WorldWideScience

Sample records for wind-generated power systems

  1. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  2. Transient Stability Enhancement of the Power System with Wind Generation

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Chandel

    2011-08-01

    Full Text Available Transient stability analysis of a power system with wind generation has been addressed in this paper. The effects of automatic voltage regulators, power system stabilizers, and static synchronous compensators on transient stability of a power system are investigated. Various simulation results show that addition of power system stabilizer and static synchronous compensators reduce the rotor angle oscillations. However, the static synchronous compensator shows better damping characteristics and improves the stability of the wind integrated system. It has been established that the static synchronous compensator damps out the speed oscillations in the shaft of the constant speed wind turbine. A transient impact index has been proposed to prove that the static compensator damps out the rotor oscillations.

  3. Power control for direct-driven permanent magnet wind generator system with battery storage.

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  4. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  5. Three essays on the effect of wind generation on power system planning and operations

    Science.gov (United States)

    Davis, Clay Duane

    While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The

  6. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame....... The formula for the control reference is explicitly deduced in this paper considering the losses of the generator, the power electronic devices and the filter. Three control strategies are compared with the proposed method under different wind speeds and different reactive power references. The simulation...

  7. Coordinated control of wind generation and energy storage for power system frequency regulation

    Science.gov (United States)

    Baone, Chaitanya Ashok

    Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local

  8. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  9. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  10. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...... price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators....

  11. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  12. Design Optimization and Evaluation of Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, Hui

    2008-01-01

    With rapid development of wind power technologies and significant growth of wind power capacity installed worldwide, various wind generator systems have been developed and built. The objective of this paper is to evaluate various wind generator systems by optimization designs and comparisons...... and power electronic converter are presented; design optimizations of the investigated wind generator systems are developed with an improved genetic algorithm. Next, the optimization designs are implemented of various wind generator systems at 0.75-MW, 1.5-MW, 3.0-MW, 5.0-MWand 10MW, respectively....... In this paper, seven variable speed constant frequency (VSCF) wind generator systems are investigated, namely permanent magnet synchronous generators with the direct-driven (PMSG_DD), the single-stage gearbox (PMSG_1G) and three-stage gearbox (PMSG_3G) concepts, doubly fed induction generators with the three...

  13. Determining optimal capacity of wind generation in a conventional power system

    Directory of Open Access Journals (Sweden)

    Shahrokh Shojaeian

    2014-12-01

    Full Text Available This paper investigates the effect of adding different capacities of wind power to the reliability of power systems using Monte Carlo method in order to obtain an optimum limit for that. At first, wind speed of the Swift Carnet Region in Canada, as a typical test area, is simulated and the amount of wind power output of the wind turbine generator is measured. Then, using the Monte Carlo Sequential Method, a model that involves energy generated by conventional and wind power generators is made. The power generated in Monte Carlo Sequence was compared with the system load in order to calculate risk indices. Then values of the ‘loss of load expectation’ and ‘loss of energy expectation’ indices are presented in the adequacy evaluation of the electric power system including the wind power generators.

  14. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  15. Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors

    International Nuclear Information System (INIS)

    Hong, Chih-Ming; Chen, Chiung-Hsing; Tu, Chia-Sheng

    2013-01-01

    Highlights: ► This paper presents MPPT based control for optimal wind energy capture using RBFN. ► MPSO is adopted to adjust the learning rates to improve the learning capability. ► This technique can maintain the system stability and reach the desired performance. ► The EMF in the rotating reference frame is utilized in order to estimate speed. - Abstract: This paper presents maximum-power-point-tracking (MPPT) based control algorithms for optimal wind energy capture using radial basis function network (RBFN) and a proposed torque observer MPPT algorithm. The design of a high-performance on-line training RBFN using back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller for the sensorless control of a permanent magnet synchronous generator (PMSG). The MPSO is adopted in this study to adapt the learning rates in the back-propagation process of the RBFN to improve the learning capability. The PMSG is controlled by the loss-minimization control with MPPT below the base speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. Then the observed disturbance torque is feed-forward to increase the robustness of the PMSG system

  16. Efficiency of small wind generator powered water pumping systems; Rendimento de unidade de bombeamento de agua acionada por gerador eolico de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mendeleyev Guerreiro; Carvalho, Paulo Cesar Marques de; Costa, Levy Ferreira [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    The present paper aims to evaluate the efficiency of a small wind generator powered water pumping system; the generator is a permanent magnet generator of 1 kw of axial flow, using three fiber glass blades with 2.46 m diameter. The used centrifugal pump is connected to a 0.5 c v motor, three-phase, frequency of 60 Hz, rotational speed of 3450 rpm. For the efficiency evaluation a shell anemometer, a flow and pressure sensor were used, connected to a data logger to the collection and storage of the data. An energy analyzer was also used to collect the current, voltage and power generated from the wind generator. (author)

  17. ANALYSIS OF MONTE CARLO SIMULATION SAMPLING TECHNIQUES ON SMALL SIGNAL STABILITY OF WIND GENERATOR- CONNECTED POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    TEMITOPE RAPHAEL AYODELE

    2016-04-01

    Full Text Available Monte Carlo simulation using Simple Random Sampling (SRS technique is popularly known for its ability to handle complex uncertainty problems. However, to produce a reasonable result, it requires huge sample size. This makes it to be computationally expensive, time consuming and unfit for online power system applications. In this article, the performance of Latin Hypercube Sampling (LHS technique is explored and compared with SRS in term of accuracy, robustness and speed for small signal stability application in a wind generator-connected power system. The analysis is performed using probabilistic techniques via eigenvalue analysis on two standard networks (Single Machine Infinite Bus and IEEE 16–machine 68 bus test system. The accuracy of the two sampling techniques is determined by comparing their different sample sizes with the IDEAL (conventional. The robustness is determined based on a significant variance reduction when the experiment is repeated 100 times with different sample sizes using the two sampling techniques in turn. Some of the results show that sample sizes generated from LHS for small signal stability application produces the same result as that of the IDEAL values starting from 100 sample size. This shows that about 100 sample size of random variable generated using LHS method is good enough to produce reasonable results for practical purpose in small signal stability application. It is also revealed that LHS has the least variance when the experiment is repeated 100 times compared to SRS techniques. This signifies the robustness of LHS over that of SRS techniques. 100 sample size of LHS produces the same result as that of the conventional method consisting of 50000 sample size. The reduced sample size required by LHS gives it computational speed advantage (about six times over the conventional method.

  18. Output power control of two coupled wind generators

    Directory of Open Access Journals (Sweden)

    A Boukhelifa

    2016-09-01

    Full Text Available In this paper we are interested to the power control of two wind generators coupled to the network through power converters. Every energy chain conversion is composed of a wind turbine, a gearbox, a Double Fed Induction Generator (DFIG, two PWM converters and a DC bus. The power exchange and the DC voltage are controlled by the use of proportional integral correctors. For our study, initially we have modeled all the components of the one system energy conversion, and then we have simulated its behavior using Matlab/Simulink. In another part of this paper we present the analysis of the interaction and the powerflow between the two aerogenerators following a disturbance due to wind speed on every turbine. Also we have considered a connection fault to the DC bus. In each case the assessment of power brought into play is checked. Simulation tests are established.

  19. Efficient estimator of probabilities of large power spills in an stand-alone system with wind generation and storage

    NARCIS (Netherlands)

    D. Bhaumik (Debarati); D.T. Crommelin (Daan); A.P. Zwart (Bert)

    2016-01-01

    textabstractThe challenges of integrating unpredictable wind energy into a power system can be alleviated using energy storage devices. We assessed a single domestic energy system with a wind turbine and a battery. We investigated the best operation mode of the battery such that the occurrence of

  20. Wind-generator influence to the power quality in the coupling point to the distribution network

    Directory of Open Access Journals (Sweden)

    Kostić Branka B.

    2011-01-01

    Full Text Available The paper presents the results of analysis of wind-generator and their influence to the power quality parameters in the coupling point to the distribution network. The specified results should be used as a starting point for distribution system operators (DSO for issuing permit for connecting renewable sources, mainly for wind-generators. As the case study, the results of measurements at the only one wind generator installed in Serbia, near town of Tutin, are used. The cases of wind-generator start and stop during low wind and consequently smaller value of the energy delivered to the network are particularly analyzed. Taking into consideration that law regulations in this field are not yet defined, EU standards and guidelines are used along with the newly adopted Technical recommendation No. 16 of Public Enterprise Electric Power Industry of Serbia.

  1. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter

  2. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique

  3. Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil

    International Nuclear Information System (INIS)

    Soares MC Borba, Bruno; Szklo, Alexandre; Schaeffer, Roberto

    2012-01-01

    Several studies have proposed different tools for analyzing the integration of variable renewable energy into power grids. This study applies an optimization tool to model the expansion of the electric power system in northeastern Brazil, enabling the most efficient dispatch of the variable output of the wind farms that will be built in the region over the next 20 years. The expected combined expansion of wind generation with conventional inflexible generation facilities, such as nuclear plants and run-of-the-river hydropower plants, poses risks of future mismatch between supply and demand in northeastern Brazil. Therefore, this article evaluates the possibility of using a fleet of plug-in hybrid electric vehicles (PHEVs) to regularize possible energy imbalances. Findings indicate that a dedicated fleet of 500 thousand PHEVs in 2015, and a further 1.5 million in 2030, could be recharged overnight to take advantage of the surplus power generated by wind farms. To avoid the initial costs of smart grids, this article suggests, as a first step, the use of a governmental PHEV fleet that allows fleet managers to control battery charging times. Finally, the study demonstrates the advantages of optimizing simultaneously the power and transport sectors to test the strategy suggested here. -- Highlights: ► We evaluated the use of plug-in hybrid electric vehicles (PHEV) to regularize possible energy imbalances in northeastern Brazil. ► This imbalance might result from the large-scale wind power penetration along with conventional inflexible power plants in the region. ► We adapted the MESSAGE optimization tool to the base conditions of the Brazilian power system. ► 500 thousand PHEVs in 2015 and 1.5 million in 2030 could be recharged taking advantage of wind energy surplus.

  4. Optimization of Multibrid Permanent-Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, H.; Polinder, H.

    2009-01-01

    This paper investigates the cost-effective ranges of gearbox ratios and power ratings of multibrid permanent-magnet (PM) wind generator systems by using a design optimization method. First, the analytical model of a multibrid wind turbine concept consisting of a single-stage gearbox and a three......-phase radial-flux PM synchronous generator with a back-to-back power converter is presented. The design optimization is adopted with a genetic algorithm forminimizing generator system cost. To demonstrate the effectiveness of the developed electromagnetic design model, the optimization results of a 500-k......W direct-drive PM generator and a 1.5-MW multibrid PM generator with various gear ratios are, respectively, compared with those from other methods. Then, the optimal design approach is further employed for a range from 750 kW up to 10 MW. The optimization results of PM generator systems including direct...

  5. Fuzzy logic based variable speed wind generation system

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.

    1996-12-31

    This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.

  6. Impact of wind generation on the operation and development of the UK electricity systems

    International Nuclear Information System (INIS)

    Strbac, Goran; Shakoor, Anser; Pudjianto, Danny; Black, Mary; Bopp, Thomas

    2007-01-01

    Although penetration of wind generation may displace a significant amount of energy produced by large conventional plant, there are issues associated with the extent to which wind generation will be able to replace the capacity and flexibility of conventional generating plant. This is important since wind power is variable, so it will be necessary to retain a significant proportion of conventional plant to ensure security of supply especially under conditions of high demand and low wind. Hence, the capacity value of wind generation will be limited as it will not be possible to displace conventional generation capacity on a ''megawatt for megawatt'' basis. Wind power is variable and not easy to predict, hence various forms of additional reserves will be needed to maintain the balance between supply and demand at all times. Additionally, if the majority of wind generation plant is located in Scotland and the North of England, reinforcement of the transmission network will be needed to accommodate the increases in the north-south flow of electricity. In this paper an assessment of the costs and benefits of wind generation on the UK electricity system is carried out, assuming different levels of wind power capacity. Overall, it is concluded that the system will be able to accommodate significant increases in wind power generation with relatively small increases in overall costs of supply, about 5% of the current domestic electricity price in case of 20% energy produced by wind power. (author)

  7. Robust optimization-based DC optimal power flow for managing wind generation uncertainty

    Science.gov (United States)

    Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn

    2012-11-01

    Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.

  8. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  9. An overview of wind energy, taking into consideration several imporatn issues, including an analisys of regulatory requirements for the connection of wind generation into the power system

    OpenAIRE

    Gimenez Alvarez, Juan Manuel; SCHWEICKARDT, GUSTAVO; GÓMEZ TARGARONA, JUAN CARLOS

    2012-01-01

    Pollution problems such as greenhouse effect as well as the high value and volatility of fuel prices have forced and accelerated the development and use of renewable energy sources. In this work a complete revision of wind generation is presented. In the first part a brief history of the wind energy developments is detailed. Next, some commentaries related to the present and future state are made. Then, a revision of the modern structures of wind generation is realized. In fourth place it is ...

  10. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    Science.gov (United States)

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  11. High Power Wind Generator Designs with Less or No PMs

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Blaabjerg, Frede

    2014-01-01

    The recent steep increase in high energy permanent magnet (PM) price (above 130$/kg and more) triggered already strong R&D efforts to develop wind generators with less PMs (less weight in NdFeB magnets/kW or the use of ferrite PMs) or fully without PMs. All these by optimizing existing dc excited...

  12. Models for Numerical Evaluation of Variable Speed Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, Hui; Chen, Zhe; Polinder, H.

    2007-01-01

    -effective wind conversion system among the various possible configurations. The aim of this project is to evaluate the suitable cost- effective wind generator systems by using the optimization designs and the numerical comparison. The research report is made of two parts, one focus on the design models......, the analytical models include the wind turbine power characteristics; the single/threestage gearbox and the power electronic converter for possible wind turbine concepts are described. Finally, the electromagnetic design models of the investigated generator topologies are presented, including the squirrel cage...... induction generator (SCIG), the doubly-fed induction generator (DFIG), the electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). Numerical evaluation with optimized design and comparison of variable speed wind generator systems by using the presented models...

  13. Capacity Value of PV and Wind Generation in the NV Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  14. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  15. Unified Power Quality Conditioner for Grid Integration of Wind Generators

    OpenAIRE

    Ganesh, Jayanti Navilgone

    2008-01-01

    A Unified Power Quality Conditioner (UPQC) is relatively a new member of the custom power device family. It is a comprehensive custom power device, with integrated shunt and series active filters. The cost of the device, which is higher than other custom power/FACTS devices, because of twin inverter structure and control complexity, will have to be justified by exploring new areas of application where the cost of saving power quality events outweighs the initial cost of installation. Distribu...

  16. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  17. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  18. Trading wind generation from short-term probabilistic forecasts of wind power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Chevallier, Christophe; Kariniotakis, Georges

    2007-01-01

    Due to the fluctuating nature of the wind resource, a wind power producer participating in a liberalized electricity market is subject to penalties related to regulation costs. Accurate forecasts of wind generation are therefore paramount for reducing such penalties and thus maximizing revenue...... participation. Such strategies permit to further increase revenues and thus enhance competitiveness of wind generation compared to other forms of dispatchable generation. This paper formulates a general methodology for deriving optimal bidding strategies based on probabilistic forecasts of wind generation....... Despite the fact that increasing accuracy in spot forecasts may reduce penalties, this paper shows that, if such forecasts are accompanied with information on their uncertainty, i.e., in the form of predictive distributions, then this can be the basis for defining advanced strategies for market...

  19. Comparative study of a small size wind generation system efficiency for battery charging

    Directory of Open Access Journals (Sweden)

    Mayouf Messaoud

    2013-01-01

    Full Text Available This paper presents an energetic comparison between two control strategies of a small size wind generation system for battery charging. The output voltage of the direct drive PMSG is connected to the battery through a switch mode rectifier. A DC-DC boost converter is used to regulate the battery bank current in order to achieve maximum power from the wind. A maximum powertracking algorithm calculates the current command that corresponds to maximum power output of the turbine. The DC-DC converter uses this current to calculate the duty cycle witch is necessary to control the pulse width modulated (PWM active switching device (IGPT. The system overview and modeling are presented including characteristics of wind turbine, generator, batteries, power converter, control system, and supervisory system. A simulation of the system is performed using MATLAB/SIMULINK.

  20. Analytical Derivation of Electrical-Side Maximum Power Line for Wind Generators

    Directory of Open Access Journals (Sweden)

    Sergei Kolesnik

    2017-09-01

    Full Text Available In order to enhance the maximum power point tracking (MPPT speed of solar generators, offline calculated maximum power line (MPL is often used as a feed-forward signal added to the output of MPPT controller. MPL is nonlinear static electrical characteristic of renewable energy generators connecting all the maximum power points for given temperature. In this letter, electrical side MPL is derived for a typical wind turbine generator (WTG. It is shown that MPLs of solar and wind generators possess similar structure, supporting the similarity between the two energy conversion processes.

  1. Characterisation of Large Disturbance Rotor Angle and Voltage Stability in Interconnected Power Networks with Distributed Wind Generation

    OpenAIRE

    Meegahapola, Lasantha; Littler, Timothy

    2015-01-01

    Wind generation in highly interconnected power networks creates local and centralised stability issues based on their proximity to conventional synchronous generators and load centres. This paper examines the large disturbance stability issues (i.e. rotor angle and voltage stability) in power networks with geographically distributed wind resources in the context of a number of dispatch scenarios based on profiles of historical wind generation for a real power network. Stability issues have be...

  2. Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system

    International Nuclear Information System (INIS)

    Ren, L.; Tang, Y.; Shi, J.; Dou, J.; Zhou, S.; Jin, T.

    2013-01-01

    Highlights: ► The techno-economic feasibility of four ESSs is studied. ► The hybrid ESS applied on a renewable energy generation system is feasible. ► From the technical and economic viewpoint, case 3 is the optimal hybrid ESS. -- Abstract: Huazhong University of Science and Technology is planning to establish a hybrid solar–wind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted

  3. A Control Approach and Supplementary Controllers for a Stand-Alone System with Predominance of Wind Generation

    Directory of Open Access Journals (Sweden)

    Tiago Lukasievicz

    2018-02-01

    Full Text Available This paper proposes a control approach and supplementary controllers for the operation of a hybrid stand-alone system composed of a wind generation unit and a conventional generation unit based on synchronous generator (CGU. The proposed controllers allow the islanded or isolated operation of small power systems with predominance of wind generation. As an advantage and a paradigm shift, the DC-link voltage of the wind unit is controlled by means of a conventional synchronous generator connected to the AC grid of the system. Two supplementary controllers, added to a diesel generator (DIG and to a DC dump load (DL, are proposed to control the DC-link voltage. The wind generation unit operates in V-f control mode and the DIG operates in PQ control mode, which allows the stand-alone system to operate either in wind-diesel (WD mode or in wind-only (WO mode. The strong influence of the wind turbine speed variations in the DC-link voltage is mitigated by a low-pass filter added to the speed control loop of the wind turbine. The proposed control approach does not require the use battery bank and ultra-capacitor to control the DC-link voltage in wind generation units based on fully rated converter.

  4. A doubly-fed induction generator-based wind generation system with quasi-sine rotor injection

    Science.gov (United States)

    Yuvarajan, S.; Fan, Lingling

    Wind generating systems use doubly-fed induction generators (DFIGs) to achieve high conversion efficiency and to reduce the installation cost. The paper proposes and analyzes a simple DFIG-based wind generation system in which the excitation power is obtained from a photovoltaic (PV) panel and battery. The proposed scheme is suitable for small wind power systems for which a complex field orientation control is not justified. It can be used for stand-alone operation and also grid-tied operation. The rotor of the DFIG is applied with a quasi-sine wave instead of a sine wave. The operation and harmonic characteristics of the scheme are established using analysis, simulation, and experimentation. The details of the control circuit are given along with the experimental waveforms of voltages and currents and frequency spectra. The total harmonic distortion in the output current is found to be around 8%.

  5. Challenges, problems and possible solutions in wind generator systems from the aspect of forecast, planning and delivery of wind energy

    International Nuclear Information System (INIS)

    Giovski, Nikola

    2014-01-01

    The fundamental difficulties of integrating wind energy into the power system arise from its large temporal variability and limited predictability. That's why the integration of wind power presents major challenge for today's operating and planning practices of the power system operators. Accurate predictions of the possible wind power output, in time intervals relevant for creating schedules for production and exchange capacity, allows to system operators and dispatching personnel more efficient power system management. Despite the challenges and problems that arise due to integration of wind power into power systems, which need to be solved or reduced, wind power has its advantages that should be utilized. The effective integration of wind power plants into the transmission grid should allow them to represent the backbone of future energy systems. Modern wind generators represent production units that have the ability to participate in the management of energy systems e.g. in the regulation of frequency, voltage and other network operating requirements. This paper provides a brief overview of global experiences with the challenges, problems and possible solutions that appear in wind generator systems from the aspect of forecasting, planning and delivery of wind energy. (author)

  6. Effects of voltage unbalance and system harmonics on the performance of doubly fed induction wind generators

    Science.gov (United States)

    Kiani, Morgan Mozhgan

    Inherent difficulties in management of electric power in the presence of an increasing demand for more energy, non-conventional loads such as digital appliances, and non-sustainable imported fossil fuels has initiated a multi-folded effort by many countries to restructure the way electric energy is generated, dispatched, and consumed. Smart power grid is the manifestation of many technologies that would eventually transforms the existing power grid into a more flexible, fault resilient, and intelligent system. Integration of distributed renewable energy sources plays a central role in successful implementation of this transformation. Among the renewable options, wind energy harvesting offers superior engineering and economical incentives with minimal environmental impacts. Doubly fed induction generators (DFIG) have turned into a serious contender for wind energy generators due to their flexibility in control of active and reactive power with minimal silicon loss. Significant presence of voltage unbalance and system harmonics in finite inertia transmission lines can potentially undermine the reliability of these wind generators. The present dissertation has investigated the impacts of system unbalances and harmonics on the performance of the DFIG. Our investigation indicates that these effects can result in an undesirable undulation in the rotor shaft which can potentially invoke mechanical resonance, thereby causing catastrophic damages to the installations and the power grid. In order to remedy the above issue, a control solution for real time monitoring of the system unbalance and optimal excitation of the three phase rotor currents in a DFIG is offered. The optimal rotor currents will create appropriate components of the magneto-motive force in the airgap that will actively compensate the undesirable magnetic field originated by the stator windings. Due to the iterative nature of the optimization procedure, field reconstruction method has been incorporated

  7. Modeling and Maximum Power Point Tracking Control of Wind Generating Units Equipped with Permanent Magnet Synchronous Generators in Presence of Losses

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglio

    2017-01-01

    Full Text Available This paper focuses on the modeling of wind turbines equipped with direct drive permanent magnet synchronous generators for fundamental frequency power system simulations. Specifically, a procedure accounting for the system active power losses to initialize the simulation starting from the load flow results is proposed. Moreover, some analytical assessments are detailed on typical control schemes for fully rated wind turbine generators, thereby highlighting how active power losses play a fundamental role in the effectiveness of the wind generator control algorithm. Finally, the paper proposes analytical criteria to design the structure and the parameters of the regulators of the wind generator control scheme. Simulations performed with Digsilent Power Factory validated the proposed procedure, highlighting the impact of active power losses on the characterization of the initial steady state and that the simplifying assumptions done in order to synthesize the controllers are consistent with the complete modeling performed by the aforementioned power system simulator.

  8. Effect of wind generation system types on Micro-Grid (MG) fault performance during both standalone and grid connected modes

    International Nuclear Information System (INIS)

    Kamel, Rashad M.

    2014-01-01

    Highlights: • This paper evaluated the effects of different wind system types on fault performance of Micro-Grid. • Both standalone and grid connected modes are considered. • The MG earthing system configuration is taken in consideration. - Abstract: Recently, there are three wind generation (WG) system types. The first type is called Fixed Speed Wind Generation (FSWG) system, which employs squirrel cage induction generators. Double Fed Induction Generator (DFIG) is utilized in the second type. The third type is called Full Converter Wind Generation (FCWG) system, which is interfaced with Micro-Grid (MG) through a back to back converter. During fault occurrence, each WG has its performance and characteristics which are determined by the generator physical characteristics and the MG earthing system configuration. For some WG types, the fault current depends also on the control algorithm of the power converter. The main target of this paper is to investigate and estimate how the fault performance of MG during both standalone and grid-connected modes is influenced by the type of WG. It is found during standalone mode that the type of the employed WG has a dominant impact on the MG performance under fault disturbance. On the contrary, the type of the employed WG has a negligible effect on the MG fault performance during grid-connected mode. This is because the main grid contributes most of the fault current. Effects of earthing system type on MG performance are highlighted

  9. Operational performance of the Avispa-IIE wind generator in microhybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Galarza, Raul; Mejia Neri, Fortino [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The purpose of this paper is to make a general analysis over the operational performance of the Avispa-IIE wind generator in an Solar-Eolic hybrid installation, at an eco-tourist resort. This work was performed through the monitor of the wind generator and the system itself throughout a year, for the acquisition taking the variables of interest and operational parameters that might allow to characterize and to evaluate the general behavior of the system. Herein are the principals characteristics of the wind generator; its performance curve, the basic configuration of the installation and the control philosophy; Likewise, some technical and human problems which arise during the operation of the system are included, the implementation of improvements in the wind generator and the general results acquired during the time of operation of the wind generator in the cited installations. [Espanol] El proposito de este articulo es el hacer un analisis general del comportamiento operacional del aerogenerador Avispa-IIE en una instalacion hibrida Solar-Eolica en un lugar de veraneo eco-turistico. Este trabajo ha sido llevado a cabo mediante el monitor del aerogenerador y el sistema mismo por espacio de un ano, para la adquisicion de las variables de interes y de los parametros operacionales que pudieran servir para caracterizar y evaluar el comportamiento general del sistema. Aqui se incluyen las caracteristicas principales del aerogenerador; su curva de comportamiento, la configuracion basica de la instalacion y la filosofia del control. De la misma manera se incluyen algunos problemas tecnicos y humanos que se originan durante la operacion del sistema y la puesta en practica de las mejoras del aerogenerador y los resultados generales adquiridos durante el tiempo de operacion del aerogenerador en las instalaciones citadas.

  10. Smart pitch control strategy for wind generation system using doubly fed induction generator

    Science.gov (United States)

    Raza, Syed Ahmed

    A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.

  11. An Examination of AC/HVDC Power Circuits for Interconnecting Bulk Wind Generation with the Electric Grid

    Directory of Open Access Journals (Sweden)

    Daniel Ludois

    2010-06-01

    Full Text Available The application of high voltage dc (HVDC transmission for integrating large scale and/or off-shore wind generation systems with the electric grid is attractive in comparison to extra high voltage (EHV ac transmission due to a variety of reasons. While the technology of classical current sourced converters (CSC using thyristors is well established for realization of large HVDC systems, the technology of voltage sourced converters (VSC is emerging to be an alternative approach, particularly suitable for multi-terminal interconnections. More recently, a more modular scheme that may be termed ‘bridge of bridge’ converters (BoBC has been introduced to realize HVDC systems. While all these three approaches are functionally capable of realizing HVDC systems, the converter power circuit design trade-offs between these alternatives are not readily apparent. This paper presents an examination of these topologies from the point of view of power semiconductor requirements, reactive component requirements, operating losses, fault tolerance, multi-terminal operation, modularity, complexity, etc. Detailed analytical models will be used along with a benchmark application to develop a comparative evaluation of the alternatives that maybe used by wind energy/bulk transmission developers for performing engineering trade-off studies.

  12. A comparative investigation of three PM-less MW power range wind generator topologies

    DEFF Research Database (Denmark)

    Bratiloveanu, Catalin-Rauti; Traian Cosmin Anghelus, Dumitru; Boldea, I.

    2012-01-01

    investigates by quasi 2D-FEM two dc stator polarized (to increase machine side PWM converter voltage utilization, that is to reduce peak kVA ratings and costs of the machine side PWM converter) directly-driven switched reluctance generators (one with circumferential field and one with transverse flux (with......-less topology are required before declaring them fit for industrial wind generators....

