WorldWideScience

Sample records for wind-tunnel flutter studies

  1. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  2. Gravity effects on wind-induced flutter of leaves

    Science.gov (United States)

    Clemmer, Nickalaus; Kopperstad, Karsten; Solano, Tomas; Shoele, Kourosh; Ordonez, Juan

    2017-11-01

    Wind-Induced flutter of leaves depends on both wind velocity and the gravity. To study the gravitational effects on the oscillatory behavior of leaves in the wind, a wind tunnel that can be tilted about the center of the test section is created. This unique rotation capability allows systematic investigation of gravitational effects on the fluttering response of leaves. The flow-induced vibration will be studied for three different leaves at several different tilting angles including the wind travels horizontally, vertically downward and vertically upward. In each situation, the long axis of a leaf is placed parallel to the wind direction and its response is studied at different flow speed. Oscillation of the leaf is recorded via high-speed camera at each of setup, and the effect of the gravity on stabilizing or destabilizing the fluttering response is investigated. Summer REU student at Florida State University.

  3. Geared-elevator flutter study. [wind tunnel tests of transonic flutter effects on control surfaces of supersonic transport tail assemblies, conducted in a NASA-Langley transonic wind tunnel

    Science.gov (United States)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    An experimental and analytical study was made of the transonic flutter characteristics of a supersonic transport tail assembly model having an all-movable, horizontal tail with a geared elevator. Two model configurations, namely, one with a gear-elevator (2.8 to 1.0 gear ratio) and one with locked-elevator (1.0 to 1.0 gear ratio), were flutter tested in the Langley transonic dynamics tunnel with an empennage cantilever-mounted on a sting. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter dynamic pressure boundaries for both configurations were nearly flat over a Mach number range from 0.9 to 1.1. Flutter calculations (mathematical models) were made for the geared-elevator configuration using three subsonic lifting-surface methods. In one method, the elevator was treated as a discrete surface, and in the other two methods, the stabilizer and elevator were treated as a single warped-surface with the primary difference between these two methods being in the mathematical implementation used. A comparison of the experimental and analytical results shows that the discrete-elevator method predicted best the experimental flutter dynamic pressure level. However, the single warped-surface methods predicts more closely the experimental flutter frequencies and Mach number trends.

  4. Comparison of driven and simulated "free" stall flutter in a wind tunnel

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John; Fagley, Casey; Seidel, Jurgen

    2016-11-01

    Stall flutter and dynamic stall have received a significant amount of attention over the years. To experimentally study this problem, the body undergoing stall flutter is typically driven at a characteristic, single frequency sinusoid with a prescribed pitching amplitude and mean angle of attack offset. This approach allows for testing with repeatable kinematics, however it effectively decouples the structural motion from the aerodynamic forcing. Recent results suggest that this driven approach could misrepresent the forcing observed in a "free" stall flutter scenario. Specifically, a dynamically pitched rigid NACA 0018 wing section was tested in the wind tunnel under two modes of operation: (1) Cyber-Physical where "free" stall flutter was physically simulated through a custom motor-control system modeling a torsional spring and (2) Direct Motor-Driven Dynamic Pitch at a single frequency sinusoid representative of the cyber-physical motion. The time-resolved pitch angle and moment were directly measured and compared for each case. It was found that small deviations in the pitch angle trajectory between these two operational cases generate significantly different aerodynamic pitching moments on the wing section, with the pitching moments nearly 180o out of phase in some cases. This work is supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program and by the National Defense Science and Engineering Graduate Fellowship Program.

  5. Geared-elevator flutter study. [transonic flutter characteristics of empennage

    Science.gov (United States)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    The paper describes an experimental and analytical study of the transonic flutter characteristics of an empennage flutter model having an all-movable horizontal tail with a geared elevator. Two configurations were flutter tested: one with a geared elevator and one with a locked elevator with the model cantilever-mounted on a sting in the wind tunnel. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter boundary was nearly flat at transonic speeds for both configurations. It was found that an analysis which treated the elevator as a discrete surface predicted flutter dynamic pressure levels better than analyses which treated the stabilizer and elevator as a warped surface. Warped-surface methods, however, predicted more closely the experimental flutter frequencies and Mach number trends.

  6. Visualizing Flutter Mechanism as Traveling Wave Through Animation of Simulation Results for the Semi-Span Super-Sonic Transport Wind-Tunnel Model

    Science.gov (United States)

    Christhilf, David M.

    2014-01-01

    It has long been recognized that frequency and phasing of structural modes in the presence of airflow play a fundamental role in the occurrence of flutter. Animation of simulation results for the long, slender Semi-Span Super-Sonic Transport (S4T) wind-tunnel model demonstrates that, for the case of mass-ballasted nacelles, the flutter mode can be described as a traveling wave propagating downstream. Such a characterization provides certain insights, such as (1) describing the means by which energy is transferred from the airflow to the structure, (2) identifying airspeed as an upper limit for speed of wave propagation, (3) providing an interpretation for a companion mode that coalesces in frequency with the flutter mode but becomes very well damped, (4) providing an explanation for bursts of response to uniform turbulence, and (5) providing an explanation for loss of low frequency (lead) phase margin with increases in dynamic pressure (at constant Mach number) for feedback systems that use sensors located upstream from active control surfaces. Results from simulation animation, simplified modeling, and wind-tunnel testing are presented for comparison. The simulation animation was generated using double time-integration in Simulink of vertical accelerometer signals distributed over wing and fuselage, along with time histories for actuated control surfaces. Crossing points for a zero-elevation reference plane were tracked along a network of lines connecting the accelerometer locations. Accelerometer signals were used in preference to modal displacement state variables in anticipation that the technique could be used to animate motion of the actual wind-tunnel model using data acquired during testing. Double integration of wind-tunnel accelerometer signals introduced severe drift even with removal of both position and rate biases such that the technique does not currently work. Using wind-tunnel data to drive a Kalman filter based upon fitting coefficients to

  7. Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance

    Science.gov (United States)

    Rivera, Jose A.; Florance, James R.

    2000-01-01

    The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.

  8. Flutter and galloping of cable-supported bridges with porous wind barriers

    Czech Academy of Sciences Publication Activity Database

    Buljac, A.; Kozmar, H.; Pospíšil, S.; Macháček, Michael

    2017-01-01

    Roč. 171, December (2017), s. 304-318 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : cable-supported bridges * porous wind barriers * aerodynamic forces and moments * flutter * galloping * wind-tunnel experiments Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering , Municipal and structural engineering Impact factor: 2.049, year: 2016 http://www.sciencedirect.com/science/ article /pii/S016761051730435X

  9. Wind tunnel test of musi VI bridge

    Science.gov (United States)

    Permata, Robby; Andika, Matza Gusto; Syariefatunnisa, Risdhiawan, Eri; Hermawan, Budi; Noordiana, Indra

    2017-11-01

    Musi VI Bridge is planned to cross the Musi River in Palembang City, South Sumatera Province, Indonesia. The main span is a steel arch type with 200 m length and side span length is 75 m. Finite element analysis results showed that the bridge has frequency ratio for torsional and heaving mode (torsional frequency/heaving frequency)=1.14. This close to unity value rises concern about aerodynamic behaviour and stability of the bridge deck under wind loading. Sectional static and free vibration wind tunnel test were performed to clarify this phenomena in B2TA3 facility in Serpong, Indonesia. The test followed the draft of Guide of Wind Tunnel Test for Bridges developed by Indonesian Ministry of Public Works. Results from wind tunnel testing show that the bridge is safe from flutter instability and no coupled motion vibration observed. Therefore, low value of frequency ratio has no effect to aerodynamic behaviour of the bridge deck. Vortex-induced vibration in heaving mode occurred in relatively low wind velocity with permissible maximum amplitude value.

  10. Nano-ADEPT Aeroloads Wind Tunnel Test

    Science.gov (United States)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; hide

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  11. Flutter Analysis of the Thermal Protection Layer on the NASA HIAD

    Science.gov (United States)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2013-01-01

    A combination of classical plate theory and a supersonic aerodynamic model is used to study the aeroelastic flutter behavior of a proposed thermal protection system (TPS) for the NASA HIAD. The analysis pertains to the rectangular configurations currently being tested in a NASA wind-tunnel facility, and may explain why oscillations of the articles could be observed. An analysis using a linear flat plate model indicated that flutter was possible well within the supersonic flow regime of the wind tunnel tests. A more complex nonlinear analysis of the TPS, taking into account any material curvature present due to the restraint system or substructure, indicated that significantly greater aerodynamic forcing is required for the onset of flutter. Chaotic and periodic limit cycle oscillations (LCOs) of the TPS are possible depending on how the curvature is imposed. When the pressure from the base substructure on the bottom of the TPS is used as the source of curvature, the flutter boundary increases rapidly and chaotic behavior is eliminated.

  12. Results of flutter test OS6 obtained using the 0.14-scale wing/elevon model (54-0) in the NASA LaRC 16-foot transonic dynamics wind tunnel

    Science.gov (United States)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter wing was tested in the Langley Research Center 16-Foot Transonic Dynamics Wind Tunnel to determine flutter, buffet, and elevon buzz boundaries. Mach numbers between 0.3 and 1.1 were investigated. Rockwell shuttle model 54-0 was utilized for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  13. Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet

    Science.gov (United States)

    Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.

    1982-01-01

    The scaled flutter model was a 1/6.5-size, semispan version of a supercritical wing (SCW) proposed for an executive-jet-transport airplane. The model was tested cantilever-mounted with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M = 0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5%, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect. Flutter characteristics calculated using a doublet-lattice analysis (which included interference effects) were in good agreement with the experimental results up to M = 0.82. Comparisons of measured static aerodynamic data with predicted data indicated that the model was aerodynamically representative of the airplane SCW.

  14. Investigations on precursor measures for aeroelastic flutter

    Science.gov (United States)

    Venkatramani, J.; Sarkar, Sunetra; Gupta, Sayan

    2018-04-01

    Wind tunnel experiments carried out on a pitch-plunge aeroelastic system in the presence of fluctuating flows reveal that flutter instability is presaged by a regime of intermittency. It is observed that as the flow speed gradually increases towards the flutter speed, there appears intermittent bursts of periodic oscillations which become more frequent as the wind speed increases and eventually the dynamics transition into fully developed limit cycle oscillations, marking the onset of flutter. The signature from these intermittent oscillations are exploited to develop measures that forewarn a transition to flutter and can serve as precursors. This study investigates a suite of measures that are obtained directly from the time history of measurements and are hence model independent. The dependence of these precursors on the size of the measured data set and the time required for their computation is investigated. These measures can be useful in structural health monitoring of aeroelastic structures.

  15. Results of flutter test OS7 obtained using the 0.14-scale space shuttle orbiter fin/rudder model number 55-0 in the NASA LaRC 16-foot transonic dynamics wind tunnel

    Science.gov (United States)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter vertical tail was tested in a 16-foot transonic dynamic wind tunnel to determine flutter, buffet, and rudder buzz boundaries. Mach numbers between .5 and 1.11 were investigated. Rockwell shuttle model 55-0 was used for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  16. Coupled-Mode Flutter of Wind Turbines and its Suppression Using Torsional Viscous Damper

    DEFF Research Database (Denmark)

    Zhang, Zili; Chen, Bei; Nielsen, Søren R. K.

    2017-01-01

    The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, resulting in rapid destructive failure or limit-cycle oscillations of the structural components. For pitch-regulated wind turbines, classical flutter is believed...... between blade vibrations with tower and drivetrain motions are also considered, making this model capable for coupled-mode flutter analysis of a complete wind turbine system. The parameters of the model have been calibrated to the DTU 10MW wind turbine, and the critical flutter speed of the rotor is shown...... to be about 1.6 times its nominal rotational speed. A novel torsional viscous damper is then proposed to suppress torsional blade vibration and to enhance flutter stability of wind turbines....

  17. Characteristics of Control Laws Tested on the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    Science.gov (United States)

    Christhilf, David M.; Moulin, Boris; Ritz, Erich; Chen, P. C.; Roughen, Kevin M.; Perry, Boyd

    2012-01-01

    The Semi-Span Supersonic Transport (S4T) is an aeroelastically scaled wind-tunnel model built to test active controls concepts for large flexible supersonic aircraft in the transonic flight regime. It is one of several models constructed in the 1990's as part of the High Speed Research (HSR) Program. Control laws were developed for the S4T by M4 Engineering, Inc. and by Zona Technologies, Inc. under NASA Research Announcement (NRA) contracts. The model was tested in the NASA-Langley Transonic Dynamics Tunnel (TDT) four times from 2007 to 2010. The first two tests were primarily for plant identification. The third entry was used for testing control laws for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression. Whereas the third entry only tested FS subcritically, the fourth test demonstrated closed-loop operation above the open-loop flutter boundary. The results of the third entry are reported elsewhere. This paper reports on flutter suppression results from the fourth wind-tunnel test. Flutter suppression is seen as a way to provide stability margins while flying at transonic flight conditions without penalizing the primary supersonic cruise design condition. An account is given for how Controller Performance Evaluation (CPE) singular value plots were interpreted with regard to progressing open- or closed-loop to higher dynamic pressures during testing.

  18. Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet. [conducted in Langley Transonic Dynamics Tunnel

    Science.gov (United States)

    Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.

    1982-01-01

    The model was a 1/6.5-size, semipan version of a wing proposed for an executive-jet-transport airplane. The model was tested with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers (M) from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M=0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5 percent, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect.

  19. Robust Switching Control and Subspace Identification for Flutter of Flexible Wing

    Directory of Open Access Journals (Sweden)

    Yizhe Wang

    2018-01-01

    Full Text Available Active flutter suppression and subspace identification for a flexible wing model using micro fiber composite actuator were experimentally studied in a low speed wind tunnel. NACA0006 thin airfoil model was used for the experimental object to verify the performance of identification algorithm and designed controller. The equation of the fluid, vibration, and piezoelectric coupled motion was theoretically analyzed and experimentally identified under the open-loop and closed-loop condition by subspace method for controller design. A robust pole placement algorithm in terms of linear matrix inequality that accommodates the model uncertainty caused by identification deviation and flow speed variation was utilized to stabilize the divergent aeroelastic system. For further enlarging the flutter envelope, additional controllers were designed subject to the models beyond the flutter speed. Wind speed was measured online as the decision parameter of switching between the controllers. To ensure the stability of arbitrary switching, Common Lyapunov function method was applied to design the robust pole placement controllers for different models to ensure that the closed-loop system shared a common Lyapunov function. Wind tunnel result showed that the designed controllers could stabilize the time varying aeroelastic system over a wide range under arbitrary switching.

  20. Analytical and Experimental Evaluation of Digital Control Systems for the Semi-Span Super-Sonic Transport (S4T) Wind Tunnel Model

    Science.gov (United States)

    Wieseman, Carol D.; Christhilf, David; Perry, Boyd, III

    2012-01-01

    An important objective of the Semi-Span Super-Sonic Transport (S4T) wind tunnel model program was the demonstration of Flutter Suppression (FS), Gust Load Alleviation (GLA), and Ride Quality Enhancement (RQE). It was critical to evaluate the stability and robustness of these control laws analytically before testing them and experimentally while testing them to ensure safety of the model and the wind tunnel. MATLAB based software was applied to evaluate the performance of closed-loop systems in terms of stability and robustness. Existing software tools were extended to use analytical representations of the S4T and the control laws to analyze and evaluate the control laws prior to testing. Lessons were learned about the complex windtunnel model and experimental testing. The open-loop flutter boundary was determined from the closed-loop systems. A MATLAB/Simulink Simulation developed under the program is available for future work to improve the CPE process. This paper is one of a series of that comprise a special session, which summarizes the S4T wind-tunnel program.

  1. Wind tunnel test on PC cable-stayed bridge; PC shachokyo no taifu seino shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Y. [Kyushu Inst. of Technology, Kitakyushu (Japan). Faculty of Engineering

    1997-05-30

    This paper describes the wind tunnel test on a PC cable-stayed bridge. The aerodynamic force that acts on a building is represented by the drag that works in the wind direction, the lift that works perpendicularly to the wind direction, and the aerodynamic moment that causes rotation. In the measurement of wind load, a girder is partially extracted in the wind tunnel and set in a three-component balance, and the drag, lift, and aerodynamic moment are measured using a strain meter while blowing the wind. In a wind tunnel experiment, the similarity on Reynolds number, field number, rigidity, hydraulic force, structural attenuation, and reduced wind velocity is required. However, the wind velocity in the actual bridge uses the same air as that in an experiment. The similarity rule on the Reynolds is not thus satisfied. It is necessary to cause no self-excited vibration (galloping and flutter) as wind-resistant performance and suppress the eddy excitation to less than the allowable amplitude. Moreover, the three-dimensional experiment using an elastic model is conducted in addition to the two-dimensional experiment using a rigid model. In the three-dimensional experiment, various vibration modes that occur in the actual bridge appear. 12 refs., 15 figs.

  2. Computational and experimental investigation of free vibration and flutter of bridge decks

    Science.gov (United States)

    Helgedagsrud, Tore A.; Bazilevs, Yuri; Mathisen, Kjell M.; Øiseth, Ole A.

    2018-06-01

    A modified rigid-object formulation is developed, and employed as part of the fluid-object interaction modeling framework from Akkerman et al. (J Appl Mech 79(1):010905, 2012. https://doi.org/10.1115/1.4005072) to simulate free vibration and flutter of long-span bridges subjected to strong winds. To validate the numerical methodology, companion wind tunnel experiments have been conducted. The results show that the computational framework captures very precisely the aeroelastic behavior in terms of aerodynamic stiffness, damping and flutter characteristics. Considering its relative simplicity and accuracy, we conclude from our study that the proposed free-vibration simulation technique is a valuable tool in engineering design of long-span bridges.

  3. Turbulence intensity measurement in the wind tunnel used for airfoil flutter investigation

    Directory of Open Access Journals (Sweden)

    Šidlof Petr

    2017-01-01

    Full Text Available The paper reports on hot wire turbulence intensity measurements performed in the entry of a suction-type wind tunnel, used for investigation of flow-induced vibration of airfoils and slender structures. The airfoil is elastically supported with two degrees of freedom (pitch and plunge in the test section of the wind tunnel with lateral optical access for interferometric measurements, and free to oscillate. The turbulence intensity was measured for velocities up to M = 0.3 i with the airfoil blocked, ii with the airfoil self-oscillating. Measurements were performed for a free inlet and further with two different turbulence grids generating increased turbulence intensity levels. For the free inlet and static airfoil, the turbulence intensity lies below 0.4%. The turbulence grids G1 and G2 increase the turbulence level up to 1.8% and 2.6%, respectively. When the airfoil is free to oscillate due to fluid-structure interaction, its motion disturbs the surrounding flow field and increases the measured turbulence intensity levels up to 5%.

  4. Influence of Shock Wave on the Flutter Behavior of Fan Blades Investigated

    Science.gov (United States)

    Srivastava, Rakesh; Bakhle, Milind A.; Stefko, George L.

    2003-01-01

    Modern fan designs have blades with forward sweep; a lean, thin cross section; and a wide chord to improve performance and reduce noise. These geometric features coupled with the presence of a shock wave can lead to flutter instability. Flutter is a self-excited dynamic instability arising because of fluid-structure interaction, which causes the energy from the surrounding fluid to be extracted by the vibrating structure. An in-flight occurrence of flutter could be catastrophic and is a significant design issue for rotor blades in gas turbines. Understanding the flutter behavior and the influence of flow features on flutter will lead to a better and safer design. An aeroelastic analysis code, TURBO, has been developed and validated for flutter calculations at the NASA Glenn Research Center. The code has been used to understand the occurrence of flutter in a forward-swept fan design. The forward-swept fan, which consists of 22 inserted blades, encountered flutter during wind tunnel tests at part speed conditions.

  5. Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed

    DEFF Research Database (Denmark)

    Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo

    2002-01-01

    The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...... conducted at National Aerospace Laboratory in Japan for a high aspect ratio wing. It explains the nonlinear features of the transonic flutter such as the subcritical Hopf bifurcation of a limit cycle oscillation (LCO), a saddle-node bifurcation, and an unstable limit cycle as well as a normal (linear...

  6. Parametric Flutter Analysis of the TCA Configuration and Recommendation for FFM Design and Scaling

    Science.gov (United States)

    Baker, Myles; Lenkey, Peter

    1997-01-01

    The current HSR Aeroelasticity plan to design, build, and test a full span, free flying transonic flutter model in the TDT has many technical obstacles that must be overcome for a successful program. One technical obstacle is the determination of a suitable configuration and point in the sky to use in setting the scaling point for the ASE models program. Determining this configuration and point in the sky requires balancing several conflicting requirements, including model buildability, tunnel test safety, and the ability of the model to represent the flutter mechanisms of interest. As will be discussed in detail in subsequent sections, the current TCA design exhibits several flutter mechanisms of interest. It has been decided that the ASE models program will focus on the low frequency symmetric flutter mechanism, and will make no attempt to investigate high frequency flutter mechanisms. There are several reasons for this choice. First, it is believed that the high frequency flutter mechanisms are similar in nature to classical wing bending/torsion flutter, and therefore there is more confidence that this mechanism can be predicted using current techniques. The low frequency mode, on the other hand, is a highly coupled mechanism involving wing, body, tail, and engine motion which may be very difficult to predict. Second, the high frequency flutter modes result in very small weight penalties (several hundred pounds), while suppression of the low frequency mechanism inside the flight envelope causes thousands of pounds to be added to the structure. In order to successfully test the low frequency flutter mode of interest, a suitable starting configuration and point in the sky must be identified. The configuration and point in the sky must result in a wind tunnel model that (1) represents the low-frequency wing/body/engine/empennage flutter mechanisms that are unique to HSCT configurations, (2) flutters at an acceptably low frequency in the tunnel, (3) flutters at an

  7. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    Science.gov (United States)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  8. Development of Active Flutter Suppression Wind Tunnel Testing Technology

    Science.gov (United States)

    1975-01-01

    inch stainless steel precision haft ng out to the aileron surfaces. Torque was then transmitted aft through another crank-pushrod linkage...NMMltetiM Clllir llllisi Sl> ptT »I»" CmrN StiiiH tli!ii<ti> »ir|wu ŗK kUfej •*! AFFDL-TR-74-126 o 00 DEVELOPMENT OF ACTIVE FLUTTER...Installations . . 28 14. Outboard Aileron Installation 30 15. Airplane FMCS Block Diagram 35 16. Model FMCS Block Diagram 36 17. Model FMCS

  9. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  10. Effect of blade flutter and electrical loading on small wind turbine noise

    Science.gov (United States)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  11. Aeroelastic flutter energy harvesters self-polarized by triboelectric effects

    Science.gov (United States)

    Perez, M.; Boisseau, S.; Geisler, M.; Gasnier, P.; Willemin, J.; Despesse, G.; Reboud, J. L.

    2018-01-01

    This paper presents the performances of several electrostatic flutter energy harvesters tested in a wind tunnel between 0 and 20 m s-1. The main idea is to use the flutter capability of thin flexible films confined between lateral walls to induce simultaneously the capacitance variations and the electrostatic polarization required by the triboelectric/electrostatic conversion. This technology provides thin and flexible devices and solve the electret’s stability issue (Perez et al 2015 Smart Mater. Struct., Perez et al 2015 New Circuits and Systems). Our prototypes (management circuit has finally been used to supply an 868 MHz wireless sensor node with temperature and acceleration measurements, validating the complete energy harvesting chain.

  12. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  13. An alternative to the flutter derivatives

    DEFF Research Database (Denmark)

    Andersen, Michael Styrk; Brandt, Anders

    A new simplified framework to study flutter and assess the full scale flutter wind speed is suggested. The flutter instability problem is reduced from a problem involving 8 flutter derivatives to only 4 coefficients. With this method it is possible to estimate the self-excited forces with increased...... precision by using stability diagrams. Furthermore, the physical transparency of the aerodynamic damping and stiffness terms is increased because the development in vertical and torsional damping and stiffness is analysed instead of flutter derivatives....

  14. The application of digital computers to near-real-time processing of flutter test data

    Science.gov (United States)

    Hurley, S. R.

    1976-01-01

    Procedures used in monitoring, analyzing, and displaying flight and ground flutter test data are presented. These procedures include three digital computer programs developed to process structural response data in near real time. Qualitative and quantitative modal stability data are derived from time history response data resulting from rapid sinusoidal frequency sweep forcing functions, tuned-mode quick stops, and pilot induced control pulses. The techniques have been applied to both fixed and rotary wing aircraft, during flight, whirl tower rotor systems tests, and wind tunnel flutter model tests. An hydraulically driven oscillatory aerodynamic vane excitation system utilized during the flight flutter test programs accomplished during Lockheed L-1011 and S-3A development is described.

  15. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  16. Structural resonance and mode of flutter of hummingbird tail feathers.

    Science.gov (United States)

    Clark, Christopher J; Elias, Damian O; Girard, Madeline B; Prum, Richard O

    2013-09-15

    Feathers can produce sound by fluttering in airflow. This flutter is hypothesized to be aeroelastic, arising from the coupling of aerodynamic forces to one or more of the feather's intrinsic structural resonance frequencies. We investigated how mode of flutter varied among a sample of hummingbird tail feathers tested in a wind tunnel. Feather vibration was measured directly at ~100 points across the surface of the feather with a scanning laser Doppler vibrometer (SLDV), as a function of airspeed, Uair. Most feathers exhibited multiple discrete modes of flutter, which we classified into types including tip, trailing vane and torsional modes. Vibratory behavior within a given mode was usually stable, but changes in independent variables such as airspeed or orientation sometimes caused feathers to abruptly 'jump' from one mode to another. We measured structural resonance frequencies and mode shapes directly by measuring the free response of 64 feathers stimulated with a shaker and recorded with the SLDV. As predicted by the aeroelastic flutter hypothesis, the mode shape (spatial distribution) of flutter corresponded to a bending or torsional structural resonance frequency of the feather. However, the match between structural resonance mode and flutter mode was better for tip or torsional mode shapes, and poorer for trailing vane modes. Often, the 3rd bending structural harmonic matched the expressed mode of flutter, rather than the fundamental. We conclude that flutter occurs when airflow excites one or more structural resonance frequencies of a feather, most akin to a vibrating violin string.

  17. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  18. Nonlinear Characteristics of Randomly Excited Transonic Flutter

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Lehn-Schiøler, Tue; Mosekilde, Erik

    2002-01-01

    . When this model is extended by the introduction of nonlinear terms, it can reproduce the subcritical Hopf bifurcation. We hereafter consider the effects of subjecting simplified versions of the model to random external excitations representing the fluctuations present in the airflow. These models can......The paper describes the effects of random external excitations on the onset and dynamical characteristics of transonic flutter (i.e. large-amplitude, self-sustained oscillations) for a high aspect ratio wing. Wind tunnel experiments performed at the National Aerospace Laboratory (NAL) in Japan have...

  19. Proposed aeroelastic and flutter tests for the National Transonic Facility

    Science.gov (United States)

    Stevenson, J. R.

    1981-01-01

    Tests that can exploit the capability of the NTF and the transonic cryogenic tunnel, or lead to improvements that could enhance testing in the NTF are discussed. Shock induced oscillation, supersonic single degree control surface flutter, and transonic flutter speed as a function of the Reynolds number are considered. Honeycombs versus screens to smooth the tunnel flow and a rapid tunnel dynamic pressure reducer are recommended to improve tunnel performance.

  20. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  1. Progress in wind tunnel experimental techniques for wind turbine?

    Institute of Scientific and Technical Information of China (English)

    Jingping XIAO; Li CHEN; Qiang WANG; Qiao WANG

    2016-01-01

    Based on the unsteady aerodynamics experiment (UAE) phase VI and the model experiment in controlled conditions (MEXICO) projects and the related research carried out in China Aerodynamic Research and Development Center (CARDC), the recent progress in the wind tunnel experimental techniques for the wind turbine is sum-marized. Measurement techniques commonly used for di?erent types of wind tunnel ex-periments for wind turbine are reviewed. Important research achievements are discussed, such as the wind tunnel disturbance, the equivalence of the airfoil in?ow condition, the three-dimensional (3D) e?ect, the dynamic in?ow in?uence, the ?ow ?eld structure, and the vortex induction. The corresponding research at CARDC and some ideas on the large wind turbine are also introduced.

  2. Microsystem Aeromechanics Wind Tunnel

    Data.gov (United States)

    Federal Laboratory Consortium — The Microsystem Aeromechanics Wind Tunnel advances the study of fundamental flow physics relevant to micro air vehicle (MAV) flight and assesses vehicle performance...

  3. Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators

    Science.gov (United States)

    Pigolotti, Luca; Mannini, Claudio; Bartoli, Gianni; Thiele, Klaus

    2017-09-01

    Energy harvesting from flow-induced vibrations is a recent research field, which considers a diverse range of systems, among which two-degree-of-freedom flutter-based solutions were individuated as good candidates to obtain high energy performance. In the present work, numerical linear analyses and wind-tunnel tests were conducted on a flat-plate sectional model. The aim is to identify some design guidelines for generators exploiting the classical-flutter instability, through the investigation of the critical condition and the response during the post-critical regime. Many sets of governing parameters of interest from the energy-harvesting point of view were considered, including high levels of heaving damping to simulate the operation of a conversion apparatus. In particular, eccentricity of the elastic centre and small downstream mass unbalance can be introduced as solutions aiming at optimal operative ranges. The collected results suggest the high potentiality of flutter-based generators, and a significant enhancement of performance can be envisaged. Moreover, they contribute to improve the knowledge of the flutter excitation mechanism and to widen the dataset of measurements in the post-critical regime.

  4. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  5. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    Science.gov (United States)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  6. Non-Flutter Design Principle for long Span Bridges

    DEFF Research Database (Denmark)

    Johansson, Jens; Andersen, Michael Styrk; Starch Øvre, Michele

    velocity for a thin airfoil shows an asymptotical behavior. In traditional bridge design the torsional-to-vertical frequency ratio is increased to obtain higher flutter wind velocities. In the present study, we investigate, what we will label the non-flutter design principle, in which the torsional...

  7. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  8. Strain actuated aeroelastic control

    Science.gov (United States)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  9. Aeronautical Wind Tunnels, Europe and Asia

    Science.gov (United States)

    2006-02-01

    User Fees Contact Information Dr. Surjatin Wiriadidjaja, UPT-LAGG, BPP Teknologi, Puspiptek, Serpong, Tangerang 15310, Indonesia. Tel: (62) 21 756...of the tunnel, FFA T1500 Transonic Wind Tunnel Circuit (Sweden) manufactured by The Swedish Defense Research Agency (FOI). 2.4 m Transonic Wind

  10. Results of winglet development studies for DC-10 derivatives

    Science.gov (United States)

    Shollenberger, C. A.; Humphreys, J. W.; Heiberger, F. S.; Pearson, R. M.

    1983-01-01

    The results of investigations into the application of winglets to the DC-10 aircraft are presented. The DC-10 winglet configuration was developed and its cruise performance determined in a previous investigation. This study included high speed and low speed wind tunnel tests to evaluate aerodynamic characteristics, and a subsonic flutter wind tunnel test with accompanying analysis and evaluation of results. Additionally, a configuration integration study employed the results of the wind tunnel studies to determine the overall impact of the installation of winglets on the DC-10 aircraft. Conclusions derived from the high speed and low speed tests indicate that the winglets had no significant effects on the DC-10 stability characteristics or high speed buffet. It was determined that winglets had a minimal effect on aircraft lift characteristics and improved the low speed aircraft drag under high lift conditions. The winglets affected the DC-10 flutter characteristics by reducing the flutter speed of the basic critical mode and introducing a new critical mode involving outer wing torsion and longitudinal bending. The overall impact of winglets was determined to be of sufficient benefit to merit flight evaluation.

  11. A century of wind tunnels since Eiffel

    Science.gov (United States)

    Chanetz, Bruno

    2017-08-01

    Fly higher, faster, preserve the life of test pilots and passengers, many challenges faced by man since the dawn of the twentieth century, with aviation pioneers. Contemporary of the first aerial exploits, wind tunnels, artificially recreating conditions encountered during the flight, have powerfully contributed to the progress of aeronautics. But the use of wind tunnels is not limited to aviation. The research for better performance, coupled with concern for energy saving, encourages manufacturers of ground vehicles to perform aerodynamic tests. Buildings and bridge structures are also concerned. This article deals principally with the wind tunnels built at ONERA during the last century. Somme wind tunnels outside ONERA, even outside France, are also evocated when their characteristics do not exist at ONERA.

  12. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    complexity of developing a model that can be used for successfully implementing a standardized management planning tool. The objective of this study was to implement an Integrated Wind Tunnel Planning System to improve the operations within the aeronautics testing and research group, in particular Wind Tunnel Enterprise. The study included following steps: Conducted literature search and expert discussions (NASA and Old Dominion University faculty), Performed environmental scan of NASA Langley wind tunnel operations as foundation for problem definition. Established operation requirements and evaluation methodologies. Examined windtunnel operations to map out the common characteristics, critical components, and system structure. Reviewed and evaluated various project scheduling and management systems for implementation, Evaluated and implemented "Theory of Constraints (TOC)" project scheduling methodology at NASA Langley wind tunnel operations together with NASA staff.

  13. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  14. Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics

    Directory of Open Access Journals (Sweden)

    Hoani Bryson

    2016-03-01

    Full Text Available A customized vertical wind tunnel has been built by the University of Canterbury Rocketry group (UC Rocketry. This wind tunnel has been critical for the success of UC Rocketry as it allows the optimization of avionics and control systems before flight. This paper outlines the construction of the wind tunnel and includes an analysis of flow quality including swirl. A minimal modelling methodology for roll dynamics is developed that can extrapolate wind tunnel behavior at low wind speeds to much higher velocities encountered during flight. The models were shown to capture the roll flight dynamics in two rocket launches with mean roll angle errors varying from 0.26° to 1.5° across the flight data. The identified model parameters showed consistent and predictable variations over both wind tunnel tests and flight, including canard–fin interaction behavior. These results demonstrate that the vertical wind tunnel is an important tool for the modelling and control of sounding rockets.

  15. Atmospheric diffusion wind tunnel with automatic measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maki, S; Sakai, J; Murata, E

    1974-01-01

    A wind tunnel which permits estimates of atmospheric diffusion is described. Smoke from power plant smoke stacks, for example, can be simulated and traced to determine the manner of diffusion in the air as well as the grade of dilution. The wind tunnel is also capable of temperature controlled diffusion tests in which temperature distribution inside the wind tunnel is controlled. A minimum wind velocity of 10 cm can be obtained with accuracy within plus or minus 0.05 percent using a controlled direct current motor; diffusion tests are often made at low wind velocity. Fully automatic measurements can be obtained by using a minicomputer so that the operation and reading of the measuring instruments can be remotely controlled from the measuring chamber. (Air Pollut. Abstr.)

  16. Parallel numerical simulation of oscillating airfoil NACA0015 in the channel due to flutter instability

    Directory of Open Access Journals (Sweden)

    Řidký Václav

    2014-03-01

    Full Text Available The work is devoted to 3D and 2D parallel numerical computation of pressure and velocity fields around an elastically supported airfoil self-oscillating due to interaction with the airflow. Numerical solution is computed in the OpenFOAM package, an open-source software package based on finite volume method. Movement of airfoil is described by translation and rotation, identified from experimental data. A new boundary condition for the 2DOF motion of the airfoil was implemented. The results of numerical simulations (velocity are compared with data measured in a wind tunnel, where a physical model of NACA0015 airfoil was mounted and tuned to exhibit the flutter instability. The experimental results were obtained previously in the Institute of Thermomechanics by interferographic measurements in a subsonic wind tunnel in Nový Knín.

  17. Study on the snow drifting modelling criteria in boundary layer wind tunnels

    Directory of Open Access Journals (Sweden)

    Georgeta BĂETU

    2014-07-01

    Full Text Available The paper presents a study on modelling the wind drifting of the snow deposited on the flat roofs of buildings in wind tunnel. The physical model of snow drifting in wind tunnel simulating the urban exposure to wind action is not frequently reported in literature, but is justified by the serious damages under accidental important snow falls combined with strong wind actions on the roofs of various buildings. A uniform layer of snow deposited on the flat roof was exposed to wind action in order to obtain the drifting. The parameters involved in the modelling at reduced scale, with particles of glass beads, of the phenomenon of transportation of the snow from the roof were analysed, particularly the roughness length and the friction wind speed. A numerical simulation in ANSYS CFX program was developed in parallel, by which a more accurate visualization of the particularities of the wind flow over the roof was possible, in the specific areas where the phenomenon of snow transportation was more susceptible to occur. Modified roughness length and friction wind speed were determined through methods used in the literature, an attempt being made in this work to analyse the factors that influence their values.

