2014-03-27

    the building foundation, exterior walls, ceiling, roof, doors, windows and even the interior wall insulation ( Lemieux & Totten, 2010). With a focus...the various elements comprising a typical wall system. 19 Figure 5. Wall System Components ( Lemieux & Totten, 2010) The exterior cladding is...interior of the building and, conversely, inside air from infiltrating outside ( Lemieux & Totten, 2010). The vapor retarder protects the interior wall

  6. Highly Flexible, Multipixelated Thermosensitive Smart Windows Made of Tough Hydrogels.

    Science.gov (United States)

    La, Thanh-Giang; Li, Xinda; Kumar, Amit; Fu, Yiyang; Yang, Shu; Chung, Hyun-Joong

    2017-09-27

    In a cold night, a clear window that will become opaque while retaining the indoor heat is highly desirable for both privacy and energy efficiency. A thermally responsive material that controls both the transmittance of solar radiance (predominantly in the visible and near-infrared wavelengths) and blackbody radiation (mainly in the mid-infrared) can realize such windows with minimal energy consumption. Here, we report a smart coating made from polyampholyte hydrogel (PAH) that transforms from a transparency state to opacity to visible radiation and strengthens opacity to mid-infrared when lowering the temperature as a result of phase separation between the water-rich and polymer-rich phases. To match a typical temperature fluctuation during the day, we fine-tune the phase transition temperature between 25 and 55 °C by introducing a small amount of relatively hydrophobic monomers (0.1 to 0.5 wt % to PAH). To further demonstrate an actively controlled, highly flexible, and high-contrast smart window, we build in an array of electric heaters made of printed elastomeric composite. The multipixelated window offers rapid switching, ∼70 s per cycle, whereas the device can withstand high strain (up to 80%) during operations.

  7. Differences between Outdoor and Indoor Sound Levels for Open, Tilted, and Closed Windows

    Science.gov (United States)

    Locher, Barbara; Piquerez, André; Habermacher, Manuel; Ragettli, Martina; Cajochen, Christian; Vienneau, Danielle; Foraster, Maria; Müller, Uwe; Wunderli, Jean Marc

    2018-01-01

    Noise exposure prediction models for health effect studies normally estimate free field exposure levels outside. However, to assess the noise exposure inside dwellings, an estimate of indoor sound levels is necessary. To date, little field data is available about the difference between indoor and outdoor noise levels and factors affecting the damping of outside noise. This is a major cause of uncertainty in indoor noise exposure prediction and may lead to exposure misclassification in health assessments. This study aims to determine sound level differences between the indoors and the outdoors for different window positions and how this sound damping is related to building characteristics. For this purpose, measurements were carried out at home in a sample of 102 Swiss residents exposed to road traffic noise. Sound pressure level recordings were performed outdoors and indoors, in the living room and in the bedroom. Three scenarios—of open, tilted, and closed windows—were recorded for three minutes each. For each situation, data on additional parameters such as the orientation towards the source, floor, and room, as well as sound insulation characteristics were collected. On that basis, linear regression models were established. The median outdoor–indoor sound level differences were of 10 dB(A) for open, 16 dB(A) for tilted, and 28 dB(A) for closed windows. For open and tilted windows, the most relevant parameters affecting the outdoor–indoor differences were the position of the window, the type and volume of the room, and the age of the building. For closed windows, the relevant parameters were the sound level outside, the material of the window frame, the existence of window gaskets, and the number of windows. PMID:29346318

  8. Image annotation under X Windows

    Science.gov (United States)

    Pothier, Steven

    1991-08-01

    A mechanism for attaching graphic and overlay annotation to multiple bits/pixel imagery while providing levels of performance approaching that of native mode graphics systems is presented. This mechanism isolates programming complexity from the application programmer through software encapsulation under the X Window System. It ensures display accuracy throughout operations on the imagery and annotation including zooms, pans, and modifications of the annotation. Trade-offs that affect speed of display, consumption of memory, and system functionality are explored. The use of resource files to tune the display system is discussed. The mechanism makes use of an abstraction consisting of four parts; a graphics overlay, a dithered overlay, an image overly, and a physical display window. Data structures are maintained that retain the distinction between the four parts so that they can be modified independently, providing system flexibility. A unique technique for associating user color preferences with annotation is introduced. An interface that allows interactive modification of the mapping between image value and color is discussed. A procedure that provides for the colorization of imagery on 8-bit display systems using pixel dithering is explained. Finally, the application of annotation mechanisms to various applications is discussed.