  13. Development of Control Structure for Hybrid Wind Generators with Active Power Capability

    Directory of Open Access Journals (Sweden)

    Mehdi Niroomand

    2014-01-01

    Full Text Available A hierarchical control structure is proposed for hybrid energy systems (HES which consist of wind energy system (WES and energy storage system (ESS. The proposed multilevel control structure consists of four blocks: reference generation and mode select, power balancing, control algorithms, and switching control blocks. A high performance power management strategy is used for the system. Also, the proposed system is analyzed as an active power filter (APF with ability to control the voltage, to compensate the harmonics, and to deliver active power. The HES is designed with parallel DC coupled structure. Simulation results are shown for verification of the theoretical analysis.

  14. Incorporation of wind generation to the Mexican power grid: Steady state analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, J.H.; Guardado, J.L.; Cisneros, F. [Inst. Tecnologico de Morelia (Mexico); Cadenas, R.; Lopez, S. [Comision Federal de Electricidad, Morelia (Mexico)

    1997-09-01

    This paper describes a steady state analysis related with the incorporation of large amounts of eolic generation into the Mexican power system. An equivalent node is used to represent individual eolic generators in the wind farm. Possible overloads, losses, voltage and reactive profiles and estimated severe contingencies are analyzed. Finally, the conclusions of this study are presented.

  15. Two methods for damping torsional vibrations in DFIG-based wind generators using power converters

    Science.gov (United States)

    Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping

    2017-01-01

    This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.

  16. Maintaining stability of standalone Micro-Grid by employing electrical and mechanical fault ride through techniques upon fixed speed wind generation systems

    International Nuclear Information System (INIS)

    Kamel, Rashad M.

    2013-01-01

    Highlights: • This paper presented two fault ride through techniques for fixed speed wind systems. • The first technique is implemented by inserting a series resistance with the terminals of wind generator. • Second technique is performed by adapting the gear ratio to spill some mechanical power. - Abstract: This study presents two different Fault Ride Through (FRT) techniques to keep and restore stability of Fixed Speed Wind Generation system (FSWGs) installed in standalone Micro-Grid (MG). The first technique is an electrical FRT and is implemented by inserting a series resistance with the terminals of FSWGs during fault to maintain reasonable value of terminal voltage and consequently help stability restoration. The second controller is a mechanical FRT controller and is performed by change the gear ratio of wind generation systems to spill part of extracted mechanical power and consequently improving stability issue. Obtained results proved that each controller able to maintain the stability of FSWGs under the most severe disturbance conditions (400 ms three phase fault at FSWGs terminals). The first controller is faster than the second controller in restoring FSWGs stability. Superior results and performances are obtained when the two FRT techniques are employed simultaneously. Without employing any one of the two FRT techniques, FSWGs is not able to maintain or restore its stability after fault clearing. Consequently, MG will lose one of its micro-sources and cannot keep its stability during the standalone mode, unless load shedding strategy is activated. The two proposed controllers are simple, effective, and economical attractive

  17. The impact of increased interconnection on electricity systems with large penetrations of wind generation. A case study of Ireland and Great Britain

    International Nuclear Information System (INIS)

    Denny, E.; Tuohy, A.; Keane, A.; Flynn, D.; O'Malley, M.; Meibom, P.; Mullane, A.

    2010-01-01

    Increased interconnection has been highlighted as potentially facilitating the integration of wind generation in power systems by increasing the flexibility to balance the variable wind output. This paper utilizes a stochastic unit commitment model to simulate the impacts of increased interconnection for the island of Ireland with large penetrations of wind generation. The results suggest that increased interconnection should reduce average prices in Ireland, and the variability of those prices. The simulations also suggest that while increased interconnection may reduce carbon dioxide emissions in Ireland, Great Britain would experience an increase in emissions, resulting in total emissions remaining almost unchanged. The studies suggest that increased interconnection would not reduce excess wind generation. This is because under unit commitment techniques which incorporate wind power forecasts in the scheduling decisions, wind curtailment is minimal even with low levels of interconnection. As would be expected an increase in interconnection should improve system adequacy considerably with a significant reduction in the number of hours when the load and reserve constraints are not met. (author)

  18. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  19. Wind Power predictability a risk factor in the design, construction and operation of Wind Generation Turbines

    Science.gov (United States)

    Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.

    2010-09-01

    Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models

  20. What's Powering Wind? Measuring the Environmental Benefits of Wind Generated Electricity

    OpenAIRE

    Cullen, Joseph

    2008-01-01

    Production subsidies for renewable energy have experienced intermittent support from the federal government. One reason for less than united support arises from uncertainty over the environmental impact of projects implemented because of such subsidies. Wind energy in particular has taken advantage of federal subsidies, but what has been the environmental impact? Taking investment in wind capacity as given, I am able to identify the short run substitution patterns between wind power and conve...

  1. The impact of increased interconnection on electricity systems with large penetrations of wind generation: A case study of Ireland and Great Britain

    DEFF Research Database (Denmark)

    Denny, E.; Tuohy, A.; Meibom, Peter

    2010-01-01

    interconnection for the island of Ireland with large penetrations of wind generation. The results suggest that increased interconnection should reduce average prices in Ireland, and the variability of those prices. The simulations also suggest that while increased interconnection may reduce carbon dioxide...... emissions in Ireland, Great Britain would experience an increase in emissions, resulting in total emissions remaining almost unchanged. The studies suggest that increased interconnection would not reduce excess wind generation. This is because under unit commitment techniques which incorporate wind power...

  2. Estimating the impact of wind generation and wind forecast errors on energy prices and costs in Ireland

    OpenAIRE

    Swinand, Gregory P; O'Mahoney, Amy

    2014-01-01

    This paper studies the impact of wind generation on system costs and prices in Ireland. The need to mitigate climate change, achieve renewables energy targets, and use renewable sources of energy means that many countries are considering greater levels of wind generation in their power generation mix. The overall impact of wind generation on system costs and performance has only been studied recently, and often with limited actual data from power systems with increased wind penetration. The p...

  3. Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation

    Science.gov (United States)

    Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.

    2017-08-01

    A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.

  4. Design of intelligent controllers for wind generation system with sensorless maximum wind energy control

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Hong, Chih-Ming; Cheng, Fu-Sheng

    2011-01-01

    This paper presents the design of an on-line training recurrent fuzzy neural network (RFNN) controller with a high-performance model reference adaptive system (MRAS) observer for the sensorless control of a induction generator (IG). The modified particle swarm optimization (MPSO) is adopted in this study to adapt the learning rates in the back-propagation process of the RFNN to improve the learning capability. By using the proposed RFNN controller with MPSO, the IG system can work for stand-alone power application effectively. The proposed output maximization control is achieved without mechanical sensors such as the wind speed or position sensor, and the new control system will deliver maximum electric power with light weight, high efficiency, and high reliability. The estimation of the rotor speed is based on the MRAS control theory. A sensorless vector-control strategy for an IG operating in a grid-connected variable speed wind energy conversion system can be achieved.

  5. Incorporation of a wind generator model into a dynamic power flow analysis; Incorporacion de un modelo de generador eolico al analisis de flujos dinamicos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Angeles Camacho, C.; Banuelos Ruedas, F. [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico (Mexico)]. E-mail: cangelesc@iingen.unam.mx; fbanuelosr@iingen.unam.mx

    2011-07-15

    Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power flows in transmission lines. [Spanish] La energia eolica es hoy en dia una de las opciones mas efectivas y practicas para la generacion de electricidad a partir de energias renovables. Sin embargo, el incremento de la penetracion de energia eolica provoca que los sistemas de potencia se vuelvan mas dependientes y vulnerables a las variaciones de la velocidad del viento. El modelado es una herramienta que provee informacion valiosa de la interaccion dinamica entre las turbinas eolicas y las redes de potencia a las que se conectan. El presente articulo desarrolla una caracterizacion realista de un modelo de la turbina eolica. El modelo de la turbina eolica se incorpora a un algoritmo para el analisis de su contribucion a la estabilidad de una red electrica en el dominio del tiempo. La herramienta obtenida se conoce como flujos

  6. Field Validation of IEC 61400-27-1 Wind Generation Type 3 Model with Plant Power Factor Controller

    DEFF Research Database (Denmark)

    Göksu, Ömer; Altin, Müfit; Fortmann, Jens

    2016-01-01

    Generic electrical simulation models of wind power generation have been developed as standards, such as the IEC 61400-27-1, to be used by wind industry, system operators, and academia for power system stability studies. In this paper, the IEC type 3 wind turbine model with wind turbine level...

  7. Design of DC-DC Converter and its Control for a Wind Generation System Connected to an Isolated Load

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available A method to design a Buck converter and its control, which are associated to a wind generation system that is feeding an isolated load, is presented in this paper. To design the converter a Thevenin equivalent is deduced, which represents the behavior of the wind turbine, the permanent magnet synchronous generator, and the rectifier. The design of the converter elements guarantees input/output voltages and inductor current ripples of 5 % or less. The output voltage control is developed with a proportional-integral-derivative controller and as design criteria a damping of 0,707 and cutoff frequency of 1/5 converter commutation frequency are selected. The designed controller regulates the output voltage faced load perturbations and wind speed variations. 

  8. Market protocols in ERCOT and their effect on wind generation

    International Nuclear Information System (INIS)

    Sioshansi, Ramteen; Hurlbut, David

    2010-01-01

    Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatory and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Finally, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future. (author)

  9. Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804 (China); Ou, Ting-Chia; Chiu, Tai-Ming [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 325 (China)

    2011-02-15

    This paper presents the design of a fuzzy sliding mode loss-minimization control for the speed of a permanent magnet synchronous generator (PMSG) and a high-performance on-line training radial basis function network (RBFN) for the turbine pitch angle control. The back-propagation learning algorithm is used to regulate the RBFN controller. The PMSG speed uses maximum power point tracking below the rated speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. A sliding mode controller with an integral-operation switching surface is designed, in which a fuzzy inference mechanism is utilized to estimate the upper bound of uncertainties. Furthermore, the fuzzy inference mechanism with center adaptation is investigated to estimate the optimal bound of uncertainties. (author)

  10. Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Hong, Chih-Ming; Ou, Ting-Chia; Chiu, Tai-Ming

    2011-01-01

    This paper presents the design of a fuzzy sliding mode loss-minimization control for the speed of a permanent magnet synchronous generator (PMSG) and a high-performance on-line training radial basis function network (RBFN) for the turbine pitch angle control. The back-propagation learning algorithm is used to regulate the RBFN controller. The PMSG speed uses maximum power point tracking below the rated speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. A sliding mode controller with an integral-operation switching surface is designed, in which a fuzzy inference mechanism is utilized to estimate the upper bound of uncertainties. Furthermore, the fuzzy inference mechanism with center adaptation is investigated to estimate the optimal bound of uncertainties.

  11. Assessment of operation reserves in hydrothermal electric systems with high wind generation

    NARCIS (Netherlands)

    Ramos, Andres; Rivier, Michel; García-González, Javier; Latorre, Jesus M.; Morales Espana, G.

    2016-01-01

    In this paper, we propose a method to analyze the amount of operation reserves procured in a system based on two stages. The first stage is a detailed hourly unit commitment and the second stage is a simulation model with a shorter time period. The method is applied to the Spanish hydrothermal

  12. Operations model for utilities using wind-generator arrays

    Science.gov (United States)

    Schlueter, R. A.; Park, G. L.; Dorsey, J.; Lotfalian, M.; Shayanfar, A.

    1981-05-01

    The effects that various combinations of wind regime, array configuration and penetrations, and system characteristics have on system variables such as area control error, frequency, interchange power and spinning reserve are discussed. The characteristics of the combinations causing system operating stress or operating problems are denoted and methods for estimating effects on a simplified and on a detailed simulation basis are reported. Methods for reducing operating problems are suggested and involve array configurations, penetration, unit commitment and dispatch changes, and wind generator controls.

  13. Wind generator with electronic variable-speed drives

    Energy Technology Data Exchange (ETDEWEB)

    David, A.; Buchheit, N.; Jakobsen, H.

    1996-12-31

    Variable speed drives have been inserted between the network and the generator on certain recent wind power facilities. They have the following advantages: the drive allows the wind generator to operate at low speed with a significant reduction in acoustic noise, an important point if the facilities are sited near populated areas; the drive optimizes energy transfer, providing a gain of 4 to 10 %; the drive can possibly replace certain mechanical parts (the starting system and it in some cases, the reduction gear); the drive not only provides better transient management in relation to the network for less mechanical stress on the wind generator, it is also able to control reactive power. One commercial drive design sold by several manufacturers has already been installed on several wind generators with outputs of between 150 and 600 kw. In addition, such a solution is extremely well suited to mixed renewable energy systems. This design uses two inverse rectifier type converters and can therefore exchange energy in both directions. The equivalent drive with a single IGBT converter on the motor side and a diode converter on the network side is the solution most widely adopted throughout industry (with more than 50, 000 units installed in France per year). It still remains to be seen whether such a solution could be profitable in wind generator application (since the cost of the drive is quite high). This technical analysis is more destined for the converter-machine assembly specialists and is presented in this document, paying particular attention as it does to the modelling of the `wind energy - generator - drive - network` assembly, the associated drive command and control strategies and the simulations obtained during various transients. A 7.5 kW test bed has been installed in the Laboratoire d`Electronique de Puissance de Clamart, enabling tests to be carried out which emulate the operation of a wind generator.

  14. Output Power Smoothing and Voltage Regulation of a Fixed Speed Wind Generator in the Partial Load Region Using STATCOM and a Pitch Angle Controller

    Directory of Open Access Journals (Sweden)

    Kanasottu Anil Naik

    2017-12-01

    Full Text Available The output power and terminal voltage of the fixed speed induction generator fluctuate in the partial load region where the wind speed is below the rated vale, resulting in fluctuations in the grid frequency and voltage. In this paper, a novel pitch angle control strategy has developed by introducing an exponential moving average (EMA concept from which the controller reference power (signal can be set for below-rated wind speeds. Therefore, the employed pitch angle controller together with static synchronous compensator (STATCOM, named the unified voltage and pitch angle controller (UVPC, addresses the objective of smoothing the output power and terminal voltage regulation of a wind generator, subjected to below-rated wind speed variations. Moreover, an interval type-2 fuzzy logic technique has incorporated in the pitch angle controller design, since it is more efficient in handling the uncertainties in membership functions and rules than its traditional fuzzy logic counterparts. Simulation results clearly show that the proposed UVPC effectively smoothens out the generator output power and also regulates the terminal voltage at its constant magnitude.

  15. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  16. A community small-scale wind generation project in Peru

    OpenAIRE

    Ferrer Martí, Laia; Garwood, Anna; Chiroque, José; Escobar, Rafael; Coello, Javier; Castro, Miguel

    2010-01-01

    Electrification systems based on renewable energy have proven to be suitable for providing decentralized electricity to isolated communities. Electricity generated through wind power is one of the technical options available, although infrequently used to date. This article aims to describe the main aspects of technical design, implementation and management of the first small-scale community wind generation project for rural electrification in Peru. This project took place in t...

  17. Combined hydro-wind generation bids in a pool-based electricity market

    International Nuclear Information System (INIS)

    Angarita, Jorge L.; Usaola, Julio; Martinez-Crespo, Jorge

    2009-01-01

    Present regulatory trends are promoting the direct participation of wind energy in electricity markets. The final result of these markets sets the production scheduling for the operation time, including a power commitment from the wind generators. However, wind resources are uncertain, and the final power delivered usually differs from the initial power committed. This imbalance produces an overcost in the system, which must be paid by those who produce it, e.g., wind generators among others. As a result, wind farm revenue decreases, but it could increase by allowing wind farms to submit their bids to the markets together with a hydro generating unit, which may easily modify its production according to the expected imbalance. This paper presents a stochastic optimization technique that maximizes the joint profit of hydro and wind generators in a pool-based electricity market, taking into account the uncertainty of wind power prediction. (author)

  18. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  19. Generation Expansion Planning Considering Integrating Large-scale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Østergaard, Jacob

    2013-01-01

    necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. A bi-level generation expansion planning approach considering large-scale wind generation was proposed in this paper. The first phase is investment decision, while the second phase is production...... optimization decision. A multi-objective PSO (MOPSO) algorithm was introduced to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of the proposed bi-level planning approach and the MOPSO...

  20. Topic 5: Power System Operation and Planning for Enhanced Wind Generation Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay; Heydt, Gerald T; Ayyanar, Raja; McCalley, James D; Ajjarapu, V; Aliprantis, Dionysios

    2012-08-31

    This project dealt with the development of a range of educational resources dealing with wind energy and wind energy integration in the electric grid. These resources were developed for a variety of audiences including; a) high school student, b) undergraduate electrical engineering students, c) graduate electrical engineering students, and d) practicing engineers in industry. All the developed material is available publicly and the courses developed are being taught at the two participating universities, Arizona State University and Iowa State University.

  1. Stochastic Multi-Timescale Power System Operations With Variable Wind Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongyu; Krad, Ibrahim; Florita, Anthony; Hodge, Bri-Mathias; Ibanez, Eduardo; Zhang, Jie; Ela, Erik

    2017-09-01

    This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conducted in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.

  2. Contribution of VSC-HVDC to Frequency Regulation of Power Systems With Offshore Wind Generation

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2015-01-01

    Modern large wind farms are required to provide frequency regulation service like conventional synchronous generation units. The frequency support capability of modern wind farms has been widely investigated and implemented. Remotely located large offshore wind farms are probably connected...

  3. Rating Requirements of the UPQC to Integrate the FSIG Type Wind Generation to the Grid

    OpenAIRE

    Jayanti, N.; Basu, Malabika; Conlon, Michael; Gaughan, Kevin

    2009-01-01

    The ability of wind generation to remain connected to the grid in the event of system faults and dynamic reactive power compensation are two aspects of grid integration, which have received particular attention. The wind driven, fixed-speed induction generator (FSIG) on its own fails to fulfil these requirements of grid integration. The application of a unified power quality conditioner (UPQC) to overcome the grid integration problems of the FSIG is investigated. The role of the UPQC in enhan...

  4. Alternative methods of modeling wind generation using production costing models

    International Nuclear Information System (INIS)

    Milligan, M.R.; Pang, C.K.

    1996-08-01

    This paper examines the methods of incorporating wind generation in two production costing models: one is a load duration curve (LDC) based model and the other is a chronological-based model. These two models were used to evaluate the impacts of wind generation on two utility systems using actual collected wind data at two locations with high potential for wind generation. The results are sensitive to the selected wind data and the level of benefits of wind generation is sensitive to the load forecast. The total production cost over a year obtained by the chronological approach does not differ significantly from that of the LDC approach, though the chronological commitment of units is more realistic and more accurate. Chronological models provide the capability of answering important questions about wind resources which are difficult or impossible to address with LDC models

  5. Wind energy systems solutions for power quality and stabilization

    CERN Document Server

    Ali, Mohd Hasan

    2012-01-01

    Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases--and wind energy is a free, renewable resource. However, the induction machines commonly used as wind generators have stability problems similar to the transient stability of synchronous machines. To minimize power, frequency, and voltage fluctuations caused by network faults or random wind speed variations, control mechanisms are necessary. Wind Energy Systems: Solutions for Power Quality and Stabilization clearly explains how to solve stability and power quality issues of wind generator systems. Covering

  6. DESIGN ASPECTS OF A RESIDENTIAL WIND GENERATOR

    Directory of Open Access Journals (Sweden)

    C. BRAD

    2017-03-01

    Full Text Available In this paper we present some aspects about the design of a small permanent magnet wind generator with axial magnetic flux often used in residential wind turbine. There are summarised the main steps of the magnetic and electric calculations with applications to a particular case: 0.6 kVA wind generator. The axial flux wind generator design starts with the characteristics of the rare earths permanent magnet existing on the market.

  7. Environmental Impact Assessment of Wind Generators in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Vladimír Lapčík

    2008-11-01

    Full Text Available The article summarizes author´s experience with environmental impact assessment in branch of wind generators. The introductorypart of paper describes legislative obligations of the Czech Republic in frame of fulfilling the European Union´s limits in branch ofrenewable energy resources utilization. Next part of paper deals with analysis of impacts of wind generators on the environment.The final part of paper deals with experience with implementation of the environmental impact assessment process (pursuant to the ActNo. 100/2001 Coll. in the field of wind power in the Czech Republic.

  8. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  9. Batteries for storage of wind-generated energy

    Science.gov (United States)

    Schwartz, H. J.

    1973-01-01

    Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.

  10. Windfarm generation assessment for reliability analysis of power systems

    DEFF Research Database (Denmark)

    Negra, N.B.; Holmstrøm, O.; Bak-Jensen, B.

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...... in a reliability model and the generation of a windfarm is evaluated by means of sequential Monte Carlo simulation. Results are used to analyse how each mentioned Factor influences the assessment, and why and when they should be included in the model....

  11. Windfarm Generation Assessment for Reliability Analysis of Power Systems

    DEFF Research Database (Denmark)

    Barberis Negra, Nicola; Bak-Jensen, Birgitte; Holmstrøm, O.

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...... in a reliability model and the generation of a windfarm is evaluated by means of sequential Monte Carlo simulation. Results are used to analyse how each mentioned Factor influences the assessment, and why and when they should be included in the model....

  12. Windfarm Generation Assessment for ReliabilityAnalysis of Power Systems

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis; Holmstrøm, Ole; Bak-Jensen, Birgitte

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...... in a reliability model and the generation of a windfarm is evaluated by means of sequential Monte Carlo simulation. Results are used to analyse how each mentioned Factor influences the assessment, and why and when they should be included in the model....

  13. Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration

    DEFF Research Database (Denmark)

    Holttinen, Hannele; Meibom, Peter; Orths, Antje

    2011-01-01

    There are dozens of studies made and ongoing related to wind integration. However, the results are not easy to compare. IEA WIND R&D Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power collects and shares information on wind generation impacts on power systems, with ...

  14. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    OpenAIRE

    Deockho Kim; Jin Hur

    2017-01-01

    Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the poten...

  15. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  16. Wind Generation Feasibility Study in Bethel, AK

    Energy Technology Data Exchange (ETDEWEB)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  17. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ

  18. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  19. Assessing the Structural, Driver and Economic Impacts of Traffic Pole Mounted Wind Power Generator and Solar Panel Hybrid System

    Science.gov (United States)

    2012-06-01

    This project evaluates the physical and economic feasibility of using existing traffic infrastructure to mount wind power : generators. Some possible places to mount a light weight wind generator and solar panel hybrid system are: i) Traffic : signal...

  20. High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems

    Directory of Open Access Journals (Sweden)

    Yi-Feng Wang

    2015-04-01

    Full Text Available This paper proposes and discusses a novel AC/DC converter suitable for small-scaled wind power generation system applications. By introducing flyback cells into the three-phase single-switch Boost circuit, the proposed converter is designed as single-stage and has both rectification and high step-up power conversion functions. It is able to obtain high voltage gain at low input voltage level, and high efficiency, low total harmonic distortion (THD at rated power. The inherent power factor correction (PFC is also determined, and can reach 0.99. Besides, since no electrolytic capacitor is employed and high voltage gain is achieved, the converter can also collect weak power at low input voltage in combination with energy storage devices, and contribute to a better low-wind-speed/low-power performance. Finally, a 400 W prototype is built to verify the theoretical analysis, and its efficiency is 87.6%, while THD is 7.4% at rated power.

  1. The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices

    International Nuclear Information System (INIS)

    Clò, Stefano; Cataldi, Alessandra; Zoppoli, Pietro

    2015-01-01

    Italy promoted one of the most generous renewable support schemes worldwide which resulted in a high increase of solar power generation. We analyze the Italian day-ahead wholesale electricity market, finding empirical evidence of the merit-order effect. Over the period 2005–2013 an increase of 1 GWh in the hourly average of daily production from solar and wind sources has, on average, reduced wholesale electricity prices by respectively 2.3€/MWh and 4.2€/MWh and has amplified their volatility. The impact on prices has decreased over time in correspondence with the increase in solar and wind electricity production. We estimate that, over the period 2009–2013, solar production has generated higher monetary savings than wind production, mainly because the former is more prominent than the latter. However, in the solar case, monetary savings are not sufficient to compensate the cost of the related supporting schemes which are entirely internalized within end-user tariffs, causing a reduction of the consumer surplus, while the opposite occurs in the case of wind. - Highlights: • We find empirical evidence of the merit-order effect in the Italian market. • 1 GWh from solar and wind (hourly average) reduces prices by 2.3€/MW and 4.2€/MWh. • The impact of RES on price has declined as RES production has increased. • Monetary savings from solar production do not compensate the cost of the incentives. • Monetary savings from wind production are higher than the cost of the incentives

  2. Economic/Environmental power dispatch for power systems including wind farms

    Directory of Open Access Journals (Sweden)

    Imen BEN JAOUED

    2015-05-01

    Full Text Available This paper presents the problem of the Economic/Environmental power Dispatching (EED of hybrid power system including wind energies. The power flow model for a stall regulated fixed speed wind generator (SR-FSWG system is discussed to assess the steady-state condition of power systems with wind farms. Modified Newton-Raphson algorithm including SR-FSWG is used to solve the load flow equations in which the state variables of the wind generators are combined with the nodal voltage magnitudes and angles of the entire network. The EED problem is a nonlinear constrained multi-objective optimization problem, two competing fuel cost and pollutant emission objectives should be minimized simultaneously while satisfying certain system constraints. In this paper, the resolution is done by the algorithm multi-objective particle swarm optimization (MOPSO. The effectiveness of the proposed method has been verified on IEEE 6-generator 30-bus test system and using MATLAB software package.

  3. An improved AVC strategy applied in distributed wind power system

    Science.gov (United States)

    Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

    2016-08-01

    Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

  4. Lightweight MgB2 superconducting 10 MW wind generator

    Science.gov (United States)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  5. Floating wind generators offshore wind farm: Implications for structural loads and control actions

    International Nuclear Information System (INIS)

    Garcia, E.; Morant F, Quiles E.; Correcher, A.

    2009-01-01

    This paper describes the work currently carried out in the design of floating wind generators and their involvement in the future development of power generation in marine farms in depths exceeding 20 m. We discuss the main issues to be taken into account in the design of floating platforms, including the involvement of structural loads they bear. Also from a standpoint of control engineering are discussed strategies to reduce structural loads such a system to ensure adequate durability and therefore ensuring their economic viability. Finally, the abstract modeling tools for floating wind turbines that can be used in both structural design and the design of appropriate control algorithms

  6. Exploration of dispatch model integrating wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, P.H.; Torbaghan, S.S.

    2016-01-01

    Highlights: • A novel business model for the BRPs is analyzed. • Imbalance cost of wind generation is considered in the UC-ED model. • Smart charging of EVs is included into the UC-ED problem to mitigate the imbalance cost. • Effects of smart charging on generation cost, CO 2 emissions and total network load are assessed. - Abstract: In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This paper presents an advanced UC-ED model to incorporate wind generators as RES-based units alongside conventional centralized generators. In the proposed UC-ED model, an imbalance cost is introduced reflecting the wind generation uncertainty along with the marginal generation cost. The proposed UC-ED model aims to utilize the flexibility of fleets of plug-in electric vehicles (PEVs) to optimally compensate for the wind generation uncertainty. A case study with 15 conventional units and 3 wind farms along with a fixed-sized PEV fleet demonstrates that shifting of PEV fleets charging at times of high wind availability realizes generation cost savings. Nevertheless, the operational cost saving incurred by controlled charging appears to diminish when dispatched wind energy becomes considerably larger than the charging energy of PEV fleets. Further analysis of the results reveals that the effectiveness of PEV control strategy in terms of CO 2 emission reduction is strongly coupled with generation mix and the proposed control strategy is favored in cases where less pollutant-based plants like nuclear and hydro power are profoundly dominant.