  18. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  19. Lidars for Wind Tunnels - an IRPWind Joint Experiment Project

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Vignaroli, Andrea; Angelou, Nikolas

    2017-01-01

    Measurement campaigns with continuous-wave Doppler Lidars (Light detection and ranging) developed at DTU Wind Energy in Denmark were performed in two very different wind tunnels. Firstly, a measurement campaign in a small icing wind tunnel chamber at VTT in Finland was performed with high frequency...... used in blind test comparisons for wind turbine wake modelers. These Lidar measurement activities constitute the Joint Experiment Project” L4WT - Lidars for Wind Tunnels, with applications to wakes and atmospheric icing in a prospective Nordic Network” with the aim of gaining and sharing knowledge...... about possibilities and limitations with lidar instrumentation in wind tunnels, which was funded by the IRPWind project within the community of the European Energy Research Alliance (EERA) Joint Programme on Wind Energy....

  20. Investigation of air flow in open-throat wind tunnels

    Science.gov (United States)

    Jacobs, Eastman N

    1930-01-01

    Tests were conducted on the 6-inch wind tunnel of the National Advisory Committee for Aeronautics to form a part of a research on open-throat wind tunnels. The primary object of this part of the research was to study a type of air pulsation which has been encountered in open-throat tunnels, and to find the most satisfactory means of eliminating such pulsations. In order to do this it was necessary to study the effects of different variable on all of the important characteristics of the tunnel. This paper gives not only the results of the study of air pulsations and methods of eliminating them, but also the effects of changing the exit-cone diameter and flare and the effects of air leakage from the return passage. It was found that the air pulsations in the 6-inch wind tunnel could be practically eliminated by using a moderately large flare on the exit cone in conjunction with leakage introduced by cutting holes in the exit cone somewhat aft of its minimum diameter.

  1. Performing wind-tunnel modeling for better management of near-field risks

    International Nuclear Information System (INIS)

    Huang, Ju-Chrong; Weber, A.H.

    1992-01-01

    All industrial complexes must be able to demonstrate that air pollutant concentrations from normal and accidental releases are within the bounds of stringent acceptance criteria. The offsite concentrations are comparatively easy to compute with the standard Gaussian models. By contrast, the onsite (in particular, near-field) concentrations can be more complex since the wind flows can interact with various structures in complex ways to create regions of relatively high local concentrations. Three methods can be used to predict the air pollutant concentrations: (1) mathematical models, (2) field experiments, and (3) fluid models (wind-tunnel testing). The complex flow in the vicinity of buildings is not amenable to simple mathematical generalizations. Field experiments cannot encompass the wind spectrum of meteorological conditions in the time generally allotted. Wind tunnel testing works best where numerical models fail and field testing is not applicable. This paper covers the following aspects related to the wind-tunnel modeling studies: (1) planning strategies; (2) types of wind-tunnel modeling studies flow visualization and concentration measurement experiments; (3) highlights (video tape show) of the wind tunnel experiments; (4) technical challenges; and (5) various applications

  2. CFD and experimental data of closed-loop wind tunnel flow

    Directory of Open Access Journals (Sweden)

    John Kaiser Calautit

    2016-06-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled ‘A validated design methodology for a closed loop subsonic wind tunnel’ (Calautit et al., 2014 [1], which presented a systematic investigation into the design, simulation and analysis of flow parameters in a wind tunnel using Computational Fluid Dynamics (CFD. The authors evaluated the accuracy of replicating the flow characteristics for which the wind tunnel was designed using numerical simulation. Here, we detail the numerical and experimental set-up for the analysis of the closed-loop subsonic wind tunnel with an empty test section.

  3. RITD – Wind tunnel testing

    Science.gov (United States)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  4. The Dutch wind tunnel guideline for wind loads

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, van C.A.; Willemsen, E.

    2013-01-01

    This paper addresses questions that arose during development and application of the Dutch guideline for wind tunnel testing to determine wind loads on buildings. This guideline (CUR 103) is being used since 2005, and a first revision is foreseen. Within this revision, the relation with Eurocode EN

  5. Multirate flutter suppression system design for the Benchmark Active Controls Technology Wing

    Science.gov (United States)

    Berg, Martin C.; Mason, Gregory S.

    1994-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing (also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT wing in a wind tunnel. This report describes a project at the University of Washington to design a multirate flutter suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing. The contributions of this project are (1) development of an algorithm for synthesizing robust low order multirate control laws (the algorithm is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple plant perturbations; (2) development of a multirate design methodology, and supporting software, for modeling, analyzing and synthesizing multirate compensators; and (3) design of a multirate flutter suppression system for NASA's BACT wing which satisfies the specified design criteria. This report describes each of these contributions in detail. Section 2.0 discusses our design methodology. Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally, Section 4.0 presents our conclusions and suggestions for future research. The body of the report focuses primarily on the results. The associated theoretical background appears in the three technical papers that are included as Attachments 1-3. Attachment 4 is a user's manual for the software that is key to our design methodology.

  6. Characterization of a new open jet wind tunnel to optimize and test vertical axis wind turbines

    DEFF Research Database (Denmark)

    Tourn, Silvana; Pallarès, Jordi; Cuesta, Ildefonso

    2017-01-01

    Based on the increasing interest in urban environmental technologies, the study of small scale vertical axis wind turbines shows motivating challenges. In this paper, we present the characteristics and potentials of a new open jet wind tunnel. It has a nozzle exit area of 1.5 × 1.5 m2, and it can......%. The detailed characterization of the flow carried out indicates that the wind tunnel can be used to test small scale models of wind turbines....

  7. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  8. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    Science.gov (United States)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  9. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies

    International Nuclear Information System (INIS)

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. - Highlights: → A concept for aerodynamic modelling of vegetation in small scale wind tunnel studies is presented. → The concept was applied to study pollutant dispersion in urban street canyons with avenue tress. → The wind tunnel studies show that modelling the aerodynamic effects of vegetation is important. → Avenue trees give rise to increased pollutant concentrations in urban street canyons. - Avenue trees in urban street canyons affect the pollutant dispersion and result in increased traffic exhaust concentrations.

  10. A rotating bluff-body disc for reduced variability in wind tunnel aerosol studies.

    Science.gov (United States)

    Koehler, Kirsten A; Anthony, T Renee; van Dyke, Michael; Volckens, John

    2011-01-01

    A rotating bluff-body disc (RBD) was developed to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. The RBD is designed to rotate eight personal aerosol samplers around a circular path in a forward-facing plane aligned with the wind tunnel cross section. Rotation of the RBD allows each sampler to traverse an identical path about the wind tunnel cross section, which reduces the effects of spatial heterogeneity associated with dispersing supermicron aerosol in low-velocity wind tunnels. Samplers are positioned on the face of the RBD via sampling ports, which connect to an air manifold on the back of the disc. Flow through each sampler was controlled with a critical orifice or needle valve, allowing air to be drawn through the manifold with a single pump. A metal tube, attached to this manifold, serves as both the axis of rotation and the flow conduction path (between the samplers and the vacuum source). Validation of the RBD was performed with isokinetic samplers and 37-mm cassettes. For facing-the-wind tests, the rotation of the RBD significantly decreased intra-sampler variability when challenged with particle diameters from 1 to 100 μm. The RBD was then employed to determine the aspiration efficiency of Institute of Occupational Medicine (IOM) personal samplers under a facing-the-wind condition. Operation of IOM samplers on the RBD reduced the between-sampler variability for all particle sizes tested.

  11. Offshore and onshore wind turbine wake meandering studied in an ABL wind tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; Glabeke, Gertjan

    2015-01-01

    Scaled wind turbine models have been installed in the VKI L1-B atmospheric boundary layer wind tunnel at offshore and onshore conditions. Time-resolved measurements were carried out with three component hot wire anemometry and stereo-PIV in the middle vertical plane of the wake up to eleven turbine...... diameter downstream. The results show an earlier wake recovery for the onshore case. The effect of inflow conditions and the wind turbine’s working conditions on wake meandering was investigated. Wake meandering was detected by hot wire anemometry through a low frequency peak in the turbulent power...

  12. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    Science.gov (United States)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  13. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Science.gov (United States)

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E

    2012-01-01

    Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  14. Improvement of wind tunnel experiment method for atmospheric diffusion

    International Nuclear Information System (INIS)

    Nakai, Masayuki; Sada, Koichi

    1987-01-01

    A wind direction fluctuation vane was added to CRIEPI's large - scale atmospheric diffusion wind tunnel for the purpose of increasing and controlling turbulence intensity. When the wind direction fluctuation vane was operated lateral plume spread and lateral turbulence intersity became greater than for cases when it was not operated. Use of the vane improved the ability of the wind tunnel to simulate plane spread under natural conditions. (author)

  15. Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot

    OpenAIRE

    Martínez Lacasa, Daniel; Moreno Blanc, Javier; Tresánchez, Marcel; Clotet Bellmunt, Eduard; Jiménez-Soto, Juan M.; Magrans, Rudys; Pardo Martínez, Antonio; Marco Colás, Santiago; Palacín Roca, Jordi

    2016-01-01

    This paper presents themeasurement of gas concentration and wind intensity performed with amobile robot in a customturbulent wind tunnel designed for experimentation with customizable wind and gas leak sources.This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber...

  16. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Directory of Open Access Journals (Sweden)

    Manuela de Lucas

    Full Text Available BACKGROUND: Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. METHODOLOGY/PRINCIPAL FINDINGS: As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. CONCLUSIONS: Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed. We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  17. Design, construction and calibration of a portable boundary layer wind tunnel for field use

    Science.gov (United States)

    Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...

  18. NUMERICAL AND EXPERIMENTAL INVESTIGATION ON THE FLUTTER OF CANTILEVERED PLATES WITH FREE LEADING EDGE IN AXIAL FLOW

    Directory of Open Access Journals (Sweden)

    I. P. G. SOPAN RAHTIKA

    2017-10-01

    Full Text Available This paper reports the results of the numerical and experimental investigation on the flutter of cantilevered thin flat plates with free leading edge in axial flow. Three methods of in-vacuo modal analyses of the plates are presented and compared in this paper, namely the finite element modal analysis using ANSYS STUDENT Modal, the analytical beam model, and the experimental modal analysis. In this study, the numerical Fluid Structure Interaction was performed using the ANSYS STUDENT Structural Transient Analysis and ANSYS STUDENT CFX to obtain the system response in the time domain. Furthermore, the experimental investigation was conducted in the smooth flow of a wind tunnel to observe the flutter speeds of the plates and their vibration characteristics. The plates’ vibration behaviors were mapped on the normalized air speed. The normalized air speed can be divided into four speed zones based on the experimental plates’ vibration characteristics. A new finding observed during the experiments is the presence of intermittent vibration behavior that is unique to the free leading edge configuration and has not been reported by other researchers in the earlier references of the clamped leading edge configuration. The potential application of this Fluid Structure Interaction configuration to wind harvesting is inquired.

  19. Computational Wind Tunnel: A Design Tool for Rotorcraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotorcraft engineers traditionally use the wind tunnel to evaluate and finalize designs. Insufficient correlation between wind tunnel results and flight tests, have...

  20. Blade-Element/Momentum Technique for Rotors operating in Wind Tunnels

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Sørensen, Dan Nørtoft

    2003-01-01

    small, since important properties of the blade boundary layer otherwise cannot be captured correctly. On the other hand, severe problems with wind tunnel blockage may be the result if the ratio between the areas of the rotor and the wind tunnel cross section is too big. In all cases, wind tunnel...... wallcorrections are needed in order that measured data corresponds to unconstrained flow conditions. The present work is based on a model for ducted axial fans by Sørensen and Sørensen [5], modified to account for free (unbounded) turbines [6]. Here, we extend the model to acount for wind turbines placed in wind...

  1. Thermal effects influencing measurements in a supersonic blowdown wind tunnel

    Directory of Open Access Journals (Sweden)

    Vuković Đorđe S.

    2016-01-01

    Full Text Available During a supersonic run of a blowdown wind tunnel, temperature of air in the test section drops which can affect planned measurements. Adverse thermal effects include variations of the Mach and Reynolds numbers, variation of airspeed, condensation of moisture on the model, change of characteristics of the instrumentation in the model, et cetera. Available data on thermal effects on instrumentation are pertaining primarily to long-run-duration wind tunnel facilities. In order to characterize such influences on instrumentation in the models, in short-run-duration blowdown wind tunnels, temperature measurements were made in the wing-panel-balance and main-balance spaces of two wind tunnel models tested in the T-38 wind tunnel. The measurements showed that model-interior temperature in a run increased at the beginning of the run, followed by a slower drop and, at the end of the run, by a large temperature drop. Panel-force balance was affected much more than the main balance. Ways of reducing the unwelcome thermal effects by instrumentation design and test planning are discussed.

  2. Preliminary studies on the Marcoule site, using a wind-tunnel

    International Nuclear Information System (INIS)

    Chassany, J.Ph.; Salaun-Penquer, G.

    1961-01-01

    The tests were carried out in the 3.30 x 2.20 subsonic elliptical wind-tunnel of the Marseille Institute of fluid mechanics, on a 1/1000 scale model measuring 3 m x 3 m. The aerodynamic field developing above the site, made visible by ammonium, hydro-chlorate fumes, and the residues were observed and filmed by means of a synchronised cine-camera with stroboscopic lighting for 4 wind directions. The fall-out from the various waste products was obtained from a spraying of lead acetate solution on the model and hydrogen sulphide emissions. The zones of maximum pollution can be determined from a study of the film taken during the blackening of the spots. (author) [fr

  3. Toward an Integrated Optical Data System for Wind Tunnel Testing

    National Research Council Canada - National Science Library

    Ruyten, Wim

    1999-01-01

    ...) of the test article in a wind tunnel test. The theory for such P&A determinations is developed and applied to data from a recent pressure sensitive paint test in AEDC's 16 ft transonic wind tunnel...

  4. Reducing Wind Tunnel Data Requirements Using Neural Networks

    Science.gov (United States)

    Ross, James C.; Jorgenson, Charles C.; Norgaard, Magnus

    1997-01-01

    The use of neural networks to minimize the amount of data required to completely define the aerodynamic performance of a wind tunnel model is examined. The accuracy requirements for commercial wind tunnel test data are very severe and are difficult to reproduce using neural networks. For the current work, multiple input, single output networks were trained using a Levenberg-Marquardt algorithm for each of the aerodynamic coefficients. When applied to the aerodynamics of a 55% scale model of a U.S. Air Force/ NASA generic fighter configuration, this scheme provided accurate models of the lift, drag, and pitching-moment coefficients. Using only 50% of the data acquired during, the wind tunnel test, the trained neural network had a predictive accuracy equal to or better than the accuracy of the experimental measurements.

  5. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    Science.gov (United States)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  6. Pioneering Russian wind tunnels and first experimental investigations, 1871-1915

    Science.gov (United States)

    Gorbushin, A. R.

    2017-11-01

    A review of foreign and Russian sources is given mentioning the pioneering wind tunnels built in Russia at the turn of 19th and 20th centuries. The first wind tunnel in Russia was constructed by V.A. Pashkevich at the Mikhailovsky Artillery Academy in St. Petersburg in 1871. In total from 1871 through 1915, 18 wind tunnels were constructed in Russia: 11 in Moscow, 5 in St. Petersburg and 2 in Kaluga. An overview of the pioneering Russian wind tunnels built by V.A. Pashkevich, K.E. Tsiolkovsky, prof. N.E. Zhukovsky, D.P. Ryabushinsky and prof. K.P. Boklevsky is given. Schemes, photographs, formulas, description of the research and test results taken from the original papers published by the wind tunnel designers are given. Photographs from the N.E. Zhukovsky Scientific and Memorial Museum and the Archive of the Russian Academy of Sciences are used in the article. Methods of flow visualization and results of their application are presented. The Russian scientists and researchers' contribution to the development of techniques and methods of aerodynamic experiment is shown, including one of the most important aspects - the wall interference problem.

  7. Wind Tunnel Assessment of Ship Manoeuvrability using a PMM Technique

    DEFF Research Database (Denmark)

    Agdrup, Kristian; Jensen, Andreas G.; Aage, Christian

    1999-01-01

    Tests have been performed at the Danish Maritime Institute (DMI) to investigate the applicability of a new wind tunnel Planar Motion Mechanism (PMM) for the determination of hydrodynamic coefficients of ships. The method has been tested on a tanker with known towing tank data. The wind tunnel model...... data giving reasonable results. The dependency of amplitude and frequency is evaluated, and sources of inaccuracy are discussed. It is concluded that the wind tunnel method is a promising method to achieve a fast and cost-effective estimate of the hydrodynamic coefficients of a ship hull...

  8. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    Science.gov (United States)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  9. Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade

    Science.gov (United States)

    Hudişteanu, Sebastian Valeriu; Popovici, Cătălin George; Cherecheş, Nelu-Cristian

    2018-02-01

    The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30). The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF) and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.

  10. Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade

    Directory of Open Access Journals (Sweden)

    Hudişteanu Sebastian Valeriu

    2018-01-01

    Full Text Available The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30. The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.

  11. Characterization of a New Open Jet Wind Tunnel to Optimize and Test Vertical Axis Wind Turbines Using Flow Visualization and Measurement

    DEFF Research Database (Denmark)

    Tourn, S.; Gilabert, R.; Sánchez, V.

    Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out.......Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out....

  12. Expert judgment study on wind pressure coefficients. Part 2 : Unprocessed data: Expert rationales Wind tunnel data. Final report

    NARCIS (Netherlands)

    De Wit, S.

    1999-01-01

    In the design of low-rise buildings, wind tunnel experiments are scarcely employed to assess the wind-induced pressures, which are required e.g. for the simulation of ventilation flows or for the evaluation of the structural integrity. Instead, techniques are used, which predominandy rely on inter-

  13. Accessing Wind Tunnels From NASA's Information Power Grid

    Science.gov (United States)

    Becker, Jeff; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.

  14. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    Science.gov (United States)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  15. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    Science.gov (United States)

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  16. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions

  17. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  18. A method for data base management and analysis for wind tunnel data

    Science.gov (United States)

    Biser, Aileen O.

    1987-01-01

    To respond to the need for improved data base management and analysis capabilities for wind-tunnel data at the Langley 16-Foot Transonic Tunnel, research was conducted into current methods of managing wind-tunnel data and a method was developed as a solution to this need. This paper describes the development of the data base management and analysis method for wind-tunnel data. The design and implementation of the software system are discussed and examples of its use are shown.

  19. Wind tunnel evaluation of the RAAMP sampler. Final report

    International Nuclear Information System (INIS)

    Vanderpool, R.W.; Peters, T.M.

    1994-11-01

    Wind tunnel tests of the Department of Energy RAAMP (Radioactive Atmospheric Aerosol Monitoring Program) monitor have been conducted at wind speeds of 2 km/hr and 24 km/hr. The RAAMP sampler was developed based on three specific performance objectives: (1) meet EPA PM10 performance criteria, (2) representatively sample and retain particles larger than 10 microm for later isotopic analysis, (3) be capable of continuous, unattended operation for time periods up to 2 months. In this first phase of the evaluation, wind tunnel tests were performed to evaluate the sampler as a potential candidate for EPA PM10 reference or equivalency status. As an integral part of the project, the EPA wind tunnel facility was fully characterized at wind speeds of 2 km/hr and 24 km/hr in conjunction with liquid test aerosols of 10 microm aerodynamic diameter. Results showed that the facility and its operating protocols met or exceeded all 40 CFR Part 53 acceptance criteria regarding PM10 size-selective performance evaluation. Analytical procedures for quantitation of collected mass deposits also met 40 CFR Part 53 criteria. Modifications were made to the tunnel's test section to accommodate the large dimensions of the RAAMP sampler's instrument case

  20. Studies using wind tunnel to simulate the Atmospheric Boundary Layer at the Alcântara Space Center

    Directory of Open Access Journals (Sweden)

    Luciana P. Bassi Marinho

    2009-01-01

    Full Text Available The Alcântara Space Center (ASC region has a peculiar topography due to the existence of a coastal cliff, which modifies the atmospheric boundary layer characteristic in a way that can affect rocket launching operations. Wind tunnel measurements can be an important tool for the understanding of turbulence and wind flow pattern characteristics in the ASC neighborhood, along with computational fluid dynamics and observational data. The purpose of this paper is to describe wind tunnel experiments that have been carried out by researchers from the Brazilian Institutions IAE, ITA and INPE. The technologies of Hot-Wire Anemometer and Particle Image Velocimetry (PIV have been used in these measurements, in order to obtain information about wind flow patterns as velocity fields and vorticity. The wind tunnel measurements are described and the results obtained are presented.

  1. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    Science.gov (United States)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  2. Wall Correction Model for Wind Tunnels with Open Test Section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2004-01-01

    , the corrections from the model are in very good agreement with the CFD computaions, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections. Keywords: Wind tunnel correction, momentum theory...

  3. 7 x 10 Foot Wind Tunnel

    Data.gov (United States)

    Federal Laboratory Consortium — This wind tunnel is used for basic and applied research in aeromechanics on advanced and unique technology rotorcraft. It supports research on advanced concepts and...

  4. IDENTIFICATION OF WIND LOAD APPLIED TO THREE-DIMENSIONAL STRUCTURES BY VIRTUE OF ITS SIMULATION IN THE WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Doroshenko Sergey Aleksandrovich

    2012-10-01

    Full Text Available The authors discuss wind loads applied to a set of two buildings. The wind load is simulated with the help of the wind tunnel. In the Russian Federation, special attention is driven to the aerodynamics of high-rise buildings and structures. According to the Russian norms, identification of aerodynamic coefficients for high-rise buildings, as well as the influence of adjacent buildings and structures, is performed on the basis of models of structures exposed to wind impacts simulated in the wind tunnel. This article deals with the results of the wind tunnel test of buildings. The simulation was carried out with the involvement of a model of two twenty-three storied buildings. The experiment was held in a wind tunnel of the closed type at in the Institute of Mechanics of Moscow State University. Data were compared at the zero speed before and after the experiment. LabView software was used to process the output data. Graphs and tables were developed in the Microsoft Excel package. GoogleSketchUp software was used as a visualization tool. The three-dimensional flow formed in the wind tunnel can't be adequately described by solving the two-dimensional problem. The aerodynamic experiment technique is used to analyze the results for eighteen angles of the wind attack.

  5. Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel

    NARCIS (Netherlands)

    Moonen, P.; Blocken, B.J.E.; Roels, S.; Carmeliet, J.E.

    2006-01-01

    A methodology for numerically simulating the flow conditions in closed-circuit wind tunnels is developed as a contribution to the general philosophy of incorporating Computational Fluid Dynamics (CFD) in wind tunnel design and testing and to CFD validation studies. The methodology is applied to the

  6. Implementation of a Particle Image Velocimetry System for Wind Tunnel Flowfield Measurements

    Science.gov (United States)

    2014-12-01

    Instrumentation Wind tunnel speed was measured by two pitot probes mounted on opposite tunnel walls upstream of the model and above the ground...board. The pitot probes were connected differentially to Scanivalve 1-psi transducers. A secondary measurement of wind tunnel speed was made with the...Manf. Model Range 1 Tunnel Vel (south pitot ) Transducer Scanivalve CR24D 1 psi 2 Tunnel Vel (north pitot ) Transducer Scanivalve CR24D 1 psi 3

  7. Digital control of wind tunnel magnetic suspension and balance systems

    Science.gov (United States)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  8. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    Science.gov (United States)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  9. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    Science.gov (United States)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  10. Low Speed Wind Tunnel Facility (LSWTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility consists of a large-scale, low-speed open-loop induction wind tunnel which has been modified to house a linear turbine cascade. A 125-hp...

  11. Immersion and contact freezing experiments in the Mainz wind tunnel laboratory

    Science.gov (United States)

    Eppers, Oliver; Mayer, Amelie; Diehl, Karoline; Mitra, Subir; Borrmann, Stephan; Szakáll, Miklós

    2016-04-01

    Immersion and contact freezing are of outmost important ice nucleation processes in mixed phase clouds. Experimental studies are carried out in the Mainz vertical wind tunnel laboratory in order to characterize these nucleation processes for different ice nucleating particles (INP), such as for mineral dust or biological particles. Immersion freezing is investigated in our laboratory with two different experimental techniques, both attaining contact-free levitation of liquid droplets and cooling of the surrounding air down to about -25 °C. In an acoustic levitator placed in the cold room of our laboratory, drops with diameters of 2 mm are investigated. In the vertical air stream of the wind tunnel droplets with diameter of 700 micron are freely floated at their terminal velocities, simulating the flow conditions of the free atmosphere. Furthermore, the wind tunnel offers a unique platform for contact freezing experiments. Supercooled water droplets are floated in the vertical air stream at their terminal velocities and INP are injected into the tunnel air stream upstream of them. As soon as INP collides with the supercooled droplet the contact freezing is initiated. The first results of immersion and contact freezing experiments with cellulose particles both in the acoustic levitator and in the wind tunnel will be presented. Cellulose is considered as typical INP of biological origin and a macrotracer for plant debris. Nucleating properties of cellulose will be provided, mainly focusing on the temperature, INP concentration, and specific surface area dependences of the freezing processes. Direct comparison between the different experimental techniques (acoustic levitator and wind tunnel), as well as between nucleation modes (immersion and contact freezing) will be presented. The work is carried out within the framework of the German research unit INUIT.

  12. Historical review and future perspectives for Pilot Transonic Wind Tunnel of IAE

    Directory of Open Access Journals (Sweden)

    João Batista P. Falcão Filho

    2009-01-01

    Full Text Available The Pilot Transonic Wind Tunnel of Institute of Aeronautics and Space (PTT Pilot Transonic Wind Tunnel is an important result of a tremendous effort to install a high speed wind tunnel complex (TTS acronyms for Transonic and Supersonic Tunnels, in Portuguese at the IAE, to support Brazilian aerospace research. Its history is described below, starting from the moment the TTS project was first conceived, highlighting each successive phase, mentioning the main difficulties encountered, and the solutions chosen, up until the final installation of the Pilot facility. A brief description of the tunnel's shakedown and calibration phases is also given, together with the present campaigns and proposed activities for the near future.

  13. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...... the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process...

  14. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    Science.gov (United States)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  15. Ski jumping takeoff in a wind tunnel with skis.

    Science.gov (United States)

    Virmavirta, Mikko; Kivekäs, Juha; Komi, Paavo

    2011-11-01

    The effect of skis on the force-time characteristics of the simulated ski jumping takeoff was examined in a wind tunnel. Takeoff forces were recorded with a force plate installed under the tunnel floor. Signals from the front and rear parts of the force plate were collected separately to examine the anteroposterior balance of the jumpers during the takeoff. Two ski jumpers performed simulated takeoffs, first without skis in nonwind conditions and in various wind conditions. Thereafter, the same experiments were repeated with skis. The jumpers were able to perform very natural takeoff actions (similar to the actual takeoff) with skis in wind tunnel. According to the subjective feeling of the jumpers, the simulated ski jumping takeoff with skis was even easier to perform than the earlier trials without skis. Skis did not much influence the force levels produced during the takeoff but they still changed the force distribution under the feet. Contribution of the forces produced under the rear part of the feet was emphasized probably because the strong dorsiflexion is needed for lifting the skis to the proper flight position. The results presented in this experiment emphasize that research on ski jumping takeoff can be advanced by using wind tunnels.

  16. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    Science.gov (United States)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  17. Build an Inexpensive Wind Tunnel to Test CO2 Cars

    Science.gov (United States)

    McCormick, Kevin

    2012-01-01

    As part of the technology education curriculum, the author's eighth-grade students design, build, test, and race CO2 vehicles. To help them in refining their designs, they use a wind tunnel to test for aerodynamic drag. In this article, the author describes how to build a wind tunnel using inexpensive, readily available materials. (Contains 1…

  18. Automatic control of cryogenic wind tunnels

    Science.gov (United States)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  19. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  20. Wind-Tunnel Investigation of the Aerodynamic Performance of Surface-Modification Cables

    Directory of Open Access Journals (Sweden)

    Hiroshi Katsuchi

    2017-12-01

    Full Text Available The wind-induced vibration of stay cables of cable-stayed bridges, which includes rain-wind-induced vibration (RWIV and dry galloping (DG, has been studied for a considerable amount of time. In general, mechanical dampers or surface modification are applied to suppress the vibration. In particular, several types of surface-modification cable, including indentation, longitudinally parallel protuberance, helical fillet, and U-shaped grooving, have been developed. Recently, a new type of aerodynamically stable cable with spiral protuberances was developed. It was confirmed that the cable has a low drag force coefficient, like an indented cable, and that it prevented the formation of water rivulets on the cable surface. In this study, the stability for RWIV of this cable was investigated with various flow angles and protuberance dimensions in a wind-tunnel test. It was found that the spiral protuberance cable is aerodynamically stable against both RWIV and DG for all test wind angles. The effects of the protuberance dimensions were also clarified. Keywords: Rain-wind-induced vibration, Dry galloping, Stay cable, Wind-tunnel test

  1. Wall correction model for wind tunnels with open test section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2006-01-01

    In the paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, which is based on a one-dimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. In the model...... good agreement with the CFD computations, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections....

  2. Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge

    Czech Academy of Sciences Publication Activity Database

    Buljac, Andrija; Kozmar, H.; Pospíšil, Stanislav; Macháček, Michael

    2017-01-01

    Roč. 137, April (2017), s. 310-322 ISSN 0141-0296 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : bridge decks * roadway wind barrier * aerodynamic forces and moments * galloping * flutter * wind-tunnel experiments Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering , Municipal and structural engineering Impact factor: 2.258, year: 2016 http://www.sciencedirect.com/science/ article /pii/S014102961730278X

  3. Numerical simulation of flows around deformed aircraft model in a wind tunnel

    Science.gov (United States)

    Lysenkov, A. V.; Bosnyakov, S. M.; Glazkov, S. A.; Gorbushin, A. R.; Kuzmina, S. I.; Kursakov, I. A.; Matyash, S. V.; Ishmuratov, F. Z.

    2016-10-01

    To obtain accurate data of calculation method error requires detailed simulation of the experiment in wind tunnel with keeping all features of the model, installation and gas flow. Two examples of such detailed data comparison are described in this paper. The experimental characteristics of NASA CRM model obtained in the ETW wind tunnel (Cologne, Germany), and CFD characteristics of this model obtained with the use of EWT-TsAGI application package are compared. Following comparison is carried out for an airplane model in the T-128 wind tunnel (TsAGI, Russia). It is seen that deformation influence on integral characteristics grows with increasing Re number and, accordingly, the dynamic pressure. CFD methods application for problems of experimental research in the wind tunnel allows to separate viscosity and elasticity effects.

  4. Photogrammetry Applied to Wind Tunnel Testing

    Science.gov (United States)

    Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.

    2000-01-01

    In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.

  5. Understanding and Exploiting Wind Tunnels with Porous Flexible Walls for Aerodynamic Measurement

    OpenAIRE

    Brown, Kenneth Alexander

    2016-01-01

    The aerodynamic behavior of wind tunnels with porous, flexible walls formed from tensioned Kevlar has been characterized and new measurement techniques in such wind tunnels explored. The objective is to bring the aerodynamic capabilities of so-called Kevlar-wall test sections in-line with those of traditional solid-wall test sections. The primary facility used for this purpose is the 1.85-m by 1.85-m Stability Wind Tunnel at Virginia Tech, and supporting data is provided by the 2-m by 2-m L...

  6. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  7. Correlations of Platooning Track Test and Wind Tunnel Data

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, Michael P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kelly, Kenneth J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yanowitz, Janet [Ecoengineering, Sharonville, OH (United States)

    2018-02-02

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 to Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.

  8. Computational Wind Tunnel: A Design Tool for Rotorcraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During initial design studies, parametric variation of vehicle geometry is routine. In addition, rotorcraft engineers traditionally use the wind tunnel to evaluate...

  9. Design and optimization of resistance wire electric heater for hypersonic wind tunnel

    Science.gov (United States)

    Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir

    2012-06-01

    The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.

  10. Wind tunnel evaluation of Hi-Vol TSP effectiveness data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wind tunnel evaluation of EPA's Hi-Vol TSP sampler for sampling effectiveness with regards to aerodynamic particle diameter (5 to 35 microns), wind speed (2, 8, 24...

  11. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 1: Background and description

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  12. A wind tunnel study on the effect of trees on PM2.5 distribution around buildings.

    Science.gov (United States)

    Ji, Wenjing; Zhao, Bin

    2018-03-15

    Vegetation, especially trees, is effective in reducing the concentration of particulate matter. Trees can efficiently capture particles, improve urban air quality, and may further decrease the introduction of outdoor particles to indoor air. The objective of this study is to investigate the effects of trees on particle distribution and removal around buildings using wind tunnel experiments. The wind tunnel is 18m long, 12m wide, and 3.5m high. Trees were modeled using real cypress branches to mimic trees planted around buildings. At the inlet of the wind tunnel, a "line source" of particles was released, simulating air laden with particulate matter. Experiments with the cypress tree and tree-free models were conducted to compare particle concentrations around the buildings. The results indicate that cypress trees clearly reduce PM 2.5 concentrations compared with the tree-free model. The cypress trees enhanced the PM 2.5 removal rate by about 20%. The effects of trees on PM 2.5 removal and distribution vary at different heights. At the base of the trees, their effect on reducing PM 2.5 concentrations is the most significant. At a great height above the treetops, the effect is almost negligible. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Cryogenic Wind Tunnel Models. Design and Fabrication

    Science.gov (United States)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  14. Effects of winglet on transonic flutter characteristics of a cantilevered twin-engine-transport wing model

    Science.gov (United States)

    Ruhlin, C. L.; Bhatia, K. G.; Nagaraja, K. S.

    1986-01-01

    A transonic model and a low-speed model were flutter tested in the Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90. Transonic flutter boundaries were measured for 10 different model configurations, which included variations in wing fuel, nacelle pylon stiffness, and wingtip configuration. The winglet effects were evaluated by testing the transonic model, having a specific wing fuel and nacelle pylon stiffness, with each of three wingtips, a nonimal tip, a winglet, and a nominal tip ballasted to simulate the winglet mass. The addition of the winglet substantially reduced the flutter speed of the wing at transonic Mach numbers. The winglet effect was configuration-dependent and was primarily due to winglet aerodynamics rather than mass. Flutter analyses using modified strip-theory aerodynamics (experimentally weighted) correlated reasonably well with test results. The four transonic flutter mechanisms predicted by analysis were obtained experimentally. The analysis satisfactorily predicted the mass-density-ratio effects on subsonic flutter obtained using the low-speed model. Additional analyses were made to determine the flutter sensitivity to several parameters at transonic speeds.

  15. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  16. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    Science.gov (United States)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  17. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    Science.gov (United States)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  18. Wind Tunnel Simulations of the Mock Urban Setting Test - Experimental Procedures and Data Analysis

    National Research Council Canada - National Science Library

    Gailis, Ralph

    2004-01-01

    ... of the data analysis techniques is given. Emphasis is placed on the scaling arguments used to compare data between a wind tunnel and full-scale study, and on methods of uncertainty analysis to provide a rigorous underpinning to the dataset. The report serves as a complete documentation for users of the MUST wind tunnel simulation dataset, which can be obtained by contacting the author.

  19. Wind Tunnel Measurements at Virginia Tech

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck

    2012-01-01

    In this section, the wind tunnel configuration used for aerodynamic and aeroacoustic measurement is described. Then, the validation of the method for evaluating far-field noise from surface microphones as described in Section 5 is presented. Finally, the design concept proposed in Section 6 is ve...