  9. The plant-window system

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1995-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The increasing use of computer technology in the U.S. nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. However, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and used, to the proper users throughout the plant. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National Laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications (e.g., monitoring, analysis, diagnosis, and control applications) within a common environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces to define a flexible computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades

  10. Propagation Characteristics of Multilayer Hybrid Insulator-Metal-Insulator and Metal-Insulator-Metal Plasmonic Waveguides

    Directory of Open Access Journals (Sweden)

    M. Talafi Noghani

    2014-02-01

    Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.

  11. 47 CFR 15.103 - Exempted devices.

    Science.gov (United States)

    2010-10-01

    ... any transportation vehicle including motor vehicles and aircraft. (b) A digital device used... digital device utilized exclusively in an appliance, e.g., microwave oven, dishwasher, clothes dryer, air conditioner (central or window), etc. (e) Specialized medical digital devices (generally used at the direction...

  12. Low-E Storm Windows Gain Acceptance as a Home Weatherization Measure

    Energy Technology Data Exchange (ETDEWEB)

    Gilbride, Theresa L.; Cort, Katherine A.

    2016-05-16

    This article for Home Energy Magazine describes work by the U.S. Department of Energy to develop low-emissivity storm windows as an energy efficiency-retrofit option for existing homes. The article describes the low-emissivity invisible silver metal coatings on the glass, which reflect heat back into the home in winter or back outside in summer and the benefits of low-e storm windows including insulation, air sealing, noise blocking, protection of antique windows, etc. The article also describes Pacific Northwest National Laboratory's efforts on behalf of DOE to overcome market barriers to adoption of the technology, including performance validation studies in the PNNL Lab Homes, cost effectiveness analysis, production of reports, brochures, how-to guides on low-e storm window installation for the Building America Solution Center, and a video posted on YouTube. PNNL's efforts were reviewed by the Pacific Northwest Regional Technical Forum (RTF), which serves as the advisory board to the Pacific Northwest Electric Power Planning Council and Bonneville Power Administration. In late July 2015, the RTF approved the low-e storm window measure’s savings and specifications, a critical step in integrating low-e storm windows into energy-efficiency planning and utility weatherization and incentive programs. PNNL estimates that more than 90 million homes in the United States with single-pane or low-performing double-pane windows would benefit from the technology. Low-e storm windows are suitable not only for private residences but also for small commercial buildings, historic properties, and facilities that house residents, such as nursing homes, dormitories, and in-patient facilities. To further assist in the market transformation of low-e storm windows and other high-efficiency window attachments, DOE helped found the window Attachment Energy Rating Council (AERC) in 2015. AERC is an independent, public interest, non-profit organization whose mission is to rate

  13. Emerging Trends in Topological Insulators and Topological ...

    Indian Academy of Sciences (India)

    /fulltext/reso/022/08/0787-0800. Keywords. Superconductor, quantum Hall effect, topological insulator, Majorana fermions. Abstract. Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary ...

  14. Bonebridge Implantation for Conductive Hearing Loss in a Patient with Oval Window Atresia.

    Science.gov (United States)

    Kim, Minbum

    2015-08-01

    The occurrence of oval window atresia is a rare anomaly with conductive hearing loss. Traditional atresia surgeries involve challenging surgical techniques with risks of irreversible inner ear damage. Recent reports on Bonebridge (Medel, Innsbruck, Austria), a novel implantable bone conduction hearing aid system, assert that the device is safe and effective for conductive hearing loss. We present a case of Bonebridge implantation in an eight-year-old girl with bilateral oval window atresia.

