WorldWideScience

Sample records for wind-pv-battery hybrid power

  1. A wind-PV-battery hybrid power system at Sitakunda in Bangladesh

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Ghosh, Himangshu Ranjan

    2009-01-01

    The measured wind data of Local Government Engineering Department (LGED) for 2006 at 30 m height shows a good prospect for wind energy extraction at the site. For a few months and hours the speed is below the cut in speeds of the available turbines in the market. The predicted solar radiation data from directly related measured cloud cover and sunshine duration data of Bangladesh Meteorological Department (BMD) for 1992-2003 indicates that a reliable power system can be developed over the year if the solar energy technology is merged with the wind energy technologies for this site. This research work has studied on optimization of a wind-photovoltaic-battery hybrid system and its performance for a typical community load. The assessment shows that least cost of energy (COE) is about USD 0.363/kWh for a community using 169 kWh/day with 61 kW peak and having minimum amount of access or unused energy. Moreover, compared to the existing fossil fuel-based electricity supply, such an environment friendly system can mitigate about 25 t CO 2 /yr. The analysis also indicates that wind-PV-battery is economically viable as a replacement for conventional grid energy supply for a community at a minimum distance of about 17 km from grid.

  2. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...

  3. Prospect of wind-PV-battery hybrid power system as an alternative to grid extension in Bangladesh

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Ghosh, Himangshu Ranjan

    2010-01-01

    A pre-feasibility of wind-PV-battery hybrid system has been performed for a small community in the east-southern part of Bangladesh. Solar radiation resources have been assessed from other meteorological parameters like sunshine duration and cloud cover as measured radiation data were not available at the site. The predicted monthly averaged daily global radiation over Chittagong is 4.36 kWh/m 2 /day. Measured wind speed at the site varies from 3 m/s to 5 m/s. For few months and hours the speed is below the cut in speeds of the available turbines in market. The hybrid system analysis has showed that for a small community consuming 53,317 kWh/year the cost energy is 0.47USD/kWh with 10% annual capacity of shortage and produces 89,151 kWh/year in which 53% electricity comes from wind and the remaining from solar energy. The sensitivity analysis showed that the hybrid system for the community is compatible with the 8 km-12 km grid extension depending on small variation of solar radiation and wind speed over the district whereas the proposed site is more away from the upper limit. Such a hybrid system will reduce about 25 tCO 2 /yr green house gases (GHG) emission in the local atmosphere.

  4. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  5. Optimal Sizing for Wind/PV/Battery System Using Fuzzy c-Means Clustering with Self-Adapted Cluster Number

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-01-01

    Full Text Available Integrating wind generation, photovoltaic power, and battery storage to form hybrid power systems has been recognized to be promising in renewable energy development. However, considering the system complexity and uncertainty of renewable energies, such as wind and solar types, it is difficult to obtain practical solutions for these systems. In this paper, optimal sizing for a wind/PV/battery system is realized by trade-offs between technical and economic factors. Firstly, the fuzzy c-means clustering algorithm was modified with self-adapted parameters to extract useful information from historical data. Furthermore, the Markov model is combined to determine the chronological system states of natural resources and load. Finally, a power balance strategy is introduced to guide the optimization process with the genetic algorithm to establish the optimal configuration with minimized cost while guaranteeing reliability and environmental factors. A case of island hybrid power system is analyzed, and the simulation results are compared with the general FCM method and chronological method to validate the effectiveness of the mentioned method.

  6. The Power of Hybridization

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Programming languages always seem to do some things well but not others: Python punts when it comes to user interfaces, Java’s artificial complexity prevents rapid development and produces tangles, and it will be awhile before we see benefits from C++ concurrency work. The cognitive load of languages and their blind spots increases the cost of experimentation, impeding your ability to fail fast and iterate. If you use a single language to solve your problem, you are binding yourself to the worldview limitations and the mistakes made by the creator of that language. Consider increasing your wiggle room by crossing language boundaries, complementing a language that is powerful in one area with a different language powerful in another. Language hybridization can speed development to quickly discover your real problems, giving you more time to fix them. After making a case for hybridizing your thinking in general, I will present a number of simple examples; first showing the benefits of using other languages...

  7. Hybrid power source

    Science.gov (United States)

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  8. Hybrid Magnetics and Power Applications

    DEFF Research Database (Denmark)

    Mo, Wai Keung; Paasch, Kasper

    2017-01-01

    A hybrid magnetic approach, merging two different magnetic core properites such as ferrite and iron powder cores, is an effective solution for power converter applications. It can offer similar magnetic properties to that of magnetic powder cores but showing less copper loss than powder cores....... In order to prevent ferrite core saturation, placing an effective air gap within the ferrite core is a key method to obtain optimum hybrid magnetic performance. Furthermore, a relatively large inductance at low loading current is an excellent way to minimze power loss in order to achieve high efficiency...

  9. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  10. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  11. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  12. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  13. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  14. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  15. Concept design for hybrid vehicle power systems

    NARCIS (Netherlands)

    Hofman, T.; Druten, van R.M.

    2005-01-01

    Hybridization implies adding a Secondary power source (e.g. electric motor and battery) (S) to a Primary power source (P) in order to improve the driving functions (e.g. fuel economy, driveability (performance)) of the vehicle. The fuel economy isstrongly determined by the energy management

  16. Lifetime prognostics of hybrid backup power system

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Swierczynski, Maciej Jozef; Munk-Nielsen, Stig

    2017-01-01

    Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises...... the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper...... components: fuel cell, battery, and converters, is given. Finally, the paper presents a discussion on the available monitoring techniques from a commercial hybrid system point view....

  17. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  18. Hybrid combined cycle power plant

    International Nuclear Information System (INIS)

    Veszely, K.

    2002-01-01

    In case of re-powering the existing pressurised water nuclear power plants by the proposed HCCPP solution, we can increase the electricity output and efficiency significantly. If we convert a traditional nuclear power plant unit to a HCCPP solution, we can achieve a 3.2-5.5 times increase in electricity output and the achievable gross efficiency falls between 46.8-52% and above, depending on the applied solution. These figures emphasise that we should rethink our power plant technologies and we have to explore a great variety of HCCPP solutions. This may give a new direction in the development of nuclear reactors and power plants as well.(author)

  19. Hybrid switch for resonant power converters

    Science.gov (United States)

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  20. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  1. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    Science.gov (United States)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  2. Hybrid power filter for advanced power quality in industrial systems

    Czech Academy of Sciences Publication Activity Database

    Švec, J.; Müller, Z.; Kasembe, A. G.; Tlustý, J.; Valouch, Viktor

    2013-01-01

    Roč. 103, october 2013 (2013), s. 157-167 ISSN 0378-7796 R&D Projects: GA AV ČR IAA200760703 Institutional research plan: CEZ:AV0Z20570509 Institutional support: RVO:61388998 Keywords : hybrid power filter * power quality * industrial system Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.595, year: 2013 http://www.sciencedirect.com/science/article/pii/S0378779613001417

  3. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  4. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  5. Critical power for lower hybrid current drive

    International Nuclear Information System (INIS)

    Assis, A.S. de; Sakanaka, P.H.; Azevedo, C.A. de; Busnardo-Neto, J.

    1995-11-01

    We have solved numerically the quasilinear Fokker-Planck equation which models the critical power for lower hybrid wave current drive. An exact value for the critical power necessary for current saturation, for tokamak current drive experiments, has been obtained. The nonlinear treatment presented here leads to a final profile for the parallel distribution function which is a plateau only in a part of the resonance region. This form of the distribution function is intermediate between two well known results: a plateau throughout the resonance region for the linear strong-source regime, D wave >> D coll and no plateau at all in the resonance region the linear weak-source regimen, D wave coll . The strength of the external power source and the value of the dc electric field are treated as given parameters in the integration scheme. (author). 24 refs, 6 figs

  6. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A; Bindner, H; Lundsager, P [Risoe National Lab., Roskilde (Denmark); Jannerup, O [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  7. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  8. Portable Hybrid Powered Water Filtration Device

    Directory of Open Access Journals (Sweden)

    Maria Lourdes V. Balansay

    2015-08-01

    Full Text Available The existing water filtration device has features that can be developed to be more useful and functional during emergency situations. The project’s development has been aided by following provisions in PEC, NEC, NEMA and Philippine National Standard for Safe Drinking Water provide standards for the construction of the project. These standards protect both the prototype and the user. These also served as guide for the maintenance of every component. The design of the portable hybrid powered water filtration device shows that the project has more advanced features such as portability and the power supply used such as photovoltaic module solar cells and manually operated generator. This also shows its effectiveness and reliability based on the results of discharging test, water quality test and water production test. Based on analysis of the overall financial aspects, the machine can be profitable and the amount of revenue and operating cost will increase as years pass. Using the proper machine/ tools and methods of fabrication helps in easy assembly of the project. The materials and components used are cost effective and efficient. The best time for charging the battery using solar panel is 9:00 am onwards while the hand crank generator is too slow because the generated current is little. The water filtration device is very efficient regarding the operating hours and water production. The machine may have a great effect to society and economy in generation of clean available water at less cost.

  9. Shunt hybrid active power filter for harmonic mitigation: A practical ...

    Indian Academy of Sciences (India)

    The increasing importance of Power Quality problems has been responsible for several improvements in Active Power Filter (APF) typologies in the last decade. The increased cost and switching losses make a pure shunt APF economically impractical for high power applications. In higher power levels shunt Hybrid Active ...

  10. Solar-Diesel Hybrid Power System Optimization and Experimental Validation

    Science.gov (United States)

    Jacobus, Headley Stewart

    As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.

  11. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  12. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  13. The Power Quality Compensation Strategy for Power Distribution System Based on Hybrid Parallel Active Power Filters

    Directory of Open Access Journals (Sweden)

    Rachid DEHINI

    2010-12-01

    Full Text Available In this paper, the main aim is to confront the performance of shunt active power filter (SAPF and the shunt hybrid active power filter (SHAPF to achieve flexibility and reliability of the filter devices. Both of the two devices used the classical proportional-integral controller for pulse generation to trigger the inventers MOSFET’s. In the adopted hybrid active filter there is a passive power filter with high power rating to filter the low order harmonies and one active filter with low power rating to filter the other high order harmonies. In order to investigate the effectiveness of (SHAPF, the studies have been accomplished using simulation with the MATLAB-SIMULINK. The results show That (SHAPF is more effective than (SAPF, and has lower cost.

  14. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad; Celik, Abdulkadir; Kamal, Ahmed E.

    2018-01-01

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power

  15. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  16. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  17. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  18. Hybrid Engine Powered City Car: Fuzzy Controlled Approach

    Science.gov (United States)

    Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany

    2017-03-01

    This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.

  19. Power generation versus fuel production in light water hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1977-06-01

    The economic potentials of fissile-fuel-producing light-water hybrid reactors (FFP-LWHR) and of fuel-self-sufficient (FSS) LWHR's are compared. A simple economic model is constructed that gives the capital investment allowed for the hybrid reactor so that the cost of electricity generated in the hybrid based energy system equals the cost of electricity generated in LWR's. The power systems considered are LWR, FSS-LWHR, and FFP-LWHR plus LWR, both with and without plutonium recycling. The economic potential of FFP-LWHR's is found superior to that of FSS-LWHR's. Moreover, LWHR's may compete, economically, with LWR's. Criteria for determining the more economical approach to hybrid fuel or power production are derived for blankets having a linear dependence between F and M. The examples considered favor the power generation rather than fuel production

  20. Hybrid algorithm for rotor angle security assessment in power systems

    Directory of Open Access Journals (Sweden)

    D. Prasad Wadduwage

    2015-08-01

    Full Text Available Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.

  1. A hybrid electrical power system for aircraft application.

    Science.gov (United States)

    Lee, C. H.; Chin, C. Y.

    1971-01-01

    Possible improvements to present aircraft electrical power systems for use in future advanced types of aircraft have been investigated. The conventional power system is examined, the characteristics of electric loads are reviewed, and various methods of power generation and distribution are appraised. It is shown that a hybrid system, with variable-frequency generation and high-voltage dc distribution, could overcome some of the limitations of the conventional system.

  2. Hybrid anisotropic materials for wind power turbine blades

    CERN Document Server

    Golfman, Yosif

    2012-01-01

    Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo

  3. Hybrid wind-power-distillation plant

    Directory of Open Access Journals (Sweden)

    Ninić Neven

    2012-01-01

    Full Text Available This paper reports and elaborates on the idea of a solar distiller and an offshore wind power plant operating together. The subject under discussion is a single-stage solar distillation plant with vaporization, using adiabatic expansion in the gravitational field inside a wind power plant supporting column. This scheme divides investment costs for electric power and distillate production. In the region of the Adriatic Sea, all electric power produced could be “converted” to hydrogen using less than 10% of the distillate produced.

  4. Short-Term Planning of Hybrid Power System

    Science.gov (United States)

    Knežević, Goran; Baus, Zoran; Nikolovski, Srete

    2016-07-01

    In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.

  5. Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks

    DEFF Research Database (Denmark)

    Wan, Can; Song, Yonghua; Xu, Zhao

    2016-01-01

    probabilities of prediction errors provide an alternative yet effective solution. This article proposes a hybrid artificial neural network approach to generate prediction intervals of wind power. An extreme learning machine is applied to conduct point prediction of wind power and estimate model uncertainties...... via a bootstrap technique. Subsequently, the maximum likelihood estimation method is employed to construct a distinct neural network to estimate the noise variance of forecasting results. The proposed approach has been tested on multi-step forecasting of high-resolution (10-min) wind power using...... actual wind power data from Denmark. The numerical results demonstrate that the proposed hybrid artificial neural network approach is effective and efficient for probabilistic forecasting of wind power and has high potential in practical applications....

  6. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  7. Measurement and Analysis of Power in Hybrid System

    Directory of Open Access Journals (Sweden)

    Vartika Keshri

    2016-12-01

    Full Text Available Application with renewable energy  sources  such   as solar cell array, wind turbines, or fuel cells have increased significantly during the past decade. To obtain the clean energy, we are using the hybrid solar-wind power generation. Consumers prefer quality power from suppliers. The quality of power can be measured by using parameters such as voltage sag, harmonic and power factor.   To   obtain   quality   power   we   have different topologies. In our paper we present a new possible topology which improves power quality. This paper presents modeling analysis and design of a pulse width modulation voltage source inverter (PWM-VSI to be connected between sources, which supplies energy from a hybrid solar wind energy system to the ac grid. The objective of this paper is to show that, with an adequate control, the converter not only can transfer the dc from hybrid solar wind energy system, but also can improve the power factor and quality power of electrical system. Whenever a disturbance occurs on load side, this disturbance can be minimized using open loop and closed loop control systems.

  8. Performance Analysis of a Hybrid Power Cutting System for Roadheader

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-01-01

    Full Text Available An electrohydraulic hybrid power cutting transmission system for roadheader under specific working condition was proposed in this paper. The overall model for the new system composed of an electric motor model, a hydraulic pump-motor model, a torsional planetary set model, and a hybrid power train model was established. The working mode characteristics were simulated under the conditions of taking the effect of cutting picks into account. The advantages of new hybrid power cutting system about the dynamic response under shock load were investigated compared with the traditional cutting system. The results illustrated that the hybrid power system had an obvious cushioning in terms of the dynamic load of cutting electric motor and planetary gear set. Besides, the hydraulic motor could provide an auxiliary power to improve the performance of the electric motor. With further analysis, a dynamic load was found to have a high relation to the stiffness and damping of coupling in the transmission train. The results could be a useful guide for the design of cutting transmission of roadheader.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  10. Energy control of supercapacitor/fuel cell hybrid power source

    International Nuclear Information System (INIS)

    Payman, Alireza; Pierfederici, Serge; Meibody-Tabar, Farid

    2008-01-01

    This paper deals with a flatness based control principle in a hybrid system utilizing a fuel cell as a main power source and a supercapacitor as an auxiliary power source. The control strategy is based on regulation of the dc bus capacitor energy and, consequently, voltage regulation. The proposed control algorithm does not use a commutation algorithm when the operating mode changes with the load power variation and, thus, avoids chattering effects. Using the flatness based control method, the fuel cell dynamic and its delivered power is perfectly controlled, and the fuel cell can operate in a safe condition. In the hybrid system, the supercapacitor functions during transient energy delivery or during energy recovery situations. To validate the proposed method, the control algorithms are executed in dSPACE hardware, while analogical current loops regulators are employed in the experimental environment. The experimental results prove the validity of the proposed approach

  11. Design and control of hybrid active power filters

    CERN Document Server

    Lam, Chi-Seng

    2014-01-01

    Design and Control of Hybrid Active Power Filters presents an overview of the current quality problems and their compensators. To get a balance between the system cost and performance, hybrid active power filters (HAPFs) are valuable. The book presents the coverage of resonance phenomena prevention capability, filtering performance and system robustness analysis of HAPF; nonlinear inverter current slope characteristics and their linear operation region requirement analysis of the hysteresis PWM for the HAPF; minimum inverter capacity design procedure of HAPF, adaptive dc-link voltage controller for the HAPF and the real design example of a 220V 10kVA HAPF, in which the system performance analysis method, minimum dc voltage deduction concept and adaptive dc voltage idea can be further extended into the other active compensators, such as APF, static synchronous compensator STATCOM, etc. This book will benefit researchers, graduate students, and electrical power engineers in the field of power-quality compensati...

  12. High Power Factor Hybrid Rectifier | Odeh | Nigerian Journal of ...

    African Journals Online (AJOL)

    This paper presents the analysis of a new single-phase hybrid rectifier with high power factor (PF) and low harmonic distortion current. The proposed rectifier structure is composed of an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of ...

  13. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  14. Photovoltaic / Diesel / Battery Hybrid Power Supply System

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-10-01

    Full Text Available (SOPAC Miscellaneous Report 406, 2005). The battery bank is cycled frequently, shortening its lifetime. If the inverter fails there is complete loss of power to the load, unless the load can be supplied directly from the diesel generator for emergency purposes....5 Sizing the inverter ............................................................................................... 67 5.6 Sizing the charge Controller ............................................................................... 68 5.7 Sizing...

  15. Mobile Hybrid Power System Theory of Operation

    OpenAIRE

    Pierce, Timothy M. Jr.

    2016-01-01

    Efficiency is a driving constraint for electrical power systems as global energy demands are ever increasing. Followed by the introduction of diesel generators, electricity has become available in more locations than ever. However, operating a diesel generator on its own is not the most energy efficient. This is because the high crest factor loads, of many applications, decrease the fuel efficiency of a hydrocarbon generator. To understand this, we need to understand how an electrical load af...

  16. PV power system using hybrid converter for LED indictor applications

    International Nuclear Information System (INIS)

    Tseng, Sheng-Yu; Wang, Hung-Yuan; Chen, Chien-Chih

    2013-01-01

    Highlights: • This paper presents a LED indictor driving circuit with a PV arrays as its power source. • The perturb-and-observe method is adopted to extract the maximum power of PV arrays. • The proposed circuit structure has a less component counts and higher conversion efficiency. • A prototype of LED indictor driving circuit has been implemented to verify its feasibility. • The proposed hybrid converter is suitable for LED inductor applications. - Abstract: This paper presents a LED indictor driving circuit with a PV arrays as its power source. The LED indictor driving circuit includes battery charger and discharger (LED driving circuit). In this research, buck converter is used as a charger, and forward converter with active clamp circuit is adopted as a discharger to drive the LED indictor. Their circuit structures use switch integration technique to simplify them and to form the proposed hybrid converter, which has a less component counts, lighter weight, smaller size, and higher conversion efficiency. Moreover, the proposed hybrid converter uses a perturb-and-observe method to extract the maximum power from PV arrays. Finally, a prototype of an LED indictor driving circuit with output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the LED inductor applications

  17. A hybrid power system for unmanned aerial vehicle electromagnetic launcher

    Science.gov (United States)

    Wang, Zhiren; Wu, Jun; Huang, Shengjun

    2018-06-01

    According to the UAV electromagnetic catapult with fixed timing, a hybrid energy storage system consist with battery and super capacitor is designed, in order to reduce the volume and weight of the energy storage system. The battery is regarded as the energy storage device and the super capacitor as power release device. Firstly, the battery charges the super capacitor, and then the super capacitor supplies power to electromagnetic catapult separately. The strategy is using the Buck circuit to charge the super capacitor with constant current and using the Boost circuit to make super capacitor provide a stable voltage circuit for electromagnetic catapult. The Simulink simulation results show that the designed hybrid energy storage system can meet the requirements of electromagnetic catapult. Compared with the system powered by the battery alone, the proposed scheme can reduce the number of batteries, and greatly reduce the volume and weight of the energy storage system.

  18. Conceptual design of a Tokamak hybrid power reactor (THPR)

    International Nuclear Information System (INIS)

    Matsuoka, F.; Imamura, Y.; Inoue, M.; Asami, N.; Kasai, M.; Yanagisawa, I.; Ida, T.; Takuma, T.; Yamaji, K.; Akita, S.

    1987-01-01

    A conceptual design of a fusion-fission hybrid tokamak reactor has been carried out to investigate the engineering feasibility and promising scale of a commercial hybrid reactor power plant. A tokamak fusion driver based on the recent plasma scaling law is introduced in this design study. The major parameters and features of the reactor are R=6.06 m, a=1.66 m, Ip=11.8 MA, Pf=668 MW, double null divertor plasma and steady state burning with RF current drive. The fusion power has been determined with medium energy multiplication in the blanket so as to relieve thermal design problems and produce electric power around 1000 MW. Uranium silicide is used for the fast fission blanket material to promise good nuclear performance. The coolant of the blanket is FLIBE and the tritium breeding blanket material is Li 2 O ceramics providing breeding ratio above unity

  19. A 'simple' hybrid model for power derivatives

    International Nuclear Information System (INIS)

    Lyle, Matthew R.; Elliott, Robert J.

    2009-01-01

    This paper presents a method for valuing power derivatives using a supply-demand approach. Our method extends work in the field by incorporating randomness into the base load portion of the supply stack function and equating it with a noisy demand process. We obtain closed form solutions for European option prices written on average spot prices considering two different supply models: a mean-reverting model and a Markov chain model. The results are extensions of the classic Black-Scholes equation. The model provides a relatively simple approach to describe the complicated price behaviour observed in electricity spot markets and also allows for computationally efficient derivatives pricing. (author)

  20. Robust Power Control of Microgrid based on Hybrid Renewable Power Generation Systems

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-03-01

    Full Text Available This paper presents modeling and control of a hybrid distributed energy sources including photovoltaic (PV, fuel cell (FC and battery energy storage (BES in a microgrid which provides both real and reactive power to support an unbalanced utility grid. The overall configuration of the microgrid including dynamic models for the PV, FC, BES and its power electronic interfacing are briefly described. Then controller design methodologies for the power conditioning units to control the power flow from the hybrid power plant to the unbalanced utility grid are presented. In order to distribute the power between power sources, the neuro-fuzzy power controller has been developed. Simulation results are presented to demonstrate the effectiveness and capability of proposed control strategy.

  1. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2014-07-01

    Full Text Available We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC in a combined heat and power generation (CHP case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency as well as economic parameters show that hybrid power plants are more efficient compared to conventional CHP concepts or separate use of the energy sources.

  2. A Hybrid Optimization Method for Reactive Power and Voltage Control Considering Power Loss Minimization

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Bak, Claus Leth

    2015-01-01

    This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...

  3. Simulation of electric vehicles with hybrid power systems

    Science.gov (United States)

    Burke, A. F.; Cole, G. H.

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics.

  4. Evaluation of hybrid power system alternatives: a case study

    International Nuclear Information System (INIS)

    Rosenthal, Andrew L.

    1999-01-01

    Pursuant to executive and statutory policies, the National Park Service (NPS) has been evaluating the use of photovoltaic (PV) hybrid power systems, for many of its remote, off-grid areas. This paper reports the results of a detailed technical and economic evaluation for one such area: the Needles District of Canyonlands National Park. The study evaluates the presented power systems and five alternative power generation configurations, four of which utilise PV. Projections are provided for the generator run-time and fuel use associated with each configuration as well as all initial and future costs. Included in the study are specific recommendations for energy efficiency improvements at the site. Results show that the generation systems presently in use, two full-time diesel generators, has the lowest conventional 20-year life cycle costs (LCC) of the six systems evaluated. However, when emissions costs are included (per NPS guidelines), several of the PV hybrid alternatives attain a lower LCC than the diesel-only systems. General discussion of the effects of initial versus future costs of PV hybrids as they compare with engine generator system is presented. (Author)

  5. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    International Nuclear Information System (INIS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method. (paper)

  6. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  7. Scalable and Power Efficient Data Analytics for Hybrid Exascale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Alok [Northwestern Univ., Evanston, IL (United States); Samatova, Nagiza [North Carolina State Univ., Raleigh, NC (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liao, Wei-keng [Northwestern Univ., Evanston, IL (United States)

    2015-03-19

    This project developed a generic and optimized set of core data analytics functions. These functions organically consolidate a broad constellation of high performance analytical pipelines. As the architectures of emerging HPC systems become inherently heterogeneous, there is a need to design algorithms for data analysis kernels accelerated on hybrid multi-node, multi-core HPC architectures comprised of a mix of CPUs, GPUs, and SSDs. Furthermore, the power-aware trend drives the advances in our performance-energy tradeoff analysis framework which enables our data analysis kernels algorithms and software to be parameterized so that users can choose the right power-performance optimizations.

  8. Village power hybrid systems development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.; Green, J. [National Renewable Energy Lab., Golden, CO (United States); Bergey, M. [Bergey Windpower Co., Norman, OK (United States); Lilley, A. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Mott, L. [Northern Power Systems, Moretown, VT (United States)

    1994-11-01

    The energy demand in developing countries is growing at a rate seven times that of the OECD countries, even though there are still 2 billion people living in developing countries without electricity. Many developing countries have social and economic development programs aimed at stemming the massive migration from the rural communities to the overcrowded, environmentally problematic, unemployment-bound urban centers. To address the issue of providing social, educational, health, and economic benefits to the rural communities of the developing world, a number of government and nongovernment agencies are sponsoring pilot programs to install and evaluate renewable energy systems as alternatives to line extension, diesels, kerosene, and batteries. The use of renewables in remote villages has yielded mixed results over the last 20 years. However, recently, photovoltaics, small wind turbines, and microhydro system shave gained increasing recognition as reliable, cost-effective alternatives to grid extension and diesel gensets for village-electricity applications. At the same time, hybrid systems based on combinations of PV/wind/batteries/diesel gensets have proven reliable and economic for remote international telecommunications markets. With the growing emphasis on environmentally and economically sustainable development of international rural communities, the US hybrid industry is responding with the development and demonstration of hybrid systems and architectures that will directly compete with conventional alternatives for village electrification. Assisting the US industry in this development, the National Renewable Energy Laboratory (NREL) has embarked on a program of collaborative technology development and technical assistance in the area of hybrid systems for village power. Following a brief review of village-power hybrid systems application and design issues, this paper presents the present industry development activities of three US suppliers and the NREL.

  9. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  10. Voltage harmonics mitigation through hybrid active power filer

    International Nuclear Information System (INIS)

    Sahito, A.A.; Tunio, S.M.; Khizer, A.N.

    2016-01-01

    Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion) of 18.91 and 7.61 percentage in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter) is proposed to reduce these THD values below 5 percentage as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5 percentage. (author)

  11. Voltage Harmonics Mitigation through Hybrid Active Power Filter

    Directory of Open Access Journals (Sweden)

    Anwer Ali Sahito

    2016-01-01

    Full Text Available Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion of 18.91 and 7.61% in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter is proposed to reduce these THD values below 5% as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5%.

  12. A Hybrid Power Management (HPM) Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.

  13. PV-diesel hybrid powers island nature reserve

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R. [University of New South Wales (Australia). Centre for Photovoltaic Engineering

    2001-03-01

    A short paper reports how by replacing a diesel-electric power supply with a PV-diesel-battery hybrid system, the diesel generator running time has been cut by 87%. The system provides all the power needs (including for the lighthouse, the lighthouse keeper's family, and a few visitors) on Montague Island nature reserve off Australia. The old system consisted of a pair of diesel-fuelled generator sets rated at 10 and 20 kVA. The main purposes for the changes were environmental, safety (in terms of transporting diesel fuel), and financial. Liquefied petroleum gas is now used for water heating and cooking. The reasons for not going for wind power are given. A diagram shows load and array power profiles for a May day in 1999.

  14. Load Flow Analysis of Hybrid AC-DC Power System with Offshore Wind Power

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    The offshore wind power has received immense attention because of higher wind speed and lower opposition for construction. A wide range of combinations of high-voltage ACDC transmission have been proposed for integrating offshore wind farms and long-distance power transmission. This paper...... is to model such hybrid AC-DC systems including the interfacing converters, which have several control parameters that can change the load flow of the hybrid systems. Then, the paper proposes a Load Flow algorithm based on the Newton-Raphson method, which covers three different section types...

  15. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  16. Hybrid simulation of electrode plasmas in high-power diodes

    International Nuclear Information System (INIS)

    Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.; Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.

    2009-01-01

    New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss.

  17. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  18. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  19. Development of a hybrid pneumatic-power vehicle

    International Nuclear Information System (INIS)

    Huang, K. David; Tzeng, S.-C.

    2005-01-01

    Many complex technologies have been developed and applied to improve the energy efficiency and exhaust emission of an engine under different driving conditions. The overall thermal efficiency of an internal-combustion engine, however, can be maintained at only about 20-30%, with aggravated problems in the design and development, such as overall difficulty, excessive time consumption or excessively high cost. For electric cars, there is still no major technological breakthrough for the rapid recharging of a large capacity battery and detection of remaining power in it. Although all currently available hybrid-power engines are able to lower the amount of exhaust emissions and the fuel consumption of the engine, they are still unable to achieve a stable and optimal running condition immediately after ignition; hence the engine's thermal-efficiency remains low. To solve the aforementioned problems, an innovative concept - a hybrid pneumatic power-system (HPPS), which stores 'flow work' instead of storing electrochemical energy of the battery - is introduced. This innovative power system not only ensures that the internal-combustion ensures optimally but also recycles the exhaust flow to propel the vehicle. The optimization of the internal-combustion and recycling of the exhaust energy can increase the vehicle's efficiency from an original 15% to 33%, an overall increase of 18%

  20. Advanced configuration of hybrid passive filter for reactive power and harmonic compensation.

    Science.gov (United States)

    Kececioglu, O Fatih; Acikgoz, Hakan; Sekkeli, Mustafa

    2016-01-01

    Harmonics is one of the major power quality problems for power systems. The harmonics can be eliminated by power filters such as passive, active, and hybrid. In this study, a new passive filter configuration has been improved in addition to the existing passive filter configurations. Conventional hybrid passive filters are not successful to compensate rapidly changing reactive power demand. The proposed configure are capable of compensating both harmonics and reactive power at the same time. Simulation results show that performance of reactive power and harmonic compensation with advanced hybrid passive filter is better than conventional hybrid passive filters.

  1. Enhanced Electric Power Transmission by Hybrid Compensation Technique

    International Nuclear Information System (INIS)

    Palanichamy, C; Kiu, G Q

    2015-01-01

    In today's competitive environment, new power system engineers are likely to contribute immediately to the task, without years of seasoning via on-the-job training, mentoring, and rotation assignments. At the same time it is becoming obligatory to train power system engineering graduates for an increasingly quality-minded corporate environment. In order to achieve this, there is a need to make available better-quality tools for educating and training power system engineering students and in-service system engineers too. As a result of the swift advances in computer hardware and software, many windows-based computer software packages were developed for the purpose of educating and training. In line with those packages, a simulation package called Hybrid Series-Shunt Compensators (HSSC) has been developed and presented in this paper for educational purposes. (paper)

  2. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad

    2018-02-12

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power supply of green (renewable) and traditional micro-grid, such that traditional micro-grid is not exploited as long as the BSS can meet their power demands from harvested and stored green energy. Therefore, our goal is to minimize the networkwide energy consumption subject to users\\' certain quality of service and BSS\\' power consumption constraints. As a result of binary BS sleeping status and user-cell association variables, proposed is formulated as a binary linear programming (BLP) problem. A green communication algorithm based on binary particle swarm optimization is implemented to solve the problem with low complexity time.

  3. Trimode optimizes hybrid power plants. Final report: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    O`Sullivan, G.A.; O`Sullivan, J.A. [Abacus Controls, Inc., Somerville, NJ (United States)

    1998-07-01

    In the Phase 2 project, Abacus Controls Inc. did research and development of hybrid systems that combine the energy sources from photovoltaics, batteries, and diesel-generators and demonstrated that they are economically feasible for small power plants in many parts of the world. The Trimode Power Processor reduces the fuel consumption of the diesel-generator to its minimum by presenting itself as the perfect electrical load to the generator. A 30-kW three-phase unit was tested at Sandia National Laboratories to prove its worthiness in actual field conditions. The use of photovoltaics at remote locations where reliability of supply requires a diesel-generator will lower costs to operate by reducing the run time of the diesel generator. The numerous benefits include longer times between maintenance for the diesel engine and better power quality from the generator. 32 figs.

  4. Solar central receiver hybrid power system. Phase I study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-11-01

    A management plan is presented for implementation during the Solar Central Receiver Hybrid Power System - Phase I study project. The project plan and the management controls that will be used to assure technically adequate, timely and cost effective performance of the work required to prepare the designated end products are described. Bechtel in-house controls and those to be used in directing the subcontractors are described. Phase I of the project consists of tradeoff studies, parametric analyses, and engineering studies leading to conceptual definition and evaluation of a commercial hybrid power system that has the potential for supplying economically competitive electric power to a utility grid in the 1985-1990 time frame. The scope also includes the preparation of a development plan for the resolution of technical uncertainties and the preparation of plans and a proposal for Phase II of the program. The technical approach will be based on a central receiver solar energy collection scheme which supplies thermal energy to a combined cycle, generating system, consisting of a gas turbine cycle combined with a steam bottoming cycle by means of a heat recovery steam generator.

  5. Power quality analysis of hybrid renewable energy system

    Directory of Open Access Journals (Sweden)

    Rinchin W. Mosobi

    2015-12-01

    Full Text Available An hybrid renewable energy sources consisting of solar photovoltaic, wind energy system, and a microhydro system is proposed in this paper. This system is suitable for supplying electricity to isolated locations or remote villages far from the grid supply. The solar photovoltaic system is modeled with two power converters, the first one being a DC-DC converter along with an maximum power point tracking to achieve a regulated DC output voltage and the second one being a DC-AC converter to obtain AC output. The wind energy system is modeled with a wind-turbine prime mover with varying wind speed and fixed pitch angle to drive an self excited induction generator (SEIG. Owing to inherent drooping characteristics of the SEIG, a closed loop turbine input system is incorporated. The microhydro system is modeled with a constant input power to drive an SEIG. The three different sources are integrated through an AC bus and the proposed hybrid system is supplied to R, R-L, and induction motor loads. A static compensator is proposed to improve the load voltage and current profiles; it also mitigates the harmonic contents of the voltage and current. The static synchronous compensator is realized by means of a three-phase IGBT-based current-controlled voltage source inverter with a self-supporting DC bus. The complete system is modeled and simulated using Matlab/Simulink. The simulation results obtained illustrate the feasibility of the proposed system and are found to be satisfactory.

  6. MODELLING AND CONTROL OF POWER-SPLIT HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC METHOD

    OpenAIRE

    Mohammadpour, Ebrahim; Khajavi, Mehrdad Nouri

    2014-01-01

    Nowadays, automotive manufactures increasingly have lead to development of hybrid vehicles due to energy consumption growing and increased emissions. the power-split hybrids due to the simultaneous using of speed and torque couplings has integrated advantage of series and parallel hybrid systems and minimize their disadvantages , however the power-split hybrids control strategy is far more complex than other types. Generally the control strategy tries to use the optimize operating point of HE...

  7. Hybrid solar and hydro-power for Austria

    Energy Technology Data Exchange (ETDEWEB)

    Weyss, N

    1978-02-01

    It is proposed that integrating solar powerplants into the Austrian electricity networks could cost less than conventional thermal plants, and provide a high degree of independence to the country. The following aspects are discussed; the seasonal distribution of sunshine, solar power plants, land requirements, economic feasibility, solar/fossil hybrid operation, integration strategy, Malta-B as a calculating unit, solar-hydraulic baseload throughout the year, concrete requirements, solar-hydraulic possibilities within the next 50 years, cement for solar plants, and energy accounting. (MHR)

  8. A GRID-CONNECTED HYBRID WIND-SOLAR POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    MAAMAR TALEB

    2017-06-01

    Full Text Available A hybrid renewable energy system consisting of a photovoltaic generator and a wind driven DC machine is interconnected with the power utilities grid. The interconnection is done through the use of two separate single phase full wave controlled bridge converters. The bridge converters are operated in the “inverter mode of operation”. That is to guaranty the extraction of the real powers from the wind driven generator as well as from the photovoltaic generator and inject them into the power utilities grid. At any pretended surrounding weather conditions, maximum extraction of powers from both renewable energy sources is targeted. This is done through the realization of self-adjusted firing angle controllers responsible of triggering the semiconductor elements of the controlled converters. An active power filter is shunted with the proposed setup to guaranty the sinusoid quality of the power utilities line current. The overall performance of the proposed system has been simulated in MATLAB/SIMULINK environment. Quite satisfactory and encouraging results have been obtained.

  9. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  10. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  11. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  12. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    Science.gov (United States)

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  13. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  14. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  15. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  16. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then...

  17. Power Management of Hybrid Power Systems with Li-Fe Batteries and Supercapacitors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Guohui Wang

    2014-05-01

    Full Text Available This paper presents an energy management strategy of a Li-Fe battery and supercapacitor hybrid power system to provide both high power density and energy density for mobile robots with fluctuating workloads. A two-phase power-optimization approach is proposed to exploit the high power density of supercapacitors and the high energy density of Li-Fe batteries. With our strategy, large peak power can be provided for a short time period whenever needed, while low power can be provided for very long time. A set of experiments have been conducted. The experimental results show that our strategy can effectively improve the performance of mobile robots and extend the lifetime of batteries.

  18. Power coordinated control method with frequency support capability for hybrid single/three-phase microgrid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Chen, Yandong; Zhou, Leming

    2018-01-01

    storage unit (ESU) are added into hybrid single/three-phase microgrid, and a power coordinated control method with frequency support capability is proposed for hybrid single/three-phase microgrid in this study. PEU is connected with three single-phase microgrids to coordinate power exchange among three...... phases and provide frequency support for hybrid microgrid. Meanwhile, a power coordinated control method based on the droop control is proposed for PEU to alleviate three-phase power imbalance and reduce voltage fluctuation of hybrid microgrid. Besides, ESU is injected into the DC-link to buffer......Due to the intermittent output power of distributed generations (DGs) and the variability of loads, voltage fluctuation and three-phase power imbalance easily occur when hybrid single/three-phase microgrid operates in islanded mode. To address these issues, the power exchange unit (PEU) and energy...

  19. Advanced configuration of hybrid passive filter for reactive power and harmonic compensation

    OpenAIRE

    Kececioglu, O. Fatih; Acikgoz, Hakan; Sekkeli, Mustafa

    2016-01-01

    Harmonics is one of the major power quality problems for power systems. The harmonics can be eliminated by power filters such as passive, active, and hybrid. In this study, a new passive filter configuration has been improved in addition to the existing passive filter configurations. Conventional hybrid passive filters are not successful to compensate rapidly changing reactive power demand. The proposed configure are capable of compensating both harmonics and reactive power at the same time. ...