  20. Effects of large bending deflections on blade flutter limits

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, Bjarne Skovmose; Hartvig Hansen, Morten

    2008-04-15

    The coupling of bending and torsion due to large blade bending are assumed to have some effects of the flutter limits of wind turbines. In the present report, the aeroelastic blade model suggested by Kallesoee, which is similar to a second order model, is used to investigate the aeroelastic stability limits of the RWT blade with and without the effects of the large blade deflection. The investigation shows no significant change of the flutter limit on the rotor speed due to the blade deflection,whereas the first edgewise bending mode becomes negatively damped due to the coupling with blade torsion which causes a change of the effective direction of blade vibration. These observations are confirmed by nonlinear aeroelastic simulations using HAWC2. This work is part of the UpWind project funded by the European Commission under the contract number SES6-CT-2005-019945 which is gratefully acknowledged. This report is the deliverable D2.3 of the UpWind project. (au)

  1. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    Science.gov (United States)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  2. Soil wind erosion in ecological olive trees in the Tabernas desert (southeastern Spain): a wind tunnel experiment

    Science.gov (United States)

    Asensio, Carlos; Lozano, Francisco Javier; Gallardo, Pedro; Giménez, Antonio

    2016-08-01

    Wind erosion is a key component of the soil degradation processes. The purpose of this study is to find out the influence of material loss from wind on soil properties for different soil types and changes in soil properties in olive groves when they are tilled. The study area is located in the north of the Tabernas Desert, in the province of Almería, southeastern Spain. It is one of the driest areas in Europe, with a semiarid thermo-Mediterranean type of climate. We used a new wind tunnel model over three different soil types (olive-cropped Calcisol, Cambisol and Luvisol) and studied micro-plot losses and deposits detected by an integrated laser scanner. We also studied the image processing possibilities for examining the particles attached to collector plates located at the end of the tunnel to determine their characteristics and whether they were applicable to the setup. Samples collected in the traps at the end of the tunnel were analyzed. We paid special attention to the influence of organic carbon, carbonate and clay contents because of their special impact on soil crusting and the wind-erodible fraction. A principal components analysis (PCA) was carried out to find any relations on generated dust properties and the intensity and behavior of those relationships. Component 1 separated data with high N and OC contents from samples high in fine silt, CO3= and available K content. Component 2 separated data with high coarse silt and clay contents from data with high fine sand content. Component 3 was an indicator of available P2O5 content. Analysis of variance (ANOVA) was carried out to analyze the effect of soil type and sampling height on different properties of trapped dust. Calculations based on tunnel data showed overestimation of erosion in soil types and calculation of the fraction of soil erodible by wind done by other authors for Spanish soils. As the highest loss was found in Cambisols, mainly due to the effect on soil crusting and the wind

  3. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    Science.gov (United States)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  4. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    Science.gov (United States)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  5. Reduction of the performance of a noise screen due to screen-induced wind-speed gradients: numerical computations and wind-tunnel experiments

    NARCIS (Netherlands)

    Salomons, E.M.

    1999-01-01

    Downwind sound propagation over a noise screen is investigated by numerical computations and scale model experiments in a wind tunnel. For the computations, the parabolic equation method is used, with a range-dependent sound-speed profile based on wind-speed profiles measured in the wind tunnel and

  6. Hypersonic wind-tunnel free-flying experiments with onboard instrumentation

    KAUST Repository

    Mudford, Neil R.; O'Byrne, Sean B.; Neely, Andrew J.; Buttsworth, David R.; Balage, Sudantha

    2015-01-01

    Hypersonic wind-tunnel testing with "free-flight" models unconnected to a sting ensures that sting/wake flow interactions do not compromise aerodynamic coefficient measurements. The development of miniaturized electronics has allowed the demonstration of a variant of a new method for the acquisition of hypersonic model motion data using onboard accelerometers, gyroscopes, and a microcontroller. This method is demonstrated in a Mach 6 wind-tunnel flow, whose duration and pitot pressure are sufficient for the model to move a body length or more and turn through a significant angle. The results are compared with those obtained from video analysis of the model motion, the existing method favored for obtaining aerodynamic coefficients in similar hypersonic wind-tunnel facilities. The results from the two methods are in good agreement. The new method shows considerable promise for reliable measurement of aerodynamic coefficients, particularly because the data obtained are in more directly applicable forms of accelerations and rates of turn, rather than the model position and attitude obtained from the earlier visualization method. The ideal may be to have both methods operating together.

  7. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.

    2016-01-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short...... compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement...... for accurately measuring small scale flow structures in a wind tunnel....

  8. A flow visualization study of spore release using a wind tunnel-mounted laser light sheet

    International Nuclear Information System (INIS)

    Davis, J.M.; Eisner, A.D.; Wiener, R.W.; Main, C.E.

    1997-01-01

    A phase Doppler anemometry system in combination with a laser light sheet was used in a low-speed recirculating wind tunnel to examine the flow field around an individual leaf. Turbulence similar to that encountered near the surface of the earth in a neutral stability boundary layer was generated using a grid at the upwind end of the wind tunnel test section. Individual healthy and diseased plant leaves were introduced into the tunnel with the leaf tip pointing downwind. The Mie-scattered radiation from the spores departing the diseased leaf was captured on videotape. Image processing software was used to enhance the visual quality of the individual frames from the videotape and to make spore velocity calculations. Three main vortex regions around the leaf were identified. The importance of these regions to the separation of the spores from the leaf surface and their subsequent downwind movement was analyzed

  9. Wind tunnel testing to predict control room atmospheric dispersion factors

    International Nuclear Information System (INIS)

    Holmquist, L.J.; Harden, P.A.; Muraida, J.E.

    1993-01-01

    Recent concerns at Palisades about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing the control room has the potential for unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode. The current limiting control room habitability analysis allows for 1.2 x 10 -2 m 3 /s (25 ft 3 /min) unfiltered in-leakage into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered as a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. A second approach to this problem was to determine the atmospheric dispersion factors (x/Q's) through a wind tunnel test using a scale model of Palisades. The results of the wind tunnel testing could yield more realistic x/Q's for control room habitability than previously employed methods. Palisades selected the wind tunnel study option based on its ease of implementation, realistic results, and low cost. More importantly, the results of the study could increase the allowable unfiltered in-leakage

  10. Airloads Correlation of the UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    Directory of Open Access Journals (Sweden)

    I-Chung Chang

    2014-01-01

    Full Text Available The presented research validates the capability of a loosely coupled computational fluid dynamics (CFD and comprehensive rotorcraft analysis (CRA code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the Full-Scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  11. Simulation and control engineering studies of NASA-Ames 40 foot by 80 foot/80 foot by 120 foot wind tunnels

    Science.gov (United States)

    Bohn, J. G.; Jones, J. E.

    1978-01-01

    The development and use of a digital computer simulation of the proposed wind tunnel facility is described. The feasibility of automatic control of wind tunnel airspeed and other parameters was examined. Specifications and implementation recommendations for a computer based automatic control and monitoring system are presented.

  12. Wind Tunnel Experiments to Study Chaparral Crown Fires.

    Science.gov (United States)

    Cobian-Iñiguez, Jeanette; Aminfar, AmirHessam; Chong, Joey; Burke, Gloria; Zuniga, Albertina; Weise, David R; Princevac, Marko

    2017-11-14

    The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer was constructed with excelsior (shredded wood). We developed a methodology to measure mass loss, temperature, and flame height for both fuel layers. Thermocouples placed in each layer estimated temperature. A video camera captured the visible flame. Post-processing of digital imagery yielded flame characteristics including height and flame tilt. A custom crown mass loss instrument developed in-house measured the evolution of the mass of the crown layer during the burn. Mass loss and temperature trends obtained using the technique matched theory and other empirical studies. In this study, we present detailed experimental procedures and information about the instrumentation used. The representative results for the fuel mass loss rate and temperature filed within the fuel bed are also included and discussed.

  13. New aeroelastic studies for a morphing wing

    Directory of Open Access Journals (Sweden)

    Ruxandra Mihaela BOTEZ*

    2012-06-01

    Full Text Available For this study, the upper surface of a rectangular finite aspect ratio wing, with a laminar airfoil cross-section, was made of a carbon-Kevlar composite material flexible skin. This flexible skin was morphed by use of Shape Memory Alloy actuators for 35 test cases characterized by combinations of Mach numbers, Reynolds numbers and angles of attack. The Mach numbers varied from 0.2 to 0.3 and the angles of attack ranged between -1° and 2°. The optimized airfoils were determined by use of the CFD XFoil code. The purpose of this aeroelastic study was to determine the flutter conditions to be avoided during wind tunnel tests. These studies show that aeroelastic instabilities for the morphing configurations considered appeared at Mach number 0.55, which was higher than the wind tunnel Mach number limit speed of 0.3. The wind tunnel tests could thus be performed safely in the 6’×9’ wind tunnel at the Institute for Aerospace Research at the National Research Council Canada (IAR/NRC, where the new aeroelastic studies, applied on morphing wings, were validated.

  14. Tunneling cracks in full scale wind turbine blade joints

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn; Sørensen, Bent F.; Kildegaard, C.

    2017-01-01

    A novel approach is presented and used in a generic tunneling crack tool for the prediction of crack growth rates for tunneling cracks propagating across a bond-line in a wind turbine blade under high cyclic loadings. In order to test and demonstrate the applicability of the tool, model predictions...

  15. Calculations of air cooler for new subsonic wind tunnel

    Science.gov (United States)

    Rtishcheva, A. S.

    2017-10-01

    As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.

  16. Wind tunnel simulation of Martian sand storms

    Science.gov (United States)

    Greeley, R.

    1980-01-01

    The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.

  17. Wind tunneling testing and analysis relating to the spinning of light aircraft

    Science.gov (United States)

    Mccormick, B. W.; Zilliac, G. G.; Ballin, M. G.

    1984-01-01

    Included is a summary of two studies related to the spinning of light aircraft. The first study was conducted to demonstrate that the aerodynamic forces and moments acting on a tail of a spinning aircraft can be obtained from static wind-tunnel tests. The second study analytically investigated spinning using a high angle-of-attack aerodynamic model derived from a static wind-tunnel data base. The validity of the aerodynamic model is shown by comparisons with rotary-balance data and forced-oscillation tests. The results of a six-degree-of-freedom analysis show that the dynamics and aerodynamics of the steep- and flat-spin modes of a modified Yankee have been properly modeled.

  18. Fan array wind tunnel: a multifunctional, complex environmental flow manipulator

    Science.gov (United States)

    Dougherty, Christopher; Veismann, Marcel; Gharib, Morteza

    2017-11-01

    The recent emergence of small unmanned aerial vehicles (UAVs) has reshaped the aerospace testing environment. Traditional closed-loop wind tunnels are not particularly suited nor easily retrofit to take advantage of these coordinated, controls-based rotorcraft. As such, a highly configurable, novel wind tunnel aimed at addressing the unmet technical challenges associated with single or formation flight performance of autonomous drone systems is presented. The open-loop fan array wind tunnel features 1296 individually controllable DC fans arranged in a 2.88m x 2.88m array. The fan array can operate with and without a tunnel enclosure and is able to rotate between horizontal and vertical testing configurations. In addition to standard variable speed uniform flow, the fan array can generate both unsteady and shear flows. Through the aid of smaller side fan array units, vortex flows are also possible. Conceptual design, fabrication, and validation of the tunnel performance will be presented, including theoretical and computational predictions of flow speed and turbulence intensity. Validation of these parameters is accomplished through standard pitot-static and hot-wire techniques. Particle image velocimetry (PIV) of various complex flows will also be shown. This material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  19. A MODELING METHOD OF FLUTTERING LEAVES BASED ON POINT CLOUD

    OpenAIRE

    J. Tang; Y. Wang; Y. Zhao; Y. Zhao; W. Hao; X. Ning; K. Lv; Z. Shi; M. Zhao

    2017-01-01

    Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which ar...

  20. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  1. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center

    Science.gov (United States)

    Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

    1990-01-01

    Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

  2. HFSB-seeding for large-scale tomographic PIV in wind tunnels

    Science.gov (United States)

    Caridi, Giuseppe Carlo Alp; Ragni, Daniele; Sciacchitano, Andrea; Scarano, Fulvio

    2016-12-01

    A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized droplets. With respect to a single bubble generator, the system increases the rate of bubbles emission by means of transient accumulation and rapid release. The governing parameters of the system are identified and discussed, namely the bubbles production rate, the accumulation and release times, the size of the bubble injector and its location with respect to the wind tunnel contraction. The relations between the above parameters, the resulting spatial concentration of tracers and measurement of dynamic spatial range are obtained and discussed. Large-scale experiments are carried out in a large low-speed wind tunnel with 2.85 × 2.85 m2 test section, where a vertical axis wind turbine of 1 m diameter is operated. Time-resolved tomographic PIV measurements are taken over a measurement volume of 40 × 20 × 15 cm3, allowing the quantitative analysis of the tip-vortex structure and dynamical evolution.

  3. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  4. Wind tunnel tests of a deep seabed penetrator model

    International Nuclear Information System (INIS)

    Visintini, L.; Murray, C.N.

    1991-01-01

    C.C.R. Euratom Ispra are currently involved in studies on the possibility of storing radioactive wastes in deep ocean sediment beds. The report summarizes the results of wind tunnel tests performed in March 1985 on a 1:2.5 scale model of a European Standard Penetrator in Aermacchi low speed wind tunnel. Tests covered the measurement of overall fluid dynamic forces at varying angle of attack and measurement of unsteady pressures acting on the instrumentation head protruding in the penetrator's wake. Overall force coefficients were found to be in good agreement with predictions. Unsteady pressures were found to be much smaller than expected so that no mechanical damage to instrumentation is to be foreseen even at the high dynamic pressures typical of the penetrator moving into water. The present work has been undertaken under contract 2450-84-08 ED ISP I of C.C.R. EURATOM ISPRA

  5. Calibration of an experimental six component wind tunnel block balance using optical fibre sensors

    CSIR Research Space (South Africa)

    de Ponte, JD

    2016-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  6. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  7. Simulating flow around scaled model of a hypersonic vehicle in wind tunnel

    Science.gov (United States)

    Markova, T. V.; Aksenov, A. A.; Zhluktov, S. V.; Savitsky, D. V.; Gavrilov, A. D.; Son, E. E.; Prokhorov, A. N.

    2016-11-01

    A prospective hypersonic HEXAFLY aircraft is considered in the given paper. In order to obtain the aerodynamic characteristics of a new construction design of the aircraft, experiments with a scaled model have been carried out in a wind tunnel under different conditions. The runs have been performed at different angles of attack with and without hydrogen combustion in the scaled propulsion engine. However, the measured physical quantities do not provide all the information about the flowfield. Numerical simulation can complete the experimental data as well as to reduce the number of wind tunnel experiments. Besides that, reliable CFD software can be used for calculations of the aerodynamic characteristics for any possible design of the full-scale aircraft under different operation conditions. The reliability of the numerical predictions must be confirmed in verification study of the software. The given work is aimed at numerical investigation of the flowfield around and inside the scaled model of the HEXAFLY-CIAM module under wind tunnel conditions. A cold run (without combustion) was selected for this study. The calculations are performed in the FlowVision CFD software. The flow characteristics are compared against the available experimental data. The carried out verification study confirms the capability of the FlowVision CFD software to calculate the flows discussed.

  8. NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration

    Science.gov (United States)

    Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.; hide

    2016-01-01

    NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.

  9. Wind tunnel and CFD modelling of wind pressures on solar energy systems on flat roofs

    NARCIS (Netherlands)

    Bronkhorst, A.J.; Franke, J.; Geurts, C.P.W.; Bentum, van C.A.; Grepinet, F.

    2010-01-01

    Design of solar energy mounting systems requires more knowledge on the wind patterns around these systems. To obtain more insight in the flow patterns, which cause the pressure distributions on the solar energy systems, a wind tunnel test and Computational Fluid Dynamics analysis have been

  10. Neural network feedforward control of a closed-circuit wind tunnel

    Science.gov (United States)

    Sutcliffe, Peter

    Accurate control of wind-tunnel test conditions can be dramatically enhanced using feedforward control architectures which allow operating conditions to be maintained at a desired setpoint through the use of mathematical models as the primary source of prediction. However, as the desired accuracy of the feedforward prediction increases, the model complexity also increases, so that an ever increasing computational load is incurred. This drawback can be avoided by employing a neural network that is trained offline using the output of a high fidelity wind-tunnel mathematical model, so that the neural network can rapidly reproduce the predictions of the model with a greatly reduced computational overhead. A novel neural network database generation method, developed through the use of fractional factorial arrays, was employed such that a neural network can accurately predict wind-tunnel parameters across a wide range of operating conditions whilst trained upon a highly efficient database. The subsequent network was incorporated into a Neural Network Model Predictive Control (NNMPC) framework to allow an optimised output schedule capable of providing accurate control of the wind-tunnel operating parameters. Facilitation of an optimised path through the solution space is achieved through the use of a chaos optimisation algorithm such that a more globally optimum solution is likely to be found with less computational expense than the gradient descent method. The parameters associated with the NNMPC such as the control horizon are determined through the use of a Taguchi methodology enabling the minimum number of experiments to be carried out to determine the optimal combination. The resultant NNMPC scheme was employed upon the Hessert Low Speed Wind Tunnel at the University of Notre Dame to control the test-section temperature such that it follows a pre-determined reference trajectory during changes in the test-section velocity. Experimental testing revealed that the

  11. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  12. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    Science.gov (United States)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  13. Wind-tunnel investigation of the thrust augmentor performance of a large-scale swept wing model. [in the Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Koenig, D. G.; Falarski, M. D.

    1979-01-01

    Tests were made in the Ames 40- by 80-foot wind tunnel to determine the forward speed effects on wing-mounted thrust augmentors. The large-scale model was powered by the compressor output of J-85 driven viper compressors. The flap settings used were 15 deg and 30 deg with 0 deg, 15 deg, and 30 deg aileron settings. The maximum duct pressure, and wind tunnel dynamic pressure were 66 cmHg (26 in Hg) and 1190 N/sq m (25 lb/sq ft), respectively. All tests were made at zero sideslip. Test results are presented without analysis.

  14. Review of Potential Wind Tunnel Balance Technologies

    Science.gov (United States)

    Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.

    2016-01-01

    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.

  15. Pressure field in measurement section of wind tunnel

    Directory of Open Access Journals (Sweden)

    Hnidka Jakub

    2017-01-01

    Full Text Available The University of Defence in Brno has a new low-speed wind tunnel. In order to confirm the quality of the wind inside of the measurement section, several measurements of the dynamic pressure have been performed with the Pitot-static tube. The pressure fields are then analysed and quality of the field is evaluated. Measurement of a pressure drop on the body of a standing helicopter was conducted.

  16. Adaptive-Wall Wind-Tunnel Investigations

    Science.gov (United States)

    1981-02-01

    December 1976 (University *AEDC-TR-79-55, November 1979 Microfilms No. 77-10777) 19. Sears, W.R. "Adaptive Wind Tunnels with 37. Ilrdelyi, A., Magnus , W...California Institute of Technology General Dynamics-CONVAIR Pasadena, CA 91109 P. O. Box 1128 San Diego, CA 92112 Mr. L. I. Chases , MUG-MD Lib. General...Electric Company Dr. R. Magnus Missile and Space Division General Dynamics-CONVAIR P. 0. Box 8555 Kearny Mesa Plant Philadelphia, PA 19101 P. 0. Box

  17. Wind-tunnel investigations of pressure distribution over high-rise buildings

    CSIR Research Space (South Africa)

    Cwik, M

    2013-09-01

    Full Text Available of evaluating wind loads of high-rise structures. The second part provides a description of the research, conducted at the wind-tunnel of the Council for Scientific and Industrial Research, in Pretoria, South Africa. The aim of this research was to determine...

  18. Production of oscillatory flow in wind tunnels

    Science.gov (United States)

    Al-Asmi, K.; Castro, I. P.

    1993-06-01

    A method for producing oscillatory flow in open-circuit wind tunnels driven by centrifugal fans is described. Performance characteristics of a new device installed on two such tunnels of greatly differing size are presented. It is shown that sinusoidal variations of the working section flow, having peak-to-peak amplitudes up to at least 30 percent of the mean flow speed and frequencies up to, typically, that corresponding to the acoustic quarter-wave-length frequency determined by the tunnel size, can be obtained with negligible harmonic distortion or acoustic noise difficulties. A brief review of the various methods that have been used previously is included, and the advantages and disadvantages of these different techniques are highlighted. The present technique seems to represent a significant improvement over many of them.

  19. Analysis of Wind Tunnel Oscillatory Data of the X-31A Aircraft

    Science.gov (United States)

    Smith, Mark S.

    1999-01-01

    Wind tunnel oscillatory tests in pitch, roll, and yaw were performed on a 19%-scale model of the X-31A aircraft. These tests were used to study the aerodynamic characteristics of the X-31A in response to harmonic oscillations at six frequencies. In-phase and out-of-phase components of the aerodynamic coefficients were obtained over a range of angles of attack from 0 to 90 deg. To account for the effect of frequency on the data, mathematical models with unsteady terms were formulated by use of two different indicial functions. Data from a reduced set of frequencies were used to estimate model parameters, including steady-state static and dynamic stability derivatives. Both models showed good prediction capability and the ability to accurately fit the measured data. Estimated static stability derivatives compared well with those obtained from static wind tunnel tests. The roll and yaw rate derivative estimates were compared with rotary-balanced wind tunnel data and theoretical predictions. The estimates and theoretical predictions were in agreement at small angles of attack. The rotary-balance data showed, in general, acceptable agreement with the steady-state derivative estimates.

  20. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise

    OpenAIRE

    Latorre Iglesias, E.; Thompson, D.; Smith, M.; Kitagawa, T.; Yamazaki, N.

    2016-01-01

    Aerodynamic noise becomes a significant noise source at speeds normally reached by high-speed trains. The train bogies are identified as important sources of aerodynamic noise. Due to the difficulty to assess this noise source carrying out field tests, wind tunnel tests offer many advantages. Tests were performed in the large-scale low-noise anechoic wind tunnel at Maibara, Japan, using a 1/7 scale train car and bogie model for a range of flow speeds between 50, 76, 89 and 100 m/s. The depend...

  1. Sting Dynamics of Wind Tunnel Models

    Science.gov (United States)

    1976-05-01

    Patterson AFB, AFFDL, Ohio, October 1964. 17. Brunk, James E. "Users Manual: Extended Capability Magnus Rotor and Ballistic Body 6-DOF Trajectory...measure "second-order" aerodynamic effects resulting, for example, from Reynolds number in- fluence. Consequently, all wind tunnel data systems are...sting-model interference effects , sting configurations normally consist of one or more linearly tapered sections combined with one or more untapered

  2. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 2: User's Guide to the Archived Data Base

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  3. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    2012-01-01

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible ...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2....... blades are mounted. The tower support structure has free yawing capabilities provided at the tower base. A short overview on the technical details of the experiment is provided as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating...

  4. Effects of transition on wind tunnel simulation of vehicel dynamics

    Science.gov (United States)

    Ericsson, L. E.

    Among the many problems the test engineer faces when trying to simulate full-scale vehicle dynamics in a wind tunnel test is the fact that the test usually will be performed at Reynolds numbers far below those existing on the full-scale vehicle. It is found that a severe scaling problem may exist even in the case of attached flow. The strong coupling existing between boundary layer transition and vehicle motion can cause the wind tunnel results to be very misleading, in some cases dangerously so. For example, the subscale test could fail to show a dynamic stability problem existing in full-scale flight, or, conversely, show one that does not exist. When flow separation occurs together with boundary layer transition, the scaling problem becomes more complicated, and the potential for dangerously misleading subscale test results increases. The existing literature is reviewed to provide examples of the different types of dynamic simulation problems that the test engineer is likely to face. It should be emphasized that the difficulties presented by transition effects in the case of wind tunnel simulation of vehicle dynamics apply to the same extent to numeric simulation methods.

  5. Supercavitation hydrofoil performance and torsional flutter margin; Supercavitation yokugata no teijo hiteijo tokusei to nejiri flutter genkai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, Y.; Obara, H. [Tokyo Metropolitan Institute of Technology, Tokyo (Japan); Nakagawa, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan); Yoshida, H. [Tokyo Metropolitan Institute of Technology, Tokyo (Japan)

    2000-08-25

    Supercavitation hydrofoil applied to high-speed marine propeller or hydro-machinery blade runs into unsteady behaviors such as cavitation breakdown and hydraulic flutter in some operation range. The hydrofoil performance was experimentally estimated and compared with the wedge performance using the cavitation tunnel and the torsional vibration apparatus with three component load cells, This experiment was carried out at several angles of attack in the region from subcavitation to supercavitation. At a general steady state but including some cavitation breakdowns, the hydrofoil has the most superior time mean lift/drag ratio about 6 < C{sub l}/C{sub d} < 8 at in all cavitation regions. But, the ratio drastically decreases as the angle of attack increases. Fluctuating lift coefficient C{sub l}{sup '} due to the cavitation breakdown reaches up to about 10% of time mean lift coefficient C{sub l}. At the hydrofoil pitching motion, the torsional flutter margin of the hydrofoil extends to higher reduced frequency side as the angle of attack increases and has the nearly same margin of the wedge in all cavitation regions. (author)

  6. Time simulation of flutter with large stiffness changes

    Science.gov (United States)

    Karpel, Mordechay; Wieseman, Carol D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for a basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness, and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few apriori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  7. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  8. The influence of trailed vorticity on flutter speed estimations

    International Nuclear Information System (INIS)

    Pirrung, Georg R; Madsen, Helge Aa; Kim, Taeseong

    2014-01-01

    This paper briefly describes the implementation of a coupled near and far wake model for wind turbine rotor induction in the aeroelastic code HAWC2 and its application for flutter analysis of the NREL 5 MW wind turbine. The model consists of a far wake part based on Blade Element Momentum (BEM) theory, which is coupled with Beddoes' near wake model for trailed vorticity. The first part of this work outlines the implementation in HAWC2, with a focus on the interaction of the induction from the blade based near wake model with the induction from the polar grid based BEM model in HAWC2. The influence of the near wake model on the aeroelastic stability of the blades of the NREL 5 MW turbine in overspeed conditions is investigated in the second part of the paper. The analysis is based on a runaway case in which the turbine is free to speed up without generator torque and vibrations start building up at a critical rotor speed. Blades with modified torsional and flapwise stiffness are also investigated. A flutter analysis is often part of the stability investigations for new blades but is normally carried out with engineering models that do not include the influence of unsteady trailed vorticity. Including this influence results in a slightly increased safety margin against classical flutter in all simulated cases

  9. Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel

    Science.gov (United States)

    Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.

    2014-01-01

    Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.

  10. The design of models for cryogenic wind tunnels. [mechanical properties and loads

    Science.gov (United States)

    Gillespie, V. P.

    1977-01-01

    Factors to be considered in the design and fabrication of models for cryogenic wind tunnels include high model loads imposed by the high operating pressures, the mechanical and thermodynamic properties of materials in low temperature environments, and the combination of aerodynamic loads with the thermal environment. Candidate materials are being investigated to establish criteria for cryogenic wind tunnel models and their installation. Data acquired from these tests will be provided to users of the National Transonic Facility.

  11. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    Science.gov (United States)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  12. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  13. Application Of Artificial Intelligence To Wind Tunnels

    Science.gov (United States)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  14. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade

    Science.gov (United States)

    Decker, A. J.

    1986-01-01

    Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.

  15. Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling

    Science.gov (United States)

    Monbureau, E. M.; Heist, D. K.; Perry, S. G.; Brouwer, L. H.; Foroutan, H.; Tang, W.

    2018-04-01

    Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this study is to improve AERMOD's ability to accurately model important and complex building downwash scenarios by incorporating knowledge gained from a recently completed series of wind tunnel studies and complementary large eddy simulations of flow and dispersion around simple structures for a variety of building dimensions, stack locations, stack heights, and wind angles. This study presents three modifications to the building downwash algorithm in AERMOD that improve the physical basis and internal consistency of the model, and one modification to AERMOD's building pre-processor to better represent elongated buildings in oblique winds. These modifications are demonstrated to improve the ability of AERMOD to model observed ground-level concentrations in the vicinity of a building for the variety of conditions examined in the wind tunnel and numerical studies.

  16. Development of a process control computer device for the adaptation of flexible wind tunnel walls

    Science.gov (United States)

    Barg, J.

    1982-01-01

    In wind tunnel tests, the problems arise of determining the wall pressure distribution, calculating the wall contour, and controlling adjustment of the walls. This report shows how these problems have been solved for the high speed wind tunnel of the Technical University of Berlin.

  17. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  18. Highly cited articles in wind tunnel-related research: a bibliometric analysis.

    Science.gov (United States)

    Mo, Ziwei; Fu, Hui-Zhen; Ho, Yuh-Shan

    2018-03-22

    Wind tunnels have been widely employed in aerodynamic research. To characterize the high impact research, a bibliometric analysis was conducted on highly cited articles related to wind tunnel based on the Science Citation Index Expanded (SCI-EXPANDED) database from 1900 to 2014. Articles with at least 100 citations from the Web of Science Core Collection were selected and analyzed in terms of publication years, authors, institutions, countries/territories, journals, Web of Science categories, and citation life cycles. The results show that a total of 77 highly cited articles in 37 journals were published between 1959 and 2008. Journal of Fluid Mechanics published the most of highly cited articles. The USA was the most productive country and most frequent partner of internationally collaboration. The prolific institutions were mainly located in the USA and UK. The authors who were both first author and corresponding author published 88% of the articles. The Y index was also deployed to evaluate the publication characteristics of authors. Moreover, the articles with high citations in both history and the latest year with their citation life cycles were examined to provide insights for high impact research. The highly cited articles were almost earliest wind tunnel experimental data and reports on their own research specialty, and thus attracted high citations. It was revealed that classic works of wind tunnel research was frequently occurred in 1990s but much less in 2000s, probably due to the development of numerical models of computational fluid dynamic (CFD) in recent decades.

  19. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  20. The 12-foot pressure wind tunnel restoration project model support systems

    Science.gov (United States)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  1. Open access wind tunnel measurements of a downwind free yawing wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2016-01-01

    A series of free yawing wind tunnel experiments was held in the Open Jet Facility (OJF) of the TU Delft. The ≈ 300 W turbine has three blades in a downwind configuration and is optionally free to yaw. Different 1.6m diameter rotor configurations are tested such as blade flexibility and sweep...

  2. Aerodynamic research of a racing car based on wind tunnel test and computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Wang Jianfeng

    2018-01-01

    Full Text Available Wind tunnel test and computational fluid dynamics (CFD simulation are two main methods for the study of automotive aerodynamics. CFD simulation software solves the results in calculation by using the basic theory of aerodynamic. Calculation will inevitably lead to bias, and the wind tunnel test can effectively simulate the real driving condition, which is the most effective aerodynamics research method. This paper researches the aerodynamic characteristics of the wing of a racing car. Aerodynamic model of a racing car is established. Wind tunnel test is carried out and compared with the simulation results of computational fluid dynamics. The deviation of the two methods is small, and the accuracy of computational fluid dynamics simulation is verified. By means of CFD software simulation, the coefficients of six aerodynamic forces are fitted and the aerodynamic equations are obtained. Finally, the aerodynamic forces and torques of the racing car travel in bend are calculated.

  3. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    Science.gov (United States)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  4. A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Yousok Kim

    2013-09-01

    Full Text Available Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS. The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape of the test specimen using system identification methods (frequency domain decomposition, FDD. By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape with the 3D measurements.

  5. WTSETUP: Software for Creating and Editing Configuration Files in the Low Speed Wind Tunnel Data Acquisition System

    National Research Council Canada - National Science Library

    Edwards, Craig

    1999-01-01

    The Data Acquisition System in the Low Speed Wind Tunnel at the Aeronautical and Maritime Research Laboratory is responsible for the measurement, recording, processing and displaying of wind tunnel test data...

  6. Fuel use and metabolic response to endurance exercise : a wind tunnel study of a long-distance migrant shorebird

    NARCIS (Netherlands)

    Jenni-Eiermann, Susanne; Jenni, Lukas; Kvist, Anders; Lindström, Åke; Piersma, Theunis; Visser, G. Henk

    This study examines fuel use and metabolism in a group of long-distance migrating birds, red knots Calidris canutus (Scolopacidae), flying under controlled conditions in a wind tunnel for up to 10 h. Data are compared with values for resting birds fasting for the same time. Plasma levels of free

  7. Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)

    1995-01-01

    Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.

  8. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    Science.gov (United States)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal

  9. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...... that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved....

  10. Comparison of Flight Measured, Predicted and Wind Tunnel Measured Winglet Characteristics on a KC-135 Aircraft

    Science.gov (United States)

    Dodson, R. O., Jr.

    1982-01-01

    One of the objectives of the KC-135 Winglet Flight Research and Demonstration Program was to obtain experimental flight test data to verify the theoretical and wind tunnel winglet aerodynamic performance prediction methods. Good agreement between analytic, wind tunnel and flight test performance was obtained when the known differences between the tests and analyses were accounted for. The flight test measured fuel mileage improvements for a 0.78 Mach number was 3.1 percent at 8 x 10(5) pounds W/delta and 5.5 percent at 1.05 x 10(6) pounds W/delta. Correcting the flight measured data for surface pressure differences between wind tunnel and flight resulted in a fuel mileage improvement of 4.4 percent at 8 x 10(5) pounds W/delta and 7.2 percent at 1.05 x 10(6) pounds W/delta. The performance improvement obtained was within the wind tunnel test data obtained from two different wind tunnel models. The buffet boundary data obtained for the baseline configuration was in good agreement with previous established data. Buffet data for the 15 deg cant/-4 deg incidence configuration showed a slight improvement, while the 15 deg cant/-2 deg incidence and 0 deg cant/-4 deg incidence data showed a slight deterioration.

  11. SMART Rotor Development and Wind Tunnel Test

    Science.gov (United States)

    2009-09-01

    amplifier and control system , and data acquisition, processing, and display systems . Boeing�s LRTS (Fig. 2), consists of a sled structure that...Support Test Stand Sled Tail Sting Outrigger Arm Figure 2: System integration test at whirl tower Port Rotor Balance Main Strut Flap Tail...demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind tunnel testing

  12. Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2017-12-01

    Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.

  13. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    Science.gov (United States)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  14. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S.

    2004-08-01

    The U.S. Department of Energy, working through the National Renewable Energy Laboratory, is engaged in a comprehensive research effort to improve our understanding of wind turbine aeroacoustics. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. To that end, wind tunnel aerodynamic tests and aeroacoustic tests have been performed on six airfoils that are candidates for use on small wind turbines. Results are documented in this report.

  15. Wind Tunnel Measurements of Shuttle Orbiter Global Heating with Comparisons to Flight

    Science.gov (United States)

    Berry, Scott A.; Merski, N. Ronald; Blanchard, Robert C.

    2002-01-01

    An aerothermodynamic database of global heating images was acquired of the Shuttle Orbiter in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. These results were obtained for comparison to the global infrared images of the Orbiter in flight from the infrared sensing aeroheating flight experiment (ISAFE). The most recent ISAFE results from STS-103, consisted of port side images, at hypersonic conditions, of the surface features that result from the strake vortex scrubbing along the side of the vehicle. The wind tunnel results were obtained with the phosphor thermography system, which also provides global information and thus is ideally suited for comparison to the global flight results. The aerothermodynamic database includes both windward and port side heating images of the Orbiter for a range of angles of attack (20 to 40 deg), freestream unit Reynolds number (1 x 10(exp 6))/ft to 8 x 10(exp 6)/ft, body flap deflections (0, 5, and 10 deg), speed brake deflections (0 and 45 deg), as well as with boundary layer trips for forced transition to turbulence heating results. Sample global wind tunnel heat transfer images were extrapolated to flight conditions for comparison to Orbiter flight data. A windward laminar case for an angle of attack of 40 deg was extrapolated to Mach 11.6 flight conditions for comparison to STS-2 flight thermocouple results. A portside wind tunnel image for an angle of attack of 25 deg was extrapolated for Mach 5 flight conditions for comparison to STS-103 global surface temperatures. The comparisons showed excellent qualitative agreement, however the extrapolated wind tunnel results over-predicted the flight surface temperatures on the order of 5% on the windward surface and slightly higher on the portside.

  16. Residence time of contaminants released in surface coal mines -- a wind-tunnel study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.S. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1994-12-31

    Surface coal mining operations (blasting, shoveling, loading, trucking, etc.) are sources of airborne particles. The 1990 Clean Air Act Amendments direct the EPA to analyze the accuracy of the Industrial Source Complex model and the AP-42 emission factors, and to make revisions as may be necessary to eliminate any significant over-prediction of air concentration of fugitive particles from surface coal mines. A wind-tunnel study was performed at the US EPA`s Fluid Modeling Facility to investigate dispersion from surface coal mines in support of the dispersion modeling activities. Described here is the portion of the study directed at determining the residence time that material released near the floor of a mine will stay within the mine.

  17. WIND TUNNEL RESEARCH ON THE INFLUENCE OF ACTIVE AIRFLOW ON THE LIFT FORCE GENERATED BY THE AIRFOIL

    Directory of Open Access Journals (Sweden)

    Paweł Magryta

    2013-09-01

    Full Text Available The paper discusses the results of wind tunnel tests of airfoils with additional active airflow applied to their upper surfaces. These studies were carried out for a range of velocities up to 28 m/s in an open wind tunnel. Several types of airfoils selected for the examination feature different geometries and are widely applied in today’s aviation industry. The changes in the lift and drag force generated by these airfoils were recorded during the study. The test bench for the tests was equipped with a compressor and a vacuum pump to enable airflow through some holes on the airfoil upper surface. A rapid prototyping method and a 3D printer based on a powder printing technique were applied to print the airfoils. All of their surfaces were subject to surface grinding to smooth their external surfaces. The wind tunnel tests with and without active airflow applied to airfoils are summarised in the paper.