  7. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Science.gov (United States)

    Konkel, R Steven

    2013-01-01

    In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in

  8. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    Full Text Available Background . In 1984, the Alaska Department of Commerce and Economic Development (DCED issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW by January 2012. Method . This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1. (Alaska Department of Commerce and Economic Development, S. Konkel, 1984. It provides a foundation and baseline for understanding the development of this renewable energy source. Results . Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion . State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: a. changing environmental conditions in remote Alaska

  9. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  10. High penetration wind generation impacts on spot prices in the Australian national electricity market

    International Nuclear Information System (INIS)

    Cutler, Nicholas J.; Boerema, Nicholas D.; MacGill, Iain F.; Outhred, Hugh R.

    2011-01-01

    This paper explores wind power integration issues for the South Australian (SA) region of the Australian National Electricity Market (NEM) by assessing the interaction of regional wind generation, electricity demand and spot prices over 2 recent years of market operation. SA's wind energy penetration has recently surpassed 20% and it has only a limited interconnection with other regions of the NEM. As such, it represents an interesting example of high wind penetration in a gross wholesale pool market electricity industry. Our findings suggest that while electricity demand continues to have the greatest influence on spot prices in SA, wind generation levels have become a significant secondary influence, and there is an inverse relationship between wind generation and price. No clear relationship between wind generation and demand has been identified although some periods of extremely high demand may coincide with lower wind generation. Periods of high wind output are associated with generally lower market prices, and also appear to contribute to extreme negative price events. The results highlight the importance of electricity market and renewable policy design in facilitating economically efficient high wind penetrations. - Highlights: → In South Australia (SA) wind generation is having an influence on market prices. → Little or no correlation is found between wind generation and demand. → Wind farms in SA are receiving a lower average price than in other States. → The results highlight the importance of appropriate electricity market design.

  11. Wide-Area Energy Storage and Management System to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas

    DEFF Research Database (Denmark)

    Makarov, Yuri V.; Yang, Bo; DeSteese, John G.

    2009-01-01

    This paper addresses the issue of mitigating additional intermittency and fast ramps that are expected to occur at high penetration levels of intermittent resources, including wind generation resources, in the Bonneville Power Administration (BPA) and the California Independent System Operator...

  12. A class of flux observers for doubly-fed induction generators used in small power wind generation systems

    DEFF Research Database (Denmark)

    Lascu, C.; Boldea, I.; Blaabjerg, Frede

    2013-01-01

    This paper investigates a family of stator and rotor flux observers for sensorless operation of doubly-fed induction generators (DFIG). Four stator flux observer topologies are described and compared. All proposed schemes use the voltage and current models connected in parallel or in series...

  13. Alternative power supply systems for remote industrial customers

    Science.gov (United States)

    Kharlamova, N. V.; Khalyasmaa, A. I.; Eroshenko, S. A.

    2017-06-01

    The paper addresses the problem of alternative power supply of remote industrial clusters with renewable electric energy generation. As a result of different technologies comparison, consideration is given to wind energy application. The authors present a methodology of mean expected wind generation output calculation, based on Weibull distribution, which provides an effective express-tool for preliminary assessment of required installed generation capacity. The case study is based on real data including database of meteorological information, relief characteristics, power system topology etc. Wind generation feasibility estimation for a specific territory is followed by power flow calculations using Monte Carlo methodology. Finally, the paper provides a set of recommendations to ensure safe and reliable power supply for the final customers and, subsequently, to provide sustainable development of the regions, located far from megalopolises and industrial centres.

  14. Challenge of Primary Voltage Control in Large Scale Wind Integrated Power System: A Danish Power System Case Study

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2013-01-01

    Grid integration of Renewable Energy (RE) at large scale poses vast majority of challenges to secure and stable operation of Power System. This paper presents the challenge of short circuit power and primary voltage control of wind integrated power system where majority of conventional generators...... of operational and future model of western Danish power system has been presented to support the effectiveness of demonstrated alternatives....... are replaced by wind generators. The impact of large scale wind integration on fast reactive power support is studied in this paper. Considering both technical and economic aspects, alternatives to address the challenge of dynamic voltage support have also been demonstrated in this paper. A case study...

  15. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  16. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  17. Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars

    Directory of Open Access Journals (Sweden)

    Jaime Rodríguez Arribas

    2014-01-01

    Full Text Available Among all the different types of electric wind generators, those that are based on doubly fed induction generators, or DFIG technology, are the most vulnerable to grid faults such as voltage sags. This paper proposes a new control strategy for this type of wind generator, that allows these devices to withstand the effects of a voltage sag while following the new requirements imposed by grid operators. This new control strategy makes the use of complementary devices such as crowbars unnecessary, as it greatly reduces the value of currents originated by the fault. This ensures less costly designs for the rotor systems as well as a more economic sizing of the necessary power electronics. The strategy described here uses an electric generator model based on space-phasor theory that provides a direct control over the position of the rotor magnetic flux. Controlling the rotor magnetic flux has a direct influence on the rest of the electrical variables enabling the machine to evolve to a desired work point during the transient imposed by the grid disturbance. Simulation studies have been carried out, as well as test bench trials, in order to prove the viability and functionality of the proposed control strategy.

  18. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    Wind power may in the future constitute a significant part of the Norwegian electricity supply. 20 TWh annual wind generation is a realistic goal for 2020 assuming wind farms on-land and offshore. The development of grid codes for wind farms is sound. It is recognising that large wind farms are basically power plants and may participate in securing efficient and stable power system operation. Modern wind farms may control the reactive power or voltage as any other power plant, and may also control active power or frequency as long as wind conditions permits. Grid code requirements must however be carefully assessed and possibly adjusted over time aiming for overall least cost solutions. Development of wind farms are today to some degree hindered by conservative assumptions being made on operation of wind farms in areas with limited power transfer capacity. By accepting temporary grid congestions, however, a large increase installed wind power is viable. For grid congestion that appears a few hours per year only, the cost of lost generation will be modest and may be economic over the alternatives of limiting wind farm capacities or increasing the grid transfer capacity. Wind generation impact on power system operation and adequacy will be overall positive. Combining wind and hydro provides for a more stable annual energy supply than hydro alone, and wind generation will generally be higher in the winter period than in the summer. Wind will replace the generation with the highest operating cost, and reduce the average Nord Pool spot market price. 20 TWh wind will reduce price with about 3 oere/kWh and CO 2 emissions by 12-14 million tons for the case of replacing coal, and about 6 million tons for replacing natural gas. Wind impact on need for balancing power is small, i.e. the extra balancing cost is about 0,8 oere per kWh wind, and about half if investment in new reserve capacity is not needed. In summary this report demonstrates options for large scale integration

  19. Integration of wide scale renewable resources into the power delivery system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The CD includes the 60 papers presented and discussed, which cover the following: - National experiences with wind power; - Impact of wind generation on planning; - Rules for connection of wind generation; grid codes; - Impact on operation: Forecasting wind generation; Stability, control; - Research, fields and labs; Modelling and simulation; Micro-grids; - Economics on integrating renewables and other general issues

  20. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  1. Interconnector capacity allocation in offshore grids with variable wind generation

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    2013-01-01

    its generation flows only to the high-price market. Granting the high-price market income for wind generation as the opposite design option reduces congestion rents. Otherwise, compensation measures through support schemes or different balancing responsibilities may be discussed....... with onshore installations to reduce balancing demand. This is not necessarily the case if the interconnector capacity is sold through implicit or explicit auctions. Different design options are discussed and quantified for a number of examples based on Danish, Dutch, German and Norwegian power markets....... It is concluded that treating offshore generation as a single price zone within the interconnector reduces the wind operator’s ability to pool it with other generation. Furthermore, a single offshore price zone between two markets will always receive the lower spot market price of the neighbouring zones, although...

  2. Stockholm Power Tech. Power systems

    International Nuclear Information System (INIS)

    1995-01-01

    The proceedings from this symposium is presented in six volumes: Invited speakers' sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  3. Stockholm Power Tech. Power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The proceedings from this symposium is presented in six volumes: Invited speakers` sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  4. Low cost infrastructure solutions for small embedded wind generators

    Energy Technology Data Exchange (ETDEWEB)

    Robb, C.

    2003-07-01

    This report gives details of a project to demonstrate novel economic solutions to increase the potential for installing small-scale embedded wind generator systems at many UK sites which have so far been dismissed as too difficult. Details are given of the first phase of the study which examined current solutions to infrastructure problems and potential techniques. The use of drilled rock anchor foundations to minimise the need for delivery of ready-mix concrete to wind turbine sites, and the use of a winch and A-frame system for erecting a wind turbine to avoid the use of cranes are discussed. The demonstration of the installation of a 50kW wind turbine on the Isle of Luing in Scotland where there is no access for cranes or larger vehicles in the second phase of the project is described. The potential for the use of these techniques on larger wind turbines is considered.

  5. Analysis And Synthesis Of Model Reference Controller For Variable Speed Wind Generators Inertial Support

    Science.gov (United States)

    Bećirović, Elvisa; Osmić, Jakub; Kušljugić, Mirza; Perić, Nedjeljko

    2015-01-01

    Model Reference Controller (MRC) for contribution of Variable Speed Wind Generators (VSWG) in inertial response of Electrical Power System (EPS) is presented and analyzed in this paper. MRC is synthesized based on a model of Generating Unit With non-Reheat Steam Turbine (GUNRST) thus enabling VSWG to emulate GUNRST response during the initial stage of dynamic frequency response ie inertial phase. Very important property of conventional steam generating units is that its contribution to inertial phase response is independent from the initial generating power. By using MRC in VSWG it is accomplished that in most common wind speed region (3-12 m/s) VSWG inertial support is almost independent from wind speed. Since in most EPSs VSWG replaces conventional steam generators, application of MRC algorithm provides that the characteristics of EPS in terms of inertial response are preserved, regardless of the growing trend of introducing VSWG. Evaluation analysis of the proposed MRC is performed on modified nine bus power system when VSWG with MRC is connected to one of the power system buses.

  6. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  7. A Novel DFIG Damping Control for Power System with High Wind Power Penetration

    Directory of Open Access Journals (Sweden)

    Aiguo Tan

    2016-07-01

    Full Text Available Aiming at the fact that large-scale penetration of wind power will to some extent weaken the small signal stability of power systems, in this paper, the dynamic model of a doubly fed induction generator (DFIG is established firstly, to analyze the impact of wind generation on power oscillation damping. Then, based on the conventional maximum power point tracking control of variable speed wind turbine, a supplementary control scheme is proposed to increase the damping of power system. To achieve best performance, parameters of the damping control are tuned by using a genetic algorithm. Results of eigenvalue analysis and simulations demonstrate the effectiveness of supplementary damping control with fixed wind speed. At last, due to the problem that fluctuation of output power of wind generators would cause the unstable performance of the DFIG damping controller above, a new algorithm that adapts to the wind variation is added to the supplementary damping control scheme. Results of the simulation show that an improved damping control scheme can stably enhance system damping under various wind speeds and has higher practical value.

  8. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  9. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  10. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  11. Fluctuations of offshore wind generation: Statistical modelling

    DEFF Research Database (Denmark)

    Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik

    2007-01-01

    The magnitude of power fluctuations at large offshore wind farms has a significant impact on the control and management strategies of their power output. If focusing on the minute scale, one observes successive periods with smaller and larger power fluctuations. It seems that different regimes yi...

  12. Assessing the value of wind generation in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2013-01-01

    This paper employs a novel Monte-Carlo based generation portfolio assessment tool to explore the implications of increasing wind penetration and carbon prices within future electricity generation portfolios under considerable uncertainty. This tool combines optimal generation mix techniques with Monte Carlo simulation and portfolio analysis methods to determine expected overall generation costs, associated cost uncertainty and expected CO 2 emissions for different possible generation portfolios. A case study of an electricity industry with coal, Combined Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines (OCGT) and wind generation options that faces uncertain future fossil-fuel prices, carbon pricing, electricity demand and plant construction costs is presented to illustrate some of the key issues associated with growing wind penetrations. The case study uses half-hourly demand and wind generation data from South Eastern Australia, and regional estimates of new-build plant costs and characteristics. Results suggest that although wind generation generally increases overall industry costs, it reduces associated cost uncertainties and CO 2 emissions. However, there are some cases in which wind generation can reduce the overall costs of generation portfolios. The extent to which wind penetration affects industry expected costs and uncertainties depends on the level of carbon price and the conventional technology mix in the portfolios. - Highlights: ► A probabilistic portfolio analysis tool to assess generation portfolios with wind power. ► Explore the impacts of wind penetrations and carbon prices under uncertainties. ► Wind generation increases overall portfolio costs but reduces cost risks and emissions. ► The value of wind power depends on the carbon price and the technology mix. ► Complex interactions between wind penetration level and carbon pricing.

  13. Wind-generated Electricity in China: Decreasing Potential, Inter-annual Variability and Association with Changing Climate.

    Science.gov (United States)

    Sherman, Peter; Chen, Xinyu; McElroy, Michael B

    2017-11-24

    China hosts the world's largest market for wind-generated electricity. The financial return and carbon reduction benefits from wind power are sensitive to changing wind resources. Wind data derived from an assimilated meteorological database are used here to estimate what the wind generated electricity in China would have been on an hourly basis over the period 1979 to 2015 at a geographical resolution of approximately 50 km × 50 km. The analysis indicates a secular decrease in generating potential over this interval, with the largest declines observed for western Inner Mongolia (15 ± 7%) and the northern part of Gansu (17 ± 8%), two leading wind investment areas. The decrease is associated with long-term warming in the vicinity of the Siberian High (SH), correlated also with the observed secular increase in global average surface temperatures. The long-term trend is modulated by variability relating to the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO). A linear regression model incorporating indices for the PDO and AO, as well as the declining trend, can account for the interannual variability of wind power, suggesting that advances in long-term forecasting could be exploited to markedly improve management of future energy systems.

  14. Improving Low Voltage Ride Through Capability of Wind Generators Using Dynamic Voltage Restorer

    Science.gov (United States)

    Sivasankar, Gangatharan; Suresh Kumar, Velu

    2014-08-01

    The increasing wind power integration with power grid has forced the situation to improve the reliability of wind generators for stable operation. One important problem with induction generator based wind farm is its low ride through capability to the grid voltage disturbance. Any disturbance such as voltage dip may cause wind farm outages. Since wind power contribution is in predominant percentage, such outages may lead to stability problem. The proposed strategy is to use dynamic voltage controller (DVR) to compensate the voltage disturbance. The DVR provides the wind generator the ability to remain connected in grid and improve the reliability. The voltage dips due to symmetrical and unsymmetrical faults are considered for analysis. The vector control scheme is employed for fault compensation which uses software phase locked loop scheme and park dq0 transformation technique. Extensive simulation results are included to illustrate the control and operation of DVR.

  15. Seminar: Network-independent power supply with photovoltaic systems. Papers; Fachseminar: Netzferne Stromversorgung mit Photovoltaik. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Subjects: Detailed description of the projecting, design and construction of network-independent power supply systems; Detailed description of the function and characteristics of decentral power supply systems, i.e. solar, electric motors, wind generators, and fuel cells; Technical details of system components, i.e. batteries, charge control units and current inverters; Energy conservation; Dimensioning of network-independent power supply systems via PC; Design of compact PV hybrid systems; Economic assessment for reduction of investment cost and lifetime cost; Exemplary applications in industrial production, telecommunication, traffic control, measurement, pumping, water treatment and village power supply; Non-technical aspects of rural electrification. (orig.)

  16. Accurate Short-Term Power Forecasting of Wind Turbines: The Case of Jeju Island’s Wind Farm

    OpenAIRE

    BeomJun Park; Jin Hur

    2017-01-01

    Short-term wind power forecasting is a technique which tells system operators how much wind power can be expected at a specific time. Due to the increasing penetration of wind generating resources into the power grids, short-term wind power forecasting is becoming an important issue for grid integration analysis. The high reliability of wind power forecasting can contribute to the successful integration of wind generating resources into the power grids. To guarantee the reliability of forecas...

  17. Evaluation of power flow solutions with fixed speed wind turbine generating systems

    International Nuclear Information System (INIS)

    Haque, M.H.

    2014-01-01

    Highlights: • The model of a wind generator is modified and incorporated into a power flow program. • Unlike previous methods, modification to source codes of the program is not required. • The turbine power curve is mathematically expressed using manufacturer’s data. • The power flow of the IEEE 118-bus system is successfully solved with 12 wind farms for 1000 random cases of wind speeds. • For a simple system, the load flow results are also compared with the corresponding steady state values of dynamic responses. - Abstract: An increased penetration of wind turbine generating systems into power grid calls for proper modeling of the systems and incorporating the model into various computational tools used in power system operation and planning studies. This paper proposes a simple method of incorporating the exact equivalent circuit of a fixed speed wind generator into conventional power flow program. The method simply adds two internal buses of the generator to include all parameters of the equivalent circuit. For a given wind speed, the active power injection into one of the internal buses is determined through wind turbine power curve supplied by the manufacturers. The internal buses of the model can be treated as a traditional P–Q bus and thus can easily be incorporated into any standard power flow program by simply augmenting the input data files and without modifying source codes of the program. The effectiveness of the proposed method is then evaluated on a simple system as well as on the IEEE 30- and 118-bus systems. The results of the simple system are also compared with those found through Matlab/Simulink using dynamic model of wind generating system given in SimPowerSystems blockset

  18. AES Modular Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Modular Power Systems (AMPS) project will demonstrate and infuse modular power electronics, batteries, fuel cells, and autonomous control for exploration...

  19. Investigation of surge protective devices operation of a wind generator

    International Nuclear Information System (INIS)

    Dimitrov, D.; Vasileva, M.

    2008-01-01

    The interest to the investments in a wind energetics increases in the last years. The wind energetics is the fastest developing direction in the energetics in global scale. The wind energy is more attractive because its prices are lower in comparison of the other technologies for generating energy. The right choice of the surge protective devices has the important meaning on building and exploitation of the wind generators. The aim of this paper is investigation of the surge protective devices operation when they are installation to a wind generator. (authors)

  20. Global potential for wind-generated electricity.

    Science.gov (United States)

    Lu, Xi; McElroy, Michael B; Kiviluoma, Juha

    2009-07-07

    The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines.

  1. Wind Generation on Winnebago Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Multiple

    2009-09-30

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining

  2. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  3. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  4. High-quality Wind Power Scenario Forecasts for Decision-making Under Uncertainty in Power Systems

    DEFF Research Database (Denmark)

    Delikaraoglou, Stefanos; Pinson, Pierre

    2014-01-01

    The large scale integration of wind generation in existing power systems requires novel operational strategies and market clearing mechanisms to account for the variable nature of this energy source. An efficient method to cope with this uncertainty is stochastic optimization which however requires......-valued and probabilistic predictions as well as scenarios representing the spatio-temporal dependence structure of forecast errors. The applicability of the proposed framework is demonstrated with a small-scale stochastic unit commitment model....... high-quality forecasts in the form of scenarios. The main goal of this work is to release a public dataset of wind power forecasts to be used as a reference for future research. To that extent, we provide a complete framework to describe wind power uncertainty in terms of single...

  5. Power system relaying

    CERN Document Server

    Horowitz, Stanley H; Niemira, James K

    2013-01-01

    The previous three editions of Power System Relaying offer comprehensive and accessible coverage of the theory and fundamentals of relaying and have been widely adopted on university and industry courses worldwide. With the third edition, the authors have added new and detailed descriptions of power system phenomena such as stability, system-wide protection concepts and discussion of historic outages. Power System Relaying, 4th Edition continues its role as an outstanding textbook on power system protection for senior and graduate students in the field of electric power engineering and a refer

  6. Shipboard electrical power systems

    CERN Document Server

    Patel, Mukund R

    2011-01-01

    Shipboard Electrical Power Systems addresses new developments in this growing field. Focused on the trend toward electrification to power commercial shipping, naval, and passenger vessels, this book helps new or experienced engineers master cutting-edge methods for power system design, control, protection, and economic use of power. Provides Basic Transferable Skills for Managing Electrical Power on Ships or on LandThis groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel's rare combina

  7. Impact of wind farms on a power system. An eigenvalue analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Laboratorio de Electronica. Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000 Comodoro Rivadavia (Argentina); Mantz, R.J.; Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina)

    2007-08-15

    This paper analyzes the frequency dynamic behavior in a power system with a high wind power penetration. To this end, wind farms equipped with squirrel cage and doubly fed induction generators are compared. Aspects of the modeling of the different kinds of wind generation and power systems are cited. Then, it is shown, through an eigenvalue analysis, that wind farms equipped by doubly fed induction machines, adequately controlled, can contribute to improve the frequency dynamics. Simulations are presented which verify the theoretical results. (author)

  8. Issues and regulatory requirements for the connection of wind generation

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez Alvarez, J.M. [National University of San Juan (Argentina)], E-mail: jgimenez@unsj.edu.ar; Gomez Targarona, J.C. [National University of Rio Cuarto, Cordoba (Argentina). Electric Power Systems Protection Institute (IPSEP)], E-mail: jcgomez@ing.unrc.edu.ar

    2009-07-01

    Pollution problems such as greenhouse effect as well as the high value and volatility of fuel prices have forced and accelerated the development and use of renewable energy sources. In this work a complete revision of wind generation is presented. In the first part a brief history of the wind energy developments is detailed. Next, some commentaries related to the present and future state are made. Then, a revision of the modern structures of wind generation is realized. In fourth place it is included a brief comparison between small and big size turbines. Then, different types of energy storage are mentioned. Finally regulatory aspects are discussed, respect to the treatment of the technical problems. (author)

  9. WAMS Based Intelligent Operation and Control of Modern Power System with large Scale Renewable Energy Penetration

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain

    power system with least dependence on conventional power plants. An important aspect of WAMS realization in a power system is optimal placement of expensive PMUs in order to realize cost effective and reliable grid state monitoring and control. Coupled with Real time digital simulator (RTDS) based...... security issue, a WAMS based systematic voltage control scheme for large scale wind integrated power system has been proposed. Along with the optimal reactive power compensation, the proposed scheme considers voltage support from wind farms (equipped with voltage support functionality) and refurbished...... security limits. Under such scenario, progressive displacement of conventional generation by wind generation is expected to eventually lead a complex power system with least presence of central power plants. Consequently the support from conventional power plants is expected to reach its all-time low...

  10. AN OVERVIEW OF WIND ENERGY, TAKING INTO CONSIDERATION SEVERAL IMPORTANT ISSUES INCLUDING AN ANALYSIS OF REGULATORY REQUIREMENTS FOR THE CONNECTION OF WIND GENERATION INTO THE POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    JUAN MANUEL GIMENEZ ALVAREZ

    2012-01-01

    Full Text Available Los problemas de contaminación tal como el efecto invernadero, así como el alto valor y la volatilidad de los precios del combustible, han obligado y acelerado el desarrollo y uso de fuentes de energía renovables. En este trabajo se presenta una revisión de la generación eólica. Primero, se detalla una breve historia de la evolución de la energía eólica. A continuación se discuten algunos aspectos relacionados con el estado actual y el futuro. Seguido a esto se realiza una revisión de las estructuras modernas de generación eólica. En cuarto lugar se lleva a cabo una comparación entre turbinas de pequeño y de gran tamaño. A continuación también se mencionan los diferentes tipos de almacenamiento de energía. Por último se discuten algunos aspectos normativos.

  11. Optimization in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Geraldo R.M. da [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia

    1994-12-31

    This paper discusses, partially, the advantages and the disadvantages of the optimal power flow. It shows some of the difficulties of implementation and proposes solutions. An analysis is made comparing the power flow, BIGPOWER/CESP, and the optimal power flow, FPO/SEL, developed by the author, when applied to the CEPEL-ELETRONORTE and CESP systems. (author) 8 refs., 5 tabs.

  12. Space Nuclear Power Systems

    Science.gov (United States)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  13. Personal power systems

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Rankin, Derek; Leal, Elisangela Martins; Walther, David C. [Mechanical and Aerospace Engineering Department, University of California, Irvine, CA 92697 (United States)

    2005-07-01

    The lack of compact, efficient, human compatible, lightweight power sources impedes the realization of machine-enhanced human endeavor. Electronic and communication devices, as well as mobile robotic devices, need new power sources that will allow them to operate autonomously for periods of hours. In this work, a personal power system implies an application of interest to an individual person. The human-compatible gravimetric energy density spans the range from 500 to 5000Wh/kg, with gravimetric power density requirements from 10 to 1000W/kg. These requirements are the primary goals for the systems presented here. The review examines the interesting and promising concepts in electrochemical, thermochemical, and biochemical approaches to small-scale power, as well as their technological and physical challenges and limitations. Often it is the limitations that dominate, so that while the technology to create personal autonomy for communications, information processing and mobility has accelerated, similar breakthroughs for the systems powering these devices have not yet occurred. Fuel cells, model airplane engines, and hummingbird metabolism, are three promising examples, respectively, of electrochemical, thermochemical, and biochemical power production strategies that are close to achieving personal power systems' power demands. Fuel cells show great promise as an energy source when relatively low power density is demanded, but they cannot yet deliver high peak powers nor respond quickly to variable loads. Current small-scale engines, while achieving extraordinary power densities, are too inefficient to achieve the energy density needed for long-duration autonomous operation. Metabolic processes of flying insects and hummingbirds are remarkable biological energy converters, but duplicating, accelerating, and harnessing such power for mobility applications is virtually unexplored. These challenges are significant, and they provide a fertile environment for

  14. Impact of wind turbine based on double feed induction generator and FACTS devices on power systems

    Directory of Open Access Journals (Sweden)

    Labiba ADJOUDJ

    2015-05-01

    Full Text Available Integration of wind turbines may have significant impacts on power system operation and generation of electricity from wind power has received considerable attention. This paper analyses the impact of integrating wind generation based on double feed induction generators (DFIG and Flexible AC Transmission System (FACTS on the voltage collapse and active losses of network IEEE 30 bus test. Therefore, we must choose among FACTS devices, those with specific applications such as maintaining the voltage at the desired value and the control of power flow, SVC is the most effective in the compensation of reactive as well as maintaining the voltage, and TCSC is the best choice for a proper control of power flow and consequently the reduction of active losses. The simulation results show clearly the effect of wind power plants and FACTS on the grid, voltage stability and power quality of electric power system.

  15. Resolution of issues with renewable energy penetration in a long-range power system demand-supply planning

    International Nuclear Information System (INIS)

    Ogimoto, Kazuhiko; Ikeda, Yuichi; Kataoka, Kazuto; Ikegami, Takashi; Nonaka, Shunsuke; Azuma, Hitoshi

    2012-01-01

    Under the anticipated high penetration of variable renewable energy generation such as photovoltaic, the issue of supply demand balance should be evaluated and fixed. Technologies such as demand activation, and energy storage are expected to solve the issue. Under the situation, a long-range power system supply demand analysis should have the capability for the evaluation in its analysis steps of demand preparation, maintenance scheduling, and economic dispatch analysis. This paper presents results of a parametric analysis of the reduction of PV and Wind generation curtailment reduction by deployment of batteries. Based on a set of scenarios of the prospects of Japan's 10 power system demand-supply condition in 2030, the demand-supply balance capability are analyzed assuming PV and wind generation variation, demand activation and dispatchable batteries. (author)

  16. Soldier System Power Sources

    Science.gov (United States)

    2006-12-31

    2004. 27 Soldier System Power Sources Final Project Report 23. Z. Jiang, R. Dougal, "Multiobjective MPPT /Charging Controller for Standalone PV Power...composed variously of batteries, fuel cells, and super capacitors, it developed control al- gorithms for those hybrid power sources, it assessed the...coupling, this model can control signal dependent source models. * Reference mission scenarios and test beds. A probabilistic load profile generator was

  17. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  18. RTE: the integration of wind energy in the power system

    International Nuclear Information System (INIS)

    Glachant, Magali; Neau, Emmanuel

    2011-03-01

    The total installed capacity of wind power in France grew from a few hundred MW at the beginning of 2005 to 5500 MW at the end of 2010. This fast growth is set to continue, and the French Government's decision of 15 December 2009 on the country's long-term investment programs in power generation requires France to have at least 25 GW of installed wind capacity (including 6 GW offshore) by 2020. But the French specificities are that wind farms are largely spread over the territory, and 95 % of them have an output power below 12 MW which means they are mainly connected to the distribution network. As a consequence, this new intermittent and decentralized production is not 'naturally' observable by RTE, whereas it has nevertheless impacts on the operation of the transmission system for which RTE is responsible. The natural variability of wind power and the difficulty of its predictability require indeed a change in the traditional way of ensuring balancing between production and demand, of managing day-ahead margins and of controlling the electrical flows. Furthermore RTE operators have to be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. In this context, new tools were necessary to RTE to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production called the 'IPES system'. 'IPES' enables to get information about technical characteristics of the whole wind farms in France and to observe the wind generation by two ways: in real time with tele-metered data and in the short term with a forecast model integrated into the system. In addition, RTE currently carries out studies about the behavior and the forecasting of wind production integrated into the grids, as internal activities (about forecast methods), and in different projects (such as European projects: Safewind for

  19. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  20. Power system technical limitation

    International Nuclear Information System (INIS)

    Covarrubias, A.J.