  20. Evaluation criteria for enhanced solar–coal hybrid power plant performance

    International Nuclear Information System (INIS)

    Zhao, Yawen; Hong, Hui; Jin, Hongguang

    2014-01-01

    Attention has been directed toward hybridizing solar energy with fossil power plants since the 1990s to improve reliability and efficiency. Appropriate evaluation criteria were important in the design and optimization of solar–fossil hybrid systems. Two new criteria to evaluate the improved thermodynamic performances in a solar hybrid power plant were developed in this study. Correlations determined the main factors influencing the improved thermodynamic performances. The proposed criteria can be used to effectively integrate solar–coal hybridization systems. Typical 100 MW–1000 MW coal-fired power plants hybridized with solar heat at approximately 300 °C, which was used to preheat the feed water before entering the boiler, were evaluated using the criteria. The integration principle of solar–coal hybrid systems was also determined. The proposed evaluation criteria may be simple and reasonable for solar–coal hybrid systems with multi-energy input, thus directing system performance enhancement. - Highlights: • New criteria to evaluate the solar hybrid power plant were developed. • Typical solar–coal hybrid power plants were evaluated using the criteria. • The integration principle of solar–coal hybrid systems was determined. • The benefits of the solar–coal hybrid system are enhanced at lower solar radiation

  1. Control of a hybrid HVDC link to increase inter-regional power transfer

    DEFF Research Database (Denmark)

    Kotb, Omar; Ghandhari, Mehrdad; Eriksson, Robert

    2016-01-01

    This paper examines the application of a hybrid HVDC link in a two area power system with the purpose of increasing the inter-regional power transfer. A hybrid HVDC system combines both LCCs and VSCs, and hence it is capable of combining the benefits of both converter technologies, such as reduced...... cost and power losses due to the LCCs, and ability to connect to weak AC grids due to the VSCs. The mathematical model of the power system including the HVDC link is presented. The increase in inter-area power transfer is demonstrated and compared to the case when the hybrid HVDC link is not used....... Furthermore, the transient stability of the AC/DC power system was enhanced using auxiliary controllers for Power Oscillation Damping (POD). The results show the ability of the hybrid HVDC link to increase the unidirectional inter-area power transfer, while enhancing the transient stability of the power...

  2. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    International Nuclear Information System (INIS)

    Bansal, R.C.

    2008-01-01

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n q ) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n q . It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC

  3. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, R.C. [Electrical and Electronics Engineering Division, School of Engineering and Physics, The University of the South Pacific, Suva (Fiji)

    2008-02-15

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n{sub q}) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n{sub q}. It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC. (author)

  4. Multi-objective Design Method for Hybrid Active Power Filter

    Science.gov (United States)

    Yu, Jingrong; Deng, Limin; Liu, Maoyun; Qiu, Zhifeng

    2017-10-01

    In this paper, a multi-objective optimal design for transformerless hybrid active power filter (HAPF) is proposed. The interactions between the active and passive circuits is analyzed, and by taking the interactions into consideration, a three-dimensional objective problem comprising of performance, efficiency and cost of HAPF system is formulated. To deal with the multiple constraints and the strong coupling characteristics of the optimization model, a novel constraint processing mechanism based on distance measurement and adaptive penalty function is presented. In order to improve the diversity of optimal solution and the local searching ability of the particle swarm optimization (PSO) algorithm, a chaotic mutation operator based on multistage neighborhood is proposed. The simulation results show that the optimums near the ordinate origin of the three-dimension space make better tradeoff among the performance, efficiency and cost of HAPF, and the experimental results of transformerless HAPF verify the effectiveness of the method for multi-objective optimization and design.

  5. A Hybrid Genetic Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Sydulu Maheswarapu

    2011-08-01

    Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.

  6. A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Krupp, Carsten; Baltzer, Sidney; Gnörich, Bruno; Peters, Ralf; Stolten, Detlef

    2016-01-01

    Highlights: • A battery-fuel cell hybrid auxiliary power unit for heavy duty vehicles is reported. • Comparison of direct and indirect hybrids using representative load profiles. • Evaluation based on validated fuel cell system and battery models. • Indirect hybrid with constant fuel cell load yields 29.3% hybrid system efficiency. • Fuel cell should be pre-heated using waste heat from the diesel engine during drive. - Abstract: The idling operation of engines in heavy duty vehicles to cover electricity demand during layovers entails significant fuel consumption and corresponding emissions. Indeed, this mode of operation is highly inefficient and a noteworthy contributor to the transportation sector’s aggregate carbon dioxide emissions. Here, a potential solution to this wasteful practice is outlined in the form of a hybrid battery-fuel cell system for application as an auxiliary power unit for trucks. Drawing on experimentally-validated fuel cell and battery models, several possible hybrid concepts are evaluated and direct and indirect hybrid configurations analyzed using a representative load profile. The results indicate that a direct hybrid configuration is only applicable if the load demand profile does not deviate strongly from the assumed profile. Operation of an indirect hybrid with a constant fuel cell load yields the greatest hybrid system efficiency, at 29.3%, while battery size could be reduced by 87% if the fuel cell is operated at the highest dynamics. Maximum efficiency in truck applications can be achieved by pre-heating the system prior to operation using exhaust heat from the motor, which increased system efficiency from 25.3% to 28.1%, including start-up. These findings confirm that hybrid systems could offer enormous fuel savings and constitute a sizeable step on the path toward energy-efficient and environmentally-friendly heavy duty vehicles that does not necessitate a fuel switch.

  7. Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jooyoung Park

    2015-05-01

    Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.

  8. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  9. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  10. Outage Performance of Hybrid FSO/RF System with Low-Complexity Power Adaptation

    KAUST Repository

    Rakia, Tamer

    2016-02-26

    Hybrid free-space optical (FSO) / radio-frequency (RF) systems have emerged as a promising solution for high data- rate wireless communication systems. We consider truncated channel inversion based power adaptation strategy for coherent and non- coherent hybrid FSO/RF systems, employing an adaptive combining scheme. Specifically, we activate the RF link along with the FSO link when FSO link quality is unacceptable, and adaptively set RF transmission power to ensure constant combined signal-to-noise ratio at receiver terminal. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are derived. Numerical examples show that, the hybrid FSO/RF systems with power adaptation achieve considerable outage performance improvement over conventional hybrid FSO/RF systems without power adaptation. © 2015 IEEE.

  11. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries

    OpenAIRE

    Gelažanskas, Linas; Baranauskas, Audrius; Gamage, Kelum A.A.; Ažubalis, Mindaugas

    2016-01-01

    The increased number of renewable power plants pose threat to power system balance. Their intermittent nature makes it very difficult to predict power output, thus either additional reserve power plants or new storage and control technologies are required. Traditional spinning reserve cannot fully compensate sudden changes in renewable energy power generation. Using new storage technologies such as flow batteries, it is feasible to balance the variations in power and voltage within very short...

  12. Demise of the standard model for power sector reform and the emergence of hybrid power markets

    International Nuclear Information System (INIS)

    Gratwick, Katharine Nawaal; Eberhard, Anton

    2008-01-01

    Following earlier reforms in the power sectors of industrialized countries and emerging markets (e.g. Chile), developing countries were encouraged to unbundle their electricity industries and to introduce competition and private sector participation. This paper highlights the developments that led to how power sector reform came to be defined as a standard model and theoretical framework in its own right, and how the model was used prescriptively in many developing countries. However, we also show that, after more than 15 years of reform efforts, this new industry model has not fully taken root in most developing countries. Finally, we identify and characterize the emergence of new hybrid power markets, which pose fresh performance and investment challenges

  13. Study of hybrid power system potential to power agricultural water pump in mountain area

    International Nuclear Information System (INIS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-01-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  14. Study of hybrid power system potential to power agricultural water pump in mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, Ahmad, E-mail: syuhada-mech@yahoo.com; Mubarak, Amir Zaki, E-mail: amir-zaki-mubarak@yahoo.com; Maulana, M. Ilham, E-mail: mil2ana@yahoo.com [Mechanical Engineering Department, Engineering Faculty, Syiah Kuala University Jl. Syech Abdul Rauf No.7 Darussalam Banda Aceh 23111 (Indonesia)

    2016-03-29

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  15. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  16. Hybrid hydrogen-battery systems for renewable off-grid telecom power

    OpenAIRE

    Scamman, D.; Newborough, M.; Bustamante, H.

    2015-01-01

    Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the continuous power demands of telecom remote base stations. A model was developed to investigate the preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1 kW telecom load in three locations of distinct wind and solar resource availability. When com...

  17. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y; Sakuma, H; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  18. Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Hu, Xiaosong; Johannesson, Lars; Murgovski, Nikolce; Egardt, Bo

    2015-01-01

    Highlights: • Hybrid energy storage system is optimally sized and controlled for a hybrid bus. • Dynamic battery health model is incorporated in the optimization. • Convex programming is efficient for optimizing hybrid propulsion systems. • Optimal battery replacement strategy is explored. • Comparison to the battery-only option is made in the health-aware optimization. - Abstract: Energy storage systems (ESSs) play an important role in the performance and economy of electrified vehicles. Hybrid energy storage system (HESS) combining both lithium-ion cells and supercapacitors is one of the most promising solutions. This paper discusses the optimal HESS dimensioning and energy management of a fuel cell hybrid electric bus. Three novel contributions are added to the relevant literature. First, efficient convex programming is used to simultaneously optimize the HESS dimension (including sizes of both the lithium-ion battery pack and the supercapacitor stack) and the power allocation between the HESS and the fuel cell system (FCS) of the hybrid bus. In the combined plant/controller optimization problem, a dynamic battery State-of-Health (SOH) model is integrated to quantitatively examine the impact of the battery replacement strategy on both the HESS size and the bus economy. Second, the HESS and the battery-only ESS options are systematically compared in the proposed optimization framework. Finally, the battery-health-perceptive HESS optimization outcome is contrasted to the ideal one neglecting the battery degradation (assuming that the battery is durable over the bus service period without deliberate power regulation)

  19. high power facto high power factor high power factor hybrid rectifier

    African Journals Online (AJOL)

    eobe

    increase in the number of electrical loads that some kind of ... components in the AC power system. Thus, suppl ... al output power; assuring reliability in ... distribution systems. This can be ...... Thesis- Califonia Institute of Technology, Capitulo.

  20. A mathematical technique for hybrid power system design with energy loss considerations

    International Nuclear Information System (INIS)

    Lee, Jui-Yuan; Chen, Cheng-Liang; Chen, Hui-Chu

    2014-01-01

    Highlights: • A superstructure-based model is developed for hybrid power system design. • The model considers various power losses occurring in hybrid power systems. • The model locates rigorous outsourced electricity targets. • The model determines the minimum electricity storage capacity required. • Three literature case studies are solved to demonstrate the use of the model. - Abstract: This paper presents a generic mathematical optimisation model for the design of hybrid power systems (HPSs). The model takes into account power losses during the allocation of power generated from renewables to appliance loads, and is formulated as a linear programme (LP) based on a superstructure including all possible power allocation options in a typical HPS. With given power source and demand data for an HPS, the minimum outsourced electricity supply and the minimum electricity storage capacity required can be determined through a two-step optimisation. Three literature case studies are solved to illustrate the proposed approach

  1. Study on emergency power control strategy for AC/DC hybrid power system containing VSC-HVDC

    Science.gov (United States)

    Liu, Lin; Hu, Zhenda; Ye, Rong; Lin, Zhangsui; Yang, Xiaodong; Yi, Yang

    2018-04-01

    This paper presents a comprehensive emergency power control strategy for AC/DC hybrid power systems containing VSC-HVDC. Firstly, the paper analyzes the power support of the VSC-HVDC to the AC lines using the Power Transferring Relativity Factor (PTRF). Then the power adjustment of the VSC-HVDC in several different circumstances are calculated. Finally, the online power control strategies of VSC-HVDC are designed, which could rapidly control the power of the VSC-HVDC, keeping the power flow of AC lines below the upper limit. Furthermore, the strategy is proven to be effective by the simulations with EMTDC/PSCAD.

  2. A New Hybrid Power Configuration Used In HEV And Development of Its Driving BLDC

    Directory of Open Access Journals (Sweden)

    Yanliang Xu

    2013-07-01

    Full Text Available Hybrid electric vehicle (HEV that has the advantages of high performance, high fuel efficiency, low emissions, and long operating range is focused on nowadays. A new hybrid power configuration used in HEV is presented with different control strategies and HEV performances when equipping different weight of fuel power and battery one. In order to realize the new hybrid power configuration especially in the refitted HEV, fractional-slot concentrated-wingding BLDC with higher rated spinning speed is given and the prototyped one is developed and fabricated which satisfy successfully the requirements of high performance and demission restriction for the refitted HEV.

  3. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  4. Hybridization of concentrated solar power with biomass gasification in Brazil’s semiarid region

    International Nuclear Information System (INIS)

    Milani, Rodrigo; Szklo, Alexandre; Hoffmann, Bettina Susanne

    2017-01-01

    Highlights: • Assessment of three hybridization concepts between CSP and biomass gasification. • Modelling of a benchmark power plant for each of the hybridization concepts. • The method relies on using Aspentech Hysys and SAM for thermodynamic analysis. • Technical and economic performance of the three benchmark power plants as result. - Abstract: This study aims to propose and analyze different options for hybridizing Concentrated Solar Power (CSP) with biomass, through gasification for power generation. A hybrid CSP-biomass power plant through gasification is an innovative concept which allows the integration of combined cycle for power generation, sun-biomass hybridization and syngas storage. Therefore, this study addressed the proposition of the hybridization concept and the simulation of benchmark power plants for a suitable Brazilian site (high direct normal irradiation and low-cost biomass availability). Three power plant concepts are proposed and simulated in Aspentech Hysys and System Advisor Model (SAM): (i) Series design; (ii) Parallel design, and (iii) Steam Extraction design. For the same gasifier, the Series design holds the highest levelized cost, while the Parallel design presents the highest installed capacity, but the lowest capacity factor. Finally, the Steam Extraction design is placed between the other two proposed plants regarding the capacity factor and the annual energy generation.

  5. Investigation of a Novel Coaxial Power-Split Hybrid Powertrain for Mining Trucks

    Directory of Open Access Journals (Sweden)

    Weiwei Yang

    2018-01-01

    Full Text Available Due to the different working conditions and specification requirements of mining trucks when compared to commercial passenger vehicles, better fuel efficiency of mining trucks could lead to more significant economic benefits. Therefore, investigating a hybrid transmission system becomes essential. A coaxial power-split hybrid powertrain system for mining trucks is presented in this paper. The system is characterized as comprising an engine, a generator (MG1, a motor (MC2, two sets of planetary gears, and a clutch (CL1. There are six primary operation modes for the hybrid system including the electric motor mode, the engine mode, the hybrid electric mode, the hybrid and assist mode, the regenerative mode, and the stationary charging mode. The mathematical model of the coaxial power-split hybrid system is established according to the requirements of vehicle dynamic performance and fuel economy performance in a given driving cycle. A hybrid vehicle model based on a rule-based control strategy is established to evaluate the fuel economy. Compared with the Toyota Hybrid System (THS and the conventional mechanical vehicle system using a diesel engine, the simulation results based on an enterprise project indicate that the proposed hybrid system can enhance the vehicle’s fuel economy by 8.21% and 22.45%, respectively, during the given mining driving cycle. The simulation results can be used as a reference to study the feasibility of the proposed coaxial hybrid system whose full potential needs to be further investigated by adopting non-causal control strategies.

  6. Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system

    International Nuclear Information System (INIS)

    Hong, Chih-Ming; Ou, Ting-Chia; Lu, Kai-Hung

    2013-01-01

    A hybrid power control system is proposed in the paper, consisting of solar power, wind power, and a diesel-engine. To achieve a fast and stable response for the real power control, an intelligent controller was proposed, which consists of the Wilcoxon (radial basis function network) RBFN and the improved (Elman neural network) ENN for (maximum power point tracking) MPPT. The pitch angle control of wind power uses improved ENN controller, and the output is fed to the wind turbine to achieve the MPPT. The solar array is integrated with an RBFN control algorithm to track the maximum power. MATLAB (MATrix LABoratory)/Simulink was used to build the dynamic model and simulate the solar and diesel-wind hybrid power system. - Highlights: ► To achieve a fast and stable response for the real power control. ► The pitch control of wind power uses improved ENN (Elman neural network) controller to achieve the MPPT (maximum power point tracking). ► The RBFN (radial basis function network) can quickly and accurately track the maximum power output for PV (photovoltaic) array. ► MATLAB was used to build the dynamic model and simulate the hybrid power system. ► This method can reach the desired performance even under different load conditions

  7. Evaluating the impact of adding energy storage on the performance of a hybrid power system

    International Nuclear Information System (INIS)

    Jacobus, Headley; Lin, Baochuan; Jimmy, David Henry; Ansumana, Rashid; Malanoski, Anthony P.; Stenger, David

    2011-01-01

    Research highlights: → A photovoltaic-diesel hybrid power system is compared to a diesel-only system. → The efficiency, cost, generator runtime, and fuel consumption are calculated. → Overall efficiency of two systems is very similar. → Reduced operation and maintenance costs for hybrid system gave bigger cost savings. → The hybrid system is more advantageous in serving the same load. -- Abstract: Hybrid power systems have the capability to incorporate significant renewable energy penetration for a small autonomous system while still maintaining reliable grid stability. While there are many papers covering the optimization of component size and dispatch strategy, far fewer papers contain experimental performance data from hybrid systems. Mercy Hospital in Bo, Sierra Leone is converting their power system into a photovoltaic (PV)-diesel hybrid system, thus providing an opportunity to examine the change in system performance before, during, and after the conversion. Due to the seasonal availability of electric power in Sierra Leone, two datasets representing two distinct load profiles are analyzed: Wet Season and Dry Season. The difference in generation efficiency, cost per kW h, generator runtime, and fuel consumption are calculated between a diesel-only generation baseline and the recorded hybrid system performance. The results indicated that the hybrid system significantly reduces operation costs; approximately 37% less during Dry Season and 64% reduction in the Wet Season than a diesel-only generator serving the same load.

  8. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  9. Comparative Analysis of On- and Off-Grid Electrification: The Case of Two South Korean Islands

    Directory of Open Access Journals (Sweden)

    Heetae Kim

    2016-04-01

    Full Text Available South Korea’s main industry is the manufacturing industry, and it requires stable energy. Korea heavily relies on importing oils to produce energy, thus efficient energy management is critical. This is why many renewable and smart energy policies and infrastructure planning are being set up currently. Supplying reliable and sustainable renewable energy to remote areas has especially been questioned; therefore, adopting sustainable and clean energy based on renewable resources cannot be delayed any more. This research examines the most economically, technologically and environmentally suitable energy grid of two South Korean Islands. Several hybrid energy system configurations that analyze and identify the optimal grid-connected and grid-independent hybrid power generation systems are simulated in this study. According to the results of the study, the optimal regionally detached power generation system was the wind-PV-battery-converter hybrid system. At the end of this paper, implications and limitations are discussed.

  10. Conceptual Design and Optimal Power Control Strategy for AN Eco-Friendly Hybrid Vehicle

    Science.gov (United States)

    Nasiri, N. Mir; Chieng, Frederick T. A.

    2011-06-01

    This paper presents a new concept for a hybrid vehicle using a torque and speed splitting technique. It is implemented by the newly developed controller in combination with a two degree of freedom epicyclic gear transmission. This approach enables optimization of the power split between the less powerful electrical motor and more powerful engine while driving a car load. The power split is fundamentally a dual-energy integration mechanism as it is implemented by using the epicyclic gear transmission that has two inputs and one output for a proper power distribution. The developed power split control system manages the operation of both the inputs to have a known output with the condition of maintaining optimum operating efficiency of the internal combustion engine and electrical motor. This system has a huge potential as it is possible to integrate all the features of hybrid vehicle known to-date such as the regenerative braking system, series hybrid, parallel hybrid, series/parallel hybrid, and even complex hybrid (bidirectional). By using the new power split system it is possible to further reduce fuel consumption and increase overall efficiency.

  11. A stochastic model for hybrid off-grid wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Fouladgar, Javad [Inst. de Recherche en Electronique et en Electrotechnique de Nantes Atlantique (IREENA), Saint-Nazaire (France)

    2008-07-01

    Long-term wind speed and wind power forecasting of a hybrid installation are studied. A statistical approach based on Weibull distribution is used to predict the auxiliary power required or the exceeding power produced for an isolated site. The presence of a suitable storage system has been taken into account. (orig.)

  12. Development of a new lower hybrid antenna module using a poloidal power divider

    International Nuclear Information System (INIS)

    Maebara, S.; Imai, T.; Seki, M.; Suganuma, K.; Goniche, M.; Bibet, Ph.; Berio, S.; Brossaud, J.; Rey, G.; Tonon, G.

    1997-03-01

    A realistic antenna module using a poloidal divider for lower hybrid current drive (LHCD) experiment, is modelled and fabricated. In this antenna module test II, three types of poloidal dividers, which split the power in 3, are tested. (author)

  13. Modular Power System Configured with Standard Product Hybrid DC-DC Converters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex NASA space power electronic systems can be configured using a small number of qualified hybrid DC-DC converter and...

  14. Outage Performance of Hybrid FSO/RF System with Low-Complexity Power Adaptation

    KAUST Repository

    Rakia, Tamer; Yang, Hong-Chuan; Gebali, Fayez; Alouini, Mohamed-Slim

    2016-01-01

    Hybrid free-space optical (FSO) / radio-frequency (RF) systems have emerged as a promising solution for high data- rate wireless communication systems. We consider truncated channel inversion based power adaptation strategy for coherent and non

  15. Internet Enabled Remote Driving of a Combat Hybrid Electric Power System for Duty Cycle Measurement

    National Research Council Canada - National Science Library

    Goodell, Jarrett; Compere, Marc; Smith, Wilford; Holtz, Dale; Brudnak, Mark; Pozolo, Mike; Paul, Victor; Mohammad, Syed; Mortsfield, Todd; Shvartsman, Andrey

    2007-01-01

    This paper describes a human-in-the-loop motion-based simulator interfaced to hybrid-electric power system hardware, both of which were used to measure the duty cycle of a combat vehicle in a virtual...

  16. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer

    2015-07-23

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  17. NEURAL NETWORKS CONTROL OF THE HYBRID POWER UNIT BASED ON THE METHOD OF ADAPTIVE CRITICS

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2012-01-01

    Full Text Available The formal statement of the optimization problem of hybrid vehicle power unit control is given. Its solving by neural networks method application on the basis of adaptive critic is considered.

  18. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer; Hong-Chuan Yang; Gebali, Fayez; Alouini, Mohamed-Slim

    2015-01-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  19. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

    OpenAIRE

    Wen-Yeau Chang

    2013-01-01

    High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO) based hybrid forecasting method for short-term wi...

  20. Optimal and Modular Configuration of Wind Integrated Hybrid Power Plants for Off-Grid Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Tarnowski, German Claudio

    2018-01-01

    This paper focusses on the system configuration of offgrid hybrid power plants including wind power generation. First, a modular and scalable system topology is proposed. Secondly, an optimal sizing algorithm is developed in order to determine the installed capacities of wind turbines, PV system......, battery energy storage system and generator sets. The novelty of this work lies in a robust sizing algorithm with respect to the required resolution of resource data in order to account for intra-hour power variations. Moreover, the involvement of the electrical infrastructure enables a precise estimation...... of power losses within the hybrid power plant as well as the consideration of both active and reactive power load demand for optimally sizing the plant components. The main outcome of this study is a methodology to determine feasible system configurations of modular and scalable wind integrated hybrid...

  1. Investigation of Hybrid Pseudo Bipolar HVDC Performances Supply Power to Passive AC Network

    Directory of Open Access Journals (Sweden)

    Kuan Li

    2014-07-01

    Full Text Available The traditional HVDC plays an important role in the development of power grid. But the traditional HVDC cannot supply power either to entirely passive AC network or to weak AC system. In fact, an entirely passive AC network can be effectively powered through VSC-HVDC. However, the cost of investment in VSC-HVDC is amazingly high due to the limitation of power electronics technology. Based on CSC and VSC, this paper proposes a method to build Hybrid HVDC, which makes the power supply to the passive AC network come true and, at the same time, lowers the investment cost. The effect of topology, steady mathematical model, startup characteristic, steady and transient characteristics in Hybrid HVDC system are systematically studied in this paper. The simulation result shows that Hybrid HVDC can supply power to the passive AC network with high stability. This study provides a theoretical basis for the further development of HVDC.

  2. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-11-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  3. A Hybrid, Current-Source/Voltage-Source Power Inverter Circuit

    DEFF Research Database (Denmark)

    Trzynadlowski, Andrzej M.; Patriciu, Niculina; Blaabjerg, Frede

    2001-01-01

    A combination of a large current-source inverter and a small voltage-source inverter circuits is analyzed. The resultant hybrid inverter inherits certain operating advantages from both the constituent converters. In comparison with the popular voltage-source inverter, these advantages include...... reduced switching losses, improved quality of output current waveforms, and faster dynamic response to current control commands. Description of operating principles and characteristics of the hybrid inverter is illustrated with results of experimental investigation of a laboratory model....

  4. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    Science.gov (United States)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  5. Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems

    International Nuclear Information System (INIS)

    Sinha, Sunanda; Chandel, S.S.

    2016-01-01

    Graphical abstract: 6 kW_p photovoltaic–micro wind based hybrid power system analysis in a Indian Western Himalayan location. - Highlights: • Power generation by a roof mounted photovoltaic–micro wind hybrid system is explored. • Optimum hybrid configurations using fixed and sun tracking photovoltaic systems are determined. • Analysis of hybrid systems with optimally tilted and different sun tracking systems is presented. • Two axis sun tracking systems are found to generate 4.88–26.29% more energy than fixed tilt system. • Hybrid system installed at optimum tilt angle is found to be cost effective than a sun tracking system. - Abstract: In this study fixed tilt and sun tracking photovoltaic based micro wind hybrid power systems are analyzed along with determining the optimum configurations for a 6 kW_p roof mounted micro wind based hybrid system using fixed and tracking photovoltaic systems to enhance the power generation potential in a low windy Indian hilly terrain with good solar resource. The main objective of the study is to enhance power generation by focusing on photovoltaic component of the hybrid system. A comparative power generation analysis of different configurations of hybrid systems with fixed tilt, monthly optimum tilt, yearly optimum tilt and 6 different sun tracking photovoltaic systems is carried out using Hybrid Optimization Model for Electric Renewables. Monthly and seasonal optimum tilt angles determined for the location vary between 0° and 60° with annual optimum tilt angle as 29.25°. The optimum configurations for all sun tracking systems except for the two axis tracking system is found to be 7 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The optimum configuration for two axis tracking system and two types of fixed tilt systems, is found to be a 8 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The results show that horizontal axis with

  6. Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karbaschian

    2014-05-01

    Full Text Available The main advantage of hybrid powertrains is based on the efficient transfer of power and torque from power sources to the powertrain as well as recapturing of reversible energies without effecting the vehicle performance. The benefits of hybrid hydraulic powertrains can be better utilized with an appropriate power management. In this paper, different types of power management algorithms like off-line and on-line methods are briefly reviewed and classified. Finally, the algorithms are evaluated and compared. Therefore, different related criteria are evaluated and applied.

  7. Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system

    International Nuclear Information System (INIS)

    Lamba, Ravita; Kaushik, S.C.

    2016-01-01

    Highlights: • Thermodynamic model of concentrated photovoltaic–thermoelectric system is analysed. • Thomson effect reduces the power output of PV, TE and hybrid PV–TEG system. • Effect of thermocouple number, irradiance, PV and TE current have been studied. • The optimum concentration ratio for maximum power output has been found out. • The overall efficiency and power output of hybrid PV–TEG system has been improved. - Abstract: In this study, a thermodynamic model for analysing the performance of a concentrated photovoltaic–thermoelectric generator (CPV–TEG) hybrid system including Thomson effect in conjunction with Seebeck, Joule and Fourier heat conduction effects has been developed and simulated in MATALB environment. The expressions for calculating the temperature of photovoltaic (PV) module, hot and cold sides of thermoelectric (TE) module are derived analytically as well. The effect of concentration ratio, number of thermocouples in TE module, solar irradiance, PV module current and TE module current on power output and efficiency of the PV, TEG and hybrid PV–TEG system have been studied. The optimum concentration ratio corresponding to maximum power output of the hybrid system has been found out. It has been observed that by considering Thomson effect in TEG module, the power output of the PV, TE and hybrid PV–TEG systems decreases and at C = 1 and 5, it reduces the power output of hybrid system by 0.7% and 4.78% respectively. The results of this study may provide basis for performance optimization of a practical irreversible CPV–TEG hybrid system.

  8. An optimized Fuzzy Logic Controller by Water Cycle Algorithm for power management of Stand-alone Hybrid Green Power generation

    International Nuclear Information System (INIS)

    Sarvi, Mohammad; Avanaki, Isa Nasiri

    2015-01-01

    Highlights: • A new method to improve the performance of renewable power management is proposed. • The proposed method is based on Fuzzy Logic optimized by the Water Cycle Algorithm. • The proposed method characteristics are compared with two other methods. • The comparisons confirm that the proposed method is robust and effectiveness one. - Abstract: This paper aims to improve the power management system of a Stand-alone Hybrid Green Power generation based on the Fuzzy Logic Controller optimized by the Water Cycle Algorithm. The proposed Stand-alone Hybrid Green Power consists of wind energy conversion and photovoltaic systems as primary power sources and a battery, fuel cell, and Electrolyzer as energy storage systems. Hydrogen is produced from surplus power generated by the wind energy conversion and photovoltaic systems of Stand-alone Hybrid Green Power and stored in the hydrogen storage tank for fuel cell later using when the power generated by primary sources is lower than load demand. The proposed optimized Fuzzy Logic Controller based power management system determines the power that is generated by fuel cell or use by Electrolyzer. In a hybrid system, operation and maintenance cost and reliability of the system are the important issues that should be considered in studies. In this regard, Water Cycle Algorithm is used to optimize membership functions in order to simultaneously minimize the Loss of Power Supply Probability and operation and maintenance. The results are compared with the particle swarm optimization and the un-optimized Fuzzy Logic Controller power management system to prove that the proposed method is robust and effective. Reduction in Loss of Power Supply Probability and operation and maintenance, are the most advantages of the proposed method. Moreover the level of the State of Charge of the battery in the proposed method is higher than other mentioned methods which leads to increase battery lifetime.

  9. Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System

    Directory of Open Access Journals (Sweden)

    Guillermo Martínez-Lucas

    2018-01-01

    Full Text Available Currently, some small islands with high wind potential are trying to reduce the environmental and economic impact of fossil fuels by using renewable resources. Nevertheless, the characteristics of these renewable resources negatively affect the quality of the electrical energy, causing frequency disturbances, especially in isolated systems. In this study, the combined contribution to frequency regulation of variable speed wind turbines (VSWT and a pump storage hydropower plant (PSHP is analyzed. Different control strategies, using the kinetic energy stored in the VSWT, are studied: inertial, proportional, and their combination. In general, the gains of the VSWT controller for interconnected systems proposed in the literature are not adequate for isolated systems. Therefore, a methodology to adjust the controllers, based on exhaustive searches, is proposed for each of the control strategies. The control strategies and methodology have been applied to a hybrid wind–hydro power plant on El Hierro Island in the Canary archipelago. At present, in this isolated power system, frequency regulation is only provided by the PSHP and diesel generators. The improvements in the quality of frequency regulation, including the VSWT contribution, have been proven based on simulating different events related to wind speed, or variations in the power demand.

  10. Sensitivity analysis of hybrid power systems using Power Pinch Analysis considering Feed-in Tariff

    International Nuclear Information System (INIS)

    Mohammad Rozali, Nor Erniza; Wan Alwi, Sharifah Rafidah; Manan, Zainuddin Abdul; Klemeš, Jiří Jaromír

    2016-01-01

    Feed-in Tariff (FiT) has been one of the most effective policies in accelerating the development of renewable energy (RE) projects. The amount of RE electricity in the FiT purchase agreement is an important decision that has to be made by the RE project developers. They have to consider various crucial factors associated with RE system operation as well as its stochastic nature. The presented work aims to assess the sensitivity and profitability of a hybrid power system (HPS) in cases of RE system failure or shutdown. The amount of RE electricity for the FiT purchase agreement in various scenarios was determined using a novel tool called On-Grid Problem Table based on the Power Pinch Analysis (PoPA). A sensitivity table has also been introduced to assist planners to evaluate the effects of the RE system's failure on the profitability of the HPS. This table offers insights on the variance of the RE electricity. The sensitivity analysis of various possible scenarios shows that the RE projects can still provide financial benefits via the FiT, despite the losses incurred from the penalty levied. - Highlights: • A Power Pinch Analysis (PoPA) tool to assess the economics of an HPS with FiT. • The new On-Grid Problem Table for targeting the available RE electricity for FiT sale. • A sensitivity table showing the effect of RE electricity changes on the HPS profitability.

  11. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  12. Site-specific analysis of hybrid geothermal/fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

  13. Control Strategy Based on Wavelet Transform and Neural Network for Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Y. D. Song

    2013-01-01

    Full Text Available This paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural network is introduced to calculate the reference power of battery. Super capacitor (SC is controlled to regulate the DC bus voltage. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.

  14. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2013-01-01

    the proposed system, which benefits for implementing high MPPT efficiency and high conversion efficiency simultaneously. A hybrid MPPT control strategy is proposed for this HCD power conditioning system. The characteristics, circuit implementation and operation principles of the proposed system are presented......-distributed (HCD) power conditioning system for TEG and its control strategy are proposed in this paper. The HCD power conditioning system is composed by a centralized power conversion stage and multiple distributed power conversion stages. Most of the power is processed by the centralized power conversion stage...

  15. HyPro: A Multi-DoF Hybrid-Powered Transradial Robotic Prosthesis

    Directory of Open Access Journals (Sweden)

    C. L. Semasinghe

    2018-01-01

    Full Text Available This paper proposes a multi-DoF hybrid-powered transradial robotic prosthesis, named HyPro. The HyPro consists of two prosthetic units: hand and wrist that can achieve five grasping patterns such as power grasp, tip grasp, lateral grasp, hook grasp, and index point. It is an underactuated device with 15 degrees of freedom. A hybrid powering concept is proposed and implemented on hand unit of HyPro where the key focus is on restoration of grasp functions of biological hand. A novel underactuated mechanism is introduced to achieve the required hand preshaping for a given grasping pattern using electric power in the pregrasp stage and body power is used in grasp stage to execute the final grasping action with the selected fingers. Unlike existing hybrid prostheses where each of the joints is separately controlled by either electric or body power, the proposed prosthesis is capable of delivering grasping power in combination. The wrist unit of HyPro is designed and developed to achieve flexion-extension and supination-pronation using electric power. Experiments were carried out to evaluate the functionality and performance of the proposed hybrid-powered robotic prosthesis. The results verified the potential of HyPro to perform intended grasping patterns effectively and efficiently.

  16. Shunt hybrid active power filter for harmonic mitigation: A practical ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The increasing importance of Power Quality problems has been responsible for several improvements in Active Power Filter (APF) typologies in the last decade. The increased cost and switching losses make a pure shunt APF economically impractical for high power applications. In higher power levels ...

  17. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  18. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  19. Optimal Power Flow Modelling and Analysis of Hybrid AC-DC Grids with Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    In order to develop renewables based energy systems, the installation of the offshore wind power plants (WPPs) is globally encouraged. However, wind power generation is intermittent and uncertain. An accurate modelling and evaluation reduces investment and provide better operation. Hence......, the wind power production level also plays a major role in a hybrid system on transmission loss evaluation. The developed model is tested in Low, Medium and High wind power production levels to determine the objective function of the OPF solution. MATLAB Optimization Toolbox and MATLAB script are used......, it is essential to develop a suitable model and apply optimization algorithms for different application scenarios. The objective of this work is to develop a generalized model and evaluate the Optimal Power Flow (OPF) solutions in a hybrid AC/DC system including HVDC (LCC based) and offshore WPP (VSC based...

  20. Parameter Design and Energy Control of the Power Train in a Hybrid Electric Boat

    Directory of Open Access Journals (Sweden)

    Diju Gao

    2017-07-01

    Full Text Available With the continuous development worldwide of the inland shipping industry, emissions to the atmosphere have become a serious threat in terms of pollution. Hybrid power technology is an important means for reducing pollution due to emissions from ships. This paper considers a power train series in a hybrid electric inland waterway boat. From the analysis of the structure and principle of the power train, the parameter design for its key devices is presented, and a novel energy control strategy is proposed. Navigation experience shows that the proposed design method and control strategy are useful and satisfactory.

  1. An automotive thermoelectric-photovoltaic hybrid energy system using maximum power point tracking

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Chau, K.T.

    2011-01-01

    In recent years, there has been active research on exhaust gas waste heat energy recovery for automobiles. Meanwhile, the use of solar energy is also proposed to promote on-board renewable energy and hence to improve their fuel economy. In this paper, a new thermoelectric-photovoltaic (TE-PV) hybrid energy system is proposed and implemented for automobiles. The key is to newly develop the power conditioning circuit using maximum power point tracking so that the output power of the proposed TE-PV hybrid energy system can be maximized. An experimental system is prototyped and tested to verify the validity of the proposed system.

  2. Preliminary conceptual design of the blanket and power conversion system for the Mirror Hybrid Reactor

    International Nuclear Information System (INIS)

    Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-01-01

    A conceptual design of a commercial Mirror Hybrid Reactor, optimized for 239 Pu production, has been completed. This design is the product of a joint effort by Lawrence Livermore Laboratory and General Atomic Company, and follows directly from earlier work on the Mirror Hybrid. This paper describes the blanket and power conversion system of the reactor design. Included are descriptions of the prestressed concrete reactor vessel that supports the magnets and contains the blanket and power conversion system components, the blanket module design, the blanket fuel design, and the power conversion system

  3. Four-branch Star Hybrid Power Filter for Three-phase Four-wire Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Rodriguez, Pedro

    2008-01-01

    and derives fundamental concepts about the control of the resulting hybrid power filter. From this analysis, a specifc implementation of a three-phase four-wire hybrid power filter is presented as an illustrative application of the filtering topology. An extensive evaluation using simulation and experimental......This paper presents a new concept for filtering current harmonics in three-phase four-wire networks. The four-branch star (FBS) filtering topology presented in this work is characterized by a particular layout consisting of single-phase inductances and capacitors. Via this layout, a power filter...

  4. Current progress in the design and setup of a SOFC/GT hybrid power plant

    OpenAIRE

    Schnegelberger, Christian; Henke, Moritz; Tomberg, Marius; Heddrich, Marc; Friedrich, K. Andreas

    2017-01-01

    The German Aerospace Center (DLR) is setting up a hybrid power plant with 30 kW electrical power output. It consists of a SOFC and a micro gas turbine (MGT). The hybrid power plant can reach electrical system efficiencies greater than 60 % throughout a wide operating range. Due to the SOFC’s high operation temperature and incomplete fuel utilisation, the exhaust gas will always contain usable energy. The MGT will use this energy to provide compressed and preheated air for the SOFC and ge...

  5. Power control method on VSC-HVDC in a hybrid multi-infeed HVDC system

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2012-01-01

    Multi-infeed HVDC (MIDC) system connected with VSC-HVDC links and LCC-HVDC links is a new structure in modern power systems, which can be called hybrid multi-infeed HVDC (HMIDC) system. The paper presents the voltage stability analysis of a HMIDC system modeled from a possible future Danish power...