  18. The use of wind tunnel facilities to estimate hydrodynamic data

    Science.gov (United States)

    Hoffmann, Kristoffer; Tophøj Rasmussen, Johannes; Hansen, Svend Ole; Reiso, Marit; Isaksen, Bjørn; Egeberg Aasland, Tale

    2016-03-01

    Experimental laboratory testing of vortex-induced structural oscillations in flowing water is an expensive and time-consuming procedure, and the testing of high Reynolds number flow regimes is complicated due to the requirement of either a large-scale or high-speed facility. In most cases, Reynolds number scaling effects are unavoidable, and these uncertainties have to be accounted for, usually by means of empirical rules-of-thumb. Instead of performing traditional hydrodynamic measurements, wind tunnel testing in an appropriately designed experimental setup may provide an alternative and much simpler and cheaper framework for estimating the structural behavior under water current and wave loading. Furthermore, the fluid velocities that can be obtained in a wind tunnel are substantially higher than in a water testing facility, thus decreasing the uncertainty from scaling effects. In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.

  19. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  20. Wind tunnel investigation of an STOL aircraft model. STOL zenki mokei-fudo shiken. ; Engine nacelle keijo koka

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The nacelle shape of a mimic engine mounted on the wind tunnel test model for an STOL aircraft developed by the National Aerospace Laboratory has much larger length than in the nacelle of a scale reduced to 8% of an actual engine, and the shape below the nacelle is different. Therefore, in order to estimate the air force in the actual aircraft from the aerodynamic data obtained in a wind tunnel test, the data are corrected by using differences in aerodynamic loads (estimated values) applied on the mimic engine and the actual engine. For the purpose of discussing the reasonability of this correction, an 8%-scale flow through nacelle with the same shape as in the actual aircraft (the actual aircraft type) and a flow through nacelle for a wind tunnel testing model of the experimental STOL aircraft were fabricated and wind tunnel tests were performed. These results were compared with the corrected results of the mimic engine wind tunnel test. As a result, it was made clear that the force data have been corrected excessively, and the moments have been corrected considerably well. 7 refs., 32 figs., 7 tabs.

  1. Full-Span Tiltrotor Aeroacoustic Model (TRAM) Overview and 40- by 80-Foot Wind Tunnel Test. [conducted in the 40- by 80-Foot Wind Tunnel at Ames Research Center

    Science.gov (United States)

    McCluer, Megan S.; Johnson, Jeffrey L.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    Most helicopter data trends cannot be extrapolated to tiltrotors because blade geometry and aerodynamic behavior, as well as rotor and fuselage interactions, are significantly different for tiltrotors. A tiltrotor model has been developed to investigate the aeromechanics of tiltrotors, to develop a comprehensive database for validating tiltrotor analyses, and to provide a research platform for supporting future tiltrotor designs. The Full-Span Tiltrotor Aeroacoustic Model (FS TRAM) is a dual-rotor, powered aircraft model with extensive instrumentation for measurement of structural and aerodynamic loads. This paper will present the Full-Span TRAM test capabilities and the first set of data obtained during a 40- by 80-Foot Wind Tunnel test conducted in late 2000 at NASA Ames Research Center. The Full-Span TRAM is a quarter-scale representation of the V-22 Osprey aircraft, and a heavily instrumented NASA and U.S. Army wind tunnel test stand. Rotor structural loads are monitored and recorded for safety-of-flight and for information on blade loads and dynamics. Left and right rotor balance and fuselage balance loads are monitored for safety-of-flight and for measurement of vehicle and rotor aerodynamic performance. Static pressure taps on the left wing are used to determine rotor/wing interactional effects and rotor blade dynamic pressures measure blade airloads. All of these measurement capabilities make the FS TRAM test stand a unique and valuable asset for validation of computational codes and to aid in future tiltrotor designs. The Full-Span TRAM was tested in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel from October through December 2000. Rotor and vehicle performance measurements were acquired in addition to wing pressures, rotor acoustics, and Laser Light Sheet (LLS) flow visualization data. Hover, forward flight, and airframe (rotors off) aerodynamic runs were performed. Helicopter-mode data were acquired during angle of attack and thrust sweeps for

  2. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  3. Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions

    DEFF Research Database (Denmark)

    Battistia, L.; Benini, E.; Brighenti, A.

    2016-01-01

    The DeepWind Project aims at investigating the feasibility of a new floating vertical-axis wind turbine (VAWT) concept, whose purpose is to exploit wind resources at deep-water offshore sites. The results of an extensive experimental campaign on the DeepWind reduced scale demonstrator are here...... was installed on a high precision test bench, whose axis was suitable to be inclined up to 15° with respect to the design (i.e. upright) operating condition. The experiments were performed at the large scale, high speed wind tunnel of the Politecnico di Milano (Italy), using a “free jet” (open channel...... presented for different wind speeds and rotor angular velocities, including also skewed flow operation due to a tilted rotor arrangement. To accomplish this, after being instrumented to measure aerodynamic power and thrust (both in streamwise and transversal directions), a troposkien three-bladed rotor...

  4. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    Science.gov (United States)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  5. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  6. Wind tunnel tests of modified cross, hemisflo, and disk-gap-band parachutes with emphasis in the transonic range

    Science.gov (United States)

    Foughner, J. T., Jr.; Alexander, W. C.

    1974-01-01

    Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.

  7. Wind tunnel measurements of the urban boundary layer development over a historical district in Italy

    NARCIS (Netherlands)

    Ricci, A.; Burlando, M.; Freda, A.; Repetto, M.P.

    2017-01-01

    This paper presents the results of an experimental study aimed at investigating the urban boundary layer in a district of Livorno city, in Tuscany. The wind flow over this area has been measured in the wind tunnel of the University of Genova using a physical model in scale 1:300. Two sets of

  8. Miniaturized compact water-cooled pitot-pressure probe for flow-field surveys in hypersonic wind tunnels

    Science.gov (United States)

    Ashby, George C.

    1988-01-01

    An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.

  9. An adapted blockage factor correlation approach in wind tunnel experiments of a Savonius-style wind turbine

    International Nuclear Information System (INIS)

    Roy, Sukanta; Saha, Ujjwal K.

    2014-01-01

    Highlights: • Significance of the blockage correction in wind tunnel experiments of Savonius-style wind turbine. • Adaptation of blockage factor correlations under open type test sections for blockage ratio of 21.16%. • Effectiveness of adapted correlations for smaller blockage ratios (BRs) of 16% and 12.25%. • Estimate the magnitude of the blockage correction under various loading conditions for each BR. • Variation of blockage correction factor with respect to tip speed ratio and BR. - Abstract: An investigation into the blockage correction effects in wind tunnel experiments of a small-scale wind energy conversion system in an open type test section is carried out. The energy conversion system includes a Savonius-style wind turbine (SSWT) and a power measurement assembly. As the available correlations for the closed type test sections may not be appropriate for the open test section under dynamic loading conditions, new correlations are adapted for the blockage correction factors with free stream wind speed, turbine rotational speed and variable load applied to the turbine to quantify the energy conversion coefficients more precisely. These are obtained for a blockage ratio of 21.16% through a comparison of present experimental data with those of established experimental data under dynamic loading conditions. Further, the accuracy of the adapted correlations is substantiated into the experiments with smaller blockage ratios of 16% and 12.25%. The relationships of the tip speed ratios and blockage ratios with the blockage correction factor are also discussed. Using these correlations, this study provides evidence of increase of blockage correction in the range 1–10% with the increase of both tip speed ratio and blockage ratio. The results also indicate that for blockage ratios approaching 10 and tip speed ratios below 0.5, the blockage effects are almost negligible in the open type test sections

  10. Wind Tunnel Measurement of Turbulent and Advective Scalar Fluxes: A Case Study on Intersection Ventilation

    Czech Academy of Sciences Publication Activity Database

    Kukačka, Libor; Nosek, Štěpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    Roč. 2012, č. 381357 (2012), s. 1-13 ISSN 1537-744X Institutional research plan: CEZ:AV0Z20760514 Keywords : air pollution * atmospheric boundary layer * wind tunnel modelling * contaminant spreading * street canyon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.730, year: 2012 http://www.tswj.com/2012/381357/

  11. Aeroelastic Stability of Suspension Bridges using CFD

    DEFF Research Database (Denmark)

    Stærdahl, Jesper Winther; Sørensen, Niels; Nielsen, Søren R.K.

    2007-01-01

    using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-freedom structural models in translation perpendicular to the flow direction......In recent years large span suspension bridges with very thin and slender profiles have been built without proportional increasing torsional and bending stiffness. As a consequence large deformations at the mid-span can occur with risk of aeroelastic instability and structural failure. Analysis...... of aeroelastic stability also named flutter stability is mostly based on semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives...

  12. Panel Flutter Emulation Using a Few Concentrated Forces

    Science.gov (United States)

    Dhital, Kailash; Han, Jae-Hung

    2018-04-01

    The objective of this paper is to study the feasibility of panel flutter emulation using a few concentrated forces. The concentrated forces are considered to be equivalent to aerodynamic forces. The equivalence is carried out using surface spline method and principle of virtual work. The structural modeling of the plate is based on the classical plate theory and the aerodynamic modeling is based on the piston theory. The present approach differs from the linear panel flutter analysis in scheming the modal aerodynamics forces with unchanged structural properties. The solutions for the flutter problem are obtained numerically using the standard eigenvalue procedure. A few concentrated forces were considered with an optimization effort to decide their optimal locations. The optimization process is based on minimizing the error between the flutter bounds from emulated and linear flutter analysis method. The emulated flutter results for the square plate of four different boundary conditions using six concentrated forces are obtained with minimal error to the reference value. The results demonstrated the workability and viability of using concentrated forces in emulating real panel flutter. In addition, the paper includes the parametric studies of linear panel flutter whose proper literatures are not available.

  13. The 1 × 1 m hypersonic wind tunnel Kochel/Tullahoma 1940-1960

    Science.gov (United States)

    Eckardt, Dietrich

    2015-03-01

    Peenemünde and Cape Canaveral mark cornerstones of space history. Kochel in Southern Germany and Tullahoma in Tennessee, USA also belong in this category. The technically unique Kochel wind tunnel was part of the German long-distance missile development strategy, planned and prepared in secret before the beginning of World War II. A 57 MW closed-circuit wind tunnel facility with 1 × 1 m measuring section was planned for continuous-flow simulation at high Mach numbers Ma 7-10. In the early 1940 s a site beside the Walchensee Power Station at Kochel am See in Upper Bavaria, Germany was chosen to provide the required altitude difference of 200 m for the hydraulic turbine drives. The preparatory activities for the erection of this impressive hypersonic wind tunnel facility were pushed ahead until an enforced temporary pause in September 1944. In early May 1945 US troops occupied the area and, in due course, scientists of General Arnold's Scientific Advisory Group, the `von Kármán team', ordered the transfer to the USA of available equipment, design materials and other paperwork. Here, at the Arnold Engineering Development Center (AEDC) Tullahoma, TN this `Tunnel A' was built to begin operation around 1957. The testing was conducted on the Mach 7 experimental aircraft X-15, space shuttle developments and still secret investigations on unmanned hypersonic vehicles.

  14. Wind Tunnel Study on Flows over Various Two-dimensional Idealized Urban-liked Surfaces

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2013-04-01

    Extensive human activities (e.g. increased traffic emissions) emit a wide range of pollutants resulting in poor urban area air quality. Unlike open, flat and homogenous rural terrain, urban surface is complicated by the presence of buildings, obstacles and narrow streets. The irregular urban surfaces thus form a random roughness that further modifies the near-surface flows and pollutant dispersion. In this study, a physical modelling approach is employed to commence a series of wind tunnel experiments to study the urban-area air pollution problems. The flow characteristics over different hypothetical urban roughness surfaces were studied in a wind tunnel in isothermal conditions. Preliminary experiments were conducted based on six types of idealized two-dimensional (2D) street canyon models with various building-height-to-street-width (aspect) ratios (ARs) 1, 1/2, 1/4, 1/8, 1/10 and 1/12. The main instrumentation is an in-house 90o X-hotwire anemometry. In each set of configuration, a sampling street canyon was selected near the end of the streamwise domain. Its roof level, i.e. the transverse between the mid points of the upstream and downstream buildings, was divided into eight segments. The measurements were then recorded on the mid-plane of the spannwise domain along the vertical profile (from building roof level to the ceiling of wind tunnel) of the eight segments. All the data acquisition processes were handled by the NI data acquisition modules, NI 9239 and CompactDAQ-9188 hardware. Velocity calculation was carried out in the post-processing stage on a digital computer. The two-component flow velocities and velocity fluctuations were calculated at each sampling points, therefore, for each model, a streamwise average of eight vertical profiles of mean velocity and velocity fluctuations was presented. A plot of air-exchange rate (ACH) against ARs was also presented in order to examine the ventilation performance of different tested models. Preliminary results

  15. Glide back booster wind tunnel model testing

    Science.gov (United States)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  16. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements

    Science.gov (United States)

    Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew

    1996-09-01

    Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The

  17. Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades

    International Nuclear Information System (INIS)

    Scungio, M.; Arpino, F.; Focanti, V.; Profili, M.; Rotondi, M.

    2016-01-01

    Highlights: • Wind tunnel investigations of Darrieus-style VAWT with auxiliary blades have been made. • Results have been compared with those from standard Darrieus VAWT. • Static and dynamic power and torque coefficients were measured and evaluated. • The auxiliary airfoils have demonstrated to give more torque at the lower wind speeds. • The proposed VAWT configuration is able to work in a wide range of wind speeds. - Abstract: Renewable sources of energy, needed because of the increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in wind energy. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, wind tunnel investigations about the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds, has been made on scaled models. The micro turbine under investigation consists of three pairs of airfoils. Each pair consists of a main and auxiliary airfoil with different chord lengths. A standard Darrieus configuration, consisting of three single airfoils, was also tested for comparison. The experiments were conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). Measured data were reported in terms of dimensionless power and torque coefficients for dynamic performance analysis and static torque coefficient for static performance analysis. The adoption of auxiliary airfoils has demonstrated to give more dynamic torque at the lower wind speeds with respect to a standard Darrieus rotor, resulting in better performance for all the wind speeds considered. In terms of dynamic power coefficient, the standard Darrieus

  18. Drag of a Supercritical Body of Revolution in Free Flight at Transonic Speeds and Comparison with Wind Tunnel Data

    Science.gov (United States)

    Usry, J. W.; Wallace, J. W.

    1971-01-01

    The forebody drag of a supercritical body of revolution was measured in free flight over a Mach number range of 0.85 to 1.05 and a Reynolds number range of 11.5 x 10 to the 6th power to 19.4 x 10 to the 6th power and was compared with wind-tunnel data. The forebody drag coefficient for a Mach number less than 0.96 was 0.111 compared with the wind-tunnel value of 0.103. A gradual increase in the drag occurred in the Langley 8-foot transonic pressure tunnel at a lower Mach number than in the Langley 16-foot transonic tunnel or in the free-flight test. The sharp drag rise occurred near Mach 0.98 in free flight whereas the rise occurred near Mach 0.99 in the Langley 16-foot transonic tunnel. The sharp rise was not as pronounced in the Langley 8-foot transonic pressure tunnel and was probably affected by tunnel-wall-interference effects. The increase occurred more slowly and at a higher Mach number. These results indicate that the drag measurements made in the wind tunnels near Mach 1 were significantly affected by the relative size of the model and the wind tunnel.

  19. Air Flow Modeling in the Wind Tunnel of the FHWA Aerodynamics Laboratory at Turner-Fairbank Highway Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division

    2017-09-01

    Computational fluid dynamics (CFD) modeling is widely used in industry for design and in the research community to support, compliment, and extend the scope of experimental studies. Analysis of transportation infrastructure using high performance cluster computing with CFD and structural mechanics software is done at the Transportation Research and Analysis Computing Center (TRACC) at Argonne National Laboratory. These resources, available at TRACC, were used to perform advanced three-dimensional computational simulations of the wind tunnel laboratory at the Turner-Fairbank Highway Research Center (TFHRC). The goals were to verify the CFD model of the laboratory wind tunnel and then to use versions of the model to provide the capability to (1) perform larger parametric series of tests than can be easily done in the laboratory with available budget and time, (2) to extend testing to wind speeds that cannot be achieved in the laboratory, and (3) to run types of tests that are very difficult or impossible to run in the laboratory. Modern CFD software has many physics models and domain meshing options. Models, including the choice of turbulence and other physics models and settings, the computational mesh, and the solver settings, need to be validated against measurements to verify that the results are sufficiently accurate for use in engineering applications. The wind tunnel model was built and tested, by comparing to experimental measurements, to provide a valuable tool to perform these types of studies in the future as a complement and extension to TFHRC’s experimental capabilities. Wind tunnel testing at TFHRC is conducted in a subsonic open-jet wind tunnel with a 1.83 m (6 foot) by 1.83 m (6 foot) cross section. A three component dual force-balance system is used to measure forces acting on tested models, and a three degree of freedom suspension system is used for dynamic response tests. Pictures of the room are shown in Figure 1-1 to Figure 1-4. A detailed CAD

  20. What scaling means in wind engineering: Complementary role of the reduced scale approach in a BLWT and the full scale testing in a large climatic wind tunnel

    Science.gov (United States)

    Flamand, Olivier

    2017-12-01

    Wind engineering problems are commonly studied by wind tunnel experiments at a reduced scale. This introduces several limitations and calls for a careful planning of the tests and the interpretation of the experimental results. The talk first revisits the similitude laws and discusses how they are actually applied in wind engineering. It will also remind readers why different scaling laws govern in different wind engineering problems. Secondly, the paper focuses on the ways to simplify a detailed structure (bridge, building, platform) when fabricating the downscaled models for the tests. This will be illustrated by several examples from recent engineering projects. Finally, under the most severe weather conditions, manmade structures and equipment should remain operational. What “recreating the climate” means and aims to achieve will be illustrated through common practice in climatic wind tunnel modelling.

  1. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation

    Science.gov (United States)

    Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.

    2018-05-01

    Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.

  2. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  3. Validation of US3D for Capsule Aerodynamics using 05-CA Wind Tunnel Test Data

    Science.gov (United States)

    Schwing, Alan

    2012-01-01

    Several comparisons of computational fluid dynamics to wind tunnel test data are shown for the purpose of code validation. The wind tunnel test, 05-CA, uses a 7.66% model of NASA's Multi-Purpose Crew Vehicle in the 11-foot test section of the Ames Unitary Plan Wind tunnel. A variety of freestream conditions over four Mach numbers and three angles of attack are considered. Test data comparisons include time-averaged integrated forces and moments, time-averaged static pressure ports on the surface, and Strouhal Number. The applicability of the US3D code to subsonic and transonic flow over a bluff body is assessed on a comprehensive data set. With close comparison, this work validates US3D for highly separated flows similar to those examined here.

  4. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    Science.gov (United States)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  5. Wind Tunnel and Water Channel Investigations for Improving MAV Aerodynamic Performance

    National Research Council Canada - National Science Library

    Spedding, Geoffrey; Browand, Frederick; McArthur, John

    2007-01-01

    .... The flows are complex and almost always involve significant spanwise components. The results are being used to guide current wind-tunnel based quantitative flow investigations in selected two-dimensional planes.

  6. Fire safety case study of a railway tunnel: Smoke evacuation

    Directory of Open Access Journals (Sweden)

    van Maele Karim

    2007-01-01

    Full Text Available When a fire occurs in a tunnel, it is of great importance to assure the safety of the occupants of the tunnel. This is achieved by creating smoke-free spaces in the tunnel through control of the smoke gases. In this paper, results are presented of a study concerning the fire safety in a real scale railway tunnel test case. Numerical simulations are performed in order to examine the possibility of natural ventilation of smoke in inclined tunnels. Several aspects are taken into account: the length of the simulated tunnel section, the slope of the tunnel and the possible effects of external wind at one portal of the tunnel. The Fire Dynamics Simulator of the National Institute of Standards and Technology, USA, is applied to perform the simulations. The simulations show that for the local behavior of the smoke during the early stages of the fire, the slope of the tunnel is of little importance. Secondly, the results show that external wind and/or pressure conditions have a large effect on the smoke gases inside the tunnel. Finally, some idea for the value of the critical ventilation velocity is given. The study also shows that computational fluid dynamics calculations are a valuable tool for large scale, real life complex fire cases. .

  7. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    Science.gov (United States)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  8. Wing configuration on Wind Tunnel Testing of an Unmanned Aircraft Vehicle

    Science.gov (United States)

    Daryanto, Yanto; Purwono, Joko; Subagyo

    2018-04-01

    Control surface of an Unmanned Aircraft Vehicle (UAV) consists of flap, aileron, spoiler, rudder, and elevator. Every control surface has its own special functionality. Some particular configurations in the flight mission often depend on the wing configuration. Configuration wing within flap deflection for takeoff setting deflection of flap 20° but during landing deflection of flap set on the value 40°. The aim of this research is to get the ultimate CLmax for take-off flap deflection setting. It is shown from Wind Tunnel Testing result that the 20° flap deflection gives optimum CLmax with moderate drag coefficient. The results of Wind Tunnel Testing representing by graphic plots show good performance as well as the stability of UAV.

  9. An experimental system for release simulation of internal stores in a supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-02-01

    Full Text Available Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments. A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than 0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.

  10. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  11. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Zhenyuan Jia

    2014-12-01

    Full Text Available High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  12. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    Science.gov (United States)

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  13. Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique

    DEFF Research Database (Denmark)

    Najafi, Nadia; Schmidt Paulsen, Uwe

    2017-01-01

    This paper is about development and use of a research based stereo vision system for vibration and operational modal analysis on a parked, 1-kW, 3-bladed vertical axis wind turbine (VAWT), tested in a wind tunnel at high wind. Vibrations were explored experimentally by tracking small deflections...... of the markers on the structure with two cameras, and also numerically, to study structural vibrations in an overall objective to investigate challenges and to prove the capability of using stereo vision. Two high speed cameras provided displacement measurements at no wind speed interference. The displacement...

  14. Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations

    Science.gov (United States)

    2009-08-01

    Fluctuation Cone The Pressure-Fluctuation Cone was used for all wind-tunnel tests (Figure 3.7). The model is a 7◦ half-angle stainless - steel cone. It...analysis as a medium for fault detection: A review. Journal of Tribology , 130, January 2008. [80] L. M. Mack. Boundary layer linear stability theory. In

  15. Potential risks at an industrial site: A wind tunnel study

    Czech Academy of Sciences Publication Activity Database

    Jaňour, Zbyněk; Jurčáková, Klára; Brych, Karel; Dittrt, František; Dittrich, F.

    2010-01-01

    Roč. 88, č. 3 (2010), s. 185-190 ISSN 0957-5820 R&D Projects: GA MŠk(CZ) OC 113 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z20600510 Keywords : atmospheric turbulence * flow visualization * wind tunnel modeling Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.453, year: 2010 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8JGG-4Y7P8YF-1&_user=640952&_coverDate=05%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1433050901&_rerunOrigin= google &_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=b036d2c5d747eadc03ff5697ea45e6a2

  16. Analysis of heat-transfer measurements from 2 AEDC wind tunnels on the Shuttle external tank

    Science.gov (United States)

    Nutt, K. W.

    1984-01-01

    Previous aerodynamic heating tests have been conducted in the AEDC/VKF Supersonic Wind Tunnel (A) to aid in defining the design thermal environment for the space shuttle external tank. The quality of these data has been under discussion because of the effects of low tunnel enthalpy and slow model injection rates. Recently the AEDC/VKF Hypersonic Wind Tunnel (C) has been modified to provide a Mach 4 capability that has significantly higher tunnel enthalpy with more rapid model injection rates. Tests were conducted in Tunnel C at Mach 4 to obtain data on the external tank for comparison with Tunnel A results. Data were obtained on a 0.0175 scale model of the Space Shuttle Integrated Vehicle at Re/ft = 4 x 10 to the 6th power with the tunnel stagnation temperature varying from 740 to 1440 R. Model attitude varied from an angle of attack of -5 to 5 deg and an angle of sideslip of -3 to 3 deg. One set of data was obtained in Tunnel C at Re/ft = 6.9 x 10 to the 6th for comparison with flight data. Data comparisons between the two tunnels for numerous regions on the external tank are given.

  17. Laser Displacement Measurements of Fan Blades in Resonance and Flutter During the Boundary Layer Ingesting Inlet and Distortion-Tolerant Fan Test

    Science.gov (United States)

    Duffy, Kirsten P.; Provenza, Andrew J.; Bakhle, Milind A.; Min, James B.; Abdul-Aziz, Ali

    2018-01-01

    NASA's Advanced Air Transport Technology Project is investigating boundary layer ingesting propulsors for future subsonic commercial aircraft to improve aircraft efficiency, thereby reducing fuel burn. To that end, a boundary layer ingesting inlet and distortion-tolerant fan stage was designed, fabricated, and tested within the 8' x 6' Supersonic Wind Tunnel at NASA Glenn Research Center. Because of the distortion in the air flow over the fan, the blades were designed to withstand a much higher aerodynamic forcing than for a typical clean flow. The blade response for several resonance modes were measured during start-up and shutdown, as well as at near 85% design speed. Flutter in the first bending mode was also observed in the fan at the design speed, at an off-design condition, although instabilities were difficult to instigate with this fan in general. Blade vibrations were monitored through twelve laser displacement probes that were placed around the inner circumference of the casing, at the blade leading and trailing edges. These probes captured the movement of all the blades during the entire test. Results are presented for various resonance mode amplitudes, frequencies and damping, as well as flutter amplitudes and frequency. Benefits and disadvantages of laser displacement probe measurements versus strain gage measurements are discussed.

  18. Validation of a wind tunnel testing facility for blade surface pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Antoniou, I.; Soerensen, N.N.; Madsen, H.A.

    1998-04-01

    This report concerns development and validation of a 2d testing facility for airfoil pressure measurements. The VELUX open jet wind tunnel was used with a test stand inserted. Reynolds numbers until 1.3 million were achieved with an airfoil chord of 0.45 m. The aerodynamic load coefficients were found from pressure distribution measurements and the total drag coefficient was calculated from wake rake measurements. Stationary inflow as well as dynamic inflow through pitching motion was possible. Wind tunnel corrections were applied for streamline curvature and down-wash. Even though the wind tunnel is not ideal for 2d testing, the overall quality of the flow was acceptable with a uniform flow field at the test stand position and a turbulence intensity of 1 % at the inlet of the test section. Reference values for free stream static and total pressure were found upstream of the test stand. The NACA 63-215 airfoil was tested and the results were compared with measurements from FFA and NACA. The measurements agreed well except for lift coefficient values at high angles of attack and the drag coefficient values at low angles of attack, that were slightly high. Comparisons of the measured results with numerical predictions from the XFOIL code and the EllipSys2D code showed good agreement. Measurements with the airfoil in pitching motion were carried out to study the dynamic aerodynamic coefficients. Steady inflow measurements at high angles of attack were used to investigate the double stall phenomenon. (au) EFP-94; EFP-95; EFP-97. 8 tabs., 82 ills., 16 refs.

  19. Aeolian transport of biota with dust: A wind tunnel experiment

    Science.gov (United States)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  20. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  1. High Response Dew Point Measurement System for a Supersonic Wind Tunnel

    Science.gov (United States)

    Blumenthal, Philip Z.

    1996-01-01

    A new high response on-line measurement system has been developed to continuously display and record the air stream dew point in the NASA Lewis 10 x 10 supersonic wind tunnel. Previous instruments suffered from such problems as very slow response, erratic readings, and high susceptibility to contamination. The system operates over the entire pressure level range of the 10 x 10 SWT, from less than 2 psia to 45 psia, without the need for a vacuum pump to provide sample flow. The system speeds up tunnel testing, provides large savings in tunnel power costs and provides the dew point input for the data-reduction subroutines which calculate test section conditions.

  2. New methodologies for calculation of flight parameters on reduced scale wings models in wind tunnel =

    Science.gov (United States)

    Ben Mosbah, Abdallah

    In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their

  3. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Science.gov (United States)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  4. Development of an apparatus to measure thermophysical properties of wind tunnel heat transfer models

    Science.gov (United States)

    Romanowski, R. F.; Steinberg, I. H.

    1974-01-01

    The apparatus and technique for measuring the thermophysical properties of models used with the phase-change paint method for obtaining wind tunnel heat transfer data are described. The method allows rapid measurement of the combined properties in a transient manner similar to an actual wind tunnel test. An effective value of the thermophysical properties can be determined which accounts for changes in thermal properties with temperature or with depth into the model surface. The apparatus was successfully tested at various heating rates between 19,000 and 124,000 watts per square meter.

  5. Use of Active Learning to Design Wind Tunnel Runs for Unsteady Cavity Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Ankur Srivastava

    2014-01-01

    Full Text Available Wind tunnel tests to measure unsteady cavity flow pressure measurements can be expensive, lengthy, and tedious. In this work, the feasibility of an active machine learning technique to design wind tunnel runs using proxy data is tested. The proposed active learning scheme used scattered data approximation in conjunction with uncertainty sampling (US. We applied the proposed intelligent sampling strategy in characterizing cavity flow classes at subsonic and transonic speeds and demonstrated that the scheme has better classification accuracies, using fewer training points, than a passive Latin Hypercube Sampling (LHS strategy.

  6. Reliability of numerical wind tunnels for VAWT simulation

    International Nuclear Information System (INIS)

    Castelli, M. Raciti; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.

    2016-01-01

    Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities). (paper)

  7. Reliability of numerical wind tunnels for VAWT simulation

    Science.gov (United States)

    Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.

    2016-09-01

    Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).

  8. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  9. a Modeling Method of Fluttering Leaves Based on Point Cloud

    Science.gov (United States)

    Tang, J.; Wang, Y.; Zhao, Y.; Hao, W.; Ning, X.; Lv, K.; Shi, Z.; Zhao, M.

    2017-09-01

    Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which are the rotation falling, the roll falling and the screw roll falling. At the same time, a parallel algorithm based on OpenMP is implemented to satisfy the needs of real-time in practical applications. Experimental results demonstrate that the proposed method is amenable to the incorporation of a variety of desirable effects.

  10. Wind Tunnel Measurements of Turbulent Boundary Layer over Hypothetical Urban Roughness Elements

    Science.gov (United States)

    Ho, Y. K.; Liu, C. H.

    2012-04-01

    Urban morphology affects the near-ground atmospheric boundary layer that in turn modifies the wind flows and pollutant dispersion over urban areas. A number of numerical models (large-eddy simulation, LES and k-ɛ turbulence models) have been developed to elucidate the transport processes in and above urban street canyons. To complement the modelling results, we initiated a wind tunnel study to examine the influence of idealized urban roughness on the flow characteristics and pollutant dispersion mechanism over 2D idealized street canyons placed in cross flows. Hot-wire anemometry (HWA) was employed in this study to measure the flows over 2D street canyons in the wind tunnel in our university. Particular focus in the beginning stage was on the fabrication of hot-wire probes, data acquisition system, and signal processing technique. Employing the commonly adopted hot-wire universal function, we investigated the relationship in between and developed a scaling factor which could generalize the output of our hot-wire probes to the standardized one as each hot-wire probes has its unique behaviour. Preliminary experiments were performed to measure the wind flows over street canyons of unity aspect ratio. Vertical profiles of the ensemble average velocity and fluctuations at three different segments over the street canyons were collected. The results were then compared with our LES that show a good argument with each other. Additional experiments are undertaken to collect more data in order to formulate the pollutant dispersion mechanism of street canyons and urban areas.

  11. Supersonic and transonic Mach probe for calibration control in the Trisonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Alexandru Marius PANAIT

    2017-12-01

    Full Text Available A supersonic and high speed transonic Pitot Prandtl is described as it can be implemented in the Trisonic Wind Tunnel for calibration and verification of Mach number precision. A new calculation method for arbitrary precision Mach numbers is proposed and explained. The probe is specially designed for the Trisonic wind tunnel and would greatly simplify obtaining a precise Mach calibration in the critical high transonic and low supersonic regimes, where typically wind tunnels exhibit poor performance. The supersonic Pitot Prandtl combined probe is well known in the aerospace industry, however the proposed probe is a derivative of the standard configuration, combining a stout cone-cylinder probe with a supersonic Pitot static port which allows this configuration to validate the Mach number by three methods: conical flow method – using the pressure ports on a cone generatrix, the Schlieren-optical method of shock wave angle photogrammetry and the Rayleigh supersonic Pitot equation, while having an aerodynamic blockage similar to that of a scaled rocket model commonly used in testing. The proposed probe uses an existing cone-cylinder probe forebody and support, adding only an afterbody with a support for a static port.

  12. Atrial fibrillation or flutter

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000184.htm Atrial fibrillation or flutter To use the sharing features on this page, please enable JavaScript. Atrial fibrillation or flutter is a common type of abnormal ...

  13. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  14. Suppression of background noise in a transonic wind-tunnel test section

    Science.gov (United States)

    Schutzenhofer, L. A.; Howard, P. W.

    1975-01-01

    Some exploratory tests were recently performed in the transonic test section of the NASA Marshall Space Flight Center 14-in. wind tunnel to suppress the background noise. In these tests, the perforated walls of the test section were covered with fine wire screens. The screens eliminated the edge tones generated by the holes in the perforated walls and significantly reduced the tunnel background noise. The tunnel noise levels were reduced to such a degree by this simple modification at Mach numbers 0.75, 0.9, 1.1, 1.2, and 1.46 that the fluctuating pressure levels of a turbulent boundary layer could be measured on a 5-deg half-angle cone.

  15. Suspension Bridge Flutter for Girder with Separate Control Flaps

    DEFF Research Database (Denmark)

    Huynh, T.; Thoft-Christensen, Palle

    Active vibration control of long span suspension bridge flutter using separated control flaps (SFSC) has shown to increase effectively the critical wind speed of bridges. In this paper, an SFSC calculation based on modal equations of the vertical and torsional motions of the bridge girder including...... the flaps is presented. The length of the flaps attached to the girder, the flap configuration and the flap rotational angles are parameters used to increase the critical wind speed of the bridge. To illustrate the theory a numerical example is shown for a suspension bridge of 1000m+2500m+1000m span based...... on the Great Belt Bridge streamlined girder....

  16. Some measurements of time and space correlation in wind tunnel

    Science.gov (United States)

    Favre, A; Gaviglio, J; Dumas, R

    1955-01-01

    Results are presented of research obtained by means of an apparatus for measurement of time and space correlation and of a spectral analyzer in the study of the longitudinal component of turbulence velocities in a wind tunnel downstream of a grid of meshes. Application to the case of a flat-plate boundary layer is illustrated. These researches were made at the Laboratoire de Mecanique de l'Atmosphere de l'I.M.F.M. for the O.N.E.R.A.

  17. Aeroelastic stability analysis of a Darrieus wind turbine

    Science.gov (United States)

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis was developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  18. Aeroelastic stability analysis of a Darrieus wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  19. Comparison of CFD simulations to non-rotating MEXICO blades experiment in the LTT wind tunnel of TUDelft

    International Nuclear Information System (INIS)

    Zhang, Ye; Van Zuijlen, Alexander; Van Bussel, Gerard

    2014-01-01

    In this paper, three dimensional flow over non-rotating MEXICO blades is simulated by CFD methods. The numerical results are compared with the latest MEXICO wind turbine blades measurements obtained in the low speed low turbulence (LTT) wind tunnel of Delft University of Technology. This study aims to validate CFD codes by using these experimental data measured in well controlled conditions. In order to avoid use of wind tunnel corrections, both the blades and the wind tunnel test section are modelled in the simulations. The ability of Menter's k – ω shear stress transport (SST) turbulence model is investigated at both attached flow and massively separated flow cases. Steady state Reynolds averaged Navier Stokes (RANS) equations are solved in these computations. The pressure distribution at three measured sections are compared under the conditions of different inflow velocities and a range of angles of attack. The comparison shows that at attached flow condition, good agreement can be obtained for all three airfoil sections. Even with massively separated flow, still fairly good pressure distribution comparison can be found for the DU and NACA airfoil sections, although the RISØ section shows poor comparison. At the near stall case, considerable deviations exists on the forward half part of the upper surface for all three sections

  20. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M.

    2001-12-01

    The primary objective of the insteady aerodynamics experiment was to provide information needed to quantify the full-scale, three-dimensional aerodynamic behavior of horizontal-axis wind turbines. This report is intended to familiarize the user with the entire scope of the wind tunnel test and to support the use of the resulting data.

  1. Pilot-scale concept of real-time wind speed-matching wind tunnel for measurements of gaseous emissions

    Science.gov (United States)

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3) and odorous volatile organic compound (VOC) emissions associated with animal production is a critical need. Current methods utilizing wind tunnels and flux chambers for measurements of gaseous emissions from area sources such as f...