    1975-01-01

    The paper deals with transient conditions in steady state operation of power systems and investigates the influence of load shedding and spinning reserve on the estimation of largest unit size. (RW) [de

  1. Nuclear power plants in electric power system

    International Nuclear Information System (INIS)

    Leicman, J.; Vokurka, F.

    1985-01-01

    The paper analyzes the demands placed by the power system on operating qualities of nuclear power plants with regard to the prospective tasks of nuclear power in the Czechoslovak power system. The characteristics of the operation of Czechoslovak nuclear plants are given taking into account the frequency and voltage deviations of the network, operating and control properties of nuclear power plants with WWER-440 and WWER-1000 reactors considering the technical conditions of operation, the required operating schedule of a nuclear power plant unit. For comparison, the demands are summed up of foreign power systems as are the control properties of foreign nuclear power units in regulating output, regulating delivered electric power and in emergency states of the system. Recommendations for further research and development are drawn from the data. (author)

  2. Options to Improve the Quality of Wind Generation Output Forecasting with the Use of Available Information as Explanatory Variables

    Directory of Open Access Journals (Sweden)

    Rafał Magulski

    2015-06-01

    Full Text Available Development of wind generation, besides its positive aspects related to the use of renewable energy, is a challenge from the point of view of power systems’ operational security and economy. The uncertain and variable nature of wind generation sources entails the need for the for the TSO to provide adequate reserves of power, necessary to maintain the grid’s stable operation, and the actors involved in the trading of energy from these sources incur additional of balancing unplanned output deviations. The paper presents the results of analyses concerning the options to forecast a selected wind farm’s output exercised by means of different methods of prediction, using a different range of measurement and forecasting data available on the farm and its surroundings. The analyses focused on the evaluation of forecast errors, and selection of input data for forecasting models and assessment of their impact on prediction quality improvement.

  3. NSTX Electrical Power Systems

    International Nuclear Information System (INIS)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-01-01

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems

  4. A small - signal stability analysis of DFIG wind generation

    OpenAIRE

    Vittal, Eknath; O'Malley, Mark; Keane, Andrew

    2009-01-01

    This paper examines the small-signal stability impacts of high penetrations of doubly-fed induction generator (DFIG) wind turbines on power systems. It provides a basic overview of small-signal stability concepts and then examines the response of DFIG generation to two local contingency event. Using the New England 39 bus test system, this paper will demonstrate the stability implications of DFIG turbines utilizing terminal voltage control and fixed power factor control in response...

  5. AC power system breadboard

    Science.gov (United States)

    Wappes, Loran J.; Sundberg, R.; Mildice, J.; Peterson, D.; Hushing, S.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high-frequency (20-kHz) Power System Breadboard which would electrically approximate a pair of dual redundant power channels of an IOC Space Station. This report describes that program, including the technical background, and discusses the results, showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment has been completed and delivered to LeRC, where it is operating as a part of the Space Station Power System Test Facility.

  6. High power VME system

    International Nuclear Information System (INIS)

    Murakami, T.

    1990-01-01

    While the power consumption of CAMAC and VME modules is less than 40 watts per module and that of TKO and FASTBUS is much more, the former group consumes twice as much power per unit surface area as the latter group. The area occupied by components amounts to 60 percent of the total board area in TKO Super Controller Head Module and to 83 percent in VME Memory Partner module. Such a high packing density results in a high power density, and cooling of such modules becomes difficult. Despite these, such electronics systems with very high packing density are expected to become popular. The present report summarizes studies on various aspects of high power systems. The studies cover the cooling, routing power, and resistance to fire. A forced air cooling unit for TKO is developed. It serves to achieve a very high air flow rate for cooling, but high power systems would require better temperature compensation than other systems since one cannot expect a uniform ambient temperature distribution to be achieved over the board surface. It might even prohibit high resolution circuits to function to full capacity. Another study is made on a backplane that can supply much more current than conventional ones. A special power connector is developed which can supply currents up to 50 ampere. (N.K.)

  7. Design and analysis of a flux intensifying permanent magnet embedded salient pole wind generator

    Science.gov (United States)

    Guo, Yujing; Jin, Ping; Lin, Heyun; Yang, Hui; Lyu, Shukang

    2018-05-01

    This paper presents an improved flux intensifying permanent magnet embedded salient pole wind generator (FI-PMESPWG) with mirror symmetrical magnetizing directions permanent magnet (PM) for improving generator's performances. The air-gap flux densities, the output voltage, the cogging torque and the d- and q-axis inductances of FI-PMESPWG are all calculated and analyzed by using the finite element method (FEM). To highlight the advantages of the proposed FI-PMESPWG, an original permanent magnet embedded salient pole wind generator (PMESPWG) model is adopted for comparison under the same operating conditions. The calculating results show that the air-gap flux densities of FI-PMESPWG are intensified with the same magnet amounts because the PMs are set in a form of V shape in each pole. The difference between d-axis inductance and q-axis inductance of the proposed FI-PMESPWG is reduced. Thus, the output power of the proposed FI-PMESPWG reaches a higher value than that of the original PMESPWG at the same current phase angle. The cogging torque is diminished because the flux path is changed. All the analysis results indicate that the electromagnetic characteristics of the proposed FI-PMESPWG are significantly better than that of the original PMESPWG.

  8. Wind power system for Sao Gabriel, Irece region, Bahia-Brazil; Sistema eolico de Sao Gabriel, regiao de Irece-Bahia

    Energy Technology Data Exchange (ETDEWEB)

    Bruni, Carlos D' Alexandria [Centro Federal de Educacao Tecnologica da Bahia (CEFET-BA), Salvador, BA (Brazil)], e-mail: carlosbruni@cefetba.br; Camelier, Luiz Alberto A. [Companhia de Engenharia Rural da Bahia, Salvador, BA (Brazil)], e-mail: lcamelier@ig.com.br

    2004-07-01

    An electric power plant supplied by a wind-generator is the solution for supply drink water on a small community on Sao Gabriel, Irece - Bahia -Brazil. On behalf of the feasibility a wind power system is described in detail concerning it's technical specifications, it's operation, constraints and it's energy demand. Furthermore wind power system supply is described in detail. Simulations is shows how the system is designed to guarantee a reliability in pumping of drinking water powered by wind power system and it's expansion in the future. (author)

  9. Lunar solar-power system: Commerical power

    Science.gov (United States)

    Criswell, David R.

    1995-01-01

    The proposed Lunar Solar-Power (LSP) System collects solar power on the moon. The power is converted to beams of microwaves and transmitted to fields of microwave receivers (rectennas) on Earth that provide electric power to local and regional power grids. LSP can provide abundant and low cost energy to Earth to sustain several centuries of economic development on Earth and in space. The LSP power is independent of the biosphere (global warming, weather, and climate changes), independent of reserves of terrestrial non-renewable and renewable power, and is low in total costs compared to other large scale power systems. Efficient utilization of the moon as a platform for solar collectors/power transmitters and as a source of building materials is key to the development and emplacement of the LSP System. LSP development costs can be significantly reduced by the establishment of a manned lunar base.

  10. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  11. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  12. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  13. Power system protection

    International Nuclear Information System (INIS)

    Venkata, S.S.; Damborg, M.J.; Jampala, A.K.

    1991-01-01

    Power systems of the 21st century will be more modern, and complex, utilizing the latest available technologies. At the same time, generating plants will have to operate with minimal spinning margins and energy transportation has to take place at critical levels due to environmental and economical constraints. These factors dictate that the power systems be protected with optimum sensitivity, selectivity and time of operation to assure maximum reliability, and security at minimal cost. With an increasing role played by digital computers in every aspect of protection, it is important to take a critical and fresh look at the art and science of relaying and protection. The main objective of this paper is to review the past, present and future of power system protection from a software point of view

  14. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    Science.gov (United States)

    Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei

    2017-10-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.

  15. Laser satellite power systems

    Energy Technology Data Exchange (ETDEWEB)

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  16. Automated Power-Distribution System

    Science.gov (United States)

    Ashworth, Barry; Riedesel, Joel; Myers, Chris; Miller, William; Jones, Ellen F.; Freeman, Kenneth; Walsh, Richard; Walls, Bryan K.; Weeks, David J.; Bechtel, Robert T.

    1992-01-01

    Autonomous power-distribution system includes power-control equipment and automation equipment. System automatically schedules connection of power to loads and reconfigures itself when it detects fault. Potential terrestrial applications include optimization of consumption of power in homes, power supplies for autonomous land vehicles and vessels, and power supplies for automated industrial processes.

  17. WAMS Based Intelligent Operation and Control of Modern Power System with large Scale Renewable Energy Penetration

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain

    for alternative energy systems driven by the pressure to reduce carbon emission has stimulated a renewal of interest in wind power. The combined effect of growing demand and increasing level of intermittent wind energy penetration coupled with deregulated market has pushed the power system to operate close to its......Electricity demand worldwide is growing which is mainly driven by growing industrial activities and the widening of access to consumers in the developing world. On the other hand, limitations of conventional sources of energy generation coupled with substantial financial and regulatory incentives...... to intermittent nature and lack of adequate controllability of wind generation, large scale integration of wind energy compromises the security of power system. Therefore, WAMS based security assessment has been proposed to assess the steady state and dynamic security of large scale wind integrated power system...

  18. UNISAT-3 Power System

    Science.gov (United States)

    Santoni, Fabio; Piergentili, Fabrizio; Bulgarelli, Fabio; Graziani, Filippo

    2005-05-01

    An overview of the UNISAT-3 microsatellite power subsystem is given. This is an educational, low weight and low cost microsatellite designed, built, launched and operated in space by students and professors of Scuola di Ingegneria Aerospaziale, at University of Rome "La Sapienza". The satellite power system is based on terrestrial technology solar arrays and NiCd batteries. The microsatellite hosts other solar arrays, including multi-junction solar cells and mono- crystalline silicon high efficiency solar cells, in order to compare their behaviour in orbit. Moreover a MPPT (Maximum Power Point Tracking ) system has been designed and tested, and it is a technological payload of UNISAT-3. The MPPT design follows the studies performed in the field of solar powered racing cars, with modifications to make the system suitable for use in space. The system design, numerical simulation and hardware ground testing are described in the paper. The experiment and the performance evaluation criterion are described, together with the preliminary results of the first eight months of operation in orbit.

  19. Sliding Window Technique for Calculating System LOLP Contributions of Wind Power Plants

    International Nuclear Information System (INIS)

    Milligan, M. R.

    2001-01-01

    Conventional electric power generation models do not typically recognize the probabilistic nature of the power variations from wind plants. Most models allow for an accurate hourly representation of wind power output, but do not incorporate any probabilistic assessment of whether the given level of wind power will vary from its expected value. The technique presented in this paper uses this variation to calculate an effective forced-outage rate for wind power plants (EFORW). Depending on the type of wind regime undergoing evaluation, the length and diurnal characteristics of a sliding time window can be adjusted so that the EFORW is based on an appropriate time scale. The algorithm allows us to calculate the loss-of-load probability (LOLP) on an hourly basis, fully incorporating the variability of the wind resource into the calculation. This makes it possible to obtain a more accurate assessment of reliability of systems that include wind generation when system reliability is a concern

  20. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2015-06-01

    Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.

  1. A study to solve the variability of wind generation through integration of large-scale hydraulic generation; Um estudo para resolver a variabilidade da geracao eolica atraves da integracao em larga escala com geracao hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Emmerik, Emanuel Leonardus van; Steinberger, Johann Michael; Aredes, Mauricio [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEE/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Eletrica

    2010-07-01

    The optimal deployment of wind generation with the hydro generation is being investigated as a viable option to assist in resolving the constraints coming ahead as a consequence of the tendency of recovery in the Brazilian Amazon basin for expansion of generating facilities. It is in the validity of this research that this work is focused. The value is shown of feasibility studies of using water power generation to offset the variability of wind generation when it is deployed on a large scale. Preliminary results are presented for the variability of wind generation at various cycles, the variability of the availability of hydropower. (author)

  2. Strategic selection of suitable projects for hybrid solar-wind power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsing Hung [Faculty of Management and Administration, Macau University of Science and Technology, Taipa, Macau (China); Kang, He-Yau [Department of Industrial Engineering and Management, National Chin-Yi University of Technology, Taiping, Taichung (China); Lee, Amy H.I. [Department of Industrial Management, Chung Hua University, Non.707, Sec. 2, WuFu Rd., Hsinchu (China)

    2010-01-15

    Because of the pressing need for maintaining a healthy environment with reasonable costs, China is moving toward the trend for generating electricity from renewable resources. Both solar energy and wind power have received a tremendous attention from private associations, political groups, and electric power companies to generate power on a large scale. A drawback is their unpredictable nature and dependence on weather. Fortunately, the problems can be partially tackled by using the strengths of one source to overcome the weakness of the other. Especially, a large fraction of the solar resource is available at times of peak electrical load. However, the complexity of using two different resources together makes the hybrid solar-wind generation systems more difficult to analyze. Accordingly, this paper first briefly introduces the solar-wind generation system and next develops its critical success criteria. Then, a fuzzy analytic hierarchy process associated with benefits, opportunities, costs and risks, is proposed to help select a suitable solar-wind power generation project. (author)

  3. Stochastic Optimization for Network-Constrained Power System Scheduling Problem

    Directory of Open Access Journals (Sweden)

    D. F. Teshome

    2015-01-01

    Full Text Available The stochastic nature of demand and wind generation has a considerable effect on solving the scheduling problem of a modern power system. Network constraints such as power flow equations and transmission capacities also need to be considered for a comprehensive approach to model renewable energy integration and analyze generation system flexibility. Firstly, this paper accounts for the stochastic inputs in such a way that the uncertainties are modeled as normally distributed forecast errors. The forecast errors are then superimposed on the outputs of load and wind forecasting tools. Secondly, it efficiently models the network constraints and tests an iterative algorithm and a piecewise linear approximation for representing transmission losses in mixed integer linear programming (MILP. It also integrates load shedding according to priority factors set by the system operator. Moreover, the different interactions among stochastic programming, network constraints, and prioritized load shedding are thoroughly investigated in the paper. The stochastic model is tested on a power system adopted from Jeju Island, South Korea. Results demonstrate the impact of wind speed variability and network constraints on the flexibility of the generation system. Further analysis shows the effect of loss modeling approaches on total cost, accuracy, computational time, and memory requirement.

  4. AC power supply systems

    International Nuclear Information System (INIS)

    Law, H.

    1987-01-01

    An ac power supply system includes a rectifier fed by a normal ac supply, and an inverter connected to the rectifier by a dc link, the inverter being effective to invert the dc output of the receiver at a required frequency to provide an ac output. A dc backup power supply of lower voltage than the normal dc output of the rectifier is connected across the dc link such that the ac output of the rectifier is derived from the backup supply if the voltage of the output of the inverter falls below that of the backup supply. The dc backup power may be derived from a backup ac supply. Use in pumping coolant in nuclear reactor is envisaged. (author)

  5. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  6. Power system optimization

    International Nuclear Information System (INIS)

    Bogdan, Zeljko; Cehil, Mislav

    2007-01-01

    Long-term gas purchase contracts usually determine delivery and payment for gas on the regular hourly basis, independently of demand side consumption. In order to use fuel gas in an economically viable way, optimization of gas distribution for covering consumption must be introduced. In this paper, a mathematical model of the electric utility system which is used for optimization of gas distribution over electric generators is presented. The utility system comprises installed capacity of 1500 MW of thermal power plants, 400 MW of combined heat and power plants, 330 MW of a nuclear power plant and 1600 MW of hydro power plants. Based on known demand curve the optimization model selects plants according to the prescribed criteria. Firstly it engages run-of-river hydro plants, then the public cogeneration plants, the nuclear plant and thermal power plants. Storage hydro plants are used for covering peak load consumption. In case of shortage of installed capacity, the cross-border purchase is allowed. Usage of dual fuel equipment (gas-oil), which is available in some thermal plants, is also controlled by the optimization procedure. It is shown that by using such a model it is possible to properly plan the amount of fuel gas which will be contracted. The contracted amount can easily be distributed over generators efficiently and without losses (no breaks in delivery). The model helps in optimizing of fuel gas-oil ratio for plants with combined burners and enables planning of power plants overhauls over a year in a viable and efficient way. (author)

  7. Autonomously managed electrical power systems

    Science.gov (United States)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  8. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  9. TRANSIENT ANALYSIS OF WIND DIESEL POWER SYSTEM WITH FLYWHEEL ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    S. SUJITH

    2017-10-01

    Full Text Available Wind-Diesel Hybrid power generation is a viable alternative for generating continuous power to isolated power system areas which have inconsistent but potential wind power. The unpredictable nature of variable power from Wind generator to the system is compensated by Diesel generator, which supplies the deficit in generated power from wind to meet the instantaneous system load. However, one of the major challenges for such a system is the higher probability of transients in the form of wind and load fluctuations. This paper analyses the application of Flywheel Energy storage system (FESS to meet the transients during wind-speed and load fluctuations around high wind operation. The power system architecture, the distributed control mechanism governing the flow of power transfer and the modelling of major system components has been discussed and the system performances have been validated using MATLAB /Simulink software. Two cases of transient stages around the high wind system operation are discussed. The simulation results highlight the effective usage of FESS in reducing the peak overshoot of active power transients, smoothes the active power curves and helps in reducing the diesel consumption during the flywheel discharge period, without affecting the continuous power supply for meeting the instantaneous load demand.

  10. Reactive Power Management in Electric Power Systems

    African Journals Online (AJOL)

    The quality of electric power at a supply point can be quantified in terms of how stab)e are the voltage and frequency and how close is the power factor to unity. The continuity of supply and in three-phase systems the degree to which the phase currents and voltages are balanced constitute additional quality parameters.

  11. Power System for Intelligent House

    Directory of Open Access Journals (Sweden)

    Michal Jahelka

    2010-01-01

    Full Text Available Power supply of intelligent houses or house phones is possible to do with standard transformer with voltage stabilizer or with intelligent power supply. Standard solution can has as a result of failure fuse blown or fire occurrence. Intelligent power supply switch off power and tests with little current whether short circuit is removed. After it resume system power supply. At the same time it cares of system backup with accumulator, informs control system about short circuit or failure net power supply, or can switch off all system power after command from control system.

  12. Evaluating operational risk in a power system with a large amount of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, Eduardo M. [Escola Superior Tecnologia Viseu, Instituto Politecnico Viseu, Campus Politecnico Repeses, 3504-510 Viseu (Portugal); Matos, Manuel A. [INESC Porto, Faculdade de Engenharia da Universidade do Porto, Porto (Portugal)

    2009-05-15

    Reserve definition is a compromise between economic issues (additional capacity costs) and reliability (risk of loss of load due to outages of the generators), generally approached by deterministic criteria (e.g. the percentage rule defined by UCTE in Europe) and probabilistic methods like PJM (Pennsylvania-New Jersey, Maryland) and its enhancements, based on the concept of risk. With wind power generation increasing in power systems worldwide, these operational issues gain a renewed interest due to the volatile nature of this kind of energy. The aim of this paper is therefore to address this issue from a risk evaluation point of view, showing that it is possible to extend classical probabilistic methods to this new situation, by introducing a detailed Markov model of wind parks that accounts both for machine failures and different wind power levels. This evaluation, where wind generation fluctuation and uncertainty is included, can be helpful for transmission system operators (TSO), when defining the reserve requirements for the next hours. In fact, the results obtained for the risk can be used by TSO to check if the reserve levels that results from traditional deterministic rules are acceptable or need to be increased. (author)

  13. Power Systems Development Facility

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  14. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  15. MPPT for PM wind generator using gradient approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ying-Yi; Lu, Shiue-Der; Chiou, Ching-Sheng [Department of Electrical Engineering, Chung Yuan Christian University, 200, Chung-Pei Road, Chung Li 320 (China)

    2009-01-15

    This paper applies new maximum-power-point tracking (MPPT) algorithms to a wind-turbine generator system (WTGS). In this paper, the WTGS is a direct-drive system and includes the wind-turbine, permanent-magnet (PM) synchronous generator, three-phase full bridge rectifier, buck-boost converter and load. The new MPPT method uses gradient approximation (GA) algorithm. Three methods based on GA for achieving MPPT are discussed in this paper: (1) full-sensor control with anemometer and tachometer, (2) rule-based method and (3) adaptive duty cycle method. The third method has merits of no PID parameters, proportional constant, anemometer, tachometer and characteristics of WTGS required. This method enables the permanent-magnet synchronous generator (PMSG) to operate at variable speeds to achieve good performance. Simulation results show that the tip-speed ratio (TSR) and power coefficient obtained by the adaptive duty cycle method with GA can be almost identical to the optimal values. (author)

  16. Assessment of wind energy potential and cost estimation of wind-generated electricity at hilltops surrounding the city of Maroua in Cameroon

    Science.gov (United States)

    Kaoga, Dieudonné Kidmo; Bogno, Bachirou; Aillerie, Michel; Raidandi, Danwe; Yamigno, Serge Doka; Hamandjoda, Oumarou; Tibi, Beda

    2016-07-01

    In this work, 28 years of wind data, measured at 10m above ground level (AGL), from Maroua meteorological station is utilized to assess the potential of wind energy at exposed ridges tops of mountains surrounding the city of Maroua. The aim of this study is to estimate the cost of wind-generated electricity using six types of wind turbines (50 to 2000 kW). The Weibull distribution function is employed to estimate Weibull shape and scale parameters using the energy pattern factor method. The considered wind shear model to extrapolate Weibull parameters and wind profiles is the empirical power law correlation. The results show that hilltops in the range of 150-350m AGL in increments of 50, fall under Class 3 or greater of the international system of wind classification and are deemed suitable to outstanding for wind turbine applications. A performance of the selected wind turbines is examined as well as the costs of wind-generated electricity at the considered hilltops. The results establish that the lowest costs per kWh are obtained using YDF-1500-87 (1500 kW) turbine while the highest costs are delivered by P-25-100 (90 kW). The lowest costs (US) per kWh of electricity generated are found to vary between a minimum of 0.0294 at hilltops 350m AGL and a maximum of 0.0366 at hilltops 150m AGL, with corresponding energy outputs that are 6,125 and 4,932 MWh, respectively. Additionally, the matching capacity factors values are 38.05% at hilltops 150m AGL and 47.26% at hilltops 350m AGL. Furthermore, YDF-1500-87 followed by Enercon E82-2000 (2000 kW) wind turbines provide the lowest cost of wind generated electricity and are recommended for use for large communities. Medium wind turbine P-15-50 (50 kW), despite showing the best coefficients factors (39.29% and 48.85% at hilltops 150 and 350m AGL, in that order), generates electricity at an average higher cost/kWh of US0.0547 and 0.0440 at hilltops 150 and 350m AGL, respectively. P-15-50 is deemed a more advantageous option

  17. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  18. Local load management system and intermittent power on the grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The project relates to the UK's obligations on renewable energy sources. The objectives were (i) to identify contractual requirements and commercial benefits of load management under the UK's Renewable Obligation and electric power trading arrangements (ii) through modelling, demonstrate the benefits of load management to major customers operating on-site wind generators; (iii) to develop a low-cost load management system incorporating communication technologies and switching devices and (iv) to identify the social and psychological aspects of load management. The demonstration of the load management system was conducted on the Findhorn Foundation's low voltage electric power distribution network and a 75kw wind turbine. The project demonstrated suitable technology for distributed load management on a grid-connected system in order to optimize the renewable energy generated on site, and the analyses identified several areas where grid-connected management can provide financial benefits. There is much scope for exploitation of commercial opportunities. The work was conducted by Econnect Ltd under contract to the DTI.

  19. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  20. Performance Analysis of a Flywheel Energy Storage System

    Directory of Open Access Journals (Sweden)

    K. Ghedamsi

    2008-06-01

    Full Text Available The flywheel energy storage systems (FESSs are suitable for improving the quality of the electric power delivered by the wind generators and to help these generators to contribute to the ancillary services. In this paper, a flywheel energy storage system associated to a grid connected variable speed wind generation (VSWG scheme using a doubly fed induction generator (DFIG is investigated. Therefore, the dynamic behavior of a wind generator, including models of the wind turbine (aerodynamic, DFIG, matrix converter, converter control (algorithm of VENTURINI and power control is studied. This paper investigates also, the control method of the FESS with a classical squirrel-cage induction machine associated to a VSWG using back-to-back AC/AC converter. Simulation results of the dynamic models of the wind generator are presented, for different operating points, to show the good performance of the proposed system.

  1. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  2. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  3. Scheduled power tracking control of the wind-storage hybrid system based on the reinforcement learning theory

    Science.gov (United States)

    Li, Ze

    2017-09-01

    In allusion to the intermittency and uncertainty of the wind electricity, energy storage and wind generator are combined into a hybrid system to improve the controllability of the output power. A scheduled power tracking control method is proposed based on the reinforcement learning theory and Q-learning algorithm. In this method, the state space of the environment is formed with two key factors, i.e. the state of charge of the energy storage and the difference value between the actual wind power and scheduled power, the feasible action is the output power of the energy storage, and the corresponding immediate rewarding function is designed to reflect the rationality of the control action. By interacting with the environment and learning from the immediate reward, the optimal control strategy is gradually formed. After that, it could be applied to the scheduled power tracking control of the hybrid system. Finally, the rationality and validity of the method are verified through simulation examples.

  4. Concept of large scale PV-WT-PSH energy sources coupled with the national power system

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2017-01-01

    Full Text Available Intermittent/non-dispatchable energy sources are characterized by a significant variation of their energy yield over time. In majority of cases their role in energy systems is marginalized. However, even in Poland which is strongly dedicated to its hard and brown coal fired power plants, the wind generation in terms of installed capacity starts to play a significant role. This paper briefly introduces a concept of wind (WT and solar (PV powered pumped storage hydroelectricity (PSH which seems to be a viable option for solving the problem of the variable nature of PV and WT generation. Additionally we summarize the results of our so far conducted research on the integration of variable renewable energy sources (VRES to the energy systems and present conclusions which strictly refer to the prospects of large scale PV-WT-PSH operating as a part of the polish energy system.

  5. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  6. A Modified Load Flow Algorithm in Power Systems with Alternative Energy Sources

    International Nuclear Information System (INIS)

    Contreras, D.L.; Cañedo, J.M.

    2017-01-01

    In this paper an algorithm for calculating the steady state of electrical networks including wind and photovoltaic generation is presented. The wind generators considered are; asynchronous (squirrel cage and doubly fed) and synchronous generators using permanent magnets. The proposed algorithm is based on the formulation of nodal power injections that is solved with the modified Newton Raphson technique in its polar formulation using complex matrices notation. Each power injection of wind and photovoltaic generators is calculated independently in each iteration according to its particular mathematical model, which is generally non-linear. Results are presented with a 30-node test system. The computation time of the proposed algorithm is compared with the conventional methodology to include alternative energy sources in power flows studies. (author)

  7. Power Transfer in Physical Systems.

    Science.gov (United States)

    Kaeck, Jack A.

    1990-01-01

    Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)

  8. Influence of the characteristic and installation site of wind generator on quantity of produced energy

    International Nuclear Information System (INIS)

    Palge, V.; Lepa, J.; Tamm, T.