  15. Aerogels: transparent and super-insulating materials; Les aerogels: isolants transparent-super isolants

    Energy Technology Data Exchange (ETDEWEB)

    Melka, S.; Rigacci, A.; Achard, P.; Bezian, J.J. [Ecole des Mines de Paris, 06 - Sophia-Antipolis (France); Sallee, H.; Chevalier, B. [Centre des Sciences et Techniques du Batiment, 38 - Saint-Martin-d`Heres (France)

    1996-12-31

    Recent studies have demonstrated the super-insulating properties of silica aerogel in its monolithic or finely divided state. In its monolithic state, this material conciliates excellent thermal insulation performances, a good transmission of visible light and interesting acoustic properties. Also its amazing structural characteristics (lightness, high global porosity, small diameter of pores) are particularly interesting for its use in double glazing windows as transparent insulating spacer. The aim of the work carried out by the Energetic Centre of the Ecole des Mines of Paris is to understand the thermal transfer phenomena in all forms of silica aerogel. In this paper, the main steps of the synthesis process of monolithic silica aerogel is presented with the thermal conductivities obtained. Then, a model is built to describe the thermal transfer mechanisms in finely divided aerogel beds. Finally, the hot wire thermal characterization method is presented and the results obtained on silica aerogels are discussed. (J.S.) 16 refs.

  16. MS Windows domēna darbstaciju migrācija no MS Windows XP uz Windows Vista.

    OpenAIRE

    Tetere, Agate

    2009-01-01

    Kvalifikācijas darbā izpētīju darbstaciju migrācijas no Windows XP uz Windows Vista plusus un mīnusus. Darba gaitā tika veikti sekojoši uzdevumi: 1.Veikta Windows XP un Windows Vista darbstaciju instalācija, iestatījumu konfigurēšana un tika pārbaudīta sistēmas darbība 2.Veikta Windows Server 2003 un Windows Server 2008 instalācija, iestatījumu konfigurēšana un tika pārbaudīta sistēmas darbība 3.Izstrādāts migrācijas modelis 4.Veikta migrācijas optimizēšana 5.Veikta datu migrāc...

  17. Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology

    Directory of Open Access Journals (Sweden)

    Christopher Joel Roome

    2014-11-01

    Full Text Available Chronic cranial windows have been instrumental in advancing optical studies in vivo, permitting long-term, high-resolution imaging in various brain regions. However, once a window is attached it is difficult to regain access to the brain under the window for cellular manipulations. Here we describe a simple device that combines long term in vivo optical imaging with direct brain access via glass or quartz pipettes and metal, glass, or quartz electrodes for cellular manipulations like dye or drug injections and electrophysiological stimulations or recordings while keeping the craniotomy sterile. Our device comprises a regular cranial window glass coverslip with a drilled access hole later sealed with biocompatible silicone. This chronic cranial window with access port is cheap, easy to manufacture, can be mounted just as the regular chronic cranial window, and is self-sealing after retraction of the pipette or electrode. We demonstrate that multiple injections can be performed through the silicone port by repetitively bolus loading calcium sensitive dye into mouse barrel cortex and recording spontaneous cellular activity over a period of weeks. As an example to the extent of its utility for electrophysiological recording, we describe how simple removal of the silicone seal can permit patch pipette access for whole-cell patch clamp recordings in vivo. During these chronic experiments we do not observe any infections under the window or impairment of animal health.

  18. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  19. On effective holographic Mott insulators

    Energy Technology Data Exchange (ETDEWEB)

    Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2016-12-20

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  20. Improved DC Gun Insulator Assembly

    International Nuclear Information System (INIS)

    Neubauer, M.L.; Dudas, A.; Sah, R.; Poelker, M.; Surles-Law, K.E.L.