  2. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    International Nuclear Information System (INIS)

    Chougule, Prasad; Nielsen, Søren R K

    2014-01-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved

  3. A MODELING METHOD OF FLUTTERING LEAVES BASED ON POINT CLOUD

    Directory of Open Access Journals (Sweden)

    J. Tang

    2017-09-01

    Full Text Available Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which are the rotation falling, the roll falling and the screw roll falling. At the same time, a parallel algorithm based on OpenMP is implemented to satisfy the needs of real-time in practical applications. Experimental results demonstrate that the proposed method is amenable to the incorporation of a variety of desirable effects.

  4. Wind tunnels with adapted walls for reducing wall interference

    Science.gov (United States)

    Ganzer, U.

    1979-01-01

    The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.

  5. Wind Tunnel Testing of Active Control System for Bridges

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes preparation of wind tunnel testing of the principle of using flaps to control the motion of suspension bridges. The experiment will take place at the Instituto Superior Technico Lisbon, Portugal. The bridge section model is constructed of foam with an aluminium frame. The flaps...... are regulated by servo motors. Neural networks are used to position the flaps in the optimal positions....

  6. Aerodynamic characteristics of the modified 40- by 80-foot wind tunnel as measured in a 1/50th-scale model

    Science.gov (United States)

    Smith, Brian E.; Naumowicz, Tim

    1987-01-01

    The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.

  7. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    International Nuclear Information System (INIS)

    Kalvig, Siri; Hjertager, Bjørn; Manger, Eirik

    2014-01-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach

  8. Flow visualization around a rotating body in a wind tunnel

    Science.gov (United States)

    Hiraki, K.; Zaitsu, D.; Yanaga, Y.; Kleine, H.

    2017-02-01

    The rotational behavior of capsule-shaped models is investigated in the transonic wind tunnel of JAXA. A special support is developed to allow the model to rotate around the pitch, yaw and roll axes. This 3-DOF free rotational mounting apparatus achieves the least frictional torque from the support and the instruments. Two types of capsule models are prepared, one is drag type (SPH model) and the other is lift type (HTV-R model). The developed mounting apparatus is used in the wind tunnel tests with these capsule models. In a flow of Mach 0.9, the SPH model exhibits oscillations in pitch and yaw, and it rolls half a turn during the test. Similarly, the HTV-R model exhibits pitch and yaw oscillations in a flow of Mach 0.5. Moreover, it rolls multiple times during the test. In order to investigate the flow field around the capsule, the combined technique of color schlieren and surface tufts is applied. This visualization clearly shows the flow reattachment on the back surface of a capsule, which is suspected to induce the rapid rolling motion.

  9. Pollutant Plume Dispersion over Hypothetical Urban Areas based on Wind Tunnel Measurements

    Science.gov (United States)

    Mo, Ziwei; Liu, Chun-Ho

    2017-04-01

    Gaussian plume model is commonly adopted for pollutant concentration prediction in the atmospheric boundary layer (ABL). However, it has a number of limitations being applied to pollutant dispersion over complex land-surface morphology. In this study, the friction factor (f), as a measure of aerodynamic resistance induced by rough surfaces in the engineering community, was proposed to parameterize the vertical dispersion coefficient (σz) in the Gaussian model. A series of wind tunnel experiments were carried out to verify the mathematical hypothesis and to characterize plume dispersion as a function of surface roughness as well. Hypothetical urban areas, which were assembled in the form of idealized street canyons of different aspect (building-height-to-street-width) ratios (AR = 1/2, 1/4, 1/8 and 1/12), were fabricated by aligning identical square aluminum bars at different separation apart in cross flows. Pollutant emitted from a ground-level line source into the turbulent boundary layer (TBL) was simulated using water vapour generated by ultrasonic atomizer. The humidity and the velocity (mean and fluctuating components) were measured, respectively, by humidity sensors and hot-wire anemometry (HWA) with X-wire probes in streamwise and vertical directions. Wind tunnel results showed that the pollutant concentration exhibits the conventional Gaussian distribution, suggesting the feasibility of using water vapour as a passive scalar in wind tunnel experiments. The friction factor increased with decreasing aspect ratios (widening the building separation). It was peaked at AR = 1/8 and decreased thereafter. Besides, a positive correlation between σz/xn (x is the distance from the pollutant source) and f1/4 (correlation coefficient r2 = 0.61) was observed, formulating the basic parameterization of plume dispersion over urban areas.

  10. Implementation of the non-flutter design principle

    DEFF Research Database (Denmark)

    Andersen, Michael Styrk; Sahin, Emrah; Laustsen, Benjamin

    2014-01-01

    The non-flutter design principle is introduced. Aerodynamically stable section model tests performed by three different research groups indicate, that flutter might be avoided if the torsional-to-vertical frequency ratio is kept below 1. A case study of a suspension bridge spanning 3:7 km...

  11. Study of wind forces on low-rise hip-roof building

    African Journals Online (AJOL)

    DR OKE

    cost approach for evaluation of wind effects in comparison to wind-tunnel experiments, using the ... edges of the hip-roof building in their wind-tunnel experiments. ..... choice of turbulence model depends on considerations such as the physics ...

  12. Unstructed Navier-Stokes Analysis of Wind-Tunnel Aeroelastic Effects on TCA Model 2

    Science.gov (United States)

    Frink, Neal T.; Allison, Dennis O.; Parikh, Paresh C.

    1999-01-01

    The aim of this work is to demonstrate a simple technique which accounts for aeroelastic deformations experienced by HSR wind-tunnel models within CFD computations. With improved correlations, CFD can become a more effective tool for augmenting the post-test understanding of experimental data. The present technique involves the loose coupling of a low-level structural representation within the ELAPS code, to an unstructured Navier-Stokes flow solver, USM3Dns. The ELAPS model is initially calibrated against bending characteristics of the wind-tunnel model. The strength of this method is that, with a single point calibration of a simple structural representation, the static aeroelastic effects can be accounted for in CFD calculations across a range of test conditions. No prior knowledge of the model deformation during the wind-on test is required. This approach has been successfully applied to the high aspect-ratio planforms of subsonic transports. The current challenge is to adapt the procedure to low aspect-ratio planforms typical of HSR configurations.

  13. Phased array technique for low signal-to-noise ratio wind tunnels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed wind tunnel beamforming for aeroacoustics has become more and more prevalent in recent years. Still, there are major drawbacks as current microphone arrays...

  14. Fuel use and metabolic response to endurance exercise: a wind tunnel study of a long-distance migrant shorebird

    OpenAIRE

    Jenni-Eiermann, Susanne; Jenni, Lukas; Kvist, Anders; Lindström, Åke; Piersma, Theunis; Visser, G. Henk

    2002-01-01

    This study examines fuel use and metabolism in a group of long-distance migrating birds, red knots Calidris canutus (Scolopacidae), flying under controlled conditions in a wind tunnel for up to 10 h. Data are compared with values for resting birds fasting for the same time. Plasma levels of free fatty acids, glycerol and uric acid were elevated during flight, irrespective of flight duration (1–10 h). Triglyceride levels, the estimated concentration of very-low-density lipoproteins (VLDLs) and...

  15. Wind tunnel tests on a one-foot diameter SR-7L propfan model

    Science.gov (United States)

    Aljabri, Abdullah S.

    1987-01-01

    Wind tunnel tests have been conducted on a one-foot diameter model of the SR-7L propfan in the Langley 16-Foot and 4 x 7 Meter Wind Tunnels as part of the Propfan Test Assessment (PTA) Program. The model propfan was sized to be used on a 1/9-scale model of the PTA testbed aircraft. The model propeller was tested in isolation and wing-mounted on the aircraft configuration at various Mach numbers and blade pitch angles. Agreement between data obtained from these tests and data from Hamilton Standard validate that the 1/9-scale propeller accurately simulates the aerodynamics of the SR-7L propfan. Predictions from an analytical computer program are presented and show good agreement with the experimental data.

  16. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region

    Science.gov (United States)

    Bastankhah, M.; Porté-Agel, F.

    2017-06-01

    Comprehensive wind tunnel experiments were carried out to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements were performed to characterize the variation of thrust force (both magnitude and direction) and generated power of the wind turbine under different operating conditions. Moreover, flow measurements, collected using high-resolution particle-image velocimetry as well as hot-wire anemometry, were employed to systematically study the flow in the upwind, near-wake, and far-wake regions. These measurements provide new insights into the effect of turbine operating conditions on flow characteristics in these regions. For the upwind region, the results show a strong lateral asymmetry under yawed conditions. For the near-wake region, the evolution of tip and root vortices was studied with the use of both instantaneous and phase-averaged vorticity fields. The results suggest that the vortex breakdown position cannot be determined based on phase-averaged statistics, particularly for tip vortices under turbulent inflow conditions. Moreover, the measurements in the near-wake region indicate a complex velocity distribution with a speed-up region in the wake center, especially for higher tip-speed ratios. In order to elucidate the meandering tendency of far wakes, particular focus was placed on studying the characteristics of large turbulent structures in the boundary layer and their interaction with wind turbines. Although these structures are elongated in the streamwise direction, their cross sections are found to have a size comparable to the rotor area, so that they can be affected by the presence of the turbine. In addition, the study of spatial coherence in turbine wakes reveals that any statistics based on streamwise velocity fluctuations cannot provide reliable information about the size of large turbulent structures in turbine wakes due to the effect of wake

  17. User manual for NASA Lewis 10 by 10 foot supersonic wind tunnel. Revised

    Science.gov (United States)

    Soeder, Ronald H.

    1995-01-01

    This manual describes the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Lewis Research Center and provides information for users who wish to conduct experiments in this facility. Tunnel performance operating envelopes of altitude, dynamic pressure, Reynolds number, total pressure, and total temperature as a function of test section Mach number are presented. Operating envelopes are shown for both the aerodynamic (closed) cycle and the propulsion (open) cycle. The tunnel test section Mach number range is 2.0 to 3.5. General support systems, such as air systems, hydraulic system, hydrogen system, fuel system, and Schlieren system, are described. Instrumentation and data processing and acquisition systems are also described. Pretest meeting formats and schedules are outlined. Tunnel user responsibility and personnel safety are also discussed.

  18. Wind Tunnel and Numerical Analysis of Thick Blunt Trailing Edge Airfoils

    Science.gov (United States)

    McLennan, Anthony William

    Two-dimensional aerodynamic characteristics of several thick blunt trailing edge airfoils are presented. These airfoils are not only directly applicable to the root section of wind turbine blades, where they provide the required structural strength at a fraction of the material and weight of an equivalent sharp trailing edge airfoil, but are also applicable to the root sections of UAVs having high aspect ratios, that also encounter heavy root bending forces. The Reynolds averaged Navier-Stokes code, ARC2D, was the primary numerical tool used to analyze each airfoil. The UCD-38-095, referred to as the Pareto B airfoil in this thesis, was also tested in the University of California, Davis Aeronautical Wind Tunnel. The Pareto B has an experimentally determined maximum lift coefficient of 1.64 at 14 degrees incidence, minimum drag coefficient of 0.0385, and maximum lift over drag ratio of 35.9 at a lift coefficient of 1.38, 10 degrees incidence at a Reynolds number of 666,000. Zig-zag tape at 2% and 5% of the chord was placed on the leading edge pressure and suction side of the Pareto B model in order to determine the aerodynamic performance characteristics at turbulent flow conditions. Experimental Pareto B wind tunnel data and previous FB-3500-0875 data is also presented and used to validate the ARC2D results obtained in this study. Additionally MBFLO, a detached eddy simulation Navier-Stokes code, was used to analyze the Pareto B airfoil for comparison and validation purposes.

  19. Experimental Methods Applied in a Study of Stall Flutter in an Axial Flow Fan

    Directory of Open Access Journals (Sweden)

    John D. Gill

    2004-01-01

    Full Text Available Flutter testing is an integral part of aircraft gas turbine engine development. In typical flutter testing blade mounted sensors in the form of strain gages and casing mounted sensors in the form of light probes (NSMS are used. Casing mounted sensors have the advantage of being non-intrusive and can detect the vibratory response of each rotating blade. Other types of casing mounted sensors can also be used to detect flutter of rotating blades. In this investigation casing mounted high frequency response pressure transducers are used to characterize the part-speed stall flutter response of a single stage unshrouded axial-flow fan. These dynamic pressure transducers are evenly spaced around the circumference at a constant axial location upstream of the fan blade leading edge plane. The pre-recorded experimental data at 70% corrected speed is analyzed for the case where the fan is back-pressured into the stall flutter zone. The experimental data is analyzed using two probe and multi-probe techniques. The analysis techniques for each method are presented. Results from these two analysis methods indicate that flutter occurred at a frequency of 411 Hz with a dominant nodal diameter of 2. The multi-probe analysis technique is a valuable method that can be used to investigate the initiation of flutter in turbomachines.

  20. Experimental Research on an Active Sting Damper in a Low Speed Acoustic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Jinjin Chen

    2014-01-01

    Full Text Available Wind tunnels usually use long cantilever stings to support aerodynamic models in order to reduce support system flow interference on experimental data. However, such support systems are a potential source of vibration problems which limit the test envelope and affect data quality due to the inherently low structural damping of the systems. When exposed to tunnel flow, turbulence and model flow separation excite resonant Eigenmodes of a sting structure causing large vibrations due to low damping. This paper details the development and experimental evaluation of an active damping system using piezoelectric devices with balance signal feedback both in a lab and a low speed acoustic wind tunnel and presents the control algorithm verification tests with a simple cantilever beam. It is shown that the active damper, controlled separately by both PID and BP neural network, has effectively attenuated the vibration. For sting mode only, 95% reduction of displacement response under exciter stimulation and 98% energy elimination of sting mode frequency have been achieved.

  1. Validation Study for an Atmospheric Dispersion Model, Using Effective Source Heights Determined from Wind Tunnel Experiments in Nuclear Safety Analysis

    Directory of Open Access Journals (Sweden)

    Masamichi Oura

    2018-03-01

    Full Text Available For more than fifty years, atmospheric dispersion predictions based on the joint use of a Gaussian plume model and wind tunnel experiments have been applied in both Japan and the U.K. for the evaluation of public radiation exposure in nuclear safety analysis. The effective source height used in the Gaussian model is determined from ground-level concentration data obtained by a wind tunnel experiment using a scaled terrain and site model. In the present paper, the concentrations calculated by this method are compared with data observed over complex terrain in the field, under a number of meteorological conditions. Good agreement was confirmed in near-neutral and unstable stabilities. However, it was found to be necessary to reduce the effective source height by 50% in order to achieve a conservative estimation of the field observations in a stable atmosphere.

  2. Wind tunnel noise reduction at Mach 5 with a rod-wall sound shield. [for prevention of premature boundary layer transition on wind tunnel models

    Science.gov (United States)

    Creel, T. R.; Beckwith, I. E.

    1983-01-01

    A method of shielding a wind-tunnel model from noise radiated by the tunnel-wall boundary layer has been developed and tested at the Langley Research Center. The shield consists of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Tests were conducted at Mach 5 over a unit Reynolds number range of 1.0-3.5 x 10 to the 7th/m. Hot-wire measurements indicated the freestream noise, expressed in terms of the rms pressure fluctuations normalized by the mean pressure, was reduced from about 1.4 percent just upstream of the shielded region of a minimum level of about 0.4 percent in the forward portion of the shielded flow.

  3. Study of the stall delay phenomenon and of wind turbine blade dynamics using numerical approaches and NREL's wind tunnel tests

    Energy Technology Data Exchange (ETDEWEB)

    Breton, Simon-Philippe

    2008-06-15

    the modeling of the stall phenomenon which involves very complex aerodynamics. The NREL wind tunnel results were further scrutinized in term of the root flapwise and edgewise bending moments. This allowed to study the dynamics of the NREL blades, at the same time as verifying the consistency between these moments and different loads measured in these tests. Measurements of these moments at the root of the rigid NREL blades in head-on flow showed vibrations corresponding to the two first oscillation modes of the blades, in respectively the flapwise and edgewise directions. These features observed in both an upwind and a downwind configuration were presumed to follow from the presence of the tower. In the downwind configuration, dynamic effects affecting one blade when going through the shadow of the tower were found to be transmitted to the other blade in both the teetered and the rigid configurations. Modelling of the root edgewise and flapwise bending moments was performed by calculating two dynamic estimates based on forces measured respectively along the blade and in the hub region. The simulations generally reproduced the dynamic effects well, and they suggested a systematic error in the measurement of the root flapwise bending moment in the upwind configuration. Inaccuracies in measuring the tangential forces on the blade at high wind speeds were also detected. Offshore wind energy, that is expected to soon lead the development of the wind energy technology, was thereafter studied, where downwind turbines that were given special attention in the dynamic analysis above might reveal themselves as a more adapted solution. The many advantages as well as challenges related to this technology were acknowledged. The status of this technology was investigated in both Europe and North America, and it revealed that Europe is in advance regarding all aspects of wind energy over North America, where it still is at a planning stage. Important plans were however found to exist

  4. Development and Operation of an Automatic Rotor Trim Control System for use During the UH-60 Individual Blade Control Wind Tunnel Test

    Science.gov (United States)

    Theodore, Colin R.

    2010-01-01

    A full-scale wind tunnel test to evaluate the effects of Individual Blade Control (IBC) on the performance, vibration, noise and loads of a UH-60A rotor was recently completed in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel [1]. A key component of this wind tunnel test was an automatic rotor trim control system that allowed the rotor trim state to be set more precisely, quickly and repeatably than was possible with the rotor operator setting the trim condition manually. The trim control system was also able to maintain the desired trim condition through changes in IBC actuation both in open- and closed-loop IBC modes, and through long-period transients in wind tunnel flow. This ability of the trim control system to automatically set and maintain a steady rotor trim enabled the effects of different IBC inputs to be compared at common trim conditions and to perform these tests quickly without requiring the rotor operator to re-trim the rotor. The trim control system described in this paper was developed specifically for use during the IBC wind tunnel test

  5. Micro Fine Sized Palm Oil Fuel Ash Produced Using a Wind Tunnel Production System

    Directory of Open Access Journals (Sweden)

    R. Ahmadi

    2016-01-01

    Full Text Available Micro fine sized palm oil fuel ash (POFA is a new supplementary cementitious material that can increase the strength, durability, and workability of concrete. However, production of this material incurs high cost and is not practical for the construction industry. This paper investigates a simple methodology of producing micro fine sized POFA by means of a laboratory scale wind tunnel system. The raw POFA obtained from an oil palm factory is first calcined to remove carbon residue and then grinded in Los Angeles abrasion machine. The grinded POFA is then blown in the fabricated wind tunnel system for separation into different ranges of particle sizes. The physical, morphological, and chemical properties of the micro fine sized POFA were then investigated using Laser Particle Size Analyser (PSA, nitrogen sorption, and Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX. A total of 32.1% micro fine sized POFA were collected from each sample blown, with the size range of 1–10 micrometers. The devised laboratory scale of wind tunnel production system is successful in producing micro fine sized POFA and, with modifications, this system is envisaged applicable to be used to commercialize micro fine sized POFA production for the construction industry.

  6. [Typical atrial flutter: Diagnosis and therapy].

    Science.gov (United States)

    Thomas, Dierk; Eckardt, Lars; Estner, Heidi L; Kuniss, Malte; Meyer, Christian; Neuberger, Hans-Ruprecht; Sommer, Philipp; Steven, Daniel; Voss, Frederik; Bonnemeier, Hendrik

    2016-03-01

    Typical, cavotricuspid-dependent atrial flutter is the most common atrial macroreentry tachycardia. The incidence of atrial flutter (typical and atypical forms) is age-dependent with 5/100,000 in patients less than 50 years and approximately 600/100,000 in subjects > 80 years of age. Concomitant heart failure or pulmonary disease further increases the risk of typical atrial flutter.Patients with atrial flutter may present with symptoms of palpitations, reduced exercise capacity, chest pain, or dyspnea. The risk of thromboembolism is probably similar to atrial fibrillation; therefore, the same antithrombotic prophylaxis is required in atrial flutter patients. Acutely symptomatic cases may be subjected to cardioversion or pharmacologic rate control to relieve symptoms. Catheter ablation of the cavotricuspid isthmus represents the primary choice in long-term therapy, associated with high procedural success (> 97 %) and low complication rates (0.5 %).This article represents the third part of a manuscript series designed to improve professional education in the field of cardiac electrophysiology. Mechanistic and clinical characteristics as well as management of isthmus-dependent atrial flutter are described in detail. Electrophysiological findings and catheter ablation of the arrhythmia are highlighted.

  7. PM10 emission efficiency for agricultural soils: Comparing a wind tunnel, a dust generator, and the open-air plot

    Science.gov (United States)

    Avecilla, Fernando; Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.

    2018-06-01

    The PM10 emission efficiency of soils has been determined through different methods. Although these methods imply important physical differences, their outputs have never been compared. In the present study the PM10 emission efficiency was determined for soils through a wide range of textures, using three typical methodologies: a rotary-chamber dust generator (EDG), a laboratory wind tunnel on a prepared soil bed, and field measurements on an experimental plot. Statistically significant linear correlation was found (p < 0.05) between the PM10 emission efficiency obtained from the EDG and wind tunnel experiments. A significant linear correlation (p < 0.05) was also found between the PM10 emission efficiency determined both with the wind tunnel and the EDG, and a soil texture index (%sand + %silt)/(%clay + %organic matter) that reflects the effect of texture on the cohesion of the aggregates. Soils with higher sand content showed proportionally less emission efficiency than fine-textured, aggregated soils. This indicated that both methodologies were able to detect similar trends regarding the correlation between the soil texture and the PM10 emission. The trends attributed to soil texture were also verified for two contrasting soils under field conditions. However, differing conditions during the laboratory-scale and the field-scale experiments produced significant differences in the magnitude of the emission efficiency values. The causes of these differences are discussed within the paper. Despite these differences, the results suggest that standardized laboratory and wind tunnel procedures are promissory methods, which could be calibrated in the future to obtain results comparable to field values, essentially through adjusting the simulation time. However, more studies are needed to extrapolate correctly these values to field-scale conditions.

  8. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Science.gov (United States)

    2010-07-01

    ... the sampler inlet opening centered in the sampling zone. To meet the maximum blockage limit of § 53.62(c)(1) or for convenience, part of the test sampler may be positioned external to the wind tunnel... = reference method sampler volumetric flow rate; and t = sampling time. (iii) Remove the reference method...

  9. A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2017-10-01

    Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.

  10. Remote-controlled flexible pose measurement system and method for a moving target in wind tunnel

    Directory of Open Access Journals (Sweden)

    Wei LIU

    2018-01-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled flexible pose measurement system in wind tunnel conditions for the separation of a target from an aircraft. The position and attitude parameters of a moving object are obtained by utilizing a single camera with a focal length and camera orientation that can be changed based on different measurement conditions. Using this proposed system and method, both the flexibility and efficiency of the pose measurement system can be enhanced in wind tunnel conditions to meet the measurement requirements of different objects and experiments, which is also useful for the development of an intelligent position and attitude measurement system. The position and the focal length of the camera also can be controlled remotely during measurements to enlarge both the vertical and horizontal measurement range of this system. Experiments are conducted in the laboratory to measure the position and attitude of moving objects with high flexibility and efficiency, and the measurement precision of the measurement system is also verified through experiments.

  11. Development and Operation of an Automatic Rotor Trim Control System for the UH-60 Individual Blade Control Wind Tunnel Test

    Science.gov (United States)

    Theodore, Colin R.; Tischler, Mark B.

    2010-01-01

    An automatic rotor trim control system was developed and successfully used during a wind tunnel test of a full-scale UH-60 rotor system with Individual Blade Control (IBC) actuators. The trim control system allowed rotor trim to be set more quickly, precisely and repeatably than in previous wind tunnel tests. This control system also allowed the rotor trim state to be maintained during transients and drift in wind tunnel flow, and through changes in IBC actuation. The ability to maintain a consistent rotor trim state was key to quickly and accurately evaluating the effect of IBC on rotor performance, vibration, noise and loads. This paper presents details of the design and implementation of the trim control system including the rotor system hardware, trim control requirements, and trim control hardware and software implementation. Results are presented showing the effect of IBC on rotor trim and dynamic response, a validation of the rotor dynamic simulation used to calculate the initial control gains and tuning of the control system, and the overall performance of the trim control system during the wind tunnel test.

  12. A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges

    Directory of Open Access Journals (Sweden)

    Igor Kavrakov

    2017-12-01

    Full Text Available Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff concrete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a wind-speed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow. Keywords: Buffeting, Flutter, Long-span bridges, Bridge aerodynamics, Bridge aeroelasticity, Erection stage

  13. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  14. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    Science.gov (United States)

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  15. A formalization of the flutter shutter

    Science.gov (United States)

    Tendero, Yohann; Rougé, Bernard; Morel, Jean-Michel

    2012-09-01

    Acquiring good quality images of moving objects by a digital camera remains a valid question. If the velocity of the photographed object is not known, it is virtually impossible to tune an optimal exposure time. For this reason the recent Agrawal et al. flutter shutter apparatus has generated much interest. In this communication, we propose a mathematical formalization of a general flutter shutter method, also permitting non-binary shutter sequences. Thanks to this formalization, the question of the optimal flutter shutter code can be defined and solved. The method gives analytic formulas for the best attainable SNR for the restored image. It also gives a way to compute optimal flutter shutter codes.

  16. Wind-Tunnel Investigation of Wind Loads on a Post-Panamax Container Ship as a Function of the Container Configuration on Deck

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent

    2012-01-01

    An investigation of the wind forces acting on a 9,000+ TEU container ship has been carried out through a series of wind tunnel tests. It was investigated how the wind forces depend on the container configuration on the deck using a 1:450 scale model and a series of appropriate container...... are presented as nondimensional coefficients. It is concluded, that the measured forces and moment depend on the container configuration on deck, and the results may provide a general idea of how the magnitude of the wind forces is affected by a given container stacking configuration on a similar container ship....

  17. An Auto-Tuning PI Control System for an Open-Circuit Low-Speed Wind Tunnel Designed for Greenhouse Technology.

    Science.gov (United States)

    Espinoza, Karlos; Valera, Diego L; Torres, José A; López, Alejandro; Molina-Aiz, Francisco D

    2015-08-12

    Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of integrated software unit that manages the tests in terms of airflow speed and pressure drop set points.

  18. A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring

    Science.gov (United States)

    Stoughton, J. W.

    1978-01-01

    Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.

  19. Comparison of Force and Moment Coefficients for the Same Test Article in Multiple Wind Tunnels

    Science.gov (United States)

    Deloach, Richard

    2013-01-01

    This paper compares the results of force and moment measurements made on the same test article and with the same balance in three transonic wind tunnels. Comparisons are made for the same combination of Reynolds number, Mach number, sideslip angle, control surface configuration, and angle of attack range. Between-tunnel force and moment differences are quantified. An analysis of variance was performed at four unique sites in the design space to assess the statistical significance of between-tunnel variation and any interaction with angle of attack. Tunnel to tunnel differences too large to attribute to random error were detected were observed for all forces and moments. In some cases these differences were independent of angle of attack and in other cases they changed with angle of attack.

  20. Direct numerical simulations of an arc-powered heater for used in a hypersonic wind tunnel

    Science.gov (United States)

    Kim, Pilbum; Panesi, Marco; Freund, Jonathan

    2017-11-01

    We study a model arc-heater using direct numerical simulations, in a configuration motivated by its used to generated inflow of a high-speed wind tunnel for hypersonics research. The flow is assumed to be in local thermal equilibrium (LTE) and is modeled with with 11 species (N2, O2, NO, N, O, N2+,O2+,NO+, N+, O+, e-). The flow equations are solved in conjunction with an electrostatic field solver and the gas electric conductivity in LTE. The flow rate and the mean arc power are set to be 50.42 g/s and 84.7 kW with 214.0 V of the mean arc voltage , respectively. We study the flow details, the heading and thrust mechanisms, and make general comparisons with a corresponding, though geometrically more complex, experimental configuration. We particularly interested in the radical species it produces and will potentially be present in the wind-tunnel test section. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  1. A model to relate wind tunnel measurements to open field odorant emissions from liquid area sources

    Science.gov (United States)

    Lucernoni, F.; Capelli, L.; Busini, V.; Sironi, S.

    2017-05-01

    Waste Water Treatment Plants are known to have significant emissions of several pollutants and odorants causing nuisance to the near-living population. One of the purposes of the present work is to study a suitable model to evaluate odour emissions from liquid passive area sources. First, the models describing volatilization under a forced convection regime inside a wind tunnel device, which is the sampling device that typically used for sampling on liquid area sources, were investigated. In order to relate the fluid dynamic conditions inside the hood to the open field and inside the hood a thorough study of the models capable of describing the volatilization phenomena of the odorous compounds from liquid pools was performed and several different models were evaluated for the open field emission. By means of experimental tests involving pure liquid acetone and pure liquid butanone, it was verified that the model more suitable to describe precisely the volatilization inside the sampling hood is the model for the emission from a single flat plate in forced convection and laminar regime, with a fluid dynamic boundary layer fully developed and a mass transfer boundary layer not fully developed. The proportionality coefficient for the model was re-evaluated in order to account for the specific characteristics of the adopted wind tunnel device, and then the model was related with the selected model for the open field thereby computing the wind speed at 10 m that would cause the same emission that is estimated from the wind tunnel measurement furthermore, the field of application of the proposed model was clearly defined for the considered models during the project, discussing the two different kinds of compounds commonly found in emissive liquid pools or liquid spills, i.e. gas phase controlled and liquid phase controlled compounds. Lastly, a discussion is presented comparing the presented approach for emission rates recalculation in the field, with other approaches

  2. Isthmus Dependent Atrial Flutter Cycle Length Correlates with Right Atrial Cross-Sectional Area

    Directory of Open Access Journals (Sweden)

    Kousik Krishnan

    2009-05-01

    Full Text Available Background: Right atrial flutter cycle length can prolong in the presence of antiarrhythmic drug therapy. We hypothesized that the cycle length of right atrial isthmus dependent flutter would correlate with right atrial cross-sectional area measurements. Methods: 60 patients who underwent ablation for electrophysiologically proven isthmus dependent right atrial flutter, who were not on Class I or Class III antiarrhythmic drugs and had recent 2-dimensional echocardiographic data comprised the study group. Right atrial length and width were measured in the apical four chamber view. Cross-sectional area was estimated by multiplying the length and width. 35 patients had an atrial flutter rate ≥250 bpm (Normal Flutter Group and 25 patients had an atrial flutter rate < 250 bpm (Slow Flutter Group. Results: Mean atrial flutter rate was 283 bpm in the normal flutter group and 227 bpm in the slow flutter group. Mean atrial flutter cycle length was 213 ms in the Normal Flutter Group and 265 ms in the Slow Flutter Group (p<0.0001. Mean right atrial cross sectional area was 1845 mm2 in the Normal Flutter group and 2378 mm2 in the Slow Flutter Group, (p< 0.0001. Using linear regression, CSA was a significant predictor of cycle length (β =0.014 p = 0.0045. For every 1 mm2 increase in cross-sectional area, cycle length is 0.014 ms longer.Conclusion: In the absence of antiarrhythmic medications, right atrial cross sectional area enlargement correlates with atrial flutter cycle length. These findings provide further evidence that historical rate-related definitions of typical isthmus dependent right atrial are not mechanistically valid.

  3. Vortex system studies on small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern; Dahlberg, Jan-Aake [Swedish Defence Research Agency, Stockholm (Sweden). Div. of Aeronautics, FFA

    2003-10-01

    The wind tunnel experiment reported included a small wind turbine setup and smoke to visualize the trailing tip vortices for different wind turbine configurations. Several combinations of tunnel wind speeds and tip speed ratios generated a database where the end result functions were radius and pitch, of the tip vortex spirals, versus the downstream coordinate. The Reynolds number in the experiment was very low compared to that of full size turbines. The results should therefore be seen as valid only for low Reynolds numbers. The models were 18 and 25 cm diameter turbines. This is thought to be complementary to the information obtained in similar wind tunnel investigations for much larger models. The database is meant to be a fundamental tool for the construction of practical aerodynamic induction methods. Such methods typically employ the Biot-Savart law has been shown to lead to a flow field, which deviates considerably from that of reality. E.g. concentration into tip vortices does not happen when the flow is simulated with Biot-Savart law only. Thus, a combination of the induction method and its modification, based on investigations such as the one reported, is foreseen to replace the widely used Blade Element Momentum method for wind turbine loads and performance prediction.

  4. Wind tunnel test IA300 analysis and results, volume 1

    Science.gov (United States)

    Kelley, P. B.; Beaufait, W. B.; Kitchens, L. L.; Pace, J. P.

    1987-01-01

    The analysis and interpretation of wind tunnel pressure data from the Space Shuttle wind tunnel test IA300 are presented. The primary objective of the test was to determine the effects of the Space Shuttle Main Engine (SSME) and the Solid Rocket Booster (SRB) plumes on the integrated vehicle forebody pressure distributions, the elevon hinge moments, and wing loads. The results of this test will be combined with flight test results to form a new data base to be employed in the IVBC-3 airloads analysis. A secondary objective was to obtain solid plume data for correlation with the results of gaseous plume tests. Data from the power level portion was used in conjunction with flight base pressures to evaluate nominal power levels to be used during the investigation of changes in model attitude, eleveon deflection, and nozzle gimbal angle. The plume induced aerodynamic loads were developed for the Space Shuttle bases and forebody areas. A computer code was developed to integrate the pressure data. Using simplified geometrical models of the Space Shuttle elements and components, the pressure data were integrated to develop plume induced force and moments coefficients that can be combined with a power-off data base to develop a power-on data base.

  5. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    Science.gov (United States)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

  6. Preliminary Evaluation of Nonlinear Effects on TCA Flutter

    Science.gov (United States)

    Arslan, Alan E.; Hartwich, Peter M.; Baker, Myles L.

    1998-01-01

    The objective of this study is to investigate the effect of nonlinear aerodynamics, especially at high angles-of-attack with leading-edge separation, on the TCA flutter properties at transonic speeds. In order to achieve that objective, flutter simulations with Navier-Stokes CFD must be performed. To this end, time-marching Navier-Stokes solutions are computed for the TCA wing/body configuration at high angles-of-attack in transonic flight regimes. The approach is to perform non-linear flutter calculations on the TCA at two angles-of-attack, the first one being a case with attached flow (a=2.8 degrees) and the second one being a high angle-of-attack case with a wing leading edge vortex (a=12.11 degrees). Comparisons of the resulting histories and frequency damping information for both angles-of-attack will evaluate the impact of high-alpha aerodynamics on flutter.

  7. Heat-flux gage measurements on a flat plate at a Mach number of 4.6 in the VSD high speed wind tunnel, a feasibility test (LA28). [wind tunnel tests of measuring instruments for boundary layer flow

    Science.gov (United States)

    1975-01-01

    The feasibility of employing thin-film heat-flux gages was studied as a method of defining boundary layer characteristics at supersonic speeds in a high speed blowdown wind tunnel. Flow visualization techniques (using oil) were employed. Tabulated data (computer printouts), a test facility description, and photographs of test equipment are given.

  8. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    OpenAIRE

    Shabudin Mat; I. S. Ishak; Tholudin Mat Lazim; Shuhaimi Mansor; Mazuriah Said; Abdul Basid Abdul Rahman; Ahmad Shukeri Mohd. Kamaludim; Romain Brossay

    2014-01-01

    This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST). Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also per...

  9. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    Science.gov (United States)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  10. Application of Computational Fluid Dynamics (CFD) in transonic wind-tunnel/flight-test correlation

    Science.gov (United States)

    Murman, E. M.

    1982-01-01

    The capability for calculating transonic flows for realistic configurations and conditions is discussed. Various phenomena which were modeled are shown to have the same order of magnitude on the influence of predicted results. It is concluded that CFD can make the following contributions to the task of correlating wind tunnel and flight test data: some effects of geometry differences and aeroelastic distortion can be predicted; tunnel wall effects can be assessed and corrected for; and the effects of model support systems and free stream nonuniformities can be modeled.