    2002-01-01

    In Estonia, especially in inland the wind speed is rather low. According to the Master thesis of Tonis Tamm the opportunities of use of several types of wind generators are analysed. It is found out, that the wind generator, beginning to produce energy at wind speed 2 m/s can in such conditions produce about four times more electricity energy than such having 'cut-in' wind speed 4 m/s. (author)

  9. Soldier System Power Sources

    National Research Council Canada - National Science Library

    Dougal, Roger A; Gao, Lijun

    2006-01-01

    ... for those hybrid power sources, it assessed the value of recovering energy from partially spent primary cells, it developed more-efficient methods of capturing energy from photovoltaic sources, and it developed simulation-based tools for planning the carriage of sufficient electric energy to power specific suites of equipment as necessary to accomplish specific missions.

  10. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam

  11. Performance analysis of voltage regulation in diesel-wind generation

    African Journals Online (AJOL)

    user

    2006-05-04

    May 4, 2006 ... the atmosphere in the world due to this convection currents and the second is the rotation of earth both self rotation and the rotation around the ... voltage.Now a days the new researches are in the field of the power electronics devices due to the use of power electronics we can ..... Electromagnetic torque.

  12. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  13. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  14. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  15. Power system protection 3 application

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  16. Autonomous power system: Integrated scheduling

    Science.gov (United States)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control and scheduling techniques to space power distribution hardware. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis, isolation, and recovery (FDIR), the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space-based power system. Faults can be introduced into the Brassboard and in turn, be diagnosed and corrected by APEX and AIPS. The Autonomous Intelligent Power Scheduler controls the execution of loads attached to the Brassboard. Each load must be executed in a manner that efficiently utilizes available power and satisfies all load, resource, and temporal constraints. In the case of a fault situation on the Brassboard, AIPS dynamically modifies the existing schedule in order to resume efficient operation conditions. A database is kept of the power demand, temporal modifiers, priority of each load, and the power level of each source. AIPS uses a set of heuristic rules to assign start times and resources to each load based on load and resource constraints. A simple improvement engine based upon these heuristics is also available to improve the schedule efficiency. This paper describes the operation of the Autonomous Intelligent Power Scheduler as a single entity, as well as its integration with APEX and the Brassboard. Future plans are discussed for the growth of the Autonomous Intelligent Power Scheduler.

  17. Water Powered Bioassay System

    National Research Council Canada - National Science Library

    Lin, Liwei

    2004-01-01

    ... of 0.2 1/hr without requiring electrical power. A low-leakage, hole-in-the-wall micro valve was demonstrated that provided fluidic resistance 255 times higher in the closed state than in the open state...

  18. Low carbon technologies as providers of operational flexibility in future power systems

    International Nuclear Information System (INIS)

    Pavić, Ivan; Capuder, Tomislav; Kuzle, Igor

    2016-01-01

    Highlights: • Mixed integer linear programming model for provision of multiple services from EV. • EV energy and reserve services provision effects on power system operation. • Impacts of conventional unit’s decommission on system’s operation and flexibility. • Assessment of power system’s flexibility under different wind generation polices. - Abstract: The paper presents a unit commitment model, based on mixed integer linear programming, capable of assessing the impact of electric vehicles (EV) on provision of ancillary services in power systems with high share of renewable energy sources (RES). The analyses show how role of different conventional units changes with integration of variable and uncertain RES and how introducing a flexible sources on the demand side, in this case EV, impact the traditional provision of spinning/contingency reserve services. In addition, technical constraints of conventional units, such as nuclear, gas or coal, limit the inherit flexibility of the system which results in curtailing clean renewable sources and inefficient operation. Following on that, sensitivity analyses of operational cost and wind curtailment shows which techno-economic constraints impact the flexibility of the high RES systems the most and how integration of more flexible units or decommission of conventional nuclear, coal and gas driven power plants would impact the system’s operation. Finally, two different wind generation polices (wind penalization and wind turbines as reserve providers) have been analysed in terms of operational flexibility through different stages of conventional unit’s decommission and compared with the same analyses when EV were used as reserve providers.

  19. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  20. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  1. Microgrid optimal scheduling considering impact of high penetration wind generation

    Science.gov (United States)

    Alanazi, Abdulaziz

    The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.

  2. Handbook of power systems I

    CERN Document Server

    Pardalos, P M; Pereira, Mario V; Iliadis, Niko A

    2010-01-01

    Energy is one of the world's most challenging problems, and power systems are an important aspect of energy-related issues. The Handbook of Power Systems contains state-of-the-art contributions on power systems modeling. In particular, it covers topics like operation planning, expansion planning, transmission and distribution modelling, computing technologies in energy systems, energy auctions, risk management, market regulation, stochastic programming in energy, and forecasting in energy. The book is separated into nine sections, which cover the most important areas of energy systems. The con

  3. Power systems engineering and mathematics

    CERN Document Server

    Knight, U G

    1972-01-01

    Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin

  4. Reactive power compensating system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  5. Reactive Power Compensating System.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  6. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  7. Limits to power system growth

    International Nuclear Information System (INIS)

    Slater, S.M.; Klein, A.C.; Webb, B.J.; Pauley, K.A.

    1993-01-01

    In the design of space nuclear power systems a variety of conversion techniques may be used, each with its own advantages and disadvantages. A study was performed which analyzed over 120 proposed system designs. The designs were compared to identify the optimum conversion system as a function of power level and find limits to specific mass (kg/kWe) for each power cycle. Furthermore, the component masses were studied to determine which component of the overall design contributes the most to total system mass over a variety of power levels. The results can provide a focus for future research efforts by selecting the best conversion technology for the desired power range, and optimizing the system component which contributes most to the total mass

  8. Electrical power systems for Mars

    Science.gov (United States)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  9. Power system protection 2 systems and methods

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  10. Power reactor information system (PRIS)

    International Nuclear Information System (INIS)

    1989-06-01

    Since the very beginning of commercial operation of nuclear power plants, the nuclear power industry worldwide has accumulated more than 5000 reactor years of experience. The IAEA has been collecting Operating Experience data for Nuclear Power Plants since 1970 which were computerized in 1980. The Agency has undertaken to make Power Reactor Information System (PRIS) available on-line to its Member States. The aim of this publication is to provide the users of PRIS from their terminals with description of data base and communication systems and to show the methods of accessing the data

  11. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind generation. Paper no. IGEC-1-094

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 cents US/kW.h). One approach is to operate interruptibly, allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies show that this could be cost-competitive using nuclear power generator producing electricity around 3 cents US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the electrolysis facility due to the variability of wind-generated electricity imposes a significant cost penalty. This paper reports on ongoing work on the economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered - a concept we call NuWind. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment to enable it to accommodate the higher rate of hydrogen generation is still substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability. The variability in wind fields between sites was accommodated by assigning average wind speeds that produced an average electricity generation from wind of between 32 and 42% of peak capacity, which is typical of the expectations for superior wind-generation sites. (author)

  12. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  13. Power turbine ventilation system

    Science.gov (United States)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  14. Protection of industrial power systems

    CERN Document Server

    DAVIES, T

    2006-01-01

    The protection which is installed on an industrial power system is likely to be subjected to more difficult conditions than the protection on any other kind of power system. Starting with the many simple devices which are employed and covering the whole area of industrial power system protection, this book aims to help achieve a thorough understanding of the protection necessary.Vital aspects such as the modern cartridge fuse, types of relays, and the role of the current transformer are covered and the widely used inverse definite-minimum time overcurrent relay, the theory of the M

  15. Optimization of power system operation

    CERN Document Server

    Zhu, Jizhong

    2015-01-01

    This book applies the latest applications of new technologies topower system operation and analysis, including new and importantareas that are not covered in the previous edition. Optimization of Power System Operation covers both traditional andmodern technologies, including power flow analysis, steady-statesecurity region analysis, security constrained economic dispatch,multi-area system economic dispatch, unit commitment, optimal powerflow, smart grid operation, optimal load shed, optimalreconfiguration of distribution network, power system uncertaintyanalysis, power system sensitivity analysis, analytic hierarchicalprocess, neural network, fuzzy theory, genetic algorithm,evolutionary programming, and particle swarm optimization, amongothers. New topics such as the wheeling model, multi-areawheeling, the total transfer capability computation in multipleareas, are also addressed. The new edition of this book continues to provide engineers andac demics with a complete picture of the optimization of techn...

  16. Automation infrastructure and operation control strategy in a stand-alone power system based on renewable energy sources

    Science.gov (United States)

    Ziogou, Chrysovalantou; Ipsakis, Dimitris; Elmasides, Costas; Stergiopoulos, Fotis; Papadopoulou, Simira; Seferlis, Panos; Voutetakis, Spyros

    The design of the automation system and the implemented operation control strategy in a stand-alone power system in Greece are fully analyzed in the present study. A photovoltaic array and three wind generators serve as the system main power sources and meet a predefined load demand. A lead-acid accumulator is used to compensate the inherent power fluctuations (excess or shortage) and to regulate the overall system operation, based on a developed power management strategy. Hydrogen is produced by using system excess power in a proton exchange membrane (PEM) electrolyzer and is further stored in pressurized cylinders for subsequent use in a PEM fuel cell in cases of power shortage. A diesel generator complements the integrated system and is employed only in emergency cases, such as subsystems failure. The performance of the automatic control system is evaluated through the real-time operation of the power system where data from the various subsystems are recorded and analyzed using a supervised data acquisition unit. Various network protocols were used to integrate the system devices into one central control system managing in this way to compensate for the differences between chemical and electrical subunits. One of the main advantages is the ability of process monitoring from distance where users can perform changes to system principal variables. Furthermore, the performance of the implemented power management strategy is evaluated through simulated scenarios by including a case study analysis on system abilities to meet higher than expected electrical load demands.

  17. Spinning reserve quantification by a stochastic–probabilistic scheme for smart power systems with high wind penetration

    International Nuclear Information System (INIS)

    Khazali, Amirhossein; Kalantar, Mohsen

    2015-01-01

    Highlights: • A stochastic–probabilistic approach is proposed for spinning reserve quantification. • A new linearized formulation integrating reliability metrics is presented. • The framework manages the reserve provided by responsive loads and storage systems. • The proposed method is capable of detaching the spinning reserve for different uses. - Abstract: This paper introduces a novel spinning reserve quantification scheme based on a hybrid stochastic–probabilistic approach for smart power systems including high penetration of wind generation. In this research the required spinning reserve is detached into two main parts. The first part of the reserve is procured to overcome imbalances between load and generation in the system. The second part of the required spinning reserve is scheduled according to the probability of unit outages. In order to overcome uncertainties caused by wind generation and load forecasting errors different scenarios of wind generation and load uncertainties are generated. For each scenario the reserve deployed by different components are taken account as the first part of the required reserve which is used to overcome imbalances. The second part of the required reserve is based on reliability constraints. The total expected energy not supplied (TEENS) is the reliability criterion which determines the second part of the required spinning reserve to overcome unit outage possibilities. This formulation permits the independent system operator to purchase the two different types of reserve with different prices. The introduced formulation for reserve quantification is also capable of managing and detaching the reserve provided by responsive loads and energy storage devices. The problem is formulated as a mixed integer linear programming (MILP) problem including linearized formulations for reliability metrics. Obtained results show the efficiency of the proposed approach compared with the conventional stochastic and deterministic

  18. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power...... systems are illustrated....

  19. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin

    2014-02-27

    To support large-scale integration of wind power into electric energy systems, state-of-the-art wind speed forecasting methods should be able to provide accurate and adequate information to enable efficient, reliable, and cost-effective scheduling of wind power. Here, we incorporate space-time wind forecasts into electric power system scheduling. First, we propose a modified regime-switching, space-time wind speed forecasting model that allows the forecast regimes to vary with the dominant wind direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast models. This, in turn, leads to cost-effective scheduling of system-wide wind generation. Potential economic benefits arise from the system-wide generation of cost savings and from the ancillary service cost savings. We illustrate the economic benefits using a test system in the northwest region of the United States. Compared with persistence and autoregressive models, our model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars annually in regions with high wind penetration, such as Texas and the Pacific northwest. © 2014 Sociedad de Estadística e Investigación Operativa.

  20. Radioisotope Power Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the RPS's technology portfolio is to advance performance of radioisotope power systems through new and novel innovations being developed and transitioned...

  1. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  2. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  3. Power Systems Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  4. CANDU nuclear power system

    International Nuclear Information System (INIS)

    1981-01-01

    This report provides a summary of the components that make up a CANDU reactor. Major emphasis is placed on the CANDU 600 MW(e) design. The reasons for CANDU's performance and the inherent safety of the system are also discussed

  5. Performance analysis of voltage regulation in diesel-wind generation

    African Journals Online (AJOL)

    generated by the two sources one source is the diesel engine generator and the other source is the wind energy conversion system the supply is provided to the isolated load. The voltage is regulated at the load side .The electrical energy produced by the wind turbine at constant speed is connected to the specific load by ...

  6. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  7. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  8. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  9. Electric power system applications of optimization

    CERN Document Server

    Momoh, James A

    2008-01-01

    Introduction Structure of a Generic Electric Power System  Power System Models  Power System Control Power System Security Assessment  Power System Optimization as a Function of Time  Review of Optimization Techniques Applicable to Power Systems Electric Power System Models  Complex Power Concepts Three-Phase Systems Per Unit Representation  Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems  Automatic Gain Control Transmission Subsystems  Y-Bus Incorporating the Transformer Effect  Load Models  Available Transfer Capability  Illustrative Examples  Power

  10. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  11. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2013-01-01

    Abstract—Sea-surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate

  12. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Ainslie, M.A.; Colin, M.E.G.D.; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform-related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modelling

  13. Wind generator based on cascade connection of two asynchronized synchronous machines

    International Nuclear Information System (INIS)

    Dzhagarov, N.; Dzhagarova, Yu.

    2000-01-01

    A model of a wind generator with two asynchronized synchronous machines presented and different regimes are investigated. The analysis shows that the suggested scheme of a brushless generator works and has more advantages (reliability, easy for operation) in comparison with the known ones

  14. Frequency analysis for planned islanding operation in the Danish distribution system - Bornholm

    DEFF Research Database (Denmark)

    Chen, Yu; Xu, Zhao; Østergaard, Jacob

    2008-01-01

    The power system in the Danish island Bornholm is a distribution system with a high penetration of wind generation, which is representative for expected future power systems. During the period from 11th to 14th September 2007, the Distribution System Operator (DSO) Ostkraft in Bornholm conducted ...

  15. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  16. Handbook of power systems II

    Energy Technology Data Exchange (ETDEWEB)

    Rebennack, Steffen [Colorado School of Mines, Golden, CO (United States). Div. of Economics and Business; Pardalos, Panos M. [Florida Univ., Gainesville, FL (United States). Dept. of Industrial and Systems Engineering; Pereira, Mario V.F. [Centro Empresarial Rio Praia de Botafogo, Rio de Janeiro (Brazil); Iliadis, Niko A. (eds.) [EnerCoRD, Athens (Greece)

    2010-07-01

    Energy is one of the world's most challenging problems, and power systems are an important aspect of energy related issues. This handbook contains state-of-the-art contributions on power systems modeling and optimization. The book is separated into two volumes with six sections, which cover the most important areas of energy systems. The first volume covers the topics operations planning and expansion planning while the second volume focuses on transmission and distribution modeling, forecasting in energy, energy auctions and markets, as well as risk management. The contributions are authored by recognized specialists in their fields and consist in either state-of-the-art reviews or examinations of state-of-the-art developments. The articles are not purely theoretical, but instead also discuss specific applications in power systems. (orig.)

  17. Handbook of power systems I

    Energy Technology Data Exchange (ETDEWEB)

    Rebennack, Steffen [Colorado School of Mines, Golden, CO (United States). Div. of Economics and Business; Pardalos, Panos M. [Florida Univ., Gainesville, FL (United States). Dept. of Industrial and Systems Engineering; Pereira, Mario V.F. [Centro Empresarial Rio Praia de Botafogo, Rio de Janeiro, RJ (Brazil); Iliadis, Niko A. (eds.) [EnerCoRD, Athens (Greece)

    2010-07-01

    Energy is one of the world's most challenging problems, and power systems are an important aspect of energy related issues. This handbook contains state-of-the-art contributions on power systems modeling and optimization. The book is separated into two volumes with six sections, which cover the most important areas of energy systems. The first volume covers the topics operations planning and expansion planning while the second volume focuses on transmission and distribution modeling, forecasting in energy, energy auctions and markets, as well as risk management. The contributions are authored by recognized specialists in their fields and consist in either state-of-the-art reviews or examinations of state-of-the-art developments. The articles are not purely theoretical, but instead also discuss specific applications in power systems. (orig.)

  18. TFTR neutral beam power system

    International Nuclear Information System (INIS)

    Deitz, A.; Murray, H.; Winje, R.

    1977-01-01

    The TFTR NB System will be composed of four beam lines, each containing three ion sources presently being developed for TFTR by the Lawrence Berkeley Laboratories (LBL). The Neutral Beam Power System (NBPS) will provide the necessary power required to operate these Ion Sources in both an experimental or operational mode as well as test mode. This paper describes the technical as well as the administrative/management aspects involved in the development and building of this system. The NBPS will combine the aspects of HV pulse (120 kV) and long pulse width (0.5 sec) together to produce a high power system that is unique in the Electrical Engineering field

  19. Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    Spiegelberg, R.

    1992-01-01

    The IAEA has been collecting Operating Experience data for Nuclear Power Plants of the IAEA Member States since 1970. In order to facilitate an analysis of nuclear power plant performance as well as to produce relevant publications, all previously collected data supplied from the questionnaires were computerized in 1980 and the Power Reactor Information System was implemented. PRIS currently contains production records for the years up to and including 1990 and about 98% of the reactors-years operating experience in the world is contained in PRIS. (orig.)

  20. Technological inductive power transfer systems

    Science.gov (United States)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  1. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  2. The CMS Detector Power System

    CERN Document Server

    Lusin, S

    2008-01-01

    The power system for the on-detector electronics of the CMS Experiment comprises approximately 12000 low voltage channels, with a total power requirement of 1.1 MVA. The radiation environment inside the CMS experimental cavern combined with an ambient magnetic field (reaching up to 1.3 kGauss at the detector periphery) severely limit the available choices of low voltage supplies, effectively ruling out the use of commercial off-the-shelf DC power supplies. Typical current requirements at the CMS detector front end range from 1A-30A per channel at voltages ranging between 1.25V and 8V. This requires in turn that the final stage of the low voltage power supply be located on the detector periphery. Power to the CMS front-end electronics is stabilized by a 2 MVA uninterruptible power supply (UPS) located in a CMS surface building. This UPS isolates the CMS detector from disturbances on the local power grid and provides for 2 minutes of autonomy following a power failure, allowing for an orderly shutdown of detect...

  3. Dynamic Influences of Wind Power on The Power System

    DEFF Research Database (Denmark)

    Rosas, Pedro Andrè Carvalho

    2004-01-01

    . The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studies, voltage and thefrequency variations were smaller than expected from the large-scale wind power...

  4. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  5. PowerFactory applications for power system analysis

    CERN Document Server

    Gonzalez-Longatt, Francisco

    2014-01-01

    This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-

  6. The BPX electrical power system

    International Nuclear Information System (INIS)

    Huttar, D.; Bronnev, G.; Fromm, N.

    1992-01-01

    This paper reports on the Burning Plasma Experiment (BPX) which when operating at a toroidal field of 8.1 tesla and a plasma current of 10.6 megamps, requires peak power of 1235 megawatts and total pulse energy of over 21 gigajoules. These requirements are twice and over four times the corresponding figures for the Tokamak Fusion Test Reactor (TFTR), respectively. The design of the BPX power system has evolved, along with the tokamak, over a period of several years and has included studies of several alternative approaches. The reapplication of the existing TFTR power and energy facilities has been basic to all approaches. Among the new sources of pulse power and energy that have been considered are: direct utility grid pulsing, new flywheel units, and lead-acid storage batteries. The toroidal field power requirements are the greatest of the BPX subsystems and, fortunately, are sufficiently free of dynamics to allow the consideration of all approaches. Additional design challenges were presented by the multiplicity of plasma control scenarios incorporated in the BPX physics planning and the power response demanded of the plasma position control system

  7. Power system studies of new ancillary services

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  8. Data mining for wind power forecasting

    OpenAIRE

    Fugon, Lionel; Juban, Jérémie; Kariniotakis, Georges

    2008-01-01

    International audience; Short-term forecasting of wind energy production up to 2-3 days ahead is recognized as a major contribution for reliable large-scale wind power integration. Increasing the value of wind generation through the improvement of prediction systems performance is recognised as one of the priorities in wind energy research needs for the coming years. This paper aims to evaluate Data Mining type of models for wind power forecasting. Models that are examined include neural netw...

  9. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  10. PSS Controller for Wind Power Generation Systems

    Science.gov (United States)

    Domínguez-García, J. L.; Gomis-Bellmunt, O.; Bianchi, F.; Sumper, A.

    2012-10-01

    Small signal stability analysis for power systems with wind farm interaction is presented. Power systems oscillation modes can be excited by disturbance or fault in the grid. Variable speed wind turbines can be regulated to reduce these oscillations, stabilising the power system. A power system stabiliser (PSS) control loop for wind power is designed in order to increase the damping of the oscillation modes. The proposed power system stabiliser controller is evaluated by small signal analysis.

  11. The electric power engineering handbook power system stability and control

    CERN Document Server

    Grisby, Leonard L

    2012-01-01

    With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *

  12. Regulation of the wind power production. Contribution of the electric vehicles and other energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, Carlos B. [Instituto de Meteorologia, Lisboa (Portugal); Estanqueiro, Ana [INETI/LNEG - National Laboratory for Energy and Geology, Lisbon (Portugal)

    2012-07-01

    The increase in penetration of variable renewable energy sources (RES) introduced additional difficulties regarding the management of the Portuguese Power System. This is mainly due to the high temporal variability and low controllability, characteristics of these kinds of sources. There is a real need to reduce the impact of non-dispatchable RES sources; maximizing their penetration and minimizing curtailment. This is especially true for wind power and run-of-the-river hydro (ROR); as it appears beneficial to combine their variable production with added capacity of energy storage and demand side management; thereby increasing the flexibility of the power system as a whole. This paper aims to assess the excess wind generation (and other non-dispatchable sources); this for periods of production's excess in a 2020 timeframe, and assuming different weather scenarios. The adjustment of wind power generation (WPG) profile to the load profile is also addressed; the result is computed in the form of the value of the energy temporally deferred, using Pumped Hydro Storage (PHS) power plants as well as electric Vehicles (EVs). (orig.)

  13. NASA's Radioisotope Power Systems - Plans

    Science.gov (United States)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  14. Modeling of power electronic systems with EMTP

    Science.gov (United States)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  15. Nuclear power plant annunciator systems

    International Nuclear Information System (INIS)

    Rankin, W.L.

    1983-08-01

    Analyses of nuclear power plant annunciator systems have uncovered a variety of problems. Many of these problems stem from the fact that the underlying philosophy of annunciator systems have never been elucidated so as to impact the initial annunciator system design. This research determined that the basic philosophy of an annunciator system should be to minimize the potential for system and process deviations to develop into significant hazards. In order to do this the annunciator system should alert the operators to the fact that a system or process deviation exists, inform the operators as to the priority and nature of the deviation, guide the operators' initial responses to the deviation, and confirm whether operators responses corrected the deviation. Annunciator design features were analyzed to determine to what degree they helped the system meet the functional criteria, the priority for implementing specific design features, and the cost and ease of implementing specific design features

  16. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  17. Composite type nuclear power system

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro.

    1993-01-01

    The present invention realizes a high thermal efficiency by heating steams at the exit of a steam generator of a nuclear power plant to high temperature by a thermal super-heating boiler. That is, a thermal superheating boiler is disposed between the steam generator and a turbogenerator to heat steams from the steam generator and supply them to the turbogenerator. In this case, it may be possible that feedwater superheating boiler pipelines to the steam generator are caused to pass through the thermal superheating boiler so that they also have a performance of heating feedwater. If the system of the present invention is used, it is possible to conduct base load operation by nuclear power and a load following operation by controlling the thermal superheating boiler. Further, a hydrogen producing performance is applied to the thermal superheating boiler to produce hydrogen when electric power load is lowered. An internally sustaining type operation method can be conducted of burning hydrogen by the superheating boiler upon increased electric power load. As a result, a power generation system which has an excellent economical property and can easily cope with the load following operation can be attained. (I.S.)

  18. N-16 power measuring system

    International Nuclear Information System (INIS)

    Graham, K.F.

    1977-12-01

    The thermal power output of a reactor can be measured by monitoring the total amount of heat removed from the reactor core per unit of time. Other methods of measuring the power level indirectly, as for instance, utilizing the neutron flux outside the core, have the disadvantage of heavy influences on the accuracy due to changes of the neutron flux distribution in the core caused by control rod operation and xenon buildup effects. Heat balance (ΔT) measurements in the primary loop are used to measure reactor power but require hot leg RTD bypass loops and have slow time response. An N-16 system has been developed which shows several advantages over the ΔT and excore power measurements. The Nitrogen-16 (N-16) activity in the primary coolant water of a PWR has long been considered as a possible parameter for continuous measurement of reactor power level. The N-16 activity is formed by fast neutron activation of Oxygen-16 contained in the water. Activation results from a threshold reaction requiring >10 MeV neutrons. It can be shown that the N-16 content in the coolant is a direct measure of the integrated fast flux throughout the core and is thereby a direct measure of the fission rate and total power generated. Decay of the N-16 produces 6 MeV gamma rays which readily penetrate the wall of the high pressure piping. Thus, the N-16 concentration in the coolant can easily be monitored by measuring the gamma radiation outside the pipe--for instance, at the hot leg of the coolant loop. The N-16 power monitor is calibrated against secondary heat balance measurements, since these are assumed to give the most accurate information on the absolute thermal power level

  19. Wind power variability and power system reserves in South Africa

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Litong-Palima, Marisciel; Hahmann, Andrea N.

    2017-01-01

    Variable renewable generation, primarily from wind and solar, introduces new uncertainties in the operation of power systems. This paper describes and applies a method to quantify how wind power development will affect the use of short-term automatic reserves in the future South African power...... system. The study uses a scenario for wind power development in South Africa, based on information from the South African transmission system operator (Eskom) and the Department of Energy. The scenario foresees 5% wind power penetration by 2025. Time series for wind power production and forecasts...... are simulated, and the duration curves for wind power ramp rates and wind power forecast errors are applied to assess the use of reserves due to wind power variability. The main finding is that the 5% wind power penetration in 2025 will increase the use of short-term automatic reserves by approximately 2%....

  20. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  1. Handbook of power systems engineering with power electronics applications

    CERN Document Server

    Hase, Yoshihide

    2012-01-01

    Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u

  2. Power system dynamics and control

    CERN Document Server

    Kwatny, Harry G

    2016-01-01

    This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...

  3. Automated power distribution system hardware. [for space station power supplies

    Science.gov (United States)

    Anderson, Paul M.; Martin, James A.; Thomason, Cindy

    1989-01-01

    An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.

  4. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  5. Small wind generators for battery charging in Peru and Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, S. [Intermediate Technology Development Group, Rugby (United Kingdom)

    2000-07-01

    The Intermediate Technology Development Group (ITDG) have developed a small wind generator (SWG) intended primarily for battery charging in Peru and Sri Lanka. The project is funded mainly by the Department for International Development (DfID) and aims to provide rural households and communities who do not have access to mains electricity with a form of electrification. This paper reports on progress to date and is correct at the time of going to press, but subsequent changes to specifications may occur. (Author)

  6. A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Liu, Hui

    2016-01-01

    Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estim...... conditions. The results provide a feasible theoretical and technical basis for the effective condition monitoring and predictive maintenance of SRWG....

  7. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  8. Reliable Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; Soltani, Mohsen

    2015-01-01

    The key objectives of wind turbine manufactures and buyers are to reduce the Total Cost of Ownership and Total Cost of Energy. Among others, low downtime of a wind turbine is important to increase the amount of energy produced during its lifetime. Historical data indicate that pitch systems...... accounts for a substantial part of the downtime of wind turbines. With a focus on fluid power pitch systems; this paper presents an overview of methods relevant to assessing and increasing the reliability and availability of such systems. Four major areas are identified and covered; failure analysis...