  6. Design, implementation, and experimental validation of optimal power split control for hybrid electric trucks

    NARCIS (Netherlands)

    Keulen, T. van; Mullem, D. van; Jager, B. van; Kessels, J.T.B.A.; Steinbuch, M.

    2012-01-01

    Hybrid electric vehicles require an algorithm that controls the power split between the internal combustion engine and electric machine(s), and the opening and closing of the clutch. Optimal control theory is applied to derive a methodology for a real-time optimal-control-based power split

  7. A Wireless Power Sharing Control Strategy for Hybrid Energy Storage Systems in DC Microgrids

    DEFF Research Database (Denmark)

    Yang, Jie; Jin, Xinmin; Wu, Xuezhi

    2017-01-01

    In order to compensate multiple time scales power fluctuation resulted from distributed energy resources and loads, hybrid energy storage systems are employed as the buffer unit in DC microgrid. In this paper, a wireless hierarchical control strategy is proposed to realize power sharing between...

  8. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...

  9. Modular modeling and simulation of hybrid power trains; Modulare Modellbildung und Simulation von hybriden Antriebstraengen

    Energy Technology Data Exchange (ETDEWEB)

    Kelz, Gerald; Hirschberg, Wolfgang [Inst. fuer Fahrzeugtechnik, Technische Univ. Graz (Austria)

    2009-07-01

    The power train of a hybrid vehicle is considerably more complex than that of conventional vehicles. Whilst the topology of a conventional vehicle is normally fixed, the arrangement of the power train components for innovative propulsion systems is a flexible one. The aim is to find those topologies and configurations which are optimal for the intended use. Fuel consumption potentials can be derived with the aid of vehicle longitudinal dynamics simulation. Mostly these simulations are carried out using commercial software which is optimized for the standard topology and do not offer the flexibility to calculate arbitrary topologies. This article covers the modular modeling and the fuel consumption simulation of complex hybrid power trains for topology analysis. A component library for the development of arbitrary hybrid propulsion systems is introduced. The focus lies on an efficient and fast modeling which provides exact simulation results. Several models of power train components are introduced. (orig.)

  10. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ulgen, K. [Ege Univ., Solar Energy Inst., Izmir (Turkey); Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey)

    2003-03-15

    Turkey is abundant in terms of renewable energy resources. Residential and industrial utilization of solar energy started in the 1980s, while the first Build-Operate-Transfer (BOT) windmill park, located at Alacati, Izmir, was commissioned in 1998. Additionally, power generation through solar-wind hybrid systems has recently appeared on the Turkish market. This study investigates the wind and solar thermal power availability in Izmir, located in the western part of Turkey. Simple models were developed to determine wind, solar, and hybrid power resources per unit area. Experimental data, consisting of hourly records over a 5 yr period, 1995-1999, were measured in the Solar/Wind Meteorological Station of the Solar Energy Institute at Ege University. Correlations between solar and wind power data were carried out on an hourly, a daily, and a monthly basis. It can be concluded that possible applications of hybrid systems could be considered for the efficient utilization of these resources. (Author)

  11. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  12. Solar central receiver hybrid power system, Phase I. Volume 3. Appendices. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    A design study for a central receiver/fossil fuel hybrid power system using molten salts for heat transfer and heat storage is presented. This volume contains the appendices: (A) parametric salt piping data; (B) sample heat exchanger calculations; (C) salt chemistry and salt/materials compatibility evaluation; (D) heliostat field coordinates; (E) data lists; (F) STEAEC program input data; (G) hybrid receiver design drawings; (H) hybrid receiver absorber tube thermal math model; (I) piping stress analysis; (J) 100-MWe 18-hour storage solar central receiver hybrid power system capital cost worksheets; and (K) 500-MWe 18-hour solar central receiver hybrid power system cost breakdown. (WHK)

  13. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  14. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Warner, C. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  15. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile

    International Nuclear Information System (INIS)

    Cardemil, José Miguel; Cortés, Felipe; Díaz, Andrés; Escobar, Rodrigo

    2016-01-01

    Highlights: • Thermodynamic evaluation of geothermal-solar hybrid systems. • A multi-parameter analysis for different cycle configurations. • Performance comparison between two operation modes. • Overview of the technical applicability of the hybridization. - Abstract: A thermodynamic model was developed using Engineering Equation Solver (EES) to evaluate the performance of single and double-flash geothermal power plants assisted by a parabolic trough solar concentrating collector field, considering four different geothermal reservoir conditions. The benefits of delivering solar thermal energy for either the superheating or evaporating processes were analyzed in order to achieve the maximum 2"n"d law efficiency for the hybrid schemes and reduce the geothermal resource consumption for a constant power production. The results of the hybrid single-flash demonstrate that the superheating process generates additional 0.23 kWe/kWth, while supplying solar heat to evaporate the geothermal brine only delivers 0.16 kWe/kWth. The double-flash hybrid plant simulation results allow obtaining 0.29 kWe/kWth and 0.17 kW/kWth by integrating solar energy at the superheater and evaporator, respectively. In this context, the hybrid single-flash power plant is able to produce at least 20% additional power output, depending on the characteristics of the geothermal resource. Moreover, all of the cases analyzed herein increased the exergy efficiency of the process by at least 3%. The developed model also allowed assessing the reduction on the consumption of the geothermal fluid from the reservoir when the plant power output stays constant, up to 16% for the hybrid single-flash, and 19% for the hybrid double-flash. Based on the results obtained in this study, the solar-geothermal hybrid scheme increases the power generation compared with geothermal-only power plants, being an attractive solution for improved management of the geothermal reservoir depletion rates. The study shows

  16. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics.

    Science.gov (United States)

    Zhang, Kewei; Wang, Xue; Yang, Ya; Wang, Zhong Lin

    2015-01-01

    We report a hybridized electromagnetic-triboelectric nanogenerator for highly efficient scavenging of biomechanical energy to sustainably power wearable electronics by human walking. Based on the effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator, with dimensions of 5 cm × 5 cm × 2.5 cm and a light weight of 60 g, integrates a triboelectric nanogenerator (TENG) that can deliver a peak output power of 4.9 mW under a loading resistance of 6 MΩ and an electromagnetic generator (EMG) that can deliver a peak output power of 3.5 mW under a loading resistance of 2 kΩ. The hybridized nanogenerator exhibits a good stability for the output performance and a much better charging performance than that of an individual energy-harvesting unit (TENG or EMG). Furthermore, the hybridized nanogenerator integrated in a commercial shoe has been utilized to harvest biomechanical energy induced by human walking to directly light up tens of light-emitting diodes in the shoe and sustainably power a smart pedometer for reading the data of a walking step, distance, and energy consumption. A wireless pedometer driven by the hybrid nanogenerator can work well to send the walking data to an iPhone under the distance of 25 m. This work pushes forward a significant step toward energy harvesting from human walking and its potential applications in sustainably powering wearable electronics.

  17. The structure and control method of hybrid power source for electric vehicle

    International Nuclear Information System (INIS)

    Li, Maobing; Xu, Hui; Li, Weimin; Liu, Yin; Li, Fade; Hu, Yue; Liu, Li

    2016-01-01

    In this paper, an electric vehicle powertrain configuration is presented, which the lithium-ion battery integrated with ultracapacitors is developed as the hybrid power system to improve the transient performance of an electric vehicle, and to decrease the damage to the battery pack. In the proposed system, a bidirectional direct current/direct current converter is used to couple the ultracapacitors bank to the main battery pack. The energy management strategy based on fuzzy logic for hybrid power system has been proposed to promote the performance of energy flow in the electric vehicle. The experiment results in urban driving cycles show remarkable advantages of the proposed hybrid system configuration and energy management strategy. About 30% of the battery capacity energy is saved while using the hybrid power source. Besides, the voltage and current curves of battery become smoother than that with the single power. - Highlights: • A hybrid power source electric vehicle powertrain configuration is presented. • The energy management strategy based on fuzzy logic is proposed. • The experiment results show remarkable advantages of the configuration and method.

  18. IMPLEMENTATION OF ENERGY LAW OF HYBRID POWER STATION FOR SOCIAL WELFARE

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Widowati

    2014-11-01

    Full Text Available This study was aimed to investigate the Implementation of Energy Law of Hybrid Power Station for Social Welfare in Pantai Baru. The problem formulations are the management and utilization of hybrid power station in Pantai Baru and implementation of energy law of hybrid power station for social welfare in the fields of economy and information in Pantai Baru. Based on data analysis it is concluded that the management of hybrid power station in Pantai Baru is performed collaboratively between government and the society. The existence of hybrid power station in pantai baru has positive impacts in economy and information. Penelitian ini meneliti Pelaksanaan Hukum Energi Pembangkit Listrik Tenaga Hibrid untuk Kesejahteraan Rakyat di Bidang Ekonomi dan Informasi di Pantai Baru. Masalah yang diteliti adalah bentuk pengelolaan dan pemanfaatan pembangkit listrik tenaga hibrid di Pantai Baru dan pelaksanaan hukum energi pembangkit listrik tenaga hibrid untuk kesejahteraan rakyat di bidang ekonomi dan informasi di Pantai Baru. Berdasarkan analisis data dapat disimpulkan bahwa pengelolaan pembangkit listrik tenaga hibrid yang ada di pantai baru dilakukan secara kolaboratif, antara pemerintah dengan masyarakat. Kehadiran pembangkit listrik tenaga hibrid yang ada di pantai baru telah memberikan dampak positif di bidang ekonomi dan informasi.

  19. Hybrid power markets in Africa: Generation planning, procurement and contracting challenges

    International Nuclear Information System (INIS)

    Malgas, Isaac; Eberhard, Anton

    2011-01-01

    African power sectors are generally characterised by insufficient generation capacity. Reforms to address poor performances in the 1990s followed a prescribed evolution towards power markets that would allow wholesale competition amongst generators and so lead towards efficiency improvements. Despite reforms being embarked, competitive power markets have not been established in Africa; rather, the result has been the emergence of hybrid markets where state-owned generators and IPPs operate devoid of competition; and although IPPs have emerged in a number of African power sectors, many countries still do not have sufficient generation to meet their electricity demands. This paper investigates the development of private generation power projects in Africa by analysing data collected from both primary and secondary sources in four case studies of power sectors in Ghana, Cote d'Ivoire, Morocco and Tunisia. It identifies how planning and procurement challenges have lead to difficulties in adding sufficient generation capacity in a timely manner, exacerbating the problem of insufficient generation capacity in Africa. It provides suggestions as to how these frameworks could respond more effectively to the capacity challenges faced by hybrid electricity generation markets, and how broader power sector reforms should be guided to reflect the challenges of hybrid markets better. - Research highlights: → The standard model of power sector reform should no longer be used as a progress measure of power sector development in Africa and many other developing countries. → The hybrid market should in itself be recognised as an established 'model' of power sectors in Africa and many developing countries. → Planning, procurement and contracting arrangements should be shaped specifically for hybrid markets in order to address the problem of insufficient generation capacity in developing countries.

  20. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  1. Analysis of the Fuel Efficiency of a Hybrid Electric Drive with an Electric Power Splitter

    OpenAIRE

    D. Čundev

    2008-01-01

    This paper presents the results of an analysis of the fuel efficiency of a hybrid electric car drive, with an electric power splitter based on a double rotor synchronous permanent magnet generator. The results have been obtained through a precisely determined mathematical model and by simulating the characteristics of all essential values for the entire drive. This work is related to the experimental working stand for electric and hybrid car drive research, which has been developed at the Fac...

  2. PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM

    OpenAIRE

    Bahubali K. Shiragapur; Uday Wali

    2016-01-01

    In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR) quantity. The Golay Code (24, 12), Reed-Muller code (16, 11), Hamming code (7, 4) and Hybrid technique (Combination of Signal Scrambling and Signal Distortion) proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conve...

  3. Development of a power train for the hybrid automobile - the Civic IMA

    Energy Technology Data Exchange (ETDEWEB)

    Matsuki, Masato; Sato, Toshiyuki; Wakashiro, Teruo; Kaku, Toshiaki; Kamiyama, Toshihiro; Kanda, Masahiro [Tochigi R and D Center (Japan); Brachmann, T. [Tochigi Offenbach R und D Center (Germany)

    2003-07-01

    The Civic Hybrid was developed as a compact passenger hybrid car that achieves both low fuel consumption and cleaner operation from the viewpoints of preserving the global environment and conserving resources. The engine has been improved for Hybrid applications, which were added to the base i-DSI, 4-cylinder, 1.3-liter SOHC, 2-ignition plugs/cylinder engine mounted in the Honda 'Jazz'. In addition, the cylinder idling system has been adopted to increase the regenerated energy during deceleration. The hybrid system is based on the Honda IMA system, and the maximum regenerative torque has been increased by approximately 30% by improving the magnetic circuits of an ultra-thin DC brushless motor and adopting a new rotor manufacturing method. Fuel economy is improved by a new hybrid power train, thus achieving low fuel consumption of 4.9 1/100 km in the European UDC+EUCD combined mode by at the same time meeting EURO IV standards. The power control unit, which is the IMA system control unit, was downsized and located behind the rear seat, thus ensuring comparable trunk capacity to the base vehicle of the Civic 4-Door. Hybrid vehicles have a lot to offer. This paper introduces evolutionary developments of Hybrid vehicles within the Honda Motor Company. (orig.)

  4. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  5. Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)

    2012-07-03

    An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Cost-effective design of ringwall storage hybrid power plants: A real options analysis

    International Nuclear Information System (INIS)

    Weibel, Sebastian; Madlener, Reinhard

    2015-01-01

    Highlights: • Economic viability, optimal size, and siting of a hybrid ringwall hydro power plant. • Real options analysis for optimal investment timing and stochastic storage volumes. • Stochastic PV and solar power production affects optimal size of the storage device. • Monte Carlo simulation is used for wind/solar power, el. price, and investment cost. • Numerical computations for two different hybrid ringwall storage plant scenarios. - Abstract: We study the economic viability and optimal sizing and siting of a hybrid plant that combines a ringwall hydro storage system with wind and solar power plants (ringwall storage hybrid power plant, RSHPP). A real options model is introduced to analyze the economics of an onshore RSHPP, and in particular of the varying storage volume in light of the stochastic character of wind and solar power, as well as the optimal investment timing under uncertainty. In fact, many uncertainties arise in such a project. Energy production is determined by the stochastic character of wind and solar power, and affects the optimal size of the storage device. Monte Carlo simulation is performed to analyze the following sources of uncertainty: (i) wind intensity and solar irradiation; (ii) future electricity price; and (iii) investment costs. The results yield the optimal size of the storage device; the energy market on which the operator should sell the electricity generated; numerical examples for two different RSHPP scenarios; and a real options model for analyzing the opportunity to defer the project investment and thus to exploit the value of waiting

  7. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    Suntharalingam, P

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  8. Efficiency Characteristics of Low Power Hybrid Switched Reluctance Motor

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Ahn, Jin-Woo

    2009-01-01

    Switched reluctance motors (SRM) are usually considered inferior in terms of efficiency as compared to permanent magnet synchronous motors (PMSM) and brushless DC-motors (BLDC), but less costly. This article presents a test of a 70W hybrid switched reluctance motor (HSRM), that archieves a peak...... efficiency for the motor drive of more than 74%, and an efficiency for the motor of almost 80%....

  9. Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations

    OpenAIRE

    Boyd, Steven J

    2006-01-01

    Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal str...

  10. Power supply system for the superconducting outsert of the CHMFL hybrid magnet

    Science.gov (United States)

    Fang, Z.; Zhu, J.; Chen, W.; Jiang, D.; Huang, P.; Chen, Z.; Tan, Y.; Kuang, G.

    2017-12-01

    The construction of a new hybrid magnet, consisting of a 11 T superconducting outsert and a 34 T resistive insert magnet, has been finished at the Chinese High Magnetic Field Laboratory (CHMFL) in Hefei. With a room temperature bore of 800 mm in diameter, the hybrid magnet superconducting outsert is composed of four separate Nb3Sn-based Cable-in-Conduit Conductor (CICC) coils electrically connected in series and powered by a single power supply system. The power supply system for the superconducting outsert consists of a 16 kA DC power supply, a quench protection system, a pair of 16 kA High Temperature Superconducting (HTS) current leads, and two Low Temperature Superconducting bus-lines. The design and manufacturing of the power supply system have been completed at the CHMFL. This paper describes the design features of the power supply system as well as the current fabrication condition of its main components.

  11. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  12. Power and mass optimization of the hybrid solar panel and thermoelectric generators

    International Nuclear Information System (INIS)

    Kwan, Trevor Hocksun; Wu, Xiaofeng

    2016-01-01

    Highlights: • The dynamics of the hybrid PV/TEG system operating in outer space is studied. • A generalized thermodynamic model of the hybrid PV/TEG system is given. • This model is then simplified to consider the outer space scenario. • The design of the hybrid PV/TEG system is optimized using the NSGA-II algorithm. • The optimized hybrid system is more efficient than its monolithic counterparts. - Abstract: The thermoelectric generator (TEG) has been widely considered as an electrical power source in many ground applications because of its clean and noiseless characteristics. Moreover, the hybrid photovoltaic cell and TEG (PV/TEG) system has also received wide attention due to its improved power conversion efficiency over its monolithic counterparts. This paper presents a study of the dynamics and the operation of the hybrid PV/TEG system in an outer space environment where a unified thermodynamic model of this system is presented. Moreover, the multi-objective NSGA-II genetic algorithm is utilized to optimize the design of the TEG both in terms of optimal output power and in terms of mass. Specifically, the design of the single stage and the two stage variant of the aforementioned TEG are considered. Simulation results indicate that the optimized PV/TEG system does indeed achieve better efficiencies than that of the monolithic counterparts. Furthermore, it is shown that the single stage TEG is more beneficial than the two stage TEG in terms of achieving optimal performance.

  13. Tri-generation based hybrid power plant scheduling for renewable resources rich area with energy storage

    International Nuclear Information System (INIS)

    Pazheri, F.R.

    2015-01-01

    Highlights: • Involves scheduling of the tri-generation based hybrid power plant. • Utilization of renewable energy through energy storage is discussed. • Benefits of the proposed model are illustrated. • Energy efficient and environmental friendly dispatch is analyzed. • Modeled scheduling problem is applicable to any fuel enriched area. - Abstract: Solving power system scheduling is crucial to ensure smooth operations of the electric power industry. Effective utilization of available conventional and renewable energy sources (RES) by tri-generation and with the aid of energy storage facilities (ESF) can ensure clean and energy efficient power generation. Such power generation can play an important role in countries, like Saudi Arabia, where abundant fossil fuels (FF) and renewable energy sources (RES) are available. Hence, effective modeling of such hybrid power systems scheduling is essential in such countries based on the available fuel resources. The intent of this paper is to present a simple model for tri-generation based hybrid power system scheduling for energy resources rich area in presence of ESF, to ensure optimum fuel utilization and minimum pollutant emissions while meeting the power demand. This research points an effective operation strategy which ensure a clean and energy efficient power scheduling by exploiting available energy resources effectively. Hence, it has an important role in current and future power generation. In order to illustrate the benefits of the presented approach a clean and energy efficient hybrid power supply scheme for King Saud University (KSU), Saudi Arabia, is proposed and analyzed here. Results show that the proposed approach is very suitable for KSU since adequate solar power is available during its peak demand periods

  14. Hybrid robust predictive optimization method of power system dispatch

    Science.gov (United States)

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  15. An investigation of an uninterruptible power supply (UPS) based on supercapacitor and liquid nitrogen hybridization system

    International Nuclear Information System (INIS)

    Zhang, Xinjing; Xue, Haobai; Xu, Yujie; Chen, Haisheng; Tan, Chunqing

    2014-01-01

    Highlights: • A hybrid UPS based on supercapacitor and liquid nitrogen engine is proposed. • The dynamic modelling of the hybrid UPS system is conducted. • The dynamic working performance is obtained and analysed based on the simulation. • The hybrid UPS enjoys environmental benignity, long life and easy maintenance. • It is a highly possible solution to replace conventional UPS systems. - Abstract: An uninterruptible power supply (UPS) system based on supercapacitor and liquid nitrogen (LN 2 ) hybridization is first introduced in this paper. Of the newly designed UPS, the supercapacitor reacts instantaneously once the main supply fails, and it also starts the LN 2 power system to produce continuing electricity for the customer. This hybrid UPS system is of environment cleanness, long life time, easy maintenaince, etc. A 10 kW model is analyzed in this study. A two-stage nitrogen expander is designed with the rated speed of 900 rpm as the long time power generation device of the LN 2 cycle. The UPS starting process calculation is carried out. The results reveal that commercial supercapacitors could fulfill this request. This UPS could be a competent choice for the UPS application. Further discussion indicates the LN 2 power system could be used widely from UPS to low carbon vehicles

  16. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  17. Microcontroller based implementation of fuel cell and battery integrated hybrid power source

    International Nuclear Information System (INIS)

    Fahad, A.; Ali, S.M.; Bhatti, A.A.; Nasir, M

    2013-01-01

    This paper presents the implementation of a digitally controlled hybrid power source system, composed of fuel cell and battery. Use of individual fuel cell stacks as a power source, encounters many problems in achieving the desired load characteristics. A battery integrated, digitally controlled hybrid system is proposed for high pulse requirements. The proposed hybrid power source fulfils these peak demands with efficient flow of energy as compared to individual operations of fuel cell or battery system. A dc/dc converter is applied which provides an optimal control of power flow among fuel cell, battery and load. The proposed system efficiently overcomes the electrochemical constraints like over current, battery leakage current, and over and under voltage dips. By formulation of an intelligent algorithm and incorporating a digital technology (AVR Microcontroller), an efficient control is achieved over fuel cell current limit, battery charge, voltage and current. The hybrid power source is tested and analyzed by carrying out simulations using MATLAB simulink. Along with the attainment of desired complex load profiles, the proposed design can also be used for power enhancement and optimization for different capacities. (author)

  18. Ultra-Short-Term Wind Power Prediction Using a Hybrid Model

    Science.gov (United States)

    Mohammed, E.; Wang, S.; Yu, J.

    2017-05-01

    This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.

  19. A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-01-01

    Full Text Available A hybrid power system uses many wind turbine generators (WTG and solar photovoltaics (PV in isolated small areas. However, the output power of these renewable sources is not constant and can diverge quickly, which has a serious effect on system frequency and the continuity of demand supply. In order to solve this problem, this paper presents a new frequency control scheme for a hybrid power system to ensure supplying a high-quality power in isolated areas. The proposed power system consists of a WTG, PV, aqua-electrolyzer (AE, fuel cell (FC, battery energy storage system (BESS, flywheel (FW and diesel engine generator (DEG. Furthermore, plug-in hybrid electric vehicles (EVs are implemented at the customer side. A full-order observer is utilized to estimate the supply error. Then, the estimated supply error is considered in a frequency domain. The high-frequency component is reduced by BESS and FW; while the low-frequency component of supply error is mitigated using FC, EV and DEG. Two PI controllers are implemented in the proposed system to control the system frequency and reduce the supply error. The epsilon multi-objective genetic algorithm ( ε -MOGA is applied to optimize the controllers’ parameters. The performance of the proposed control scheme is compared with that of recent well-established techniques, such as a PID controller tuned by the quasi-oppositional harmony search algorithm (QOHSA. The effectiveness and robustness of the hybrid power system are investigated under various operating conditions.

  20. Probabilistic modelling and analysis of stand-alone hybrid power systems

    International Nuclear Information System (INIS)

    Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.

    2013-01-01

    As a part of the Hybrid Intelligent Algorithm, a model based on an ANN (artificial neural network) has been proposed in this paper to represent hybrid system behaviour considering the uncertainty related to wind speed and solar radiation, battery bank lifetime, and fuel prices. The Hybrid Intelligent Algorithm suggests a combination of probabilistic analysis based on a Monte Carlo simulation approach and artificial neural network training embedded in a genetic algorithm optimisation model. The installation of a typical hybrid system was analysed. Probabilistic analysis was used to generate an input–output dataset of 519 samples that was later used to train the ANNs to reduce the computational effort required. The generalisation ability of the ANNs was measured in terms of RMSE (Root Mean Square Error), MBE (Mean Bias Error), MAE (Mean Absolute Error), and R-squared estimators using another data group of 200 samples. The results obtained from the estimation of the expected energy not supplied, the probability of a determined reliability level, and the estimation of expected value of net present cost show that the presented model is able to represent the main characteristics of a typical hybrid power system under uncertain operating conditions. - Highlights: • This paper presents a probabilistic model for stand-alone hybrid power system. • The model considers the main sources of uncertainty related to renewable resources. • The Hybrid Intelligent Algorithm has been applied to represent hybrid system behaviour. • The installation of a typical hybrid system was analysed. • The results obtained from the study case validate the presented model

  1. Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector

    International Nuclear Information System (INIS)

    Bianchi, M.; Branchini, L.; Ferrari, C.; Melino, F.

    2014-01-01

    Highlights: • A feasibility study on a stand-alone solar–battery power generation system is carried out. • An in-house developed calculation code able to estimate photovoltaic panels behaviour is described. • The feasibility of replacing grid electricity with hybrid system is examined. • Guidelines for optimal photovoltaic design are given. • Guidelines for optimal storage sizing in terms of batteries number and capacity are given. - Abstract: The penetration of renewable sources into the grid, particularly wind and solar, have been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid stability, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on stand-alone photovoltaic (PV) energy system, energy storage is needed with the purpose of ensuring continuous power flow, to minimize or, if anything, to neglect electrical grid supply. A comprehensive study on a hybrid stand-alone photovoltaic power system using two different energy storage technologies has been performed. The study examines the feasibility of replacing electricity provided by the grid with hybrid system to meet household demand. In particular, this paper presents first results for photovoltaic (PV)/battery (B) hybrid configuration. The main objective of this paper is focused on PV/B system, to recommend hybrid system optimal design in terms of PV module number, PV module tilt, number and capacity of batteries to minimize or, if possible, to neglect grid supply. This paper is the early stage of a theoretical and experimental study in which two different hybrid power system configurations will be evaluated and compared: (i) PV/B system and (ii) PV/B/fuel cell (FC) system. The aim of the overall study will be the definition of the

  2. Bigger hybrid loader on the drawing board : Mining Technologies International hybrid gets rave reviews for power and comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tollinsky, N.

    2010-12-01

    This article presented a hybrid loader that reduces diesel emissions in underground mining. Sudbury-based Mining Technologies International (MTI) plans to build a 4 cubic yard loader in 2011, following the successful trial of a smaller 1.5 cubic yard machine at the CANMET experimental mine in Val d'Or, Quebec. The prototype hybrid loader was equipped with a metal hydride battery pack and a 2-cylinder, 35 hp Deutz engine. Performance testing revealed that the machine is capable of providing much more torque than originally expected and that it has more power compared to a mechanical drive machine. Operators at the CANMET mine also gave the hybrid loader high marks for comfort. The MTI loaders are equipped with a load sensing hydraulics system to eliminate jarring movement. The prototype experienced some premature failures in the flex coupling, which was subsequently replaced at the MTI shop in Sudbury. The primary reason for building the hybrid loader was to reduce diesel emissions underground in anticipation of stricter emission standards planned by the Mine Safety and Health Administration, the United States Environmental Protection Agency and CANMET for 2014. Compared to a conventional machine, there is virtually no exhaust from the hybrid loader. It is an ideal machine for a mine with very limited ventilation. Since the loader runs off the battery, MTI is currently looking at battery technologies other than metal hydrides to obtain a much higher energy density. Diesel is used to recharge the loader, and eliminates the need to plug in the unit between shifts. 1 ref., 2 figs.

  3. Optimization of Wind-Marine Hybrid Power System Configuration Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    SHI Hongda; LI Linna; ZHAO Chenyu

    2017-01-01

    Multi-energy power systems can use energy generated from various sources to improve power generation reliability.This paper presents a cost-power generation model of a wind-tide-wave energy hybrid power system for use on a remote island,where the configuration is optimized using a genetic algorithm.A mixed integer programming model is used and a novel object function,including cost and power generation,is proposed to solve the boundary problem caused by existence of two goals.Using this model,the final optimized result is found to have a good fit with local resources.

  4. PV-hybrid village power systems in Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L.; Taylor, R.W. [National Renewable Energy Lab., Golden, CO (United States); Ribeiro, C.M. [Centro de Pesquisas de Energie Eletrica (CEPEL), Rio de Janeiro (Brazil)] [and others

    1996-05-01

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Hundreds of diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable energy resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: U.S. Department of Energy, through NREL, and Brazilian CEPEL/Eletrobras and state electric utilities.

  5. An analysis of hybrid power generation systems for a residential load

    Directory of Open Access Journals (Sweden)

    Ceran Bartosz

    2017-01-01

    Full Text Available This paper presents the results of an energetic and economical analysis of a hybrid power generation system (HPGS which utilises photovoltaic modules, wind turbines, fuel cells and an electrolyzer with hydrogen tank working as the energy storage. The analysis was carried out for three different residential loads, local solar radiation and local wind speed, based on the real measurement values. The analysis shows the optimal solution and the limits of the investment costs required for the system construction. The presented results confirm the effectiveness of the proposed approach, which could be assumed as a very useful tool in the design and analysis of a hybrid power generation system.

  6. An in-depth assessment of hybrid solar–geothermal power generation

    International Nuclear Information System (INIS)

    Zhou, Cheng; Doroodchi, Elham; Moghtaderi, Behdad

    2013-01-01

    Highlights: • We model hybrid solar thermal and geothermal energy conversion system in the Australian context. • Solar thermal and geothermal energy can be effectively hybridised. • Thermodynamic advantages and economic benefits are realised. • Hybrid system overcomes adverse effects of diurnal temperature change on power generation. • Cost of electricity of an Enhanced Geothermal System can drop by more than 20% if hybridised with solar energy. - Abstract: A major problem faced by many standalone geothermal power plants, particularly in hot and arid climates such as Australia, is the adverse effects of diurnal temperature change on the operation of air-cooled condensers which typically leads to fluctuation in the power output and degradation of thermal efficiency. This study is concerned with the assessment of hybrid solar–geothermal power plants as a means of boosting the power output and where possible moderating the impact of diurnal temperature change. The ultimate goal is to explore the potential benefits from the synergies between the solar and geothermal energy sources. For this purpose the performances of the hybrid systems in terms of power output and the cost of electricity were compared with that of stand-alone solar and geothermal plants. Moreover, the influence of various controlling parameters including the ambient temperature, solar irradiance, geographical location, resource quality, and the operating mode of the power cycle on the performance of the hybrid system were investigated under steady-state conditions. Unsteady-state case studies were also performed to examine the dynamic behaviour of hybrid systems. These case studies were carried out for three different Australian geographic locations using raw hourly meteorological data of a typical year. The process simulation package Aspen-HYSYS was used to simulate plant configurations of interest. Thermodynamic analyses carried out for a reservoir temperature of 120 °C and a fixed

  7. An in-depth assessment of hybrid solar–geothermal power generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng [Priority Research Centre for Energy, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia); Doroodchi, Elham [Priority Research Centre for Advanced Particle Processing and Transport, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia); Moghtaderi, Behdad [Priority Research Centre for Energy, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2013-10-15

    Highlights: • We model hybrid solar thermal and geothermal energy conversion system in the Australian context. • Solar thermal and geothermal energy can be effectively hybridised. • Thermodynamic advantages and economic benefits are realised. • Hybrid system overcomes adverse effects of diurnal temperature change on power generation. • Cost of electricity of an Enhanced Geothermal System can drop by more than 20% if hybridised with solar energy. - Abstract: A major problem faced by many standalone geothermal power plants, particularly in hot and arid climates such as Australia, is the adverse effects of diurnal temperature change on the operation of air-cooled condensers which typically leads to fluctuation in the power output and degradation of thermal efficiency. This study is concerned with the assessment of hybrid solar–geothermal power plants as a means of boosting the power output and where possible moderating the impact of diurnal temperature change. The ultimate goal is to explore the potential benefits from the synergies between the solar and geothermal energy sources. For this purpose the performances of the hybrid systems in terms of power output and the cost of electricity were compared with that of stand-alone solar and geothermal plants. Moreover, the influence of various controlling parameters including the ambient temperature, solar irradiance, geographical location, resource quality, and the operating mode of the power cycle on the performance of the hybrid system were investigated under steady-state conditions. Unsteady-state case studies were also performed to examine the dynamic behaviour of hybrid systems. These case studies were carried out for three different Australian geographic locations using raw hourly meteorological data of a typical year. The process simulation package Aspen-HYSYS was used to simulate plant configurations of interest. Thermodynamic analyses carried out for a reservoir temperature of 120 °C and a fixed

  8. Design concept of HYPER (HYbrid Power Extraction Reactor)

    International Nuclear Information System (INIS)

    Park, Won S.; Song, Tae Y.; Yu, Dong H.; Kim, Chang H.

    1999-01-01

    Korea Atomic Energy Research Institute (KAERI) has been performing accelerator driven system related research and development called HYPER for the transmutation of nuclear waste and energy production through the transmutation process. Some major design features of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with a minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Pb-Bi is adopted as a coolant and spallation target material. 1 GeV 13 mA proton beam is designed to be provided for HYPER. HYPER is to transmute about 380 kg of TRU a year and produce 1000 MWth power. The support ratio of HYPER for LWR units producing the same power is believed to be 5 to 6. (author)

  9. Preconstruction of the Honey Lake Hybrid Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

  10. Preconstruction of the Honey Lake Hybrid Power Plant: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

  11. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  12. A Hybrid Multilevel Storage Architecture for Electric Power Dispatching Big Data

    Science.gov (United States)

    Yan, Hu; Huang, Bibin; Hong, Bowen; Hu, Jing

    2017-10-01

    Electric power dispatching is the center of the whole power system. In the long run time, the power dispatching center has accumulated a large amount of data. These data are now stored in different power professional systems and form lots of information isolated islands. Integrating these data and do comprehensive analysis can greatly improve the intelligent level of power dispatching. In this paper, a hybrid multilevel storage architecture for electrical power dispatching big data is proposed. It introduces relational database and NoSQL database to establish a power grid panoramic data center, effectively meet power dispatching big data storage needs, including the unified storage of structured and unstructured data fast access of massive real-time data, data version management and so on. It can be solid foundation for follow-up depth analysis of power dispatching big data.

  13. Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system

    International Nuclear Information System (INIS)

    Zhang, Shuo; Xiong, Rui; Cao, Jiayi

    2016-01-01

    Highlights: • A novel procedure for developing an optimal power management strategy was proposed. • Efficiency and durability were considered to improve the practical performance. • Three control rules were abstracted from the optimization results with DP algorithm. • The proposed control strategy was verified under different SoC and SoH conditions. • The proposed strategy could further improve the energy efficiency obviously. - Abstract: Efficiency and durability are becoming two key issues for the energy storage system in electric vehicles together with their associated power management strategies. In this paper, we present a procedure for the design of a near-optimal power management strategy for the hybrid battery and ultracapacitor energy storage system (HESS) in a plug-in hybrid electric vehicle. The design procedure starts by defining a cost function to minimize the electricity consumption of the HESS and to optimize the operating behavior of the battery. To determine the optimal control actions and power distribution between two power sources, a dynamic programming (DP)-based novel analysis method is proposed, and the optimization framework is presented accordingly. Through analysis of the DP control actions under different battery state-of-health (SoH) conditions, near-optimal rules are extracted. A rule based power management is proposed based on the abstracted rules and simulation results indicate that the new control strategy can improve system efficiency under different SoH and different SoC conditions. Ultimately, the performance of proposed strategy is further verified under different types of driving cycles including the MANHATTAN cycle, 1015 6PRIUS cycle and UDDSHDV cycle.

  14. Thermoeconomic analysis of a fuel cell hybrid power system from the fuel cell experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Tomas [Endesa Generacion, Ribera del Loira, 60, 28042 Madrid (Spain)]. E-mail: talvarez@endesa.es; Valero, Antonio [Fundacion CIRCE, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain); Montes, Jose M. [ETSIMM-Universidad Politecnica de.Madrid, Rios Rosas, 21, 28003 Madrid (Spain)

    2006-08-15

    An innovative configuration of fuel cell technology is proposed based on a hybrid fuel cell system that integrates a turbogenerator to overcome the intrinsic limitations of fuel cells in conventional operation. An analysis is done of the application of molten carbonate fuel cell technology at the Guadalix Fuel Cell Test Facility, for the assessment of the performance of the fuel cell prototype to be integrated in the Hybrid Fuel Cell System. This is completed with a thermoeconomic analysis of the 100 kW cogeneration fuel cell power plant which was subsequently built. The operational results and design limitations are evaluated, together with the operational limits and thermodynamic inefficiencies (exergy destruction and losses) of the 100 kW fuel cell. This leads to the design of a hybrid system in order to demonstrate the possibilities and benefits of the new hybrid configuration. The results are quantified through a thermoeconomic analysis in order to get the most cost-effective plant configuration. One promising configuration is the MCFC topper where the fuel cell in the power plant behaves as a combustor for the turbogenerator. The latter behaves as the balance of plant for the fuel cell. The combined efficiency increased to 57% and NOx emissions are essentially eliminated. The synergy of the fuel cell/turbine hybrids lies mainly in the use of the rejected thermal energy and residual fuel from the fuel cell to drive the turbogenerator in a 500 kW hybrid system.

  15. Fuel cell/electrochemical capacitor hybrid for intermittent high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, L P; Atwater, T B; Cygan, P J [Army Communications-Electronics Command (CECOM), Fort Monmouth, NJ (United States). Research and Development Center

    1999-05-01

    A hybrid power source was demonstrated to successfully power a simulated power load encountered in portable military electronics and communications equipment. The hybrid system consisted of a 25 W proton exchange membrane fuel cell (PEMFC) stack connected in parallel with a 70 F capacitor bank. The cyclic regime of 18.0 W for 2 min followed by 2.5 W for 18 min was chosen as the baseline for the simulation of power load. The operating potential cut-off voltage for pass/failure was set to 3.0 V. At room temperature (23-25 C), the PEMFC alone could not handle the described baseline regime with the PEMFC operating potential dropping below the cut-off voltage within 10 s. The hybrid, however, continuously powered the same regime for 25 h. Its operating potential never reached the voltage cut-off point, not even during the high load of 18.0 W. The tests with hybrid configuration were aborted after 25 h of operation with no signs of output degradation, suggesting that further extended operation was possible. (orig.)

  16. Modeling, design and analysis of a stand-alone hybrid power generation system using solar/urine

    International Nuclear Information System (INIS)

    Wu, Wei; Zhou, Ya-Yan; Lin, Mu-Hsuan; Hwang, Jenn-Jiang

    2013-01-01

    Highlights: • The stand-alone hybrid power system is presented. • The urine-to-hydrogen processor is proposed. • Scenario analysis of the hybrid power dispatching and the urine/solar demands is investigated. • The design, modeling and optimization of the hybrid power system is addressed by Aspen Plus and Matlab. - Abstract: The urine turned to hydrogen as an energy conversion process is integrated into a stand-alone hybrid (PV/FC/battery) power generation system. The optimization and simulation of a new urine-to-hydrogen processor is evaluated in Aspen Plus environment. In our approach, the PV generator aims to reduce urine consumption and the lithium-ion battery can compensate the power gap due to the fuel processing delay. Based on prescribed patterns of solar irradiation and the daily load demand of a 30-persons classroom, scenario analyses of the hybrid power dispatching and operational feasibility is addressed

  17. A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Mimoun YOUNES

    2012-08-01

    Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.