  11. Aeolian process of the dried-up riverbeds of the Hexi Corridor, China: a wind tunnel experiment.

    Science.gov (United States)

    Zhang, Caixia; Wang, Xunming; Dong, Zhibao; Hua, Ting

    2017-08-01

    Wind tunnel studies, which remain limited, are an important tool to understand the aeolian processes of dried-up riverbeds. The particle size, chemical composition, and the mineral contents of sediments arising from the dried river beds are poorly understood. Dried-up riverbeds cover a wide area in the Hexi Corridor, China, and comprise a complex synthesis of different land surfaces, including aeolian deposits, pavement surfaces, and Takyr crust. The results of the present wind tunnel experiment suggest that aeolian transport from the dried-up riverbeds of the Hexi Corridor ranges from 0 to 177.04 g/m 2 /min and that dry riverbeds could be one of the main sources of dust emissions in this region. As soon as the wind velocity reaches 16 m/s and assuming that there are abundant source materials available, aeolian transport intensity increases rapidly. The dried-up riverbed sediment and the associated aeolian transported material were composed mainly of fine and medium sands. However, the transported samples were coarser than the bed samples, because of the sorting effect of the aeolian processes on the sediment. The aeolian processes also led to regional elemental migration and mineral composition variations.

  12. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    , the lift prediction for the rigid wing is in good agreement with the estimated lift coefficients derived from the wind tunnel test data. Due to the movement of the VCCTEF during the wind tunnel test, uncertainty in the lift prediction due to the indicated variations of the VCCTEF deflection is studied. The results show a significant spread in the lift prediction which contradicts the consistency in the aerodynamic measurements, thus suggesting that the indicated variations as measured by the VICON system may not be reliable. The lift prediction of the flexible wing agrees very well with the measured lift curve for the baseline configuration. The computed bending deflection and wash-out twist of the flexible wing also match reasonably well with the aeroelastic deflection measurements. The results demonstrate the validity of the aerodynamic-structural tool for use to analyze aerodynamic performance of flexible wings.

  13. ATRIAL FLUTTER*

    African Journals Online (AJOL)

    1971-01-02

    Jan 2, 1971 ... Athero- sclerotic cardiovascular disease was present in 23 patients, of whom 3 had ... primum defect, atrial flutter was precipitated by cardiac catheterization. ..... Heart J., 70, 505. UNDERSTANDING REACTIVE DEPRESSION*

  14. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    Science.gov (United States)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  15. IIE`s wind tunnel calibration; Calibracion del tunel de viento del IIE

    Energy Technology Data Exchange (ETDEWEB)

    Pena Garcia, Raymundo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The calibration of a wind tunnel is performed in such a way as to warrant a very low turbulence grade. When there is recently built tunnel, as is the case of the IIE`s tunnel, the turbulence in its testing chambers is large; for this reason it is necessary to integrate in it aerodynamic devices and elements capable of reducing it. At the end of the calibration studies can be performed in models with controlled scale. From these and from the results obtained it will be decided if the designed prototypes are built or modified. [Espanol] La calibracion de un tunel de viento se realiza de tal forma que garantiza un grado de turbulencia muy bajo. Cuando se tiene un tunel recien construido, como es el caso del tunel de viento del IIE, la turbulencia en sus camaras de prueba es grande; por lo que es necesario integrarle dispositivos y elementos aerodinamicos que sean capaces de reducirla. Al terminar la calibracion pueden realizarse estudios en modelos con escala controlada. De estos y de los resultados que se obtengan se decidira si se construyen o se modifican los prototipos disenados.

  16. IIE`s wind tunnel calibration; Calibracion del tunel de viento del IIE

    Energy Technology Data Exchange (ETDEWEB)

    Pena Garcia, Raymundo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    The calibration of a wind tunnel is performed in such a way as to warrant a very low turbulence grade. When there is recently built tunnel, as is the case of the IIE`s tunnel, the turbulence in its testing chambers is large; for this reason it is necessary to integrate in it aerodynamic devices and elements capable of reducing it. At the end of the calibration studies can be performed in models with controlled scale. From these and from the results obtained it will be decided if the designed prototypes are built or modified. [Espanol] La calibracion de un tunel de viento se realiza de tal forma que garantiza un grado de turbulencia muy bajo. Cuando se tiene un tunel recien construido, como es el caso del tunel de viento del IIE, la turbulencia en sus camaras de prueba es grande; por lo que es necesario integrarle dispositivos y elementos aerodinamicos que sean capaces de reducirla. Al terminar la calibracion pueden realizarse estudios en modelos con escala controlada. De estos y de los resultados que se obtengan se decidira si se construyen o se modifican los prototipos disenados.

  17. Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems

    International Nuclear Information System (INIS)

    Boom, R.W.; Abdelsalam, M.K.; Bakerek, K.

    1985-01-01

    This paper presents a new design study of a Magnetic Suspension and Balance System (MSBS) for airplane models in a large 8 ft x 8 ft wind tunnel. New developments in the design include: use of a superconducting solenoid as a model core instead of magnetized iron; combination of permanent magnet material in the model wings along with four race-track coils to produce the required roll torque; and mounting of all the magnets in an integral cold structure instead of in separate cryostats. Design of superconducting solenoid model cores and practical experience with a small-scale prototype are discussed

  18. On the basically single-type excitation source of resonance in the wind tunnel and in the hydroturbine channel of a hydraulic power plant

    Science.gov (United States)

    Karavosov, R. K.; Prozorov, A. G.

    2012-01-01

    We have investigated the spectra of pressure pulsations in the near field of the open working section of the wind tunnel with a vortex flow behind the tunnel blower formed like the flow behind the hydroturbine of a hydraulic power plant. We have made a comparison between the measurement data for pressure pulsations and the air stream velocity in tunnels of the above type and in tunnels in which a large-scale vortex structure behind the blower is not formed. It has been established that the large-scale vortex formation in the incompressible medium behind the blade system in the wind tunnel is a source of narrow-band acoustic radiation capable of exciting resonance self-oscillations in the tunnel channel.

  19. Wind Tunnel Balance Calibration: Are 1,000,000 Data Points Enough?

    Science.gov (United States)

    Rhew, Ray D.; Parker, Peter A.

    2016-01-01

    Measurement systems are typically calibrated based on standard practices established by a metrology standards laboratory, for example the National Institute for Standards and Technology (NIST), or dictated by an organization's metrology manual. Therefore, the calibration is designed and executed according to an established procedure. However, for many aerodynamic research measurement systems a universally accepted standard, traceable approach does not exist. Therefore, a strategy for how to develop a calibration protocol is left to the developer or user to define based on experience and recommended practice in their respective industry. Wind tunnel balances are one such measurement system. Many different calibration systems, load schedules and procedures have been developed for balances with little consensus on a recommended approach. Especially lacking is guidance the number of calibration data points needed. Regrettably, the number of data points tends to be correlated with the perceived quality of the calibration. Often, the number of data points is associated with ones ability to generate the data rather than by a defined need in support of measurement objectives. Hence the title of the paper was conceived to challenge recent observations in the wind tunnel balance community that shows an ever increasing desire for more data points per calibration absent of guidance to determine when there are enough. This paper presents fundamental concepts and theory to aid in the development of calibration procedures for wind tunnel balances and provides a framework that is generally applicable to the characterization and calibration of other measurement systems. Questions that need to be answered are for example: What constitutes an adequate calibration? How much data are needed in the calibration? How good is the calibration? This paper will assist a practitioner in answering these questions by presenting an underlying theory on how to evaluate a calibration based on

  20. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    Science.gov (United States)

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  1. Digoxin for atrial fibrillation and atrial flutter

    DEFF Research Database (Denmark)

    Sethi, Naqash J; Nielsen, Emil E; Safi, Sanam

    2018-01-01

    BACKGROUND: During recent years, systematic reviews of observational studies have compared digoxin to no digoxin in patients with atrial fibrillation or atrial flutter, and the results of these reviews suggested that digoxin seems to increase the risk of all-cause mortality regardless...... of concomitant heart failure. Our objective was to assess the benefits and harms of digoxin for atrial fibrillation and atrial flutter based on randomized clinical trials. METHODS: We searched CENTRAL, MEDLINE, Embase, LILACS, SCI-Expanded, BIOSIS for eligible trials comparing digoxin versus placebo......, no intervention, or other medical interventions in patients with atrial fibrillation or atrial flutter in October 2016. Our primary outcomes were all-cause mortality, serious adverse events, and quality of life. Our secondary outcomes were heart failure, stroke, heart rate control, and conversion to sinus rhythm...

  2. Parametrizing Evaporative Resistance for Heterogeneous Sparse Canopies through Novel Wind Tunnel Experimentation

    Science.gov (United States)

    Sloan, B.; Ebtehaj, A. M.; Guala, M.

    2017-12-01

    The understanding of heat and water vapor transfer from the land surface to the atmosphere by evapotranspiration (ET) is crucial for predicting the hydrologic water balance and climate forecasts used in water resources decision-making. However, the complex distribution of vegetation, soil and atmospheric conditions makes large-scale prognosis of evaporative fluxes difficult. Current ET models, such as Penman-Monteith and flux-gradient methods, are challenging to apply at the microscale due to ambiguity in determining resistance factors to momentum, heat and vapor transport for realistic landscapes. Recent research has made progress in modifying Monin-Obukhov similarity theory for dense plant canopies as well as providing clearer description of diffusive controls on evaporation at a smooth soil surface, which both aid in calculating more accurate resistance parameters. However, in nature, surfaces typically tend to be aerodynamically rough and vegetation is a mixture of sparse and dense canopies in non-uniform configurations. The goal of our work is to parameterize the resistances to evaporation based on spatial distributions of sparse plant canopies using novel wind tunnel experimentation at the St. Anthony Falls Laboratory (SAFL). The state-of-the-art SAFL wind tunnel was updated with a retractable soil box test section (shown in Figure 1), complete with a high-resolution scale and soil moisture/temperature sensors for recording evaporative fluxes and drying fronts. The existing capabilities of the tunnel were used to create incoming non-neutral stability conditions and measure 2-D velocity fields as well as momentum and heat flux profiles through PIV and hotwire anemometry, respectively. Model trees (h = 5 cm) were placed in structured and random configurations based on a probabilistic spacing that was derived from aerial imagery. The novel wind tunnel dataset provides the surface energy budget, turbulence statistics and spatial soil moisture data under varying

  3. An Auto-Tuning PI Control System for an Open-Circuit Low-Speed Wind Tunnel Designed for Greenhouse Technology

    Directory of Open Access Journals (Sweden)

    Karlos Espinoza

    2015-08-01

    Full Text Available Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s‾1 for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points.

  4. Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique

    International Nuclear Information System (INIS)

    Najafi, Nadia; Paulsen, Uwe Schmidt

    2017-01-01

    This paper is about development and use of a research based stereo vision system for vibration and operational modal analysis on a parked, 1-kW, 3-bladed vertical axis wind turbine (VAWT), tested in a wind tunnel at high wind. Vibrations were explored experimentally by tracking small deflections of the markers on the structure with two cameras, and also numerically, to study structural vibrations in an overall objective to investigate challenges and to prove the capability of using stereo vision. Two high speed cameras provided displacement measurements at no wind speed interference. The displacement time series were obtained using a robust image processing algorithm and analyzed with data-driven stochastic subspace identification (DD-SSI) method. In addition of exploring structural behaviour, the VAWT testing gave us the possibility to study aerodynamic effects at Reynolds number of approximately 2 × 10"5. VAWT dynamics were simulated using HAWC2. The stereo vision results and HAWC2 simulations agree within 4% except for mode 3 and 4. The high aerodynamic damping of one of the blades, in flatwise motion, would explain the gap between those two modes from simulation and stereo vision. A set of conventional sensors, such as accelerometers and strain gauges, are also measuring rotor vibration during the experiment. The spectral analysis of the output signals of the conventional sensors agrees the stereo vision results within 4% except for mode 4 which is due to the inaccuracy of spectral analysis in picking very closely spaced modes. Finally, the uncertainty of the 3D displacement measurement was evaluated by applying a generalized method based on the law of error propagation, for a linear camera model of the stereo vision system. - Highlights: • The stereo vision technique is used to track deflections on a VAWT in the wind tunnel. • OMA is applied on displacement time series to study the dynamic behaviour of the VAWT. • Stereo vision results enabled us to

  5. Magnetic-flutter-induced pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.; Cole, A.J.

    2013-01-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an

  6. Magnetic-flutter-induced pedestal plasma transport

    Science.gov (United States)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron

  7. Wind tunnel study of the power output spectrum in a micro wind farm

    International Nuclear Information System (INIS)

    Bossuyt, Juliaan; Meyers, Johan; Howland, Michael F.; Meneveau, Charles

    2016-01-01

    Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies. (paper)

  8. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  9. EFFECT OF EXERCISE ON CYCLE LENGTH IN ATRIAL-FLUTTER

    NARCIS (Netherlands)

    VANDENBERG, MP; CRIJNS, HJGM; SZABO, BM; BROUWER, J; LIE, KI

    Objective-To examine the effect of exercise on cycle length in atrial flutter. Patients-15 patients with chronic atrial flutter. Seven patients were taking digoxin and six verapamil; two were not taking medication. Methods-All patients underwent bicycle ergometry. Flutter cycle length was measured

  10. Analysis of a Split-Plot Experimental Design Applied to a Low-Speed Wind Tunnel Investigation

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A procedure to analyze a split-plot experimental design featuring two input factors, two levels of randomization, and two error structures in a low-speed wind tunnel investigation of a small-scale model of a fighter airplane configuration is described in this report. Standard commercially-available statistical software was used to analyze the test results obtained in a randomization-restricted environment often encountered in wind tunnel testing. The input factors were differential horizontal stabilizer incidence and the angle of attack. The response variables were the aerodynamic coefficients of lift, drag, and pitching moment. Using split-plot terminology, the whole plot, or difficult-to-change, factor was the differential horizontal stabilizer incidence, and the subplot, or easy-to-change, factor was the angle of attack. The whole plot and subplot factors were both tested at three levels. Degrees of freedom for the whole plot error were provided by replication in the form of three blocks, or replicates, which were intended to simulate three consecutive days of wind tunnel facility operation. The analysis was conducted in three stages, which yielded the estimated mean squares, multiple regression function coefficients, and corresponding tests of significance for all individual terms at the whole plot and subplot levels for the three aerodynamic response variables. The estimated regression functions included main effects and two-factor interaction for the lift coefficient, main effects, two-factor interaction, and quadratic effects for the drag coefficient, and only main effects for the pitching moment coefficient.

  11. Design and Wind Tunnel Testing of a Thick, Multi-Element High-Lift Airfoil

    DEFF Research Database (Denmark)

    Zahle, Frederik; Gaunaa, Mac; Sørensen, Niels N.

    2012-01-01

    In this work a 2D CFD solver has been used to optimize the shape of a leading edge slat with a chord length of 30% of the main airfoil which was 40% thick. The airfoil configuration was subsequently tested in a wind tunnel and compared to numerical predictions. The multi-element airfoil was predi...

  12. Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging

    Science.gov (United States)

    Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.

    2017-01-01

    Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.

  13. A flying superconducting magnet and cryostat for magnetic suspension of wind-tunnel models

    Science.gov (United States)

    Britcher, C.; Goodyer, M. J.; Scurlock, R. G.; Wu, Y. Y.

    1984-01-01

    The engineering practicality of a persistent high-field superconducting solenoid cryostat as a magnetic suspension and balance system (MSBS) for wind-tunnel testing of aircraft and missile models is examined. The test apparatus is a simple solenoid of filamentary NbTi superconductor with a cupronickel matrix. The apparatus, with a length-to-diameter ratio of 6 to 1 and a radius of 32 mm, used a 0.25 mm wire with a critical current of 27 A in an external field of 6 T. The total heat inleak of 150 mW was achieved. Helium boiloff rates were tested over a range of operating conditions, including pitch attitudes from 10 deg nose down to 90 deg nose up; the rate was estimated as low, but the aerodynamic acceptability of venting gaseous helium has not been determined. It is shown that the effectiveness of the concept increases with increasing scale, and performance in excess of that of conventional ferromagnets is achievable with reduction in size and costs, and with aptness to transonic wind-tunnel testing. Detailed specifications and schematics are included.

  14. WIND TUNNEL EVALUATION FOR CONTROL TRANSITION FROM ELEVATOR TO STABILATOR OF SMALL UAV

    Directory of Open Access Journals (Sweden)

    ZULHILMY SAHWEE

    2017-06-01

    Full Text Available Faulty control surface actuator in a small Unmanned Aerial Vehicles (sUAV could be overcome with a few techniques. Redundant actuators, analytical redundancy or combination of both are normally used as fault accommodation techniques. In this paper, the accommodation technique of faulty elevator actuator is presented. This technique uses a standby control surface as temporary control reallocation. Wind tunnel measurement facility is set up for the experimental validation and it is compared with FoilSim software. Flat plate airfoil which was used as horizontal stabilizer, is simulated using numerical model and it is validated using the wind tunnel test. Then, a flat airfoil is designed to be used as stabilator for the recovery of faulty elevator actuator. Results show the different deflection angle is needed when transferring from one control surface to another. From the analysis, the proposed method could be implemented without affecting the pitch stability during control surface transition. The alternate control surface accommodation technique proves to be promising for higher reliability sUAV in the case of a faulty on-board actuator.

  15. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    Science.gov (United States)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  16. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    Science.gov (United States)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  17. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  18. On the flow of an electrically conducting gas past a slender body of revolution placed in a circular wind tunnel in the presence of a crossed magnetic field

    International Nuclear Information System (INIS)

    Suwa, Shigeaki; Kusukawa, Ken-ichi.

    1976-01-01

    The wind tunnel interference problem in magnetohydrodynamics, in which an inviscid compressible fluid with small electrical conductivity flows steadily past a slender axi-symmetric pointed body of revolution placed in a cylindrical perfectly insulated wind tunnel, in the presence of a crossed magnetic field, is considered. Using the analytical method which was studied by one of the present authors, the streamlines and the space charge in a cross section are calculated. (auth.)

  19. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  20. Modeling and control of temperature of heat-calibration wind tunnel

    Directory of Open Access Journals (Sweden)

    Li Yunhua

    2012-01-01

    Full Text Available This paper investigates the temperature control of the heat air-flow wind tunnel for sensor temperature-calibration and heat strength experiment. Firstly, a mathematical model was established to describe the dynamic characteristics of the fuel supplying system based on a variable frequency driving pump. Then, based on the classical cascade control, an improved control law with the Smith predictive estimate and the fuzzy proportional-integral-derivative was proposed. The simulation result shows that the control effect of the proposed control strategy is better than the ordinary proportional-integral-derivative cascade control strategy.

  1. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    Science.gov (United States)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  2. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  3. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  4. Cardiac Arrhythmia: Atrial Flutter in a Newborn. Case Study

    Directory of Open Access Journals (Sweden)

    T.M. Klimenko

    2014-09-01

    Full Text Available The article gives case report of rare in neonatal period cardiac arrhythmia — atrial flutter. The disease is one of the manifestations of life-threatening heart rhythm disorders, has no characteristic clinical picture, is diagnosed only by means of an electrocardiogram.

  5. The capture of submicron particles by collector plates - Wind-tunnel investigations

    International Nuclear Information System (INIS)

    Gauthier, Daniel

    1971-01-01

    The deposition of submicron particles on collector plates parallel to the flow was studied experimentally in a wind-tunnel. The validity of a theoretical model based on brownian diffusion was investigated and its Inadequacies tested. The aerosol sample consisted of uranine particles (mean geometrical radius: about 0. 1 μm). The average flow speeds varied from 1 to 10 m/s and the length of the collector plates between 1 and 10 cm. Results showed that capture was mainly due to diffusion and was in good agreement with the theoretical model; however a noticeable deposit of particles on the front part of the collector edge was observed. Sedimentation was insignificant in almost all the cases. (author) [fr

  6. Simulative technology for auxiliary fuel tank separation in a wind tunnel

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2016-06-01

    Full Text Available In this paper, we propose a simulative experimental system in wind tunnel conditions for the separation of auxiliary fuel tanks from an aircraft. The experimental system consists of a simulative release mechanism, a scaled model and a pose measuring system. A new release mechanism was designed to ensure stability of the separation. Scaled models of the auxiliary fuel tank were designed and their moment of inertia was adjusted by installing counterweights inside the model. Pose parameters of the scaled model were measured and calculated by a binocular vision system. Additionally, in order to achieve high brightness and high signal-to-noise ratio of the images in the dark enclosed wind tunnel, a new high-speed image acquisition method based on miniature self-emitting units was presented. Accuracy of the pose measurement system and repeatability of the separation mechanism were verified in the laboratory. Results show that the position precision of the pose measurement system can reach 0.1 mm, the precision of the pitch and yaw angles is less than 0.1° and that of the roll angle can be up to 0.3°. Besides, repeatability errors of models’ velocity and angular velocity controlled by the release mechanism remain small, satisfying the measurement requirements. Finally, experiments for the separation of auxiliary fuel tanks were conducted in the laboratory.

  7. Airflow over Barchan dunes: field measurements, mathematical modelling and wind tunnel testing

    OpenAIRE

    Wiggs, G. F. S.

    1992-01-01

    There are few empirical measurements of velocity, shear velocity, sand transport, morphological change on the windward slopes of dunes.This thesis compares field measurements on a barchan dune in Oman with calculations using a mathematical model (FLOWSTAR) and measurements in a wind tunnel. All three techniques demonstrate similar patterns of velocity, confirming the acceleration of flow up the windward slope, deceleration between the crest and brink and significant flow decele...

  8. Beam Flutter and Energy Harvesting in Internal Flow

    Science.gov (United States)

    Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae

    2017-11-01

    Aeroelastic flutter, largely studied for causing engineering failures, has more recently been used as a means of extracting energy from the flow. Particularly, flutter of a cantilever or an elastically mounted plate in a converging-diverging flow passage has shown promise as an energy harvesting concept for internal flow applications. The instability onset is observed as a function of throat velocity, internal wall geometry, fluid and structure material properties. To enable these devices, our work explores features of the fluid-structure coupled dynamics as a function of relevant nondimensional parameters. The flutter boundary is examined through stability analysis of a reduced order model, and corroborated with numerical simulations at low Reynolds number. Experiments for an energy harvester design are qualitatively compared to results from analytical and numerical work, suggesting a robust limit cycle ensues due to a subcritical Hopf bifurcation. Bosch Corporation.

  9. Radiofrequency catheter oblation in atrial flutter

    International Nuclear Information System (INIS)

    Yan Ji; Wang Heping; Xu Jian; Liu Fuyuan; Fan Xizhen; An Chunsheng; Han Xiaoping; Ding Xiaomei; Wang Jiasheng; Gu Tongyuan

    2002-01-01

    Objective: To evaluate the radiofrequency catheter ablation for type I atrial flutter through application of Holo catheter labelling with anatomic imaging localization to ablate the isthmus of IVCTA during complete double-way block. Methods: Eleven cases with type I atrial flutter undergone Holo catheter labelling technique and consecution with conduction time change of coronary venous sinus orifice with-right atrial lower lateral wall pace excitation, were performed with radiofrequency catheter ablation for the isthmus outcoming with complete double-way conduction block. Results: All together 11 cases with 4 of atrial flutter and 7 of sinus rhythm were undergone radiofrequency catheter ablation resulting with double-way conduction block of the isthmus accompanied by prolongation of right atrial conduction time 56.0 ± 2.3 ms and 53.0 ± 4.6 ms respectively. The right atrial excitation appeared to be in clockwise and counter-clockwise of single direction. No recurrence occurred during 3-34 months follow up with only one showing atrial fibrillation. Conclusions: The application of Holo catheter labelling technique with anatomic imaging localization to achieve the double-way conduction block by radiofrequency catheter ablation of TVC-TA isthmus, is a reliable method for treating atrial flutter

  10. Preliminary experiments on surface flow visualization in the cryogenic wind tunnel by use of condensing or freezing gases

    Science.gov (United States)

    Goodyer, M. J.

    1988-01-01

    Cryogenic wind tunnel users must have available surface flow visualization techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand would be non-intrusive, until an economical technique is developed there will be occasions when the user will be prepared to resort to an intrusive method. One such method is proposed, followed by preliminary evaluation experiments carried out in environments representative of the cryogenic nitrogen tunnel. The technique uses substances which are gases at normal temperature and pressure but liquid or solid at cryogenic temperatures. These are deposited on the model in localized regions, the patterns of the deposits and their subsequent melting or evaporation revealing details of the surface flow. The gases were chosen because of the likelihood that they will not permanently contaminate the model or tunnel. Twenty-four gases were identified as possibly suitable and four of these were tested from which it was concluded that surface flow direction can be shown by the method. Other flow details might also be detectable. The cryogenic wind tunnel used was insulated on the outside and did not show signs of contamination.

  11. Equivalent linearization method for limit cycle flutter analysis of plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2009-01-01

    The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)

  12. Wind-Tunnel Investigations of Blunt-Body Drag Reduction Using Forebody Surface Roughness

    Science.gov (United States)

    Whitmore, Stephen A.; Sprague, Stephanie; Naughton, Jonathan W.; Curry, Robert E. (Technical Monitor)

    2001-01-01

    This paper presents results of wind-tunnel tests that demonstrate a novel drag reduction technique for blunt-based vehicles. For these tests, the forebody roughness of a blunt-based model was modified using micomachined surface overlays. As forebody roughness increases, boundary layer at the model aft thickens and reduces the shearing effect of external flow on the separated flow behind the base region, resulting in reduced base drag. For vehicle configurations with large base drag, existing data predict that a small increment in forebody friction drag will result in a relatively large decrease in base drag. If the added increment in forebody skin drag is optimized with respect to base drag, reducing the total drag of the configuration is possible. The wind-tunnel tests results conclusively demonstrate the existence of a forebody dragbase drag optimal point. The data demonstrate that the base drag coefficient corresponding to the drag minimum lies between 0.225 and 0.275, referenced to the base area. Most importantly, the data show a drag reduction of approximately 15% when the drag optimum is reached. When this drag reduction is scaled to the X-33 base area, drag savings approaching 45,000 N (10,000 lbf) can be realized.

  13. Atrial flutter: from ECG to electroanatomical 3D mapping

    Directory of Open Access Journals (Sweden)

    Livio Dei Cas

    2009-08-01

    Full Text Available Atrial flutter is a common arrhythmia that may cause significant symptoms, including palpitations, dyspnea, chest pain and even syncope. Frequently it’s possible to diagnose atrial flutter with a 12-lead surface ECG, looking for distinctive waves in leads II, III, aVF, aVL, V1,V2. Puech and Waldo developed the first classification of atrial flutter in the 1970s. These authors divided the arrhythmia into type I and type II. Therefore, in 2001 the European Society of Cardiology and the North American Society of Pacing and Electrophysiology developed a new classification of atrial flutter, based not only on the ECG, but also on the electrophysiological mechanism. New developments in endocardial mapping, including the electroanatomical 3D mapping system, have greatly expanded our understanding of the mechanism of arrhythmias. More recently, Scheinman et al, provided an updated classification and nomenclature. The terms like common, uncommon, typical, reverse typical or atypical flutter are abandoned because they may generate confusion. The authors worked out a new terminology, which differentiates atrial flutter only on the basis of electrophysiological mechanism. (Heart International 2006; 3-4: 161-70

  14. Measurement of Odor-Plume Structure in a Wind Tunnel Using a Photoionization Detector and a Tracer Gas

    National Research Council Canada - National Science Library

    Justus, Kristine

    2002-01-01

    The patterns of stimulus available to moths flying along pheromone plumes in a 3-m-long wind tunnel were characterized using a high frequency photoionization detector in conjunction with an inert tracer gas...

  15. Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ricarda Wernitz

    2013-01-01

    Full Text Available For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and N2+, and the major erosion product C2, at a wavelength range around 500 nm–600 nm.

  16. CAN-DO, CFD-based Aerodynamic Nozzle Design and Optimization program for supersonic/hypersonic wind tunnels

    Science.gov (United States)

    Korte, John J.; Kumar, Ajay; Singh, D. J.; White, J. A.

    1992-01-01

    A design program is developed which incorporates a modern approach to the design of supersonic/hypersonic wind-tunnel nozzles. The approach is obtained by the coupling of computational fluid dynamics (CFD) with design optimization. The program can be used to design a 2D or axisymmetric, supersonic or hypersonic, wind-tunnel nozzles that can be modeled with a calorically perfect gas. The nozzle design is obtained by solving a nonlinear least-squares optimization problem (LSOP). The LSOP is solved using an iterative procedure which requires intermediate flowfield solutions. The nozzle flowfield is simulated by solving the Navier-Stokes equations for the subsonic and transonic flow regions and the parabolized Navier-Stokes equations for the supersonic flow regions. The advantages of this method are that the design is based on the solution of the viscous equations eliminating the need to make separate corrections to a design contour, and the flexibility of applying the procedure to different types of nozzle design problems.

  17. Long-term endurance sport is a risk factor for development of lone atrial flutter.

    Science.gov (United States)

    Claessen, Guido; Colyn, Erwin; La Gerche, André; Koopman, Pieter; Alzand, Becker; Garweg, Christophe; Willems, Rik; Nuyens, Dieter; Heidbuchel, Hein

    2011-06-01

    To evaluate whether in a population of patients with 'lone atrial flutter', the proportion of those engaged in long-term endurance sports is higher than that observed in the general population. An age and sex-matched retrospective case-control study. A database with 638 consecutive patients who underwent ablation for atrial flutter at the University of Leuven. Sixty-one patients (55 men, 90%) fitted the inclusion criteria of 'lone atrial flutter', ie, aged 65 years or less, without documented atrial fibrillation and without identifiable underlying disease (including hypertension). Sex, age and inclusion criteria-matched controls, two for each flutter patient, were selected in a general practice in the same geographical region. Sports activity was evaluated by detailed questionnaires, which were available in 58 flutter patients (95%). A transthoracic echocardiogram was performed in all lone flutter patients. Types of sports, number of years of participation and average number of hours per week. The proportion of regular sportsmen (≥3 h of sports practice per week) among patients with lone atrial flutter was significantly higher than that observed in the general population (50% vs 17%; pendurance sports (participation in cycling, running or swimming for ≥3 h/week) was also significantly higher in lone flutter patients than in controls (31% vs 8%; p=0.0003). Those flutter patients performing endurance sports had a larger left atrium than non-sportsmen (p=0.04, by one-way analysis of variance). A history of endurance sports and subsequent left atrial remodelling may be a risk factor for the development of atrial flutter.

  18. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Directory of Open Access Journals (Sweden)

    Matejka Milan

    2012-04-01

    Full Text Available Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  19. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Science.gov (United States)

    Popelka, Lukas; Kuklova, Jana; Simurda, David; Souckova, Natalie; Matejka, Milan; Uruba, Vaclav

    2012-04-01

    Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  20. The use of wind tunnel facilities to estimate hydrodynamic data

    Directory of Open Access Journals (Sweden)

    Hoffmann Kristoffer

    2016-01-01

    In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.

  1. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad; Zobeck, Ted M.; Kocurek, Gary; Yang, Zong-Liang; Stenchikov, Georgiy L.

    2016-01-01

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  2. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad

    2016-01-22

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  3. Reduction of background noise induced by wind tunnel jet exit vanes

    Science.gov (United States)

    Martin, R. M.; Brooks, T. F.; Hoad, D. R.

    1985-01-01

    The NASA-Langley 4 x 7 m wind tunnel develops low frequency flow pulsations at certain velocity ranges during open throat mode operation, affecting the aerodynamics of the flow and degrading the resulting model test data. Triangular vanes attached to the trailing edge of flat steel rails, mounted 10 cm from the inside of the jet exit walls, have been used to reduce this effect; attention is presently given to methods used to reduce the inherent noise generation of the vanes while retaining their pulsation reduction features.

  4. Aerodynamic results of wind tunnel tests on a 0.010-scale model (32-QTS) space shuttle integrated vehicle in the AEDC VKF-40-inch supersonic wind tunnel (IA61)

    Science.gov (United States)

    Daileda, J. J.

    1976-01-01

    Plotted and tabulated aerodynamic coefficient data from a wind tunnel test of the integrated space shuttle vehicle are presented. The primary test objective was to determine proximity force and moment data for the orbiter/external tank and solid rocket booster (SRB) with and without separation rockets firing for both single and dual booster runs. Data were obtained at three points (t = 0, 1.25, and 2.0 seconds) on the nominal SRB separation trajectory.

  5. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    Science.gov (United States)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  6. Evaluation of numerical flow and dispersion simulations for street canyons with avenue-like tree planting by comparison with wind tunnel data

    NARCIS (Netherlands)

    Gromke, C.B.; Buccolieri, R.; Sabatino, Di S.; Ruck, B.

    2008-01-01

    Flow and traffic-originated pollutant dispersion in an urban street canyon with avenue-like tree planting have been studied by means of wind tunnel and CFD investigations. The study comprises tree planting of different crown porosity, planted in two rows within a canyon of street width to building

  7. Deformation measurement in the wind tunnel for an UAV leading edge with a morphing mechanism

    NARCIS (Netherlands)

    Radestock, M.; Riemenschneider, J.; Monner, H.P.; Huxdorf, O.; Werter, N.P.M.; De Breuker, R.

    2016-01-01

    In a wind tunnel experiment a morphing wing with span extension and camber morphing was investigated. The considered aircraft is an unmanned aerial vehicle (UAV) with a span of 4 m. During the investigations a half wing model was analysed with pressure and structural measurement. The half wing model

  8. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    Science.gov (United States)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  9. Background Acoustics Levels in the 9x15 Wind Tunnel and Linear Array Testing

    Science.gov (United States)

    Stephens, David

    2011-01-01

    The background noise level in the 9x15 foot wind tunnel at NASA Glenn has been documented, and the results compare favorably with historical measurements. A study of recessed microphone mounting techniques was also conducted, and a recessed cavity with a micronic wire mesh screen reduces hydrodynamic noise by around 10 dB. A three-microphone signal processing technique can provide additional benefit, rejecting up to 15 dB of noise contamination at some frequencies. The screen and cavity system offers considerable benefit to test efficiency, although there are additional calibration requirements.

  10. Design and Development of Low-Cost Water Tunnel for Educational Purpose

    Science.gov (United States)

    Zahari, M.; Dol, S. S.

    2015-04-01

    The hydrodynamic behaviour of immersed body is essential in fluid dynamics study. Water tunnel is an example of facility required to provide a controlled condition for fluid flow research. The operational principle of water tunnel is quite similar to the wind tunnel but with different working fluid and higher flow-pumping capacity. Flow visualization in wind tunnel is more difficult to conduct as turbulent flows in wind dissipate quickly whilst water tunnel is more suitable for such purpose due to higher fluid viscosity and wide variety of visualization techniques can be employed. The present work focusses on the design and development of open flow water tunnel for the purpose of studying vortex-induced vibration from turbulent vortex shedding phenomenon. The water tunnel is designed to provide a steady and uniform flow speed within the test section area. Construction details are discussed for development of low-cost water tunnel for quantitative and qualitative fluid flow measurements. The water tunnel can also be used for educational purpose such as fluid dynamics class activity to provide quick access to visualization medium for better understanding of various turbulence motion learnt in class.

  11. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Hidetoshi Ikeno

    2013-12-01

    Full Text Available It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  12. Spectral analysis of meteorites ablated in a wind tunnel

    Science.gov (United States)

    Drouard, A.; Vernazza, P.; Loehle, S.; Gattacceca, J.; Zander, T.; Eberhart, M.; Meindl, A.; Oefele, R.; Vaubaillon, J.; Colas, F.

    2017-09-01

    Recently and for the very first time, experiments simulating vaporization of a meteorite sample were performed in a wind tunnel near Stuttgart with the specific aim to record emission spectra of the vaporized material. Using a high enthalpy air plasma flow for modeling an equivalent air friction of an entry speed of about 10 km/s, three meteorite types (H, CM and HED) and two meteoritical analogues (basalt and argillite) were ablated and high resolution spectra were recorded simultaneously. After the identification of all atomic lines, we per- formed a detailed study of our spectra using two approaches: (i) by direct comparison of multiplet in- tensities between the samples and (ii) by computation of a synthetic spectrum to constrain some physical parameters (temperature, elemental abundance). Finally, we compared our results to the elemental composition of our samples and we determined how much compositional information can be retrieved for a given meteor using visible sectroscopy.

  13. Initial Studies of Low Temperature Ablation in a Helium Hypersonic Wind Tunnel. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Kohlman, D. L.; Elias, L.; Orlik-Ruckemann, K.

    1969-06-15

    A study of the feasibility of investigating the effects of ablation in a helium hypersonic wind tunnel was performed. Exploratory experiments were carried out at Mach 16.4 and at 600 psi stagnation pressure using (a) metal models at room temperature, (b) models with copper inserts, cooled to -140 deg C, and (c) models with carbon dioxide inserts. All models were flat plates at zero incidence, with a sharp leading edge in front of the insert. Surface temperature, surface recession rates and pitot pressure profiles were determined at several longitudinal stations. Suitable model fabrication and experimental techniques have been developed. A simple theoretical method of predicting recession rates and surface temperatures has been proposed. It has been demonstrated that the ablation of carbon dioxide into an unheated Mach 16.4 helium flow at 600 psi stagnation pressure is significant enough to result in measurable flat plate recession rates and measurable changes in pitot pressure profiles. In addition, it has been shown that it is possible to distinguish between the effects on pitot pressure of reduction in surface temperature and of mass addition through sublimation of carbon dioxide. It was also found that the first order theoretical analysis predicts proper trends and correct approximate magnitude of sublimation rates.