    2010-01-01

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  1. On effective holographic Mott insulators

    International Nuclear Information System (INIS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-01-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  2. Thermal insulation of fuel elements

    International Nuclear Information System (INIS)

    Dubrovcak, P.; Pec, V.; Pitonak, J.

    1978-01-01

    The claim of the invention concerns thermal insulation of fuel elements heated for measurement of uranium fuel physical properties. For this, layers of aluminium film and of glass fibre are wound onto the inner tube of the element cladding. The space between the inner and the outer tubes is evacuated and the tubes are spaced using spacer wires. (M.S.)

  3. A Windows Phone 7 Oriented Secure Architecture for Business Intelligence Mobile Applications

    Directory of Open Access Journals (Sweden)

    Silvia TRIF

    2011-01-01

    Full Text Available This paper present and implement a Windows Phone 7 Oriented Secure Architecture for Business Intelligence Mobile Application. In the developing process is used a Windows Phone 7 application that interact with a WCF Web Service and a database. The types of Business Intelligence Mobile Applications are presented. The Windows mobile devices security and restrictions are presented. The namespaces and security algorithms used in .NET Compact Framework for assuring the application security are presented. The proposed architecture is showed underlying the flows between the application and the web service.

  4. Optimization design for SST-1 Tokamak insulators

    International Nuclear Information System (INIS)

    Zhang Yuanbin; Pan Wanjiang

    2012-01-01

    With the help of ANSYS FEA technique, high voltage and cryogenic proper- ties of the SST-1 Tokamak insulators were obtained, and the structure of the insulators was designed and modified by taking into account the simulation results. The simulation results indicate that the optimization structure has better high voltage insulating property and cryogenic mechanics property, and also can fulfill the qualification criteria of the SST-1 Tokamak insulators. (authors)

  5. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  6. Harnessing the metal-insulator transition for tunable metamaterials

    Science.gov (United States)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-08-01

    The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.

  7. Electromagnetic force support for thermonuclear device

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Yoshida, Kiyoshi; Tachikawa, Nobuo; Omori, Junji.

    1992-01-01

    The device of the present invention certainly supports electromagnetic force exerted on toroidal magnetic field coils. That is, a pair of support members are disposed being abutted against each other between toroidal magnetic field coils disposed radially in the torus direction of a vacuum vessel. Both of the support members are connected under an insulative state by way of an insulative structural portion having an insulation key. In addition, each of the support members and each of the toroidal magnetic field coils are connected by electromagnetic force support portions having a metal taper key and a metal spacer and supporting the electromagnetic force. With such a constitution, the electromagnetic force exerted on the toroidal magnetic field coils is supported by the electromagnetic force support portion having the metal taper key and the metal spacer. As a result, stable electromagnetic force support can be attained. Further, since the insulative structural portion has the insulation key, it can be assembled easily. (I.S.)

  8. Filter and window behavior for the Advanced Photon Source beamline front end

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Shu, Deming; Dejus, R.

    1993-01-01

    Synchrotron x-ray windows are vacuum separators and are usually made of thin beryllium metal. Filters are provided upstream to absorb the soft x-rays so that the window is protected from overheating, which could result in failure. The filters are made of thin carbon products or sometimes beryllium, the same material as the window. Because the window is a vacuum separator, understanding its potential structural failure under thermal load is of utmost importance. The planned insertion devices and bending magnets for the Advanced Photon Source (APS) generate very high heat fluxes. To guarantee the integrity of the filter and window, extensive investigations have been carried out on both components. The material selection for filters and windows from among the possible candidate materials was investigated first. Then a series of thermal and structural analyses were performed on the filter and window. Results are presented from power absorption, analytical results from thermal, and structural analyses as well as application of the failure criteria suggested by Wang and Kuzay to the filters and windows

  9. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  10. Editorial - Opening windows onto data

    Directory of Open Access Journals (Sweden)

    Judith Winters

    2012-05-01

    Full Text Available One of Internet Archaeology's strengths and 'unique selling points' not yet replicated by (many other e-journals, is that data is integrated into articles rather than being 'supplementary' or offered for download. The aim has always been for the narrative to be a wave driving readers towards the underlying data. Opening windows onto the data from within the text is one of the things I think the journal does best and is a feature used throughout Emma Durham's article 'Depicting the gods: metal figurines in Roman Britain'. Archaeological data does not speak for itself. It needs a narrative. It needs context. But by intermeshing data with interpretation, readers can dip into the data and start to explore it while reading the article, allowing a more immediate understanding of the bigger picture.