  18. Coil geometry models for power loss analysis and hybrid inductive ...

    Indian Academy of Sciences (India)

    CHANDRASEKHARAN NATARAJ

    2018-04-26

    Apr 26, 2018 ... most of the WPT systems, but often suffers from power loss in the near field area of inductively coupled ... applications in the area of Distribution Generation (DG) ... embedded sensors, and buried devices, work at low voltage.

  19. Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency.

    Science.gov (United States)

    Jin, Long; Chen, Jun; Zhang, Binbin; Deng, Weili; Zhang, Lei; Zhang, Haitao; Huang, Xi; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-08-23

    The rapid development of Internet of Things and the related sensor technology requires sustainable power sources for their continuous operation. Scavenging and utilizing the ambient environmental energy could be a superior solution. Here, we report a self-powered helmet for emergency, which was powered by the energy converted from ambient mechanical vibration via a hybridized nanogenerator that consists of a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). Integrating with transformers and rectifiers, the hybridized nanogenerator can deliver a power density up to 167.22 W/m(3), which was demonstrated to light up 1000 commercial light-emitting diodes (LEDs) instantaneously. By wearing the developed safety helmet, equipped with rationally designed hybridized nanogenerator, the harvested vibration energy from natural human motion is also capable of powering a wireless pedometer for real-time transmitting data reporting to a personal cell phone. Without adding much extra weight to a commercial one, the developed wearing helmet can be a superior sustainable power source for explorers, engineers, mine-workers under well, as well as and disaster-relief workers, especially in remote areas. This work not only presents a significant step toward energy harvesting from human biomechanical movement, but also greatly expands the applicability of TENGs as power sources for self-sustained electronics.

  20. Using hydropower to complement wind energy: a hybrid system to provide firm power

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O.A.; Borja, M.A.; Huacuz, J.M. [Instituto de Investigaciones Electricas, Morelos (Mexico). Energias No Convencionales

    2004-09-01

    This paper presents a theoretical study of how wind power can be complemented by hydropower. A conceptual framework is provided for a hybrid power station that produces constant power output without the intermittent fluctuations inherent when using wind power. Two hypothetical facilities are considered as case studies. One of them is a hydropower plant located on the ''Presidente Benito Juarez'' dam in Jalapa del Marques, Oaxaca, Mexico. The other hypothetical facility is a wind farm located near ''La Venta's', an area in Juchitan, Oaxaca, Mexico. The wind-hydro-power system is a combined wind and hydro power plant in a region that is rich in both resources. The model shows that the hybrid plant could provide close to 20 MW of firm power to the electrical distribution system. On a techno-economic basis, we obtain the levelized production cost of the hybrid system. Taking into account two different discount rates of 7% and 10%, figures for levelized production cost are developed. (author)

  1. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

    Directory of Open Access Journals (Sweden)

    Wen-Yeau Chang

    2013-09-01

    Full Text Available High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO based hybrid forecasting method for short-term wind power forecasting. The hybrid forecasting method combines the persistence method, the back propagation neural network, and the radial basis function (RBF neural network. The EPSO algorithm is employed to optimize the weight coefficients in the hybrid forecasting method. To demonstrate the effectiveness of the proposed method, the method is tested on the practical information of wind power generation of a wind energy conversion system (WECS installed on the Taichung coast of Taiwan. Comparisons of forecasting performance are made with the individual forecasting methods. Good agreements between the realistic values and forecasting values are obtained; the test results show the proposed forecasting method is accurate and reliable.

  2. Analysis, control and optimal operations in hybrid power systems advanced techniques and applications for linear and nonlinear systems

    CERN Document Server

    Bizon, Nicu; Mahdavi Tabatabaei, Naser

    2014-01-01

    This book explains and analyzes the dynamic performance of linear and nonlinear systems, particularly for Power Systems including Hybrid Power Sources. Offers a detailed description of system stability using state space energy conservation principle, and more.

  3. Harmonic Resonance Damping with a Hybrid Compensation System in Power Systems with Dispersed Generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...

  4. DSOGI-PLL Based Power Control Method to Mitigate Control Errors Under Disturbances of Grid Connected Hybrid Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Meral

    2018-01-01

    Full Text Available The control of power converter devices is one of the main research lines in interfaced renewable energy sources, such as solar cells and wind turbines. Therefore, suitable control algorithms should be designed in order to regulate power or current properly and attain a good power quality for some disturbances, such as voltage sag/swell, voltage unbalances and fluctuations, long interruptions, and harmonics. Various synchronisation techniques based control strategies are implemented for the hybrid power system applications under unbalanced conditions in literature studies. In this paper, synchronisation algorithms based Proportional-Resonant (PR power/current controller is applied to the hybrid power system (solar cell + wind turbine + grid, and Dual Second Order Generalized Integrator-Phase Locked Loop (DSOGI-PLL based PR controller in stationary reference frame provides a solution to overcome these problems. The influence of various cases, such as unbalance, and harmonic conditions, is examined, analysed and compared to the PR controllers based on DSOGI-PLL and SRF-PLL. The results verify the effectiveness and correctness of the proposed DSOGI-PLL based power control method.

  5. The economics of hybrid power systems for sustainable desert agriculture in Egypt

    DEFF Research Database (Denmark)

    Kamel, S.M.; Dahl, C.

    2005-01-01

    Egypt has embarked on an ambitious desert land reclamation program in order to increase total food production. Energy planners for these desert agriculture locations have chosen diesel generation power technology because minimization of the initial capital cost of a power supply system is their top...... priority. This heavy reliance on diesel generation has negative effects on the surrounding environment including soil, groundwater, and air pollution. Although good solar and wind resource prospects exist for the use of cleaner hybrid power systems in certain desert locations, little research has been done...... to investigate the economic potential of such systems in Egypt’s desert agriculture sector. Using optimization software, we assess the economics of hybrid power systems versus the present diesel generation technology in a remote agricultural development area. We also consider the emission reduction advantages...

  6. Power deposition profile during lower hybrid current drive in Tore Supra

    International Nuclear Information System (INIS)

    Pecquet, A.L.; Moreau, D.; Fall, T.; Lasalle, J.; Lecoustey, P.; Mattioli, M.; Peysson, Y.; Auge, N.; Rodriguez, L.; Talvard, M.; Hubbard, A.; Moret, J.M.

    1991-01-01

    Lower hybrid current drive (LHCD) experiments have been performed in Tore Supra in various density regimes. The total power coupled to the plasma reached 4MW and a strong electron heating has been observed. To investigate the power deposition mechanism on the electrons, r.f power modulation experiments have been performed. These experiments allow us to estimate the power deposition profiles on both thermal and non-thermal electrons and also to study their respective time responses. From these studies it is possible to deduce a thermal heating scenario which agrees with the experimental results

  7. Design of Jet lower hybrid current drive generator and operation of high power test bed

    International Nuclear Information System (INIS)

    Dobbing, J.A.; Bosia, G.; Brandon, M.; Gammelin, M.; Gormezano, C.; Jacquinot, J.; Jessop, G.; Lennholm, M.; Pain, M.; Sibley, A.

    1989-01-01

    The JET Lower Hybrid Current Drive (LHCD) generator consists of 24 klystrons each rated for 650 KW operating at 3.7 GHz, giving a nominal generator power of 15.6 MW for 10 seconds or 12 MW for 20 seconds. This power will be transmitted through 24 waveguides to a phased array launcher on one of the main ports of the JET machine. In addition, two klystrons are currently being operated on a high power test bed to establish reliable operation of the generators components and test high power microwave components prior to their installation

  8. Flat tie-line power scheduling control of grid-connected hybrid microgrids

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Guerrero, Josep M.; Shuang, Jia

    2018-01-01

    In future active distribution networks (ADNs), microgrids (MGs) may have the possibility to control the power dispatched to the ADN by coordinating the output power of their multiple renewable generation units and energy storage units (ESUs). In this way, each MG may support the active distribution....... Also, a method to calculate the tie-line power flow to be exchanged between the MG and the ADN is explored, and a power ramp rate is given between different dispatch intervals. Finally, a simulation model of the hybrid MG is built and tested. Simulation results show that the proposed hierarchical...

  9. Transmission Technologies and Operational Characteristic Analysis of Hybrid UHV AC/DC Power Grids in China

    Science.gov (United States)

    Tian, Zhang; Yanfeng, Gong

    2017-05-01

    In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.

  10. Fast ion absorption of lower hybrid power in JET

    International Nuclear Information System (INIS)

    Andrade, M.C.R.; Brusati, M.

    1993-01-01

    The first experimental evidence at JET on the interaction of fast minority ions with LH is reported. An increase of approximately 20% on the fast ion energy content was observed in the presence of LH, with an estimated LH absorbed power of approximately 20% for 2 MW of LH power and plasma densities of 2.0 to 2.4 x 10 19 m -3 with central temperatures γ ray and neutron rates also show that absorption of LH waves by the fast minority ions is taking place. FFT analysis confirms a better damping of the wave when the overlap between ICRH and LHCD is maximized. (author)

  11. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    International Nuclear Information System (INIS)

    Uluşan, H; Gharehbaghi, K; Külah, H; Zorlu, Ö; Muhtaroğlu, A

    2015-01-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage. (paper)

  12. Four-switch hybrid power filter working with six-fold switching symmetry

    Czech Academy of Sciences Publication Activity Database

    Klíma, J.; Tlustý, J.; Škramlík, Jiří; Valouch, Viktor

    2011-01-01

    Roč. 56, č. 4 (2011), s. 433-446 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : component minimized hybrid power filter * control strategy * analytical model Subject RIV: JA - Electronics ; Optoelectronics, Electric al Engineering

  13. Power-optimal force decoupling in a hybrid linear reluctance motor

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.

    2015-01-01

    This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the

  14. Analytical Modeling and Simulation of Four-Switch Hybrid Power Filter Working with Sixfold Switching Symmetry

    Czech Academy of Sciences Publication Activity Database

    Tlustý, J.; Škramlík, Jiří; Švec, J.; Valouch, Viktor

    2012-01-01

    Roč. 2012, č. 292178 (2012), s. 1-17 ISSN 1024-123X Institutional support: RVO:61388998 Keywords : analytical modeling * four-switch hybrid power filter * sixfold switching symmetry Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.383, year: 2012 http://www.hindawi.com/journals/mpe/2012/292178/

  15. Optimization of hybrid PV/wind power system for remote telecom station

    NARCIS (Netherlands)

    Paudel, S.; Shrestha, J.N.; Neto, F.J.; Ferreira, J.A.F.; Adhikari, M.

    2011-01-01

    The rapid depletion of fossil fuel resources and environmental concerns has given awareness on generation of renewable energy resources. Among the various renewable resources, hybrid solar and wind energy seems to be promising solutions to provide reliable power supply with improved system

  16. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-03-01

    Full Text Available This paper looks at an energy performance analysis for a photovoltaic, diesel, and battery hybrid power supply system. The procedure starts by the identification of the hourly load requirements for a typical target consumer and the concept of load...

  17. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  18. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  19. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  20. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.

    Science.gov (United States)

    Lee, Jae Ah; Shin, Min Kyoon; Kim, Shi Hyeong; Kim, Seon Jeong; Spinks, Geoffrey M; Wallace, Gordon G; Ovalle-Robles, Raquel; Lima, Márcio D; Kozlov, Mikhail E; Baughman, Ray H

    2012-01-24

    We report mechanically robust, electrically conductive, free-standing, and transparent hybrid nanomembranes made of densified carbon nanotube sheets that were coated with poly(3,4-ethylenedioxythiophene) using vapor phase polymerization and their performance as supercapacitors. The hybrid nanomembranes with thickness of ~66 nm and low areal density of ~15 μg/cm(2)exhibited high mechanical strength and modulus of 135 MPa and 12.6 GPa, respectively. They also had remarkable shape recovery ability in liquid and at the liquid/air interface unlike previous carbon nanotube sheets. The hybrid nanomembrane attached on a current collector had volumetric capacitance of ~40 F/cm(3) at 100 V s(-1) (~40 and ~80 times larger than that of onion-like carbon measured at 100 V s(-1) and activated carbon measured at 20 V s(-1), respectively), and it showed rectangular shapes of cyclic voltammograms up to ~5 V s(-1). High mechanical strength and flexibility of the hybrid nanomembrane enabled twisting it into microsupercapacitor yarns with diameters of ~30 μm. The yarn supercapacitor showed stable cycling performance without a metal current collector, and its capacitance decrease was only ~6% after 5000 cycles. Volumetric energy and power density of the hybrid nanomembrane was ~70 mWh cm(-3) and ~7910 W cm(-3), and the yarn possessed the energy and power density of ~47 mWh cm(-3) and ~538 W cm(-3). © 2011 American Chemical Society

  1. Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty

    International Nuclear Information System (INIS)

    Díaz, Guzmán; Planas, Estefanía; Andreu, Jon; Kortabarria, Iñigo

    2015-01-01

    Economical optimization of hybrid systems is usually performed by means of LCoE (levelized cost of energy) calculation. Previous works deal with the LCoE calculation of the whole hybrid system disregarding an important issue: the stochastic component of the system units must be jointly considered. This paper deals with this issue and proposes a new fast optimal policy that properly calculates the LCoE of a hybrid system and finds the lowest LCoE. This proposed policy also considers the implied competition among power sources when variability of gas and electricity prices are taken into account. Additionally, it presents a comparative between the LCoE of the hybrid system and its individual technologies of generation by means of a fast and robust algorithm based on vector logical computation. Numerical case analyses based on realistic data are presented that valuate the contribution of technologies in a hybrid power system to the joint LCoE. - Highlights: • We perform the LCoE calculation with the stochastic component jointly considered. • We propose a fast an optimal policy that minimizes the LCoE. • We compare the obtained LCoEs by means of a fast and robust algorithm. • We take into account the competition among gas prices and electricity prices

  2. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Science.gov (United States)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  3. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  4. Performance evaluation of hybrid VLC using device cost and power over data throughput criteria

    Science.gov (United States)

    Lee, C. C.; Tan, C. S.; Wong, H. Y.; Yahya, M. B.

    2013-09-01

    Visible light communication (VLC) technology has attained its attention in both academic and industry lately. It is determined by the development of light emitting diode (LED) technology for solid-state lighting (SSL).It has great potential to gradually replace radio frequency (RF) wireless technology because it offers unregulated and unlicensed bandwidth to withstand future demand of indoor wireless access to real-time bandwidth-demanding applications. However, it was found to provide intrusive uplink channel that give rise to unpleasant irradiance from the user device which could interfere with the downlink channel of VLC and hence limit mobility to users as a result of small coverage (field of view of VLC).To address this potential problem, a Hybrid VLC system which integrates VLC (for downlink) and RF (for uplink) technology is proposed. It offers a non-intrusive RF back channel that provides high throughput VLC and maintains durability with conventional RF devices. To deploy Hybrid VLC system in the market, it must be energy and cost saving to attain its equivalent economical advantage by comparing to existing architecture that employs fluorescent or LED lights with RF technology. In this paper, performance evaluation on the proposed hybrid system was carried out in terms of device cost and power consumption against data throughput. Based on our simulation, Hybrid VLC system was found to reduce device cost by 3% and power consumption by 68% when compares to fluorescent lights with RF technology. Nevertheless, when it is compared to LED lights with RF technology, our proposed hybrid system is found to achieve device cost saving as high as 47% and reduced power consumption by 49%. Such promising results have demonstrated that Hybrid VLC system is a feasible solution and has paved the way for greater cost saving and energy efficient compares with the current RF architecture even with the increasing requirement of indoor area coverage.

  5. Design and RF test result of High Power Hybrid Combiner for Helicon Wave Current Drive in KSTAR Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Kim, H. J.; Wi, H. H.; Wang, S. J.; Kwak, J. G. [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    200 kW RF power will be injected to plasmas through the traveling wave antenna after combining four klystrons output powers using three hybrid combiners. Each klystron produces 60 kW output at the frequency of 500 MHz. RF power combiners commonly used to divide or combine output powers for various rf and microwave applications. It is divided into several types according to the design type such as Wilkinson combiner, radial and quadrature hybrid combiner. We designed high power hybrid combiners using 6-1/8 inch coaxial line. The power combiner has many advantages such as high isolation, low insertion loss and high power handling capability. In this paper design and rf test results of high power combiners will be described. High power combiners using three coaxial hybrid couplers will be utilized for effectively combining of 500 MHz, 200 kW output powers generated by four klystrons. We have designed, fabricated, and tested a 6-1/8 inch coaxial hybrid combiners at 500 MHz for efficiently off-axis Helicon wave current drive in KSTAR. Simulation and test results of high power coaxial hybrid combiners are good agreement.

  6. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  7. Assessing the Impact of Wind/PV Power Generation and Market Policies on Decentralized Hybrid Systems

    DEFF Research Database (Denmark)

    S.M. Arnoux, Luciana; Santiago, Leonardo

    In this paper, we offer a comprehensive approach to assess the impact of wind and photovoltaic power generation on decentralized hybrid systems. In particular, we focus on three performance measures of the energy system, namely reliability, costs, and efficiency. Most of the current studies focus...... level. Therefore, we appropriately assess the inherent uncertainty and design options. First, we use linear and quantile regression models to estimate the wind speed and solar insolation. Then, we use different quantiles as an input for the hybrid system design to assess market policies (e.g., net...

  8. Analysis of the Fuel Efficiency of a Hybrid Electric Drive with an Electric Power Splitter

    Directory of Open Access Journals (Sweden)

    D. Čundev

    2008-01-01

    Full Text Available This paper presents the results of an analysis of the fuel efficiency of a hybrid electric car drive, with an electric power splitter based on a double rotor synchronous permanent magnet generator. The results have been obtained through a precisely determined mathematical model and by simulating the characteristics of all essential values for the entire drive. This work is related to the experimental working stand for electric and hybrid car drive research, which has been developed at the Faculty of Electrical Engineering (FEE at CTU in Prague. 

  9. A hybrid active filter for damping of harmonic resonance in industrial power systems

    OpenAIRE

    Fujita, Hideaki; Yamasaki, Takahiro; Akagi, Hirofumi

    1998-01-01

    This paper proposes a hybrid active filter for damping of harmonic resonance in industrial power systems. The hybrid filter consists of a small-rated active filter and a 5th tuned passive filter. The active filter is characterized by detecting the 5th harmonic current flowing into the passive filter. It is controlled in such a way as to behave as a negative or positive resistor by adjusting a feedback gain from a negative to positive value, and vice versa. The negative resistor presented by t...

  10. Analysis and control of a hybrid vehicle powered by free-piston energy converter

    OpenAIRE

    Hansson, Jörgen

    2006-01-01

    The introduction of hybrid powertrains has made it possible to utilise unconventional engines as primary power units in vehicles. The free-piston energy converter (FPEC) is such an engine. It is a combination of a free-piston combustion engine and a linear electrical machine. The main features of this configuration are high efficiency and a rapid transient response. In this thesis the free-piston energy converter as part of a hybrid powertrain is studied. One issue of the FPEC is the generati...

  11. Hybrid Active Filter with Variable Conductance for Harmonic Resonance Suppression in Industrial Power Systems

    DEFF Research Database (Denmark)

    Lee, Tzung-Lin; Wang, Yen-Ching; Li, Jian-Cheng

    2015-01-01

    Unintentional series and/or parallel resonances, due to the tuned passive filter and the line inductance, may result in severe harmonic distortion in the industrial power system. This paper presents a hybrid active filter to suppress harmonic resonance and reduce harmonic distortion as well...... expensive. A reasonable trade-off between filtering performances and cost is to use the hybrid active filter. Design consideration are presented and experimental results are provided to validate effectiveness of the proposed method. Furthermore, this paper discusses filtering performances on line impedance...

  12. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  13. Experimental Evaluation of Supercapacitor-Fuel Cell Hybrid Power Source for HY-IEL Scooter

    Directory of Open Access Journals (Sweden)

    Piotr Bujlo

    2013-01-01

    Full Text Available This paper presents the results of development of a hybrid fuel cell supercapacitor power system for vehicular applications that was developed and investigated at the Energy Sources Research Section of the Wroclaw Division of Electrotechnical Institute (IEL/OW. The hybrid power source consists of a polymer exchange membrane fuel cell (PEMFC stack and an energy-type supercapacitor that supports the system in time of peak power demands. The developed system was installed in the HY-IEL electric scooter. The vehicle was equipped with auxiliary components (e.g., air compressor, hydrogen tank, and electromagnetic valves needed for proper operation of the fuel cell stack, as well as electronic control circuits and a data storage unit that enabled on-line recording of system and vehicle operation parameters. Attention is focused on the system energy flow monitoring. The experimental part includes field test results of a vehicle powered with the fuel cell-supercapacitor system. Values of currents and voltages recorded for the system, as well as the vehicle’s velocity and hydrogen consumption rate, are presented versus time of the experiment. Operation of the hybrid power system is discussed and analysed based on the results of measurements obtained.

  14. Design optimisation of a hybrid solid oxide fuel cell and gas turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.; Siddle, A.; Pointon, K.

    2001-07-01

    The objectives of the combined ALSTOM Power Technology and Advantica Technologies project are reported as: (a) to design a gas turbine (GT) unit compatible with a solid oxide fuel cell (SOFC) in a high efficiency power system and aimed at the Distributed Power application range of 1-20MW, and (b) to identify the main features and components of a 'Proof of Concept' hybrid unit of output around 0.1MW, based on existing or near-market technology. The study showed: (i) while the potential for high efficiency SOFC + GT hybrid cycles is clear, little effort has been put into the design of the gas turbine and some other components and (ii) there is room for commercial exploitation in the areas of both component manufacture and system supply.

  15. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  16. Design of Passive Power Filter for Hybrid Series Active Power Filter using Estimation, Detection and Classification Method

    Science.gov (United States)

    Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.

    2016-06-01

    This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.

  17. A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal

    International Nuclear Information System (INIS)

    Pousinho, H.M.I.; Mendes, V.M.F.; Catalao, J.P.S.

    2011-01-01

    The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.

  18. A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal); Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2011-01-15

    The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches. (author)

  19. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    Science.gov (United States)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  20. Design of a hybrid power system based on solar cell and vibration energy harvester

    Science.gov (United States)

    Zhang, Bin; Li, Mingxue; Zhong, Shaoxuan; He, Zhichao; Zhang, Yufeng

    2018-03-01

    Power source has become a serious restriction of wireless sensor network. High efficiency, self-energized and long-life renewable source is the optimum solution for unmanned sensor network applications. However, single renewable power source can be easily affected by ambient environment, which influences stability of the system. In this work, a hybrid power system consists of a solar panel, a vibration energy harvester and a lithium battery is demonstrated. The system is able to harvest multiple types of ambient energy, which extends its applicability and feasibility. Experiments have been conducted to verify performance of the system.

  1. A Hybrid Power Control Concept for PV Inverters with Reduced Thermal Loading

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    on a single-phase PV inverter under yearly operation is presented with analyses of the thermal loading, lifetime, and annual energy yield. It has revealed the trade-off factors to select the power limit and also verified the feasibility and the effectiveness of the proposed control concept.......This letter proposes a hybrid power control concept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum Power Point Tracking (MPPT) control or a Constant Power Generation (CPG) control depending on the instantaneous available power from the PV panels....... The essence of the proposed concept lies in the selection of an appropriate power limit for the CPG control to achieve an improved thermal performance and an increased utilization factor of PV inverters,and thus to cater for a higher penetration level of PV systems with intermittent nature. A case study...

  2. Hybrid Micro-Hydro Power Generation Development in Endau Rompin National Park Johor, Malaysia

    Directory of Open Access Journals (Sweden)

    Yusop Azli

    2017-01-01

    Full Text Available Micro-Hydro electrical power systems are very useful for remote area electrification which does not had supply from the national grid. On the contrary, this area has river streams with high potential for micro-hydro power generation. As such, the UTHM ECO-Hydro Team embarked on a project for erecting a micro-hydro power plant with collaboration with National Education Research Center (NERC, Johor National Park Corporation in Endau Rompin. The existing power generation in this area at present is by using diesel generator gives negative impact on finance and environment in the long run. It supplies power to several including library, offices, open laboratory, chalets and dorms.. At the moment, the micro-hydro system complements the diesel generator, thus becoming a hybrid power generation system.

  3. Identification of environmental issues: Hybrid wood-geothermal power plant, Wendel-Amedee KGRA, Lassen County, California: First phase report

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-14

    The development of a 55 MWe power plant in Lassen County, California, has been proposed. The proposed power plant is unique in that it will utilize goethermal heat and wood fuel to generate electrical power. This report identifies environmental issues and constraints which may impact the proposed hybrid wood-geothermal power plant. (ACR)

  4. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  5. Characterization of hybrid self-powered neutron detector under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, M. E-mail: masaru@oarai.jaeri.go.jp; Nagao, Y.; Yamamura, C.; Nakazawa, M.; Kawamura, H

    2000-11-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%R000.

  6. Characterization of hybrid self-powered neutron detector under neutron irradiation

    CERN Document Server

    Nakamichi, M; Yamamura, C; Nakazawa, M; Kawamura, H

    2000-01-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%Rh.

  7. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    Science.gov (United States)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  8. Hybrid Systems of Distributed Generation with Renewable Sources: Modeling and Analysis of Their Operational Modes in Electric Power System

    Directory of Open Access Journals (Sweden)

    A. M. Gashimov

    2013-01-01

    Full Text Available The paper considers problems pertaining to modeling and simulation of operational hybrid system modes of the distributed generation comprising conventional sources – modular diesel generators, gas-turbine power units; and renewable sources – wind and solar power plants. Operational modes of the hybrid system have been investigated under conditions of electrical connection with electric power system and in case of its isolated operation. As a consequence

  9. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    International Nuclear Information System (INIS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-01-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG

  10. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

    Science.gov (United States)

    Mohamed, Ahmed

    Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available

  11. Techno-economic Analysis of a Wind-Diesel Hybrid Power System in the South Algeria

    Directory of Open Access Journals (Sweden)

    Khaireddine Allali

    2015-07-01

    Full Text Available The electrical energy is often produced with the help of diesel generators in isolated areas in the Saharan region. While the latter requiring relatively little investment because is generally expensive to exploit due to the transportation to remote areas adds extra cost, significant fuel consumption and relatively high maintenance cost, etc. Moreover, the electricity production by the diesel is ineffective, presents significant environmental risks. But these isolated areas have significant wind energy potential; which is good position for the exploitation of clean and sustainable wind energy. The use of wind-diesel power system is widely recommended especially to reduce fuel consumption and in this way to reduce system operating costs and environmental impact. The subject of this paper is to present the techno-economic analysis of a wind-diesel hybrid power system. In this context, the contribution envisaged with this research is to collaborate on the optimal design of a hybrid power system including a wind turbine generator, a diesel generator and an energy storage system for powering a continuous way an isolated site in the South Algerian installed power of 120 kW.This system has a high control strategy for the management of different power sources (wind, diesel, battery that depending to weather conditions, especially wind speed values and the power demanded by the consumer load.

  12. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  13. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. All 2D materials as electrodes for high power hybrid energy storage applications

    Science.gov (United States)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  15. Simulation and Parametric Analysis of a Hybrid SOFC-Gas Turbine Power Generation System

    International Nuclear Information System (INIS)

    Hassan, A.M.; Fahmy

    2004-01-01

    Combined SOFC-Gas Turbine Power Generation Systems are aimed to increase the power and efficiency obtained from the technology of using high temperature fuel cells by integrating them with gas turbines. Hybrid systems are considered in the last few years as one of the most promising technologies to obtain electric energy from the natural gas at very high efficiency with a serious potential for commercial use. The use of high temperature allows internal reforming for natural gas and thus disparity of fuel composition is allowed. Also air preheating is performed thanks to the high operating cell temperature as a task of energy integration. In this paper a modeling approach is presented for the fuel cell-gas turbine hybrid power generation systems, to obtain the sofc output voltage, power, and the overall hybrid system efficiency. The system has been simulated using HYSYS, the process simulation software to help improving the process understanding and provide a quick system solution. Parametric analysis is also presented in this paper to discuss the effect of some important SOFC operating parameters on the system performance and efficiency

  16. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.

    Science.gov (United States)

    Chen, Chuanrui; Tang, Songsong; Teymourian, Hazhir; Karshalev, Emil; Zhang, Fangyu; Li, Jinxing; Mou, Fangzhi; Liang, Yuyan; Guan, Jianguo; Wang, Joseph

    2018-07-02

    Hybrid micromotors capable of both chemically powered propulsion and fuel-free light-driven actuation and offering built-in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO 2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO 2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built-in optical braking system allows "on-the-fly" control of the chemical propulsion through a photocatalytic reaction on the TiO 2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on-demand operations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant

    International Nuclear Information System (INIS)

    Rehman, S.; Ahmad, F.; Shaahid, S.M.; Shash, A.; El-Amin, I.M.; Al-Shehri, A.M.; Bakhashwain, J.M.

    2007-01-01

    The green sources of energy are being encouraged to reduce the environmental pollution and combat the global warming of the planet. A target of 12% usage of wind energy only has been agreed by the UNO country members to achieve by 2020. So, the power of the wind is being used to generate electricity both as grid connected and isolated wind-diesel hybrid power plants. This paper performed a pre-feasibility of wind penetration into an existing diesel plant of a village in north eastern part of Saudi Arabia. For simulation purpose, wind speed data from a near by airport and the load data from the village have been used. The hybrid system design tool HOMER has been used to perform the feasibility study. In the present scenario, for wind speed less than 6.0m/s the, the existing diesel power plant is the only feasible solution over the range of fuel prices used in the simulation. The wind diesel hybrid system becomes feasible at a wind speed of 6.0m/s or more and a fuel price of 0.1$/L or more. If the carbon tax is taken into consideration and subsidy is abolished then it is expected that the hybrid system become feasible. The maximum annual capacity shortage did not have any effect on the cost of energy which may be accounted for larger sizes of wind machines and diesel generators. It is recommended that the wind data must be collected at the village at three different heights using a wind mast of 40m for a minimum of one complete year and then the hybrid system must be re-designed. (author)

  18. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  19. Performance assessment of hybrid power generation systems: Economic and environmental impacts

    International Nuclear Information System (INIS)

    Al-Sharafi, Abdullah; Yilbas, Bekir S.; Sahin, Ahmet Z.; Ayar, T.

    2017-01-01

    Highlights: • A double-step optimization tool for hybrid power generation systems is introduced. • Economical aspects and the impact of the system on the environment are considered. • A hybrid system comprises PV array-wind turbine-battery-diesel engine is considered. • Real time analysis of the system for full year simulation is carried out. • System optimum configuration at point where total performance index is maximized. - Abstract: This article aims to introduce a double-step performance assessment tool for the hybrid power generation systems. As a case study, a hybrid system comprising PV array, wind-turbine, battery bank and diesel engine is incorporated in hourly based simulations to meet power demand of a residence unit at Dhahran area, Kingdom of Saudi Arabia. Different indicators related to economical and environmental performance assessments of the hybrid system have been considered. In the economic related assessment case, cost of electricity, energy excess percentage, and operating life cycle indicators have been considered and combined to develop the first overall performance index. Renewable contribution, renewable source availability and environmental impact indicators have been considered for the environmental assessment case and they are combined in the second performance index. For either economical or environmental cases, the optimum configuration of the system is achieved by maximizing the first and second overall performance indicators. This innovative optimization tools gives the designer the freedom to assign suitable weights associated with economical aspect, environmental impact, governmental regulations and social impact, for the first and second overall performance indicators, and combine them in the total performance index. The optimum system configuration is at the point where the total performance index is maximized.

  20. Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power

    International Nuclear Information System (INIS)

    Wang Jianhui; Liu Cong; Ton, Dan; Zhou Yan; Kim, Jinho; Vyas, Anantray

    2011-01-01

    This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced. - Research highlights: → A unit commitment model is used to simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). → Different PHEV charging scenarios are simulated on the Illinois power system → Load shifting and shaving enabled by DR programs are also modeled. → The simulation results show that the operating cost can be reduced with DR and optimal PHEV charging.

  1. Direct switching control of DC-DC power electronic converters using hybrid system theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

    2010-07-01

    A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

  2. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2017-05-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  3. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  4. Renewable energy technology for off-grid power generation solar hybrid system

    International Nuclear Information System (INIS)

    Mohd Azhar Abd Rahman

    2006-01-01

    Off-grid power generation is meant to supply remote or rural area, where grid connection is almost impossible in terms of cost and geography, such as island, aborigine's villages, and areas where nature preservation is concern. Harnessing an abundance renewable energy sources using versatile hybrid power systems can offer the best, least-cost alternative solution for extending modern energy services to remote and isolated communities. The conventional method for off-grid power generation is using diesel generator with a renewable energy (RE) technology utilizing solar photovoltaic, wind, biomass, biogas and/or mini/micro hydro. A hybrid technology is a combination of multiple source of energy; such as RE and diesel generator and may also include energy storage such as battery. In our design, the concept of solar hybrid system is a combination of solar with diesel genset and battery as an energy storage. The main objective of the system are to reduce the cost of operation and maintenance, cost of logistic and carbon dioxide (CO 2 ) emission. The operational concept of solar hybrid system is that solar will be the first choice of supplying load and excess energy produced will be stored in battery. Genset will be a secondary source of energy. The system is controlled by a microprocessor-based controlled to manage the energy supplied and load demand. The solar hybrid system consists of one or two diesel generator with electronic control system, lead-acid battery system, solar PV, inverter module and system controller with remote monitoring capability. The benefits of solar hybrid system are: Improved reliability, Improved energy services, reduced emissions and pollution, provide continuous power supply, increased operational life, reduced cost, and more efficient use of power. Currently, such system has been installed at Middle and Top Station of Langkawi Cable Car, Langkawi and Aborigines Village Kg Denai, Rompin, Pahang. The technology is considered new in Malaysia

  5. Hybrid Three-Phase/Single-Phase Microgrid Architecture with Power Management Capabilities

    DEFF Research Database (Denmark)

    Sun, Qiuye; Zhou, Jianguo; Guerrero, Josep M.

    2015-01-01

    With the fast proliferation of single-phase distributed generation (DG) units and loads integrated into residential microgrids, independent power sharing per phase and full use of the energy generated by DGs have become crucial. To address these issues, this paper proposes a hybrid microgrid...... architecture and its power management strategy. In this microgrid structure, a power sharing unit (PSU), composed of three single-phase back-to-back (SPBTB) converters, is proposed to be installed at the point of common coupling (PCC). The aim of the PSU is mainly to realize the power exchange and coordinated...... control of load power sharing among phases, as well as to allow fully utilization of the energy generated by DGs. Meanwhile, the method combining the modified adaptive backstepping-sliding mode control approach and droop control is also proposed to design the SPBTB system controllers. With the application...

  6. Passivity-Based Control applied to DC hybrid power source using fuel cell and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, M.Y.; Wack, M.; Laghrouche, S. [SeT, UTBM, Belfort (cedex) 90010 (France); Becherif, M. [SeT, UTBM, Belfort (cedex) 90010 (France); FC-Lab, UTBM, Belfort (cedex) 90010 (France); Henni, A. [Alstom Power System, Energy Management Business, Alstom (France); Aboubou, A. [LMSE Laboratory, Biskra University, 07000 (Algeria)

    2010-07-15

    Nowadays, energy management becomes an absolute necessity. To reduce systems consumption, the idea is to recover energy when it is possible and to reuse it when the system is in need. Energy can be saved in peak power unit (electric double layer capacitors called supercapacitors). Those latter can absorb or supply power peaks. This paper deals with the conception of hybrid power sources using fuel cell as main source, a DC link and supercapacitors as transient power source. The whole system is modeled in state space equations. The energy management is reached using Passivity-Based Control (PBC). PBC is a very powerful nonlinear technique dealing with important system information like the system's total energy. Stability proof and simulation results are given. In this proposed control laws only few measurement are needed (two or three depending on the presented solutions one or two). (author)

  7. Modified Grid-Connected CSI for Hybrid PV/Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    D. Amorndechaphon

    2012-01-01

    Full Text Available The principle of a power conditioning unit for hybrid PV/wind power generation system is proposed. The proposed power conditioner is based on the current source inverter (CSI topology. All energy sources are connected in parallel with a DC-bus through the modified wave-shaping circuits. To achieve the unity power factor at the utility grid, the DC-link current can be controlled via the wave-shaping circuits with the sinusoidal PWM scheme. In this work, the carrier-based PWM scheme is also proposed to minimize the utility current THD. The power rating of the proposed system can be increased by connecting more PV/wind modules through their wave-shaping circuits in parallel with the other modules. The details of the operating principles, the system configurations, and the design considerations are described. The effectiveness of the proposed CSI is demonstrated by simulation results.

  8. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    International Nuclear Information System (INIS)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard

    2007-01-01

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks

  9. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Centre National de la Recherche Scientifique (Unite Mixte de Recherche 7037), 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2007-07-15

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks. (author)

  10. Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel

    International Nuclear Information System (INIS)

    Cherry, Robert S.; Boardman, Richard D.; Aumeier, Steven

    2012-01-01

    Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

  11. Rotating-Disk-Based Hybridized Electromagnetic-Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors.

    Science.gov (United States)

    Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-06-28

    Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.

  12. Development of an Optimal Power Control Scheme for Wave-Offshore Hybrid Generation Systems

    Directory of Open Access Journals (Sweden)

    Seungmin Jung

    2015-08-01

    Full Text Available Integration technology of various distribution systems for improving renewable energy utilization has been receiving attention in the power system industry. The wave-offshore hybrid generation system (HGS, which has a capacity of over 10 MW, was recently developed by adopting several voltage source converters (VSC, while a control method for adopted power conversion systems has not yet been configured in spite of the unique system characteristics of the designated structure. This paper deals with a reactive power assignment method for the developed hybrid system to improve the power transfer efficiency of the entire system. Through the development and application processes for an optimization algorithm utilizing the real-time active power profiles of each generator, a feasibility confirmation of power transmission loss reduction was implemented. To find the practical effect of the proposed control scheme, the real system information regarding the demonstration process was applied from case studies. Also, an evaluation for the loss of the improvement rate was calculated.

  13. Energy Management and Control of Electric Vehicles, Using Hybrid Power Source in Regenerative Braking Operation

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-07-01

    Full Text Available Today’s battery powered electric vehicles still face many issues: (1 Ways of improving the regenerative braking energy; (2 how to maximally extend the driving-range of electric vehicles (EVs and prolong the service life of batteries; (3 how to satisfy the energy requirements of the EVs both in steady and dynamic state. The electrochemical double-layer capacitors, also called ultra-capacitors (UCs, have the merits of high energy density and instantaneous power output capability, and are usually combined with power battery packs to form a hybrid power supply system (HPSS. The power circuit topology of the HPSS has been illustrated in this paper. In the proposed HPSS, all the UCs are in series, which may cause an imbalanced voltage distribution of each unit, moreover, the energy allocation between the batteries and UCs should also be considered. An energy-management scheme to solve this problem has been presented. Moreover, due to the parameter variations caused by temperature changes and produced errors, the modelling procedure of the HPSS becomes very difficult, so an H∞ current controller is presented. The proposed hybrid power source circuit is implemented on a laboratory hardware setup using a digital signal processor (DSP. Simulation and experimental results have been put forward to demonstrate the feasibility and validity of the approach.

  14. Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method

    Directory of Open Access Journals (Sweden)

    Peipei You

    2017-12-01

    Full Text Available Electricity market reform is in progress in China, and the operational performance of power grid enterprises are vital for its healthy and sustainable development in the current electricity market environment. In this paper, a hybrid multi-criteria decision-making (MCDM framework for operational performance evaluation of a power grid enterprise is proposed from the perspective of sustainability. The latest MCDM method, namely the best-worst method (BWM was employed to determine the weights of all criteria, and the technique for order preference by similarity to an ideal solution (TOPSIS was applied to rank the operation performance of a power grid enterprise. The evaluation index system was built based on the concept of sustainability, which includes three criteria (namely economy, society, and environment and seven sub-criteria. Four power grid enterprises were selected to perform the empirical analysis, and the results indicate that power grid enterprise A1 has the best operation performance. The proposed hybrid BWM-TOPSIS-based framework for operation performance evaluation of a power grid enterprise is effective and practical.