  9. Security, protection, and control of power systems with large-scale wind power penetration

    Science.gov (United States)

    Acharya, Naresh

    As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation. Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time. A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system

  10. A method and system for power management

    NARCIS (Netherlands)

    Burchard, Arthur Tadeusz; Goossens, Koos Gerard Willen; Milutinovic, A.; Molnos, Anca Mariana; Steffens, Elisabeth Francisca Maria

    2009-01-01

    A method and system for power management is provided. To control power supplied to a second electronic device (106), an electronic system (100) comprises a power management subsystem (110), a first electronic device (102); The power management subsystem (110) monitors the power consumed by the first

  11. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  12. SP-100/Brayton power system concepts

    International Nuclear Information System (INIS)

    Owen, D.F.

    1989-01-01

    Use of closed Brayton cycle (CBC) power conversion technology has been investigated for use with SP-100 reactors for space power systems. The CBC power conversion technology is being developed by Rockwell International under the Dynamic Isotype Power System (DIPS) and Space Station Freedom solar dynamic power system programs to provide highly efficient power conversion with radioisotype and solar collector heat sources. Characteristics including mass, radiator area, thermal power, and operating temperatures for systems utilizing SP-100 reactor and CBC power conversion technology were determined for systems in the 10-to 100-kWe power range. Possible SP-100 reactor/CBC power system configurations are presented. Advantages of CBC power conversion technology with regard to reactor thermal power, operating temperature, and development status are discussed

  13. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  14. OVERLOAD CAPABILITY OF POWER CABLES IN ACTUAL POWER CONSUMPTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    L.A. Szhebenyuk

    2013-09-01

    Full Text Available Results of overload capability calculations for 6-kV power cables are analyzed. The work is aimed at creating a computation system for the current rating of high-voltage cross-linked polyethylene power cables.

  15. Radioisotope Power System Pool Concept

    Science.gov (United States)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  16. Selectivity of power system protections at power swings in power system

    Directory of Open Access Journals (Sweden)

    Jan Machowski

    2012-12-01

    Full Text Available The paper discusses out-of-step protection systems such as: generator pole slip protections, out of step tripping protections, distance protections of step-up transformer, distance protections of transmission lines and transformers, power swing blocking, and special out-of-step protection. It is shown that all these protections make up a protection system, to which a setting concept uniform for the entire power system has to be applied. If a power system is inappropriately equipped with these protections, or their settings are inappropriate, they may operate unselectively, thus contributing to the development of power system blackouts. In the paper the concepts for a real power system are given for the two stages: target stage fully compliant with selectivity criteria, and transitional stage between the current and target stages.

  17. Robust power system frequency control

    CERN Document Server

    Bevrani, Hassan

    2014-01-01

    This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategi

  18. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power......-tolerant adjustable speed drive systems; mission profile oriented reliability design in wind turbine and photovoltaic systems; reliability of power conversion systems in photovoltaic applications; power supplies for computers; and high-power converters. Reliability of Power Electronic Converter Systems is essential...... reading for researchers, professionals and students working with power electronics and their applications, particularly those specializing in the development and application of power electronic converters and systems....

  19. Instrumentation for Power System Disturbance Monitoring, Data ...

    African Journals Online (AJOL)

    In this paper, the level of instrumentation for power system disturbance monitoring, data acquisition and control in Nigerian Electric Power System; National Electric Power Authority (NEPA) is presented. The need for accurate power system disturbance monitoring is highlighted. A feature of an adequate monitoring, data ...

  20. Decentralized robust frequency control for power systems subject to wind power variability

    Science.gov (United States)

    Liu, Juhua

    As the penetration of wind energy generation increases in electric power systems, the frequency performance degrades mainly for two reasons. First, the intermittency of wind power introduces additional generation-load imbalance in the system, causing frequency to deviate from nominal values. Second, modern wind turbine generators are often decoupled from the grid by power electronics, making the wind turbines contribute no inertia to the grid. When more conventional generation is displaced by such wind generation, the total system inertia will decrease and the grid is more susceptible to generation-load imbalance. Therefore, frequency control must be revisited and enhanced in order to accommodate large-scale integration of wind energy. This dissertation mainly concerns the re-design of generator compensators to improve frequency performance of power systems when the penetration of wind power is high. Hinfinity methods can be used to synthesize controllers to achieve stability and robust performance in the presence disturbances. However, standard Hinfinity methods tend to produce complex controllers when the order of the system is high. Furthermore, when standard Hinfinity methods are continued with a naive decentralized control design, the resulting decentralized controllers may compete against each other and lead to instability. Therefore, we develop a passivity-based decentralized control framework for power system frequency control. A storage function is derived from the entropy of individual generators. Tellegen's theorem is invoked to derive the storage function for the entire power network. With this storage function, the power network is shown to be passive with respect to a supply rate, which is the sum of decentralized input-output products. Stability can then be assured when passive controllers are connected in negative feedback interconnection to the system. Proportional-integral-derivative (PID) controllers with positive gains are passive controllers

  1. System Protection Schemes in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana

    etc. Stigsnæs power plant could possibly improve the reactive power support in emergency situations, as it is the closest power plant in the southern part of the system. In general, rescheduling power plants and voltage regulation at remote generators (MVAr adjustment) are not considered the most......% of the wind generation capacity in Eastern Denmark. The restricted reactive power transfer from the 132-kV main system is the key indicator of voltage instability. The high load situation with high wind generation is considered a worst-case scenario in relation to serious problems with reactive power. Line...... Units placed at strategic points are evaluated as an efficient tool for power system monitoring of important 400 kV and 132 kV transmission corridors in Eastern Denmark. The first PMU is connected to a 400 kV bus near Asnæs power plant, the largest generating unit in Eastern Denmark. The PMU in Radsted...

  2. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  3. A Self-powered Field Feeding System

    National Research Council Canada - National Science Library

    Pickard, Don; DiLeo, Frank; Kushch, Aleksandr; Hauerbach, Markvard; LeVine, Lawrence

    2006-01-01

    .... A conventional Tray Ration Heater (TRH) powered by the HMMWV, was redesigned to include a thermoelectric generator, a low power consumption DC burner, and a newly designed Power Management System (POMS...

  4. Electrical power generating system. [for windpowered generation

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  5. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  6. System and method for advanced power management

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Symons, Philip C [Surprise, AZ; Butler, Paul C [Albuquerque, NM; Corey, Garth P [Albuquerque, NM

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  7. Reactive power management in electric power systems - A case ...

    African Journals Online (AJOL)

    The reactive power consumption by industrial plants and generation patterns in the Ethiopian Electric Light and Power Authority's (EELPA) system is critically evaluated. The flaws in the incentive mechanism for reactive power compensation are identified and recommendations made. Further, the voltage profile at the ...

  8. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  9. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC......-tolerant adjustable speed drive systems; mission profile oriented reliability design in wind turbine and photovoltaic systems; reliability of power conversion systems in photovoltaic applications; power supplies for computers; and high-power converters. Reliability of Power Electronic Converter Systems is essential......The main aims of power electronic converter systems (PECS) are to control, convert, and condition electrical power flow from one form to another through the use of solid-state electronics. This book outlines current research into the scientific modeling, experimentation, and remedial measures...

  10. Power quality in power systems and electrical machines

    CERN Document Server

    Fuchs, Ewald

    2015-01-01

    The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable

  11. Intelligent Control for the Variable-Speed Variable-Pitch Wind Energy System

    Directory of Open Access Journals (Sweden)

    M. Heidari

    2017-09-01

    Full Text Available In this paper, a new type of multi-variable compensation control method for the wind energy conversion systems (WECS is presented. Based on wind energy conversion systems, combining artificial neural network (ANN control and PID, a new type of PID NN intelligent controller for steady state torque of the wind generator is designed, by which the steady state torque output is regulated to track the optimal curve of wind power factor and the blade pitch angle is regulated to keep the stable power output. Also, the LPV model of the WECS, LPV compensator for the wind generator is designed to effectively compensate output of the wind generator torque and the blade pitch angle. Finally, simulation models of the control system based on a realistic model of a 8kw wind turbines are built up based on the Dspace platform. The results show that the proposed method can reduce interferences caused by disturbed parameters of the WECS, mechanical shocks of the wind generator speed are reduced while capturing the largest wind energyfluctuation range of wind generator power output is reduced, and the working efficiency of the variable pitch servo system is improved.

  12. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  13. Autonomous power system intelligent diagnosis and control

    Science.gov (United States)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  14. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  15. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...... oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show...

  16. Compensating active power imbalances in power system with large-scale wind power penetration

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2016-01-01

    Large-scale wind power penetration can affectthe supply continuity in the power system. This is a matterof high priority to investigate, as more regulating reservesand specified control strategies for generation control arerequired in the future power system with even more highwind power...... penetration. This paper evaluates the impact oflarge-scale wind power integration on future power systems.An active power balance control methodology is usedfor compensating the power imbalances between thedemand and the generation in real time, caused by windpower forecast errors. The methodology...... for the balancepower control of future power systems with large-scalewind power integration is described and exemplified consideringthe generation and power exchange capacities in2020 for Danish power system....

  17. Observability of wind power

    International Nuclear Information System (INIS)

    Gonot, J.P.; Fraisse, J.L.

    2009-01-01

    The total installed capacity of wind power grows from a few hundred MW at the beginning of 2005 to 3400 MW at the end of 2008. With such a trend, a total capacity of 7000 MW could be reached by 2010. The natural variability of wind power and the difficulty of its predictability require a change in the traditional way of managing supply/demand balance, day-ahead margins and the control of electrical flows. As a consequence, RTE operators should be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. French specificities are that wind farms are largely spread over the territory, that 95 % of wind farms have an output power below 10 MW and that they are connected to the distribution network. In this context, new tools were necessary to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production 'IPES system' enable to get an access to the technical characteristics of the whole wind farms, to observe in real time 75 % of the wind generation and to implement a forecast model related to wind generation. (authors)

  18. Power system compensation using a power electronics integrated transformer

    OpenAIRE

    Atef Abbas Elsaharty, Mohamed; Candela García, José Ignacio; Rodríguez Cortés, Pedro

    2017-01-01

    This paper presents a new transformer, i.e., the Custom Power Active Transformer (CPAT) - which integrates shunt and series equivalent circuits within the transformer's magnetic structure. Thus, it provides power system services using a single transformer. The CPAT equipped with a power converter can be utilized in distribution systems to control grid-current and load-voltage waveforms while operating as a step-up or step-down transformer between the grid and load. Moreover, it can provide ot...

  19. Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Switched reluctance generator (SRG) is becoming more and more attractive in wind energy applications mainly because of its high fault tolerant ability and high reliability. The position sensor is one of the vulnerable points of the SRG when exposed to harsh environments such as offshore where many...... Reluctance Wind Generator (SRWG) based on Extreme Learning Machine (ELM) which could build a nonlinear mapping between flux linkage-current and rotor position. The learning data are derived from magnetization curves of the SRWG which are obtained from Finite Element Analysis (FEA) of an SRG with 8/6 stator...

  20. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  1. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  2. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  3. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  4. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC......-link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...

  5. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  6. ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    M. Maniyar

    2004-06-22

    The purpose of this revision of the System Description Document (SDD) is to establish requirements that drive the design of the electrical power system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience are design engineers. This type of SDD leads and follows the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. This SDD follows the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to this system are obtained from ''Project Functional and Operational Requirements'' (F&OR) (Siddoway, 2003). Other requirements to support the design process have been taken from higher level requirements documents such as ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), the fire hazards analyses, and the preclosure safety analysis. The above mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canori and Leitner 2003) requirements. This SDD includes several appendices with supporting information. Appendix B lists key system charts, diagrams, drawings, and lists; and Appendix C is a list of system procedures.

  7. Participation of non-conventional energy resources in power system frequency control

    Science.gov (United States)

    Aghazadeh Tabrizi, Mehriar

    Frequency control is one of the key issues in designing, planning and reliably operating a power system and is becoming more challenging as new complexities and uncertainties are introduced into the modern power systems. Traditionally, power system frequency has been controlled using conventional generation units' capabilities namely inertial, primary and secondary frequency responses. Limited fossil-based fuel resources, ever-increasing energy consumption and rising public awareness for environmental protection have created growing interest in use of non-conventional energy resources such as Wind Generation Resources (WGRs) and Solar Generation Resources (SGRs) which have unfavorable characteristics in comparison with conventional generation units such as lack of frequency response. The more conventional generation units are replaced by these resources, the more challenges power system operators will face in terms of power system frequency control. These challenges are further compounded due to less system inertia during off-peak hours or within small power systems. This dissertation mainly focuses on participation of SGRs and Interior Permanent Magnet Synchronous Generator (IPMSG) based WGRs in power system frequency control. Detailed information regarding dynamic modeling of power system including conventional generation units, SGRs and IPMSG based WGRs is provided. The frequency response of conventional generation units is compared with that of SGRs and IPMSG based WGRs. The control systems associated with IPMSG based WGR and SGR are modified in order to improve their frequency response capabilities. The effectiveness of the proposed control strategies is evaluated and confirmed via MATLAB based time-domain simulations for different scenarios. Moreover, application of Battery Energy Storage Systems (BESSs) in power system frequency regulation is discussed. The detailed dynamic model of BESSs is utilized to develop a simplified model suitable for Automatic

  8. Energy Flexibility in the Power System

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence...... to provide an overview of the current condition of the Philippines’ power system and discuss the energy flexibility in the Philippines’ power system. A further discussion and recommendation is conducted in the end of the paper....

  9. Online Supplementary ADP Learning Controller Design and Application to Power System Frequency Control With Large-Scale Wind Energy Integration.

    Science.gov (United States)

    Guo, Wentao; Liu, Feng; Si, Jennie; He, Dawei; Harley, Ronald; Mei, Shengwei

    2016-08-01

    The emergence of smart grids has posed great challenges to traditional power system control given the multitude of new risk factors. This paper proposes an online supplementary learning controller (OSLC) design method to compensate the traditional power system controllers for coping with the dynamic power grid. The proposed OSLC is a supplementary controller based on approximate dynamic programming, which works alongside an existing power system controller. By introducing an action-dependent cost function as the optimization objective, the proposed OSLC is a nonidentifier-based method to provide an online optimal control adaptively as measurement data become available. The online learning of the OSLC enjoys the policy-search efficiency during policy iteration and the data efficiency of the least squares method. For the proposed OSLC, the stability of the controlled system during learning, the monotonic nature of the performance measure of the iterative supplementary controller, and the convergence of the iterative supplementary controller are proved. Furthermore, the efficacy of the proposed OSLC is demonstrated in a challenging power system frequency control problem in the presence of high penetration of wind generation.

  10. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  11. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  12. An explosively driven high-power microwave pulsed power system.

    Science.gov (United States)

    Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  13. Models for multimegawatt space power systems

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.

    1990-06-01

    This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.

  14. Nova pulse power system description and status

    International Nuclear Information System (INIS)

    Holloway, R.W.; Whitham, K.; Merritt, B.T.; Gritton, D.G.; Oicles, J.A.

    1981-01-01

    The Nova laser system is designed to produce critical data in the nation's inertial confinement fusion effort. It is the world's largest peak power laser and presents various unique pulse power problems. In this paper, pulse power systems for this laser are described, the evolutionary points from prior systems are pointed out, and the current status of the hardware is given

  15. Nuclear plant requirements during power system restoration

    International Nuclear Information System (INIS)

    Adamski, G.; Jenkins, R.; Gill, P.

    1995-01-01

    This paper is one of a series presented on behalf of the System Operation Subcommittee with the intent of focusing industry attention on power system restoration issues. This paper discusses a number of nuclear power plant requirements that require special attention during power system restoration

  16. Integrating wind power in the (French) power system

    International Nuclear Information System (INIS)

    Pellen, A.

    2007-03-01

    RTE and EDF have no other technological option than to restrain the contribution of the French wind power fleet to base-load generation where it comes in direct competition with the nuclear power plants. The author aims to explain this situation and answer the following questions. Why the fossil fueled reactor fleet in France will not be affected by an evolution of the wind power capacity? Why, in France electric power generation-demand SYSTEM wind power cannot be a substitute for fossil fueled thermal units? (A.L.B.)

  17. A master system for power system fault phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myung Ho; Jang, Sang Ho; Hong, Joon Hee; Min, Wan Ki; Yoo, Chang Hwan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    This report includes as follows - Real time digital simulator - Remote measuring, analyzing and reproducing system of power system fault data -Power system reduction method program using EMTP -Test system for protection device. (author). 22 refs., 38 figs.

  18. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...

  19. Reliability of emergency ac power systems at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  20. Wind Generation Feasibility Study for Sac & Fox Tribe of the Mississippi in Iowa (Meskwaki Nation)

    Energy Technology Data Exchange (ETDEWEB)

    Lasley, Larry C. [Sac & Fox Tribe of the Mississippi in Iowa

    2013-03-19

    Wind Generation Feasibility Study prepared by Wind Utility Consulting, PC and Preliminary Environmental Documentation Report prepared by Snyder & Associates.

  1. POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Ray, C.; Huang, Z.

    2007-01-01

    Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

  2. Computer-aided power systems analysis

    CERN Document Server

    Kusic, George

    2008-01-01

    Computer applications yield more insight into system behavior than is possible by using hand calculations on system elements. Computer-Aided Power Systems Analysis: Second Edition is a state-of-the-art presentation of basic principles and software for power systems in steady-state operation. Originally published in 1985, this revised edition explores power systems from the point of view of the central control facility. It covers the elements of transmission networks, bus reference frame, network fault and contingency calculations, power flow on transmission networks, generator base power setti

  3. Realistic Specific Power Expectations for Advanced Radioisotope Power Systems

    Science.gov (United States)

    Mason, Lee S.

    2006-01-01

    Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.

  4. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine......The global electrical energy consumption is still rising and there is an urgent demand to increase the power capacity. It is expected that the power capacity has to be doubled within 20 years. The production, distribution and use of energy should be as efficient as possible and incentives to save...... energy at the end-user should also be set up. Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources will be high in the near future. Two major technologies will play important roles to solve the future problems. One...

  5. Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  6. Design of a Small Scale Wind Generator for Low Wind Speed Areas ...

    African Journals Online (AJOL)

    Most small scale level wind turbine generators are directly driven system, variable speed, and partially connected power electronic converter system. Choice of such system is to avoid costs associated with gearbox. However, due to low wind speed in most of the tropical countries, synchronous generators with smaller or ...

  7. Control of power plants and power systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Canales-Ruiz, R. [ed.] [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for 78 of the papers. (UK)

  8. How to correct long-term system externality of large scale wind power development by a capacity mechanism?

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Finon, Dominique

    2013-04-01

    This paper deals with the practical problems related to long-term security of supply in electricity markets in the presence of large-scale wind power development. The success of renewable promotion schemes adds a new dimension to ensuring long-term security of supply. It necessitates designing second-best policies to prevent large-scale wind power development from distorting long-run equilibrium prices and investments in conventional generation and in particular in peaking units. We rely upon a long-term simulation model which simulates electricity market players' investment decisions in a market regime and incorporates large-scale wind power development either in the presence of either subsidised wind production or in market-driven development. We test the use of capacity mechanisms to compensate for the long-term effects of large-scale wind power development on the system reliability. The first finding is that capacity mechanisms can help to reduce the social cost of large scale wind power development in terms of decrease of loss of load probability. The second finding is that, in a market-based wind power deployment without subsidy, wind generators are penalized for insufficient contribution to the long term system's reliability. (authors)

  9. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  10. Power Management and Distribution System Developed for Thermionic Power Converters

    Science.gov (United States)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  11. Energy efficiency comparison between geothermal power systems

    Directory of Open Access Journals (Sweden)

    Luo Chao

    2017-01-01

    Full Text Available The geothermal water which can be considered for generating electricity with the temperature ranging from 80℃ to 150℃ in China because of shortage of electricity and fossil energy. There are four basic types of geothermal power systems: single flash, double flash, binary cycle, and flash-binary system, which can be adapted to geothermal energy utilization in China. The paper discussed the performance indices and applicable conditions of different power system. Based on physical and mathematical models, simulation result shows that, when geofluid temperature ranges from 100℃ to 130℃, the net power output of double flash power is bigger than flash-binary system. When the geothermal resource temperature is between 130℃ and 150℃, the net power output of flash-binary geothermal power system is higher than double flash system by the maximum value 5.5%. However, the sum water steam amount of double flash power system is 2 to 3 times larger than flash-binary power system, which will cause the bigger volume of equipment of power system. Based on the economy and power capacity, it is better to use flash-binary power system when the geofluid temperature is between 100℃ and 150℃.

  12. Design techniques for low-power systems

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria

    2000-01-01

    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low-power design and techniques to exploit them on the architecture of the system. We focus on: minimizing capacitance, avoiding

  13. Power system extreme event screening using graphpartitioning

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, Bernard C.; Roy, Sandip; Donde, Vaibhav; Pinar, Ali

    2006-09-06

    We propose a partitioning problem in a power system contextthat weighs the two objectives of minimizing cuts between partitions andmaximizing the power imbalance between partitions. We then pose theproblem in a purely graph theoretic sense. We offer an approximatesolution through relaxation of the integer problem and suggest refinementusing stochastic methods. Results are presented for the IEEE 30-bus and118-bus electric power systems.

  14. Offshore Wind Power

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis

    The aim of the project is to investigate the influence of wind farms on the reliability of power systems. This task is particularly important for large offshore wind farms, because failure of a large wind farm might have significant influence on the balance of the power system, and because offshore...... Carlo simulation is used for these calculations: this method, in spite of an extended computation time, has shown flexibility in performing reliability studies, especially in case of wind generation, and a broad range of results which can be evaluated. The modelling is then extended to the entire power...... system considering conventional power plants, distributed generation based on wind energy and CHP technology as well as the load and transmission facilities. In particular, the different models are used to represent two well-known test systems, the RBTS and the IEEE-RTS, and to calculate...

  15. New Generation Power System for Space Applications

    Science.gov (United States)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  16. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    The main aims of power electronic converter systems (PECS) are to control, convert, and condition electrical power flow from one form to another through the use of solid-state electronics. This book outlines current research into the scientific modeling, experimentation, and remedial measures......-link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...

  17. Fault analysis of multichannel spacecraft power systems

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  18. Synchronization of DFIG output voltage to utility grid in wind power system

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Khalil, A.G.; Lee, D.C. [Yeungnam Univ., Gyeongbuk (Korea, Republic of). Dept. of Electrical. Engineering; Ryu, S.P. [Electro-Mechanical Research Inst., Hyundai Heavy Industry Co. Ltd, Gyeongki (Korea, Republic of)

    2006-07-01

    The doubly-fed wound-rotor induction generator (DFIG) is suitable for variable speed wind power generation because it can supply power at constant voltage and constant frequency while the rotor speed varies. The vector control strategy of the power converter is based on the stator-flux oriented control which allows a decoupled control of generator torque and rotor excitation current. The control system makes it possible to improve dynamic behavior of the wind turbine, resulting in the reduction of the drive train stress and electrical power fluctuations, and increasing energy capture. This paper presented a soft and fast synchronization algorithm for grid connection of a DFIG in a variable speed wind generation system. The purpose was to independently control the active and reactive power of the generator using the stator flux-oriented control at normal operation. Stator flux-oriented vector control with back-to-back PWM converters in the DFIG rotor circuit is used for synchronization process. During the generator synchronization process, the turbine pitch angle controller adjusts the speed closely to the synchronous speed to make sure that the stator frequency is equal to that of the grid. The magnitude of stator EMF is controlled by adjusting the rotor flux and the phase shift between the stator and grid voltages is compensated by PLL circuit. The proposed synchronization algorithm provided smooth and fast synchronization, which enabled the system to be reclosed quickly after grid fault clearing. PSCAD simulation confirmed that the proposed synchronization algorithm is effective. 12 refs., 2 tabs., 13 figs.

  19. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  20. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  1. Probabilistic Fault Diagnosis in Electrical Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power...

  2. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya

    2018-01-01

    Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless.......e., mission profiles) is usually harsh, where the input power can change quickly and randomly, resulting in considerable temperature swings in the power electronics. This may induce failures to the power electronic systems. If remain untreated (i.e., ill-designed system without considering reliability......), the cost for maintenance will increase, thus affecting the reputation for the manufacturers and, more important, the cost of energy in renewables. Hence, it calls for highly reliable power electronic systems, where the reliability together with various common design parameters should be taken into account...

  3. Modular Solar Electric Power (MSEP) Systems (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  4. Electric power systems analysis and control

    CERN Document Server

    Saccomanno, Fabio

    2003-01-01

    "Highly relevant and timely in scope, the book is essential reading for anyone associated with electric power systems, including students and teachers of power engineering courses, professionals in the industry, consultants, and researchers."--Jacket.

  5. Power system with an integrated lubrication circuit

    Science.gov (United States)

    Hoff, Brian D [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL; Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Lane, William H [Chillicothe, IL

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  6. Decentralized estimation and control for power systems

    OpenAIRE

    Singh, Abhinav Kumar

    2014-01-01

    This thesis presents a decentralized alternative to the centralized state-estimation and control technologies used in current power systems. Power systems span over vast geographical areas, and therefore require a robust and reliable communication network for centralized estimation and control. The supervisory control and data acquisition (SCADA) systems provide such a communication architecture and are currently employed for centralized estimation and control of power systems in a static ma...

  7. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.C.; Lundsager, P.; Bindner, H.; Hansen, L.; Frandsen, S. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.

  8. Electric power distribution and load transfer system

    Science.gov (United States)

    Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)

    1989-01-01

    A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.

  9. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...... frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...

  10. Development of an autonomous power system testbed

    International Nuclear Information System (INIS)

    Barton, J.R.; Adams, T.; Liffring, M.E.

    1985-01-01

    A power system testbed has been assembled to advance the development of large autonomous electrical power systems required for the space station, spacecraft, and aircraft. The power system for this effort was designed to simulate single- or dual-bus autonomous power systems, or autonomous systems that reconfigure from a single bus to a dual bus following a severe fault. The approach taken was to provide a flexible power system design with two computer systems for control and management. One computer operates as the control system and performs basic control functions, data and command processing, charge control, and provides status to the second computer. The second computer contains expert system software for mission planning, load management, fault identification and recovery, and sends load and configuration commands to the control system

  11. On energy efficient power allocation for power-constrained systems

    KAUST Repository

    Sboui, Lokman

    2014-09-01

    Recently, the energy efficiency (EE) has become an important factor when designing new wireless communication systems. Due to economic and environmental challenges, new trends and efforts are oriented toward “green” communication especially for energy-constrained applications such as wireless sensors network and cognitive radio. To this end, we analyze the power allocation scheme that maximizes the EE defined as rate over the total power including circuit power. We derive an explicit expression of the optimal power with instantaneous channel gain based on EE criterion. We show that the relation between the EE and the spectral efficiency (SE) when the optimal power is adopted is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and compute explicitly the optimal power for ergodic EE under either a peak or an average power constraint. When the instantaneous channel is not available, we provide the optimal power equation and compute simple sub-optimal power. In the numerical results, we show that the sup-optimal solution is very close to the optimal solution. In addition, we show that the absence of the channel state information (CSI) only affects the EE and the SE performances at high power regime compared to the full CSI case.

  12. Lessons learned from the Autonomous Power System

    Science.gov (United States)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1992-01-01

    The Autonomous Power System (APS) project at the NASA Lewis Research Center is designed to demonstrate the applications of integrated intelligent diagnosis, control and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The APS project had been through one design iteration. Each of the three elements of the APS project has been designed, tested, and integrated into a complete working system. After these three portions were completed, an evaluation period was initiated. Each piece of the system was critiqued based on individual performance as well as the ability to interact with the other portions of the APS project. These critiques were then used to determine guidelines for new and improved components of the APS system.