  11. Windows VPN Set Up | High-Performance Computing | NREL

    Science.gov (United States)

    Windows VPN Set Up Windows VPN Set Up To set up Windows for HPC VPN, here are the steps: Download your version of Windows. Note: We only support the the Endian Connect software when connecting to the a VPN connection to the HPC systems. Windows Version Connect App Windows 10

  12. Hybrid window layer for photovoltaic cells

    Science.gov (United States)

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  13. MCSA Microsoft Windows 8.1 complete study guide exams 70-687, 70-688, and 70-689

    CERN Document Server

    Shapiro, Jeffrey R

    2015-01-01

    Comprehensive, hands-on study guide for the Microsoft Windows 8.1 exams The MCSA: Microsoft Windows 8.1 Complete Study Guide is a comprehensive package loaded with educational study tools, including a pre-assessment test, hands-on exercises, hundreds of review questions, exclusive practice exam questions, electronic flashcards, and over an hour of author-led videos. For IT students and professionals, getting certified on Microsoft Windows 8.1 can mean huge career opportunities. Over 90% of all personal computing devices run on Windows, and those certified on the newest version will be in high

  14. InP:Fe Photoconducting device

    Science.gov (United States)

    Hammond, Robert B.; Paulter, Nicholas G.; Wagner, Ronald S.

    1984-01-01

    A photoconducting device fabricated from Fe-doped, semi-insulating InP crystals exhibits an exponential decay transient with decay time inversely related to Fe concentration. Photoconductive gain as high as 5 is demonstrated in photoconducting devices with AuGe and AuSn contacts. Response times from 150 to 1000 picoseconds can be achieved.

  15. Analysis of surface contaminants on beryllium windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1986-12-01

    It is known that various crystalline and liquid compounds form on the downstream surfaces of beryllium windows exposed to air. It is also known that the integrity of such windows may be compromised resulting in leaks through the window. The purpose of this report is to document the occurrences described as they pertain to the NSLS and to analyze, where possible, the various substances formed

  16. Graphene device and method of using graphene device

    Science.gov (United States)

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  17. Plated lamination structures for integrated magnetic devices

    Science.gov (United States)

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  18. Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    Energy Technology Data Exchange (ETDEWEB)

    Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

    2013-08-31

    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the

  19. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  20. Scott Brothers Windows and Doors Information Sheet

    Science.gov (United States)

    Scott Brothers Windows and Doors (the Company) is located in Bridgeville, Pennsylvania. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Pittsburgh, Pennsylvania.

  1. Mastering Windows Server 2008 Networking Foundations

    CERN Document Server

    Minasi, Mark; Mueller, John Paul

    2011-01-01

    Find in-depth coverage of general networking concepts and basic instruction on Windows Server 2008 installation and management including active directory, DNS, Windows storage, and TCP/IP and IPv4 networking basics in Mastering Windows Server 2008 Networking Foundations. One of three new books by best-selling author Mark Minasi, this guide explains what servers do, how basic networking works (IP basics and DNS/WINS basics), and the fundamentals of the under-the-hood technologies that support staff must understand. Learn how to install Windows Server 2008 and build a simple network, security co

  2. Windows 7 Annoyances Tips, Secrets, and Solutions

    CERN Document Server

    Karp, David

    2010-01-01

    Windows 7 may be faster and more stable than Vista, but it's a far cry from problem-free. David A. Karp comes to the rescue with the latest in his popular Windows Annoyances series. This thorough guide gives you the tools you need to fix the troublesome parts of this operating system, plus the solutions, hacks, and timesaving tips to make the most of your PC. Streamline Windows Explorer, improve the Search tool, eliminate the Green Ribbon of Death, and tame User Account Control promptsExplore powerful Registry tips and tools, and use them to customize every aspect of Windows and solve its sho