  15. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim

    2015-06-01

    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  16. Application of Islanding Detection and Classification of Power Quality Disturbance in Hybrid Energy System

    Science.gov (United States)

    Sun, L. B.; Wu, Z. S.; Yang, K. K.

    2018-04-01

    Islanding and power quality (PQ) disturbances in hybrid energy system become more serious with the application of renewable energy sources. In this paper, a novel method based on wavelet transform (WT) and modified feed forward neural network (FNN) is proposed to detect islanding and classify PQ problems. First, the performance indices, i.e., the energy content and SD of the transformed signal are extracted from the negative sequence component of the voltage signal at PCC using WT. Afterward, WT indices are fed to train FNNs midfield by Particle Swarm Optimization (PSO) which is a novel heuristic optimization method. Then, the results of simulation based on WT-PSOFNN are discussed in MATLAB/SIMULINK. Simulations on the hybrid power system show that the accuracy can be significantly improved by the proposed method in detecting and classifying of different disturbances connected to multiple distributed generations.

  17. Calculation of the power factor using the neutron diffusion hybrid equation

    International Nuclear Information System (INIS)

    Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino

    2013-01-01

    Highlights: ► A neutron diffusion hybrid equation with an external neutron source was used. ► Nodal expansion method to obtain the neutron flux was used. ► Nuclear power factors in each fuel element in the reactor core were calculated. ► The results obtained were very accurate. -- Abstract: In this paper, we used a neutron diffusion hybrid equation with an external neutron source to calculate nuclear power factors in each fuel element in the reactor core. We used the nodal expansion method to obtain the neutron flux for a given control rods bank position. The results were compared with results obtained for eigenvalue problem near criticality condition and fixed source problem during the start-up of the reactor, where external neutron sources are extremely important for the stabilization of external neutron detectors.

  18. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M; Brossaud, J; Barral, C; Berger-By, G; Bibet, Ph; Poli, S; Rey, G; Tonon, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M; Obara, K [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  19. Development of CH{sub 3}OH fueled PEMFC power plants for hybrid transit buses

    Energy Technology Data Exchange (ETDEWEB)

    Baumert, R; Cooper, R; Feasey, G [DBB Fuel Cell Engines Corp., Poway, CA (United States)

    1999-12-31

    An overview of the methanol fuel cell power system was provided, identifying improved efficiency and reduced emissions as the principal advantages. Four critical tasks regarding on-board fuel processing were described: (1) efficient methanol conversion (steam reforming), (2) effective reformate purification (selective catalytic oxidation), (3) optimized heat integration, and (4) rapid response to transients. A description of a 100 kW PEM fuel cell bus engine package was also presented. As far as a development time table is concerned, the DBB Fuel Cell Engines Corp. of Poway California has completed two methanol fueled PEMFC power plants, fabrication of the initial 100 kW PEMFC engine is in progress and scheduled for delivery by 1998. The two methanol fueled commercial products which are in the planning stages are the 100 and 200 kW class FCPS for hybrid and non-hybrid buses and other applications. tabs., figs.

  20. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed ∼ 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs

  1. Functional simulations of power electronics components in series-hybrid machinery for the needs of OEM

    Energy Technology Data Exchange (ETDEWEB)

    Liukkonen, M.; Hentunen, A.; Kyyrae, J. (Department of Electrical Engineering, Helsinki University of Technology, Espoo (Finland)); Suomela, J. (Department of Automation and Systems, Helsinki University of Technology, Espoo (Finland))

    2008-07-01

    A method for rapid control prototyping of the series-hybrid transmission system is proposed in this paper. The rapid control prototyping needs simulation submodels from all system components in order to develop supervisory control software. The same simulation models can also be used to optimize the drive train. The target framework for the rapid control prototyping method is the original equipment manufacturer (OEM), where the objective is to build devices from subcontractor's components. The machinery industry, as a target group, uses high power ratings for the creation of motion, which leads to high voltage and current values used in the system. Therefore, prototyping is started with careful simulations. This paper also seeks to create a general idea about the structure of the series-hybrid power transmission and assists the start of the process for designing the supervisory control. (orig.)

  2. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase-Islanded Microgrid Consisting of Hybrid Source PV/Battery Units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV...... in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  3. Lower hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    Science.gov (United States)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Reinke, M. L.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.

    2016-05-01

    For the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt ( t Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density ( n e > 1.0 × 10 20 (m-3)). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch.

  4. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  5. Improvement of cosmic ray ruggedness of hybrid vehicles power semiconductor devices

    International Nuclear Information System (INIS)

    Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Shoji, Tomoyuki; Ishiko, Masayasu

    2010-01-01

    Power semiconductors which are used under high voltage conditions in HVs (Hybrid Vehicles) are required to have high destruction tolerance against cosmic rays as well as to meet conventional quality standards. In this paper, an SEB (Single Event Burnout) failure mechanism induced by cosmic rays in IGBTs (Insulated Gate Bipolar Transistors) was investigated. Through an optimized device design in which thyristor action was suppressed, the device destruction tolerance was greatly improved. (author)

  6. Control of a hybrid compensator in a power network by an artificial neural network

    Directory of Open Access Journals (Sweden)

    I. S. Shaw

    1998-07-01

    Full Text Available Increased interest in the elimination of distortion in electrical power networks has led to the development of various compensator topologies. The increasing cost of electrical energy necessitates the cost-effective operation of any of these topologies. This paper considers the development of an artificial neural network based controller, trained by means of the backpropagation method, that ensures the cost-effective operation of the hybrid compensator consisting of various converters and filters.

  7. Proton Exchange Membrane Fuel Cell/Supercapasitor Hybrid Power Management System for a Golf Cart

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang

    2016-01-01

    This paper presented the transformation of a golf cart system powered lead acid battery into an environmental friendly hybrid vehicle. The design developed by using an advantage contributes by the uprising alternative power source candidate which is Proton Exchange Membrane Fuel Cell (PEMFC) and the maintenance free energy storage device, a supercapacitor (SC). The fuel cell (FC) stack was an in house manufactured with 450 W (36 V, 12.5 A) power, while the SC was from Maxwell Technologies (48 V, 165 F). This two power sources were controlled by the mechanical relay, meanwhile the reactant (hydrogen) are control by mass flow controller (MFC) both signaled by a National Instrument (NI) devices. The power management controller are programmed in the LabVIEW environment and then downloaded to the NI devices. The experimental result of the power trend was compared before and after the transformation with the same route to validate the effectiveness of the proposed power management strategy. The power management successfully controls the power sharing between power sources and satisfies the load transient. While the reactant control managed to vary the hydrogen mass flow rate feed according to the load demand in vehicular applications. (author)

  8. Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating

    Science.gov (United States)

    Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan

    2018-01-01

    Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm-3 and 378.79 μW cm-3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.

  9. A lignite-geothermal hybrid power and hydrogen production plant for green cities and sustainable buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kilkis, B. [Baskent University, Ankara (Turkey). Dept. of Mechanical Engineering

    2011-02-15

    Turkey is rich in both geothermal energy and lignite reserves, which in many cases, are co-located. This condition makes it feasible to utilize both lignite and geothermal energy in a hybrid form for combined power heat, and cold generation, which may lead to optimally energy and exergy efficient, environmentally benign, and economically sound applications. This paper presents a novel concept of hybrid lignite-geothermal plant for a district energy system and hydrogen production facility in Aydin with special emphasis on high performance, green buildings and green districts. In this concept, lignite is first introduced to a partially fluidized-bed gasifier and then to a fluidized-bed gas cleaning unit, which produces synthetic gas and finally hydrogen. The by-products, namely char and ash are used in a fluidized-bed combustor to produce power. Waste heat from all these steps are utilized in a district heating system along with heat received from geothermal production wells after power is generated there. H{sub 2}S gas obtained from the separator system is coupled with hydrogen production process at the lignite plant. Absorption cooling systems and thermal storage tanks complement the hybrid system for the tri-generation district energy system. On the demand side, the new, green OSTIM OSB administration building in Ankara is exemplified for greener, low-exergy buildings that will compound the environmental benefits.

  10. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    Science.gov (United States)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  11. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    DEFF Research Database (Denmark)

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately es...

  12. PEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tinton Dwi Atmaja

    2012-02-01

    Full Text Available Page HeaderOpen Journal SystemsJournal HelpUser You are logged in as...aulia My Journals My Profile Log Out Log Out as UserNotifications View (27 new ManageJournal Content SearchBrowse By Issue By Author By Title Other JournalsFont SizeMake font size smaller Make font size default Make font size largerInformation For Readers For Authors For LibrariansKeywords CBPNN Displacement FLC LQG/LTR Mixed PMA Ventilation bottom shear stress direct multiple shooting effective fuzzy logic geoelectrical method hourly irregular wave missile trajectory panoramic image predator-prey systems seawater intrusion segmentation structure development pattern terminal bunt manoeuvre Home About User Home Search Current Archives ##Editorial Board##Home > Vol 23, No 1 (2012 > AtmajaPEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid VehicleTinton Dwi Atmaja, Amin AminAbstractone of the present-day implementation of fuel cell is acting as main power source in Fuel Cell Hybrid Vehicle (FCHV. This paper proposes some strategies to optimize the performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC implanted with auxiliary power source to construct a proper FCHV hybridization. The strategies consist of the most updated optimization method determined from three point of view i.e. Energy Storage System (ESS, hybridization topology and control system analysis. The goal of these strategies is to achieve an optimum hybridization with long lifetime, low cost, high efficiency, and hydrogen consumption rate improvement. The energy storage system strategy considers battery, supercapacitor, and high-speed flywheel as the most promising alternative auxiliary power source. The hybridization topology strategy analyzes the using of multiple storage devices injected with electronic components to bear a higher fuel economy and cost saving. The control system strategy employs nonlinear control system to optimize the ripple factor of the voltage and the current

  13. Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources

    International Nuclear Information System (INIS)

    Liu, Qiang; Shang, Linlin; Duan, Yuanyuan

    2016-01-01

    Highlights: • Geothermal energy is used to preheat the feedwater in a coal-fired power unit. • The performance of a hybrid geothermal–fossil power generation system is analyzed. • Models for both parallel and serial geothermal preheating schemes are presented. • Effects of geothermal source temperatures, distances and heat losses are analyzed. • Power increase of the hybrid system over an ORC and tipping distance are discussed. - Abstract: Low-enthalpy geothermal heat can be efficiently utilized for feedwater preheating in coal-fired power plants by replacing some of the high-grade steam that can then be used to generate more power. This study analyzes a hybrid geothermal–fossil power generation system including a supercritical 1000 MW power unit and a geothermal feedwater preheating system. This study models for parallel and serial geothermal preheating schemes and analyzes the thermodynamic performance of the hybrid geothermal–fossil power generation system for various geothermal resource temperatures. The models are used to analyze the effects of the temperature matching between the geothermal water and the feedwater, the heat losses and pumping power during the geothermal water transport and the resource distance and temperature on the power increase to improve the power generation. The serial geothermal preheating (SGP) scheme generally generates more additional power than the parallel geothermal preheating (PGP) scheme for geothermal resource temperatures of 100–130 °C, but the SGP scheme generates slightly less additional power than the PGP scheme when the feedwater is preheated to as high a temperature as possible before entering the deaerator for geothermal resource temperatures higher than 140 °C. The additional power decreases as the geothermal source distance increases since the pipeline pumping power increases and the geothermal water temperature decreases due to heat losses. More than 50% of the power decrease is due to geothermal

  14. Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles

    International Nuclear Information System (INIS)

    Zheng, Fangdan; Jiang, Jiuchun; Sun, Bingxiang; Zhang, Weige; Pecht, Michael

    2016-01-01

    The power capability of lithium-ion batteries affects the safety and reliability of hybrid electric vehicles and the estimate of power by battery management systems provides operating information for drivers. In this paper, lithium ion manganese oxide batteries are studied to illustrate the temperature dependency of power capability and an operating map of power capability is presented. Both parametric and non-parametric models are established in conditions of temperature, state of charge, and cell resistance to estimate the power capability. Six cells were tested and used for model development, training, and validation. Three samples underwent hybrid pulse power characterization tests at varied temperatures and were used for model parameter identification and model training. The other three were used for model validation. By comparison, the mean absolute error of the parametric model is about 29 W, and that of the non-parametric model is around 20 W. The mean relative errors of two models are 0.076 and 0.397, respectively. The parametric model has a higher accuracy in low temperature and state of charge conditions, while the non-parametric model has better estimation result in high temperature and state of charge conditions. Thus, two models can be utilized together to achieve a higher accuracy of power capability estimation. - Highlights: • The temperature dependency of power capability of lithium-ion battery is investigated. • The parametric and non-parametric power capability estimation models are proposed. • An exponential function is put forward to compensate the effects of temperature. • A comparative study on the accuracy of two models using statistical metrics is presented.

  15. A Hybrid Islanding Detection Technique Using Average Rate of Voltage Change and Real Power Shift

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2009-01-01

    The mainly used islanding detection techniques may be classified as active and passive techniques. Passive techniques don't perturb the system but they have larger nondetection znes, whereas active techniques have smaller nondetection zones but they perturb the system. In this paper, a new hybrid...... technique is proposed to solve this problem. An average rate of voltage change (passive technique) has been used to initiate a real power shift (active technique), which changes the eal power of distributed generation (DG), when the passive technique cannot have a clear discrimination between islanding...

  16. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...

  17. Outgassing studies of lower hybrid antenna module during CW high RF power injection

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.; Maebara, S.; Ikeda, Y.; Imai, T.; Nagashima, T.

    1994-01-01

    Outgassing, induced by very long RF waves injection (up to 6000s) at high power density, is studied with a module, able to be used for a lower hybrid frequency antenna. A large outgassing data base is provided by 75 shots cumulating 27 hours of RF injection. Outgassing rate is documented after different thermal pre-treatments, and in various conditions of cooling, RF power level. Relevant parameters are identified and values of outgassing rates are given in order to design pumping system for a large antenna. (author) 4 refs.; 7 figs.; 1 tab

  18. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel

    2014-01-01

    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source...... of energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  19. Performance Analysis of a MCFC/MGT Hybrid Power System Bi-Fueled by City Gas and Biogas

    Directory of Open Access Journals (Sweden)

    Hongyu Huang

    2015-06-01

    Full Text Available This study evaluates the performance of a molten carbonate fuel cell and micro gas turbine (MCFC/MGT hybrid power system bi-fueled by city gas and biogas. The performance of the MCFC/MGT hybrid power system and MFCF/MGT hybrid power system response have been investigated experimentally and numerically. Results show that the MCFC, steam reformer, and catalytic combustor models are in agreement with the experimental results of the system fueled by city gas only and the system bi-fueled by city gas and biogas. The MFCF/MGT hybrid power system can have manifest operation with the addition of biogas at a flow rate of up to 150.0 Nm3·h−1, which is about 50% of the overall input heat value. In addition, the MCFC and MGT outputs decrease with the increase in the flow rate of added biogas, with an overall power generation efficiency ranging from 39.0% to 42.0%. Furthermore, the MCFC/MGT hybrid power system can be operated stably both at low amplitude with slow current change and large amplitude with rapid power conditions. Finally, the MCFC/MGT hybrid system bi-fueled by city gas and biogas may be applicable to the energy supply of the micro–grid network.

  20. Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2015-11-01

    Full Text Available An energy management strategy (EMS considering both optimality and real-time performance has become a challenge for the development of hybrid electric vehicles (HEVs in recent years. Previous EMSes based on the optimal control theory minimize the fuel consumption, but cannot be directly implemented in real-time because of the requirement for a prior knowledge of the entire driving cycle. This paper presents an innovative design concept and method to obtain a power management strategy for HEVs, which is independent of future driving conditions. A quadratic performance index is designed to ensure the vehicle drivability, maintain the battery energy sustainability and average and smooth the engine power and motor power to indirectly reduce fuel consumption. To further improve the fuel economy, two rules are adopted to avoid the inefficient engine operation by switching control modes between the electric and hybrid modes according to the required driving power. The derived power of the engine and motor are related to current vehicle velocity and battery residual energy, as well as their desired values. The simulation results over different driving cycles in Advanced Vehicle Simulator (ADVISOR show that the proposed strategy can significantly improve the fuel economy, which is very close to the optimal strategy based on Pontryagin’s minimum principle.

  1. Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method

    Energy Technology Data Exchange (ETDEWEB)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng; Pota, Hemanshu; Gadh, Rajit

    2016-05-02

    This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA) models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.

  2. A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion

    Directory of Open Access Journals (Sweden)

    Jye-Chau Su

    2013-09-01

    Full Text Available In this paper, a power supply system for hybrid renewable energy conversion is proposed, which can process PV (photovoltaic power and wind-turbine energy simultaneously for step-down voltage and high current applications. It is a dual-input converter and mainly contains a PV energy source, a wind turbine energy source, a zero-voltage-switching (ZVS forward converter, and a current-doubler rectifier. The proposed power supply system has the following advantages: (1 PV-arrays and wind-energy sources can alternatively deliver power to the load during climate or season alteration; (2 maximum power point tracking (MPPT can be accomplished for both different kinds of renewable-energy sources; (3 ZVS and synchronous rectification techniques for the active switches of the forward converter are embedded so as to reduce switching and conducting losses; and (4 electricity isolation is naturally obtained. To achieve an optimally dynamic response and to increase control flexibility, a digital signal processor (DSP is investigated and presented to implement MPPT algorithm and power regulating scheme. Finally, a 240 W prototype power supply system with ZVS and current-doubler features to deal with PV power and wind energy is built and implemented. Experimental results are presented to verify the performance and the feasibility of the proposed power supply system.

  3. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang; Zuo, Jian; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic

  4. Assessing the Structural, Driver and Economic Impacts of Traffic Pole Mounted Wind Power Generator and Solar Panel Hybrid System

    Science.gov (United States)

    2012-06-01

    This project evaluates the physical and economic feasibility of using existing traffic infrastructure to mount wind power : generators. Some possible places to mount a light weight wind generator and solar panel hybrid system are: i) Traffic : signal...

  5. Research on hybrid transmission mode for HVDC with optimal thermal power and renewable energy combination

    Science.gov (United States)

    Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu

    2018-02-01

    With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.

  6. Power electronics and electric machinery challenges and opportunities in electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.J.; Hsu, J.S.; Young, R.W. [Oak Ridge National Lab., TN (United States); Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-06-01

    The development of power electronics and electric machinery presents significant challenges to the advancement of electric and hybrid vehicles. Electronic components and systems development for vehicle applications have progressed from the replacement of mechanical systems to the availability of features that can only be realized through interacting electronic controls and devices. Near-term applications of power electronics in vehicles will enable integrated powertrain controls, integrated chassis system controls, and navigation and communications systems. Future applications of optimized electric machinery will enable highly efficient and lightweight systems. This paper will explore the areas where research and development is required to ensure the continued development of power electronics and electric machines to meet the rigorous demands of automotive applications. Additionally, recent advances in automotive related power electronics and electric machinery at Oak Ridge National Laboratory will be explained. 3 refs., 5 figs.

  7. Feedback control of the lower hybrid power deposition profile on Tore Supra

    International Nuclear Information System (INIS)

    Barana, O; Mazon, D; Laborde, L; Turco, F

    2007-01-01

    The Tore Supra facility is well suited to study ITER relevant topics such as the real-time control of plasma current and the sustaining of steady-state discharges. This work describes a tool that was recently developed and implemented on Tore Supra to control in real time, by means of the direct knowledge of the suprathermal electron local emission profile, the width of the lower hybrid power deposition profile. This quantity can be considered to some extent equivalent to the width of the plasma current density profile in case of fully non-inductive discharges. This system takes advantage of an accurate hard x-ray diagnostics, of an efficient lower hybrid additional heating and of a reliable real-time communication network. The successful experiments carried out to test the system employed, as actuators, the parallel refractive index n // and the total power P LH . The control of the suprathermal electron local emission profile through n // was also integrated with the feedback control of the total plasma current I P with P LH and of the loop voltage V loop with the central solenoid flux. These results demonstrate that the system is robust, reliable and able to counterbalance destabilizing events. This tool can be effectively used in the future in fully non-inductive discharges to improve the MHD stability and to maintain internal transport barriers or lower hybrid enhanced performance modes. The real-time control of the lower hybrid power deposition profile could also be used in conjunction with the electron-cyclotron radiofrequency heating for synergy studies

  8. Power-balancing instantaneous optimization energy management for a novel series-parallel hybrid electric bus

    Science.gov (United States)

    Sun, Dongye; Lin, Xinyou; Qin, Datong; Deng, Tao

    2012-11-01

    Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.

  9. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection.

    Science.gov (United States)

    Fu, Shizhe; Zhang, Xueqing; Xie, Yuzhe; Wu, Jie; Ju, Huangxian

    2017-07-06

    An efficient enzyme-powered micromotor device was fabricated by assembling multiple layers of catalase on the inner surface of a poly(3,4-ethylenedioxythiophene and sodium 4-styrenesulfonate)/Au microtube (PEDOT-PSS/Au). The catalase assembly was achieved by programmed DNA hybridization, which was performed by immobilizing a designed sandwich DNA structure as the sensing unit on the PEDOT-PSS/Au, and then alternately hybridizing with two assisting DNA to bind the enzyme for efficient motor motion. The micromotor device showed unique features of good reproducibility, stability and motion performance. Under optimal conditions, it showed a speed of 420 μm s -1 in 2% H 2 O 2 and even 51 μm s -1 in 0.25% H 2 O 2 . In the presence of target DNA, the sensing unit hybridized with target DNA to release the multi-layer DNA as well as the multi-catalase, resulting in a decrease of the motion speed. By using the speed as a signal, the micromotor device could detect DNA from 10 nM to 1 μM. The proposed micromotor device along with the cyclic alternate DNA hybridization assembly technique provided a new path to fabricate efficient and versatile micromotors, which would be an exceptional tool for rapid and simple detection of biomolecules.

  10. Modeling and Control of a DC-grid Hybrid Power System with Battery and Variable Speed Diesel Generators

    OpenAIRE

    Syverud, Tron Hansen

    2016-01-01

    Hybrid electric power systems (HPS) have successfully been integrated in the road-traffic industry due to enhanced efficiency and environmental benefits. Recently this concept has been implemented in the marine sector. In this master thesis, the construction of a DC hybrid power system for a marine vessel is outlined in detail. The HPS is developed in Matlbat/Simulink and comprises two set of diesel generators with variable speed, six-pulse diode bridges, a battery bank, bidire...

  11. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  12. Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations

    Directory of Open Access Journals (Sweden)

    Jingyu Liu

    2016-11-01

    Full Text Available With the increasing contribution of wind power plants, the reliability and security of modern power systems have become a huge challenge due to the uncertainty and intermittency of wind energy sources. In this paper, a hybrid energy storage system (HESS consisting of battery and supercapacitor is built to smooth the power fluctuations of wind power. A power allocation strategy is proposed to give full play to the respective advantages of the two energy storage components. In the proposed strategy, the low-frequency and high-frequency components of wind power fluctuations are absorbed by battery groups and supercapacitor groups, respectively. By inhibiting the low-frequency components of supercapacitor current, the times of charging-discharging of battery groups can be significantly reduced. A DC/AC converter is applied to achieve the power exchange between the HESS and the grid. Adjustment rules for regulating state-of-charge (SOC of energy storage elements are designed to avoid overcharge and deep discharge considering the safety and the high efficiency of the energy storage elements. Experimental results on the test platform verify the effectiveness of the proposed power allocation strategy in DC/AC converter and battery SOC adjustment rules for regulating SOC levels.

  13. Bio-inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles.

    Science.gov (United States)

    Kim, Shi Hyeong; Kwon, Cheong Hoon; Park, Karam; Mun, Tae Jin; Lepró, Xavier; Baughman, Ray H; Spinks, Geoffrey M; Kim, Seon Jeong

    2016-03-14

    Hygromorph artificial muscles are attractive as self-powered actuators driven by moisture from the ambient environment. Previously reported hygromorph muscles have been largely limited to bending or torsional motions or as tensile actuators with low work and energy densities. Herein, we developed a hybrid yarn artificial muscle with a unique coiled and wrinkled structure, which can be actuated by either changing relative humidity or contact with water. The muscle provides a large tensile stroke (up to 78%) and a high maximum gravimetric work capacity during contraction (2.17 kJ kg(-1)), which is over 50 times that of the same weight human muscle and 5.5 times higher than for the same weight spider silk, which is the previous record holder for a moisture driven muscle. We demonstrate an automatic ventilation system that is operated by the tensile actuation of the hybrid muscles caused by dew condensing on the hybrid yarn. This self-powered humidity-controlled ventilation system could be adapted to automatically control the desired relative humidity of an enclosed space.

  14. Mode transition coordinated control for a compound power-split hybrid car

    Science.gov (United States)

    Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna

    2017-03-01

    With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.

  15. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  16. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  17. PV–wind hybrid power option for a low wind topography

    International Nuclear Information System (INIS)

    Bhattacharjee, Subhadeep; Acharya, Shantanu

    2015-01-01

    Highlights: • Optimally harness the wind energy by unification of solar resource. • Analysis of PV–wind hybrid system with tangible experience. • Cost of generation and renewable fraction are $0.488/kWh and 0.90 respectively. • Maximum wind penetration is observed to be 32.75% with installed PV–wind system. • Indicative annual grid electricity conservation is 90%. - Abstract: Solar and wind are clean energy sources with enormous potential to alleviate grid dependence. The paper aims to optimally harness the wind resource with the support of solar energy through hybrid technology for a north-east Indian state Tripura (low wind topography). Techno-economic analysis of a photovoltaic (PV)-wind hybrid simulation model has been performed for small scale application in an educational building. The study also evaluates the tangible performance of a similar plant in practical condition of the site. It has emerged from the study that major energy generation is turning out from PV segment which is promising almost all round the year. Nonetheless, a considerable amount of wind power is found to be generated during half of the year when average PV power production is comparatively less. The cost of electricity from the simulation model is found to be $0.488/kWh while renewable fraction in the total electricity share is obtained to be 0.90. From the actual performance of the plant, maximum wind penetration is observed to be 32.75%

  18. Optimized efficiency of all-electric ships by dc hybrid power systems

    Science.gov (United States)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  19. Conceptual Design of Low Fusion Power Hybrid System for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    DRUP (Direct Reuse of Used PWR) fuel has same process with DUPIC (Direct Use of spent PWR fuel Into CANDU reactor). There are 2 big benefits by using DRUP fuel in Hybrid system. One is fissile production during operating period. Required power is decreased by fissile production from DRUP fuel. When the fusion power is reduced, integrity of structure materials is not significantly weakened due to reduction of 14.1MeV high energy neutrons. In addition, required amount of tritium for self-sufficiency TBR (Tritium Breeding Ratio ≥ 1.1) is decreased. Therefore, it is possible to further loading the SNF as much as the amount of lithium decreased. It is effective in transmutation. The other one is that DRUP fuel is also SNF. Therefore, using DRUP fuel is reusing of SNF, as a result it makes reduction of SNF from PWR. However, thermal neutron system is suitable for using DRUP fuel compared to fast neutron system. Therefore, transmutation zone designed (U-TRU)Zr fuel and fissile production zone designed DRUP fuel are separated in this study. In this paper, using DRUP fuel for low fusion power in hybrid system is suggested. Fusion power is decreased by using DRUP fuel. As a result, TBR is satisfied design condition despite of using natural lithium. In addition, not only (U-TRU)Zr fuel but also DRUP fuel are transmuted.

  20. Natural uranium fueled light water moderated breeding hybrid power reactors: a feasibility study

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    1978-06-01

    The first part of the study consists of a thorough investigation of the properties of subcritical thermal lattices for hybrid reactor applications. Light water is found to be the best moderator for (fuel-self-sufficient) FSS hybrid reactors for power generation. Several lattice geometries and compositions of particular promise for LWHRs are identified. Using one of these lattices, fueled with natural uranium, the performance of several concepts of LWHR blankets is investigated, and optimal blanket designs are identified. The effect of blanket coverage efficiency and the feasibility of separating the functions of tritium breeding and of power generation to different blankets are investigated. Optimal iron-water shields for LWHRs are also determined. The performance of generic types of LWHRs is evaluated. The evolution of the blanket properties with burnup is evaluated and fuel management schemes are briefly examined. The feasibility of using the lithium system of the blanket to control the blanket power amplitude and shape is also investigated. A parametric study of the energy balance of LWHR power plants is carried out, and performance parameters expected from LWHRs are estimated. Discussions are given of special features of LWHRs and their fuel cycle

  1. A Hybrid Data Compression Scheme for Power Reduction in Wireless Sensors for IoT.

    Science.gov (United States)

    Deepu, Chacko John; Heng, Chun-Huat; Lian, Yong

    2017-04-01

    This paper presents a novel data compression and transmission scheme for power reduction in Internet-of-Things (IoT) enabled wireless sensors. In the proposed scheme, data is compressed with both lossy and lossless techniques, so as to enable hybrid transmission mode, support adaptive data rate selection and save power in wireless transmission. Applying the method to electrocardiogram (ECG), the data is first compressed using a lossy compression technique with a high compression ratio (CR). The residual error between the original data and the decompressed lossy data is preserved using entropy coding, enabling a lossless restoration of the original data when required. Average CR of 2.1 × and 7.8 × were achieved for lossless and lossy compression respectively with MIT/BIH database. The power reduction is demonstrated using a Bluetooth transceiver and is found to be reduced to 18% for lossy and 53% for lossless transmission respectively. Options for hybrid transmission mode, adaptive rate selection and system level power reduction make the proposed scheme attractive for IoT wireless sensors in healthcare applications.

  2. Profit Allocation of Hybrid Power System Planning in Energy Internet: A Cooperative Game Study

    Directory of Open Access Journals (Sweden)

    Jicheng Liu

    2018-02-01

    Full Text Available The rapid development of Energy Internet (EI has prompted numbers of generators to participate, leading to a hybrid power system. Hence, how to plan the hybrid power system and allocate its profit becomes necessary. In this paper, the cooperative game theory is introduced to discuss this problem. We first design the basic structure of EI, and point out the object of this study—coal power plant-wind farm-photovoltaic power station-energy storage provider (CWPE alliance. Subsequently, average allocation strategy (AAS, capacity-based allocation strategy (CAS and Shapley value allocation strategy (SAS are proposed, and then the modified disruption propensity (MDP index is constructed to judge the advantages and disadvantages of the three schemes. Thirdly, taking a certain area of A Province as an example, the profits of CWPE under three strategies are calculated respectively. Finally, by analyzing individual rationality and collective rationality of cooperative game and the MDP index of the three profit allocation schemes, we find that SAS is the most stable.

  3. Development of a new lower hybrid antenna module using a poloidal power divider

    International Nuclear Information System (INIS)

    Maebara, Sunao; Seki, Masami; Suganuma, Kazuaki

    1996-07-01

    The antenna using poloidal power divider is an effective method for simplification of Lower Hybrid Current Drive (LHCD) antenna system. This method should allow to reduce the power density in the antenna while maintaining a good flexibility of N parallel spectrum of waves. For this purpose, three types of poloidal power divider which split the power in three, and the 3 x 6 multi-junction module were developed. r.f. properties and outgassing of these components were evaluated using the CEA Cadarache RF Test Facility. A good power dividing ratio of 33 ± 4% was obtained for each of these poloidal dividers, and the reflection coefficient was lower value than 1.5%. For the 3 x 6 multi-junction, reflection coefficient was less than 1.3% and r.f. losses lower than 1.0% were measured. On the other hand, it was found in the scattering matrix analysis that reflection coefficient at plasma has to be less than a few % in order to operate these components under available conditions. In combination with two poloidal power dividers connected to the 3 x 6 multi-junction module, quasi stationary operation for r.f. injection time of 1000 sec at 300 kW was demonstrated under water cooling. In this case, it was found that the outgassing rate is in the lower range of 10 -7 Pam 3 s -1 m -2 within the maximum module temperature of ∼100degC. This report describes the experimental and analytical results of a new lower hybrid (LH) antenna module using the poloidal power divider. (author)

  4. Third generation hybrid drive. Transmission-based integration of power electronics; Dritte Generation Hybridantrieb. Getriebenahe Integration der Leistungselektronik

    Energy Technology Data Exchange (ETDEWEB)

    Schoen, Wolfgang [ZF Friedrichshafen AG, Friedrichshafen (DE). Hybridantriebe (F und E); Lutz, Steffen [BMW AG, Muenchen (Germany); Hensler, Alexander [Technische Univ. Chemnitz (Germany); Munding, Andreas [Liebherr Elektronik GmbH, Lindau (Germany); Thoben, Markus [Infineon Technologies AG, Warstein (Germany); Zeidler, Dietmar [Kemet Electronics GmbH, Landsberg am Lech (Germany)

    2011-06-15

    The power electronics components in today's hybrid vehicles are situated at different places in the vehicle - till now far away from harsh and hot surroundings. In order to develop an integrated solution near the transmission, ZF and BMW launched the research project 'Electric components for active power transmissions' (EfA). On the basis of an eight-speed full hybrid transmission and together with Infineon, Kemet, Liebherr, and the University of Technology of Chemnitz, they are developing a power electronics unit, which facilitates doubling the power density while increasing the operating temperature. The project EfA will be concluded in June 2011. (orig.)

  5. Hybrid Configuration of Darrieus and Savonius Rotors for Stand-alone Power Systems

    Science.gov (United States)

    Wakui, Tetsuya; Tanzawa, Yoshiaki; Hashizume, Takumi; Nagao, Toshio

    The suitable hybrid configuration of Darrieus lift-type and Savonius drag-type rotors for stand-alone wind turbine-generator systems is discussed using our dynamic simulation model. Two types of hybrid configurations are taken up: Type-A installs the Savonius rotor inside the Darrieus rotor and Type-B installs the Savonius rotor outside the Darrieus rotor. The computed results of the output characteristics and the dynamic behaviors of the system operated at the maximum power coefficient points show that Type-A, which has fine operating behavior to wind speed changes and can be compactly designed because of a shorter rotational shaft, is an effective way for self-controlled stand-alone small-scale systems.

  6. A decision support system based on hybrid knowledge approach for nuclear power plant operation

    International Nuclear Information System (INIS)

    Yang, J.O.; Chang, S.H.

    1991-01-01

    This paper describes a diagnostic expert system, HYPOSS (Hybrid Knowledge Based Plant Operation Supporting System), which has been developed to support operators' decision making during the transients of nuclear power plant. HYPOSS adopts the hybrid knowledge approach which combines shallow and deep knowledge to couple the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure: structural, functional, behavioral and heuristic knowledge. Frames and rules are adopted to represent the various knowledge types. Rule-based deduction and abduction are used for shallow and deep knowledge based reasoning respectively. The event-based operational guidelines are provided to the operator according to the diagnosed results

  7. Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer

    Science.gov (United States)

    Zhou, Bin; Zhang, Jianwu; Gao, Ji; Yu, Haisheng; Liu, Dong

    2018-06-01

    For a power-split hybrid transmission, using the brake clutch to realize the transition from electric drive mode to hybrid drive mode is an available strategy. Since the pressure information of the brake clutch is essential for the mode transition control, this research designs a nonlinear robust reduced-order observer to estimate the brake clutch pressure. Model uncertainties or disturbances are considered as additional inputs, thus the observer is designed in order that the error dynamics is input-to-state stable. The nonlinear characteristics of the system are expressed as the lookup tables in the observer. Moreover, the gain matrix of the observer is solved by two optimization procedures under the constraints of the linear matrix inequalities. The proposed observer is validated by offline simulation and online test, the results have shown that the observer achieves significant performance during the mode transition, as the estimation error is within a reasonable range, more importantly, it is asymptotically stable.

  8. SVC Planning in Large–scale Power Systems via a Hybrid Optimization Method

    DEFF Research Database (Denmark)

    Yang, Guang ya; Majumder, Rajat; Xu, Zhao

    2009-01-01

    The research on allocation of FACTS devices has attracted quite a lot interests from various aspects. In this paper, a hybrid model is proposed to optimise the number, location as well as the parameter settings of static Var compensator (SVC) deployed in large–scale power systems. The model...... utilises the result of vulnerability assessment for determining the candidate locations. A hybrid optimisation method including two stages is proposed to find out the optimal solution of SVC in large– scale planning problem. In the first stage, a conventional genetic algorithm (GA) is exploited to generate...... a candidate solution pool. Then in the second stage, the candidates are presented to a linear planning model to investigate the system optimal loadability, hence the optimal solution for SVC planning can be achieved. The method is presented to IEEE 300–bus system....

  9. PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM

    Directory of Open Access Journals (Sweden)

    Bahubali K. Shiragapur

    2016-03-01

    Full Text Available In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR quantity. The Golay Code (24, 12, Reed-Muller code (16, 11, Hamming code (7, 4 and Hybrid technique (Combination of Signal Scrambling and Signal Distortion proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conventional and Modified Selective mapping techniques. The simulation results are validated through statistical properties, for proposed technique’s autocorrelation value is maximum shows reduction in PAPR. The symbol preference is the key idea to reduce PAPR based on Hamming distance. The simulation results are discussed in detail, in this article.

  10. A Study on a Hybrid Approach for Diagnosing Faults in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yang, M.; Zhang, Z.J.; Peng, M.J.; Yan, S.Y.; Wang, H.; Ouyang, J.

    2006-01-01

    Proper and rapid identification of malfunctions is of premier importance for the safe operation of Nuclear Power Plants (NPP). Many monitoring or/and diagnosis methodologies based on artificial and computational intelligence have been proposed to aid operator to understand system problems, perform trouble-shooting action and reduce human error under serious pressure. However, because no single method is adequate to handle all requirements for diagnostic system, hybrid approaches where different methods work in conjunction to solve parts of the problem interest researchers greatly. In this study, Multilevel Flow Models (MFM) and Artificial Neural Network (ANN) are proposed and employed to develop a fault diagnosis system with the intention of improving the success rate of recognition on the one hand, and improving the understandability of diagnostic process and results on the other hand. Several simulation cases were conducted for evaluating the performance of the proposed diagnosis system. The simulation results validated the effectiveness of the proposed hybrid approach. (authors)

  11. Feasibility study on the demonstrative test on the hybrid mini hydroelectric power generation technology. 2; Hybrid gata mini suiryoku hatsuden gijutsu ni kakawaru jissho shiken kanosei chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A study was made for the purpose of electrification of unelectrified zones of the mountainous areas in developing countries using extremely small hydroelectric power facilities. The target for this project is a development of a micro hydroelectric power system with a size of about 5kW, which is estimated regarding that 1 village has 80 houses and each house needs electricity of 60W. In the study, the low-head system using a weir of irrigation channels in Subang pref. of West Java state was selected by the evaluation of access, stability of flow rate, natural conditions, etc. The hydroelectric power plant is of a flow-in method in which water is taken from the left bank and is injected/discharged to the downstream of the left bank. As the hybrid complementary power source, hybrid battery with a two-hour charging time at peak and a capacity of 3.5kWh was considered. When estimating the construction cost of the hybrid micro hydroelectric power system and equalizing by durable years, the operational cost per kW is 15 times higher than the benefits which local people receive. It was judged to be difficult to say that the micro hydroelectric power system is economically feasible. It was predicted that the financial profit during the demonstrative test is good, according to a trial calculation of income from power rates and the operational cost. 18 refs., 90 figs., 53 tabs.