  13. Wind Power in Electrical Distribution Systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    Recent years, wind power is experiencing a rapid growth, large number of wind turbines/wind farms have been installed and connected to power systems. In addition to the large centralised wind farms connected to transmission grids, many distributed wind turbines and wind farms are operated...... as distributed generators in distribution systems. This paper discusses the issues of wind turbines in distribution systems. Wind power conversion systems briefly introduced, the basic features and technical characteristics of distributed wind power system are described, and the main technical demands...

  14. Power systems signal processing for smart grids

    CERN Document Server

    Ribeiro, Paulo Fernando; Ribeiro, Paulo Márcio; Cerqueira, Augusto Santiago

    2013-01-01

    With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power and energy engineering systems, showing many different techniques applied to typical and expected system conditions with practical power system examples. Surveying all recent advances on DSP for power systems, this book enables engineers and researchers to understand the current state of the art a

  15. Next-Generation Shipboard DC Power System

    DEFF Research Database (Denmark)

    Jin, Zheming; Sulligoi, Giorgio; Cuzner, Rob

    2016-01-01

    In recent years, more and more evidence suggests that the global energy system is on the verge of a drastic revolution. The evolutionary development in power electronic technologies, the emerging high-performance energy storage devices, as well as the ever increasing penetration of renewable energy......, aerospace/aircraft power systems, as well as maritime power systems....... sources (RES) are commonly recognized as the major driven force of the revolution, the outburst of customer electronics and new kinds of household electronics is also powering this change. In this context, dc power distribution technologies have made a comeback and keep gaining a commendable increase...

  16. Advanced Integrated Power Systems (AIPS)

    Science.gov (United States)

    2012-10-08

    The first of these is ATP- EMTP and the second is PowerFactory by DIgSILENT. Both packages allow the user to simulate transient effects in a...Engler, ., Degner, T., Braun, M. "Analysis of Inverter-Controlled Island Grids Transient Simulations with ATP- EMTP and PowerFactory." IEEEXplore

  17. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  18. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  19. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  20. Real-Time Load-Side Control of Electric Power Systems

    Science.gov (United States)

    Zhao, Changhong

    Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with

  1. Flexibility in 21st Century Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O' Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A.; Kujala, B.; Sommer, M.; Holttinen, H.; Kiviluoma, J.; Soonee, S. K.

    2014-05-01

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). This paper summarizes the analytic frameworks that have emerged to measure this characteristic and distills key principles of flexibility for policy makers.

  2. Handbook of co₂ in power systems

    CERN Document Server

    Rebennack, Steffen; Pardalos, Panos; Pereira, Mario; Iliadis, Niko

    2012-01-01

    The Handbook of CO₂in Power Systems' objective is to include the state-of-the-art developments that occurred in power systems taking CO₂emission into account. The book includes power systems operation modeling with CO₂emissions considerations, CO₂market mechanism modeling, CO₂regulation policy modeling, carbon price forecasting, and carbon capture modeling. For each of the subjects, at least one article authored by a world specialist on the specific domain is included.

  3. Power system protection 1 principles and components

    CERN Document Server

    Association, Electricity Training

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  4. Artificial intelligence in power system optimization

    CERN Document Server

    Ongsakul, Weerakorn

    2013-01-01

    With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems in power systems. This book serves as a textbook for graduate students in electric power system management and is also be useful for those who are interested in using artificial intelligence in power system optimization.

  5. Effect of accuracy of wind power prediction on power system operator

    Science.gov (United States)

    Schlueter, R. A.; Sigari, G.; Costi, T.

    1985-01-01

    This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.

  6. Effect of accuracy of wind power prediction on power system operator

    Science.gov (United States)

    Schlueter, R. A.; Sigari, G.; Costi, T.

    1985-06-01

    This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.

  7. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults

    Science.gov (United States)

    Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze

    2017-09-01

    Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.

  8. Acceptance test report: Backup power system

    International Nuclear Information System (INIS)

    Cole, D.B.

    1996-01-01

    Acceptance Test Report for construction functional testing of Project W-030 Backup Power System. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. Backup power includes a single 125 KW diesel generator, three 10-kva uninterruptible power supply units, and all necessary control

  9. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.

    2007-01-01

    Stochastic Generation is the electrical power production by the use of an uncontrollable prime energy mover, corresponding mainly to renewable energy sources. For the large-scale integration of stochastic generation in power systems, methods are necessary for the modeling of power generation

  10. Space Shuttle Upgrades Advanced Hydraulic Power System

    Science.gov (United States)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  11. AES Modular Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goals of this project are to 1) develop modular power design concepts for human exploration flight vehicles (longer-term) and assess, develop, and/or...

  12. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Real-time impact of power balancing on power system operation with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2017-01-01

    Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where...... power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account. The real-time impact of power balancing in a highly wind power integrated power system is assessed...

  14. Adaptive Maximum Power Point Tracking Algorithm for Photovoltaic Power Systems

    Science.gov (United States)

    Ahn, Chang Wook; Choi, Ju Yeop; Lee, Dong-Ha; An, Jinung

    This paper presents an adaptive maximum power point tracking (MPPT) algorithm. The aim is to dynamically adjust the step length for updating duty ratio (or operating voltage) so as to make full utilization of the output power of photovoltaic (PV) systems, even under the rapidly changing atmospheric conditions. To this end, the average slope in terms of voltage and power is exploited for reducing the harmful effect of noise and error (incurred in measurement or quantization) on the slope. Also, a statistical decision-making scheme is employed for reliably deciding the time instant at which atmospheric conditions actually change. Empirical study has adduced grounds for its dominance over existing references.

  15. HVDC transmission power conversion applications in power systems

    CERN Document Server

    Kim, Chan-Ki; Jang, Gil-Soo; Lim, Seong-Joo; Lee, Seok-Jin

    2009-01-01

    HVDC is a critical solution to several major problems encountered when trying to maintain systemic links and quality in large-scale renewable energy environments. HDVC can resolve a number of issues, including voltage stability of AC power networks, reducing fault current, and optimal management of electric power, ensuring the technology will play an increasingly important role in the electric power industry. To address the pressing need for an up-to-date and comprehensive treatment of the subject, Kim, Sood, Jang, Lim and Lee have collaborated to produce this key text and reference.  Combin

  16. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  17. Power system SCADA and smart grids

    CERN Document Server

    Thomas, Mini S

    2015-01-01

    Power System SCADA and Smart Grids brings together in one concise volume the fundamentals and possible application functions of power system supervisory control and data acquisition (SCADA). The text begins by providing an overview of SCADA systems, evolution, and use in power systems and the data acquisition process. It then describes the components of SCADA systems, from the legacy remote terminal units (RTUs) to the latest intelligent electronic devices (IEDs), data concentrators, and master stations, as well as:Examines the building and practical implementation of different SCADA systemsOf

  18. Hybrid power filter for advanced power quality in industrial systems

    Czech Academy of Sciences Publication Activity Database

    Švec, J.; Müller, Z.; Kasembe, A. G.; Tlustý, J.; Valouch, Viktor

    2013-01-01

    Roč. 103, october 2013 (2013), s. 157-167 ISSN 0378-7796 R&D Projects: GA AV ČR IAA200760703 Institutional research plan: CEZ:AV0Z20570509 Institutional support: RVO:61388998 Keywords : hybrid power filter * power quality * industrial system Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.595, year: 2013 http://www.sciencedirect.com/science/article/pii/S0378779613001417

  19. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Wang, Huai; Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed.......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...

  20. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  1. New architectures for space power systems

    International Nuclear Information System (INIS)

    Ehsani, M.; Patton, A.D.; Biglic, O.

    1992-01-01

    Electric power generation and conditioning have experienced revolutionary development over the past two decades. Furthermore, new materials such as high energy magnets and high temperature superconductors are either available or on the horizon. The authors' work is based on the promise that new technologies are an important driver of new power system concepts and architectures. This observation is born out by the historical evolution of power systems both in terrestrial and aerospace applications. This paper will introduce new approaches to designing space power systems by using several new technologies

  2. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  3. Connection of small RES and CHP power generation units to the electricity systems

    International Nuclear Information System (INIS)

    Groseva, V.

    2008-01-01

    The EU member states have to ensure to the producers of 'green' electricity guaranteed access to the electrical grid including for small installations - Directive (2001/77/EC) of EC. For this reason the European Commission (EC) supports the project 'Production of Electricity with RES and CHP for Homeowners' - PERCH, in the framework of the program 'Intelligent Energy - Europe'. In the report the issues of connection (technical, contractual, tariff and metering) are investigated for small installations using RES and micro CHP, which are owned by individual family houses, small enterprises, etc. It is pointed out that small installations, mainly PV-systems, wind generators and small CHP, as well as combination of these technologies are rapidly applied on the European market. In Bulgaria the application of small PV-systems and wind generators, as well as CHP at present is limited. The elements for encouragement of such systems are defined, as well as the barriers for their wider application. (author)

  4. Five Indisputable Facts on Modern Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Aaron P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brinkman, Gregory L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holttinen, Hannele [VTT Technical Research Centre of Finland; Helman, Udi [Helman Analytics; Summers, Kate [Pacific Hydro; Bakke, Jordan [Midcontinent Independent System Operator

    2017-08-01

    This presentation overviews five indisputable facts about modern power systems: Fact one: The grid can handle more renewable generation than previously thought. Fact two: Geographic and resource diversity provide additional reliability to the system. Fact three: Wind and solar forecasting provide significant value. Fact four: Our electric power markets were not originally designed for variable renewables -- but they could be adapted. Fact five: Modern power electronics are creating new sources of essential reliability services.

  5. Using of alternative sources of the electric power on telecommunication network of Uzbekistan

    International Nuclear Information System (INIS)

    Abdullaev, D.A.; Isaev, R.I.; Makhkamdzhanov, V.M.; Mansurov, M.S.

    1997-01-01

    The article presents the talk on the using of alternative sources of the electric power on telecommunication network of Uzbekistan given at the International Workshop on applied solar energy held in Tashkent (Uzbekistan) in June 1997. As an alternative source the combined solar-wind power plant on the basis of solar cells battery and wind-generator is proposed. The efficiency of proposed system is considered. (A.A.D.)

  6. The electrical system of nuclear power plant

    International Nuclear Information System (INIS)

    Firman Silitonga; Gunarwan Prayitno

    2009-01-01

    In these system, electrical power system is supplied from two-offsite transmission system respective main transformer and house service transformer; and reserve transformer. The electrical load in these system consist of safety electrical system and non-safety electrical system, The safety electrical and non safety electrical systems consist of four 6,9 kV AC medium voltage bus and 480 V AC low voltage bus system. The DC power system consist of four safety 125 V DC power system and the two non-safety 125 DC power systems. The equipment in these electrical system is main turbine-generator; GTG safety; GTG alternate; uninterrupted power supply (UPS) and battery system. To protect electrical equipment and building to direct stroke and non direct stroke disturbances is installed netral grounding system and lightning protection and protection the personnel to touch-voltage is installed equipment grounding system and station grounding. The lightning arrester system is connected to station station grounding system. (author)

  7. Ramgen Power Systems for Military Engine Applications

    National Research Council Canada - National Science Library

    Holcomb, Franklin H; Sohn, Chang W; Tamm, Gunnar; Brown, Daniel; Mahoney, Daniel; Baldwin, Peter; Belshaw, Karen; Koopman, Aaron; Witmer, Dennis

    2007-01-01

    Ramgen Power Systems, Inc. (RPS) is developing two high efficiency gas turbine engine concepts that combine many of the proven features of supersonic compression and expansion systems, commonly used in supersonic flight inlet...

  8. Reliability of power electronic converter systems

    CERN Document Server

    Chung, Henry Shu-hung; Blaabjerg, Frede; Pecht, Michael

    2016-01-01

    This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of Power Electronic Converter Systems (PECS) at different levels of complexity.

  9. Modular Stirling Power System (MSPS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Infinia Technology Corporation's (ITC) proposed Modular Stirling Power System (MSPS) is a free-piston Stirling system that addresses NASA needs in 12-kW increments....

  10. On Quantification of Flexibility in Power Systems

    DEFF Research Database (Denmark)

    Bucher, Matthias A.; Delikaraoglou, Stefanos; Heussen, Kai

    2015-01-01

    Large scale integration of fluctuating and nondispatchablegeneration and variable transmission patterns inducehigh uncertainty in power system operation. In turn,transmission system operators (TSOs) need explicit informationabout available flexibility to maintain a desired reliability level ata r...

  11. Inter-area oscillations in power systems

    CERN Document Server

    Messina, Arturo R

    2009-01-01

    Deals with the application of fresh techniques based on time-frequency system representations and statistical approaches to the study, characterization, and control of nonlinear and non-stationary inter-area oscillations in power systems.

  12. Storage Operation for Peak Shaving of Distributed PV and Wind Generation

    NARCIS (Netherlands)

    Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2013-01-01

    The integration of fluctuating power generation based on renewable energy systems (RES-E) in distribution grids require grid reinforcement resulting from high feed-in peaks. Introducing storage assets can decrease these peaks. For this, storage technologies need to be chosen and dimensioned

  13. Expert System Detects Power-Distribution Faults

    Science.gov (United States)

    Walters, Jerry L.; Quinn, Todd M.

    1994-01-01

    Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.

  14. instrumentation for power system disturbance monitoring, data ...

    African Journals Online (AJOL)

    Dr Obe

    1996-09-01

    Sep 1, 1996 ... avoid global blackouts. 2.1 Data Acquisition. The basic information in power system is measured and collected by equipment in the various substations and power stations. Distributed system equipment enables remote data acquisition. The measured values are mainly current and voltage levels, active and.

  15. simulation of electromagnetic transients in power systems

    African Journals Online (AJOL)

    Dr Obe

    1996-09-01

    Sep 1, 1996 ... ABSTRACT. Transients in power systems are initiated by abrupt changes to otherwise steady operating conditions. These changes would be as a result of any of the following: opening or closing of circuit breakers, switching conditions, lightning or any other fault condition. For purposes of power system.

  16. Calculation of balancing reserves incorporating wind power into the Hydro-Quebec system over the time horizon of 1 to 48 hours

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlis, N.; Huneault, M. [IREQ, Varennes, QC (Canada); Bourret, J. [Hydro-Quebec Distribution, Montreal, QC (Canada). Dir. Approvisionnement en Electricite; Robitaille, A. [Hydro-Quebec Production, Montreal, PQ (Canada). Dir. Planification de la Production Eolienne

    2009-07-01

    Hydro-Quebec (HQ), the main electricity provider in Quebec, Canada, serves a peak load of 37000 MW, 95% provided by hydroelectric generation. It is in the process of incorporating 3000 MW of wind power into its system, reaching 4000 MW by the year 2015. As wind power generation is accompanied by inherent uncertainties, HQ plans to revise its balancing reserves in order to mitigate the consequences of inherent prediction errors. To this end, HQ has put forward a novel methodology calculating the level of these balancing reserves, over the time horizon of 1-48 hours, based on the risk that the load will exceed the committed generation capacity. The methodology, reported in this paper, requires as input the statistical characteristics of the load and wind generation forecast errors and of the generation outages. The implementation details of this methodology as well as discussion of the nature of the results are given. (orig.)

  17. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its......Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional....... When identifying the most relevant storage solutions it is necessary to include considerations on many relevant parameters which should be evaluated against the potential drawbacks and benefits of adding storage. Here, the most relevant technologies in relation to power systems with high penetration...

  18. Incipient fault detection and power system protection for spaceborne systems

    Science.gov (United States)

    Russell, B. Don; Hackler, Irene M.

    1987-01-01

    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  19. Systems definition space based power conversion systems: Executive summary

    Science.gov (United States)

    1977-01-01

    Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  20. Concentrators Enhance Solar Power Systems

    Science.gov (United States)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions

  1. The EarthCARE Power System

    Science.gov (United States)

    Ruf, Daniel; Beaufils, Gilles

    2011-10-01

    This paper describes the Electrical Power System of the EarthCARE satellite. EarthCARE is an Earth-observation mission aiming to improve the understanding of the Earth's radiation balance. It will fly in a specifically low polar Earth orbit with an altitude of around 400 km. The satellite with an orbit average power demand of about 1700 W is supplied by an unregulated 28 V power bus. Electrical power is generated by a deployable, rotating solar array with an active area of 21.5 m2. Energy is stored by a Li-Ion battery with a capacity of 326 Ah. The central Power Conditioning and Control Unit controls the solar array power by maximum power point tracking. It distributes protected power supply lines to the electrical units, heaters and release initiators.

  2. Optimal control applications in electric power systems

    CERN Document Server

    Christensen, G S; Soliman, S A

    1987-01-01

    Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...

  3. Control Architecture for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    . The introduction of close-to-real-time markets is envisioned to enable fast distributed resource allocation while guaranteeing system stability. Electric vehicles will be studied as a means of distributed reversible energy storage and a flexible power electronic interface, with application to the case......This project looks at control of future electric power grids with a high proportion of wind power and a large number of decentralized power generation, consumption and storage units participating to form a reliable supply of electrical energy. The first objective is developing a method...... for assessment of control architecture of electric power systems with a means-ends perspective. Given this purpose-oriented understanding of a power system, the increasingly stochastic nature of this problem shall be addressed and approaches for robust, distributed control will be proposed and analyzed...

  4. Solar Powered Automatic Shrimp Feeding System

    Directory of Open Access Journals (Sweden)

    Dindo T. Ani

    2015-12-01

    Full Text Available - Automatic system has brought many revolutions in the existing technologies. One among the technologies, which has greater developments, is the solar powered automatic shrimp feeding system. For instance, the solar power which is a renewable energy can be an alternative solution to energy crisis and basically reducing man power by using it in an automatic manner. The researchers believe an automatic shrimp feeding system may help solve problems on manual feeding operations. The project study aimed to design and develop a solar powered automatic shrimp feeding system. It specifically sought to prepare the design specifications of the project, to determine the methods of fabrication and assembly, and to test the response time of the automatic shrimp feeding system. The researchers designed and developed an automatic system which utilizes a 10 hour timer to be set in intervals preferred by the user and will undergo a continuous process. The magnetic contactor acts as a switch connected to the 10 hour timer which controls the activation or termination of electrical loads and powered by means of a solar panel outputting electrical power, and a rechargeable battery in electrical communication with the solar panel for storing the power. By undergoing through series of testing, the components of the modified system were proven functional and were operating within the desired output. It was recommended that the timer to be used should be tested to avoid malfunction and achieve the fully automatic system and that the system may be improved to handle changes in scope of the project.

  5. Incipient Stator Insulation Fault Detection of Permanent Magnet Synchronous Wind Generators Based on Hilbert–Huang Transformation

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Incipient stator winding fault in permanent magnet synchronous wind generators (PMSWGs) is very difficult to be detected as the fault generated variations in terminal electrical parameters are very weak and chaotic. This paper simulates the incipient stator winding faults at different degree...

  6. Electricity for Road Transport, Flexible Power Systems and Wind Power

    DEFF Research Database (Denmark)

    Nielsen, Lars Henrik; Ravn, Hans; Meibom, Peter

    (transmission and distribution) as consequence of increasing electricity demand, and new flexible consumption patterns from segments in the transport sector, and as consequence of increasing capacity on wind power in the system. 6: Setting up and analysis of combined scenarios covering both the heat and power......The aim of the project is to analyse the potential synergistic interplay that may arise between the power sector and the transport sector, if parts of the road transport energy needs are based on electricity via the utilisation of plug-in hybrid electric vehicles and pure electric vehicles......-vehicle connection systems including technical regulation options and analysis of needs for standardisation. 4: Setting up scenarios covering potential developments for utilizing electric drive trains in road transport. Period: Up to year 2030. 5: Analysis of capacity constraints in the electricity grid...

  7. High frequency power distribution system

    Science.gov (United States)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  8. Distributed systems for protecting nuclear power stations

    International Nuclear Information System (INIS)

    Jover, P.

    1980-05-01

    The advantages of distributed control systems for the control of nuclear power stations are obviously of great interest. Some years ago, EPRI, (Electric Power Research Institute) showed that multiplexing the signals is technically feasible, that it enables the availability specifications to be met and costs to be reduced. Since then, many distributed control systems have been proposed by the manufacturers. This note offers some comments on the application of the distribution concept to protection systems -what should be distributed- and ends with a brief description of a protection system based on microprocessors for the pressurized power stations now being built in France [fr

  9. 14 CFR 27.695 - Power boost and power-operated control system.

    Science.gov (United States)

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  10. 14 CFR 29.695 - Power boost and power-operated control system.

    Science.gov (United States)

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  11. Analyzing Technique of Power Systems Under Deregulation

    Science.gov (United States)

    Miyauchi, Hajime; Kita, Hiroyuki; Ishigame, Atsushi

    Deregulation of the electric utilities has been progressing. Even under the deregulation, the reliability should be the most important problem of power systems. However, according to the deregulation, operation and scheduling of power systems are changing and new techniques to analyze power systems are introducing. To evaluate reliability of power systems, adequacy and security are well employed recently. This paper presents the new analyzing technique which will be realized in near future from the viewpoint of adequacy and security. First, simulation tool to evaluate adequacy is described. As an example of this tool, MARS and other methods are mentioned. Next, to evaluate the security, security constrained unit commitment (SCUC) and security constrained optimal power flow (SCOPF) are mentioned. Finally, some topics concerning ancillary service are described.

  12. Performance Analysis of FLC Controlled PV-Wind Hybrid Power System for dc Load with Real-Time Data in Matlab, Simulink

    Directory of Open Access Journals (Sweden)

    A. V. Pavan Kumar

    2017-05-01

    Full Text Available Hybrid power system is a combination of different but complementary energy generation systems based on renewable energies. The Hybrid power system harnesses most of the power from the environmental conditions, reduces the losses and repetitive maintenance, thus improving efficiency and reliability of the system. This is achieved by proper coordination control between the Renewable Energy Sources (RES. This paper focuses on the implementation of Photovoltaic - Wind hybrid power system with real-time data of environmental conditions. The continuous real-time values of the solar irradiation and wind speed are obtained from the weather monitoring system at the location. The PV will be the primary source of generation during the day and wind generation can act as power conditioning. The Hybrid model is implemented in Matlab Simulink and its performance is examined under variable environmental conditions with a variable resistive load. A scale down experiment set-up of PV-Wind hybrid system is utilized to evaluate the performance of the proposed control logic. It has emerged from the simulation and experimental study that the hybrid system implemented with the real-time data maintains the output voltage constant irrespective of environmental conditions and load condition.

  13. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  14. Hydrogen turbine power conversion system assessment

    Science.gov (United States)

    Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.

    1978-01-01

    A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.

  15. Modeling Control Situations in Power System Operations

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten; Singh, Sri Niwas

    2010-01-01

    Increased interconnection and loading of the power system along with deregulation has brought new challenges for electric power system operation, control and automation. Traditional power system models used in intelligent operation and control are highly dependent on the task purpose. Thus, a model...... of explicit principles for model construction. This paper presents a work on using explicit means-ends model based reasoning about complex control situations which results in maintaining consistent perspectives and selecting appropriate control action for goal driven agents. An example of power system...... for intelligent operation and control must represent system features, so that information from measurements can be related to possible system states and to control actions. These general modeling requirements are well understood, but it is, in general, difficult to translate them into a model because of the lack...

  16. Multiagent voltage and reactive power control system

    Directory of Open Access Journals (Sweden)

    I. Arkhipov

    2014-12-01

    Full Text Available This paper is devoted to the research of multiagent voltage and reactive power control system development. The prototype of the system has been developed by R&D Center at FGC UES (Russia. The control system architecture is based on the innovative multiagent system theory application that leads to the achievement of several significant advantages (in comparison to traditional control systems implementation such as control system efficiency enhancement, control system survivability and cyber security.

  17. Intelligent maintenance system for nuclear power plant

    International Nuclear Information System (INIS)

    Matsuda, Keiichi; Okano, Hideharu; Kobayashi, Masahiro; Tokura, Takehiko.

    1997-01-01

    An advanced Intelligent Maintenance System has been developed to realize highly reliable and efficient maintenance operation in the future for nuclear power plants. This system is equipped with high level sensing and robotic technologies and is composed of the following 4 systems; (1) Common System of Intellectual Maintenance (2) Inspection System in Operating Plants (3) Underwater Inspection System (4) Full-Automated Welding System. This Project is promoted by MITI from FY 1991 to FY 1995. (author)

  18. Safety assessment of emergency power systems for nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    This publication is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing the safety of a given design of the emergency power systems (EPS) for a nuclear power plant. The present publication refers closely to the NUSS Safety Guide 50-SG-D7 (Rev. 1), Emergency Power Systems at Nuclear Power Plants. It covers therefore exactly the same technical subject as that Safety Guide. In view of its objective, however, it attempts to help in the evaluation of possible technical solutions which are intended to fulfill the safety requirements. Section 2 clarifies the scope further by giving an outline of the assessment steps in the licensing process. After a general outline of the assessment process in relation to the licensing of a nuclear power plant, the publication is divided into two parts. First, all safety issues are presented in the form of questions that have to be answered in order for the assessor to be confident of a safe design. The second part presents the same topics in tabulated form, listing the required documentation which the assessor has to consult and those international and national technical standards pertinent to the topics. An extensive reference list provides information on standards. 1 tab

  19. Intelligent systems for strategic power infrastructure defense

    Science.gov (United States)

    Jung, Ju-Hwan

    A fault or disturbance in a power system can be severe due to the sources of vulnerability such as human errors, protection and control system failures, a failure of communication networks to deliver critical control signals, and market and load uncertainties. There have been several catastrophic failures resulting from disturbances involving the sources of vulnerability while power systems are designed to withstand disturbances or faults. To avoid catastrophic failures or minimize the impact of a disturbance(s), the state of the power system has to be analyzed correctly and preventive or corrective self-healing control actions have to be deployed. This dissertation addresses two aspects of power systems: Defense system and diagnosis, both concerned with the power system analysis and operation during events involving faults or disturbances. This study is intended to develop a defense system that is able to assess power system vulnerability and to perform self-healing control actions based on the system-wide analysis. In order to meet the requirements of the system-wide analysis, the defense system is designed with multi-agent system technologies. Since power systems are dynamic and uncertain the self-healing control actions need to be adaptive. This study applies the reinforcement learning technique to provide a theoretical basis for adaptation. One of the important issues in adaptation is the convergence of the learning algorithm. An appropriate convergence criterion is derived and an application with a load-shedding scheme is demonstrated in this study. This dissertation also demonstrates the feasibility of the defense system and self-healing control actions through multi-agent system technologies. The other subject of this research is to investigate the methodology for on-line fault diagnosis using the information from Sequence-of-Events Recorders (SER). The proposed multiple-hypothesis analysis generates one or more hypothetical fault scenarios to interpret the

  20. Hydraulically powered dissimilar teleoperated system controller design

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1996-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  1. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  2. Radioisotope Power Systems for Outer Planet Missions

    Science.gov (United States)

    Wahlquist, E. J.

    2001-01-01

    A summary of the Department of Energy's (DOE) capabilities and ongoing program efforts to develop and provide radioisotope power systems to support space exploration missions will be presented. The Office of Nuclear Energy, Science and Technology (DOE/NE) within DOE is responsible for the development, assembly, testing, acceptance, and delivery of radioisotope power systems to the National Aeronautics and Space Administration (NASA). To that end, DOE/NE is maintaining a program and facility infrastructure at various DOE laboratories and production sites ensuring the viability of future missions that will require radioisotope power systems. This infrastructure includes facilities to manufacture key components, process and encapsulate plutonium-238, and assemble, test, and accept the systems. DOE also pursues a low level technology program committed to the continued evolution of energy conversion technologies with applicability to radioisotope power systems. In addition, DOE recently made a decision to pursue re-establishing the domestic capability to produce plutonium-238 as part of DOE's commitment to maintaining the infrastructure necessary to produce and deliver radioisotope power systems. The currently available US inventory of plutonium-238 is sufficient to provide one radioisotope power system of roughly the same power level as each of the three units used on the Cassini spacecraft. Until the domestic production is realized, plutonium-238 requirements can be met through an existing contract with Russia.