  3. Windows 8.1 for dummies

    CERN Document Server

    Rathbone, Andy

    2013-01-01

    The bestselling book on Windows, now updated for the new 8.1 features Microsoft has fine-tuned Windows 8 with some important new features, and veteran author Andy Rathbone explains every one in this all-new edition of a long-time bestseller. Whether you're using Windows for the first time, upgrading from an older version, or just moving from Windows 8 to 8.1, here's what you need to know. Learn about the dual interfaces, the new Start button, how to customize the interface and boot operations, and how to work with programs and files, use the web and social media, manage music and photos, and

  4. Microsoft Windows 7 Administration Instant Reference

    CERN Document Server

    Panek, William

    2010-01-01

    An on-the-spot reference for Windows 7 administrators. Hundreds of thousands of IT administrators, network administrators, and IT support technicians work daily with Windows 7. This well-organized, portable reference covers every facet of Windows 7, providing no-nonsense instruction that is readily accessible when you need it. Designed for busy administrators, it features thumb tabs and chapter outlines to make answers easy to find.: Windows 7 administrative and support personnel need quick answers to situations they confront each day; this Instant Reference is designed to provide information,

  5. Modelling window opening behaviour in Danish dwellings

    DEFF Research Database (Denmark)

    Andersen, Rune Vinther; Olesen, Bjarne W.; Toftum, Jørn

    2011-01-01

    In this paper we present and analyse data from two studies of window opening behaviour in residential buildings in Denmark. Based on measurements of indoor environment, weather and window opening behaviour in 15 dwellings, we propose a model that will predict window opening behaviour. The data...... showed that other factors than thermal effects impact the behaviour of the occupants. Some of these factors were included in the model. We present data from repeated questionnaire surveys that show that occupants tend to adjust heating setpoints, adjust clothing and operate windows when feeling thermally...

  6. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  7. Dielectric and Insulating Technology 2006 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  8. Characterization of silicon-on-insulator wafers

    Science.gov (United States)

    Park, Ki Hoon

    The silicon-on-insulator (SOI) is attracting more interest as it is being used for an advanced complementary-metal-oxide-semiconductor (CMOS) and a base substrate for novel devices to overcome present obstacles in bulk Si scaling. Furthermore, SOI fabrication technology has improved greatly in recent years and industries produce high quality wafers with high yield. This dissertation investigated SOI material properties with simple, yet accurate methods. The electrical properties of as-grown wafers such as electron and hole mobilities, buried oxide (BOX) charges, interface trap densities, and carrier lifetimes were mainly studied. For this, various electrical measurement techniques were utilized such as pseudo-metal-oxide-semiconductor field-effect-transistor (PseudoMOSFET) static current-voltage (I-V) and transient drain current (I-t), Hall effect, and MOS capacitance-voltage/capacitance-time (C-V/C-t). The electrical characterization, however, mainly depends on the pseudo-MOSFET method, which takes advantage of the intrinsic SOI structure. From the static current-voltage and pulsed measurement, carrier mobilities, lifetimes and interface trap densities were extracted. During the course of this study, a pseudo-MOSFET drain current hysteresis regarding different gate voltage sweeping directions was discovered and the cause was revealed through systematic experiments and simulations. In addition to characterization of normal SOI, strain relaxation of strained silicon-on-insulator (sSOI) was also measured. As sSOI takes advantage of wafer bonding in its fabrication process, the tenacity of bonding between the sSOI and the BOX layer was investigated by means of thermal treatment and high dose energetic gamma-ray irradiation. It was found that the strain did not relax with processes more severe than standard CMOS processes, such as anneals at temperature as high as 1350 degree Celsius.