  12. Economic analysis of hybrid power systems (PV/diesel) in different climatic zones of Tamil Nadu

    International Nuclear Information System (INIS)

    Suresh Kumar, U.; Manoharan, P.S.

    2014-01-01

    Highlights: • Investigation on economic feasibility of PV/diesel system in various climatic zones. • HOMER is used to solve economic feasibility analysis. • By the sensitivity analysis, the net present cost is reduced. • Optimum climatic zone in Tamil Nadu, India is recommended. - Abstract: With the increasing threat to environment and the fast depleting fossil fuel resources, hybrid power systems consisting of two or more renewable energy sources such as solar PV, wind, biomass, ocean thermal-with or without the back up of diesel generator have come to the forefront. These hybrid systems are normally integrated with battery banks for total reliability; such systems have brought about better quality of life in remote areas of developing economics. The remote areas in the state of Tamil Nadu in India possess excellent renewable energy sources. These areas fall under different climatic zones, are sparsely populated and are in the process of development. Though these areas are connected to the grid, Tamil Nadu grid is not stable; it is currently experiencing 40% short fall in generation. Thus grid power is available to these remote areas only for 10 h a day and even when available, there are voltage frequency problems. This paper analyses the economic feasibility of installing and operating hybrid systems in these areas. The areas are divided into different climatic zones and the hybrid system economy is analyzed for each climatic zone on the basis of NPC (net present cost), consumption of diesel and renewable fraction for all climate zones. The analysis indicates that the interior climatic zone – the area would be the optimum climatic zone to install HPS PV/diesel. The sensitivity analysis proves that the NPC of such a system can be reduced. It is suggested that due to high initial cost, government subsidy is necessary to adopt the system on a large scale. Such a profit will encourage development of renewable energy utilization and bring about rapid

  13. Intelligent Hybrid Vehicle Power Control - Part 1: Machine Learning of Optimal Vehicle Power

    Science.gov (United States)

    2012-06-30

    the motor or both can provide the traction power to the drivetrain. During vehicle deceleration, the regenerative braking power is captured to charge...and Amax is the maximum acceleration. The 11 drive cycles are divided into four categories of roadway types and traffic congestion levels, freeway...freeway ramp, arterial, and local. Two of the categories , freeway and arterial, are further divided into subcategories based on a qualitative measure

  14. Hybrid Pricing in a Coupled European Power Market with More Wind Power

    OpenAIRE

    Bjørndal, Endre; Bjørndal, Mette; Cai, Hong; Panos, Evangelos

    2015-01-01

    In the European market, the promotion of wind power leads to more network congestion. Zonal pricing (market coupling), which does not take the physical characteristics of transmission into account, is the most commonly used method to relieve congestion in Europe. Zonal pricing fails to provide adequate locational price signals regarding the energy resource scarcity and thus creates a large amount of unscheduled cross-border flows originating from wind-generated power, making the interconne...

  15. Energy Management of an Off-Grid Hybrid Power Plant with Multiple Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Laura Tribioli

    2016-08-01

    Full Text Available In this paper, an off-grid hybrid power plant with multiple storage systems for an artificial island is designed and two possible strategies for the management of the stored energy are proposed. Renewable power sources (wind/solar technologies are used as primary power suppliers. A lead-acid battery pack (BAT and a reversible polymer electrolyte fuel cell are employed to fulfill the power demand and to absorb extra power. The reversible fuel cell allows reducing costs and occupied space and the fuel cell can be fed by the pure hydrogen produced by means of its reversible operation as an electrolyzer. A diesel engine is employed as backup system. While HOMER Pro® has been employed for a full-factorial-based optimization of the sizes of the renewable sources and the BAT, Matlab/Simulink® has been later used for simulating the plant operation and compare two possible power management control strategies. For the reversible fuel cell sizing, a sensitivity analysis has been carried out varying stack and hydrogen tank sizes. The final choice for plant configuration and power management control strategy has been made on the basis of a comparative analysis of the results, aimed at minimizing fossil fuel consumption and CO2 emissions, battery aging rate and at maximizing the power plant overall efficiency. The obtained results demonstrate the possibility of realizing a renewable power plant, able to match the needs of electrical power in a remote area, by achieving a good integration of different energy sources and facing the intermittent nature of renewable power sources, with very low use of fossil fuels.

  16. An improved power control strategy for hybrid AC-DC microgrids

    DEFF Research Database (Denmark)

    Baharizadeh, Mehdi; Karshenas, Hamid Reza; Guerrero, Josep M.

    2018-01-01

    This paper presents a new droop-based control strategy for hybrid microgrids (HMG) with improved power sharing. When ac microgrids (AC-MG) and dc microgrids (DC-MG) are present in a distribution grid, there is an opportunity to interconnect them via an interlinking converter (IC) and form a HMG......, the possibility of participation of IC in AC-MG reactive power adds some complexity to a HMG control system. In this paper, a new decentralized control strategy is presented for a HMG which relies on regulating the voltage magnitude of a common bus in each microgrid. In this regard, new droop characteristics...... for sources across both microgrids as well as IC are proposed. The proposed droop characteristics result in better active/reactive power sharing across both microgrids and at the same time results in better voltage regulation. The derivation of new droop characteristics is thoroughly discussed in this paper...

  17. Minimisation of the LCOE for the hybrid power supply system with the lead-acid battery

    Directory of Open Access Journals (Sweden)

    Kasprzyk Leszek

    2017-01-01

    Full Text Available The paper presents the methodology of minimisation of the unit cost of production of energy generated in the hybrid system compatible with the lead-acid battery, and used to power a load with the known daily load curve. For this purpose, the objective function in the form of the LCOE and the genetic algorithm method were used. Simulation tests for three types of load with set daily load characteristics were performed. By taking advantage of the legal regulations applicable in the territory of Poland, regarding the energy storing in the power system, the optimal structure of the prosumer solar-wind system including the lead-acid battery, which meets the condition of maximum rated power, was established. An assumption was made that the whole solar energy supplied to the load would be generated in the optimised system.

  18. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    International Nuclear Information System (INIS)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-01-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600–1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles. (invited review)

  19. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Science.gov (United States)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  20. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Ambarish Panda

    2016-09-01

    Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.

  1. On the dynamics of the power spectrum during lower hybrid current drive in Tokamaks

    International Nuclear Information System (INIS)

    Bizarro, J.P.

    1993-01-01

    An investigation is provided on the propagation and absorption of the power spectrum during lower hybrid current drive in Tokamaks. A combined ray tracing and Fokker-Planck code is utilized and stochastic effects induced by toroidicity are correctly taken into account by using a large number of rays. It is shown that when strong wave damping prevails the absorbed spectrum is very similar in shape to the launched one, although some broadening and shifting in parallel wave index generally occur, and power deposition is localized. If the wave damping is weak and stochastic effects are important, rays end up sweeping the entire plasma cross-section, power deposition turns out to be extended, and the absorbed spectrum is much broader than the launched one

  2. On integration of plug-in hybrid electric vehicles into existing power system structures

    International Nuclear Information System (INIS)

    Galus, Matthias D.; Zima, Marek; Andersson, Goeran

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) represent one option for the electrification of private mobility. In order to efficiently integrate PHEVs into power systems, existing organizational structures need to be considered. Based on procedures of power systems planning and operation, actors are identified whose operational activities will be affected by PHEV integration. Potential changes and challenges in the actors' long- and short term planning activities are discussed. Further, a PHEV operation state description is developed which defines vehicle operation states from the power system point of view integrating uncontrolled, controlled recharging and vehicle to grid (V2G) utilization in one single framework. Future PHEV managing entities, such as aggregators, can use this framework for planning and operation activities including load management and V2G. This operational state description could provide a solution for future short term planning challenges of PHEVs and an aegis for various routes of current research, which to date have been weakly linked to each other.

  3. Performance Analysis of Isolated Hybrid Power Plant Model with Dynamic Load Conditions – Morning, Noon and Afternoon Transitions

    Directory of Open Access Journals (Sweden)

    Irawati Rina

    2018-01-01

    Full Text Available Diesel Generator with Photovoltaic Hybrid Power Plant is one of the solutions for supply electric demand to isolated area. The energy sources that can be used for hybrid system are such as photovoltaic, wind turbine, and biomass or biogas, because these sources are almost available in every isolated area. This research used a model of hybrid system from diesel generator and 1.28 kWp photovoltaic power plant. The reliability and some of power quality of this system tested by 1300VA house hold daily load characteristic effectively 24 hour. Power quality and some electricity parameters during transition mode for each resource will be analyzed. Furthermore the power quality analyze will be conducted and evaluated base on Electrical Engineers’ Association (EEA.

  4. Performance Analysis of Isolated Hybrid Power Plant Model with Dynamic Load Conditions - Morning, Noon and Afternoon Transitions

    Science.gov (United States)

    Irawati, Rina

    2018-02-01

    Diesel Generator with Photovoltaic Hybrid Power Plant is one of the solutions for supply electric demand to isolated area. The energy sources that can be used for hybrid system are such as photovoltaic, wind turbine, and biomass or biogas, because these sources are almost available in every isolated area. This research used a model of hybrid system from diesel generator and 1.28 kWp photovoltaic power plant. The reliability and some of power quality of this system tested by 1300VA house hold daily load characteristic effectively 24 hour. Power quality and some electricity parameters during transition mode for each resource will be analyzed. Furthermore the power quality analyze will be conducted and evaluated base on Electrical Engineers' Association (EEA).

  5. Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller

    Directory of Open Access Journals (Sweden)

    Ting-Chia Ou

    2017-04-01

    Full Text Available This paper endeavors to apply a novel intelligent damping controller (NIDC for the static synchronous compensator (STATCOM to reduce the power fluctuations, voltage support and damping in a hybrid power multi-system. In this paper, we discuss the integration of an offshore wind farm (OWF and a seashore wave power farm (SWPF via a high-voltage, alternating current (HVAC electric power transmission line that connects the STATCOM and the 12-bus hybrid power multi-system. The hybrid multi-system consists of a battery energy storage system (BESS and a micro-turbine generation (MTG. The proposed NIDC consists of a designed proportional–integral–derivative (PID linear controller, an adaptive critic network and a proposed functional link-based novel recurrent fuzzy neural network (FLNRFNN. Test results show that the proposed controller can achieve better damping characteristics and effectively stabilize the network under unstable conditions.

  6. Optimal sizing of a hybrid grid-connected photovoltaic and wind power system

    International Nuclear Information System (INIS)

    González, Arnau; Riba, Jordi-Roger; Rius, Antoni; Puig, Rita

    2015-01-01

    Highlights: • Hybrid renewable energy systems are efficient mechanisms to generate electrical power. • This work optimally sizes hybrid grid-connected photovoltaic–wind power systems. • It deals with hourly wind, solar irradiation and electricity demand data. • The system cost is minimized while matching the electricity supply with the demand. • A sensitivity analysis to detect the most critical design variables has been done. - Abstract: Hybrid renewable energy systems (HRES) have been widely identified as an efficient mechanism to generate electrical power based on renewable energy sources (RES). This kind of energy generation systems are based on the combination of one or more RES allowing to complement the weaknesses of one with strengths of another and, therefore, reducing installation costs with an optimized installation. To do so, optimization methodologies are a trendy mechanism because they allow attaining optimal solutions given a certain set of input parameters and variables. This work is focused on the optimal sizing of hybrid grid-connected photovoltaic–wind power systems from real hourly wind and solar irradiation data and electricity demand from a certain location. The proposed methodology is capable of finding the sizing that leads to a minimum life cycle cost of the system while matching the electricity supply with the local demand. In the present article, the methodology is tested by means of a case study in which the actual hourly electricity retail and market prices have been implemented to obtain realistic estimations of life cycle costs and benefits. A sensitivity analysis that allows detecting to which variables the system is more sensitive has also been performed. Results presented show that the model responds well to changes in the input parameters and variables while providing trustworthy sizing solutions. According to these results, a grid-connected HRES consisting of photovoltaic (PV) and wind power technologies would be

  7. Appropriate feed-in tariff of solar–coal hybrid power plant for China’s Inner Mongolia Region

    International Nuclear Information System (INIS)

    Zhao, Yawen; Hong, Hui; Jin, Hongguang

    2016-01-01

    Highlights: • The potential for the first 10 MWe level solar–coal hybrid power plant is estimated. • Economic feasibility analysis is performed based on the discounted cash flow model. • The appropriate feed-in tariff prices of different scenarios are provided. • The results provide suggestions for the development of solar–coal hybrid technology. - Abstract: Middle-temperature solar heat can be used to preheat feed water before it enters the boiler in a coal-fired power plant. Previous studies have shown that this approach can improve the performance of coal-fired power plants. The present study estimates the first solar–coal hybrid power plant in the Inner Mongolia Region. It will have a potential net solar power output of 10 MW on the basis of the operating data of a traditional 200 MW coal-fired power plant. Economic feasibility analysis is then performed on the solar–coal hybrid power plant. The appropriate feed-in tariff prices are provided on the basis of different financing scenarios, solar field cost, collector area size, and other conditions. The results obtained in this study are expected to provide suggestions for the further development of solar–coal hybrid technology.

  8. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    Full Text Available Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  9. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  10. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  11. Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Guerrero, Josep M.; Oraee, Hashem

    2016-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method takes into account the available PV power...... and battery conditions of the units to share the load among them and power flow among different phases is performed automatically through three-phase units. Modified active power-frequency droop functions are used according to operating states of each unit and the frequency level is used as trigger...... for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  12. A control-oriented simulation model of a power-split hybrid electric vehicle

    International Nuclear Information System (INIS)

    Cipek, Mihael; Pavković, Danijel; Petrić, Joško

    2013-01-01

    Highlights: ► A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed. ► Modeling the energy losses in the HEV transmission components are presented. ► The control optimization model implementation aspects are discussed. -- Abstract: A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed in this paper for the purpose of HEV dynamics analysis and control system design. The bond graph methodology is used to model dominant dynamic effects of the mechanical part of the HEV transmission. Simple quasi-static battery model, the environment model, the tire and the power losses model of a vehicle are included, as well. A low-level electric generator speed control loop is designed, which includes a PI controller tuned according to the symmetrical optimum tuning procedure. Finally, off-line optimization by conjugate gradient-based BPTT-like optimal control algorithm, which is based on the presented mathematical model, is also given in the paper.

  13. Hybrid silicon mode-locked laser with improved RF power by impedance matching

    Science.gov (United States)

    Tossoun, Bassem; Derickson, Dennis; Srinivasan, Sudharsanan; Bowers, John

    2015-02-01

    We design and discuss an impedance matching solution for a hybrid silicon mode-locked laser diode (MLLD) to improve peak optical power coming from the device. In order to develop an impedance matching solution, a thorough measurement and analysis of the MLLD as a function of bias on each of the laser segments was carried out. A passive component impedance matching network was designed at the operating frequency of 20 GHz to optimize RF power delivery to the laser. The hybrid silicon laser was packaged together in a module including the impedance matching circuit. The impedance matching design resulted in a 6 dB (electrical) improvement in the detected modulation spectrum power, as well as approximately a 10 dB phase noise improvement, from the MLLD. Also, looking ahead to possible future work, we discuss a Step Recovery Diode (SRD) driven impulse generator, which wave-shapes the RF drive to achieve efficient injection. This novel technique addresses the time varying impedance of the absorber as the optical pulse passes through it, to provide optimum optical pulse shaping.

  14. Dynamic Modeling and Simulation of an Isolated Hybrid Power System in a Rural Area of China

    Directory of Open Access Journals (Sweden)

    Bojian Jiang

    2018-01-01

    Full Text Available In some rural areas in the northwest of China, people are suffering from not only the voltage drop due to long distance transmission but also the power outages due to remoteness and poorly maintained grid. In recent few years, the price of solar energy has been reduced drastically every year in China due to the government policy on renewable energy. In the near future, isolated hybrid power systems for home use could be affordable and used by residences in these rural areas. Thus, it is necessary to design a hybrid power system based on local load and weather condition to check system feasibility and expected performance. It includes load simulation, system sizing, and dynamic system modeling and simulation. This paper firstly introduces current development of renewable energy in China and then goes through the sizing, modeling, and simulation of the system design for a typical remote home in China and finally discusses the system’s availability based on the simulation results. In this paper, the NASA website is the source for weather data, and BEopt is used to generate load data. During system modeling, the MPPT algorithm is much simpler designed than the complex incremental method. A soft starter is adopted with the diesel generator for stability. The charge controller of the battery storage provides external command to the MPPT and diesel PID controller to prevent the battery storage from overcharging. The rms value of the fundamental load voltage is used in the voltage control loop of the inverter.

  15. A Direct Power Conversion Topology for Grid Integration of Hybrid AC/DC Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2013-01-01

    This paper proposes a multiple-input versatile matrix converter (VMC) for integrating hybrid ac/dc energy resources and storages to the power grid. The VMC is developed from the traditional indirect matrix converter but operates in the reverse-boost mode rather than in the forward-buck mode....... The reverse-boost mode is more relevant here since most renewable sources and energy storages have lower voltages than the grid. The eventual VMC developed uses an alternative nine-switch converter, rather than usual six-switch voltage-source converter, for providing six input terminals in total. One three...

  16. A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2017-01-01

    Full Text Available Wind power plant (WPP, photovoltaic generators (PV, cell-gas turbine (CGT, and pumped storage power station (PHSP are integrated into multienergy hybrid system (MEHS. Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time.

  17. Study on a Highly Stabilized Power Supply for Hybrid-Magnet Superconducting Outsert

    International Nuclear Information System (INIS)

    Wu Jinglin; Long Jiaojiao; Liu Xiaoning

    2014-01-01

    The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm. (fusion engineering)

  18. HYPER (hybrid power extraction reactor): a system for clean nuclear energy

    International Nuclear Information System (INIS)

    Park, W.S.; Shin, U.; Han, S.-J.; Song, T.Y.; Choi, B.H.; Park, C.K.

    2000-01-01

    The Korea Atomic Energy Research Institute (KAERI) has been performing accelerator driven system related research and development (RID) called HYPER (hybrid power extraction reactor) for the transmutation of nuclear waste and energy production through the transmutation process. HYPER program is within the frame work of the national mid and long-term nuclear research plan. KAERI is aiming to develop the elemental technologies for the subcritical transmutation system by the year of 2001 and build a small bench scale test facility (∝5 MW) by the year of 2006. Some major features of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with a minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Lead-bismuth (Pb-Bi) is adopted as a coolant and spallation target material. 1 GeV 16 mA proton beam is designed to be provided for HYPER. HYPER is to transmute about 380 kg of TRU a year and produce 1000 MW of power. The support ratio of HYPER for LWR units producing the same power is believed to be 5∝6. (orig.)

  19. An Optimal Power and Energy Management by Hybrid Energy Storage Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Alessandro Serpi

    2017-11-01

    Full Text Available A novel optimal power and energy management (OPEM for centralized hybrid energy storage systems (HESS in microgrids is presented in this paper. The proposed OPEM aims at providing multiple grid services by suitably exploiting the different power/energy features of electrochemical batteries (B and supercapacitors (S. The first part of the paper focuses on the design and analysis of the proposed OPEM, by highlighting the advantages of employing hand-designed solutions based on Pontryagin’s minimum principle rather than resorting to pre-defined optimization tools. Particularly, the B power profile is synthesized optimally over a given time horizon in order to provide both peak shaving and reduced grid energy buffering, while S is employed in order to compensate for short-term forecasting errors and to prevent B from handling sudden and high-frequency power fluctuations. Both the B and S power profiles are computed in real-time in order to benefit from more accurate forecasting, as well as to support each other. Then, the effectiveness of the proposed OPEM is tested through numerical simulations, which have been carried out based on real data from the German island of Borkum. Particularly, an extensive and detailed performance analysis is performed by comparing OPEM with a frequency-based management strategy (FBM in order to highlight the superior performance achievable by the proposed OPEM in terms of both power and energy management and HESS exploitation.

  20. Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index

    Directory of Open Access Journals (Sweden)

    Idris Khan

    2017-01-01

    Full Text Available High concentration of greenhouse gases in the atmosphere has increased dependency on photovoltaic (PV power, but its random nature poses a challenge for system operators to precisely predict and forecast PV power. The conventional forecasting methods were accurate for clean weather. But when the PV plants worked under heavy haze, the radiation is negatively impacted and thus reducing PV power; therefore, to deal with haze weather, Air Quality Index (AQI is introduced as a parameter to predict PV power. AQI, which is an indication of how polluted the air is, has been known to have a strong correlation with power generated by the PV panels. In this paper, a hybrid method based on the model of conventional back propagation (BP neural network for clear weather and BP AQI model for haze weather is used to forecast PV power with conventional parameters like temperature, wind speed, humidity, solar radiation, and an extra parameter of AQI as input. The results show that the proposed method has less error under haze condition as compared to conventional model of neural network.

  1. Ultracompact on-chip photothermal power monitor based on silicon hybrid plasmonic waveguides

    Directory of Open Access Journals (Sweden)

    Wu Hao

    2017-01-01

    Full Text Available We propose and demonstrate an ultracompact on-chip photothermal power monitor based on a silicon hybrid plasmonic waveguide (HPWG, which consists of a metal strip, a silicon core, and a silicon oxide (SiO2 insulator layer between them. When light injected to an HPWG is absorbed by the metal strip, the temperature increases and the resistance of the metal strip changes accordingly due to the photothermal and thermal resistance effects of the metal. Therefore, the optical power variation can be monitored by measuring the resistance of the metal strip on the HPWG. To obtain the electrical signal for the resistance measurement conveniently, a Wheatstone bridge circuit is monolithically integrated with the HPWG on the same chip. As the HPWG has nanoscale light confinement, the present power monitor is as short as ~3 μm, which is the smallest photothermal power monitor reported until now. The compactness helps to improve the thermal efficiency and the response speed. For the present power monitor fabricated with simple fabrication processes, the measured responsivity is as high as about 17.7 mV/mW at a bias voltage of 2 V and the power dynamic range is as large as 35 dB.

  2. Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Wang, Zhaoguo; Hong, Hui; Xu, Da; Jin, Hongguang

    2014-01-01

    Highlights: • Exergy analysis of solar-hybrid coal-fired power plant has been processed. • EUD method is utilized to obtain detailed information on the exergy destruction in each process. • Off-design thermodynamic performances are discussed to identify the advantages. • Exergy destruction of several parts under varying solar radiation is examined. - Abstract: This study discusses the thermodynamic performance of a solar-hybrid coal-fired power plant that uses solar heat with temperature lower than 300 °C to replace the extracted steam from a steam turbine to heat the feed water. Through this process, the steam that was to be extracted can efficiently expand in the steam turbine to generate electricity. The flow rate of steam returning to the turbine retains only a small part of the main stream, allowing the steam turbine to run close to design conditions for all DNI. A solar-only thermal power plant without storage is also discussed to illustrate the advantages of a solar-hybrid coal-fired power plant. The off-design performances of both plants are compared based on the energy-utilization diagram method. The exergy destruction of the solar-hybrid coal-fired power plant is found to be lower than that of the solar-only thermal power plant. The comparison of two plants, which may provide detailed information on internal phenomena, highlights several advantages of the solar-hybrid coal-fired power plant in terms of off-design operation: lower exergy destruction in the solar feed water heater and steam turbine and higher exergy and solar-to-electricity efficiency. Preliminary technological economic performances of both plants are compared. The results obtained in this study indicate that a solar-hybrid coal-fired power plant could achieve better off-design performance and economic performance than a solar-only thermal power plant

  3. A hybrid wind power forecasting model based on data mining and wavelets analysis

    International Nuclear Information System (INIS)

    Azimi, R.; Ghofrani, M.; Ghayekhloo, M.

    2016-01-01

    Highlights: • An improved version of K-means algorithm is proposed for clustering wind data. • A persistence based method is applied to select the best cluster for NN training. • A combination of DWT and HANTS methods is used to provide a deep learning for NN. • A hybrid of T.S.B K-means, DWT and HANTS and NN is developed for wind forecasting. - Abstract: Accurate forecasting of wind power plays a key role in energy balancing and wind power integration into the grid. This paper proposes a novel time-series based K-means clustering method, named T.S.B K-means, and a cluster selection algorithm to better extract features of wind time-series data. A hybrid of T.S.B K-means, discrete wavelet transform (DWT) and harmonic analysis time series (HANTS) methods, and a multilayer perceptron neural network (MLPNN) is developed for wind power forecasting. The proposed T.S.B K-means classifies data into separate groups and leads to more appropriate learning for neural networks by identifying anomalies and irregular patterns. This improves the accuracy of the forecast results. A cluster selection method is developed to determine the cluster that provides the best training for the MLPNN. This significantly accelerates the forecast process as the most appropriate portion of the data rather than the whole data is used for the NN training. The wind power data is decomposed by the Daubechies D4 wavelet transform, filtered by the HANTS, and pre-processed to provide the most appropriate inputs for the MLPNN. Time-series analysis is used to pre-process the historical wind-power generation data and structure it into input-output series. Wind power datasets with diverse characteristics, from different wind farms located in the United States, are used to evaluate the accuracy of the hybrid forecasting method through various performance measures and different experiments. A comparative analysis with well-established forecasting models shows the superior performance of the proposed

  4. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  5. Gravity Search Algorithm hybridized Recursive Least Square method for power system harmonic estimation

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2017-06-01

    Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.

  6. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  7. Design of an optimized photovoltaic and microturbine hybrid power system for a remote small community: Case study of Palestine

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Solar data was analyzed in the location under consideration. • A program was developed to simulate the operation of the PV-microturbine hybrid system. • Different scenarios were analyzed to select and design the optimal system. • It is cost effective to power houses in remote areas with such hybrid systems. • The hybrid system had lower CO 2 emissions compared to a microturbine only operation. - Abstract: Hybrid systems are defined as systems that utilize more than one energy source to supply a certain load. The implementation of a hybrid system that is based upon Photovoltaic (PV) to supply power to remote and isolated locations is considered a viable option. This is especially true for areas that receive sufficient amounts of annual solar radiation. While analysis of hybrid systems that depend on diesel generators as backup sources can be found in many previous research works, detailed techno economic analysis of hybrid systems that depend on microturbines as backup sources are less addressed. A techno-economic analysis and the design of a complete hybrid system that comprises of Photovoltaic (PV) panels, a battery system, and a microturbine as a backup power source for a remote community is presented in this paper. The investigation of the feasibility of using the microturbines as backup sources in the hybrid systems is one of the purposes of this study. A scenario depending on PV standalone system and other scenario depending on microturbine only were also studied in this paper. The comparison between different scenarios with regards to the cost of energy and pollutant emissions was also conducted. A simulation program was developed to optimize both the sizes of the PV system and the battery bank, and consequently determine the detailed specifications of the different components that make up the hybrid system. The optimization of the PV tilt angle that maximizes the annual energy production was also carried out. The effect of the

  8. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  9. Hybrid Approximate Dynamic Programming Approach for Dynamic Optimal Energy Flow in the Integrated Gas and Power Systems

    DEFF Research Database (Denmark)

    Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu

    2017-01-01

    This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...

  10. Power management of a hybrid renewable system for artificial islands: A case study

    International Nuclear Information System (INIS)

    Cozzolino, R.; Tribioli, L.; Bella, G.

    2016-01-01

    In this paper, a hybrid wind/solar/fuel cell power plant is designed and a possible power management strategy is proposed. In particular, wind and solar energy sources are used as primary power suppliers, while a pure-hydrogen-fueled fuel cell – with hydrogen produced by means of an electrolyzer recovering excess power – and a battery pack are employed to fulfill the power demand, when the power supplied by the renewable sources is not sufficient. The analysis is applied to a particular case study, i.e. the TUNeIT [TUNisia and ITaly] Project, that involves the realization of four artificial islands to connect Bon (Tunisia) and Pizzolato (Sicily), provided with electrical-power-demanding facilities for tourists. Components sizing has been performed with HOMER, where a load profile has been assumed in order to reproduce the possible power demand of one of these artificial islands, while Matlab/Simulink"® is used for simulations and power management strategy design. The obtained results demonstrate the possibility of realizing an almost self-sustaining renewable power plant, able to realize a good integration of different energy sources and power converters, with no negative effects on end-user satisfaction. The system would consist of a wind turbine of 1 MW and a photovoltaic array of 1.1 MW, acting as primary power sources and several backup systems, such as a 72-kWh battery, a 300-kW fuel cell and a 300-kW diesel engine to cope with power demand unmatches and/or failures. In order to verify the system performance under different situations, simulation studies have been carried out using practical load demand profiles and real weather data. Typical winter and summer day loads have been kept for simulations of a four-season scenario and results are provided to show the effectiveness of the proposed system. The major drawback encountered during the analysis is the low value of the utilization factors of both wind turbine and photovoltaic array, which are 10

  11. On- and off-grid operation of hybrid renewable power plants: When are the economics favorable?

    Science.gov (United States)

    Petrakopoulou, F.; Santana, D.

    2016-12-01

    Hybrid renewable energy conversion systems offer a good alternative to conventional systems in locations where the extension of the electrical grid is difficult or not economical or where the cost of electricity is high. However, stand-alone operation implies net energy output restrictions (limited to exclusively serve the energy demand of a region), capacity oversizing and large storage facilities. In interconnected areas, on the other hand, the operational restrictions of the power stations change significantly and the efficiencies and costs of renewable technologies become more favorable. In this paper, the operation of three main renewable technologies (CSP, PV and wind) is studied assuming both hybrid and individual operation for both autonomous and inter-connected operation. The case study used is a Mediterranean island of ca. 3,000 inhabitants. Each system is optimized to fully cover the energy demand of the community. In addition, in the on-grid operation cases, it is required that the annual energy generated from the renewable sources is net positive (i.e., the island generates at least as much energy as it uses). It is found that when connected to the grid, hybridization of more than one technology is not required to satisfy the energy demand, as expected. Each of the renewable technologies investigated can satisfy the annual energy demand individually, without significant complications. In addition, the cost of electricity generated with the three studied technologies drops significantly for on-grid applications, when compared to off-grid operation. However, when compared to business-as-usual scenarios in both the on- and off-grid cases, both investigated hybrid and single-technology renewable scenarios are found to be economically viable. A sensitivity analysis reveals the limits of the acceptable costs that make the technologies favorable when compared to conventional alternatives.

  12. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  13. Generation of runaway electrons during deterioration of lower hybrid power coupling in lower hybrid current drive plasmas in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Chen, Z Y; Ju, H J; Zhu, J X; Li, M; Cai, W D; Liang, H F; Wan, B N; Shi, Y J; Xu, H D

    2009-01-01

    Efficient coupling of lower hybrid (LH) power from the wave launcher to the plasma is a very important issue in lower hybrid current drive (LHCD) experiments. The large unbalanced reflections in the grill trigger the LH protection system, which will trip the power, resulting in the reduction of the coupled LH power. The generation of runaway electrons has been investigated in LHCD plasmas with deterioration of LH coupling in the HT-7 tokamak. The deterioration of LH coupling results in an increase of the loop voltage and a more energetic fast electron population. These two effects favor the generation of a runaway population. It is found that most of the fast electrons generated by LH waves through parallel electron Landau damping were converted into a runaway population through the acceleration from the toroidal electric field when significant deterioration of LH coupling occurs.

  14. Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors

    International Nuclear Information System (INIS)

    Ouyang, Minggao; Zhang, Weilin; Wang, Enhua; Yang, Fuyuan; Li, Jianqiu; Li, Zhongyan; Yu, Ping; Ye, Xiao

    2015-01-01

    Highlights: • Four different types of hybrid powertrain for heavy-duty vehicles are reviewed. • A novel coaxial power-split hybrid powertrain is proposed and models are developed. • Performance characteristics are analyzed and compared to a conventional powertrain. • Fuel saving potential is evaluated and explained using energy efficiency method. - Abstract: Energy conservation is a very important task for the automotive industry. The use of hybrid electric vehicles can improve energy efficiency, thus reducing fuel consumption and carbon emissions. In this research, the performance characteristics of a novel coaxial power-split hybrid powertrain for a transit bus are presented. The power sources are a combination of a compressed natural gas (CNG) engine and supercapacitors. A mathematical model for the coaxial power-split hybrid powertrain is established. Subsequently, an analysis program is developed based on Matlab and Advisor. The parameters are specified using experimental data. Afterwards, a rule-based control strategy is designed and optimized from the viewpoint of energy efficiency. Later, the system performance is evaluated using the Chinese Transit Bus City Driving Cycle and compared to a conventional powertrain. The results indicate that the proposed coaxial power-split hybrid powertrain can fulfill the requirements of the transit bus and enhance the energy efficiency dramatically. Moreover, the average energy efficiency of the supercapacitors was found to be above 97% over the entire driving cycle. Using supercapacitors as energy storage devices for the coaxial power-split hybrid powertrain can effectively recover the kinetic energy during regenerative braking and is a good solution for transit buses that require frequent acceleration and deceleration.

  15. Feasibility of Hybrid Retrofits to Off-Grid Diesel Power Plants in the Philippines

    International Nuclear Information System (INIS)

    Abergas, R.L.; Barley, C.D.; Barruela, R.B.

    1999-01-01

    The Strategic Power Utilities Group (SPUG) of the National Power Corporation (NPC) in the Philippines owns and operates about 100 power plants, mostly fueled by diesel, ranging in energy production from about 15 kilowatt-hours (kWh)/day to 106,000 kWh/day. Reducing the consumption of diesel fuel in these plants, along with the associated financial losses, is a priority for SPUG. The purpose of this study is to estimate the potential fuel and cost savings that might be achieved by retrofitting hybrid power systems to these existing diesel plants. As used in this report, the term ''hybrid system'' refers to any combination of wind turbine generators (WTGs), photovoltaic (PV) modules, lead-acid batteries, and an AC/DC power converter (either an electronic inverter or a rotary converter), in addition to the existing diesel gensets. The resources available for this study did not permit a detailed design analysis for each of the plants. Instead, the following five-step process was used: 1.Tabulate some important characteristics of all the plants. 2.Group the plants into categories (six classes) with similar characteristics. 3.For each class of system, identify one plant that is representative of the class. 4.For each representative plant, perform a moderately detailed prefeasibility analysis of design options. 5.Summarize and interpret the results. The analysis of each representative plant involved the use of time-series computer simulation models to estimate the fuel usage, maintenance expenses, and cash flow resulting from various designs, and to search the domain of possible designs for the one leading to the lowest life-cycle cost. Cost items that would be unaffected by the retrofit, such as operator salaries and the capital cost of existing equipment, were not included in the analysis. Thus, the results are reported as levelized cost of energy (COE) savings: the difference between the cost of the existing diesel-only system and that of an optimized hybrid system

  16. Simulation of solar-powered ammonia-water integrated hybrid cooling system

    International Nuclear Information System (INIS)

    Chinnappa, J.C.V.; Wijeysundera, N.E.

    1992-01-01

    A number of solar-operated air-conditioning systems based on the H 2 O-LiBr absorption chiller were built, installed, and monitored. A systematic study at the University of Colorado has been published. This paper presents a simple cost-benefit analysis of the conventional vapor compression system (VCS), the vapor absorption system (VAS), and the integrated hybrid system (IHS). The cost of energy input to the VAS and the IHS were compared with the energy cost of the VCS that these solar-powered systems replace. It was found that cost savings can be realized with solar-powered systems, only after a critical overall solar fraction is exceeded. Typically, this value was about 0.7 for a VAS and about 0.12 for a IHS. These cost-benefit results provided the motivation for a more detailed study of the IHS. There has also been other efforts in this direction

  17. Pattern of secure bilateral transactions ensuring power economic dispatch in hybrid electricity markets

    International Nuclear Information System (INIS)

    Kumar, Ashwani; Gao, Wenzhong

    2009-01-01

    This paper proposes a new method for secure bilateral transactions determination ensuring economic power dispatch of the generators using new AC distribution factors for pool and bilateral coordinated markets. The new optimization problem considers simultaneous minimization of deviations from scheduled transactions and fuel cost of the generators in the network. The fuel cost has been obtained for hybrid market model and impact of different percentage of bilateral demand on fuel cost, generation share, and pattern of transactions has also been determined. The impact of optimally located unified power flow controller (UPFC) on the bilateral transactions, fuel cost and generation pattern has also been studied. The results have also been obtained for pool market model. The proposed technique has been applied on IEEE 24-bus reliability test system (RTS). (author)

  18. A rotary multimodal hybrid energy harvesting device powered by human motion

    Science.gov (United States)

    Larkin, Miles R.

    This thesis presents a novel hybrid multimodal energy harvesting device consisting of an unbalanced rotary disk that supports two transduction methods, piezoelectric and electromagnetic. The device generates electrical energy from oscillatory motion either orthogonal or parallel to the rotary axis to power electronic devices. Analytical models of the device were developed, from which numerical simulations were performed for several different generator sizes. Two prototypes, 180 mm and 100 mm in diameter, respectively, were fabricated and characterized experimentally with a modal shaker. The 180 mm prototype generated 120 mW from the electromagnetic system at 5 Hz and 0.8g, and 4.23 mW from the piezoelectric system at 20.2 Hz and 0.4g excitation acceleration. Finally, the power generation capabilities of the two prototypes were compared to other similar devices.

  19. Gas cooled solar tower power plant (GAST) KWU approach to a 20 MW hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Martin

    1980-07-01

    The gas cooled solar tower powerplant with a hybrid solar-fossil heating system in the form given here represents a significant step towards the industrial use of solar energy. The transition from fossil fuels to solar energy can be facilitated for the power plant operators if the transition is gradual and if conventional technology is used. Using solar energy and with a turbine inlet temperature of 800/sup 0/C the GAST power plant reaches an output of approximately 20 MW and a thermal efficiency of approximately 40% reference to the heat supplied by the receiver. In the absence of solar radiation the plant can be operated exclusively on fossil fuel. Increasing the turbine inlet temperature to 1000/sup 0/C enables an efficiency of about 47% to be reached in the GUD cycle.

  20. Flexible Microgrid Power Quality Enhancement Using Adaptive Hybrid Voltage and Current Controller

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Blaabjerg, Frede

    2014-01-01

    -pass/bandpass filters in the DG unit digital controller. Moreover, phase-locked loops are not necessary as the microgrid frequency deviation can be automatically identified by the power control loop. Consequently, the proposed control method provides opportunities to reduce DG control complexity, without affecting......To accomplish superior harmonic compensation performance using distributed generation (DG) unit power electronics interfaces, an adaptive hybrid voltage and current controlled method (HCM) is proposed in this paper. It shows that the proposed adaptive HCM can reduce the numbers of low...... the harmonic compensation performance. Comprehensive simulated and experimental results from a single-phase microgrid are provided to verify the feasibility of the proposed adaptive HCM approach....

  1. A hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller design

    Directory of Open Access Journals (Sweden)

    Srikanta Mahapatra

    2014-12-01

    Full Text Available In this paper, a novel hybrid Firefly Algorithm and Pattern Search (h-FAPS technique is proposed for a Static Synchronous Series Compensator (SSSC-based power oscillation damping controller design. The proposed h-FAPS technique takes the advantage of global search capability of FA and local search facility of PS. In order to tackle the drawback of using the remote signal that may impact reliability of the controller, a modified signal equivalent to the remote speed deviation signal is constructed from the local measurements. The performances of the proposed controllers are evaluated in SMIB and multi-machine power system subjected to various transient disturbances. To show the effectiveness and robustness of the proposed design approach, simulation results are presented and compared with some recently published approaches such as Differential Evolution (DE and Particle Swarm Optimization (PSO. It is observed that the proposed approach yield superior damping performance compared to some recently reported approaches.

  2. High power tests of beryllium oxide windows to the lower hybrid current drive launcher in JET

    International Nuclear Information System (INIS)

    Ekedahl, A.; Brandon, M.; Finburg, P.

    1999-01-01

    The vacuum windows to the 3.70 GHz Lower Hybrid Current Drive (LHCD) system in JET were originally designed to withstand 350 kW for 20 s with VSWR ≤ 1.8. High power RF tests of the windows have been carried out in the LHCD test facility at JET. All windows that were tested could operate at 500 kW for 10 s in a matched load. Two windows passed an endurance test at 250 kW for 20 s with the windows terminated in a short circuit. One window also passed this endurance test without active cooling. The results show that this type of window can be used in a new advanced launcher, as proposed for ITER, in which the output power from each klystron (P ≤ 500 kW) will be transmitted through one waveguide and one vacuum window. (author)

  3. Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system

    International Nuclear Information System (INIS)

    Goeransson, Lisa; Karlsson, Sten; Johnsson, Filip

    2010-01-01

    This study investigates consequences of integrating plug-in hybrid electric vehicles (PHEVs) in a wind-thermal power system supplied by one quarter of wind power and three quarters of thermal generation. Four different PHEV integration strategies, with different impacts on the total electric load profile, have been investigated. The study shows that PHEVs can reduce the CO 2 -emissions from the power system if actively integrated, whereas a passive approach to PHEV integration (i.e. letting people charge the car at will) is likely to result in an increase in emissions compared to a power system without PHEV load. The reduction in emissions under active PHEV integration strategies is due to a reduction in emissions related to thermal plant start-ups and part load operation. Emissions of the power sector are reduced with up to 4.7% compared to a system without PHEVs, according to the simulations. Allocating this emission reduction to the PHEV electricity consumption only, and assuming that the vehicles in electric mode is about 3 times as energy efficient as standard gasoline operation, total emissions from PHEVs would be less than half the emissions of a standard car, when running in electric mode.

  4. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    Science.gov (United States)

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-12-07

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  5. Hybrid integrated biological-solid-state system powered with adenosine triphosphate

    Science.gov (United States)

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-12-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm-2) are able to sustain a short-circuit current of 32.6 pA mm-2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm-2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  6. Plug-in hybrid electric vehicles as regulating power providers. Case studies of Sweden and Germany

    International Nuclear Information System (INIS)

    Andersson, S.-L.; Goeransson, L.; Karlsson, S.; Johnsson, F.; Elofsson, A.K.; Galus, M.D.; Andersson, G.

    2010-01-01

    This study investigates plug-in hybrid electric vehicles (PHEVs) as providers of regulating power in the form of primary, secondary and tertiary frequency control. Previous studies have shown that PHEVs could generate substantial profits while providing ancillary services. This study investigates under what conditions PHEVs can generate revenues using actual market data, i.e. prices and activations of regulating power, from Sweden and Germany from four months in 2008. PHEV market participation is modelled for individual vehicles in a fleet subject to a simulated movement pattern. Costs for infrastructure and vehicle-to-grid equipment are not included in the analysis. The simulation results indicate that maximum average profits generated on the German markets are in the range 30-80 EUR per vehicle and month whereas the Swedish regulating power markets give no profit. In addition, an analysis is performed to identify strengths, weaknesses, opportunities, and threats (SWOT) of PHEVs as regulating power providers. Based on the simulation results and the SWOT analysis, characteristics for an ideal regulating power market for PHEVs are presented. (author)

  7. Design of a SOFC/GT/SCs hybrid power system to supply a rural isolated microgrid

    International Nuclear Information System (INIS)

    Camblong, Haritza; Baudoin, Sylvain; Vechiu, Ionel; Etxeberria, Aitor

    2016-01-01

    Highlights: • A novel SOFC/GT/SCs HPS is connected to a rural microgrid through a 3LNPC inverter. • An operating strategy that maintains the SOFC power at its rated value is defined. • A robust digital controller that damps current oscillations is designed. • The efficiency, power quality, lifetime, and robustness of the HPS are considered. • An experimental test on an original HPS emulator validates the proposed solutions. - Abstract: The aim of this research study has been to design a Hybrid Power System (HPS) which works with biogas and whose main components are a Solid Oxide Fuel Cell (SOFC), a Gas microTurbine (GT), and a module of SuperCapacities (SCs). The HPS is the only power source of a rural isolated microgrid. Its structure, operating strategy, and controller have been designed considering the following criteria: efficiency, power quality, SOFC lifetime and robustness in stability and performance. The HPS structure includes a unique power converter, a 3-Level Neutral Point Clamped (3LNPC) inverter that connects the HPS to the AC microgrid. Regarding the selected operating strategy, it consists in regulating the SOFC power output to its rated value. Thus, the SCs and the GT must respond to the power demand variations. On the other hand, a study of the HPS shows that its dynamic behavior is not linear. Therefore, a special attention is put on designing a robust HPS controller. The control model is identified and the robust digital controller is designed using the “Tracking and Regulation with Independent Objectives” method. Simulation and experimental results show how the proposed structure, operating strategy, and controller allow ensuring a good behavior of the HPS from the point of view of the abovementioned four criteria.

  8. High power experimental studies of hybrid photonic band gap accelerator structures

    Directory of Open Access Journals (Sweden)

    JieXi Zhang

    2016-08-01

    Full Text Available This paper reports the first high power tests of hybrid photonic band gap (PBG accelerator structures. Three hybrid PBG (HPBG structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM_{02} mode, with suppression of both lower order modes, such as the TM_{11} mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19  MV/m, corresponding to a surface electric field of 78  MV/m, with a breakdown probability of 5×10^{-1} per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20  MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.

  9. Tokamak hybrid thermonuclear reactor for the production of fissionable fuel and electric power

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Glukhikh, V.A.; Gur'ev, V.V.

    1978-01-01

    The results of feasibility studies of a tokamak- based hybrid reactor concept are presented. The system selected has a D-T plasma volume of 575 m 3 with additional plasma heating by injection of fast neutral particles. The method of heating makes it possible to achieve an economical two-component tokamak regime at ntau=(4-6)x10 13 sxcm -3 , i e. far below the Lawson criterion. Plasma and vacuum chamber are surrounded by a blanket where fissionable plutonium is produced and heat transformed into electric power is generated. Major plasma-neutron-physical characteristics of the 6905 MWth (2500 MWe) reactor and its electromagnetic system are presented. Evaluations show that the hybrid reactor can produce about 800 kg of Pu per 1GWth/yr as compared to 70-150 kg of Pu for fast breeder reactors. The increased Pu production rate is the major merit of the concept promising for both power generation and fuelling thermal fission reactions

  10. Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2014-01-01

    Full Text Available Swarm intelligence (SI is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS as well as the singular spectrum analysis (SSA, time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA and CS in tuning the seasonal autoregressive integrated moving average (SARIMA and support vector regression (SVR in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.

  11. A diagnostic expert system for the nuclear power plant b ased on the hybrid knowledge approach

    International Nuclear Information System (INIS)

    Yang, J.O.; Chang, S.H.

    1989-01-01

    A diagnostic expert system, the hybrid knowledge based plant operation supporting system (HYPOSS), which has been developed to support operators' decisionmaking during the transients of the nuclear power plant, is described. HYPOSS adopts the hybrid knowledge approach, which combines both shallow and deep knowledge to take advantage of the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure. They are structural, functional, behavioral, and heuristic knowledge. The structural and functional knowledge is represented by three fundamental primitives and five types of functions, respectively. The behavioral knowledge is represented using constraints. The inference procedure is based on the human problem-solving behavior modeled in HYPOSS. The event-based operational guidelines are provided to the operator according to the diagnosed results. If the exact anomalies cannot be identified while some of the critical safety functions are challenged, the function-based operational guidelines are provided to the operator. For the validation of HYPOSS, several tests have been performed based on the data produced by a plant simulator. The results of validation studies show good applicability of HYPOSS to the anomaly diagnosis of nuclear power plant

  12. Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications

    Science.gov (United States)

    Shamsi, Pourya

    Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.

  13. On the economics of stand-alone renewable hybrid power plants in remote regions

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina

    2016-01-01

    Highlights: • Economic evaluation of three renewable hybrid power plants for off-grid operation. • The high electricity cost of remote regions increases the competitiveness of renewable energy. • The proposed plants are economically viable when compared to the existing situation. • The zero direct emissions of the plants constitute an additional advantage of the plants. - Abstract: In recent years ever more examples of regions that have managed to achieve or orientate themselves toward renewable energy sufficiency are emerging. However, actions to create energy autonomy are mainly the result of isolated activities and they are less driven from fully organized movements. In addition, total energy independence without the support of a centralized electrical grid is yet to be achieved. The objectives of this work are to investigate the associated costs of stand-alone renewable hybrid power plants on a Greek island and compare them to the cost of the currently used fossil-fuel-based conventional plant. The plants examined here are designed to fully cover the electricity needs of the island. Islands may face numerous energy problems and rely heavily on foreign and environmentally-harmful fuels. It is shown that the relatively high cost of electricity of such a remote region can increase the competitiveness and promote the wider incorporation of technologies based on renewable energy sources that may, in other cases, seem economically inferior to business-as-usual energy solutions.

  14. High RF power test of a lower hybrid module mock-up in carbon fiber composite

    International Nuclear Information System (INIS)

    Goniche, M.; Bibet, P.; Brossaud, J.; Cano, V.; Froissard, P.; Kazarian, F.; Rey, G.; Maebara, S.; Kiyono, K.; Seki, M.; Suganuma, K.; Ikeda, Y.; Imai, T.

    1999-02-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns. During these tests, the module temperature was increasing from 100-200 deg. C to 400-500 deg. C. It was also checked that high power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H 2 at a pressure of 5 x 10 -2 Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8% to 1.3%. It is concluded that the outgassing rate of Cu-plated CFC is about 6 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300 deg. C. No significant increase of the global outgassing of the CFC module was measured after hydrogen pre-filling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm 2 ). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (authors)

  15. High RF power test of a lower hybrid module mock-up in Carbon Fiber Composite

    International Nuclear Information System (INIS)

    Maebara, Sunao; Kiyono, Kimihiro; Seki, Masami

    1997-11-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns. During these tests, the module temperature was increasing from 100-200degC to 400-500degC. It was also checked that high power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H 2 at a pressure of 5 x 10 -2 Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8 % to 1.3 %. It is concluded that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300degC. No significant increase of the global outgassing of the CFC module was measured after hydrogen prefilling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm 2 ). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  16. High RF power test of a CFC antenna module for lower hybrid current drive

    International Nuclear Information System (INIS)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T.; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G.

    1998-01-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10 -2 Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  17. Systematic power autonomy. Hybrid solar system makes Christine Schoen independent of oil and gas supply; Energieautark mit System. Eine Hybridsolaranlage macht Christine Schoen unabhaengig von Oel und Gas

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Hinrich; Podewils, Christoph

    2009-12-15

    Hybrid solar systems generate both heat and power; they are still rare because it is difficult to maintain the balance between heat and power generation. However, they have their advantages as is proved by the hybrid solar system of Christine Schoen. On the one hand, she heats her old house; on the other hand, she optimizes solar power generation in her system. (orig.)

  18. A Novel Evaluation Model for Hybrid Power System Based on Vague Set and Dempster-Shafer Evidence Theory

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2012-01-01

    Full Text Available Because clean energy and traditional energy have different advantages and disadvantages, it is of great significance to evaluate comprehensive benefits for hybrid power systems. Based on thorough analysis of important characters on hybrid power systems, an index system including security, economic benefit, environmental benefit, and social benefit is established in this paper. Due to advantages of processing abundant uncertain and fuzzy information, vague set is used to determine the decision matrix. Convert vague decision matrix to real one by vague combination ruleand determine uncertain degrees of different indexes by grey incidence analysis, then the mass functions of different comment set in different indexes are obtained. Information can be fused in accordance with Dempster-Shafer (D-S combination rule and the evaluation result is got by vague set and D-S evidence theory. A simulation of hybrid power system including thermal power, wind power, and photovoltaic power in China is provided to demonstrate the effectiveness and potential of the proposed design scheme. It can be clearly seen that the uncertainties in decision making can be dramatically decreased compared with existing methods in the literature. The actual implementation results illustrate that the proposed index system and evaluation model based on vague set and D-S evidence theory are effective and practical to evaluate comprehensive benefit of hybrid power system.

  19. CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    A. Nehrozoglu

    2004-12-01

    Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and

  20. Electric and hybrid vehicles: power sources, models, sustainability, infrastructure and the market

    National Research Council Canada - National Science Library

    Pistoia, G

    2010-01-01

    ... for simulation studies Velocity scheduling using traffic preview Hybrid vehicles with telematics Optimal management of hybrid vehicles with telematics Conclusions and future opportunities 1. 2. 3...

  1. Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system

    International Nuclear Information System (INIS)

    Berrazouane, S.; Mohammedi, K.

    2014-01-01

    Highlights: • Optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. • Comparison between optimized fuzzy logic controller based on cuckoo search and swarm intelligent. • Loss of power supply probability and levelized energy cost are introduced. - Abstract: This paper presents the development of an optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. The FLC inputs are batteries state of charge (SOC) and net power flow, FLC outputs are the power rate of batteries, photovoltaic and diesel generator. Data for weekly solar irradiation, ambient temperature and load profile are used to tune the proposed controller by using cuckoo search algorithm. The optimized FLC is able to minimize loss of power supply probability (LPSP), excess energy (EE) and levelized energy cost (LEC). Moreover, the results of CS optimization are better than of particle swarm optimization PSO for fuzzy system controller

  2. Scheduled power tracking control of the wind-storage hybrid system based on the reinforcement learning theory

    Science.gov (United States)

    Li, Ze

    2017-09-01

    In allusion to the intermittency and uncertainty of the wind electricity, energy storage and wind generator are combined into a hybrid system to improve the controllability of the output power. A scheduled power tracking control method is proposed based on the reinforcement learning theory and Q-learning algorithm. In this method, the state space of the environment is formed with two key factors, i.e. the state of charge of the energy storage and the difference value between the actual wind power and scheduled power, the feasible action is the output power of the energy storage, and the corresponding immediate rewarding function is designed to reflect the rationality of the control action. By interacting with the environment and learning from the immediate reward, the optimal control strategy is gradually formed. After that, it could be applied to the scheduled power tracking control of the hybrid system. Finally, the rationality and validity of the method are verified through simulation examples.

  3. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system

    International Nuclear Information System (INIS)

    Jiang, Yibo; Xu, Jian; Sun, Yuanzhang; Wei, Congying; Wang, Jing; Ke, Deping; Li, Xiong; Yang, Jun; Peng, Xiaotao; Tang, Bowen

    2017-01-01

    Highlights: • Improving the utilization of wind power by the demand response of residential hybrid energy system. • An optimal scheduling of home energy management system integrating micro-CHP. • The scattered response capability of consumers is aggregated by demand bidding curve. • A stochastic day-ahead economic dispatch model considering demand response and wind power. - Abstract: As the installed capacity of wind power is growing, the stochastic variability of wind power leads to the mismatch of demand and generated power. Employing the regulating capability of demand to improve the utilization of wind power has become a new research direction. Meanwhile, the micro combined heat and power (micro-CHP) allows residential consumers to choose whether generating electricity by themselves or purchasing from the utility company, which forms a residential hybrid energy system. However, the impact of the demand response with hybrid energy system contained micro-CHP on the large-scale wind power utilization has not been analyzed quantitatively. This paper proposes an operation optimization model of the residential hybrid energy system based on price response, integrating micro-CHP and smart appliances intelligently. Moreover, a novel load aggregation method is adopted to centralize scattered response capability of residential load. At the power grid level, a day-ahead stochastic economic dispatch model considering demand response and wind power is constructed. Furthermore, simulation is conducted respectively on the modified 6-bus system and IEEE 118-bus system. The results show that with the method proposed, the wind power curtailment of the system decreases by 78% in 6-bus system. In the meantime, the energy costs of residential consumers and the operating costs of the power system reduced by 10.7% and 11.7% in 118-bus system, respectively.

  4. Inherent Safety Feature of Hybrid Low Power Research Reactor during Reactivity Induced Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, DongHyun; Yum, Soo Been; Hong, Sung Teak; Lim, In-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hybrid low power research reactor(H-LPRR) is the new design concept of low power research reactor for critical facility as well as education and training. In the case of typical low power research reactor, the purposes of utilization are the experiments for education of nuclear engineering students, Neutron Activation Analysis(NAA) and radio-isotope production for research purpose. H-LPRR is a light-water cooled and moderated research reactor that uses rod-type LEU UO{sub 2} fuels same as those for commercial power plants. The maximum core thermal power is 70kW and, the core is placed in the bottom of open pool. There are 1 control rod and 2 shutdown rods in the core. It is designed to cool the core by natural convection, retain negative feedback coefficient for entire fuel periods and operate for 20 years without refueling. Inherent safety in H-LPRR is achieved by passive design features such as negative temperature feedback coefficient and core cooling by natural convection during normal and emergency conditions. The purpose of this study is to find out that the inherent safety characteristics of H-LPRR is able to control the power and protect the reactor from the RIA(Reactivity induced accident). RIA analysis was performed to investigate the inherent safety feature of H-LPRR. As a result, it was found that the reactor controls its power without fuel damage in the event and that the reactor remains safe states inherently. Therefore, it is believed that high degree of safety inheres in H-LPRR.

  5. Hybrid power pack for sustainability and environmental friendliness in driving multiple units; Hybrid-Powerpack fuer nachhaltigen und umweltfreundlichen Triebwagenantrieb

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Ingo; Schmalzing, Claus-Oliver [MTU Friedrichshafen GmbH, Friedrichshafen (Germany); Werner, Claus [DB RegioNetz Verkehrs GmbH (Germany); Bold, Uwe [DB Systemtechnik Engineering, Kassel (Germany)

    2011-07-01

    With MTU's hybrid drive, it is possible to obtain a saving of up to 25% in fuel consumption and to operate in such a way as to avoid emissions in stations. MTU Friedrichshafen and Deutsche Bahn are testing a parallel hybrid drive on the line between Aschaffenburg und Miltenberg, starting in autumn 2011. This test is intended to produce evidence that this technology is ready for everyday use. (orig.)

  6. A study on DC hybrid three-phase fault current limiting interrupter for a power distribution system

    International Nuclear Information System (INIS)

    Shao, Hongtian; Satoh, Tomoyuki; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Satoh, Takao; Ishikawa, Hiroyuki

    2005-01-01

    For the purpose of protecting electric power system, many researches and developments of fault current limiters are being performed. The authors studied a dc hybrid three-phase fault current limiting interrupter (FCLI) composed of a superconducting reactor and an S/N transition element, connected in series each other. The dc hybrid type fault current limiting interrupter can limit a fault current by means of the inductance of high temperature superconducting (HTS) coil together with the normal transition of HTS bulk material (HTSB). In the case of an accident, the normal transition of the bulk material can be accelerated by the magnetic field of the HTS coil. In this paper, the dc hybrid type fault current limiting interrupter for 5.5 km long 6.6 kV-600 A power distribution system is analyzed, and performances of fault current limitation and interruption are confirmed. Moreover, a reclosing operation is discussed for this power distribution system

  7. A Modular Cascaded Multilevel Inverter Based Shunt Hybrid Active Power Filter for Selective Harmonic and Reactive Power Compensation Under Distorted/Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    T. Demirdelen

    2016-10-01

    Full Text Available In recent years, shunt hybrid active power filters are being increasingly considered as a viable alternative to both passive filters and active power filters for compensating harmonics. In literature, their applications are restricted to balanced systems and low voltage applications and therefore not for industrial applications. This paper investigates the performance of a modular cascaded multilevel inverter based Shunt Hybrid Active Power Filter (SHAPF for reactive power compensation and selective harmonics elimination under distorted/unbalanced grid voltage conditions in medium voltage levels. In the proposed control method, reactive power compensation is achieved successfully with a perceptible amount and the performance results of harmonic compensation are satisfactory. Theoretical analysis and simulation results are obtained from an actual industrial network model in PSCAD. The simulation results are presented for a proposed system in order to demonstrate that the harmonic compensation performance meets the IEEE-519 standard.

  8. Functional dependence of the lower hybrid power absorption coefficient in JET

    International Nuclear Information System (INIS)

    Pericoli-Ridolfini, V.; Ekedahl, A.; Baranov, Y.

    1997-01-01

    The fraction of the coupled lower hybrid (LH) power adsorbed in divertor plasmas in JET has been determined experimentally with a method utilizing the time derivative of the total stored energy (plasma and magnetic). This method can account for the power adsorbed inside a normalized flux co-ordinate ψ ∼ 0.7. The experimental LH absorption coefficient reaches 100% at low plasma densities, antineutron e 19 m -3 and decreases to 25% at antineutron e > 3.5 x 10 19 m -3 . The LH wave accessibility to the plasma core has been found to play an important role in determining the power absorption and the radial deposition profile. The decreasing absorption is correlated with a gradual shift of the LH power deposition profile, as determined by the hard x-ray profiles, towards the plasma periphery. Similar behaviour is found in ray tracing + Fokker-Planck code calculations. The frequency spectrum of the LH pump wave as determined by a probe outside the tokamak vessel broadens strongly as the wave accessibility is reduced and the absorption drops. (author)

  9. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  10. An effortless hybrid method to solve economic load dispatch problem in power systems

    International Nuclear Information System (INIS)

    Pourakbari-Kasmaei, M.; Rashidi-Nejad, M.

    2011-01-01

    Highlights: → We proposed a fast method to get feasible solution and avoid futile search. → The method dramatically improves search efficiency and solution quality. → Applied to solve constrained ED problems of power systems with 6 and 15 unit. → Superiority of this method in both aspects of financial and CPU time is remarkable. - Abstract: This paper proposes a new approach and coding scheme for solving economic dispatch problems (ED) in power systems through an effortless hybrid method (EHM). This novel coding scheme can effectively prevent futile searching and also prevents obtaining infeasible solutions through the application of stochastic search methods, consequently dramatically improves search efficiency and solution quality. The dominant constraint of an economic dispatch problem is power balance. The operational constraints, such as generation limitations, ramp rate limits, prohibited operating zones (POZ), network loss are considered for practical operation. Firstly, in the EHM procedure, the output of generator is obtained with a lambda iteration method and without considering POZ and later in a genetic based algorithm this constraint is satisfied. To demonstrate its efficiency, feasibility and fastness, the EHM algorithm was applied to solve constrained ED problems of power systems with 6 and 15 units. The simulation results obtained from the EHM were compared to those achieved from previous literature in terms of solution quality and computational efficiency. Results reveal that the superiority of this method in both aspects of financial and CPU time.

  11. Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data

    Directory of Open Access Journals (Sweden)

    Laura Cornejo-Bueno

    2017-11-01

    Full Text Available Wind Power Ramp Events (WPREs are large fluctuations of wind power in a short time interval, which lead to strong, undesirable variations in the electric power produced by a wind farm. Its accurate prediction is important in the effort of efficiently integrating wind energy in the electric system, without affecting considerably its stability, robustness and resilience. In this paper, we tackle the problem of predicting WPREs by applying Machine Learning (ML regression techniques. Our approach consists of using variables from atmospheric reanalysis data as predictive inputs for the learning machine, which opens the possibility of hybridizing numerical-physical weather models with ML techniques for WPREs prediction in real systems. Specifically, we have explored the feasibility of a number of state-of-the-art ML regression techniques, such as support vector regression, artificial neural networks (multi-layer perceptrons and extreme learning machines and Gaussian processes to solve the problem. Furthermore, the ERA-Interim reanalysis from the European Center for Medium-Range Weather Forecasts is the one used in this paper because of its accuracy and high resolution (in both spatial and temporal domains. Aiming at validating the feasibility of our predicting approach, we have carried out an extensive experimental work using real data from three wind farms in Spain, discussing the performance of the different ML regression tested in this wind power ramp event prediction problem.

  12. Electrical Energy Forecasting and Optimal Allocation of ESS in a Hybrid Wind-Diesel Power System

    Directory of Open Access Journals (Sweden)

    Hai Lan

    2017-02-01

    Full Text Available Due to the increasingly serious energy crisis and environmental pollution problem, traditional fossil energy is gradually being replaced by renewable energy in recent years. However, the introduction of renewable energy into power systems will lead to large voltage fluctuations and high capital costs. To solve these problems, an energy storage system (ESS is employed into a power system to reduce total costs and greenhouse gas emissions. Hence, this paper proposes a two-stage method based on a back-propagation neural network (BPNN and hybrid multi-objective particle swarm optimization (HMOPSO to determine the optimal placements and sizes of ESSs in a transmission system. Owing to the uncertainties of renewable energy, a BPNN is utilized to forecast the outputs of the wind power and load demand based on historic data in the city of Madison, USA. Furthermore, power-voltage (P-V sensitivity analysis is conducted in this paper to improve the converge speed of the proposed algorithm, and continuous wind distribution is discretized by a three-point estimation method. The Institute of Electrical and Electronic Engineers (IEEE 30-bus system is adopted to perform case studies. The simulation results of each case clearly demonstrate the necessity for optimal storage allocation and the efficiency of the proposed method.

  13. Model-based power control strategy development of a fuel cell hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Haitao, Yun [School of Automobile and Traffic, Qingdao Technological University, Qingdao Shandong 266033 (China); School of Automobile, Tongji University, ShangHai 201804 (China); Yulan, Zhao [School of Automobile and Traffic, Qingdao Technological University, Qingdao Shandong 266033 (China); Zechang, Sun; Gang, Wan [School of Automobile, Tongji University, ShangHai 201804 (China)

    2008-06-01

    An integrated procedure for math modeling and power control strategy design for a fuel cell hybrid vehicle (FCHV) is presented in this paper. Dynamic math model of the powertrain is constructed firstly, which includes four modules: fuel cell engine, DC/DC inverter, motor-driver, and power battery. Based on the mathematic model, a power control principle is designed, which uses full-states closed-loop feedback algorithm. To implement full-states feedback, a Luenberger state observer is designed to estimate open circuit voltage (OCV) of the battery, which make the control principle not sensitive to the battery SOC (state of charge) estimated error. Full-states feedback controller is then designed through analyzing step responding of the powertrain and test data. At last of the paper, the results of simulation and field test are illustrated. The results show that the power control strategy designed takes into account the performance and economy characteristics of components of the FCHV powertrain and achieves the control object excellently. (author)

  14. A Causal and Real-Time Capable Power Management Algorithm for Off-Highway Hybrid Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Johannes Schalk

    2016-12-01

    Full Text Available Hybrid propulsion systems allow for a reduction of fuel consumption and pollutant emissions of future off-highway applications. A challenging aspect of a hybridization is the larger number of system components that further increases both the complexity and the diversification of such systems. Hence, beside a standardization on the hardware side for off-highway systems, a high flexibility and modularity of the control schemes is required to employ them in as many different applications as possible. In this paper, a causal optimization-based power management algorithm is introduced to control the power split between engine and electric machine in a hybrid powertrain. The algorithm optimizes the power split to achieve the maximum power supply efficiency and, thereby, considers the energy cost for maintaining the battery charge. Furthermore, the power management provides an optional function to control the battery state of charge in such a way that a target value is attained. In a simulation case study, the potential and the benefits of the proposed power management for the hybrid powertrain—aiming at a reduction of the fuel consumption of a DMU (diesel multiple unit train operated on a representative track—will be shown.

  15. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Energy Management of a Hybrid-Power Gas Engine-Driven Heat Pump

    Directory of Open Access Journals (Sweden)

    Qingkun Meng

    2015-10-01

    Full Text Available The hybrid-power gas engine-driven heat pump (HPGHP combines hybrid power technology with a gas engine heat pump. The engine in the power system is capable of operating constantly with high thermal efficiency and low emissions during different operating modes. In this paper, the mathematical models of various components is established, including the engine thermal efficiency map and the motor efficiency map. The comprehensive charging/discharging efficiency model and energy management optimization strategy model which is proposed to maximize the efficiency of instantaneous HPGHP system are established. Then, different charging/discharging torque limits are obtained. Finally, a novel gas engine economical zone control strategy which combined with the SOC of battery in real time is put forward. The main operating parameters of HPGHP system under energy management are simulated by Matlab/Simulink and validated by experimental data, such as engine and motor operating torque, fuel consumption rate and comprehensive efficiency, etc. The results show that during 3600 s’ run-time, the SOC value of battery packs varies between 0.58 and 0.705, the fuel consumption rate reaches minimum values of approximately 291.3 g/(kW h when the compressor speed is nearly 1550 rpm in mode D, the engine thermal efficiency and comprehensive efficiency reach maximum values of approximately 0.2727 and 0.2648 when the compressor speed is 1575 rpm and 1475 rpm, respectively, in mode D. In general, the motor efficiency can be maintained above 0.85 in either mode.

  17. An Application of Spectral Kurtosis to Separate Hybrid Power Quality Events

    Directory of Open Access Journals (Sweden)

    Juan José González de la Rosa

    2015-09-01

    Full Text Available For the development of the future smart grid, the detection of power quality events is a key issue for the power system monitoring. Voltage sags, swells, harmonics (variations and interruptions, which produce large losses for commercial and industrial consumers, are the main events to be considered due to the sensitivity of equipment to these electrical anomalies. The steady-state events are even more frequently accompanied by transients, the discrimination and localization being far more exigent and requiring advanced signal separating tools to be incorporated in the measurement equipment. This paper shows the event detection performance of the spectral kurtosis as a signal separating tool in the frequency domain. The disturbances under test are hybrid signals resulting from the coupling between amplitude defects and non-desired higher frequencies. Being a fourth-order spectrum, the kurtosis is confirmed as a noise-resistant tool that enhances impulsiveness, therefore characterizing the electrical anomalies. In the beginning of the analysis, the voltage sag is established as a reference; then, the disturbances (oscillatory transients and harmonics are coupled at the starting and ending instants of the sag, resulting in complex hybrid events. The results show that the spectral kurtosis enhances the detection Energies 2015, 8 9778 of both types of events (steady state and transients, which are outlined in a bump shape in the fourth-order frequency pattern and centered in the main carrier frequency. Indeed, while the oscillatory transients are associated with softer and lower-amplitude peaks, the harmonics correspond to crisper and higher ones. As these mixed electrical faults are very common in the actual power grid, the article postulates the higher-order spectra to be implemented in prospective online measurement instruments.

  18. A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-07-01

    Full Text Available A novel polar fuzzy (PF control approach for a hybrid power system is proposed in this research. The proposed control scheme remedies the issues of system frequency and the continuity of demand supply caused by renewable sources’ uncertainties. The hybrid power system consists of a wind turbine generator (WTG, solar photovoltaics (PV, a solar thermal power generator (STPG, a diesel engine generator (DEG, an aqua-electrolyzer (AE, an ultra-capacitor (UC, a fuel-cell (FC, and a flywheel (FW. Furthermore, due to the high cost of the battery energy storage system (BESS, a new idea of vehicle-to-grid (V2G control is applied to use the battery of the electric vehicle (EV as equivalent to large-scale energy storage units instead of small batteries to improve the frequency stability of the system. In addition, EV customers’ convenience is taken into account. A minimal-order observer is used to estimate the supply error. Then, the area control error (ACE signal is calculated in terms of the estimated supply error and the frequency deviation. ACE is considered in the frequency domain. Two PF approaches are utilized in the intended system. The mission of each controller is to mitigate one frequency component of ACE. The responsibility for ACE compensation is shared among all parts of the system according to their speed of response. The performance of the proposed control scheme is compared to the conventional fuzzy logic control (FLC. The effectiveness and robustness of the proposed control technique are verified by numerical simulations under various scenarios.

  19. Investigation of lower hybrid physics through power modulation experiments on Alcator C-Moda)

    Science.gov (United States)

    Schmidt, A.; Bonoli, P. T.; Meneghini, O.; Parker, R. R.; Porkolab, M.; Shiraiwa, S.; Wallace, G.; Wright, J. C.; Harvey, R. W.; Wilson, J. R.

    2011-05-01

    Lower hybrid current drive (LHCD) is an attractive tool for off-axis current profile control in magnetically confined tokamak plasmas and burning plasmas (ITER), because of its high current drive efficiency. The LHCD system on Alcator C-Mod operates at 4.6 GHz, with ~ 1 MW of coupled power, and can produce a wide range of launched parallel refractive index (n||) spectra. A 32 chord, perpendicularly viewing hard x-ray camera has been used to measure the spatial and energy distribution of fast electrons generated by lower hybrid (LH) waves. Square-wave modulation of LH power on a time scale much faster than the current relaxation time does not significantly alter the poloidal magnetic field inside the plasma and thus allows for realistic modeling and consistent plasma conditions for different n|| spectra. Inverted hard x-ray profiles show clear changes in LH-driven fast electron location with differing n||. Boxcar binning of hard x-rays during LH power modulation allows for ~ 1 ms time resolution which is sufficient to resolve the build-up, steady-state, and slowing-down phases of fast electrons. Ray-tracing/Fokker-Planck modeling in combination with a synthetic hard x-ray diagnostic shows quantitative agreement with the x-ray data for high n|| cases. The time histories of hollow x-ray profiles have been used to measure off-axis fast electron transport in the outer half of the plasma, which is found to be small on a slowing down time scale.

  20. Hybrid instrument applied to human reliability study in event of loss of external electric power in a nuclear power plant

    International Nuclear Information System (INIS)

    Martins, Eduardo Ferraz

    2015-01-01

    The study projects in highly complex installations involves robust modeling, supported by conceptual and mathematical tools, to carry out systematic research and structured the different risk scenarios that can lead to unwanted events from occurring equipment failures or human errors. In the context of classical modeling, the Probabilistic Safety Analysis (PSA) seeks to provide qualitative and quantitative information about the project particularity and their operational facilities, including the identification of factors or scenarios that contribute to the risk and consequent comparison options for increasing safety. In this context, the aim of the thesis is to develop a hybrid instrument (CPP-HI) innovative, from the integrated modeling techniques of Failure Mode and Effect Analysis (FMEA), concepts of Human Reliability Analysis and Probabilistic Composition of Preferences (PCP). In support of modeling and validation of the CPP-HI, a simulation was performed on a triggering event 'Loss of External Electric Power' - PEEE, in a Nuclear Power plant. The results were simulated in a virtual environment (sensitivity analysis) and are robust to the study of Human Reliability Analysis (HRA) in the context of the PSA. (author)

  1. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Cai, Ruixian

    2013-01-01

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO 2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO 2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO 2 captured, the specific CO 2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO 2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO 2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH 4 conversion and pre-combustion CO 2 capture. ► The system thermodynamic performances have been investigated and compared

  2. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  3. Hybrid Automaton Based Controller Design for Damage Mitigation of Islanded Power Systems

    Science.gov (United States)

    Lahiri, Sudipta

    Spurred by increasingly unpredictable weather, high penetration of renewable resources and a period of focused US government policy, it is widely expected that microgrids within the electric distribution system will show exponential growth in the coming decade. Microgrids comprise of power generation, delivery and consumption assets within restricted electrical boundaries and under contiguous control oversight that enables holistic management of these assets. Microgrids can be islanded and operated independent of a larger electric power network, and as such, a primary function of microgrids is to enhance the energy reliability of the underlying loads. In this work, we focus on naval shipboard power systems. Apart from being islanded, in the true sense, resiliency and damage mitigation are key considerations in the design and operation of these power systems. Islanded power systems encompass a rich diversity of discrete and continuous dynamic behavior in multiple time-scales. A high penetration of devices with power electronics interface, low inherent system inertia, and high density of switching devices can lead to rapid disturbance propagation and system failure without advanced damage mitigation strategies. Hybrid systems formalism incorporates continuous dynamics as well as discrete switching behavior into a modeling and control framework, thus allowing a complete system description while crystallizing concepts of safety into system design criteria. We build on existing work to enhance a Dynamic Mixed Integer Programming (DMIP) model of a power system that combines continuous time differential algebraic models with switching dynamics synthesized into mixed integer inequalities. We use this model to derive an optimal system reconfiguration strategy to prevent voltage collapse of a benchmark shipboard power system. However, this methodology is restricted by the computational complexity of dynamic programming and scalability of non-automated processes. To overcome

  4. PRICING ELECTRIC POWER UNDER A HYBRID WHOLESALE MECHANISM: EVALUATING THE TURKISH ELECTRICITY MARKET

    Directory of Open Access Journals (Sweden)

    Hatice Karahan

    2013-01-01

    Full Text Available During the restructuring process, Turkish electricity sector has gone through significant changes both in wholesale and retail markets. In this framework, the Market Financial Settlement Mechanism established for handling market imbalances has become a spot market in time. So, it can be claimed that the wholesale electricity market in Turkey is a hybrid mechanism composed of bilateral contracts and the balancing market. On the other hand, the main target of liberalization program is providing consumers with affordable electric power. Hence, this study attempts to explore the link between retail tariffs for ineligible consumers and prices in the two wholesale mechanisms, in the period after the launch of the day-ahead market. Findings suggest that regulated wholesale prices are more effective in the determination of end-user prices, whereas unregulated ones might have a price reduction effect in case the free market dominates. However, the volatility in spot market prices implies that the sector would better continue with the hybrid mechanism for quite some time.

  5. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    Science.gov (United States)

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  6. Design of Stand-Alone Hybrid Power Generation System at Brumbun Beach Tulungagung East Java

    Science.gov (United States)

    Rahmat, A. N.; Hidayat, M. N.; Ronilaya, F.; Setiawan, A.

    2018-04-01

    Indonesian government insists to optimize the use of renewable energy resources in electricity generation. One of the efforts is launching Independent Energy Village plan. This program aims to fulfill the need of electricity for isolated or remote villages in Indonesia. In order to support the penetration of renewable energy resources in electricity generation, a hybrid power generation system is developed. The simulation in this research is based on the availability of renewable energy resources in Brumbun beach, Tulungagung, East Java. Initially, the electricity was supplied through stand-alone electricity generations which are installed at each house. Hence, the use of electricity between 5 p.m. – 9 p.m. requires high operational costs. Based on the problem above, this research is conducted to design a stand-alone hybrid electricity generation system, which may consist of diesel, wind, and photovoltaic. The design is done by using HOMER software to optimize the use of electricity from renewable resources and to reduce the operation of diesel generation. The combination of renewable energy resources in electricity generation resulted in NPC of 44.680, COE of 0,268, and CO2 emissions of 0,038 % much lower than the use of diesel generator only.

  7. Energy Demand Analysis and Design of a Hybrid Power System in Bawean Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Hantoro Ridho

    2018-01-01

    Full Text Available Over 70 000 000 people in Indonesia have no access to electricity. This study was carried out in Bawean Islands which are located in the Java Sea about 150 km North of Surabaya, the headquarters of East Java. The study to determine the energy services available in the Bawean Island was done through interviewing a random sample of 72 households in two villages namely Komalasa and Lebak. Based on the average monthly electricity consumption of the sampled households connected to the grid, a hybrid renewable energy based electrical supply system was designed for Gili Timur Island, one of the satellite islands around Bawean Island. The system was designed with the aid of a time step simulation software used to design and analyze hybrid power systems. A sensitivity analysis was also carried out on the optimum system to study the effects of variation in some of the system variables. HOMER suggests that for the expected peak load of 131 kW, an optimum system will consist of 150 kW from PV array, two wind turbines each rated 10 kW, a 75 kW diesel generator and batteries for storage.