  3. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  4. Model of analysis of maximum loads in wind generators produced by extreme winds

    International Nuclear Information System (INIS)

    Herrera – Sánchez, Omar; Schellong, Wolfgang; González – Fernández, Vladimir

    2010-01-01

    The use of the wind energy by means of the wind turbines in areas of high risk of occurrence of Hurricanes comes being an important challenge for the designers of wind farm at world for some years. The wind generator is not usually designed to support this type of phenomena, for this reason the areas of high incidence of tropical hurricanes of the planning are excluded, that which, in occasions disables the use of this renewable source of energy totally, either because the country is very small, or because it coincides the area of more potential fully with that of high risk. To counteract this situation, a model of analysis of maxims loads has been elaborated taken place the extreme winds in wind turbines of great behavior. This model has the advantage of determining, in a chosen place, for the installation of a wind farm, the micro-areas with higher risk of wind loads above the acceptable for the standard classes of wind turbines. (author)

  5. Power system EMP protection. Final report

    International Nuclear Information System (INIS)

    Marable, J.H.; Barnes, P.R.; Nelson, D.B.

    1975-05-01

    Voltage transients induced in electric power lines and control circuits by the electromagnetic pulse (EMP) from high-altitude nuclear detonations may cause widespread power failure and damage in electric power systems. This report contains a parametric study of EMP power line surges and discusses protective measures to minimize their effects. Since EMP surges have considerably greater rates of rise than lightning surges, recommended standards and test procedures are given to assure that surge arresters protect equipment from damage by EMP. Expected disturbances and damage to power systems are reviewed, and actions are presented which distribution companies can take to counter them. These include backup communications methods, stockpiling of vulnerable parts, repair procedures, and dispatcher actions to prevent blackout from EMP-caused instabilities. A long-range program is presented for improving distributors' protection against EMP. This involves employee training, hardware protection for power and control circuits, and improvement of plans for emergency action. (U.S.)

  6. Reorganization of the Lithuanian State Power System

    International Nuclear Information System (INIS)

    Paskevicius, V.

    1995-01-01

    This article deals with preasent situation in energy sector in Lithuania. All power plants with installed capacity of 2561 MW, except Ignalina Nuclear Power Plant (3000 MW) belongs to Lithuanian State Power System (LSPS) as well transmission and distribution networks. In 1989-1991 Lithuania generated approximately 29TWh of electricity annually from which 12TWh LSPS exported to neighbouring countries. After 1990 in the transitional period from planned economy to the marked one, the economic situation in the country became complicated. The electricity demand has fallen nearly 40%. Due to the similar situation in neighboring countries the electricity export has decreased too. The article presents the distribution of electric power output in 1994 by power plants; electric power consumption and output of power plants in Lithuania from 1940 to 1994 is also included. Some aspects of regional cooperation of tree Baltic countries in energy area is touched too. 3 figs

  7. Wind energy in the electric power system

    DEFF Research Database (Denmark)

    Polinder, H.; Peinke, J.; Kramer, O.

    2016-01-01

    have to behave when connected to the power system. In this way, they already incorporate basic ancillary services. However, frequency control is normally not provided as a regular reserve, because this would require reserving parts of the available wind capacity as stand-by capacity. Within R......The ongoing increase in renewable power generation causes a parallel overall decrease in conventional power generation from, in particular, fossil and nuclear power plants. Apart from providing market-based active power schedules, these power plants are crucial for offering ancillary services...... in order to guarantee a reliable stable power supply at any instant in time. Substituting these plants with renewable generation units requires the latter to be capable of providing these ancillary services. The state of the art is that grid codes are used to define the way wind turbines and wind farms...

  8. Task 3.0 - Advanced Power Systems Subtask 3.18 - Ash Behavior in Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, Christopher J; McCollor, Donald P

    1997-07-01

    Ash behavior in power systems can have a significant impact on the design and performance of advanced power systems. The Energy & Environmental Research Center (EERC) has focused significant effort on ash behavior in conventional power systems that can be applied to advanced power systems. This initiative focuses on filling gaps in the understanding of fundamental mechanisms of ash behavior that has relevance to commercial application and marketable products. This program develops methods and means to better understand and mitigate adverse coal ash behavior in power systems and can act to relieve the U.S. reliance on diminishing recoverable oil resources, especially those resources that are not domestically available and are fairly uncertain.

  9. Solar thermal power systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Each of DOE's solar Thermal Power Systems projects funded and/or in existence during FY 1978 is described and the status as of September 30, 1978 is reflected. These projects are divided as follows: small thermal power applications, large thermal power applications, and advanced thermal technology. Also included are: 1978 project summary tables, bibliography, and an alphabetical index of contractors. (MHR)

  10. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  11. Power system harmonics and passive filter designs

    CERN Document Server

    Das, J C

    2015-01-01

    J.C. Das is a consultant of electrical power systems at Power Systems Studies, Inc., USA. He is Life Fellow of IEEE (UK), Fellow of IET (India), and has authored approximately sixty technical papers and published 190 study reports of real-world power systems. He is the author of three books including ARC Flash Hazard Analysis and Mitigation. He is a registered P.E. in the states of Georgia and Oklahoma, C.Eng. in UK, and Eur Ing in Europe. J. C. Das is also a member of CIGRE, Federation of European Engineers, and other technical associations and organizations.

  12. DESIGN POWER SYSTEM STABILIZER MENGGUNAKAN FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Ivo Salvador Soares Miranda

    2014-10-01

    Full Text Available Stabiltas merupakan kemampuan sistem untuk menjaga kondisi operasi  seimbang dan kembali kekondisi operasi normal ketika terjadi gangguan. Penerapan power system stabilizer pada sistem tenaga mampu memberikan sinyal respon yang cepat atas berbagai kondisi gangguan dan mengupayakan tidak meluasnya jangkauan gangguan. Dalam mendesign power system stabilizer menggunakan robust fuzzy logic, menggunakan satu sinyal input yaitu kecepatan deviasi rotor. Hasil simulasinya dibandingkan dengan metode fuzzy logic dan kovensional. Studi simulasi menunjukan, design power system stabilizer menggunakan robust fuzzy logic memiliki nilai sinyal peak time dan settling time relatif kecil dibandingkan dengan metode fuzzy logic dan konvensional.

  13. Power System Oscillatory Behaviors: Sources, Characteristics, & Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Follum, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dosiek, Luke A. [Union College, Schenectady, NY (United States); Pierre, John W. [Univ. of Wyoming, Laramie, WY (United States)

    2017-05-17

    This document is intended to provide a broad overview of the sources, characteristics, and analyses of natural and forced oscillatory behaviors in power systems. These aspects are necessarily linked. Oscillations appear in measurements with distinguishing characteristics derived from the oscillation’s source. These characteristics determine which analysis methods can be appropriately applied, and the results from these analyses can only be interpreted correctly with an understanding of the oscillation’s origin. To describe oscillations both at their source within a physical power system and within measurements, a perspective from the boundary between power system and signal processing theory has been adopted.

  14. Fault tolerant aggregation for power system services

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Gehrke, Oliver; Kullmann, Daniel

    2013-01-01

    Exploiting the flexibility in distributed energy resources (DER) is seen as an important contribution to allow high penetrations of renewable generation in electrical power systems. However, the present control infrastructure in power systems is not well suited for the integration of a very large...... number of small units. A common approach is to aggregate a portfolio of such units together and expose them to the power system as a single large virtual unit. In order to realize the vision of a Smart Grid, concepts for flexible, resilient and reliable aggregation infrastructures are required...

  15. Lifetime prognostics of hybrid backup power system

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Swierczynski, Maciej Jozef; Munk-Nielsen, Stig

    2017-01-01

    Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises...... the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper...... is a first step towards a condition monitoring approach for such systems. Firstly, the application is defined, thereafter the benefits of predictive maintenance strategies and the prognostics and health management framework are described. A literature review of condition monitoring of the major system...

  16. Tidal Energy System for On-Shore Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, Allan J

    2012-06-26

    immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m

  17. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  18. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  19. Electrotechnical systems simulation with Simulink and SimPowerSystems

    CERN Document Server

    Perelmuter, Viktor

    2012-01-01

    Filling a gap in the literature, Electrotechnical Systems: Simulation with Simulink® and SimPowerSystems™ explains how to simulate complicated electrical systems more easily using SimPowerSystems™ blocks. It gives a comprehensive overview of the powerful SimPowerSystems toolbox and demonstrates how it can be used to create and investigate models of both classic and modern electrotechnical systems.Build from Circuit Elements and Blocks to System ModelsBuilding from simple to more complex topics, the book helps readers better understand the principles, features, and detailed functions of various

  20. Grid-code of Croatian power system

    International Nuclear Information System (INIS)

    Toljan, I.; Mesic, M.; Kalea, M.; Koscak, Z.

    2003-01-01

    Grid Rules by the Croatian Electricity Utility deal with the control and usage of the Croatian power system's transmission and distribution grid. Furthermore, these rules include obligations and permissions of power grid users and owners, with the aim of a reliable electricity supply.(author)

  1. Reactor power reduction system and method

    International Nuclear Information System (INIS)

    1980-01-01

    An improved control method for maintaining the operation of a nuclear reactor system in response to an event which requires an immediate but less than complete power reduction called an accelerated power reduction, by rapidly inserting into said reactor core a portion of said regulating rods selected from said predetermined regulation sequence. (author)

  2. Free positioning for inductive wireless power system

    NARCIS (Netherlands)

    Waffenschmidt, E.

    2012-01-01

    In inductive wireless power transmission system a lateral displacement of the receiver coil to the transmitter coil leads to a change ofthe coupling factor and thus an unwanted variation of the power transfer. Here, an algorithm to determine the turn distribution to achieve homogeneous coupling

  3. Transforming Power Systems Through Global Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-01

    Ambitious and integrated policy and regulatory frameworks are crucial to achieve power system transformation. The 21st Century Power Partnership -- a multilateral initiative of the Clean Energy Ministerial -- serves as a platform for public-private collaboration to advance integrated solutions for the large-scale deployment of renewable energy in combination with energy efficiency and grid modernization.

  4. Transforming Power Systems through Global Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-04-01

    Ambitious and integrated policy and regulatory frameworks are crucial to achieve power system transformation. The 21st Century Power Partnership -- a multilateral initiative of the Clean Energy Ministerial -- serves as a platform for public-private collaboration to advance integrated solutions for the large-scale deployment of renewable energy in combination with energy efficiency and grid modernization.

  5. OPTIONS FOR DEVELOPMENT OF POWER TRANSMISSIONS OF MOLDAVIAN POWER SYSTEM IN PARALLEL WITH POWER SYSTEM OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Kalinin L.P.

    2012-04-01

    Full Text Available The paper focuses on the analysis of possible scenarios for the future development of power transmission of Moldavian Power System in parallel operation with the Power System of Ukraine. In this case the problem is considered in the absence of synchronous connection with ENTSO-E.

  6. Innovations in power systems reliability

    CERN Document Server

    Santora, Albert H; Vaccaro, Alfredo

    2011-01-01

    Electrical grids are among the world's most reliable systems, yet they still face a host of issues, from aging infrastructure to questions of resource distribution. Here is a comprehensive and systematic approach to tackling these contemporary challenges.

  7. Reduced Power Laer Designation Systems

    National Research Council Canada - National Science Library

    Sherlock, Barry G

    2008-01-01

    This work contributes to the Micropulse Laser Designation (MPLD) project. The objective of MPLD is to develop a 6-lb eye-safe micro-pulse laser system to locate, identify, range, mark, and designate stationary and moving targets...

  8. Reduced Power Laser Designation Systems

    National Research Council Canada - National Science Library

    Sherlock, Barry

    2009-01-01

    This work contributes to the Micropulse Laser Designation (MPLD) project. The objective of this project is to develop a 6-lb eye-safe micro-pulse laser system to locate, identify, range, mark, and designate stationary and moving targets...

  9. Calculation of the energy consumed by the manufacturing and erection of a modern wind generator installation

    International Nuclear Information System (INIS)

    Grum-Schwensen, E.

    1997-01-01

    The paper provides a detailed comparative data on greenhouse gases emissions like methane and carbon dioxide from various energy sources including hydro power, wind power, solar power and fossil fuel power plants

  10. Knowledge-based systems for power management

    Science.gov (United States)

    Lollar, L. F.

    1992-01-01

    NASA-Marshall's Electrical Power Branch has undertaken the development of expert systems in support of further advancements in electrical power system automation. Attention is given to the features (1) of the Fault Recovery and Management Expert System, (2) a resource scheduler or Master of Automated Expert Scheduling Through Resource Orchestration, and (3) an adaptive load-priority manager, or Load Priority List Management System. The characteristics of an advisory battery manager for the Hubble Space Telescope, designated the 'nickel-hydrogen expert system', are also noted.

  11. Static compensators (STATCOMs) in power systems

    CERN Document Server

    Shahnia, Farhad; Ghosh, Arindam

    2014-01-01

    A static compensator (STATCOM), also known as static synchronous compensator, is a member of the flexible alternating current transmission system (FACTS) devices. It is a power-electronics based regulating device which is composed of a voltage source converter (VSC) and is shunt-connected to alternating current electricity transmission and distribution networks. The voltage source is created from a DC capacitor and the STATCOM can exchange reactive power with the network. It can also supply some active power to the network, if a DC source of power is connected across the capacitor. A STATCOM

  12. The armenian power system operation stability investigation accounting putting new power systems into operation

    International Nuclear Information System (INIS)

    Yeghiazaryan, L.V.; Hakobyan, S.G.; Gharibyan, G.V.; Harutyunyan, G.S.; Galstyan, G.H.

    2010-01-01

    The description of the power systems operation stability failure caused by the system significant emergency states occurred during the last working period in Armenian and USA power systems is performed. With the use of PSSTME-31 software portfolio of Siemens Firm a design model is developed and transient electromechanical process calculations for Armenian power system are performed. The accuracy of the model is checked by comparing real-time transient state parameters and their reproduction calculation results.The Armenia - Iran current power transmission lines permissible limit under the condition of the static and dynamic stability requirements and in case of the new thermal power units maintenance are defined

  13. Liquid metals for solar power systems

    Science.gov (United States)

    Flesch, J.; Niedermeier, K.; Fritsch, A.; Musaeva, D.; Marocco, L.; Uhlig, R.; Baake, E.; Buck, R.; Wetzel, T.

    2017-07-01

    The use of liquid metals in solar power systems is not new. The receiver tests with liquid sodium in the 1980s at the Plataforma Solar de Almería (PSA) already proved the feasibility of liquid metals as heat transfer fluid. Despite the high efficiency achieved with that receiver, further investigation of liquid metals in solar power systems was stopped due to a sodium spray fire. Recently, the topic has become interesting again and the gained experience during the last 30 years of liquid metals handling is applied to the concentrated solar power community. In this paper, recent activities of the Helmholtz Alliance LIMTECH concerning liquid metals for solar power systems are presented. In addition to the components and system simulations also the experimental setup and results are included.

  14. dc power system for deuteron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Creek, K.O.; Liska, D.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility dc power system provides excitation current for all linac and High-Energy Beam Transport (HEBT) quadrupole and bending magnets, excitation for horizontal and vertical beam steering, and current-bypass shunts.

  15. Exomars 2016 Mission Electrical Power System

    Directory of Open Access Journals (Sweden)

    Ciancetta Ezio

    2017-01-01

    This paper outlines the Exomars 2016 Electrical Power System (EPS design, providing a description of the major design drivers and resulting configuration, with a view to highlight aspects that could be considered for future designs.

  16. Power system coherency and model reduction

    CERN Document Server

    Chow, Joe H

    2014-01-01

    This book provides a comprehensive treatment for understanding interarea modes in large power systems and obtaining reduced-order models using the coherency concept and selective modal analysis method.

  17. Smart Shipboard Power System Operation and Management

    DEFF Research Database (Denmark)

    Kanellos, Fotis D.; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2016-01-01

    During recent years, optimal electrification of isolated offshore systems has become increasingly important and received extensive attention from the maritime industry. Especially with the introduction of electric propulsion, which has led to a total electrification of shipboard power systems known...... as all-electric ships (AESs), the need for more cost-effective and emission-aware solutions is augmented. Such onboard systems are prone to sudden load variations due to the changing weather conditions as well as mission profile, thus they require effective power management systems (PMSs) to operate...... optimally under different working conditions. In this paper, coordinated optimal power management at the supply/demand side of a given AES is studied with regard to different objectives and related technical/environmental constraints. The optimal power management problem is formulated as a mixed...

  18. Power system deregulation and the Balkan countries

    International Nuclear Information System (INIS)

    Glamochanin, Vlastimir; Stojkovska, Biljana; Cherepnalkoski, Trajche

    2001-01-01

    The aim of the paper is to show the current state and planned activities of the Power System deregulation and privatization in the following Balkan countries: Macedonia, Romania, Bulgaria, Yugoslavia, Greece, Croatia, Slovenia and Turkey

  19. Automated distribution system management for multichannel space power systems

    Science.gov (United States)

    Fleck, G. W.; Decker, D. K.; Graves, J.

    1983-01-01

    A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.

  20. ONU Power Saving Scheme for EPON System

    Science.gov (United States)

    Mukai, Hiroaki; Tano, Fumihiko; Tanaka, Masaki; Kozaki, Seiji; Yamanaka, Hideaki

    PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.

  1. Overload protection system for power inverter

    Science.gov (United States)

    Nagano, S. (Inventor)

    1977-01-01

    An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.

  2. Fault-tolerant power distribution system

    Science.gov (United States)

    Volp, Jeffrey A. (Inventor)

    1987-01-01

    A fault-tolerant power distribution system which includes a plurality of power sources and a plurality of nodes responsive thereto for supplying power to one or more loads associated with each node. Each node includes a plurality of switching circuits, each of which preferably uses a power field effect transistor which provides a diode operation when power is first applied to the nodes and which thereafter provides bi-directional current flow through the switching circuit in a manner such that a low voltage drop is produced in each direction. Each switching circuit includes circuitry for disabling the power field effect transistor when the current in the switching circuit exceeds a preselected value.

  3. Microprocessor controlled, low power data acquisition system

    International Nuclear Information System (INIS)

    Paille, L.K.; Perritt, R.Q.

    1978-01-01

    A low power data acquisition system has been designed as part of a research project to monitor the stability of salt domes for possible storage of radioactive waste. The key features of this system are: very low power consumption in the standby mode; microprocessor control; capability of handling analog and digital inputs; capability to output data in parallel or serial format; and output digitally recorded on magnetic tape

  4. Solar power pumping system for domestic appliences

    OpenAIRE

    Lukhwareni, T.; Gouws, R.; Dobzhanskyi, O.

    2014-01-01

    With the world encountering huge pollution problems, use of renewable energy is being encouraged in place of fossils fuels for electricity generation. On such renewable energies is solar power. Solar powered systems are able to generate electricity using photovoltaic (PV) panels, or thermal collectors directly from sunlight. Pool pump electricity consumption has also risen in South Africa. This paper presents the results of the design, and construction of a PV solar system to effect water pum...

  5. Nuclear power plants documentation system

    International Nuclear Information System (INIS)

    Schwartz, E.L.

    1991-01-01

    Since the amount of documents (type and quantity) necessary for the entire design of a NPP is very large, this implies that an overall and detailed identification, filling and retrieval system shall be implemented. This is even more applicable to the FINAL QUALITY DOCUMENTATION of the plant, as stipulated by IAEA Safety Codes and related guides. For such a purpose it was developed a DOCUMENTATION MANUAL, which describes in detail the before mentioned documentation system. Here we present the expected goals and results which we have to reach for Angra 2 and 3 Project. (author)

  6. Combustion powered thermophotovoltaic emitter system

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, R.S. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  7. Reliability models for Space Station power system

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.

    1987-01-01

    This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.

  8. Texaco gasification power systems for clean energy

    International Nuclear Information System (INIS)

    Quintana, M.E.; Thone, P.W.

    1991-01-01

    The Texaco Gasification Power Systems integrate Texaco's proprietary gasification technology with proven power generation and energy recovery schemes for efficient and environmentally superior fuel utilization. Texaco's commercial experience on gasification spans a period of over 40 years. During this time, the Texaco Gasification Process has been used primarily to manufacture synthesis gas for chemical applications in one hundred commercial installations worldwide. Power generation using the Texaco Gasification Power Systems (TGPS) concept has been successfully demonstrated at the Texaco-sponsored Cool Water Coal Gasification Program in California. The environmental superiority of this technology was demonstrated by the consistent performance of Cool Water in exceeding the strict emission standards of the state of California. Currently, several TGPS projects are under evaluation worldwide for power generation in the range of 90MW to 1300MW

  9. Distributed Power-Generation Systems and Protection

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Yang, Dongsheng

    2017-01-01

    Continuously expanding deployments of distrib¬uted power-generation systems (DPGSs) are transforming the conventional centralized power grid into a mixed distributed electrical network. The modern power grid requires flexible energy utilization but presents challenges in the case of a high...... penetration degree of renewable energy, among which wind and solar photovoltaics are typical sources. The integration level of the DPGS into the grid plays a critical role in developing sustainable and resilient power systems, especially with highly intermittent renewable energy resources. To address...... for the DPGS to consolidate the integration. In light of the above, this paper reviews the power-conversion and control technologies used for DPGSs. The impacts of the DPGS on the distributed grid are also examined, and more importantly, strategies for enhancing the connection and protection of the DPGS...

  10. Heavy Vehicle Essential Power Systems Workshop

    International Nuclear Information System (INIS)

    Susan Rogers

    2001-01-01

    Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road

  11. Examination of Maximum Power Point Tracking on the EV for Installing on Windmill

    OpenAIRE

    雪田, 和人; 細江, 忠司; 小田切, 雄也; 後藤, 泰之; 一柳, 勝宏

    2006-01-01

    This paper proposes that wind generator system is operated by using wind collection equipment and Maximum Power Point Tracking more and more high-efficient. As an example of the utility, it was proposed that it was used for the regeneration of electric vehicle. The efficiency upgrading of electric vehicle can be expect by introducing in addition, proposing system with the conventional regeneration. The field experiment was carried out in order to measure the effect. Regeneration energy by pro...

  12. Development of Dual Power Multirotor System

    Directory of Open Access Journals (Sweden)

    Chin E. Lin

    2017-01-01

    Full Text Available Vertical take-off and landing (VTOL aircraft has good flight characteristics and system performance without runway. The multirotor system has been tried to expand into larger size for longer endurance or higher payload. But the motor power to endurance ratio has been limited. Due to the specific energy of gasoline being much higher than battery, introducing gasoline engine into multirotor system can be considered. This paper proposes a dual power multirotor system to combine a quadrotor using gasoline engines to provide major lift in shorter arm with another quadrotor using brushless DC motors to offer most controllable force with longer arm. System design, fabrication, and verification of the proposed dual power multirotor system development are presented. Preliminary flights have achieved 16 kg payload for long endurance flight. This is useful for various applications with advanced improvements.

  13. Thermoelectric power generation system optimization studies

    Science.gov (United States)

    Karri, Madhav A.

    A significant amount of energy we consume each year is rejected as waste heat to the ambient. Conservative estimates place the quantity of energy wasted at about 70%. Converting the waste heat into electrical power would be convenient and effective for a number of primary and secondary applications. A viable solution for converting waste heat into electrical energy is to use thermoelectric power conversion. Thermoelectric power generation is based on solid state technology with no moving parts and works on the principle of Seebeck effect. In this work a thermoelectric generator (TEG) system simulator was developed to perform various parametric and system optimization studies. Optimization studies were performed to determine the effect of system size, exhaust and coolant ow conditions, and thermoelectric material on the net gains produced by the TEG system and on the optimum TEG system design. A sports utility vehicle was used as a case study for the application of TEG in mobile systems.

  14. Safety in nuclear power systems

    International Nuclear Information System (INIS)

    Myers, L.C.

    1987-05-01

    This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents that have occurred to date. Details are also provided of Ontario Hydro's problems with Unit 2 at Pickering

  15. Power Management for Energy Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel

    by the industrial applications, and defining economic objectives that reect the real physics of the systems as well as our control objectives; 3) solving the involved, non-trivial optimization problems eciently in real-time; 4) demonstrating the feasibility and potential of the proposed methods by extensive...

  16. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  17. Renewable and efficient electric power systems

    CERN Document Server

    Masters, Gilbert M

    2013-01-01

    A solid, quantitative, practical introduction to a wide range of renewable energy systems-in a completely updated, new edition The second edition of Renewable and Efficient Electric Power Systems provides a solid, quantitative, practical introduction to a wide range of renewable energy systems. For each topic, essential theoretical background is introduced, practical engineering considerations associated with designing systems and predicting their performance are provided, and methods for evaluating the economics of these systems are presented. While the book focuses on

  18. Design of ITER NBI power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Ohara, Yoshihiro; Okumura, Yoshikazu [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Higa, Osamu; Kawashima, Syuichi; Ono, Youichi; Tanaka, Masanobu; Yasutomi, Sei

    1997-07-01

    Power supply system for the ITER neutral beam injector (NBI) whose total injection power is 1 MeV, 50 MW from three modules, has been designed. The power supply system consists of a source power supply for negative ion production/extraction and a DC 1 MV, 45 A power supply for negative ion acceleration. An inverter controlled multi-transformer/rectifier system has been adopted to the acceleration power supply. An inverter frequency of 150 Hz was selected to satisfy required specifications which are rise time of <100 ms, voltage ripple of <10% peak to peak and cut off speed of <200{mu}s. It was confirmed that the rise time, the ripple and the cut off speed is about 50 ms, 7% and <200{mu}s respectively by computation. It was also confirmed that a surge current and an energy input to the ion source at the breakdown can be suppressed lower than 3 kA and 10 J, which are considered to be lower than allowable values. A 1 MV transmission line has been designed from a view point of electric field on the inner conductors and grounded conductor. The results from the design study indicate that all the required specification to the power supply system can be satisfied and that R and D on the transmission line is one of the most important subjects. (author)

  19. TFTR power conversion and plasma feedback systems

    International Nuclear Information System (INIS)

    Neumeyer, C.

    1985-01-01

    Major components of the Tokamak Fusion Test Reactor (TFTR) power conversion system include 39 thyristor rectifier power supplies, 12 energy storage capacitor banks, and 6 ohmic heating interrupters. These components are connected in various series/parallel configurations to provide controlled pulses of current to the Toroidal Field (TF), Ohmic Heating (OH), Equilibrium (vertical) Field (EF), and Horizontal Field (HF) magnet coil systems. Real-time control of the power conversion system is accomplished by a centralized dedicated computer; local control is minimal. Power supply firing angles, capacitor bank charge and discharge commands, interrupter commands, etc., are all determined and issued by the central computer. Plasma Position and Current Control (PPCC) reference signals to power conversion (OH, EF, HF) are determined by separate analog electronics but invoked through the power conversion computer. Real-time fault sensing of plasma parameters, gas injection, neutral beams, etc., are monitored by a separate Discharge Fault System (DFS) but routed through the power conversion computer for pre-programmed shutdown response

  20. Design of ITER NBI power supply system

    International Nuclear Information System (INIS)

    Watanabe, Kazuhiro; Ohara, Yoshihiro; Okumura, Yoshikazu; Higa, Osamu; Kawashima, Syuichi; Ono, Youichi; Tanaka, Masanobu; Yasutomi, Sei.

    1997-07-01

    Power supply system for the ITER neutral beam injector (NBI) whose total injection power is 1 MeV, 50 MW from three modules, has been designed. The power supply system consists of a source power supply for negative ion production/extraction and a DC 1 MV, 45 A power supply for negative ion acceleration. An inverter controlled multi-transformer/rectifier system has been adopted to the acceleration power supply. An inverter frequency of 150 Hz was selected to satisfy required specifications which are rise time of <100 ms, voltage ripple of <10% peak to peak and cut off speed of <200μs. It was confirmed that the rise time, the ripple and the cut off speed is about 50 ms, 7% and <200μs respectively by computation. It was also confirmed that a surge current and an energy input to the ion source at the breakdown can be suppressed lower than 3 kA and 10 J, which are considered to be lower than allowable values. A 1 MV transmission line has been designed from a view point of electric field on the inner conductors and grounded conductor. The results from the design study indicate that all the required specification to the power supply system can be satisfied and that R and D on the transmission line is one of the most important subjects. (author)