  14. Unsteady aerodynamic forces measured on a fluttering profile

    Czech Academy of Sciences Publication Activity Database

    Vlček, Václav; Zolotarev, Igor; Kozánek, Jan

    2014-01-01

    Roč. 21, č. 2 (2014), s. 91-96 ISSN 1802-1484 R&D Projects: GA ČR GA13-10527S Institutional support: RVO:61388998 Keywords : aeroelastic experiments * self-excited vibrations * wind tunnel * interferometry Subject RIV: BI - Acoustics

  15. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  16. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  17. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    Science.gov (United States)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  18. Bending mode flutter in a transonic linear cascade

    Science.gov (United States)

    Govardhan, Raghuraman; Jutur, Prahallada

    2017-11-01

    Vibration related issues like flutter pose a serious challenge to aircraft engine designers. The phenomenon has gained relevance for modern engines that employ thin and long fan blade rows to satisfy the growing need for compact and powerful engines. The tip regions of such blade rows operate with transonic relative flow velocities, and are susceptible to bending mode flutter. In such cases, the flow field around individual blades of the cascade is dominated by shock motions generated by the blade motions. In the present work, a new transonic linear cascade facility with the ability to oscillate a blade at realistic reduced frequencies has been developed. The facility operates at a Mach number of 1.3, with the central blade being oscillated in heave corresponding to the bending mode of the rotor. The susceptibility of the blade to undergo flutter at different reduced frequencies is quantified by the cycle-averaged power transfer to the blade calculated using the measured unsteady load on the oscillating blade. These measurements show fluid excitation (flutter) at low reduced frequencies and fluid damping (no flutter) at higher reduced frequencies. Simultaneous measurements of the unsteady shock motions are done with high speed shadowgraphy to elucidate the differences in shock motions between the excitation and damping cases.

  19. Wind tunnel tests of Risø-B1-18 and Risø-B1-24

    DEFF Research Database (Denmark)

    Fuglsang, P.; Bak, Christian; Gaunaa, Mac

    2003-01-01

    This report contains 2D measurements of the Risø-B1-18 and Risø-B1-24 airfoils. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The measurements were conducted in the VELUX open jet wind tunnel,which has a background turbulence intensity...

  20. Flutter of Darrieus wind turbine blades

    Science.gov (United States)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  1. Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment

    Science.gov (United States)

    Allan, Brian G.; Jones, Greg; Lin, John C.

    2011-01-01

    Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

  2. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    Science.gov (United States)

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.

  3. Comparative in-flight and wind tunnel investigation of the development of natural and controlled disturbances in the laminar boundary layer of an airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Peltzer, Inken [Technical University of Berlin, Institute for Aeronautics and Astronautics, Berlin (Germany)

    2008-06-15

    This paper describes in-flight and wind tunnel research into laminar-turbulent transition. Measurements were carried out with a laminar wing glove for a glider (Twin II Grob G103), which could also be used in the large laminar wind tunnel at the Institute for Aerodynamics and Gasdynamics in Stuttgart. The central aspect of the investigation was the survey of the temporal-spatial development and propagation of natural as well as controlled generated waves. For the experiments performed, varied sensor arrays were used which allowed the two-dimensional acquisition of flow information on the glove (surface hot-wire and piezo foil sensors). Thus the amplification and the spatial distribution of the disturbances could be measured and compared in flight as well as in the wind tunnel, beginning with the very early linear amplification stage to the early non-linear stage of transition. For the investigation of controlled transition, multiple spanwise adjacent harmonic point sources were used which were operated independently. (orig.)

  4. Wind Tunnel Testing on Crosswind Aerodynamic Forces Acting on Railway Vehicles

    Science.gov (United States)

    Kwon, Hyeok-Bin; Nam, Seong-Won; You, Won-Hee

    This study is devoted to measure the aerodynamic forces acting on two railway trains, one of which is a high-speed train at 300km/h maximum operation speed, and the other is a conventional train at the operating speed 100km/h. The three-dimensional train shapes have been modeled as detailed as possible including the inter-car, the upper cavity for pantograph, and the bogie systems. The aerodynamic forces on each vehicle of the trains have been measured in the subsonic wind tunnel with 4m×3m test section of Korea Aerospace Research Institute at Daejeon, Korea. The aerodynamic forces and moments of the train models have been plotted for various yaw angles and the characteristics of the aerodynamic coefficients has been discussed relating to the experimental conditions.

  5. Investing American Recovery and Reinvestment Act Funds to Advance Capability, Reliability, and Performance in NASA Wind Tunnels

    Science.gov (United States)

    Sydnor, Goerge H.

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Aeronautics Test Program (ATP) is implementing five significant ground-based test facility projects across the nation with funding provided by the American Recovery and Reinvestment Act (ARRA). The projects were selected as the best candidates within the constraints of the ARRA and the strategic plan of ATP. They are a combination of much-needed large scale maintenance, reliability, and system upgrades plus creating new test beds for upcoming research programs. The projects are: 1.) Re-activation of a large compressor to provide a second source for compressed air and vacuum to the Unitary Plan Wind Tunnel at the Ames Research Center (ARC) 2.) Addition of high-altitude ice crystal generation at the Glenn Research Center Propulsion Systems Laboratory Test Cell 3, 3.) New refrigeration system and tunnel heat exchanger for the Icing Research Tunnel at the Glenn Research Center, 4.) Technical viability improvements for the National Transonic Facility at the Langley Research Center, and 5.) Modifications to conduct Environmentally Responsible Aviation and Rotorcraft research at the 14 x 22 Subsonic Tunnel at Langley Research Center. The selection rationale, problem statement, and technical solution summary for each project is given here. The benefits and challenges of the ARRA funded projects are discussed. Indirectly, this opportunity provides the advantages of developing experience in NASA's workforce in large projects and maintaining corporate knowledge in that very unique capability. It is envisioned that improved facilities will attract a larger user base and capabilities that are needed for current and future research efforts will offer revenue growth and future operations stability. Several of the chosen projects will maximize wind tunnel reliability and maintainability by using newer, proven technologies in place of older and obsolete equipment and processes. The projects will meet NASA's goal of

  6. Wind tunnel tests of the NACA 63-415 and a modified NACA 63-415 airfoil

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Johansen, J.

    2000-01-01

    This report contains 2D measurements of the NACA 63-415 and a NACA 63-415 airfoil with modified leading edge called NACA 63-415-Risø-D. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The VELUXopen jet wind tunnel was used having a backgr......This report contains 2D measurements of the NACA 63-415 and a NACA 63-415 airfoil with modified leading edge called NACA 63-415-Risø-D. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The VELUXopen jet wind tunnel was used having...... a background turbulence intensity of 1%, an inlet flow velocity of 40 m/s which resulted in a Reynolds number of 1.6×106. The airfoil sections had a chord of 0.600 m and 0.606 m for NACA 63-415 and NACA 63-415-Risø-D,respectively. The span was 1.9 m and end plates were used to minimise 3D flow effects...

  7. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    Science.gov (United States)

    Prasad, A. S. Guru; Sharath, U.; Nagarjun, V.; Hegde, G. M.; Asokan, S.

    2013-09-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other.

  8. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  9. Wind-tunnel investigation of an armed mini remotely piloted vehicle. [conducted in Langley V/STOL tunnel

    Science.gov (United States)

    Phelps, A. E., III

    1979-01-01

    A wind tunnel investigation of a full scale remotely piloted vehicle (RPV) armed with rocket launchers was conducted. The model had unacceptable longitudinal stability characteristics at negative angles of attack in the original design configuration. The addition of a pair of fins mounted in a V arrangement on the propeller shroud resulted in a configuration with acceptable longitudinal stability characteristics. The addition of wing mounted external stores to the modified configuration resulted in a slight reduction in the longitudinal stability. The lateral directional characteristics of the model were generally good, but the model had low directional stability at low angles of attack. Aerodynamic control power was very strong around all three axes.

  10. Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs

    International Nuclear Information System (INIS)

    Song, Zhi-Guang; Li, Feng-Ming

    2011-01-01

    The active vibration control of all kinds of structures by using the piezoelectric material has been extensively investigated. In this paper, the active aeroelastic flutter characteristics and vibration control of supersonic beams applying the piezoelectric material are studied further. The piezoelectric materials are bonded on the top and bottom surfaces of the beams to act as the actuator and sensor so that the active aeroelastic flutter suppression for the supersonic beams can be conducted. The supersonic piston theory is adopted to evaluate the aerodynamic pressure. Hamilton's principle with the assumed mode method is used to develop the dynamical model of the structural systems. By using the standard eigenvalue methodology, the solutions for the complex eigenvalue problem are obtained. A negative velocity feedback control strategy is used to obtain active damping. The aeroelastic flutter bounds are calculated and the active aeroelastic flutter characteristics are analyzed. The impulse responses of the structural system are obtained by using the Houbolt numerical algorithm to study the active aeroelastic vibration control. The influences of the non-dimensional aerodynamic pressure on the active flutter control are analyzed. From the numerical results it is observed that the aeroelastic flutter characteristics of the supersonic beams can be significantly improved and that the aeroelastic vibration amplitudes can be remarkably reduced, especially at the flutter points, by using the piezoelectric actuator/sensor pairs which can provide an active damping. Within a certain value of the feedback control gain, with the increase of it, the flutter aerodynamic pressure (or flutter velocity) can be increased and the control results are also improved

  11. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    Science.gov (United States)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  12. Morphing wing system integration with wind tunnel testing =

    Science.gov (United States)

    Guezguez, Mohamed Sadok

    Preserving the environment is a major challenge for today's aviation industry. Within this context, the CRIAQ MDO 505 project started, where a multidisciplinary approach was used to improve aircraft fuel efficiency. This international project took place between several Canadian and Italian teams. Industrial teams are Bombardier Aerospace, Thales Canada and Alenia Aermacchi. The academic partners are from Ecole de Technologie Superieure, Ecole Polytechnique de Montreal and Naples University. Teams from 'CIRA' and IAR-NRC research institutes had, also, contributed on this project. The main objective of this project is to improve the aerodynamic performance of a morphing wing prototype by reducing the drag. This drag reduction is achieved by delaying the flow transition (from laminar to turbulent) by performing shape optimization of the flexible upper skin according to different flight conditions. Four linear axes, each one actuated by a 'BLDC' motor, are used to morph the skin. The skin displacements are calculated by 'CFD' numerical simulation based on flow parameters which are Mach number, the angle of attack and aileron's angle of deflection. The wing is also equipped with 32 pressure sensors to experimentally detect the transition during aerodynamic testing in the subsonic wind tunnel at the IAR-NRC in Ottawa. The first part of the work is dedicated to establishing the necessary fieldbus communications between the control system and the wing. The 'CANopen' protocol is implemented to ensure real time communication between the 'BLDC' drives and the real-time controller. The MODBUS TCP protocol is used to control the aileron drive. The second part consists of implementing the skin control position loop based on the LVDTs feedback, as well as developing an automated calibration procedure for skin displacement values. Two 'sets' of wind tunnel tests were carried out to, experimentally, investigate the morphing wing controller effect; these tests also offered the

  13. Noise model for serrated trailing edges compared to wind tunnel measurements

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong

    2016-01-01

    A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure...... levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However...

  14. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  15. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    Science.gov (United States)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  16. Transonic Dynamics Tunnel (TDT)

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...

  17. Background noise levels measured in the NASA Lewis 9- by 15-foot low-speed wind tunnel

    Science.gov (United States)

    Woodward, Richard P.; Dittmar, James H.; Hall, David G.; Kee-Bowling, Bonnie

    1994-01-01

    The acoustic capability of the NASA Lewis 9 by 15 Foot Low Speed Wind Tunnel has been significantly improved by reducing the background noise levels measured by in-flow microphones. This was accomplished by incorporating streamlined microphone holders having a profile developed by researchers at the NASA Ames Research Center. These new holders were fabricated for fixed mounting on the tunnel wall and for an axially traversing microphone probe which was mounted to the tunnel floor. Measured in-flow noise levels in the tunnel test section were reduced by about 10 dB with the new microphone holders compared with those measured with the older, less refined microphone holders. Wake interference patterns between fixed wall microphones were measured and resulted in preferred placement patterns for these microphones to minimize these effects. Acoustic data from a model turbofan operating in the tunnel test section showed that results for the fixed and translating microphones were equivalent for common azimuthal angles, suggesting that the translating microphone probe, with its significantly greater angular resolution, is preferred for sideline noise measurements. Fixed microphones can provide a local check on the traversing microphone data quality, and record acoustic performance at other azimuthal angles.

  18. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    Science.gov (United States)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  19. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

    Directory of Open Access Journals (Sweden)

    Ch. Suryanarayana

    2010-03-01

    Full Text Available Design of a Pump Jet Propulsor (PJP was undertaken for an underwater body with axisymmetric configuration using axial flow compressor design techniques supported by Computational Fluid Dynamics (CFD analysis for performance prediction. Experimental evaluation of the PJP was carried out through experiments in a Wind Tunnel Facility (WTF using momentum defect principle for propulsive performance prior to proceeding with extensive experimental evaluation in towing tank and cavitation tunnel. Experiments were particularly conducted with respect to Self Propulsion Point (SPP, residual torque and thrust characteristics over a range of vehicle advance ratio in order to ascertain whether sufficient thrust is developed at the design condition with least possible imbalance torque left out due to residual swirl in the slip stream. Pumpjet and body models were developed for the propulsion tests using Aluminum alloy forged material. Tests were conducted from 0 m/s to 30 m/s at four rotational speeds of the PJP. SPP was determined confirming the thrust development capability of PJP. Estimation of residual torque was carried out at SPP corresponding to speeds of 15, 20 and 25 m/s to examine the effectiveness of the stator. Estimation of thrust and residual torque was also carried out at wind speeds 0 and 6 m/s for PJP RPMs corresponding to self propulsion tests to study the propulsion characteristics during the launch of the vehicle in water where advance ratios are close to Zero. These results are essential to assess the thrust performance at very low advance ratios to accelerate the body and to control the body during initial stages. This technique has turned out to be very useful and economical method for quick assessment of overall performance of the propulsor and generation of exhaustive fluid dynamic data to validate CFD techniques employed.

  20. Investigation of nozzle contours in the CSIR supersonic wind tunnel

    CSIR Research Space (South Africa)

    Vallabh, Bhavya

    2017-09-01

    Full Text Available Contours in the CSIR Supersonic Wind Tunnel B Vallabha,b and BW Skewsa Received 17 February 2017, in revised form 23 June 2017 and accepted 25 June 2017 R & D Journal of the South African Institution of Mechanical Engineering 2017, 33, 32-41 http... with the Sivells’ nozzle design method and the method of characteristics technique to design the nozzle profiles for the full supersonic Mach number range 𝟏𝟏 ≀ 𝑎𝑎 ≀ 𝟒𝟒.5 of the facility. Automatic computation was used for the profile...

  1. Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras

    Science.gov (United States)

    Amer, Tahani R.; Goad, William K.

    2005-01-01

    Wing-Viewer is a computer program for acquisition and reduction of image data acquired by any of five different scientificgrade commercial electronic cameras used at Langley Research center to observe wind-tunnel models coated with pressure or temperature-sensitive paints (PSP/TSP). Wing-Viewer provides full automation of camera operation and acquisition of image data, and has limited data-preprocessing capability for quick viewing of the results of PSP/TSP test images. Wing- Viewer satisfies a requirement for a standard interface between all the cameras and a single personal computer: Written by use of Microsoft Visual C++ and the Microsoft Foundation Class Library as a framework, Wing-Viewer has the ability to communicate with the C/C++ software libraries that run on the controller circuit cards of all five cameras.

  2. Scour depth estimation using an equation based on wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Tsutsui Takayuki

    2016-01-01

    Full Text Available Scour is the result of degradation and aggradation by wind or moving fluid in the front and back of a pole standing in sand, respectively, and is often observed at the bottom of bridge piers in rivers. In this study, we propose a method of estimating the scour depth around a cylindrical structure standing in sand. The relationships among the depth of the scour, the aspect ratio of the structure (= height/diameter, the fluid velocity, and the sand properties (particle size and density were determined experimentally using a wind tunnel. The experiments were carried out under clear-water scour conditions. In the experiments, the aspect ratio of the cylindrical structure, the fluid velocity, and the sand particle size were varied systematically. The diameters of the structure were 20, 40, and 60 mm, and the aspect ratio was varied from 0.25 to 3.0. Sand particles of four sizes (200, 275, 475, and 600 μm were used in the experiment, and the velocity was varied from 4 to 11 m/s. The depth and radius of the scour were measured. As a result, we have developed an equation for estimating the scour depth that uses the aspect ratio, fluid velocity, and sand particle size as parameters.

  3. Evaluation of a new method for puff arrival time as assessed through wind tunnel modelling

    Czech Academy of Sciences Publication Activity Database

    Chaloupecká, Hana; Jaňour, Zbyněk; Mikšovský, J.; Jurčáková, Klára; Kellnerová, Radka

    2017-01-01

    Roč. 111, October (2017), s. 194-210 ISSN 0957-5820 R&D Projects: GA ČR GA15-18964S Institutional support: RVO:61388998 Keywords : wind tunnel * short-term gas leakage * puff Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.905, year: 2016 https://www.sciencedirect.com/science/article/pii/S0957582017302203

  4. Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations

    Science.gov (United States)

    Guruswamy, Guru P.

    2012-01-01

    A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.

  5. Review Report on Design Study and Economic Assessment of Multi-Unit Offshore Wind Energy Conversion Systems Applications,

    Science.gov (United States)

    1977-03-21

    meter turbine . Available from NTIS; $6.50. 113 pages. 7. SAND-76-0130 Wind Tunnel Performance Data for the Darrieus Wind Tur- bine with NACA-0012...2-meter-diameter Darrieus wind turbine have been tested in a low speed wind tunnel. The airfoil section for all configurations was NACA 0012. The... Darrieus Vertical-Axis Wind Turbine Program at Sandia Laboratories, Kadlec, E.G., published by Sandia Laboratories 1976. Contract No. AT(29-1)-789. From

  6. Wind tunnel experiments of air flow patterns over nabkhas modeled after those from the Hotan River basin,Xinjiang,China(Ⅱ):vegetated

    Institute of Scientific and Technical Information of China (English)

    Zhizhong LI; Rong MA; ShengLi WU; Janis DALE; Lin GE; Mudan HE; Xiaofeng WANG; Jianhui JIN; Jinwei LIU; Wanjuan LI

    2008-01-01

    This paper examines the results of wind tunnel experiments on models of nabkha,based on those studied in the Hotan River basin.Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation.Artificial vegetation of simulated Tamarix spp.was put on top of each model.Parameters of the shape,including height,width,and diameter of vegetated semi-spherical and conical nabkha.were measured in the Hotan River basin.Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6-14 m/s)to study the influence of vegetation on airflow patterns.Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds,retards airflow over the sand mounds,reduces airflow energy,eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope.Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha.This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area.The existence of vegetation makes fine materials in wind-sand flow to possibly deposit,and promotes nabkha formation.The imitative flow patterns Of different morphological nabkhas have also been verified by on-site observation in the river basin.

  7. Plans for Testing the NREL Unsteady Aerodynamics Experiment 10m Diameter HAWT in the NASA Ames Wind Tunnel: Minutes, Conclusions, and Revised Text Matrix from the 1st Science Panel Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Simms, D.; Schreck, S.; Hand, M.; Fingersh, L.; Cotrell, J.; Pierce, K.; Robinson, M.

    2000-08-28

    Currently, the NREL Unsteady Aerodynamics Experiment (UAE) research turbine is scheduled to enter the NASA Ames 80-ft x 120-ft wind tunnel in early 2000. To prepare for this 3-week test, a Science Panel meeting was convened at the National Wind Technology Center (NWTC) in October 1998. During this meeting, the Science Panel and representatives from the wind energy community provided numerous detailed recommendations regarding test activities and priorities. The Unsteady Aerodynamics team of the NWTC condensed this guidance and drafted a detailed test plan. This test plan represents an attempt to balance diverse recommendations received from the Science Panel meeting, while taking into account multiple constraints imposed by the UAE research turbine, the NASA Ames 80-ft x 120-ft wind tunnel, and other sources. The NREL-NASA Ames wind tunnel tests will primarily be focused on obtaining rotating blade pressure data. NREL has been making these types of measurements since 1987 and has considerable experience in doing so. The purpose of this wind tunnel test is to acquire accurate quantitative aerodynamic and structural measurements, on a wind turbine that is geometrically and dynamically representative of full-scale machines, in an environment free from pronounced inflow anomalies. These data will be exploited to develop and validate enhanced engineering models for designing and analyzing advanced wind energy machines.

  8. Wind tunnel measurements of pollutant turbulent fluxes in urban intersections

    Science.gov (United States)

    Carpentieri, Matteo; Hayden, Paul; Robins, Alan G.

    2012-01-01

    Wind tunnel experiments have been carried out at the EnFlo laboratory to measure mean and turbulent tracer fluxes in geometries of real street canyon intersections. The work was part of the major DAPPLE project, focussing on the area surrounding the intersection between Marylebone Road and Gloucester Place in Central London, UK. Understanding flow and dispersion in urban streets is a very important issue for air quality management and planning, and turbulent mass exchange processes are important phenomena that are very often neglected in urban modelling studies. The adopted methodology involved the combined use of laser Doppler anemometry and tracer concentration measurements. This methodology was applied to quantify the mean and turbulent flow and dispersion fields within several street canyon intersections. Vertical profiles of turbulent tracer flux were also measured. The technique, despite a number of limitations, proved reliable and allowed tracer balance calculations to be undertaken in the selected street canyon intersections. The experience gained in this work will enable much more precise studies in the future as issues affecting the accuracy of the experimental technique have been identified and resolved.

  9. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    Science.gov (United States)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  10. Experimental study on natural ventilation performance of one-sided wind catcher

    NARCIS (Netherlands)

    Montazeri, H.; Azizian, R.

    2008-01-01

    Hydrodynamic performance of a one-sided wind catcher was investigated by experimental wind tunnel and smoke visualization testing. Wind catchers or what is called Baud-Geers in Persian language was a main component of buildings in central region of Iran and the neighboring countries. A Baud-Geer is

  11. Aerodynamic Performance Degradation Induced by Ice Accretion. PIV Technique Assessment in Icing Wind Tunnel

    Science.gov (United States)

    Gregorio, Fabrizio De

    The aim of the present chapter is to consider the use of PIV technique in an industrial icing wind tunnel (IWT) and the potentiality/advantages of applying the PIV technique to this specific field. The purpose of icing wind tunnels is to simulate the aircraft flight condition through cloud formations. In this operational condition ice accretions appear on the aircraft exposed surfaces due to the impact of the water droplets present in the clouds and the subsequent solidification. The investigation of aircraft aerodynamic performances and flight safety in icing condition is a fundamental aspect in the phase of design, development and certification of new aircrafts. The description of this unusual ground testing facility is reported. The assessment of PIV in CIRA-IWT has been investigated. Several technological problems have been afforded and solved by developing the components of the measurement system, such as the laser system and the recording apparatus, both fully remotely controlled, equipped with several traversing mechanism and protected by the adverse environment conditions (temperature and pressure). The adopted solutions are described. Furthermore, a complete test campaign on a full-scale aircraft wing tip, equipped with moving slat and deicing system has been carried out by PIV. Two regions have been investigated. The wing leading-edge (LE) area has been studied with and without ice accretion and for different cloud characteristics. The second activitiy was aimed at the investigation of the wing-wake behavior. The measurements were aimed to characterize the wake for the model in cruise condition without ice formation and during the ice formation.

  12. Federated Database Services for Wind Tunnel Experiment Workflows

    Directory of Open Access Journals (Sweden)

    A. Paventhan

    2006-01-01

    Full Text Available Enabling the full life cycle of scientific and engineering workflows requires robust middleware and services that support effective data management, near-realtime data movement and custom data processing. Many existing solutions exploit the database as a passive metadata catalog. In this paper, we present an approach that makes use of federation of databases to host data-centric wind tunnel application workflows. The user is able to compose customized application workflows based on database services. We provide a reference implementation that leverages typical business tools and technologies: Microsoft SQL Server for database services and Windows Workflow Foundation for workflow services. The application data and user's code are both hosted in federated databases. With the growing interest in XML Web Services in scientific Grids, and with databases beginning to support native XML types and XML Web services, we can expect the role of databases in scientific computation to grow in importance.

  13. Wind tunnel investigations on tritium reemission from soil

    International Nuclear Information System (INIS)

    Taeschner, M.; Bunnenberg, C.

    1993-01-01

    Future fusion plants and tritium handling facilities will contain large amounts of tritium. Following chronical or accidental releases to the atmosphere a secondary HTO source is established in the downwind sector of the tritium release point as a result of deposition processes. To investigate HTO reemission rates, experiments were performed with a special wind tunnel, in which the air flows across the surface of soil columns under controlled conditions. In order to measure the HTO content of an air sample that was experimentally contaminated by reemission of HTO from a labeled soil column, a fast method is used. The air sample is bubbled through a flask filled with a definite volume of low-tritium water. At the end of the sampling period, the volume and the specific activity of the flask water are measured. With the help of a simple mathematical formula, that is presented in this report, the HTO activity of the air sample can be calculated. (orig.) [de

  14. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    Science.gov (United States)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  15. Experimental study of the impact of large-scale wind farms on land–atmosphere exchanges

    International Nuclear Information System (INIS)

    Zhang Wei; Markfort, Corey D; Porté-Agel, Fernando

    2013-01-01

    Large-scale wind farms, covering a significant portion of the land and ocean surface, may affect the transport of momentum, heat, mass and moisture between the atmosphere and the land locally and globally. To understand the wind-farm–atmosphere interaction, we conducted wind-tunnel experiments to study the surface scalar (heat) flux using model wind farms, consisting of more than ten rows of wind turbines—having typical streamwise and spanwise spacings of five and four rotor diameters—in a neutral boundary layer with a heated surface. The spatial distribution of the surface heat flux was mapped with an array of surface heat flux sensors within the quasi-developed regime of the wind-farm flow. Although the overall surface heat flux change produced by the wind farms was found to be small, with a net reduction of 4% for a staggered wind farm and nearly zero change for an aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on the wind-farm layout, was significant. The difference between the minimum and maximum surface heat fluxes could be up to 12% and 7% in aligned and staggered wind farms, respectively. This finding is important for planning intensive agriculture practice and optimizing farm land use strategy regarding wind energy project development. The well-controlled wind-tunnel experiments presented in this study also provide a first comprehensive dataset on turbulent flow and scalar transport in wind farms, which can be further used to develop and validate new parameterizations of surface scalar fluxes in numerical models. (letter)

  16. Hardware and software for automating the process of studying high-speed gas flows in wind tunnels of short-term action

    Science.gov (United States)

    Yakovlev, V. V.; Shakirov, S. R.; Gilyov, V. M.; Shpak, S. I.

    2017-10-01

    In this paper, we propose a variant of constructing automation systems for aerodynamic experiments on the basis of modern hardware-software means of domestic development. The structure of the universal control and data collection system for performing experiments in wind tunnels of continuous, periodic or short-term action is proposed. The proposed hardware and software development tools for ICT SB RAS and ITAM SB RAS, as well as subsystems based on them, can be widely applied to any scientific and experimental installations, as well as to the automation of technological processes in production.

  17. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced S-3B Viking

    Science.gov (United States)

    Lee, Sam; Barnhart, Billy; Ratvasky, Thomas P.

    2012-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure shape and runback shapes that form downstream of the thermal ice protection system. The results showed that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the effects on the lateral forces were relatively minor.

  18. Novel Design for a Wind Tunnel Vertical Gust Generator

    Science.gov (United States)

    Smith, Zachary; Jones, Anya; Hrynuk, John

    2017-11-01

    Gust response of MAVs is a fundamental problem for flight stability and control of such aircraft. Current knowledge about the gust response of these vehicles is limited and gust interaction often results in damage to vehicles. Studying isolated gust effects on simple airfoil models in a controlled environment is a necessity for the further development of MAV control laws. Gusts have typically been generated by oscillating an airfoil causing the shedding of vortices to propagate through the system. While effective, this method provides only a transient up and downdraft behavior with small changes in angle of attack, not suitable for studying MAV scale gust interactions. To study these interactions, a gust that creates a change in flow angle larger than the static stall angle of typical airfoils was developed. This work was done in a low speed, low turbulence wind tunnel at base operating speed of 1.5 m/s, generating a Reynolds number of 12,000 on a NACA 0012 wing. It describes the fundamental mechanisms of how this gust was generated and the results obtained from the gust generator. The gust, which can alter the flow field in less than 1 second, was characterized using PIV and the interactions with a stationary airfoil at several angles of attack are evaluated.

  19. Wind-tunnel Tests of a Hall High-life Wing

    Science.gov (United States)

    Weick, Fred E; Sanders, Robert

    1932-01-01

    Wind-tunnel tests have been made to find the lift, drag, and center-of-pressure characteristics of a Hall high-lift wing model. The Hall wing is essentially a split-flap airfoil with an internal air passage. Air enters the passage through an opening in the lower surface somewhat back of and parallel to the leading edge, and flows out through an opening made by deflecting the rear portion of the under surface downward as a flap. For ordinary flight conditions the front opening and the rear flap can be closed, providing in effect a conventional airfoil (the Clark Y in this case). The tests were made with various flap settings and with the entrance to the passage both open and closed. The highest lift coefficient found, C(sub L) = 2.08, was obtained with the passage closed.

  20. Validation of wind loading codes by experiments

    NARCIS (Netherlands)

    Geurts, C.P.W.

    1998-01-01

    Between 1994 and 1997, full scale measurements of the wind and wind induced pressures were carried out on the main building of Eindhoven University of Technology. Simultaneously, a comparative wind tunnel experiment was performed in an atmospheric boundary layer wind tunnel. In this paper, the

  1. Background noise measurements from jet exit vanes designed to reduced flow pulsations in an open-jet wind tunnel

    Science.gov (United States)

    Hoad, D. R.; Martin, R. M.

    1985-01-01

    Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.

  2. Numerical study of the influence of flow blockage on the aerodynamic coefficients of models in low-speed wind tunnels

    Science.gov (United States)

    Bui, V. T.; Kalugin, V. T.; Lapygin, V. I.; Khlupnov, A. I.

    2017-11-01

    With the use of ANSYS Fluent software and ANSYS ICEM CFD calculation grid generator, the flows past a wing airfoil, an infinite cylinder, and 3D blunted bodies located in the open and closed test sections of low-speed wind tunnels were calculated. The mathematical model of the flows included the Reynolds equations and the SST model of turbulence. It was found that the ratios between the aerodynamic coefficients in the test section and in the free (unbounded) stream could be fairly well approximated with a piecewise-linear function of the blockage factor, whose value weakly depended on the angle of attack. The calculated data and data gained in the analysis of previously reported experimental studies proved to be in a good agreement. The impact of the extension of the closed test section on the airfoil lift force is analyzed.

  3. Early wind engineering experiments in Denmark

    DEFF Research Database (Denmark)

    Larose, Guy; Franck, Niels

    1997-01-01

    A review of works by Danish wind engineers is presented to commemorate the 100th year anniversary of the first wind tunnel experiments. Pioneer tests by Irminger and Nøkkentved in "artificial" wind on scaled models are described. The early experiments aimed at measuring the surface pressure......" that governs today´s wind engineering practice and gave birth to the boundary layer wind tunnel....

  4. Wind-tunnel investigation of a large-scale VTOL aircraft model with wing root and wing thrust augmentors. [Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Aoyagi, K.; Aiken, T. N.

    1979-01-01

    Tests were conducted in the Ames 40 by 80 foot wind tunnel to determine the aerodynamic characteristics of a large-scale V/STOL aircraft model with thrust augmentors. The model had a double-delta wing of aspect ratio 1.65 with augmentors located in the wing root and the wing trailing edge. The supply air for the augmentor primary nozzles was provided by the YJ-97 turbojet engine. The airflow was apportioned approximately 74 percent to the wing root augmentor and 24 percent to wing augmentor. Results were obtained at several trailing-edge flap deflections with the nozzle jet-momentum coefficients ranging from 0 to 7.9. Three-component longitudinal data are presented with the agumentor operating with and without the horizontal tail. A limited amount of six component data are also presented.

  5. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  6. Evaluation of the source area of rooftop scalar measurements in London, UK using wind tunnel and modelling approaches.

    Science.gov (United States)

    Brocklehurst, Aidan; Boon, Alex; Barlow, Janet; Hayden, Paul; Robins, Alan

    2014-05-01

    The source area of an instrument is an estimate of the area of ground over which the measurement is generated. Quantification of the source area of a measurement site provides crucial context for analysis and interpretation of the data. A range of computational models exists to calculate the source area of an instrument, but these are usually based on assumptions which do not hold for instruments positioned very close to the surface, particularly those surrounded by heterogeneous terrain i.e. urban areas. Although positioning instrumentation at higher elevation (i.e. on masts) is ideal in urban areas, this can be costly in terms of installation and maintenance costs and logistically difficult to position instruments in the ideal geographical location. Therefore, in many studies, experimentalists turn to rooftops to position instrumentation. Experimental validations of source area models for these situations are very limited. In this study, a controlled tracer gas experiment was conducted in a wind tunnel based on a 1:200 scale model of a measurement site used in previous experimental work in central London. The detector was set at the location of the rooftop site as the tracer was released at a range of locations within the surrounding streets and rooftops. Concentration measurements are presented for a range of wind angles, with the spread of concentration measurements indicative of the source area distribution. Clear evidence of wind channeling by streets is seen with the shape of the source area strongly influenced by buildings upwind of the measurement point. The results of the wind tunnel study are compared to scalar concentration source areas generated by modelling approaches based on meteorological data from the central London experimental site and used in the interpretation of continuous carbon dioxide (CO2) concentration data. Initial conclusions will be drawn as to how to apply scalar concentration source area models to rooftop measurement sites and

  7. Modeling Programs Increase Aircraft Design Safety

    Science.gov (United States)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  8. An interactive graphics program to retrieve, display, compare, manipulate, curve fit, difference and cross plot wind tunnel data

    Science.gov (United States)

    Elliott, R. D.; Werner, N. M.; Baker, W. M.

    1975-01-01

    The Aerodynamic Data Analysis and Integration System (ADAIS), developed as a highly interactive computer graphics program capable of manipulating large quantities of data such that addressable elements of a data base can be called up for graphic display, compared, curve fit, stored, retrieved, differenced, etc., was described. The general nature of the system is evidenced by the fact that limited usage has already occurred with data bases consisting of thermodynamic, basic loads, and flight dynamics data. Productivity using ADAIS of five times that for conventional manual methods of wind tunnel data analysis is routinely achieved. In wind tunnel data analysis, data from one or more runs of a particular test may be called up and displayed along with data from one or more runs of a different test. Curves may be faired through the data points by any of four methods, including cubic spline and least squares polynomial fit up to seventh order.

  9. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  10. Correlation of theory to wind-tunnel data at Reynolds numbers below 500,000

    Science.gov (United States)

    Evangelista, Raquel; Mcghee, Robert J.; Walker, Betty S.

    1989-01-01

    This paper presents results obtained from two airfoil analysis methods compared with previously published wind tunnel test data at chord Reynolds numbers below 500,000. The analysis methods are from the Eppler-Somers airfoil design/analysis code and from ISES, the Drela-Giles Airfoil design/analysis code. The experimental data are from recent tests of the Eppler 387 airfoil in the NASA Langley Low Turbulence Pressure Tunnel. For R not less than 200,000, lift and pitching moment predictions from both theories compare well with experiment. Drag predictions from both theories also agree with experiment, although to different degrees. However, most of the drag predictions from the Eppler-Somers code are accompanied with separation bubble warnings which indicate that the drag predictions are too low. With the Drela-Giles code, there is a large discrepancy between the computed and experimental pressure distributions in cases with laminar separation bubbles, although the drag polar predictions are similar in trend to experiment.

  11. A CFD-based aerodynamic design procedure for hypersonic wind-tunnel nozzles

    Science.gov (United States)

    Korte, John J.