  8. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    Science.gov (United States)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  9. Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2015-06-01

    Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

  10. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-01-01

    Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

  11. Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System

    Directory of Open Access Journals (Sweden)

    Arnau González

    2015-09-01

    Full Text Available Hybrid renewable energy systems (HRES are a trendy alternative to enhance the renewable energy deployment worldwide. They effectively take advantage of scalability and flexibility of these energy sources, since combining two or more allows counteracting the weaknesses of a stochastic renewable energy source with the strengths of another or with the predictability of a non-renewable energy source. This work presents an optimization methodology for minimum life cycle cost of a HRES based on solar photovoltaic, wind and biomass power. Biomass power seeks to take advantage of locally available forest wood biomass in the form of wood chips to provide energy in periods when the PV and wind power generated are not enough to match the existing demand. The results show that a HRES combining the selected three sources of renewable energy could be installed in a rural township of about 1300 dwellings with an up-front investment of US $7.4 million, with a total life cycle cost of slightly more than US $30 million. Such a system would have benefits in terms of energy autonomy and environment quality improvement, as well as in term of job opportunity creation.

  12. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\access point (AP) and multiple VLC\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  13. A conceptual design of catalytic gasification fuel cell hybrid power plant with oxygen transfer membrane

    Science.gov (United States)

    Shi, Wangying; Han, Minfang

    2017-09-01

    A hybrid power generation system integrating catalytic gasification, solid oxide fuel cell (SOFC), oxygen transfer membrane (OTM) and gas turbine (GT) is established and system energy analysis is performed. In this work, the catalytic gasifier uses steam, recycled anode off-gas and pure oxygen from OTM system to gasify coal, and heated by hot cathode off-gas at the same time. A zero-dimension SOFC model is applied and verified by fitting experimental data. Thermodynamic analysis is performed to investigate the integrated system performance, and system sensitivities on anode off-gas back flow ratio, SOFC fuel utilization, temperature and pressure are discussed. Main conclusions are as follows: (1) System overall electricity efficiency reaches 60.7%(HHV) while the gasifier operates at 700 °C and SOFC at 850 °C with system pressure at 3.04 bar; (2) oxygen enriched combustion simplify the carbon-dioxide capture process, which derives CO2 of 99.2% purity, but results in a penalty of 6.7% on system electricity efficiency; (3) with SOFC fuel utilization or temperature increasing, the power output of SOFC increases while GT power output decreases, and increasing system pressure can improve both the performance of SOFC and GT.

  14. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad

    2018-01-15

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\\\access point (AP) and multiple VLC\\\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  15. Performance test of lower hybrid waveguide under long/high-RF power transmission

    International Nuclear Information System (INIS)

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10 -6 -10 -5 Pa m 3 /sec m 2 (10 -9 -10 -8 Torr 1/sec cm 2 ) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H 2 or D 2 gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be ∼100degC by using of water cooling at a power level of 150 MW/m 2 RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10 -7 Pa m 3 /sec m 2 (10 -10 Torr 1/sec cm 2 ). The steady state RF injection was demonstrated with water cooling. (author)

  16. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-01-01

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi 0.8 Co 0.2 O 2 cathode and DEC-EC-LiPF 6 electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF 6 salt in the electrolyte at elevated temperature

  17. Electrical-Loss Analysis of Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglio

    2017-12-01

    Full Text Available The growing development of hybrid electric vehicles (HEVs has seen the spread of architectures with transmission based on planetary gear train, realized thanks to two electric machines. This architecture, by continuously regulating the transmission ratio, allows the internal combustion engine (ICE to work in optimal conditions. On the one hand, the average ICE efficiency is increased thanks to better loading situations, while, on the other hand, electrical losses are introduced due to the power circulation between the two electrical machines mentioned above. The aim of this study is then to accurately evaluate electrical losses and the average ICE efficiency in various operating conditions and over different road missions. The models used in this study are presented for both the Continuously Variable Transmission (CVT architecture and the Discontinuously Variable Transmission (DVT architecture. In addition, efficiency maps of the main components are shown. Finally, the simulation results are presented to point out strengths and weaknesses of the CVT architecture.

  18. Analysis of Heat Transfer in Power Split Device for Hybrid Electric Vehicle Using Thermal Network Method

    Directory of Open Access Journals (Sweden)

    Jixin Wang

    2014-06-01

    Full Text Available This paper presents a rational prediction of temperature field on the differential hybrid system (DHS based on the thermal network method (TNM. The whole thermal network model is built by considering both the contact thermal resistance between gasket and planet gear and the temperature effect on the physical property parameters of lubricant. The contact thermal resistance is obtained by using the concept of contact branch thermal resistance and G-W elastic model. By building an elaborate thermal network model and computing models for power losses and thermal resistances between components, the whole temperature field of DHS under typical operating condition is predicted. Results show that thermal network method can be effectively used to predict the temperature distribution and the rule of temperature variation, the surface roughness significantly affects contact thermal conduction, and the decrease in the thermal resistance of the natural convection between air and DHS housing can effectively improve the thermal environment of DHS.

  19. Optimal Hybrid Renewable Airport Power System: Empirical Study on Incheon International Airport, South Korea

    Directory of Open Access Journals (Sweden)

    Seoin Baek

    2016-06-01

    Full Text Available In response to global energy problems (e.g., the oil crisis, the Fukushima accident, the Paris Agreement, the South Korean government has executed a strict renewable energy plan to decrease the country’s dependence on fossil fuel. Public facilities, such as international airports, which use substantial amounts of electricity, are the most in need of government regulation. In this study, we attempt to determine the optimal hybrid electricity generation system for South Korea’s largest airport: Incheon International Airport. In the analysis, we use three scenarios: the current load, 120% of the current load, and 140% of the current load, according to the plan to expand Incheon International Airport. According to the COE (cost of electricity and the NPC (net present cost of the result, it is economically feasible to completely cover the potential increase in the electric load with PV power. Government policy implications and limitations are discussed.

  20. A Decoupling Control Method for Shunt Hybrid Active Power Filter Based on Generalized Inverse System

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-01-01

    Full Text Available In this paper, a novel decoupling control method based on generalized inverse system is presented to solve the problem of SHAPF (Shunt Hybrid Active Power Filter possessing the characteristics of 2-input-2-output nonlinearity and strong coupling. Based on the analysis of operation principle, the mathematical model of SHAPF is firstly built, which is verified to be invertible using interactor algorithm; then the generalized inverse system of SHAPF is obtained to connect in series with the original system so that the composite system is decoupled under the generalized inverse system theory. The PI additional controller is finally designed to control the decoupled 1-order pseudolinear system to make it possible to adjust the performance of the subsystem. The simulation results demonstrated by MATLAB show that the presented generalized inverse system strategy can realise the dynamic decoupling of SHAPF. And the control system has fine dynamic and static performance.

  1. Numerical simulation of a hybrid CSP/Biomass 5 MWel power plant

    Science.gov (United States)

    Soares, João; Oliveira, Armando

    2017-06-01

    The fundamental benefit of using renewable energy systems is undeniable since they rely on a source that will not run out. Nevertheless, they strongly depend on meteorological conditions (solar, wind, etc.), leading to uncertainty of instantaneous energy supply and consequently to grid connection issues. An interesting concept is renewable hybridisation. This consists in the strategic combination of different renewable sources in the power generation portfolio by taking advantage of each technology. Hybridisation of concentrating solar power with biomass denotes a powerful way of assuring system stability and reliability. The main advantage is dispatchability through the whole extent of the operating range. Regarding concentrating solar power heat transfer fluid, direct steam generation is one of the most interesting concepts. Nevertheless, it presents itself technical challenges that are mostly related to the two-phase fluid flow in horizontal pipes, as well as the design of an energy storage system. Also, the use of reheat within the turbine is usually indirectly addressed, hindering system efficiency. These challenges can be addressed through hybridisation with biomass. In this paper, a hybrid renewable electricity generation system is presented. The system relies on a combination of solar and biomass sources to drive a 5 MWel steam turbine. System performance is analysed through numerical simulation using Ebsilon professional software. The use of direct reheat in the turbine is addressed. Results show that hybridisation results in an enhancement of system dispatchability and generation stability. Furthermore, hybridisation enhanced the annual solar field and power block efficiencies, and thus the system annual efficiency (from 7.6% to 20%). The use of direct reheat eliminates steam wetness in the last turbine stage and also improves system efficiency.

  2. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  3. Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system

    Science.gov (United States)

    Chen, Xiaohang; Wang, Yuan; Cai, Ling; Zhou, Yinghui

    2015-10-01

    Based on the current models of phosphoric acid fuel cells (PAFCs) and thermoelectric generators (TGs), a new hybrid system is proposed, in which the effects of multi-irreversibilities resulting from the activation, concentration, and ohmic overpotentials in the PAFC, Joule heat and heat leak in the TG, finite-rate heat transfer between the TG and the heat reservoirs, and heat leak from the PAFC to the environment are taken into account. Expressions for the power output and efficiency of the PAFC, TG, and hybrid system are analytically derived and directly used to discuss the performance characteristics of the hybrid system. The optimal relationship between the electric currents in the PAFC and TG is obtained. The maximum power output is numerically calculated. It is found that the maximum power output density of the hybrid system will increase about 150 Wm-2, compared with that of a single PAFC. The problem how to optimally match the load resistances of two subsystems is discussed. Some significant results for practical hybrid systems are obtained.

  4. Application of Hybrid HS and Tabu Search Algorithm for Optimal Location of FACTS Devices to Reduce Power Losses in Power Systems

    Directory of Open Access Journals (Sweden)

    Z. Masomi Zohrabad

    2016-12-01

    Full Text Available Power networks continue to grow following the annual growth of energy demand. As constructing new energy generation facilities bears a high cost, minimizing power grid losses becomes essential to permit low cost energy transmission in larger distances and additional areas. This study aims to model an optimization problem for an IEEE 30-bus power grid using a Tabu search algorithm based on an improved hybrid Harmony Search (HS method to reduce overall grid losses. The proposed algorithm is applied to find the best location for the installation of a Unified Power Flow Controller (UPFC. The results obtained from installation of the UPFC in the grid are presented by displaying outputs.

  5. Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production

    International Nuclear Information System (INIS)

    Ng, Yi Cheng; Lipiński, Wojciech

    2012-01-01

    Thermodynamic analyses are performed for solar thermal steam and dry gasification of coal. The selected types of coal are anthracite, bituminous, lignite and peat. Two model conversion paths are considered for each combination of the gasifying agent and the coal type: production of the synthesis gas with its subsequent use in a combined cycle power plant to generate power, and production of the synthesis gas with its subsequent use to produce gasoline via the Fischer–Tropsch synthesis. Replacement of a coal-fired 35% efficient Rankine cycle power plant and a combustion-based integrated gasification combined cycle power plant by a solar-based integrated gasification combined cycle power plant leads to the reduction in specific carbon dioxide emissions by at least 47% and 27%, respectively. Replacement of a conventional gasoline production process via coal gasification and a subsequent Fischer–Tropsch synthesis with gasoline production via solar thermal coal gasification with a subsequent Fischer–Tropsch synthesis leads to the reduction in specific carbon dioxide emissions by at least 39%. -- Highlights: ► Thermodynamic analyses for steam and dry gasification of coal are presented. ► Hybrid solar-fossil paths to power and fuels are compared to those using only combustion. ► Hybrid power production can reduce specific CO 2 emissions by more than 27%. ► Hybrid fuel production can reduce specific CO 2 emissions by more than 39%.

  6. Estimation of PV output power in moving and rocking hybrid energy marine ships

    International Nuclear Information System (INIS)

    Liu, Hongda; Zhang, Qing; Qi, Xiaoxia; Han, Yang; Lu, Fang

    2017-01-01

    Highlights: •A mathematical model for characterizing the ship PV output power is developed. •The impacts of the sea condition and ship type on the PV output power are analyzed. •The hybrid energy storage system is used to stabilize the PV fluctuation powers. •A SC configuration method based on maximum half period is applied. -- Abstract: In recent years, the application of solar energy and energy storage to ship power systems has shown promise as a method for both reducing annual carbon and nitrogen oxide emissions and improving ship energy efficiency in the maritime shipping industry. When a ship navigates at sea, it encounters a constant rocking motion that is affected by both the surrounding sea conditions and the ship’s navigation parameters. This motion increases the uncertainty involved in using solar energy and accelerates the aging of the ship’s energy storage battery to some extent. In this study, a universal mathematical model is established for the power generation by photovoltaic (PV) modules in which both the sea conditions and the ship’s integrated motion, including its basic movement along with the motion caused by rocking, are taken into account. Based on this model, the fluctuation characteristics of a ship’s PV output power are studied and determined using three different simulation scenarios. A binary energy storage scheme based on a decoupled PV output power is proposed in order to both stabilize the small-period PV power fluctuations and slow the aging of the actual battery caused by rocking. In addition, a super-capacitor (SC) configuration is constructed based on a maximum half cycle. Finally, the optimal energy storage capacities for this green ship are compared under both rocking and moving motion. In the case of rocking motion, the SCs are able to achieve an approximately 24.8–35.0% reduction in battery replacement. A shipping route between Shanghai, China and Sydney, Australia is considered to validate the practicality

  7. Modeling and simulation of stand-alone hybrid power system with fuzzy MPPT for remote load application

    Directory of Open Access Journals (Sweden)

    Bogaraj T.

    2015-09-01

    Full Text Available Many parts of remote locations in the world are not electrified even in this Advanced Technology Era. To provide electricity in such remote places renewable hybrid energy systems are very much suitable. In this paper PV/Wind/Battery Hybrid Power System (HPS is considered to provide an economical and sustainable power to a remote load. HPS can supply the maximum power to the load at a particular operating point which is generally called as Maximum Power Point (MPP. Fuzzy Logic based MPPT (FLMPPT control method has been implemented for both Solar and Wind Power Systems. FLMPPT control technique is implemented to generate the optimal reference voltage for the first stage of DC-DC Boost converter in both the PV and Wind energy system. The HPS is tested with variable solar irradiation, temperature, and wind speed. The FLMPPT method is compared with P&O MPPT method. The proposed method provides a good maximum power operation of the hybrid system at all operating conditions. In order to combine both sources, the DC bus voltage is made constant by employing PI Controllers for the second stage of DC-DC Buck-Boost converter in both Solar and Wind Power Systems. Battery Bank is used to store excess power from Renewable Energy Sources (RES and to provide continuous power to load when the RES power is less than load power. A SPWM inverter is designed to convert DC power into AC to supply three phase load. An LC filter is also used at the output of inverter to get sinusoidal current from the PWM inverter. The entire system was modeled and simulated in Matlab/Simulink Environment. The results presented show the validation of the HPS design.

  8. Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid

    Directory of Open Access Journals (Sweden)

    Robert Antonio Salas-Puente

    2018-03-01

    Full Text Available In this paper, a centralized control strategy for the efficient power management of power converters composing a hybrid AC/DC microgrid is explained. The study is focused on the converters connected to the DC bus. The proposed power management algorithm is implemented in a microgrid central processor which is based on assigning several operation functions to each of the generators, loads and energy storage systems in the microgrid. The power flows between the DC and AC buses are studied in several operational scenarios to verify the proposed control. Experimental and simulation results demonstrate that the algorithm allows control of the power dispatch inside the microgrid properly by performing the following tasks: communication among power converters, the grid operator and loads; connection and disconnection of loads; control of the power exchange between the distributed generators and the energy storage system and, finally, supervision of the power dispatch limit set by the grid operator.

  9. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    Science.gov (United States)

    Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad

    2013-06-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  10. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    International Nuclear Information System (INIS)

    Aziz, Nur Liyana Afiqah Abdul; Yap, Keem Siah; Bunyamin, Muhammad Afif

    2013-01-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of c omputing the word . The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  11. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  12. Assessment Studies regarding the Optimal Sizing of Wind Integrated Hybrid Power Plants for Off-Grid Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Tarnowski, German Claudio

    2018-01-01

    The paper focusses on the optimal sizing of off-grid hybrid power plants including wind power generation. A modular and scalable system topology as well as an optimal sizing algorithm for the HPP has been presented in a previous publication. In this paper, the sizing process is evaluated by means...... of assessment studies. The aim is to address the impact of renewable resource data, the required power supply availability and reactive power load demand on the optimal sizing of wind integrated off-grid HPPs....

  13. Comparing Hybrid Learning with Traditional Approaches on Learning the Microsoft Office Power Point 2003 Program in Tertiary Education

    Science.gov (United States)

    Vernadakis, Nikolaos; Antoniou, Panagiotis; Giannousi, Maria; Zetou, Eleni; Kioumourtzoglou, Efthimis

    2011-01-01

    The purpose of this study was to determine the effectiveness of a hybrid learning approach to deliver a computer science course concerning the Microsoft office PowerPoint 2003 program in comparison to delivering the same course content in the form of traditional lectures. A hundred and seventy-two first year university students were randomly…

  14. Low-cost RAU with Optical Power Supply Used in a Hybrid RoF IEEE 802.11 Network

    Science.gov (United States)

    Kowalczyk, M.; Siuzdak, J.

    2014-09-01

    The paper presents design and implementation of a low-cost RAU (Remote Antenna Unit) device. It was designed to work in a hybrid Wi-Fi/optical network based on the IEEE 802.11b/g standard. An unique feature of the device is the possibility of optical power supply.

  15. Design of an off-grid hybrid PV/wind power system for remote mobile base station: A case study

    Directory of Open Access Journals (Sweden)

    Mulualem T. Yeshalem

    2017-01-01

    Full Text Available There is a clear challenge to provide reliable cellular mobile service at remote locations where a reliable power supply is not available. So, the existing Mobile towers or Base Transceiver Station (BTSs uses a conventional diesel generator with backup battery banks. This paper presents the solution to utilizing a hybrid of photovoltaic (PV solar and wind power system with a backup battery bank to provide feasibility and reliable electric power for a specific remote mobile base station located at west arise, Oromia. All the necessary modeling, simulation, and techno-economic evaluation are carried out using Hybrid Optimization Model for Electric Renewable (HOMER software. The best optimal system configurations namely PV/Battery and PV/Wind/Battery hybrid systems are compared with the conventional stand-alone diesel generator (DG system. Findings indicated that PV array and battery is the most economically viable option with the total net present cost (NPC of $\\$$57,508 and per unit cost of electricity (COE of $\\$$0.355. Simulation results show that the hybrid energy systems can minimize the power generation cost significantly and can decrease CO2 emissions as compared to the traditional diesel generator only. The sensitivity analysis is also carried out to analysis the effects of probable variation in solar radiation, wind speed, diesel price and average annual energy usage of the system load in the optimal system configurations.

  16. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system

    OpenAIRE

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration-nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized u...

  17. A Technical, Economic, and Environmental Performance of Grid-Connected Hybrid (Photovoltaic-Wind) Power System in Algeria

    OpenAIRE

    Saheb-Koussa, Djohra; Koussa, Mustapha; Said, Nourredine

    2013-01-01

    This paper studies the technical, economic, and environmental analysis of wind and photovoltaic power systems connected to a conventional grid. The main interest in such systems is on-site consumption of the produced energy, system hybridization, pooling of resources, and contribution to the environment protection. To ensure a better management of system energy, models have been used for determining the power that the constituting subsystems can deliver under specific weather conditions. Simu...

  18. DESIGN OF THE THREE-LEVEL MULTICRITERIAL STRATEGY OF HYBRID MARINE POWER PLANT CONTROL FOR A COMBINED PROPULSION COMPLEX

    Directory of Open Access Journals (Sweden)

    V.V. Budashko

    2017-04-01

    Full Text Available Purpose. Efficiency of hybrid ships power plants (SPP combined propulsion complexes (CPC by various criteria for energy management systems strategies. Methodology. Based on the classification system topologies SPP CPC for mechanical, electrical and hybrid types of motors schematic diagrams of management strategies for the criterion of minimum power consumption are defined. Changing the technical component of the traditional approach to building hybrid ships electric power systems (SEPS SPP CPC the principle of modifying the structure of SEPS is applied with the integration of additional static alternative power source as dynamic reserve, which allowed to meet modern requirements for energy efficiency, levels of vibration, noise and degradation effects produced to SPP CPC, in all areas of the energy for the transfer of power from energy to propellers. Modeling of power transmission of energy to propellers in MatLab/Simulink is conducted, using blocks of optimization library and definition of identity markers. Results. Major advantages and disadvantages SPP CPC depending on the topology of energy distribution systems are determined. According to the chosen structure system electricity characteristics were obtained in the process of power transmission SPP CPC and power systems and their control strategies in terms of increased efficiency and eliminate these drawbacks. And finally, mathematical apparatus for research in terms of the development of methods for designing and managing SPP hybrid CPC to reduced fuel consumption, emissions into the environment and improving maintainability, flexibility and comfort level are improved. Originality. The methodology for improving SPP CPC implementation by developing methods of identification markers mutually influencing processes in SPP CPC and the development of implementing these methods of settlement and information systems. Practical value. The method enables iterative optimization parameters SPP CPC, it

  19. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    OpenAIRE

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-01-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem i...

  20. A hybrid model for the optimum integration of renewable technologies in power generation systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis

    2011-01-01

    The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010-2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3-0.5 Euro c/kWh (in real prices), depending on the RES-E penetration level. - Research Highlights: →Development of a hybrid optimization model for the integration of renewable technologies in power generation systems. →Estimation of the optimum feed-in-tariffs to be offered to future renewable systems. →Determination of the overall cost increase in the electricity sector for the promotion of renewable technologies. →Analyses taking into account fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc.

  1. Hybrid electric vehicle thermal management and study of the power electronics cooling; Gestion thermique du vehicule hybride et etude du refroidissement de l'electronique de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Rouaud, C.

    2004-07-01

    For decreasing the engine's consumption and pollutant emissions, automobile makers are developing hybrid electric vehicles incorporating an electric motor and power electronics leading to new under-hood thermal constraints. This is why we first present the tests results of a new common cooling circuit for all the vehicle components. With the aim of developing new energy management strategies between the components, we have chosen the nodal method to simulate the thermal behaviour of the engine, the electric motor, the power electronics and the cooling circuit. The second part of this thesis deals with a thermal-hydraulic analysis of several power electronics cooling methods, which has led us to choose the multiple jet impingement cooling. Several tests have been made for characterising the performances of this technique and enabled us to establish an optimal configuration. The last part shows the thermal simulation results run with the help of an innovative reduction method of thermal models applied to the power electronics. This technique allowed us to have a low cost of time simulation and will permit, in the future, the real-time control of the hybrid electric vehicle components. (author)

  2. A Single-Degree-of-Freedom Energy Optimization Strategy for Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2017-07-01

    Full Text Available This paper presents a single-degree-of-freedom energy optimization strategy to solve the energy management problem existing in power-split hybrid electric vehicles (HEVs. The proposed strategy is based on a quadratic performance index, which is innovatively designed to simultaneously restrict the fluctuation of battery state of charge (SOC and reduce fuel consumption. An extended quadratic optimal control problem is formulated by approximating the fuel consumption rate as a quadratic polynomial of engine power. The approximated optimal control law is obtained by utilizing the solution properties of the Riccati equation and adjoint equation. It is easy to implement in real-time and the engineering significance is explained in details. In order to validate the effectiveness of the proposed strategy, the forward-facing vehicle simulation model is established based on the ADVISOR software (Version 2002, National Renewable Energy Laboratory, Golden, CO, USA. The simulation results show that there is only a little fuel consumption difference between the proposed strategy and the Pontryagin’s minimum principle (PMP-based global optimal strategy, and the proposed strategy also exhibits good adaptability under different initial battery SOC, cargo mass and road slope conditions.

  3. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  4. Proposed high voltage power supply for the ITER relevant lower hybrid current drive system

    International Nuclear Information System (INIS)

    Sharma, P.K.; Kazarian, F.; Garibaldi, P.; Gassman, T.; Artaud, J.F.; Bae, Y.S.; Belo, J.; Berger-By, G.; Bernard, J.M.; Cara, Ph.; Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Cesario, R.; Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Goniche, M.; Guilhem, D.

    2011-01-01

    In the framework of the EFDA task HCD-08-03-01, the ITER lower hybrid current drive (LHCD) system design has been reviewed. The system aims to generate 24 MW of RF power at 5 GHz, of which 20 MW would be coupled to the plasmas. The present state of the art does not allow envisaging a unitary output of the klystrons exceeding 500 kW, so the project is based on 48 klystron units, leaving some margin when the transmission lines losses are taken into account. A high voltage power supply (HVPS), required to operate the klystrons, is proposed. A single HVPS would be used to feed and operate four klystrons in parallel configuration. Based on the above considerations, it is proposed to design and develop twelve HVPS, based on pulse step modulator (PSM) technology, each rated for 90 kV/90 A. This paper describes in details, the typical electrical requirements and the conceptual design of the proposed HVPS for the ITER LHCD system.

  5. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), CNRS, Nancy Universite, INPL-ENSEM 2, avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2009-08-01

    This paper proposes a perfect energy source supplied by a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices: battery and supercapacitor, for modern distributed generation system, particularly for future fuel cell vehicle applications. The energy in hybrid system is balanced by the dc bus voltage regulation. A supercapacitor module, as a high dynamic and high power density device, functions for supplying energy to regulate a dc bus voltage. A battery module, as a high energy density device, operates for supplying energy to a supercapacitor bank to keep it charged. A FC, as a slowest dynamic source in this system, functions to supply energy to a battery bank in order to keep it charged. Therefore, there are three voltage control loops: dc bus voltage regulated by a supercapacitor bank, supercapacitor voltage regulated by a battery bank, and battery voltage regulated by a FC. To authenticate the proposed control algorithm, a hardware system in our laboratory is realized by analog circuits and numerical calculation by dSPACE. Experimental results with small-scale devices (a PEMFC: 500-W, 50-A; a battery bank: 68-Ah, 24-V; and a supercapacitor bank: 292-F, 30-V, 500-A) corroborate the excellent control principle during motor drive cycle. (author)

  6. Heavy Traffic Feasible Hybrid Intracycle and Cyclic Sleep for Power Saving in 10G-EPON

    Directory of Open Access Journals (Sweden)

    Xintian Hu

    2014-01-01

    Full Text Available Energy consumption in optical access networks costs carriers substantial operational expense (OPEX every year and is one of contributing factors for the global warming. To reduce energy consumption in the 10-gigabit Ethernet passive optical network (10G-EPON, a hybrid intracycle and cyclic sleep mechanism is proposed in this paper. Under heavy traffic load, optical network units (ONUs can utilize short idle slots within each scheduling cycle to enter intracycle sleep without postponing data transmission. In this way, energy conservation is achieved even under heavy traffic load with quality of service (QoS guarantee. Under light traffic load, ONUs perform long cyclic sleep for several scheduling cycles. The adoption of cyclic sleep instead of intracycle sleep under light traffic load can reduce unnecessary frequent transitions between sleep and full active work caused by using intracycle sleep. Further, the Markov chain of the proposed mechanism is established. The performances of the proposed mechanism and existing approaches are analyzed quantitatively based on the chain. For the proposed mechanism, power saving ability with QoS guarantee even under heavy traffic and better power saving performance than existing approaches are verified by the quantitative analysis. Moreover, simulations validate the above conclusions based on the chain.

  7. Optimal power flow: a bibliographic survey II. Non-deterministic and hybrid methods

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen [Colorado School of Mines, Department of Electrical Engineering and Computer Science, Golden, CO (United States); Steponavice, Ingrida [Univ. of Jyvaskyla, Dept. of Mathematical Information Technology, Agora (Finland); Rebennack, Steffen [Colorado School of Mines, Division of Economics and Business, Golden, CO (United States)

    2012-09-15

    Over the past half-century, optimal power flow (OPF) has become one of the most important and widely studied nonlinear optimization problems. In general, OPF seeks to optimize the operation of electric power generation, transmission, and distribution networks subject to system constraints and control limits. Within this framework, however, there is an extremely wide variety of OPF formulations and solution methods. Moreover, the nature of OPF continues to evolve due to modern electricity markets and renewable resource integration. In this two-part survey, we survey both the classical and recent OPF literature in order to provide a sound context for the state of the art in OPF formulation and solution methods. The survey contributes a comprehensive discussion of specific optimization techniques that have been applied to OPF, with an emphasis on the advantages, disadvantages, and computational characteristics of each. Part I of the survey provides an introduction and surveys the deterministic optimization methods that have been applied to OPF. Part II of the survey (this article) examines the recent trend towards stochastic, or non-deterministic, search techniques and hybrid methods for OPF. (orig.)

  8. Regenerative Braking Compensatory Control Strategy Considering CVT Power Loss for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2018-02-01

    Full Text Available Hybrid electric vehicles (HEV equipped with continuously variable transmission (CVT adjust the motor operating point continuously to achieve the optimal motor operating efficiency during regenerative braking. Traditional control strategies consider the CVT efficiency as constant, while the CVT efficiency varies in different operating conditions. In order to reflect the transmission efficiency more accurately during regenerative braking, the CVT theoretical torque loss model is firstly established which then leads to the battery–front motor–CVT joint operating efficiency model. The joint operating efficiency model indicates that the system efficiency is influenced by input speed, input torque, CVT speed ratio, and battery SOC (state of charge. The compensatory strategy for the front motor barking force is proposed to make full use of its braking power and the CVT speed ratio control strategy is modified to maintain the optimal operating efficiency of the system. The simulations are performed under three typical braking conditions and UDDS, NYCC, US06 respectively, the results show that the modified control strategy increases the front motor braking power and improves the system operating efficiency.

  9. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  10. A Fuzzy-Logic Power Management Strategy Based on Markov Random Prediction for Hybrid Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Yanzi Wang

    2016-01-01

    Full Text Available Over the last few years; issues regarding the use of hybrid energy storage systems (HESSs in hybrid electric vehicles have been highlighted by the industry and in academic fields. This paper proposes a fuzzy-logic power management strategy based on Markov random prediction for an active parallel battery-UC HESS. The proposed power management strategy; the inputs for which are the vehicle speed; the current electric power demand and the predicted electric power demand; is used to distribute the electrical power between the battery bank and the UC bank. In this way; the battery bank power is limited to a certain range; and the peak and average charge/discharge power of the battery bank and overall loss incurred by the whole HESS are also reduced. Simulations and scaled-down experimental platforms are constructed to verify the proposed power management strategy. The simulations and experimental results demonstrate the advantages; feasibility and effectiveness of the fuzzy-logic power management strategy based on Markov random prediction.

  11. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  12. Independent power source hybrid system - recent examples mainly of mountain huts.; Dokuritsu dengengata no haiburiddo shisutemu -saikin no yamagoya deno jirei wo chushin ni.

    Energy Technology Data Exchange (ETDEWEB)

    Mori, T. [Kanagawa Inst. of Tech., Kanagawa (Japan)

    2000-09-30

    History of the independent power source hybrid systems used at such as mountain huts were outlined, and recent application examples of the hybrid systems were explained. At Natsuzawa mineral spring in Nagano pref., 7 kW of hybrid power generator system composed of solar cell and wind power generator, as well as 400 W of small hydraulic power generator are working supplying electric power for the private sewerage system, and the system without diesel generator is being tested. At Senjogahara refuge hut in South Alps, a hybrid power generation system composed of 10.7 kW of solar cell and 6.4 kW of wind power generator was installed, and is working. In mountainous area, there exist critical factors such as weather condition and difficulty in carrying equipment, accordingly, cost reduction and sizing down of relevant apparatus such as batteries and inverters are expected. (NEDO)

  13. Optimal Allocation of Power-Electronic Interfaced Wind Turbines Using a Genetic Algorithm - Monte Carlo Hybrid Optimization Method

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Chen, Zhe

    2010-01-01

    determined by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the distribution of power flow, power losses, etc. Furthermore, modern WTs with power-electronic interface have the capability of controlling reactive power output...... limit requirements. The method combines the Genetic Algorithm (GA), gradient-based constrained nonlinear optimization algorithm and sequential Monte Carlo simulation (MCS). The GA searches for the optimal locations and capacities of WTs. The gradient-based optimization finds the optimal power factor...... setting of WTs. The sequential MCS takes into account the stochastic behaviour of wind power generation and load. The proposed hybrid optimization method is demonstrated on an 11 kV 69-bus distribution system....

  14. Optimization of a hybrid electric power system design for large commercial buildings: An application design guide

    Science.gov (United States)

    Lee, Keun

    Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals

  15. Solar central receiver hybrid power system, Phase I. Volume 2. Conceptual design. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The objectives of this study were to develop a hybrid power system design that (1) produces minimum cost electric power, (2) minimizes the capital investment and operating cost, (3) permits capacity displacement, (4) and achieves utility acceptance for market penetration. We have met the first three of these objectives and therefore believe that the fourth, utility acceptance, will become a reality. These objectives have been met by utilizing the Martin Marietta concept that combines the alternate central receiver power system design and a high-temperature salt primary heat transfer fluid and thermal storage media system with a fossil-fired nonsolar energy source. Task 1 reviewed the requirements definition document and comments and recommendations were provided to DOE/San Francisco. Task 2 consisted of a market analysis to evaluate the potential market of solar hybrid power plants. Twenty-two utilities were selected within nine regions of the country. Both written and verbal correspondence was used to assess solar hybrid power plants with respect to the utilities' future requirements and plans. The parametric analysis of Task 3 evaluated a wide range of subsystem configurations and sizes. These analyses included subsystems from the solar standalone alternate central receiver power system using high-temperature molten salt and from fossil fuel nonsolar subsystems. Task 4, selection of the preferred commerical system configuration, utilized the parametric analyses developed in Task 3 to select system and subsystem configurations for the commercial plant design. Task 5 developed a conceptual design of the selected commercial plant configuration and assessed the related cost and performance. Task 6 assessed the economics and performance of the selected configuration as well as future potential improvements or limitations of the hybrid power plants.

  16. Prospects of solar photovoltaic–micro-wind based hybrid power systems in western Himalayan state of Himachal Pradesh in India

    International Nuclear Information System (INIS)

    Sinha, Sunanda; Chandel, S.S.

    2015-01-01

    Highlights: • Good prospects of PV–wind hybrid systems are found in western Himalayan Indian state. • A 6 kWp roof mounted PV–micro wind hybrid system at Hamirpur location is studied. • Optimum PV–wind hybrid system configurations are determined for 12 locations in the region. • Comparative analysis of hybrid systems is carried out using ANN, NASA and measured data. • Methodology can be used for assessing the potential of hybrid power systems worldwide. - Abstract: The western Himalayan state of Himachal Pradesh is known as the hydro-power state of India with associated social and environmental problems of large hydro power plants. The reduced water inflow in the rivers during extreme winters affects power generation in the state. Therefore solar and wind resources need to be utilized to supplement power generation requirements. With this objective the prospects of photovoltaic–micro wind based hybrid systems are studied for 12 locations of the state. The NASA data, Artificial Neural Network predicted and ground measured data are used in the analysis of Hamirpur location whereas for remaining 11 locations estimated, NASA and Artificial Neural Network predicted data are used, as measured solar and wind data are not available for most of the locations in the state. Root Mean Square Error between three input data types are found to range from 0.08 to 1.89. The results show that ANN predicted data are close to measured/estimated data. A 6 kWp roof mounted photovoltaic–micro wind hybrid system at Hamirpur with daily average energy demand of 5.2 kWh/day is studied. This system specifications are used to obtain optimum PV–micro wind based hybrid power system configurations for all locations. The optimum configuration for Hamirpur is found to be a 5 kWp micro wind turbine, 2 kW converter, 10 batteries and 8 kWp PV system whereas for other 11 locations a 5 kWp micro wind turbine, 2 kW converter, 10 batteries and 2–9 kWp PV systems are obtained. The

  17. Joint Optimization of Power Allocation and Load Balancing for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad

    2018-04-18

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF access point (AP) and multiple VLC APs. An iterative algorithm is proposed to distribute users on APs and distribute the powers of the APs on their users. In the PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for total achievable data rate maximization. In this subproblem, we propose a new efficient algorithm that finds optimal dual variables after formulating them in terms of each other. This new algorithm provides faster convergence and better performance than the traditional subgradient method. In addition, it does not depend on the step size or the initial values of the variables, which we look for, as the subgradient does. Then, we start with the user of the minimum data rate seeking another AP that offers a higher data rate for that user. Users with lower data rates continue reconnecting from one AP to another to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. Two approaches are proposed to have the joint PA and LB performed: a main approach that considers the exact interference information for all users, and a suboptimal approach that aims to decrease the complexity of the first approach by considering only the approximate interference information of users. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  18. Joint Optimization of Power Allocation and Load Balancing for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad; Salhab, Anas; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF access point (AP) and multiple VLC APs. An iterative algorithm is proposed to distribute users on APs and distribute the powers of the APs on their users. In the PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for total achievable data rate maximization. In this subproblem, we propose a new efficient algorithm that finds optimal dual variables after formulating them in terms of each other. This new algorithm provides faster convergence and better performance than the traditional subgradient method. In addition, it does not depend on the step size or the initial values of the variables, which we look for, as the subgradient does. Then, we start with the user of the minimum data rate seeking another AP that offers a higher data rate for that user. Users with lower data rates continue reconnecting from one AP to another to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. Two approaches are proposed to have the joint PA and LB performed: a main approach that considers the exact interference information for all users, and a suboptimal approach that aims to decrease the complexity of the first approach by considering only the approximate interference information of users. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  19. Design and analysis of a hybrid renewable energy plant with solar and wind power

    International Nuclear Information System (INIS)

    Kabalci, Ersan

    2013-01-01

    Highlights: • A distributed generation system is developed with separate solar plant and wind turbine. • The solar plant is controlled with MPPT infrastructure of Perturb and Observe algorithm. • Power generation of source sites are converted to DC with PI controlled buck converters and collected on a DC busbar. • Harvested DC power is converted to AC with a full bridge inverter and SPWM control is performed in inverter. • The total harmonic distortion (THD) ratio of the generated 3-phase line is obtained in the limit of standards. - Abstract: A hybrid renewable energy plant that is based on solar and wind energy conversion systems is designed and analysed in this paper. Each separate energy conversion system is controlled either using regular PI controller or extended PI controller with an auxiliary controller containing Perturb and Observe algorithm. The solar plant model is constituted by connecting 170 W photovoltaic (PV) panels serially and energy conversion is performed with maximum power point tracking (MPPT) algorithm that controls the modulator of buck converter. The MPPT algorithm utilized in the control step of converter is developed using Perturb and Observe (P and O) that is extended with PI controller. The wind energy plant is designed with a permanent magnet synchronous generator (PMSG), and the AC–DC conversion stage is constituted with an uncontrolled full-bridge rectifier. All the converter outputs are connected to a busbar over interphase transformers (IPTs). The DC bus-bar voltage is supplied to a full bridge inverter to generate three-phase AC voltages at the output of inverter. The three-phase inverter is controlled with sinusoidal pulse width modulation (SPWM) scheme, which is developed with phase shifted carrier signals. The total harmonic distortion (THD) ratios are obtained at proper values according to international standards such as IEC61000 and IEEE 519-1992. Measurement results and obtained three phase voltage are analysed

  20. Performance test of lower hybrid waveguide under long/high-RF power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10{sup -6}-10{sup -5} Pa m{sup 3}/sec m{sup 2} (10{sup -9}-10{sup -8} Torr 1/sec cm{sup 2}) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H{sub 2} or D{sub 2} gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be {approx}100degC by using of water cooling at a power level of 150 MW/m{sup 2} RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10{sup -7} Pa m{sup 3}/sec m{sup 2} (10{sup -10} Torr 1/sec cm{sup 2}). The steady state RF injection was demonstrated with water cooling. (author).