  9. Optical conductivity of topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-01-01

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi 2 Se 3 -based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ 0 =e 2 /(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF

  10. Structural and proximity-induced ferromagnetic properties of topological insulator-magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Zilong Jiang

    2016-05-01

    Full Text Available The spontaneously broken time reversal symmetry can lead to the formation of an energy gap in the Dirac spectrum of the surface states of a topological insulator (TI which can consequently give rise to a variety of interesting phenomena potentially useful for spintronics. In this work, we couple a non-magnetic TI to a high Curie temperature TC magnetic insulator to induce strong exchange interaction via the proximity effect. We have successfully grown 5 quintuple layer thick ternary TI (BixSb1-x2Te3 films on atomically flat yttrium iron garnet (YIG film with the combination of molecular beam epitaxy and pulsed laser deposition, in which the Fermi level position relative to the Dirac point is varied by controlling the Bi:Sb ratio. The anomalous Hall effect (AHE and suppressed weak antilocalization (WAL measured under out of plane magnetic fields reveal that the TI surface in contact with YIG is magnetized. Our high-quality (BixSb1-x2Te3/Y IG heterostructure provides a tunable system for exploring the quantum anomalous Hall effect (QAHE at higher temperatures in TI-based spintronic devices.

  11. Quantum fluctuations in insulating ferroelectrics

    International Nuclear Information System (INIS)

    Riseborough, Peter S.

    2010-01-01

    Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.

  12. Multilayer Insulation Ascent Venting Model

    Science.gov (United States)

    Tramel, R. W.; Sutherlin, S. G.; Johnson, W. L.

    2017-01-01

    The thermal and venting transient experienced by tank-applied multilayer insulation (MLI) in the Earth-to-orbit environment is very dynamic and not well characterized. This new predictive code is a first principles-based engineering model which tracks the time history of the mass and temperature (internal energy) of the gas in each MLI layer. A continuum-based model is used for early portions of the trajectory while a kinetic theory-based model is used for the later portions of the trajectory, and the models are blended based on a reference mean free path. This new capability should improve understanding of the Earth-to-orbit transient and enable better insulation system designs for in-space cryogenic propellant systems.

  13. Chiral topological insulator of magnons

    Science.gov (United States)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  14. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  15. Insulation assembly for electric machine

    Science.gov (United States)

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  16. The Nicest way to migrate your Windows computer ( The Windows 2000 Migration Task Force)

    CERN Document Server

    2001-01-01

    With Windows 2000, CERN users will discover a more stable and reliable working environment and will have access to all the latest applications. The Windows 2000 Migration Task Force - a representative from each division.

  17. Performance investigation of heat insulation solar glass for low-carbon buildings

    International Nuclear Information System (INIS)

    Cuce, Erdem; Young, Chin-Huai; Riffat, Saffa B.

    2014-01-01

    Highlights: • U-value of HISG is found to be 1.10 W/m 2 K. • Maximum temperature difference is achieved by HISG with 12.70 °C. • HISG provides two times better insulation than standard double glazed windows. • HISG generates over 40 W electricity from a glazing surface of 0.66 m 2 . • 100% of UV in incoming solar radiation is absorbed by HISG. - Abstract: Heat insulation solar glass (HISG), which has been recently developed by Professor Chin-Huai Young in Taiwan is an extraordinary glazing technology for low/zero carbon buildings. HISG differs from traditional glazing technologies with its ability of producing electricity. It also offers some additional features such as thermal insulation, sound insulation, self-cleaning and energy saving. In this work, thermal insulation, power generation and optical performance of HISG are experimentally investigated. Thermal insulation performance of HISG is analysed through standardized co-heating test methodology, and the results are compared with different traditional double glazed window samples. For the power generation and optical performance of HISG, two samples (air filled HISG and Argon filled HISG) are experimentally investigated in real and simulated operating conditions. The results indicate that both configurations show similar performance in terms of power generation. Under a solar intensity of 850 W/m 2 , over 40 W electrical power is achieved from HISG samples with a glazing area of 0.66 m 2 . Performance of samples under solar simulator is not found to be promising due to the absence of UV and IR parts in the artificial light source. In terms of thermal insulation ability, HISG is also found to be attractive. The average U-value of HISG is determined to be 1.10 W/m 2 K, which is two times better than standard double glazed windows. Some simulation results for two different cities (Taipei, Taiwan and Nottingham, UK) demonstrating the energy saving potential of HISG are also presented

  18. A Review of Irradiation Effects on Organic-Matrix Insulation

    International Nuclear Information System (INIS)

    Simon, N.J.

    1993-01-01

    This review assesses the data base on epoxy and polyimide matrix insulation to determine whether organic electric insulation systems can be used in the toroidal field (TF) magnets of next generation fusion devices such as ITER* and TPX*. Owing to the difficulties of testing insulation under fusion reactor conditions, there is a considerable mismatch between the ITER requirements and the data that are currently available. For example, nearly all of the high-dose (5 x 10 7 to 10 8 Gy) data obtained on epoxy and polyimide matrix insulation employed gamma irradiation, electron irradiation, or reactor irradiation with a fast neutron fluence far below 10 23 /m 2 , the fluence expected for the insulation at the TF magnets, as set forth in ITER conceptual design documents. Also, the neutron spectrum did not contain a very high energy (E (ge) 5 MeV) component. Such data underestimate the actual damage that would be obtained with the neutron fluence and spectrum expected at a TF magnet. Experiments on a polyimide (Kapton) indicate that gamma or electron doses or mixed gamma and neutron reactor doses would have to be downgraded by a factor of up to ten to simulate fusion neutron doses. Even when neutrons did constitute a significant portion of the total dose, B-containing E-glass reinforcement was often used; therefore, excess damage from the 10 B + n → 7 Li + α reaction occurred near the glass-epoxy interface. This problem can easily be avoided by substituting B-free glass (R, S, or T types)

  19. Insulating and preheating device for a nuclear reactor

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1977-01-01

    In liquid metal cooled reactors, the components and pipes in which the liquid metal flows must be lagged to lessen the losses of thermal energy generated in the reactor, limit the heating of adjacent structures (concrete and steel) and to maintain the liquid metal coolant above its point of solidification in the components during the periods of reactor shut-down. Although the present facilities do their job in a satisfactory manner, nevertheless they are devoid of defects, thus the tightly adjusted lagging used at the present time makes inspections extremely difficult and tedious. Furthermore, the impossibility of inspecting some components owing to the presence of tightly adjusted heat lagging, may well become intolerable in the future. Added to which, the cost of these facilities is high. The feature of the present installation is that certain components are arranged in a lagged enclosure around these components but spaced out enough for their easy inspection; the heating facilities are arranged in this enclosure so that the components may be heated virtually evenly and the cooling facilities are provided on the outside surface of this lagged enclosure. For greater safety, the inside atmosphere of the enclosure is preferably composed of an inert gas for the reactor coolant, such as nitrogen, argon or helium [fr

  20. Secondary electron emission from insulators

    International Nuclear Information System (INIS)

    Kanaya, K.; Ono, S.; Ishigaki, F.

    1978-01-01

    The high yield of secondary electron emission from insulators due to electron bombardment may be the result of an increase of the depth of escape. The free-electron scattering theory is applied to the high energy of primary beams, but cannot be applied to the low energy of secondary escaping beams because of the large energy gap of the insulators. The plasmon loss with the valence electron is considered when the secondary electrons escape. Based on the energy retardation power formula of the penetration and energy loss of an electron probe into solid targets, secondary electron emissions from insulators are calculated from the assumptions that the distribution of the secondary electrons due to both incident and back-scattered electrons within the target is isotropic and that it follows the absorption law of the Lenard type. The universal yield-energy curve of the secondary electron emission, which is deduced as a function of three parameters such as ionisation potential, valence electron and the back-scattered coefficient in addition to the free-electron density effect, is found to be in good agreement with the experimental results. (author)