    1993-01-01

    A new procedure which unifies the best of current classical design practices, computational fluid dynamics (CFD), and optimization procedures is demonstrated for designing the aerodynamic lines of hypersonic wind-tunnel nozzles. The new procedure can be used to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been shown to break down. An efficient CFD code, which solves the parabolized Navier-Stokes (PNS) equations using an explicit upwind algorithm, is coupled to a least-squares (LS) optimization procedure. A LS problem is formulated to minimize the difference between the computed flow field and the objective function, consisting of the centerline Mach number distribution and the exit Mach number and flow angle profiles. The aerodynamic lines of the nozzle are defined using a cubic spline, the slopes of which are optimized with the design procedure. The advantages of the new procedure are that it allows full use of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, can be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure. The new procedure is demonstrated by designing two Mach 15, a Mach 12, and a Mach 18 helium nozzles. The flexibility of the procedure is demonstrated by designing the two Mach 15 nozzles using different constraints, the first nozzle for a fixed length and exit diameter and the second nozzle for a fixed length and throat diameter. The computed flow field for the Mach 15 least squares parabolized Navier-Stokes (LS/PNS) designed nozzle is compared with the classically designed nozzle and demonstrates a significant improvement in the flow expansion process and uniform core region.

  12. Validation of odor concentration from mechanical-biological treatment piles using static chamber and wind tunnel with different wind speed values.

    Science.gov (United States)

    Szyłak-Szydłowski, Mirosław

    2017-09-01

    The basic principle of odor sampling from surface sources is based primarily on the amount of air obtained from a specific area of the ground, which acts as a source of malodorous compounds. Wind tunnels and flux chambers are often the only available, direct method of evaluating the odor fluxes from small area sources. There are currently no widely accepted chamber-based methods; thus, there is still a need for standardization of these methods to ensure accuracy and comparability. Previous research has established that there is a significant difference between the odor concentration values obtained using the Lindvall chamber and those obtained by a dynamic flow chamber. Thus, the present study compares sampling methods using a streaming chamber modeled on the Lindvall cover (using different wind speeds), a static chamber, and a direct sampling method without any screens. The volumes of chambers in the current work were similar, ~0.08 m 3 . This study was conducted at the mechanical-biological treatment plant in Poland. Samples were taken from a pile covered by the membrane. Measured odor concentration values were between 2 and 150 ou E /m 3 . Results of the study demonstrated that both chambers can be used interchangeably in the following conditions: odor concentration is below 60 ou E /m 3 , wind speed inside the Lindvall chamber is below 0.2 m/sec, and a flow value is below 0.011 m 3 /sec. Increasing the wind speed above the aforementioned value results in significant differences in the results obtained between those methods. In all experiments, the results of the concentration of odor in the samples using the static chamber were consistently higher than those from the samples measured in the Lindvall chamber. Lastly, the results of experiments were employed to determine a model function of the relationship between wind speed and odor concentration values. Several researchers wrote that there are no widely accepted chamber-based methods. Also, there is still a

  13. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    Science.gov (United States)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  14. Second-Generation Large Civil Tiltrotor 7- by 10-Foot Wind Tunnel Test Data Report

    Science.gov (United States)

    Theodore, Colin R.; Russell, Carl R.; Willink, Gina C.; Pete, Ashley E.; Adibi, Sierra A.; Ewert, Adam; Theuns, Lieselotte; Beierle, Connor

    2016-01-01

    An approximately 6-percent scale model of the NASA Second-Generation Large Civil Tiltrotor (LCTR2) Aircraft was tested in the U.S. Army 7- by 10-Foot Wind Tunnel at NASA Ames Research Center January 4 to April 19, 2012, and September 18 to November 1, 2013. The full model was tested, along with modified versions in order to determine the effects of the wing tip extensions and nacelles; the wing was also tested separately in the various configurations. In both cases, the wing and nacelles used were adopted from the U.S. Army High Efficiency Tilt Rotor (HETR) aircraft, in order to limit the cost of the experiment. The full airframe was tested in high-speed cruise and low-speed hover flight conditions, while the wing was tested only in cruise conditions, with Reynolds numbers ranging from 0 to 1.4 million. In all cases, the external scale system of the wind tunnel was used to collect data. Both models were mounted to the scale using two support struts attached underneath the wing; the full airframe model also used a third strut attached at the tail. The collected data provides insight into the performance of the preliminary design of the LCTR2 and will be used for computational fluid dynamics (CFD) validation and the development of flight dynamics simulation models.

  15. Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures

    Directory of Open Access Journals (Sweden)

    Novi Andria

    2013-03-01

    Full Text Available Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 mm, chord root 700 mm, chord tip 400 mm, made by Al 6061-T651, double spar configuration with skin thickness of 2 mm. Structural dynamics and flutter stability were analyzed using finite element software implemented on MSC. Nastran. The analysis shows that the antisymmetric flutter mode is more critical than symmetric flutter mode. At sea level altitude, antisymmetric flutter occurs at 6.4 Mach, and symmetric flutter occurs at 10.15 Mach. Compared to maximum speed of RX-420 which is 4.5 Mach at altitude 11 km or equivalent to 2.1 Mach at sea level, it can be concluded that the RX-420 structure design is safe, and flutter will not occur during flight.

  16. Application of wind tunnel tests to the development of solutions to problems related to immissions which affect urban climates

    International Nuclear Information System (INIS)

    Kuttler, W.

    1991-01-01

    In the last two decades urban climatology has developed to a pragmatically oriented field of research. Synthetic-functional maps of the climate and derived maps for town planning have widely been accepted by municipal or communal management. However, there is a disadvantage of the generalized urban-climatic maps because they only show the actual climatic state for stable sunny weather conditions. When future planning is done with due regard to forecasts on possible changes of the climatic or air-hygienic conditions, it is necessary to carry out model calculations and/or wind tunnel experiments. Because of the complexity of urban building structures, it is still difficult to acquire necessary information by numeric models. In most cases wind tunnel measurements will have to be carried out. After having illustrated the methods of wind tunnel experiments, the following paper shows results from measurements carried out for a street canyon with dense traffic in Duesseldorf's northern quarter Moersenbroich. This investigation intended to show how the field of immissions - mainly caused by traffic - changes after the construction of a six-storey office building on a remaining free space. It proved that the planned building wouldn't really lead to a deterioration of the field of the immissive situation. On the contrary, in most cases we could measure a reduced amount of pollution compared to the former building structure with a free spot. Only in few cases, the new building led to increased values in proportion to the given threshold values. (orig.) [de

  17. Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Ribičić, Mihael; Pospíšil, Stanislav; Plut, Mihael; Trush, Arsenii; Kozmar, H.

    2017-01-01

    Roč. 41, č. 6 (2017), s. 643-661 ISSN 0732-8818 R&D Projects: GA ČR(CZ) GA14-12892S; GA MŠk(CZ) LO1219 Keywords : turbulent flow * atmospheric boundary layer * wind-tunnel simulation * castellated barrier wall * Counihan vortex generators * surface roughness elements * hot-wire measurements Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 0.932, year: 2016 https://link.springer.com/article/10.1007/s40799-017-0196-z

  18. Design of a horizonal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel

    Science.gov (United States)

    Wu, Y. Y.

    1982-01-01

    The design of a horizontal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel is presented. The basic principles of magnetic suspension theory are described and theoretical calculations of the superconducting magnet are provided. The experimental results of the boil-off of liquid nitrogen and liquid helium in the cryostat are reported.

  19. Stereo PIV Application to 6.5m x 5.5m Low-speed Wind Tunnel

    OpenAIRE

    渡辺, 重哉; WATANABE, Shigeya; 加藤, 裕之; KATO, Hiroyuki

    2002-01-01

    Large-scale wind tunnels at NAL have been utilized to acquire data on aerodynamic characteristics for the development of various types of airplane and aerospace vehicle. Although in most cases measurements concentrate on the information needed directly for vehicle design, such as aerodynamic force and moment, surface pressure, and aerodynamic heating, the need for detailed spatial information on flows around vehicles is gradually increasing as the result of advancements in vehicle design tech...

  20. Ice Accretion on Wind Turbine Blades

    DEFF Research Database (Denmark)

    Hudecz, Adriána; Koss, Holger; Hansen, Martin Otto Laver

    2013-01-01

    In this paper, both experimental and numerical simulations of the effects of ice accretion on a NACA 64-618 airfoil section with 7° angle of attack are presented. The wind tunnel tests were conducted in a closed-circuit climatic wind tunnel at Force Technology in Denmark. The changes of aerodynamic...... forces were monitored as ice was building up on the airfoil for glaze, rime and mixed ice. In the first part of the numerical analysis, the resulted ice profiles of the wind tunnel tests were compared to profiles estimated by using the 2D ice accretion code TURBICE. In the second part, Ansys Fluent...... of the rime iced ice profile follows the streamlines quite well, disturbing the flow the least. The TURBICE analysis agrees fairly with the profiles produced during the wind tunnel testing....

  1. State-dependent and odour-mediated anemotactic responses of the predatory mite Phytoseiulus persimilis in a wind tunnel.

    Science.gov (United States)

    Van Tilborg, Merijn; Sabelis, Maurice W; Roessingh, Peter

    2004-01-01

    Anemotaxis in the predatory mite Phytoseiulus persimilis (both well-fed and starved), has previously been studied on a wire grid under slight turbulent airflow conditions yielding weak, yet distinct, gradients in wind speed and odour concentration (Sabelis and Van der Weel 1993). Such conditions might have critically influenced the outcome of the study. We repeated these experiments, under laminar airflow conditions on a flat surface in a wind tunnel, thereby avoiding variation in wind speed and odour concentration. Treatments for starved and well-fed mites were (1) still-air without herbivore-induced plant volatiles (HIPV) (well-fed mites only), (2) an HIPV-free air stream, and (3) an air stream with HIPV (originating from Lima bean plants infested by two-spotted spider mites, Tetranychus urticae). Well-fed mites oriented in random directions in still-air without HIPV. In an air stream, starved mites always oriented upwind, whether plant odours were present or not. Well-fed mites oriented downwind in an HIPV-free air stream, but in random directions in an air stream with HIPV. Only under the last treatment our results differed from those of Sabelis and Van der Weel (1993).

  2. Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.

    2012-01-01

    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.

  3. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    Science.gov (United States)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  4. Investigation of wind behaviour around high-rise buildings

    Science.gov (United States)

    Mat Isa, Norasikin; Fitriah Nasir, Nurul; Sadikin, Azmahani; Ariff Hairul Bahara, Jamil

    2017-09-01

    A study on the investigation of wind behaviour around the high-rise buildings is done through an experiment using a wind tunnel and computational fluid dynamics. High-rise buildings refer to buildings or structures that have more than 12 floors. Wind is invisible to the naked eye; thus, it is hard to see and analyse its flow around and over buildings without the use of proper methods, such as the use of wind tunnel and computational fluid dynamics software.The study was conducted on buildings located in Presint 4, Putrajaya, Malaysia which is the Ministry of Rural and Regional Development, Ministry of Information Communications and Culture, Ministry of Urban Wellbeing, Housing and Local Government and the Ministry of Women, Family, and Community by making scaled models of the buildings. The parameters in which this study is conducted on are, four different wind velocities used based on the seasonal monsoons, and wind direction. ANSYS Fluent workbench software is used to compute the simulations in order to achieve the objectives of this study. The data from the computational fluid dynamics are validated with the experiment done through the wind tunnel. From the results obtained through the use of the computation fluid dynamics, this study can identify the characteristics of wind around buildings, including boundary layer of the buildings, separation flow, wake region and etc. Then analyses is conducted on the occurance resulting from the wind that passes the buildings based on the velocity difference between before and after the wind passes the buildings.

  5. Analysis of tiltrotor whirl flutter in time and frequency domain

    DEFF Research Database (Denmark)

    Kim, Taeseong; Shin, SanJoon; Kim, Taehyoun

    2009-01-01

    The whirl flutter phenomenon in a rotor is induced by in-plane hub forces, and imposes a serious limit on the forward speed. In this paper, based on Greenberg’s model, quasi-steady and unsteady aerodynamic forces are formulated to examine the whirl flutter stability for a three-bladed rotor witho...

  6. Flutter instability of freely hanging articulated pipes conveying fluid

    Science.gov (United States)

    Schouveiler, Lionel; Chermette, Félix

    2018-03-01

    We experimentally investigate the stability of freely hanging articulated pipes made of rigid segments connected by flexible joints and with their displacements constrained in a vertical plane. When the velocity of the fluid conveyed by the pipe is increased, flutter-type instability occurs above a critical value. The critical velocity and the characteristics of the flutter modes (frequency, amplitude, and shape) are determined as a function of the number n of segments into the pipe which is varied from 2 to 5. Experimental results are compared to predictions from linear stability analysis extending previous studies by taking into account damping due to the dissipation in the joints. Qualitative agreement is found and the limits of the analysis are discussed.

  7. An aeroelastic analysis of the Darrieus wind turbine

    Science.gov (United States)

    Meyer, E. E.; Smith, C. E.

    1983-12-01

    The stability of a single Darrieus wind turbine blade spinning in still air is investigated using linearized equations of motion. The three most dangerous flutter modes are characterized for a one-parameter family of blades. In addition, the influence of blade density, mass and aerodynamic center offsets, and structural damping is presented.

  8. A Wind Tunnel Investigation of the Influence of Solar-Induced Wall-Heating on the Flow Regime within a Simulated Urban Street Canyon

    International Nuclear Information System (INIS)

    Kovar-Panskus, A.; Moulinneuf, L.; Savory, E.; Abdelqari, A.; Sini, J.-F.; Rosant, J.-M.; Robins, A.; Toy, N.

    2002-01-01

    A wind tunnel study has been undertaken to assess the influence of solar-induced wall heating on the airflow pattern within a street canyon under low-speed wind conditions. This flow is normally dominated by large-scale vortical motion, such that the wind moves downwards at the downstream wall. In the present work the aim has been to examine whether the buoyancy forces generated at this wall by solar-induced heating are of sufficient strength to oppose the downward inertial forces and, thereby, change the canyon flow pattern. Such changes will also influence the dispersion of pollutants within the street. In the experiments the windward-facing wall of a canyon has been uniformly heated to simulate the effect of solar radiation.Four different test cases, representing different degrees of buoyancy (defined by a test Froude number, Fr), have been examined using a simple, 2-D, square-section canyon model in a wind tunnel. For reference purposes, the neutral case (no wall heating), has also been studied. The approach flow boundary layer conditions have been well defined, with the wind normal to the main canyon axis, and measurements have been taken of canyon wall and air temperatures and profiles of mean velocities and turbulence intensities.Analysis of the results shows clear differences in the flow patterns. As Fr decreases from the neutral case there are reductions of up to 50% in the magnitudes of the reverseflow velocities near the ground and in the upward motion near the upstream wall. A marked transition occurs at Fr ∼ 1, where the single dominant vortex, existing at higher Fr values, weakens and moves upwards whilst a lower region of relatively stagnant flow appears. This transition had previously been observed in numerical model predictions but at a Fr at least an order of magnitude higher

  9. Holistic approach to flutter clearance using classical methods

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2006-09-01

    Full Text Available is validated by determining and eigenvalue solution from the state-space model and comparing it to the frequency domain solution. This model is then used to generate time histories of the responses of the different sensors that will be used in flutter... flight testing for a given excitation configuration. The time histories are processed by the flutter flight test software to assess how well the vibration modes are excited and to determine the effect of the finite frequency resolution...

  10. Hess Tower field study: sonic measurements at a former building-integrated wind farm site

    Science.gov (United States)

    Araya, Daniel

    2017-11-01

    Built in 2010, Hess Tower is a 29-story office building located in the heart of downtown Houston, TX. Unique to the building is a roof structure that was specifically engineered to house ten vertical-axis wind turbines (VAWTs) to partially offset the energy demands of the building. Despite extensive atmospheric boundary layer (ABL) wind tunnel tests to predict the flow conditions on the roof before the building was constructed, the Hess VAWTs were eventually removed after allegedly one of the turbines failed and fell to the ground. This talk presents in-situ sonic anemometry measurements taken on the roof of Hess Tower at the former turbine locations. We compare this wind field characterization to the ABL wind tunnel data to draw conclusions about building-integrated wind farm performance and prediction capability.

  11. A voice-actuated wind tunnel model leak checking system

    Science.gov (United States)

    Larson, William E.

    1989-01-01

    A computer program has been developed that improves the efficiency of wind tunnel model leak checking. The program uses a voice recognition unit to relay a technician's commands to the computer. The computer, after receiving a command, can respond to the technician via a voice response unit. Information about the model pressure orifice being checked is displayed on a gas-plasma terminal. On command, the program records up to 30 seconds of pressure data. After the recording is complete, the raw data and a straight line fit of the data are plotted on the terminal. This allows the technician to make a decision on the integrity of the orifice being checked. All results of the leak check program are stored in a database file that can be listed on the line printer for record keeping purposes or displayed on the terminal to help the technician find unchecked orifices. This program allows one technician to check a model for leaks instead of the two or three previously required.

  12. NACA0015 measurements in LM wind tunnel and turbulence generated noise

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, Franck

    2008-11-15

    A NACA0015 airfoil section was instrumented with an array of highfrequency microphones mounted on its surface and measured in the wind tunnel at LM Glasfiber at various inflow speeds, angles of attack, and with different turbulent inflow conditions. The aim of this work is to analyze these measurement data, including the turbulent inflow characteristics. The airfoil surface pressure data are considered in the perspective of turbulent inflow noise in order to identify the potential for using these data to validate and possibly improve associated noise models from the literature. In addition, these data are further analyzed in the context of trailing edge noise modeling which is directly related to the surface pressure fluctuations in the vicinity of the trailing edge. (au)

  13. Flutter Sensitivity to Boundary Layer Thickness, Structural Damping, and Static Pressure Differential for a Shuttle Tile Overlay Repair Concept

    Science.gov (United States)

    Scott, Robert C.; Bartels, Robert E.

    2009-01-01

    This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.

  14. Investigation of Materials for Boundary Layer Control in a Supersonic Wind Tunnel

    Science.gov (United States)

    Braafladt, Alexander; Lucero, John M.; Hirt, Stefanie M.

    2013-01-01

    During operation of the NASA Glenn Research Center 15- by 15-Centimeter Supersonic Wind Tunnel (SWT), a significant, undesirable corner flow separation is created by the three-dimensional interaction of the wall and floor boundary layers in the tunnel corners following an oblique-shock/ boundary-layer interaction. A method to minimize this effect was conceived by connecting the wall and floor boundary layers with a radius of curvature in the corners. The results and observations of a trade study to determine the effectiveness of candidate materials for creating the radius of curvature in the SWT are presented. The experiments in the study focus on the formation of corner fillets of four different radii of curvature, 6.35 mm (0.25 in.), 9.525 mm (0.375 in.), 12.7 mm (0.5 in.), and 15.875 mm (0.625 in.), based on the observed boundary layer thickness of 11.43 mm (0.45 in.). Tests were performed on ten candidate materials to determine shrinkage, surface roughness, cure time, ease of application and removal, adhesion, eccentricity, formability, and repeatability. Of the ten materials, the four materials which exhibited characteristics most promising for effective use were the heavy body and regular type dental impression materials, the basic sculpting epoxy, and the polyurethane sealant. Of these, the particular material which was most effective, the heavy body dental impression material, was tested in the SWT in Mach 2 flow, and was observed to satisfy all requirements for use in creating the corner fillets in the upcoming experiments on shock-wave/boundary-layer interaction.

  15. Results of Two Free-fall Experiments on Flutter of Thin Unswept Wings in the Transonic Speed Range

    Science.gov (United States)

    Lauten, William T , Jr; Nelson, Herbert C

    1957-01-01

    Results of four thin, unswept, flutter airfoils attached to two freely falling bodies are reported. Two airfoils fluttered at a Mach number of 0.85, a third airfoil fluttered at a Mach number of 1.03, and a fourth fluttered at a Mach number of 1.07. Results of calculations of flutter speed using incompressible and compressible air-force coefficients, including a Mach number of 1.0, are presented.

  16. Height profile of particle concentration in an aeolian saltating cloud: A wind tunnel investigation by PIV MSD

    Science.gov (United States)

    Dong, Zhibao; Wang, Hongtao; Zhang, Xiaohang; Ayrault, Michael

    2003-10-01

    Attempt is made to define the particle concentration in an aeolian saltating cloud and its variation with height using artificial spherical quartz sand in a wind tunnel. The height profiles of the relative particle concentration in aeolian saltating cloud at three wind velocities were detected by the state of the art PIV (Particle Image Velocimetry) MSD (Mie Scattering Diffusion) technique, and converted to actual concentration based on sand transport rate and the variation with height of velocity of the saltating cloud. The particle concentration was found to decay exponentially with height and to increase with wind velocity. It decayed more rapidly when the wind velocity decreased. The volume/volume concentration in the near-surface layer was at the order of 10-4. The results obtained by PIV MSD technique were in good agreement with those derived from the sand flux and velocity profiles, the former being about 15% greater than the later.

  17. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    Science.gov (United States)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  18. An investigation of drag reduction for tractor trailer vehicles with air deflector and boattail. [wind tunnel tests

    Science.gov (United States)

    Muirhead, V. U.

    1981-01-01

    A wind tunnel investigation was conducted to determine the influence of several physical variables on the aerodynamic drag of a trailer model. The physical variables included: a cab mounted wind deflector, boattail on trailer, flow vanes on trailer front, forced transition on trailer, and decreased gap between tractor and trailer. Tests were conducted at yaw angles (relative wind angles) of 0, 5, 10, 20, and 30 degrees and Reynolds numbers of 3.58 x 10 to the 5th power 6.12 x 10 to the 5th power based upon the equivalent diameter of the vehicles. The wind deflector on top of the cab produced a calculated reduction in fuel consumption of about 5 percent of the aerodynamic portion of the fuel budget for a wind speed of 15.3 km/hr (9.5 mph) over a wind angle range of 0 deg to 180 deg and for a vehicle speed of 88.5 km/hr (55 mph). The boattail produced a calculated 7 percent to 8 percent reduction in fuel consumption under the same conditions. The decrease in gap reduced the calculated fuel consumption by about 5 percent of the aerodynamic portion of the fuel budget.

  19. Effects of atrial fibrillation/atrial flutter on the short and medium-term prognosis of patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Cui Kejian; Gu Shuiming; Ding Yueyou; Zheng Hongchao; Zhang Yachen; Li Yigang

    2008-01-01

    Objective: To evaluate the influnce of atrial fibrillation(AF)/atrial flutter on the mortality and prognosis of patients with AMI. Methods: A total of 297 consecutive patients were studied from Jan. 2001 to Dec. 2005 and were categorized into 2 groups according to the presence or absence of AF/atrial flutter. The 30 d and 6 mo mortalities, Killip Grades, cardiogenic shock, arrhythmia and left ventricular ejectory functional (LVEF) 6 months after AMI with Doppler US between the 2 groups were compared. Results: The incidence of AF/atrial fluttler was 12.5% with older age, higher Killip Gorade, higher CPK peak, higher rates of previous myocardial infarction and multivascular involvement than those without AF/ atrial flutter. The short and medium-term mortalities in AF/atriat flutter group were both significantly higher than those of non-AF/atrial flutter group (P<0.05). Conclusions: The short and medium-term mortalities increase obviously in AMI complicated with AF/atrial flutter, probably related to the severity of atherosclerosis. (authors)

  20. Evaluation of numerical flow and dispersion simulations for street canyons with avenue-like tree planting by comparison with wind tunnel data

    OpenAIRE

    Gromke, CB Christof; Buccolieri, R; Sabatino, S Di; Ruck, B

    2008-01-01

    Abstract: Flow and traffic-originated pollutant dispersion in an urban street canyon with avenue-like tree planting have been studied by means of wind tunnel and CFD investigations. The study comprises tree planting of different crown porosity, planted in two rows within a canyon of street width to building height ratio W/H = 2 and street length to building height ratio L/H = 10 exposed to a perpendicular approaching boundary layer flow. Numerical simulations have been performed with...

  1. Development of procedures for the acquisition of metal Additive Manufacturing (AM) parts for use in the CSIR's wind tunnel models

    CSIR Research Space (South Africa)

    Johnston, C

    2015-11-04

    Full Text Available The first Additive Manufacturing (AM) non-load-bearing, client furnished part was used in the CSIR’s wind tunnels in 2007. The advent of metal-grown materials, and the acquisition of machines to grow them in South Africa, has made it feasible...

  2. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  3. Experimental study of improved HAWT performance in simulated natural wind by an active controlled multi-fan wind tunnel

    Science.gov (United States)

    Toshimitsu, Kazuhiko; Narihara, Takahiko; Kikugawa, Hironori; Akiyoshi, Arata; Kawazu, Yuuya

    2017-04-01

    The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine (HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.

  4. Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models

    Science.gov (United States)

    Doggett, Robert V., Jr.; Soistmann, David L.; Spain, Charles V.; Parker, Ellen C.; Silva, Walter A.

    1989-01-01

    Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented.

  5. RMP-Flutter-Induced Pedestal Plasma Transport

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J. D.; Hegna, C., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison (United States); Cole, A. J. [Columbia University, New York (United States)

    2012-09-15

    Full text: Plasma toroidal rotation can prevent or limit reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational magnetic flux surfaces. Hence, it causes the induced radial perturbations to vanish or be small there, and thereby inhibits magnetic island formation and stochasticity in the edge of high (H-mode) confinement tokamak plasmas. However, the radial component of the spatial magnetic flutter induced by RMP fields off rational surfaces causes a radial electron thermal diffusivity of (1/2)({delta}B{sub p}/B){sup 2} times a magnetic-shear-influenced effective parallel electron thermal diffusivity. The resultant RMP-flutter-induced electron thermal diffusivity can be comparable to experimentally inferred values at the top of H-mode pedestals. This process also causes a factor of about 3 smaller RMP-induced electron density diffusivity there. Because this electron density transport is non-ambipolar, it produces a toroidal torque on the plasma, which is usually in the co-current direction. Kinetic-based cylindrical screw-pinch and toroidal models of these RMP-flutter-induced plasma transport effects have been developed. The RMP-induced increases in these diffusive plasma transport processes are typically spatially inhomogeneous in that they are strongly peaked near the rational surfaces in low collisionality pedestals, which may lead to resonant sensitivities to the local safety factor q. The effects can be large enough to reduce the radially averaged gradients of the electron temperature and density at the top of H-mode edge pedestals, and modify the plasma toroidal rotation and radial electric field there. At high collisionality the various effects are less strongly peaked at rational surfaces and thus less likely to exhibit RMP-induced resonant behavior. These RMP-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize

  6. Wind tunnel experimental study on effect of inland nuclear power plant cooling tower on air flow and dispersion of pollutant

    International Nuclear Information System (INIS)

    Qiao Qingdang; Yao Rentai; Guo Zhanjie; Wang Ruiying; Fan Dan; Guo Dongping; Hou Xiaofei; Wen Yunchao

    2011-01-01

    A wind tunnel experiment for the effect of the cooling tower at Taohuajiang nuclear power plant on air flow and dispersion of pollutant was introduced in paper. Measurements of air mean flow and turbulence structure in different directions of cooling tower and other buildings were made by using an X-array hot wire probe. The effects of the cooling tower and its drift on dispersion of pollutant from the stack were investigated through tracer experiments. The results show that the effect of cooling tower on flow and dispersion obviously depends on the relative position of stack to cooling towers, especially significant for the cooling tower parallel to stack along wind direction. The variation law of normalized maximum velocity deficit and perturbations in longitudinal turbulent intensity in cooling tower wake was highly in accordance with the result of isolated mountain measured by Arya and Gadiyaram. Dispersion of pollutant in near field is significantly enhanced and plume trajectory is changed due to the cooling towers and its drift. Meanwhile, the effect of cooling tower on dispersion of pollutant depends on the height of release. (authors)

  7. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  8. Clinical Differences between Subtypes of Atrial Fibrillation and Flutter: Cross-Sectional Registry of 407 Patients

    Directory of Open Access Journals (Sweden)

    Eduardo Dytz Almeida

    2015-01-01

    Full Text Available Introduction: Atrial fibrillation and atrial flutter account for one third of hospitalizations due to arrhythmias, determining great social and economic impacts. In Brazil, data on hospital care of these patients is scarce. Objective: To investigate the arrhythmia subtype of atrial fibrillation and flutter patients in the emergency setting and compare the clinical profile, thromboembolic risk and anticoagulants use. Methods: Cross-sectional retrospective study, with data collection from medical records of every patient treated for atrial fibrillation and flutter in the emergency department of Instituto de Cardiologia do Rio Grande do Sul during the first trimester of 2012. Results: We included 407 patients (356 had atrial fibrillation and 51 had flutter. Patients with paroxysmal atrial fibrillation were in average 5 years younger than those with persistent atrial fibrillation. Compared to paroxysmal atrial fibrillation patients, those with persistent atrial fibrillation and flutter had larger atrial diameter (48.6 ± 7.2 vs. 47.2 ± 6.2 vs. 42.3 ± 6.4; p < 0.01 and lower left ventricular ejection fraction (66.8 ± 11 vs. 53.9 ± 17 vs. 57.4 ± 16; p < 0.01. The prevalence of stroke and heart failure was higher in persistent atrial fibrillation and flutter patients. Those with paroxysmal atrial fibrillation and flutter had higher prevalence of CHADS2 score of zero when compared to those with persistent atrial fibrillation (27.8% vs. 18% vs. 4.9%; p < 0.01. The prevalence of anticoagulation in patients with CHA2DS2-Vasc ≤ 2 was 40%. Conclusions: The population in our registry was similar in its comorbidities and demographic profile to those of North American and European registries. Despite the high thromboembolic risk, the use of anticoagulants was low, revealing difficulties for incorporating guideline recommendations. Public health strategies should be adopted in order to improve these rates.

  9. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    Science.gov (United States)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  10. Experimental Study on the Tensile Strength and Linear Expansion Coefficient of Air Tunnel Terrazzo Surface

    Directory of Open Access Journals (Sweden)

    Boping Li

    2015-01-01

    Full Text Available At present, studies on the surface tension of air tunnel terrazzo under wind load and how regularly it is affected by temperature are relatively less, and the measured results of the thermal expansion coefficient of terrazzo have not yet been given. In this paper, based on the top terrazzo surface structure of the inner wall of the wind tunnel, the tensile performance tests of terrazzo surface layer are conducted, while the thermal expansion coefficient of the six terrazzo test blocks were tested. The tests and analysis show that the construction of terrazzo surface, based on the proposed construction process, can effectively guarantee the reliable cement performance for the binding layer between mortar and concrete base layer, terrazzo surface layer and the cement mortar layer. And the thermal expansion coefficient of terrazzo can be valued at 1.06e-5/ºC.

  11. Validation of double-spike electrograms as markers of conduction delay or block in atrial flutter.

    Science.gov (United States)

    Cosio, F G; Arribas, F; Barbero, J M; Kallmeyer, C; Goicolea, A

    1988-04-01

    Recent mapping studies of atrial flutter have shown that fragmented electrograms can be found in most cases from the posterior, posteroseptal and posterolateral walls of the right atrium. The fragmentation pattern most often consists of a double spike. To further assess double-spike electrograms as a possible marker of conduction delay, bipolar electrograms were continuously recorded during atrial overdrive pacing of common flutter from the right atrium (7 patients) and from the proximal coronary sinus (5). Baseline double-spike separation of 50 to 130 ms was unchanged in 1 patient and slightly increased (5 to 25 ms) in 4 by coronary sinus pacing. The electrogram sequence was unchanged and the surface morphology was similar to that of basal flutter. Right atrial pacing decreased double-spike separation by 25 to 85 ms from basal values of 45 to 175 ms (23 to 83%), suggesting fusion in the area of fragmented electrograms. These findings suggest that double-spike electrograms represent activation on both sides of a conduction delay zone. The changes induced in these electrograms by pacing from the anterior right atrium and the coronary sinus are consistent with flutter circuits rotating counterclockwise (frontal plane) in the posterior right atrial wall in common atrial flutter.

  12. Wind loads on flat plate photovoltaic array fields (nonsteady winds)

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.

  13. Effects of flutter and PEP mask physiotherapy on symptoms and lung function in children with cystic fibrosis

    NARCIS (Netherlands)

    van Winden, C. M.; Visser, A.; Hop, W.; Sterk, P. J.; Beckers, S.; de Jongste, J. C.

    1998-01-01

    Recently, the flutter was introduced as a new device to improve sputum expectoration. Preliminary data suggested a significant improvement in expectoration and lung function during flutter treatment in patients with cystic fibrosis (CF). The aim of the present study was to compare the effects of the

  14. Fluorescence Imaging and Streamline Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models

    Science.gov (United States)

    Danehy, Paul M.; Alderfer, David W.; Inman, Jennifer A.; Berger, Karen T.; Buck, Gregory M.; Schwartz, Richard J.

    2008-01-01

    Reentry models for use in hypersonic wind tunnel tests were fabricated using a stereolithography apparatus. These models were produced in one day or less, which is a significant time savings compared to the manufacture of ceramic or metal models. The models were tested in the NASA Langley Research Center 31-Inch Mach 10 Air Tunnel. Only a few of the models survived repeated tests in the tunnel, and several failure modes of the models were identified. Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the flowfields in the wakes of these models. Pure NO was either seeded through tubes plumbed into the model or via a tube attached to the strut holding the model, which provided localized addition of NO into the model s wake through a porous metal cylinder attached to the end of the tube. Models included several 2- inch diameter Inflatable Reentry Vehicle Experiment (IRVE) models and 5-inch diameter Crew Exploration Vehicle (CEV) models. Various model configurations and NO seeding methods were used, including a new streamwise visualization method based on PLIF. Virtual Diagnostics Interface (ViDI) technology, developed at NASA Langley Research Center, was used to visualize the data sets in post processing. The use of calibration "dotcards" was investigated to correct for camera perspective and lens distortions in the PLIF images.

  15. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    Science.gov (United States)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  16. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  17. Comparison of Temporal Parameters of Swimming Rescue Elements When Performed Using Dolphin and Flutter Kick with Fins - Didactical Approach

    Science.gov (United States)

    Rejman, Marek; Wiesner, Wojciech; Silakiewicz, Piotr; Klarowicz, Andrzej; Abraldes, J. Arturo

    2012-01-01

    The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time. Key points The source of reduction of swimming rescue time was researched. Time required to approach and to tow the victim while doing the flutter kick and the dolphin-kick with fins was analyzed. The propulsion generated by dolphin-kick did not make the approach and tow faster than the flutter kick. More difficult skill to realize of

  18. Experimental Investigation of Project Orion Crew Exploration Vehicle Aeroheating in AEDC Tunnel 9

    Science.gov (United States)

    Hollis, Brian R.; Horvath, Thomas J.; Berger, Karen T.; Lillard, Randolph P.; Kirk, Benjamin S.; Coblish, Joseph J.; Norris, Joseph D.

    2008-01-01

    An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Arnold Engineering Development Center Tunnel 9. The goals of this test were to measure turbulent heating augmentation levels on the heat shield and to obtain high-fidelity heating data for assessment of computational fluid dynamics methods. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins for the computational method. Data from both the wind tunnel test and the computational study are presented herein.

  19. The effect of adsorbed liquid and material density on saltation threshold: Insight from laboratory and wind tunnel experiments

    Science.gov (United States)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; Bridges, Nathan T.; Burr, Devon M.; Sebree, Joshua A.; Smith, James K.

    2017-11-01

    Saltation threshold, the minimum wind speed for sediment transport, is a fundamental parameter in aeolian processes. Measuring this threshold using boundary layer wind tunnels, in which particles are mobilized by flowing air, for a subset of different planetary conditions can inform our understanding of physical processes of sediment transport. The presence of liquid, such as water on Earth or methane on Titan, may affect the threshold values to a great extent. Sediment density is also crucial for determining threshold values. Here we provide quantitative data on density and water content of common wind tunnel materials (including chromite, basalt, quartz sand, beach sand, glass beads, gas chromatograph packing materials, walnut shells, iced tea powder, activated charcoal, instant coffee, and glass bubbles) that have been used to study conditions on Earth, Titan, Mars, and Venus. The measured density values for low density materials are higher compared to literature values (e.g., ∼30% for walnut shells), whereas for the high density materials, there is no such discrepancy. We also find that low density materials have much higher water content and longer atmospheric equilibration timescales compared to high density sediments. We used thermogravimetric analysis (TGA) to quantify surface and internal water and found that over 80% of the total water content is surface water for low density materials. In the Titan Wind Tunnel (TWT), where Reynolds number conditions similar to those on Titan can be achieved, we performed threshold experiments with the standard walnut shells (125-150 μm, 7.2% water by mass) and dried walnut shells, in which the water content was reduced to 1.7%. The threshold results for the two scenarios are almost the same, which indicates that humidity had a negligible effect on threshold for walnut shells in this experimental regime. When the water content is lower than 11.0%, the interparticle forces are dominated by adsorption forces, whereas at

  20. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena

    Science.gov (United States)

    Kegerise, Michael A.; Neuhart, Dan H.

    2016-01-01

    A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered