WorldWideScience

Sample records for wind ism cloud interactions

  1. Numerical modeling of the pulsar wind interaction with ISM

    NARCIS (Netherlands)

    Bogovalov, S. V.; Chechetkin, V. M.; Koldoba, A. V.; Ustyugova, G. V.; Battiston, R; Shea, MA; Rakowski, C; Chatterjee, S

    2006-01-01

    Time dependent numerical simulation of relativistic wind interaction with interstellar medium was performed. The winds are ejected from magnetosphere of rotation powered pulsars. The particle flux in the winds is assumed to be isotropic. The energy flux is taken as strongly anisotropic in accordance

  2. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  3. ISM-induced erosion and gas-dynamical drag in the Oort Cloud

    International Nuclear Information System (INIS)

    Stern, S.A.

    1990-01-01

    The model presently used to examine the physical interactions between the ISM and the Oort Cloud can account for sputtering, sticking, and grain-impact erosion, as well as gas drag, by envisioning the ISM as a multiphase medium with distinct atomic and molecular cloud-phase regimes and coronal and warm/ambient gas-phase regimes. Erosion, which reduces the effectiveness of the thermal and radiation-damage processes acting on cometary surfaces in the Oort cloud, is found to be the dominant ISM interaction; ISM drag effects were found to efficiently remove submicron particles from the Cloud. 67 refs

  4. ISM-induced erosion and gas-dynamical drag in the Oort Cloud

    Science.gov (United States)

    Stern, S. Alan

    1990-01-01

    The model presently used to examine the physical interactions between the ISM and the Oort Cloud can account for sputtering, sticking, and grain-impact erosion, as well as gas drag, by envisioning the ISM as a multiphase medium with distinct atomic and molecular cloud-phase regimes and coronal and warm/ambient gas-phase regimes. Erosion, which reduces the effectiveness of the thermal and radiation-damage processes acting on cometary surfaces in the Oort cloud, is found to be the dominant ISM interaction; ISM drag effects were found to efficiently remove submicron particles from the Cloud.

  5. Dynamical instabilities in magnetohydrodynamic wind-cloud interactions

    Science.gov (United States)

    Banda-Barragan, Wladimir Eduardo; Parkin, Elliot Ross; Crocker, Roland M.; Federrath, Christoph; Bicknell, Geoffrey Vincent

    2015-08-01

    We report the results from a comprehensive numerical study that investigates the role of dynamical instabilities in magnetohydrodynamic interactions between winds and spherical clouds in the interstellar medium. The growth of Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities at interfaces between wind and cloud material is responsible for the disruption of clouds and the formation of filamentary tails. We show how different strengths and orientations of the initial magnetic field affect the development of unstable modes and the ultimate morphology of these filaments. In the weak field limit, for example, KH instabilities developing at the flanks of clouds are dominant, whilst they are suppressed when stronger fields are considered. On the other hand, perturbations that originate RT instabilities at the leading edge of clouds are enhanced when fields are locally stronger. The orientation of the field lines also plays an important role in the structure of filaments. Magnetic ropes are key features of systems in which fields are aligned with the wind velocity, whilst current sheets are favoured when the initial field is preferentially transverse to the wind velocity. We compare our findings with analytical predictions obtained from the linear theory of hydromagnetic stability and provide a classification of filamentary tails based on their morphology.

  6. MHD Interaction of Pulsar Wind Nebulae with SNRs and the ISM

    OpenAIRE

    van der Swaluw, Eric

    2005-01-01

    In the late 1960s the discovery of the Crab pulsar in its associated supernova remnant, launched a new field in supernova remnant research: the study of pulsar-driven or plerionic supernova remnants. In these type of remnants, the relativistic wind emitted by the pulsar, blows a pulsar wind nebula into the interior of its supernova remnant. Now, more then forty years after the discovery of the Crab pulsar, there are more then fifty plerionic supernova remnants known, due to the ever-increasin...

  7. The Local ISM and its Interaction with the Winds of Nearby Late-type Stars

    Science.gov (United States)

    Wood, Brian E.; Linsky, Jeffrey L.

    1998-01-01

    We present new Goddard High-Resolution Spectrograph (GHRS) observations of the Ly-alpha and Mg II absorption lines seen toward the nearby stars 61 Cyg A and 40 Eri A. We use these data to measure interstellar properties along these lines of sight and to search for evidence of circumstellar hydrogen walls, which are produced by collisions between the stellar winds and the Local InterStellar Medium (LISM). We were able to model the Ly-alpha lines of both stars without hydrogen-wall absorption components, but for 61 Cyg A the fit required a stellar Ly-alpha, line profile with an improbably deep self-reversal, and for 40 Eri A the fit required a very low deuterium-to-hydrogen ratio that is inconsistent with previous GHRS measurements. Since these problems could be rectified simply by including stellar hydrogen-wall components with reasonable attributes, our preferred fits to the data include these components. We have explored several ways in which the hydrogen-wall properties measured here and in previous work can be used to study stellar winds and the LISM. We argue that the existence of a hydrogen wall around 40 Eri A and a low H I column density along that line of sight imply that either the interstellar density must decrease toward 40 Eri A or the hydrogen ionization fraction (chi) must increase. We find that hydrogen-wall temperatures are larger for stars with faster velocities through the LISM. The observed temperature-velocity relation is consistent with the predictions of hydromagnetic shock jump conditions. More precise comparison of the data and the jump conditions suggests crude upper limits for both chi and the ratio of magnetic to thermal pressure in the LISM (alpha): chi less than 0.6 and alpha less than 2. The latter upper limit corresponds to a limit on the LISM magnetic field of B less than 5 micro G. These results imply that the plasma Mach number of the interstellar wind flowing into the heliosphere is M(sub A) greater than 1.3, which indicates that

  8. ROSAT view of the ISM in the Large Magellanic Cloud

    Science.gov (United States)

    Chu, You-Hua

    1996-01-01

    Rosat observations of the Large Magellanic Cloud (LMC) show a large scale unbounded diffuse X-ray emission, as well as an enhanced emission within large shell structures. These observations allow the distribution of hot ionized medium in the LMC to be examined. Moreover, the hot interior of supernova shells and superbubbles, supernova remnants and the multi-phase structure of the interstellar medium (ISM) can be investigated.

  9. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    R. Calmer

    2018-05-01

    Full Text Available The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA. In atmospheric research, lightweight RPAs ( <  2.5 kg are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol–cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol–cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS. The five-hole probe is calibrated on a multi-axis platform, and the probe–INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD functions and turbulent kinetic energy (TKE derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland, a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological

  10. The SILCC (SImulating the LifeCycle of molecular Clouds) project - I. Chemical evolution of the supernova-driven ISM

    Czech Academy of Sciences Publication Activity Database

    Walch, S.; Girichidis, P.; Naab, T.; Gatto, A.; Glover, S.C.O.; Wünsch, Richard; Klessen, R.S.; Clark, P.C.; Peters, T.; Derigs, D.; Baczynski, C.

    2015-01-01

    Roč. 454, č. 1 (2015), s. 238-268 ISSN 0035-8711 R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : magnetodydrodynamics * ISM clouds * ISM evolution Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.952, year: 2015

  11. Metals and dust in the neutral ISM: the Galaxy, Magellanic Clouds, and damped Lyman-α absorbers

    Science.gov (United States)

    De Cia, Annalisa

    2018-05-01

    Context. The presence of dust in the neutral interstellar medium (ISM) dramatically changes the metal abundances that we measure. Understanding the metal content in the neutral ISM, and a direct comparison between different environments, has been hampered to date because of the degeneracy to the observed ISM abundances caused by the effects of metallicity, the presence of dust, and nucleosynthesis. Aims: We study the metal and dust content in the neutral ISM consistently in different environments, and assess the universality of recently discovered sequences of relative abundances. We also intend to assess the validity of [Zn/Fe] as a tracer of dust in the ISM. This has recently been cast into doubt based on observations of stellar abundances, and needs to be addressed before we can safely use it to study the ISM. Methods: In this letter we present a simple comparison of relative abundances observed in the neutral ISM in the Galaxy, the Magellanic Clouds, and damped Lyman-α absorbers (DLAs). The main novelty in this comparison is the inclusion of the Magellanic Clouds. Results: The same sequences of relative abundances are valid for the Galaxy, Magellanic Clouds, and DLAs. These sequences are driven by the presence of dust in the ISM and seem "universal". Conclusions: The metal and dust properties in the neutral ISM appear to follow a similar behaviour in different environments. This suggests that a dominant fraction of the dust budget is built up from grain growth in the ISM depending of the physical conditions and regardless of the star formation history of the system. In addition, the DLA gas behaves like the neutral ISM, at least from a chemical point of view. Finally, despite the deviations in [Zn/Fe] observed in stellar abundances, [Zn/Fe] is a robust dust tracer in the ISM of different environments, from the Galaxy to DLAs.

  12. Superluminous Transients at AGN Centers from Interaction between Black Hole Disk Winds and Broad-line Region Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J.; Tanaka, Masaomi; Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Morokuma, Tomoki, E-mail: takashi.moriya@nao.ac.jp [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2017-07-10

    We propose that superluminous transients that appear at central regions of active galactic nuclei (AGNs) such as CSS100217:102913+404220 (CSS100217) and PS16dtm, which reach near- or super-Eddington luminosities of the central black holes, are powered by the interaction between accretion-disk winds and clouds in broad-line regions (BLRs) surrounding them. If the disk luminosity temporarily increases by, e.g., limit–cycle oscillations, leading to a powerful radiatively driven wind, strong shock waves propagate in the BLR. Because the dense clouds in the AGN BLRs typically have similar densities to those found in SNe IIn, strong radiative shocks emerge and efficiently convert the ejecta kinetic energy to radiation. As a result, transients similar to SNe IIn can be observed at AGN central regions. Since a typical black hole disk-wind velocity is ≃0.1 c , where c is the speed of light, the ejecta kinetic energy is expected to be ≃10{sup 52} erg when ≃1 M {sub ⊙} is ejected. This kinetic energy is transformed to radiation energy in a timescale for the wind to sweep up a similar mass to itself in the BLR, which is a few hundred days. Therefore, both luminosities (∼10{sup 44} erg s{sup −1}) and timescales (∼100 days) of the superluminous transients from AGN central regions match those expected in our interaction model. If CSS100217 and PS16dtm are related to the AGN activities triggered by limit–cycle oscillations, they become bright again in coming years or decades.

  13. Interactions between vegetation, atmospheric turbulence and clouds under a wide range of background wind conditions

    NARCIS (Netherlands)

    Sikma, M.; Ouwersloot, H.G.; Pedruzo-Bagazgoitia, X.; Heerwaarden, van C.C.; Vilà-Guerau de Arellano, J.

    2018-01-01

    The effects of plant responses to cumulus (Cu) cloud shading are studied from free convective to shear-driven boundary-layer conditions. By using a large-eddy simulation (LES) coupled to a plant physiology embedded land-surface submodel, we study the vegetation-cloud feedbacks for a wide range (44)

  14. HUBBLE SPACE TELESCOPE AND HI IMAGING OF STRONG RAM PRESSURE STRIPPING IN THE COMA SPIRAL NGC 4921: DENSE CLOUD DECOUPLING AND EVIDENCE FOR MAGNETIC BINDING IN THE ISM

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, Jeffrey D. P.; Abramson, Anne [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Bravo-Alfaro, Hector, E-mail: jeff.kenney@yale.edu [Institut d’Astrophysique de Paris, CNRS/UPMC, 98bis, Boulevard Arago F-75014, Paris (France)

    2015-08-15

    Remarkable dust extinction features in the deep Hubble Space Telescope (HST) V and I images of the face-on Coma cluster spiral galaxy NGC 4921 show in unprecedented ways how ram pressure strips the ISM from the disk of a spiral galaxy. New VLA HI maps show a truncated and highly asymmetric HI disk with a compressed HI distribution in the NW, providing evidence for ram pressure acting from the NW. Where the HI distribution is truncated in the NW region, HST images show a well-defined, continuous front of dust that extends over 90° and 20 kpc. This dust front separates the dusty from dust-free regions of the galaxy, and we interpret it as galaxy ISM swept up near the leading side of the ICM–ISM interaction. We identify and characterize 100 pc–1 kpc scale substructure within this dust front caused by ram pressure, including head–tail filaments, C-shaped filaments, and long smooth dust fronts. The morphology of these features strongly suggests that dense gas clouds partially decouple from surrounding lower density gas during stripping, but decoupling is inhibited, possibly by magnetic fields that link and bind distant parts of the ISM.

  15. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    Science.gov (United States)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  16. Computational Laboratory Astrophysics to Enable Transport Modeling of Protons and Hydrogen in Stellar Winds, the ISM, and other Astrophysical Environments

    Science.gov (United States)

    Schultz, David

    As recognized prominently by the APRA program, interpretation of NASA astrophysical mission observations requires significant products of laboratory astrophysics, for example, spectral lines and transition probabilities, electron-, proton-, or heavy-particle collision data. Availability of these data underpin robust and validated models of astrophysical emissions and absorptions, energy, momentum, and particle transport, dynamics, and reactions. Therefore, measured or computationally derived, analyzed, and readily available laboratory astrophysics data significantly enhances the scientific return on NASA missions such as HST, Spitzer, and JWST. In the present work a comprehensive set of data will be developed for the ubiquitous proton-hydrogen and hydrogen-hydrogen collisions in astrophysical environments including ISM shocks, supernova remnants and bubbles, HI clouds, young stellar objects, and winds within stellar spheres, covering the necessary wide range of energy- and charge-changing channels, collision energies, and most relevant scattering parameters. In addition, building on preliminary work, a transport and reaction simulation will be developed incorporating the elastic and inelastic collision data collected and produced. The work will build upon significant previous efforts of the principal investigators and collaborators, will result in a comprehensive data set required for modeling these environments and interpreting NASA astrophysical mission observations, and will benefit from feedback from collaborators who are active users of the work proposed.

  17. Hydrodynamic effects of nuclear active galaxy winds on host galaxies

    International Nuclear Information System (INIS)

    Schiano, A.V.R.

    1984-01-01

    In order to test the hypothesized existence of a powerful, thermal wind in active galactic nuclei, the hydrodynamic effects of such a wind on a model galactic interstellar medium (ISM) are investigated. The properties of several model ISMs are derived from observations of the Milky Way's ISM and those of nearby spiral and elliptical galaxies. The propagation of the wind into the low density gas component of the ISM is studied using the Kompaneets approximation of a strong explosion in an exponential atmosphere. Flattened gas distributions are shown to experience blow-out of wind gas along the symmetry axis. Next, the interaction of dense, interstellar clouds with the wind is investigated. The stability and mass loss of clouds in the wind are studied and it is proposed that clouds survive the encounter with the wind over large timescales. It is proposed that the narrow emission line regions (NELR) of active galaxies are the result of the interaction of active nuclei photons and a thermal wind on large, interstellar clouds

  18. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  19. THE EVOLUTION OF GAS CLOUDS FALLING IN THE MAGNETIZED GALACTIC HALO: HIGH-VELOCITY CLOUDS (HVCs) ORIGINATED IN THE GALACTIC FOUNTAIN

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-01-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n ≥ 0.1 H atoms cm -3 ) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n ≤ 0.01 H atoms cm -3 ) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  20. BENCHMARKING THE INTERACTIONS AMONG BARRIERS IN DAIRY SUPPLY CHAIN: AN ISM APPROACH

    Directory of Open Access Journals (Sweden)

    Rahul S Mor

    2018-06-01

    Full Text Available The purpose of this paper is to explore the key barriers in dairy supply chain and to analyze their interactions in the context of Indian dairy industry. A total of eight barriers have been identified through literature review and the opinions of an expert team consisting of managerial and technical experts from dairy industry and academics. A questionnaire has been developed for identified barriers and responses were collected from select dairy industries located at northern India. Interpretive structure modeling (ISM is used to analyze the interactions among barriers and to propose a structural model. Further, the importance of barriers is determined based on their driving and dependence power using MICMAC analysis. The ISM-based model allocates to 'traceability, unbalanced production line, over-processing' as key barriers, 'wastages and high production downtime' comes next. MICMAC analysis depicts one autonomous barrier, one dependent barrier and six linkage barriers. The ISM-based model and MICMAC analysis will support the decision makers in dairy industry for planning their supply chain activities in an efficient way by managing the identified barriers.

  1. Clouds blown by the solar wind

    International Nuclear Information System (INIS)

    Voiculescu, M; Condurache-Bota, S; Usoskin, I

    2013-01-01

    In this letter we investigate possible relationships between the cloud cover (CC) and the interplanetary electric field (IEF), which is modulated by the solar wind speed and the interplanetary magnetic field. We show that CC at mid–high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Thus, our results suggest that mid–high latitude clouds might be affected by the solar wind via the GEC. Since IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. (letter)

  2. Mapping jet-ISM interactions in X-ray binaries with ALMA: a GRS 1915+105 case study

    Science.gov (United States)

    Tetarenko, A. J.; Freeman, P.; Rosolowsky, E. W.; Miller-Jones, J. C. A.; Sivakoff, G. R.

    2018-03-01

    We present Atacama Large Millimetre/Sub-Millimetre Array (ALMA) observations of IRAS 19132+1035, a candidate jet-interstellar medium (ISM) interaction zone near the black hole X-ray binary (BHXB) GRS 1915+105. With these ALMA observations (combining data from the 12 m array and the Atacama Compact Array), we map the molecular line emission across the IRAS 19132+1035 region. We detect emission from the 12CO [J = 2 - 1], 13CO [ν = 0, J = 2 - 1], C18O [J = 2 - 1], H2CO [J = 30, 3 - 20, 2], H2CO [J = 32, 2 - 22, 1], H2CO [J = 32, 1 - 22, 0], SiO [ν = 0, J = 5 - 4], CH3OH [J = 42, 2 - 31, 2], and CS [ν = 0, J = 5 - 4] transitions. Given the morphological, spectral, and kinematic properties of this molecular emission, we present several lines of evidence that support the presence of a jet-ISM interaction at this site, including a jet-blown cavity in the molecular gas. This compelling new evidence identifies this site as a jet-ISM interaction zone, making GRS 1915+105, the third Galactic BHXB with at least one conclusive jet-ISM interaction zone. However, we find that this interaction occurs on much smaller scales than was postulated by previous work, where the BHXB jet does not appear to be dominantly powering the entire IRAS 19132+1035 region. Using estimates of the ISM conditions in the region, we utilize the detected cavity as a calorimeter to estimate the time-averaged power carried in the GRS 1915+105 jets of (8.4^{+7.7}_{-8.1})× 10^{32} erg s^{-1}. Overall, our analysis demonstrates that molecular lines are excellent diagnostic tools to identify and probe jet-ISM interaction zones near Galactic BHXBs.

  3. Interaction of Supernova Blast Waves with Interstellar Clouds: Experiments on the Omega Laser

    International Nuclear Information System (INIS)

    Klein, R.I.; Robey, H.F.; Perry, T.S.; Kane, J.O.; Greenough, J.A.; Marinak, M.M.

    2001-01-01

    The interaction of strong shock waves, such as those generated by the explosion of supernovae with interstellar clouds, is a problem of fundamental importance in understanding the evolution and the dynamics of the interstellar medium (ISM) as it is disrupted by shock waves. The physics of this essential interaction is critical to understanding the evolution of the ISM, the mixing of interstellar clouds with the ISM and the viability of this mechanism for triggered star formation. Here we present the results of a series of new OMEGA laser experiments investigating the evolution of a high density sphere embedded in a low density medium after the interaction of a strong shock wave, thereby emulating the supernova shock-cloud interaction. The interaction is viewed from two orthogonal directions enabling visualization of the both the initial distortion of the sphere into a vortex ring as well as the onset of an azimuthal instability that ultimately results in the three-dimensional breakup of the ring. These studies augment previous studies [1,2] on the NOVA laser by enabling the full three-dimensional topology of the interaction to be understood. We show that the experimental results for the vortex ring are in remarkable agreement with the incompressible theory of Widnall [3]. Implications for mixing in the ISM are discussed

  4. A model of SNR evolution for an O-star in a cloudy ISM

    International Nuclear Information System (INIS)

    Shull, P. Jr.

    1988-01-01

    The authors present an analytical model of SNR evolution in a cloudy interstellar medium for a single progenitor star of spectral type 05 V. The model begins with the progenitor on the zero-age main sequence, includes the effects of the star's wind and ionizing photons, and ends with the SNR's assimilation by the ISM. The authors assume that the ISM consists of atomic clouds, molecular clouds, and a hot intercloud phase. The type of SNR that results bears a strong resemblance to N63A in the Large Magellanic Cloud

  5. Interaction and conflict between Sufism and Shi`ism during Safavid era

    Directory of Open Access Journals (Sweden)

    E Naghibi

    2017-10-01

    Full Text Available 14th century was considered as the conciliation of Imami Shi`ism and Sufism. But, the relation at the beginning of Safavid dynasty developed to the extent that concepts such as guardianship in a mixture of Shi’ite and Sufi themes made the situation prone to political functions. Imami Shi`ism became official for the first time by Safavids however, their reliance on the support of Turkmen to acquire power urged them to make Sufism superior to Shi`ism. Thus, Ghezelbash people representing Sufism depicted a great kinglike image of the Absent Imam which did not comply with religion and was against the claim of jurists. The perspective did not remain stable after Safavid dynasty was completely established. The idea was in conflict with the interests of the ruling authority, so Safavid rulers turned to Shi`ism from Sufism. The issue not only made Shi`ism and jurists superior to Sufism but also caused Shi`ites confront Sufism for several centuries. The aim of the present article is to investigate the process of peace and conflict between Sufism and Shi`ism during Safavid dynasty.

  6. ISM chemical abundances in two intermediate-velocity clouds in the line of sight to SN 1987A

    Science.gov (United States)

    Morgan, Siobahn; Bohm-Vitense, Erika

    1988-01-01

    The earliest IUE high-resolution spectra of SN 1987A have been studied and reveal the presence of several clouds in the line of sight to the LMC. In particular, there are two clouds with radial velocities of about 130 km/s and about 180 km/s. These clouds' velocities are between those of Galactic clouds at 0-80 km/s and those of LMC gas at about 270 km/s. Chemical-abundance determinations may help to determine the origin and location of these clouds. Curve-of-growth analysis and 21-cm observations show that they may be underabundant in heavy elements by about a factor of 2 as compared to solar abundances. No depletion indicative of grain formation can be seen.

  7. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  8. On unravelling mechanism of interplay between cloud and large scale circulation: a grey area in climate science

    Science.gov (United States)

    De, S.; Agarwal, N. K.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Sahai, A. K.

    2018-04-01

    The interaction between cloud and large scale circulation is much less explored area in climate science. Unfolding the mechanism of coupling between these two parameters is imperative for improved simulation of Indian summer monsoon (ISM) and to reduce imprecision in climate sensitivity of global climate model. This work has made an effort to explore this mechanism with CFSv2 climate model experiments whose cloud has been modified by changing the critical relative humidity (CRH) profile of model during ISM. Study reveals that the variable CRH in CFSv2 has improved the nonlinear interactions between high and low frequency oscillations in wind field (revealed as internal dynamics of monsoon) and modulates realistically the spatial distribution of interactions over Indian landmass during the contrasting monsoon season compared to the existing CRH profile of CFSv2. The lower tropospheric wind error energy in the variable CRH simulation of CFSv2 appears to be minimum due to the reduced nonlinear convergence of error to the planetary scale range from long and synoptic scales (another facet of internal dynamics) compared to as observed from other CRH experiments in normal and deficient monsoons. Hence, the interplay between cloud and large scale circulation through CRH may be manifested as a change in internal dynamics of ISM revealed from scale interactive quasi-linear and nonlinear kinetic energy exchanges in frequency as well as in wavenumber domain during the monsoon period that eventually modify the internal variance of CFSv2 model. Conversely, the reduced wind bias and proper modulation of spatial distribution of scale interaction between the synoptic and low frequency oscillations improve the eastward and northward extent of water vapour flux over Indian landmass that in turn give feedback to the realistic simulation of cloud condensates attributing improved ISM rainfall in CFSv2.

  9. Aerosol-Cloud Interactions During Puijo Cloud Experiments - The effects of weather and local sources

    Science.gov (United States)

    Komppula, Mika; Portin, Harri; Leskinen, Ari; Romakkaniemi, Sami; Brus, David; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Kortelainen, Aki; Hao, Liqing; Miettinen, Pasi; Jaatinen, Antti; Ahmad, Irshad; Lihavainen, Heikki; Laaksonen, Ari; Lehtinen, Kari E. J.

    2013-04-01

    The Puijo measurement station has provided continuous data on aerosol-cloud interactions since 2006. The station is located on top of the Puijo observation tower (306 m a.s.l, 224 m above the surrounding lake level) in Kuopio, Finland. The top of the tower is covered by cloud about 15 % of the time, offering perfect conditions for studying aerosol-cloud interactions. With a twin-inlet setup (total and interstitial inlets) we are able to separate the activated particles from the interstitial (non-activated) particles. The continuous twin-inlet measurements include aerosol size distribution, scattering and absorption. In addition cloud droplet number and size distribution are measured continuously with weather parameters. During the campaigns the twin-inlet system was additionally equipped with aerosol mass spectrometer (AMS) and Single Particle Soot Photometer (SP-2). This way we were able to define the differences in chemical composition of the activated and non-activated particles. Potential cloud condensation nuclei (CCN) in different supersaturations were measured with two CCN counters (CCNC). The other CCNC was operated with a Differential Mobility Analyzer (DMA) to obtain size selected CCN spectra. Other additional measurements included Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) for particle hygroscopicity. Additionally the valuable vertical wind profiles (updraft velocities) are available from Halo Doppler lidar during the 2011 campaign. Cloud properties (droplet number and effective radius) from MODIS instrument onboard Terra and Aqua satellites were retrieved and compared with the measured values. This work summarizes the two latest intensive campaigns, Puijo Cloud Experiments (PuCE) 2010 & 2011. We study especially the effect of the local sources on the cloud activation behaviour of the aerosol particles. The main local sources include a paper mill, a heating plant, traffic and residential areas. The sources can be categorized and identified

  10. Large Interstellar Polarisation Survey. II. UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM

    Science.gov (United States)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.

    2018-03-01

    It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.

  11. A 'special effort' to provide improved sounding and cloud-motion wind data for FGGE. [First GARP Global Experiment

    Science.gov (United States)

    Greaves, J. R.; Dimego, G.; Smith, W. L.; Suomi, V. E.

    1979-01-01

    Enhancement and editing of high-density cloud motion wind assessments and research satellite soundings have been necessary to improve the quality of data used in The Global Weather Experiment. Editing operations are conducted by a man-computer interactive data access system. Editing will focus on such inputs as non-US satellite data, NOAA operational sounding and wind data sets, wind data from the Indian Ocean satellite, dropwindsonde data, and tropical mesoscale wind data. Improved techniques for deriving cloud heights and higher resolution sounding in meteorologically active areas are principal parts of the data enhancement program.

  12. Interaction of Supernova Remnants with Interstellar Clouds: From the Nova Laser to the Galaxy

    International Nuclear Information System (INIS)

    Klein, Richard I.; Budil, Kimberly S.; Perry, Theodore S.; Bach, David R.

    2000-01-01

    The interaction of strong shock waves, such as those generated by the explosion of supernovae with interstellar clouds, is a problem of fundamental importance in understanding the evolution and the dynamics of the interstellar medium (ISM) as it is disrupted by shock waves. The physics of this essential interaction sheds light on several key questions: (1) What is the rate and total amount of gas stripped from the cloud, and what are the mechanisms responsible? (2) What is the rate of momentum transfer to the cloud? (3) What is the appearance of the shocked cloud, its morphology and velocity dispersion? (4) What is the role of vortex dynamics on the evolution of the cloud? (5) Can the interaction result in the formation of a new generation of stars? To address these questions, one of us has embarked on a comprehensive multidimensional numerical study of the shock cloud problem using high-resolution adaptive mesh refinement (AMR) hydrodynamics. Here we present the results of a series of Nova laser experiments investigating the evolution of a high-density sphere embedded in a low-density medium after the passage of a strong shock wave, thereby emulating the supernova shock-cloud interaction. The Nova laser was utilized to generate a strong (∼Mach 10) shock wave which traveled along a miniature beryllium shock tube, 750 μm in diameter, filled with a low-density plastic emulating the ISM. Embedded in the plastic was a copper microsphere (100 μm in diameter) emulating the interstellar cloud. Its morphology and evolution as well as the shock wave trajectory were diagnosed via side-on radiography. We describe here experimental results of this interaction for the first time out to several cloud crushing times and compare them to detailed two- and three-dimensional radiation hydrodynamic simulations using both arbitrary Lagrangian and Eulerian hydrodynamics (ALE) as well as high-resolution AMR hydrodynamics. We briefly discuss the key hydrodynamic instabilities

  13. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    2017-11-01

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using

  14. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using

  15. Three-component model of solar wind--interstellar medium interaction: some numerical results

    International Nuclear Information System (INIS)

    Baranov, V.; Ermakov, M.; Lebedev, M.

    1981-01-01

    A three-component (electrons, protons, H atoms) model for the interaction between the local interstellar medium and the solar wind is considered. A numerical analysis has been performed to determine how resonance charge exchange in interstellar H atoms that have penetrated the solar wind would affect the two-shock model developed previously by Baranov et al. In particular, if n/sub Hinfinity//n/sub e/infinity>10 (n/sub Hinfinity/, n/sub e/infinity denote the number density of H atoms and electrons in the local ISM) the inner shock may approach the sun as closely as the outer planetary orbits

  16. Optical light curve of GRB 121011A: a textbook for the onset of GRB afterglow in a mixture of ISM and wind-type medium

    International Nuclear Information System (INIS)

    Xin, Li-Ping; Wei, Jian-Yan; Qiu, Yu-Lei; Deng, Jin-Song; Wang, Jing; Han, Xu-Hui

    2016-01-01

    We report the optical observations of GRB 121011A by the 0.8m TNT facility at Xinglong observatory, China. The light curve of the optical afterglow shows a smooth and featureless bump during the epoch of ∼130 s and ∼5000 s with a rising index of 1.57 ± 0.28 before the break time of 539 ± 44 s, and a decaying index of about 1.29 ± 0.07 up to the end of our observations. Moreover, the X-ray light curve decays in a single power-law with a slope of about 1.51 ± 0.03 observed by XRT onboard Swift from 100 s to about 10 000 s after the burst trigger. The featureless optical light curve could be understood as an onset process under the external-shock model. The typical frequency has been below or near the optical one before the deceleration time, and the cooling frequency is located between the optical and X-ray wavelengths. The external medium density has a transition from a mixed stage of ISM and wind-type medium before the peak time to the ISM at the later phase. The joint-analysis of X-ray and optical light curves shows that the emissions from both frequencies are consistent with the prediction of the standard afterglow model without any energy injections, indicating that the central engine has stopped its activity and does not restart anymore after the prompt phase. (paper)

  17. Meteorological explanation of wake clouds at Horns Rev wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Emeis, S. [Karlsruhe Institute of Technology (Germany). Inst. for Meteorology and Climate Research

    2010-08-15

    The occurrence of wake clouds at Horns Rev wind farm is explained as mixing fog. Mixing fog forms when two nearly saturated air masses with different temperature are mixed. Due to the non-linearity of the dependence of the saturation water vapour pressure on temperature, the mixed air mass is over-saturated and condensation sets in. On the day in February 2008, when the wake clouds were observed at Horns Rev, cold and very humid air was advected from the nearby land over the warmer North Sea and led to the formation of a shallow layer with sea smoke or fog close above the sea surface. The turbines mixed a much deeper layer and thus provoked the formation of cloud trails in the wakes of the turbines. (orig.)

  18. Cool infalling gas and its interaction with the hot ISM of elliptical galaxies

    Science.gov (United States)

    Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors describe work leading to the suggestion that interaction between infalling cool gas and ambient hot, coronal plasma in elliptical galaxies is responsible for emission filaments, and might remove the need for large mass depositions in cooling flows. A test of the hypothesis is undertaken - the run of surface brightness with radius for the emission lines - and the prediction agrees well with the data.

  19. A Search for Hydrodynamical Interaction Between the ISM and Radio Jets in IC4296

    Science.gov (United States)

    Mackie, Glen

    1998-01-01

    The ROSAT HRI Data set on IC 4296 has been reduced and analysed. A draft paper on the small-scale structure of x-ray emission and its relation to the radio emission has been written. Mackie left the Smithsonian Astrophysical Observatory in September 1997 and in January 1998 he joined the staff at Carter Observatory, New Zealand. Mackie is currently (May 1998) upgrading computer software at Carter to run IRAF-PROS and XSPEC x-ray software packages in order to reduce and analyze archival ROSAT PSPC data on IC 4296. The PSPC results are needed to investigate the hot gas temperature and abundance properties that will be used in conjunction with the radio jet properties to determine the hydrodynamical interaction status of IC 4296, and finalize the results of a research paper.

  20. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    Energy Technology Data Exchange (ETDEWEB)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  1. Radiative Importance of Aerosol-Cloud Interaction

    Science.gov (United States)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  2. The gravitational interaction between N-body (star clusters) and hydrodynamic (ISM) codes in disk galaxy simulations

    International Nuclear Information System (INIS)

    Schroeder, M.C.; Comins, N.F.

    1986-01-01

    During the past twenty years, three approaches to numerical simulations of the evolution of galaxies have been developed. The first approach, N-body programs, models the motion of clusters of stars as point particles which interact via their gravitational potentials to determine the system dynamics. Some N-body codes model molecular clouds as colliding, inelastic particles. The second approach, hydrodynamic models of galactic dynamics, simulates the activity of the interstellar medium as a compressible gas. These models presently do not include stars, the effect of gravitational fields, or allow for stellar evolution and exchange of mass or angular momentum between stars and the interstellar medium. The third approach, stochastic star formation simulations of disk galaxies, allows for the interaction between stars and interstellar gas, but does not allow the star particles to move under the influence of gravity

  3. Cloud Formation, Sea-Air-Land Interaction, Mozambique, Africa

    Science.gov (United States)

    1991-01-01

    This rare depiction of the physical interactions of air land and sea in cloud formation was seen over Mozambique (12.0S, 40.5E). Moist low air, heated as it moves over land, rises and forms clouds. Even the coastal islands have enough heat to initiate the process. Once begun, the circulation is dynamic and the descending motion suppresses cloud formation on either side of the cloud stream. As clouds move inland, they rise to follow the land upslope.

  4. Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields

    Science.gov (United States)

    Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo

    The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.

  5. Interactive Trunk Extraction from Forest Point Cloud

    Directory of Open Access Journals (Sweden)

    T. Mizoguchi

    2014-06-01

    Full Text Available For forest management or monitoring, it is required to constantly measure several parameters of each tree, such as height, diameter at breast height, and trunk volume. Terrestrial laser scanner has been used for this purpose instead of human workers to reduce time and cost for the measurement. In order to use point cloud captured by terrestrial laser scanner in the above applications, it is an important step to extract all trees or their trunks separately. For this purpose, we propose an interactive system in which a user can intuitively and efficiently extract each trunk by a simple editing on the distance image created from the point cloud. We demonstrate the effectiveness of our proposed system from various experiments.

  6. C+/CO Transitions in the Diffuse ISM: Transitional Cloud Sample from the GOT C+ Survey of [CII] in the inner Galaxy at l = -30deg to 30deg

    Science.gov (United States)

    Velusamy, T.; Pineda, J. L.; Langer, W. D.; Willacy, K.; Goldsmith, P. F.

    2011-05-01

    Our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the well-shielded molecular phase traced by CO. Recently, using the first results of the Herschel Key Project GOT C+, a HIFI C+ survey of the Galactic plane, Velusamy, Langer, Pineda et al. (A&A 521, L18, 2010) have shown that in the diffuse interstellar transition clouds a significant fraction of the carbon exists primarily as C^+ with little C^0 and CO in a warm 'dark gas' layer in which hydrogen is mostly H_2 with little atomic H, surrounding a modest 12CO-emitting core. The [CII] fine structure transition, at 1.9 THz (158 μm) is the best tracer of this component of the interstellar medium, which is critical to our understanding of the atomic to molecular cloud transitions. The Herschel Key Project GOT C+ is designed to study such clouds by observing with HIFI the [CII] line emission along 500 lines of sight (LOSs) throughout the Galactic disk. Here we present the identification and chemical status of a few hundred diffuse and transition clouds traced by [CII], along with auxiliary HI and CO data covering ~100 LOSs in the inner Galaxy between l= -30° and 30°. We identify transition clouds as [CII] components that are characterized by the presence of both HI and 12CO, but no 13CO emission. The intensities, I(CII) and I(HI), are used as measures of the visual extinction, AV, in the cloud up to the C^+/C^0/CO transition layer and a comparison with I(12CO) yields a more complete H_2 molecular inventory. Our results show that [CII] emission is an excellent tool to study transition clouds and their carbon chemistry in the ISM, in particular as a unique tracer of molecular H_2, which is not easily observed by other means. The large sample presented here will serve as a resource to study the chemical and physical status of diffuse transition clouds in a wide range of Galactic environments and constrain the physical parameters such as the FUV intensity and cosmic

  7. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the intertropical convergence zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern Hadley cell. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scale spatiotemporal ...

  8. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the Intertropical Convergence Zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern branch of the Hadley cell in the Atlantic. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scal...

  9. Interacting Winds in Eclipsing Symbiotic Systems

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Interacting Winds in Eclipsing Symbiotic Systems – The Case Study of EG Andromedae ... to obtain the physical parameters of a quiescent eclipsing symbiotic system. ... Articles are also visible in Web of Science immediately.

  10. Solutions to raptor-wind farm interactions

    Energy Technology Data Exchange (ETDEWEB)

    Madders, M.; Walker, D.G. [CRE Energy Ltd., Scottish Power, Glasgow (United Kingdom)

    2000-07-01

    Wind energy developments in the uplands have the potential to adversely impact upon a number of raptor species by lowering survival and reproductive rates. In many cases, wind farms are proposed in areas where raptors are already under pressure from existing land uses, notably sheep grazing and forestry. This paper summarises the approach used to assess the impact of a 30MW wind farm on a pair of golden eagles in the Kintyre peninsula, Scotland. We outline the method being used to manage habitats for the benefit of the eagles and their prey. By adopting management practices that are both wide-scale and long-term, we aim to reduce the impact to the wind farm to levels considered acceptable by the conservation agencies, and improve breeding productivity of the eagles using the wind farm. The implications of this innovative approach for future raptor--wind farm interactions are discussed. (Author)

  11. Shock wave interactions with detonable clouds

    International Nuclear Information System (INIS)

    Ripley, R.C.; Josey, T.; Donahue, L.; Whitehouse, D.R.

    2004-01-01

    This paper presents results from the numerical simulation of compressible multi-species gases in an unstructured mesh CFD code called Chinook. Multiple species gases are significant to a wide range of CFD applications that involve chemical reactions, in particular detonation. The purpose of this paper is to investigate the interaction of shock waves with localized regions of reactive and non-reactive gas species. Test cases are chosen to highlight shock reflection and acceleration through combustion products resulting from the detonation of an explosive charge, and detonation wave propagation through a fuel-air cloud. Computations are performed in a 2D axi-symmetric framework. (author)

  12. Clouds, Wind and the Biogeography of Central American Cloud Forests: Remote Sensing, Atmospheric Modeling, and Walking in the Jungle

    Science.gov (United States)

    Lawton, R.; Nair, U. S.

    2011-12-01

    Cloud forests stand at the core of the complex of montane ecosystems that provide the backbone to the multinational Mesoamerican Biological Corridor, which seeks to protect a biodiversity conservation "hotspot" of global significance in an area of rapidly changing land use. Although cloud forests are generally defined by frequent and prolonged immersion in cloud, workers differ in their feelings about "frequent" and "prolonged", and quantitative assessments are rare. Here we focus on the dry season, in which the cloud and mist from orographic cloud plays a critical role in forest water relations, and discuss remote sensing of orographic clouds, and regional and atmospheric modeling at several scales to quantitatively examine the distribution of the atmospheric conditions that characterize cloud forests. Remote sensing using data from GOES reveals diurnal and longer scale patterns in the distribution of dry season orographic clouds in Central America at both regional and local scales. Data from MODIS, used to calculate the base height of orographic cloud banks, reveals not only the geographic distributon of cloud forest sites, but also striking regional variation in the frequency of montane immersion in orographic cloud. At a more local scale, wind is known to have striking effects on forest structure and species distribution in tropical montane ecosystems, both as a general mechanical stress and as the major agent of ecological disturbance. High resolution regional atmospheric modeling using CSU RAMS in the Monteverde cloud forests of Costa Rica provides quantitative information on the spatial distribution of canopy level winds, insight into the spatial structure and local dynamics of cloud forest communities. This information will be useful in not only in local conservation planning and the design of the Mesoamerican Biological Corridor, but also in assessments of the sensitivity of cloud forests to global and regional climate changes.

  13. Early time interaction of lithium ions with the solar wind in the AMPTE mission

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Goodrich, C.C.; Mankofsky, A.; Papadopoulos, K.

    1986-01-01

    The early time interaction of an artificially injected lithium cloud with the solar wind is simulated with a one-dimensional hybrid code. Simulation results indicate that the lithium cloud presents an obstacle to the solar wind flow, forming a shock-like interaction region. Several notable features are found: (1) The magnetic field is enhanced up to a factor of about 6 followed by a magnetic cavity downstream. (2) Solar wind ions are slowed down inside the lithium cloud, with substantial upstream reflection. (3) Most of the lithium ions gradually pick up the velocity of the solar wind and move downstream. (4) Intense and short-wavelength electric fields exist ahead of the interaction region. (5) Strong electron heating occurs within the lithium clouds. (6) The convection electric field in the in the solar wind is modulated in the interaction region. The simulation results are in remarkable agreement with in situ spacecraft measurements made during lithium releases in the solar wind by the AMPTE (Active magnetospheric Particle Tracer Explorers) Program

  14. Design Mining Interacting Wind Turbines.

    Science.gov (United States)

    Preen, Richard J; Bull, Larry

    2016-01-01

    An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.

  15. HI Clouds Near the Galactic Center: Possible Tracers of the Nuclear Wind

    Science.gov (United States)

    Lockman, Felix J.; McClure-Griffiths, Naomi; DiTeodoro, Enrico

    2017-01-01

    We have used the Green Bank Telescope to discover more than one hundred neutral hydrogen clouds that appear to be embedded in the Fermi Bubble -- the Milky Way’s nuclear wind. With the other members of this population that were previously found with the Australia Telescope Compact Array, we now have a sample of about 200 such clouds. They are identified by their peculiar velocities. The cloud kinematics show no trace of Galactic rotation or association with the Galactic bar. Near longitude zero the clouds can have values of VLSR = +-200 km/s. No clouds have been detected with |VLSR| > 350 km/s. The clouds are concentrated toward the Galactic plane, but some are still found to |b|=10 degrees, or z > 1 kpc at the Galactic Center, where the current surveys end. These clouds are important tracers of conditions in the nuclear wind of the Milky Way.

  16. The AMPTE program's contribution to studies of the solar wind-magnetosphere-ionosphere interaction

    International Nuclear Information System (INIS)

    Sibeck, D.G.

    1990-01-01

    The Active Magnetospheric Particle Tracer Explorers (AMPTE) program provided important information on the behavior of clouds of plasma artificially injected into the solar wind and the earth's magnetosphere. Now that the releases are over, data from the satellites are being analyzed to investigate the processes by which the ambient solar wind mass, momentum, and energy are transferred to the magnetosphere. Work in progress at APL indicates that the solar wind is much more inhomogeneous than previously believed, that the solar wind constantly buffets the magnetosphere, and that ground observers may remotely sense these interactions as geomagnetic pulsations. 8 refs

  17. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    Science.gov (United States)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  18. A Green Bank Telescope 21cm survey of HI clouds in the Milky Way's nuclear wind

    Science.gov (United States)

    Denbo, Sara; Endsley, Ryan; Lockman, Felix J.; Ford, Alyson

    2015-01-01

    Feedback processes such as large-scale galactic winds are thought to be responsible for distributing enriched gas throughout a galaxy and even into the IGM. Such winds have been found in many galaxies with active star formation near their center, and the Fermi bubbles provide evidence for such a nuclear wind in our own Milky Way. A recent 21 cm HI survey by the Australia Telescope Compact Array discovered a population of compact, isolated clouds surrounding the Galactic Center that may be entrained in the Fermi bubble wind. We present data from a survey of 21cm HI over an extended region around the Galactic Center using the Green Bank Telescope. These observations provide more strict constraints on neutral clouds in the Fermi bubble wind, and a more robust description of the parameters of HI clouds (i.e., mass, column density, and lifetime) near the Galactic Center.

  19. Altitude dependent neutral wind effects on the nonlinear motion of a small barium cloud

    International Nuclear Information System (INIS)

    Book, D.L.; Ossakow, S.L.; Goldman, S.R.

    1975-01-01

    The nonlinear motion of a small F region barium release electrostatically coupled to the E region is studied in the presence of a neutral wind with differing values for the E and F regions. In a reference frame moving with the E region neutral wind and F region neutral wind transverse to the background E 0 field is shown to retard or accelerate the evolution of the cloud without otherwise altering the development of the system. When the relative neutral wind has a component parallel to the background E 0 field, there is also a change in the direction of the axis of elongation of the cloud as a function of time, although the final direction is independent of the relative neutral wind. Barium cloud and image behavior are shown to be substantially identical for periodic and Dirichlet boundary conditions

  20. The Interaction of Ocean Waves and Wind

    Science.gov (United States)

    Janssen, Peter

    2004-10-01

    Describing in detail the two-way interaction between wind and ocean waves, this book discusses ocean wave evolution in accordance with the energy balance equation. An extensive overview of nonlinear transfer is given, and the role of four-wave interactions in the generation of extreme events as well as the effects on ocean circulation is included. The volume will interest ocean wave modellers, physicists, applied mathematicians, and engineers.

  1. Modeling microwave/electron-cloud interaction

    International Nuclear Information System (INIS)

    Mattes, M; Sorolla, E; Zimmermann, F

    2013-01-01

    Starting from the separate codes BI-RME and ECLOUD or PyECLOUD, we are developing a novel joint simulation tool, which models the combined effect of a charged particle beam and of microwaves on an electron cloud. Possible applications include the degradation of microwave transmission in telecommunication satellites by electron clouds; the microwave-transmission techniques being used in particle accelerators for the purpose of electroncloud diagnostics; the microwave emission by the electron cloud itself in the presence of a magnetic field; and the possible suppression of electron-cloud formation in an accelerator by injecting microwaves of suitable amplitude and frequency. A few early simulation results are presented. (author)

  2. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    Science.gov (United States)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  3. A framework for cloud - Aerosol interaction study

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2012-01-01

    Aerosols can indirectly influence climate either by cloud albedo or lifetime effect. In order to have better understanding of these processes it is crucial to measure detailed vertical profiles of the radiative transfer and the microphysical evolution of clouds. Best results can be achieved by using

  4. The interaction of a very large interplanetary magnetic cloud with the magnetosphere and with cosmic rays

    International Nuclear Information System (INIS)

    Lepping, R.P.; Burlaga, L.F.; Ogilvie, K.W.; Tsurutani, B.T.; Lazarus, A.J.; Evans, D.S.; Klein, L.W.

    1991-01-01

    A large interplanetary magnetic cloud has been observed in the mid-December 1982 data from ISEE 3. It is estimated to have a heliocentric radial extent of approx-gt 0.4 AU, making it one of the largest magnetic clouds yet observed at 1 AU. The magnetic field measured throughout the main portion of the cloud was fairly tightly confined to a plane as it changed direction by 174 degree while varying only moderately in magnitude. Throughout nearly the entire duration of the cloud's passage, IMP 8 was located in the Earth's dawn magnetosheath providing observations of this cloud's interaction with the bow shock and magnetopause; the cloud is shown to maintain its solar wind characteristics during the interaction. Near the end of the cloud passage, at 0806 UT on December 17, ISEE 3 (and IMP 8 at nearly the same time) observed an oblique fast forward interplanetary shock closely coincident in time with a geomagnetic storm sudden commencement. The shock, moving much faster than the cloud (radial speeds of 700 and 390 km/s, respectively, on the average), was in the process of overtaking the cloud. The index Dst decreased monotonically by ∼ 130 nT during the 2-day cloud passage by the Earth and was well correlated with the B z component of the interplanetary magnetic field. There was no significant decrease in the cosmic ray intensity recorded by ground-based neutron monitors at this time of rather strong, smoothly changing fields. However, a Forbush decrease did occur immediately after the interplanetary shock, during a period of significant field turbulence. Thus a large, smooth, interplanetary helical magnetic field configuration engulfing the Earth does not necessarily deflect cosmic rays sufficiently to cause a Forbush decrease, but there is a suggestion that such a decrease may be caused by particle scattering by turbulent magnetic fields

  5. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-05-27

    Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.

  6. Impact of cloud microphysics on cloud-radiation interactions in the CSU general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, L.D.; Randall, D.A.

    1995-04-01

    Our ability to study and quantify the impact of cloud-radiation interactions in studying global scale climate variations strongly relies upon the ability of general circulation models (GCMs) to simulate the coupling between the spatial and temporal variations of the model-generated cloudiness and atmospheric moisture budget components. In particular, the ability of GCMs to reproduce the geographical distribution of the sources and sinks of the planetary radiation balance depends upon their representation of the formation and dissipation of cloudiness in conjunction with cloud microphysics processes, and the fractional amount and optical characteristics of cloudiness in conjunction with the mass of condensate stored in the atmosphere. A cloud microphysics package which encompasses five prognostic variables for the mass of water vapor, cloud water, cloud ice, rain, and snow has been implemented in the Colorado State University General Circulation Model (CSU GCM) to simulate large-scale condensation processes. Convection interacts with the large-scale environment through the detrainment of cloud water and cloud ice at the top of cumulus towers. The cloud infrared emissivity and cloud optical depth of the model-generated cloudiness are interactive and depend upon the mass of cloud water and cloud ice suspended in the atmosphere. The global atmospheric moisture budget and planetary radiation budget of the CSU GCM obtained from a perpetual January simulation are discussed. Geographical distributions of the atmospheric moisture species are presented. Global maps of the top-of-atmosphere outgoing longwave radiation and planetary albedo are compared against Earth Radiation Budget Experiment (ERBE) satellite data.

  7. Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling

    Science.gov (United States)

    Zalewski, Daniel; Jodoin, Vincent

    2001-04-01

    Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.

  8. Green Bank Telescope Detection of HI Clouds in the Fermi Bubble Wind

    Science.gov (United States)

    Lockman, Felix; Di Teodoro, Enrico M.; McClure-Griffiths, Naomi M.

    2018-01-01

    We used the Robert C. Byrd Green Bank Telescope to map HI 21cm emission in two large regions around the Galactic Center in a search for HI clouds that might be entrained in the nuclear wind that created the Fermi bubbles. In a ~160 square degree region at |b|>4 deg. and |long|<10 deg we detect 106 HI clouds that have large non-circular velocities consistent with their acceleration by the nuclear wind. Rapidly moving clouds are found as far as 1.5 kpc from the center; there are no detectable asymmetries in the cloud populations above and below the Galactic Center. The cloud kinematics is modeled as a population with an outflow velocity of 330 km/s that fills a cone with an opening angle ~140 degrees. The total mass in the clouds is ~10^6 solar masses and we estimate cloud lifetimes to be between 2 and 8 Myr, implying a cold gas mass-loss rate of about 0.1 solar masses per year into the nuclear wind.The Green Bank Telescope is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

  9. Strong Constraints on Aerosol-Cloud Interactions from Volcanic Eruptions

    Science.gov (United States)

    Malavelle, Florent F.; Haywood, Jim M.; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P.; Karset, Inger Helene H.; Kristjansson, Jon Egill; Oreopoulos, Lazaros; hide

    2017-01-01

    Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets - consistent with expectations - but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around minus 0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

  10. Eyes in the sky. Interactions between asymptotic giant branch star winds and the interstellar magnetic field

    Science.gov (United States)

    van Marle, A. J.; Cox, N. L. J.; Decin, L.

    2014-10-01

    Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the

  11. Studying Wind Energy/Bird Interactions: A Guidance Document

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [California Energy Commission (US); Morrison, M. [California State Univ., Sacramento, CA (US); Sinclair, K. [Dept. of Energy/National Renewable Energy Lab. (US); Strickland, D. [WEST, Inc. (US)

    1999-12-01

    This guidance document is a product of the Avian Subcommittee of the National Wind Coordinating Committee (NWCC). The NWCC was formed to better understand and promote responsible, credible, and comparable avian/wind energy interaction studies. Bird mortality is a concern and wind power is a potential clean and green source of electricity, making study of wind energy/bird interactions essential. This document provides an overview for regulators and stakeholders concerned with wind energy/bird interactions, as well as a more technical discussion of the basic concepts and tools for studying such interactions.

  12. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-05-01

    Full Text Available Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010 of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers, it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values. This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap

  13. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Science.gov (United States)

    Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua

    2018-05-01

    Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into

  14. Cloud Interaction and Safety Features of Mobile Devices

    Directory of Open Access Journals (Sweden)

    Mirsat Yeşiltepe

    2018-02-01

    Full Text Available In this paper, two current popular mobile operating system, still in relation to the conceptof cloud began to supplant the internet almost Word today, the differences, the concept of cloudsecurity mechanisms they use for themselves and are dealt with in this environment. One ofcomparing mobile operation system is representing open source and the other for close source one.The other issue discussed in this article is how the mobile environment interacts with the cloud thanthe cloud communication with the computers.

  15. Long-term Behaviour Of Venus Winds At Cloud Level From Virtis/vex Observations

    Science.gov (United States)

    Hueso, Ricardo; Peralta, J.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Piccioni, G.; Drossart, P.

    2009-09-01

    The Venus Express (VEX) mission has been in orbit to Venus for more than three years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present an analysis of the overall dynamics of Venus’ atmosphere at both levels using observations that cover a large fraction of the VIRTIS dataset. We will present our latest results concerning the zonal winds, the overall stability in the lower cloud deck motions and the variability in the upper cloud. Meridional winds are also observed in the upper and lower cloud in the UV and IR images obtained with VIRTIS. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present more irregular, variable and less intense motions in the meridional direction. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  16. Data-ism

    CERN Document Server

    Lohr, Steve

    2015-01-01

    Coal, iron ore and oil were the fuel of the Industrial Revolution. Today's economies and governments are powered by something far less tangible: the explosive abundance of digital data.Steve Lohr, the New York Times' chief technology reporter, charts the ascent of Data-ism, the dominating philosophy of the day in which data is at the forefront of everything and decisions of all kinds are based on data analysis rather than experience and intuition. Taking us behind the scenes and introducing the DOPs (Data Oriented-People), the key personalities behind this revolution, he reveals how consuming

  17. Aerosol-cloud interactions from urban, regional to global scales

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan [California Institute of Technology, Pasadena, CA (United States). Seismological Lab.

    2015-10-01

    The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

  18. Aerosol-cloud interactions from urban, regional to global scales

    International Nuclear Information System (INIS)

    Wang, Yuan

    2015-01-01

    The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

  19. Venus winds at cloud level from VIRTIS during the Venus Express mission

    Science.gov (United States)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre

    2010-05-01

    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  20. Multiple Lightning Discharges in Wind Turbines Associated with Nearby Cloud-to-Ground Lightning

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Cummins, Kenneth L.; Madsen, Søren Find

    2015-01-01

    This paper presents the analysis of five events where simultaneous lightning currents were registered in different wind turbines of a wind farm with lightning monitoring equipment installed. Measurements from current monitoring devices installed at the wind turbines and observations from auto......-triggering video cameras were correlated with data from the U.S. National Lighting Detection Network. In all five events, the correlation showed that a cloud-to-ground (CG) lightning stroke with high peak current struck the ground within 10 km of the affected turbines at the time of the currents in the wind...... by the nearby CG strokes, involving mechanisms that vary depending on the polarity of the associated CG stroke. The analysis also suggests that the event of upward lightning from wind turbines triggered by nearby lightning activity occurs very often and therefore it should be considered carefully...

  1. Dynamics of a toroidal magnetic cloud in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Romashets, E. P.; Vandas, Marek

    2001-01-01

    Roč. 106, A6 (2001), s. 10 615 - 10 624 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3003003; GA AV ČR IBS1003006 Institutional research plan: CEZ:AV0Z1003909 Keywords : magnetic cloud s * coronal masss ejections * interplanetry magnetic field Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.609, year: 2001

  2. Interaction between main components in wind farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Koldby, Erik

    and the simplicity of the measurement methods using the device makes it a good candidate for performing black-box modelling of multiports whenever such models are not available from the manufacturers. Parametric variation method developed for EMT simulations in ATP-EMTP is a good tool for performing large...... with Frequency Domain Severity Factor proved to be a robust tool in assessing stresses on electric components arising from transient phenomena in offshore wind farms, including the voltage magnitude and frequency of oscillations. Quarter-wave resonance frequency is a good approximation of resonance frequency...... as well as performing parametric variation studies. Methods and tools were developed and shown to perform and estimate the severity of a potential mid- and high- frequency interaction between electric components in OWFs by robust sensitivity analysis in commercial EMT simulation tool. Performing...

  3. Impacts of Wind Farms on Cumulus Cloud Development in the Central Great Plains

    Science.gov (United States)

    Mahoney, L. C.; Wagner, T. J.; L'Ecuyer, T. S.; Kulie, M.

    2014-12-01

    Cumulus clouds have a net cooling effect on the surface radiative balance by reflecting more downwelling solar radiation than absorbing upwelling terrestrial radiation. As boundary layer cumuli form from buoyant, moist plumes ascending from the surface, their growth may be hindered by the turbulent deformation of the plume by wind farms. A natural laboratory to study the impact of wind farms on cumulus formation are the states of Iowa and Nebraska. Despite their prime location for wind resources and similar synoptic forcings, regulatory issues cause these two states to vary vastly in their wind power offerings. In 2013, Iowa ranked 3rd in the nation for total megawatts installed and generates over a quarter of its electricity from wind energy, more than any other state. In contrast, Nebraska has an order of magnitude fewer turbines installed, and less than five percent of the state's electrical load is wind-generated. This variance in wind power in close proximity makes Iowa and Nebraska a prime area for initial research. This study uses Geostationary Operational Environmental Satellite (GOES) visible satellite imagery from the summer of 2009 to 2013 to investigate cumulus development in these adjacent states, as the majority of large-scale wind farms in Iowa were completed by 2009. Image reflectances in Nebraska and Iowa are compared to determine the magnitude of cumulus growth. Preliminary analysis indicates a reduction in cumulus development near the existing wind farms; a synoptic investigation of these cases will be completed to determine causality.

  4. The Cool ISM in Galaxies

    NARCIS (Netherlands)

    van der Hulst, J. M.; Blok, W. J. G. de; Oswalt, Terry D.; Keel, William C.

    2013-01-01

    This chapter describes the different constituents of the observable interstellar medium (ISM) in galaxies and reviews the relationships between the ISM and the star formation in galaxies. The emphasis is on the component which is most widespread and most easily observable, the neutral atomic

  5. Introducing tree interactions in wind damage simulations

    NARCIS (Netherlands)

    Schelhaas, M.J.; Kramer, K.; Peltola, H.; Werf, van der D.C.; Wijdeven, S.M.J.

    2007-01-01

    Wind throw is an important risk factor in forest management in North-western Europe. In recent years, mechanistic models have been developed to estimate critical wind speeds needed to break or uproot the average tree of a forest stand. Based on these models, we developed a wind damage module for the

  6. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds

    Science.gov (United States)

    Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.

    2010-09-01

    Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentrations is hypothesized to retard the cloud droplet coalescence and the riming in mixed-phase clouds, thereby decreasing orographic precipitation. This study presents results from a model intercomparison of 2-D simulations of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. The sensitivity of orographic precipitation to changes in the aerosol number concentrations is analysed and compared for various dynamical and thermodynamical situations. Furthermore, the sensitivities of microphysical processes such as coalescence, aggregation, riming and diffusional growth to changes in the aerosol number concentrations are evaluated and compared. The participating numerical models are the model from the Consortium for Small-Scale Modeling (COSMO) with bulk microphysics, the Weather Research and Forecasting (WRF) model with bin microphysics and the University of Wisconsin modeling system (UWNMS) with a spectral ice habit prediction microphysics scheme. All models are operated on a cloud-resolving scale with 2 km horizontal grid spacing. The results of the model intercomparison suggest that the sensitivity of orographic precipitation to aerosol modifications varies greatly from case to case and from model to model. Neither a precipitation decrease nor a precipitation increase is found robustly in all simulations. Qualitative robust results can only be found for a subset of the simulations but even then quantitative agreement is scarce. Estimates of the aerosol effect on orographic precipitation are found to range from -19% to 0% depending on the simulated case and the model. Similarly, riming is shown to decrease in some cases and models whereas it increases in others, which implies that a decrease in riming with increasing aerosol load is not a robust result

  7. Mobile devices and computing cloud resources allocation for interactive applications

    Directory of Open Access Journals (Sweden)

    Krawczyk Henryk

    2017-06-01

    Full Text Available Using mobile devices such as smartphones or iPads for various interactive applications is currently very common. In the case of complex applications, e.g. chess games, the capabilities of these devices are insufficient to run the application in real time. One of the solutions is to use cloud computing. However, there is an optimization problem of mobile device and cloud resources allocation. An iterative heuristic algorithm for application distribution is proposed. The algorithm minimizes the energy cost of application execution with constrained execution time.

  8. Cloud and Wind Variability in Saturn's Equatorial Jet prior to the Cassini orbital tour

    Science.gov (United States)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.

    2004-11-01

    We use ground-based observations (going back to 1876), Pioneer-11 data (1979), Voyager 1 and 2 encounter images in 1980 and 1981, and HST 1990-2004 images, to study the changes that occurred in the vertical cloud structure and morphology and motions, in Saturn's Equatorial Region (approximately the band between latitudes 40 deg North and South). We compare ``calm periods" with ``stormy periods" i. e. those that occur during the development of the phenomenon known as the ``Great White Spots." We discuss different interpretations of the mechanisms that can be involved in the observed changes: vertical wind shears, waves, storm - mean flow interaction and changes in atmospheric angular momentum. Acknowledgements: This work was supported by the Spanish MCYT AYA 2003-03216. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  9. Layered Atlantic Smoke Interactions with Clouds (LASIC) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zuidema, P [University of Miami; Chiu, C [University of Reading; Fairall, CW [NOAA - Environmental Technology Laboratory; Ghan, SJ [Pacific Northwest National Laboratory; Kollias, P [Stony Brook University; McFarguhar, GM; Mechem, DB [University of Kansas; Romps, DM [Lawrence Berkeley National Laboratory; Wong, H; Yuter, SE [North Carolina State University; Alvarado, MJ [Atmospheric and Environmental Research, Inc.; DeSzoeke, SP; Feingold, G [NOAA - Earth System Research Laboratory; Haywood, JM; Lewis, ER [Brookhaven National Laboratory; McComiskey, A [National Oceanic and Atmospheric Administration; Redemann, J [NASA - Ames Research Center; Turner, DD [National Oceanic and Atmospheric Administration; Wood, R [University of Washington; Zhu, P [Florida International University

    2015-12-01

    Southern Africa is the world’s largest emitter of biomass-burning (BB) aerosols. Their westward transport over the remote southeast Atlantic Ocean colocates some of the largest atmospheric loadings of absorbing aerosol with the least examined of the Earth’s major subtropical stratocumulus decks. Global aerosol model results highlight that the largest positive top-of-atmosphere forcing in the world occurs in the southeast Atlantic, but this region exhibits large differences in magnitude and sign between reputable models, in part because of high variability in the underlying model cloud distributions. Many uncertainties contribute to the highly variable model radiation fields: the aging of shortwave-absorbing aerosol during transport, how much of the aerosol mixes into the cloudy boundary layer, and how the low clouds adjust to smoke-radiation and smoke-cloud interactions. In addition, the ability of the BB aerosol to absorb shortwave radiation is known to vary seasonally as the fuel type on land changes.

  10. Plant Reliability - an Integrated System for Management (PR-ISM)

    International Nuclear Information System (INIS)

    Aukeman, M.C.; Leininger, E.G.; Carr, P.

    1984-01-01

    The Toledo Edison Company, located in Toledo, Ohio, United States of America, recently implemented a comprehensive maintenance management information system for the Davis-Besse Nuclear Power Station. The system is called PR-ISM, meaning Plant Reliability - An Integrated System for Management. PR-ISM provides the tools needed by station management to effectively plan and control maintenance and other plant activities. The PR-ISM system as it exists today consists of four integrated computer applications: equipment data base maintenance, maintenance work order control, administrative activity tracking, and technical specification compliance. PR-ISM is designed as an integrated on-line system and incorporates strong human factors features. PR-ISM provides each responsible person information to do his job on a daily basis and to look ahead towards future events. It goes beyond 'after the fact' reporting. In this respect, PR-ISM is an 'interactive' control system which: captures work requirements and commitments as they are identified, provides accurate and up-to-date status immediately to those who need it, simplifies paperwork and reduces the associated time delays, provides the information base for work management and reliability analysis, and improves productivity by replacing clerical tasks and consolidating maintenance activities. The functional and technical features of PR-ISM, the experience of Toledo Edison during the first year of operation, and the factors which led to the success of the development project are highlighted. (author)

  11. Cloud County Community College Wind Energy Technology Project and Renewable Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Bruce [Cloud County Community College, Concordia, KS (United States)

    2016-02-26

    Cloud County Community College's (CCCC) Wind Energy Technology (WET) program is a leader in the renewable energy movement across Kansas and the USA. The field of renewable energy is a growing industry which continues to experience high demand for career opportunities. This CCCC/DOE project entailed two phases: 1) the installation of two Northwind 100 wind turbines, and 2) the continued development of the WET program curriculum, including enhancement of the CCCC Blade Repair Certificate program. This report provides a technical account of the total work performed, and is a comprehensive description of the results achieved.

  12. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    Science.gov (United States)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  13. The interactions of the HELIOS probe with the solar wind plasma

    International Nuclear Information System (INIS)

    Voigt, G.H.; Isensee, U.; Maassberg, H.

    1981-08-01

    HELIOS solar probe disturbs the solar wind plasma in the near vicinity. Around the probe, a space charge cloud is formed due to strong photoelectron emission and fade out of solar wind particles. The conducting and isolating parts of the surface are differently charged. These effects result in a very complex potential structure in the vicinity of the probe and on the surface. The interactions of the HELIOS probe with the solar wind plasma are described by models based on kinetic theory of plasma. The combination of these models yields an entire and consistent representation of the spacecraft charging and the potential structure. Electron spectra measured by plasma experiment E1 are analysed and compared with results of the theoretical models. (orig.) [de

  14. The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies

    Science.gov (United States)

    Grisdale, Kearn Michael

    2017-08-01

    Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt

  15. Dense solar wind cloud geometries deduced from comparisons of radio signal delay and in situ plasma measurements

    Science.gov (United States)

    Landt, J. A.

    1974-01-01

    The geometries of dense solar wind clouds are estimated by comparing single-location measurements of the solar wind plasma with the average of the electron density obtained by radio signal delay measurements along a radio path between earth and interplanetary spacecraft. Several of these geometries agree with the current theoretical spatial models of flare-induced shock waves. A new class of spatially limited structures that contain regions with densities greater than any observed in the broad clouds is identified. The extent of a cloud was found to be approximately inversely proportional to its density.

  16. A State-of-the-Art Experimental Laboratory for Cloud and Cloud-Aerosol Interaction Research

    Science.gov (United States)

    Fremaux, Charles M.; Bushnell, Dennis M.

    2011-01-01

    The state of the art for predicting climate changes due to increasing greenhouse gasses in the atmosphere with high accuracy is problematic. Confidence intervals on current long-term predictions (on the order of 100 years) are so large that the ability to make informed decisions with regard to optimum strategies for mitigating both the causes of climate change and its effects is in doubt. There is ample evidence in the literature that large sources of uncertainty in current climate models are various aerosol effects. One approach to furthering discovery as well as modeling, and verification and validation (V&V) for cloud-aerosol interactions is use of a large "cloud chamber" in a complimentary role to in-situ and remote sensing measurement approaches. Reproducing all of the complex interactions is not feasible, but it is suggested that the physics of certain key processes can be established in a laboratory setting so that relevant fluid-dynamic and cloud-aerosol phenomena can be experimentally simulated and studied in a controlled environment. This report presents a high-level argument for significantly improved laboratory capability, and is meant to serve as a starting point for stimulating discussion within the climate science and other interested communities.

  17. Shock–Cloud Interaction in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan)

    2017-02-20

    Flare-associated coronal shock waves sometimes interact with solar prominences, leading to large-amplitude prominence oscillations (LAPOs). Such prominence activation gives us a unique opportunity to track the time evolution of shock–cloud interaction in cosmic plasmas. Although the dynamics of interstellar shock–cloud interaction has been extensively studied, coronal shock–solar prominence interaction is rarely studied in the context of shock–cloud interaction. Associated with the X5.4 class solar flare that occurred on 2012 March 7, a globally propagated coronal shock wave interacted with a polar prominence, leading to LAPO. In this paper, we studied bulk acceleration and excitation of the internal flow of the shocked prominence using three-dimensional magnetohydrodynamic (MHD) simulations. We studied eight MHD simulation runs, each with different mass density structure of the prominence, and one hydrodynamic simulation run, and we compared the result. In order to compare the observed motion of activated prominence with the corresponding simulation, we also studied prominence activation by injection of a triangular-shaped coronal shock. We found that the prominence is first accelerated mainly by magnetic tension force as well as direct transmission of the shock, and later decelerated mainly by magnetic tension force. The internal flow, on the other hand, is excited during the shock front sweeps through the prominence and damps almost exponentially. We construct a phenomenological model of bulk momentum transfer from the shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence activation model, we diagnosed physical parameters of the coronal shock wave. The estimated energy of the coronal shock is several percent of the total energy released during the X5.4 flare.

  18. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Preliminary Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Varble, Adam [Univ. of Utah, Salt Lake City, UT (United States); Nesbitt, Steve [Univ. of Illinois, Urbana-Champaign, IL (United States); Salio, Paola [Univ. of Buenos Aires (Argentina); Zipser, Edward [Univ. of Utah, Salt Lake City, UT (United States); van den Heever, Susan [Colorado State Univ., Fort Collins, CO (United States); McFarquhar, Greg [Univ. of Illinois, Urbana-Champaign, IL (United States); Kollias, Pavlos [Stony Brook Univ., NY (United States); Kreidenweis, Sonia [Colorado State Univ., Fort Collins, CO (United States); DeMott, Paul [Colorado State Univ., Fort Collins, CO (United States); Jensen, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Houze, Jr., Robert [Univ. of Washington, Seattle, WA (United States); Rasmussen, Kristen [Colorado State Univ., Fort Collins, CO (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Romps, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gochis, David [National Center for Atmospheric Research, Boulder, CO (United States); Avila, Eldo [National Univ. of Cordoba (Argentina); Williams, Christopher [Univ. of Colorado, Boulder, CO (United States); National Center for Atmospheric Research, Boulder, CO (United States)

    2017-02-01

    General circulation models and downscaled regional models exhibit persistent biases in deep convective initiation location and timing, cloud top height, stratiform area and precipitation fraction, and anvil coverage. Despite important impacts on the distribution of atmospheric heating, moistening, and momentum, nearly all climate models fail to represent convective organization, while system evolution is not represented at all. Improving representation of convective systems in models requires characterization of their predictability as a function of environmental conditions, and this characterization depends on observing many cases of convective initiation, non-initiation, organization, and non-organization. The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) experiment in the Sierras de Córdoba mountain range of north-central Argentina is designed to improve understanding of cloud life cycle and organization in relation to environmental conditions so that cumulus, microphysics, and aerosol parameterizations in multi-scale models can be improved. The Sierras de Córdoba range has a high frequency of orographic boundary-layer clouds, many reaching congestus depths, many initiating into deep convection, and some organizing into mesoscale systems uniquely observable from a single fixed site. Some systems even grow upscale to become among the deepest, largest, and longest-lived in the world. These systems likely contribute to an observed regional trend of increasing extreme rainfall, and poor prediction of them likely contributes to a warm, dry bias in climate models downstream of the Sierras de Córdoba range in a key agricultural region. Many environmental factors influence the convective lifecycle in this region including orographic, low-level jet, and frontal circulations, surface fluxes, synoptic vertical motions influenced by the Andes, cloud detrainment, and aerosol properties. Local and long-range transport of smoke resulting from biomass burning as

  19. Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Harte, M.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...

  20. Flow interaction of diffuser augmented wind turbines

    Science.gov (United States)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  1. Height profile of particle concentration in an aeolian saltating cloud: A wind tunnel investigation by PIV MSD

    Science.gov (United States)

    Dong, Zhibao; Wang, Hongtao; Zhang, Xiaohang; Ayrault, Michael

    2003-10-01

    Attempt is made to define the particle concentration in an aeolian saltating cloud and its variation with height using artificial spherical quartz sand in a wind tunnel. The height profiles of the relative particle concentration in aeolian saltating cloud at three wind velocities were detected by the state of the art PIV (Particle Image Velocimetry) MSD (Mie Scattering Diffusion) technique, and converted to actual concentration based on sand transport rate and the variation with height of velocity of the saltating cloud. The particle concentration was found to decay exponentially with height and to increase with wind velocity. It decayed more rapidly when the wind velocity decreased. The volume/volume concentration in the near-surface layer was at the order of 10-4. The results obtained by PIV MSD technique were in good agreement with those derived from the sand flux and velocity profiles, the former being about 15% greater than the later.

  2. SWAN: a Service for Interactive Analysis in the Cloud

    CERN Document Server

    Piparo, Danilo; Mato, Pere; Mascetti, Luca; Moscicki, Jakub; Lamanna, Massimo

    2016-01-01

    SWAN (Service for Web based ANalysis) is a platform to perform interactive data analysis in the cloud. SWAN allows users to write and run their data analyses with only a web browser, leveraging on the widely-adopted Jupyter notebook interface. The user code, executions and data live entirely in the cloud. SWAN makes it easier to produce and share results and scientific code, access scientific software, produce tutorials and demonstrations as well as preserve analyses. Furthermore, it is also a powerful tool for non-scientific data analytics. This paper describes how a pilot of the SWAN service was implemented and deployed at CERN. Its backend combines state-of-the-art software technologies with a set of existing IT services such as user authentication, virtual computing infrastructure, mass storage, file synchronisation and sharing, specialised clusters and batch systems. The added value of this combination of services is discussed, with special focus on the opportunities offered by the CERNBox service and it...

  3. Interactions between exoplanets and the winds of young stars

    Directory of Open Access Journals (Sweden)

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  4. Satellite retrieved cloud optical thickness sensitive to surface wind speed in the subarctic marine boundary layer

    International Nuclear Information System (INIS)

    Glantz, Paul

    2010-01-01

    The optical and microphysical properties of low level marine clouds, presented over the Norwegian Sea and Barents Sea, have been investigated for the period 2000-2006. The air masses were transported for more or less seven days over the warmer North Atlantic before they arrived at the area investigated. The main focus in this study is on investigating the relationship between cloud optical thickness (COT) and surface wind speed (U 10m ) using satellite retrievals in combination with operational meteorological data. A relatively strong correlation (R 2 = 0.97) is obtained for wind speeds up to 12 m s -1 , in air masses that were probably to a major degree influenced by wind shears and to a minor degree by buoyancy. The relationship (U 2.5 ) is also in between those most commonly found in the literature for water vapor (∼U 1 ) and sea salt (∼U 3.4 ). The present results highlight the magnitude of marine sea-spray influence on COT and their global climatic importance.

  5. Constraining Aerosol-Cloud-Precipitation Interactions of Orographic Mixed-Phase Clouds with Trajectory Budgets

    Science.gov (United States)

    Glassmeier, F.; Lohmann, U.

    2016-12-01

    Orographic precipitation is prone to strong aerosol-cloud-precipitation interactions because the time for precipitation development is limited to the ascending section of mountain flow. At the same time, cloud microphysical development is constraint by the strong dynamical forcing of the orography. In this contribution, we discuss how changes in the amount and composition of droplet- and ice-forming aerosols influence precipitation in idealized simulations of stratiform orographic mixed-phase clouds. We find that aerosol perturbations trigger compensating responses of different precipitation formation pathways. The effect of aerosols is thus buffered. We explain this buffering by the requirement to fulfill aerosol-independent dynamical constraints. For our simulations, we use the regional atmospheric model COSMO-ART-M7 in a 2D setup with a bell-shaped mountain. The model is coupled to a 2-moment warm and cold cloud microphysics scheme. Activation and freezing rates are parameterized based on prescribed aerosol fields that are varied in number, size and composition. Our analysis is based on the budget of droplet water along trajectories of cloud parcels. The budget equates condensation as source term with precipitation formation from autoconversion, accretion, riming and the Wegener-Bergeron-Findeisen process as sink terms. Condensation, and consequently precipitation formation, is determined by dynamics and largely independent of the aerosol conditions. An aerosol-induced change in the number of droplets or crystals perturbs the droplet budget by affecting precipitation formation processes. We observe that this perturbation triggers adjustments in liquid and ice water content that re-equilibrate the budget. As an example, an increase in crystal number triggers a stronger glaciation of the cloud and redistributes precipitation formation from collision-coalescence to riming and from riming to vapor deposition. We theoretically confirm the dominant effect of water

  6. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    International Nuclear Information System (INIS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-01-01

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point

  7. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-03-20

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.

  8. Wind-waves interactions in the Gulf of Eilat

    Science.gov (United States)

    Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team

    2017-11-01

    The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.

  9. ISMS Implementation in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Radhiah Jamalludin; Siti Nurbahyah Hamdan; Mohd Dzul Aiman Aslan

    2015-01-01

    Nuclear Malaysia provides important services and functions that depend on the resources including information. Use of the information assets must be consistent with good professional practices and procedures and legal requirements, regulations and contracts and the need to ensure the confidentiality, integrity and availability of all information assets of the Agency. ISO / IEC 27001, the international safety standard for information security management system provides the mandatory requirement to implement, review and continuously improve the Information Security Management System (ISMS). Information security policies and the implementation of ISMS is important to protect information assets from all threats; internal or external; intentionally or unintentionally. (author)

  10. Stellar winds and molecular clouds: a search for ionized stellar winds

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L F; Canto, J

    1983-01-01

    We observed with the VLA several regions of mass outflow at 20.6 and 2 cm: LKH..cap alpha.. 198, GL 490, HH 7-11, T Tau, GGD 12-15, GL 961, GGD 27-28, V645 CyG, Cep A, and MWC 1080. In most of the regions no continuum source was detected, down to the mJy level, at 6 cm that could be identified as the energy source of the outflow. This result suggests that in these cases the stellar winds powering the outflows are either neutral or, if ionized, have a large terminal velocity (approx. 10/sup 3/ km s/sup -1/). T Tauri and most of the other sources detected show spectra characteristic of an optically-thin H II region and not that of simple ionized winds. We measured the positions of several H/sub 2/O masers associated with mass outflow regions: GL 490, OMC(2)1, Mon R2, GGD 12-15, S106, GL 2591, NGC 7129(2), S140 and Cep A.

  11. Stellar winds and molecular clouds: a search for ionized stellar winds

    International Nuclear Information System (INIS)

    Rodriguez, L.F.; Canto, J.

    1983-01-01

    We observed with the VLA several regions of mass outflow at 20.6 and 2 cm: LKHα 198, GL 490, HH 7-11, T Tau, GGD 12-15, GL 961, GGD 27-28, V645 CyG, Cep A, and MWC 1080. In most of the regions no continuum source was detected, down to the mJy level, at 6 cm that could be identified as the energy source of the outflow. This result suggests that in these cases the stellar winds powering the outflows are either neutral or, if ionized, have a large terminal velocity (approx. 10 3 km s -1 ). T Tauri and most of the other sources detected show spectra characteristic of an optically-thin H II region and not that of simple ionized winds. We measured the positions of several H 2 O masers associated with mass outflow regions: GL 490, OMC(2)1, Mon R2, GGD 12-15, S106, GL 2591, NGC 7129(2), S140 and Cep A. (author)

  12. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    Science.gov (United States)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  13. Simulations of Shock Wave Interaction with a Particle Cloud

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  14. Interactions for winding strings in Misner space

    International Nuclear Information System (INIS)

    Hikida, Y.

    2006-06-01

    We compute correlation functions of closed strings in Misner space, a big crunch big bang universe. We develop a general method for correlators with twist fields, which are relevant for the investigation on the condensation of winding tachyon. We propose to compute the correlation functions by performing an analytic continuation of the results in C/Z N Euclidean orbifold. In particular, we obtain a finite result for a general four point function of twist fields, which might be important for the interpretation as the quartic term of the tachyon potential. Three point functions are read off through the factorization, which are consistent with the known results. (Orig.)

  15. Colliding winds: Interaction regions with strong heat conduction

    International Nuclear Information System (INIS)

    Imamura, J.N.; Chevalier, R.A.

    1984-01-01

    The interaction of fast stellar wind with a slower wind from previous mass loss gives rise to a region of hot, shocked gas. We obtain self-similar solutions for the interaction region under the assumptions of constant mass loss rate and wind velocity for the two winds, conversion of energy in the shock region, and either isothermal electrons and adiabatic ions or isothermal electrons ad ions in the shocked region. The isothermal assumption is intended to show the effects of strog heat conduction. The solutions have no heat conduction through the shock waves and assume that the electron and ion temperatures are equilibriated in the shock waves. The one-temperature isothermal solutions have nearly constant density through the shocked region, while the two-temperature solutions are intermediate between the one-temperature adiabatic and isothermal solutions. In the two-temperature solutions, the ion temperature goes to zero at the point where the gas comoves with the shocked region and the density peaks at this point. The solution may qualitatively describe the effects of heat conduction on interaction regions in the solar wind. It will be important to determine whether the assumption of no thermal waves outside the shocked region applies to shock waves in the solar wind

  16. High excitation ISM and gas

    NARCIS (Netherlands)

    Peeters, E; Martinez-Hernandez, NL; Rodriguez-Fernandez, NJ; Tielens, [No Value

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic

  17. High Excitation Gas and ISM

    Science.gov (United States)

    Peeters, E.; Martin-Hernandez, N. L.; Rodriguez-Fernandez, N. J.; Tielens, A. G. G. M.

    2004-01-01

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. HII regions, the Galactic Centre and Supernovae Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarized, their diagnostic capabilities illustrated and their implications highlighted.

  18. Interaction of clouds with the hot interstellar medium (HIM) and cosmic rays

    International Nuclear Information System (INIS)

    Voelk, H.J.

    1983-01-01

    The modification, by cosmic rays, of the interaction of interstellar clouds with the ambient HIM is considered. Small clouds should still evaporate and thereby exclude cosmic rays if they do so without cosmic rays. The possible mass accretion of massice clouds is reduced by the pressure of the compressed cosmic rays. The consequences for diffuse galactic #betta#-ray emisison are discussed. (orig.)

  19. Solar wind stream interaction regions throughout the heliosphere

    Science.gov (United States)

    Richardson, Ian G.

    2018-01-01

    This paper focuses on the interactions between the fast solar wind from coronal holes and the intervening slower solar wind, leading to the creation of stream interaction regions that corotate with the Sun and may persist for many solar rotations. Stream interaction regions have been observed near 1 AU, in the inner heliosphere (at ˜ 0.3-1 AU) by the Helios spacecraft, in the outer and distant heliosphere by the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft, and out of the ecliptic by Ulysses, and these observations are reviewed. Stream interaction regions accelerate energetic particles, modulate the intensity of Galactic cosmic rays and generate enhanced geomagnetic activity. The remote detection of interaction regions using interplanetary scintillation and white-light imaging, and MHD modeling of interaction regions will also be discussed.

  20. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  1. Studying wind power-bird interactions during the next decade

    Energy Technology Data Exchange (ETDEWEB)

    Holder, M. [TransAlta Wind, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation described TransAlta's ongoing study of wind power and bird interactions, and outlined the company's plans for the future. The deaths of large birds were noticed by the public as well as by the operators of wind farms built in response to the energy crisis of the 1970s. Post-construction casualty monitoring was established in 1994 in order to understand the direct effects of wind power projects on birds as well as to amass data and identify the broader issues affecting bird mortalities. Increased regulatory rigour led to a further clarification of the techniques used to monitor bird deaths. A study of the amassed data demonstrated that birds were not being killed in large numbers, but that common bird species in a given area were the most common casualties observed at wind farms. Particular species were not predisposed to be at risk. Significant declines in bird species have been noted in Canada, and many population declines have occurred in species located in landscapes well-suited for wind farms. The declines have meant that more scrutiny is placed on wind development projects and their potential cumulative effect. The direct effects of wind turbines on birds are not yet well-understood. The requirements for pre- and post-construction data collection must be reviewed and amended. Future studies will consider bird casualties as well as habitat and behavioural changes. tabs., figs.

  2. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  3. Solar wind and its interaction with the Earth magnetosphere

    International Nuclear Information System (INIS)

    Grib, S.A.

    1978-01-01

    A critical review is given regarding the research of the stationary and non-stationary interaction of the solar wind with the Earth magnetosphere. Highlighted is the significance of the interplanetary magnetic field in the non-stationary movement of the solar wind flux. The problem of the solar wind shock waves interaction with the ''bow wave-Earth's magnetosphere'' system is being solved. Considered are the secondary phenomena, as a result of which the depression-type wave occurs, that lowers the pressure on the Earth's maanetosphere. The law, governing the movement of the magnetosphere subsolar point during the abrupt start of a geomagnetic storm has been discovered. Stationary circumvention of the magnetosphere by the solar wind flux is well described by the gas dynamic theory of the hypersonic flux. Non-stationary interaction of the solar wind shock waves with the magnetosphere is magnetohydrodynamic. It is pointed out, that the problems under consideration are important for the forecasting of strong geomagnetic perturbations on the basis of cosmic observations

  4. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  5. Dust coagulation in ISM

    Science.gov (United States)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  6. Nearshore regional behavior of lightning interaction with wind turbines

    Directory of Open Access Journals (Sweden)

    Gilbert A. Malinga

    2016-01-01

    Full Text Available The severity of lightning strikes on offshore wind turbines built along coastal and nearshore regions can pose safety concerns that are often overlooked. In this research study the behavior of electrical discharges for wind turbines that might be located in the nearshore regions along the East Coast of China and Sea of Japan were characterized using a physics-based model that accounted for a total of eleven different geometrical and lightning parameters. Utilizing the electrical potential field predicted using this model it was then possible to estimate the frequency of lightning strikes and the distribution of electrical loads utilizing established semi-empirical relationships and available data. The total number of annual lightning strikes on an offshore wind turbine was found to vary with hub elevation, extent of cloud cover, season and geographical location. The annual lightning strike rate on a wind turbine along the nearshore region on the Sea of Japan during the winter season was shown to be moderately larger compared to the lightning strike frequency on a turbine structure on the East Coast of China. Short duration electrical discharges, represented using marginal probability functions, were found to vary with season and geographical location, exhibiting trends consistent with the distribution of the electrical peak current. It was demonstrated that electrical discharges of moderately long duration typically occur in the winter months on the East Coast of China and the summer season along the Sea of Japan. In contrast, severe electrical discharges are typical of summer thunderstorms on the East Coast of China and winter frontal storm systems along the West Coast of Japan. The electrical charge and specific energy dissipated during lightning discharges on an offshore wind turbine was found to vary stochastically, with severe electrical discharges corresponding to large electrical currents of long duration.

  7. Effects of aerosol/cloud interactions on the global radiation budget

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.

    1994-01-01

    Aerosols may modify the microphysics of clouds by acting as cloud condensation nuclei (CCN), thereby enhancing the cloud reflectivity. Aerosols may also alter precipitation development by affecting the mean droplet size, thereby influencing cloud lifetimes and modifying the hydrological cycle. Clouds have a major effect on climate, but aerosol/cloud interactions have not been accounted for in past climate model simulations. However, the worldwide steady rise of global pollutants and emissions makes it imperative to investigate how atmospheric aerosols affect clouds and the global radiation budget. In this paper, the authors examine the relationship between aerosol and cloud drop size distributions by using a detailed micro-physical model. They parameterize the cloud nucleation process in terms of local aerosol characteristics and updraft velocity for use in a coupled climate/chemistry model to predict the magnitude of aerosol cloud forcing. Their simulations indicate that aerosol/cloud interactions may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. This work is aimed at improving the assessment of the effects of anthropogenic aerosols on cloud optical properties and the global radiation budget

  8. Numerical Simulation of Wind Turbine Blade-Tower Interaction

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Hu Zhou; Decheng Wan

    2012-01-01

    Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented.The governing equations were the unsteady Reynolds-averaged Navier-Stokes (PANS) which were solved by the pimpleDyMFoam solver,and the AMI method was employed to handle mesh movements.The National Renewable Energy Laboratory (NREL) phase Ⅵ wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5,10,15,and 25 m/s) at a fixed blade pitch and constant rotational speed.Detailed numerical results of vortex structure,time histories of thrust,and pressure distribution on the blade and tower were presented.The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine,while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower.Also,strong interaction of blade tip vortices with separation from the tower was observed.

  9. EDITORIAL: Aerosol cloud interactions—a challenge for measurements and modeling at the cutting edge of cloud climate interactions

    Science.gov (United States)

    Spichtinger, Peter; Cziczo, Daniel J.

    2008-04-01

    Research in aerosol properties and cloud characteristics have historically been considered two separate disciplines within the field of atmospheric science. As such, it has been uncommon for a single researcher, or even research group, to have considerable expertise in both subject areas. The recent attention paid to global climate change has shown that clouds can have a considerable effect on the Earth's climate and that one of the most uncertain aspects in their formation, persistence, and ultimate dissipation is the role played by aerosols. This highlights the need for researchers in both disciplines to interact more closely than they have in the past. This is the vision behind this focus issue of Environmental Research Letters. Certain interactions between aerosols and clouds are relatively well studied and understood. For example, it is known that an increase in the aerosol concentration will increase the number of droplets in warm clouds, decrease their average size, reduce the rate of precipitation, and extend the lifetime. Other effects are not as well known. For example, persistent ice super-saturated conditions are observed in the upper troposphere that appear to exceed our understanding of the conditions required for cirrus cloud formation. Further, the interplay of dynamics versus effects purely attributed to aerosols remains highly uncertain. The purpose of this focus issue is to consider the current state of knowledge of aerosol/cloud interactions, to define the contemporary uncertainties, and to outline research foci as we strive to better understand the Earth's climate system. This focus issue brings together laboratory experiments, field data, and model studies. The authors address issues associated with warm liquid water, cold ice, and intermediate temperature mixed-phase clouds. The topics include the uncertainty associated with the effect of black carbon and organics, aerosol types of anthropogenic interest, on droplet and ice formation. Phases

  10. Interaction of the solar wind with comets: a Rosetta perspective.

    Science.gov (United States)

    Glassmeier, Karl-Heinz

    2017-07-13

    The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov-Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring--beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the 'singing' of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Authors.

  11. Flank solar wind interaction. Annual report, June 1991-July 1992

    International Nuclear Information System (INIS)

    Moses, S.L.; Greenstadt, E.W.

    1992-08-01

    This report summarizes the results of the first 12 months of our program to study the interaction of the Earth's magnetosphere with the solar wind on the far flanks of the bow shock. This study employs data from the ISEE-3 spacecraft during its traversals of the Earth's magnetotail and correlative data from spacecraft monitoring the solar wind upstream. Our main effort to date has involved assembling data sets and developing new plotting programs. Two talks were given at the Spring Meeting of the American Geophysical Union describing our initial results from analyzing data from the far flank foreshock and magnetosheath. The following sections summarize our results

  12. Cloud Service for Interactive Simulation of Interregional Trade

    Directory of Open Access Journals (Sweden)

    A. S. Velichko

    2016-01-01

    Full Text Available The paper describes a mathematical model of trade flows between the territories of a region or a country in a transport network having one or more different types of marine or ground transportation. We use the approach of modeling complex communication systems to determine the most probable values of flows in case of incomplete information about the system. Transport costs between the territories are modeled within the framework of the gravity model. The payment for transportation depends on the distance between regions, the distance is estimated as the shortest way length in a given transport network or geographical distance. The mathematical formulation of the problem belongs to the class of convex mathematical programming problems and assumes the numerical solution of nonlinear optimization problem with linear constraints. Based on the model, the software is implemented as a cloud service on heterogeneous computing architectures: the simulation module is made on a highperformance server platform, management and visualization modules are produced with IACPaaS cloud platform. Communication between the platforms is established via asynchronous http-queries. For information exchange between the modules the declarative model with JSON format is developed and implemented for the objects considered in the mathematical model which are products, areas and communications. Visualization module allows to present graphically the original and the resulting matrix data and to modify the input parameters of the model interactively. The paper demonstrates the use of software for the simulation of inter-regional freight traffic of the Russian Far East region based on input data provided by open statistics sources.

  13. The structure and origin of magnetic clouds in the solar wind

    Directory of Open Access Journals (Sweden)

    V. Bothmer

    Full Text Available Plasma and magnetic field data from the Helios 1/2 spacecraft have been used to investigate the structure of magnetic clouds (MCs in the inner heliosphere. 46 MCs were identified in the Helios data for the period 1974–1981 between 0.3 and 1 AU. 85% of the MCs were associated with fast-forward interplanetary shock waves, supporting the close association between MCs and SMEs (solar mass ejections. Seven MCs were identified as direct consequences of Helios-directed SMEs, and the passage of MCs agreed with that of interplanetary plasma clouds (IPCs identified as white-light brightness enhancements in the Helios photometer data. The total (plasma and magnetic field pressure in MCs was higher and the plasma-β lower than in the surrounding solar wind. Minimum variance analysis (MVA showed that MCs can best be described as large-scale quasi-cylindrical magnetic flux tubes. The axes of the flux tubes usually had a small inclination to the ecliptic plane, with their azimuthal direction close to the east-west direction. The large-scale flux tube model for MCs was validated by the analysis of multi-spacecraft observations. MCs were observed over a range of up to ~60° in solar longitude in the ecliptic having the same magnetic configuration. The Helios observations further showed that over-expansion is a common feature of MCs. From a combined study of Helios, Voyager and IMP data we found that the radial diameter of MCs increases between 0.3 and 4.2 AU proportional to the distance, R, from the Sun as R0.8 (R in AU. The density decrease inside MCs was found to be proportional to R–2.4, thus being stronger compared to the average solar wind. Four different magnetic configurations, as expected from the flux-tube concept, for MCs have been observed in situ by the Helios probes. MCs with left- and right-handed magnetic helicity occurred with about equal frequencies during 1974–1981, but surprisingly, the majority (74% of the MCs had

  14. Interactive 3D geodesign tool for multidisciplinary wind turbine planning.

    Science.gov (United States)

    Rafiee, Azarakhsh; Van der Male, Pim; Dias, Eduardo; Scholten, Henk

    2018-01-01

    Wind turbine site planning is a multidisciplinary task comprising of several stakeholder groups from different domains and with different priorities. An information system capable of integrating the knowledge on the multiple aspects of a wind turbine plays a crucial role on providing a common picture to the involved groups. In this study, we have developed an interactive and intuitive 3D system (Falcon) for planning wind turbine locations. This system supports iterative design loops (wind turbine configurations), based on the emerging field of geodesign. The integration of GIS, game engine and the analytical models has resulted in an interactive platform with real-time feedback on the multiple wind turbine aspects which performs efficiently for different use cases and different environmental settings. The implementation of tiling techniques and open standard web services support flexible and on-the-fly loading and querying of different (massive) geospatial elements from different resources. This boosts data accessibility and interoperability that are of high importance in a multidisciplinary process. The incorporation of the analytical models in Falcon makes this system independent from external tools for different environmental impacts estimations and results in a unified platform for performing different environmental analysis in every stage of the scenario design. Game engine techniques, such as collision detection, are applied in Falcon for the real-time implementation of different environmental models (e.g. noise and visibility). The interactivity and real-time performance of Falcon in any location in the whole country assist the stakeholders in the seamless exploration of various scenarios and their resulting environmental effects and provides a scope for an interwoven discussion process. The flexible architecture of the system enables the effortless application of Falcon in other countries, conditional to input data availability. The embedded open web

  15. ISM simulations: an overview of models

    Science.gov (United States)

    de Avillez, M. A.; Breitschwerdt, D.; Asgekar, A.; Spitoni, E.

    2015-03-01

    Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.

  16. A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds.

    Science.gov (United States)

    Sorooshian, Armin; MacDonald, Alexander B; Dadashazar, Hossein; Bates, Kelvin H; Coggon, Matthew M; Craven, Jill S; Crosbie, Ewan; Hersey, Scott P; Hodas, Natasha; Lin, Jack J; Negrón Marty, Arnaldo; Maudlin, Lindsay C; Metcalf, Andrew R; Murphy, Shane M; Padró, Luz T; Prabhakar, Gouri; Rissman, Tracey A; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K; Chuang, Patrick Y; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H

    2018-02-27

    Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.

  17. The interaction between deep convective clouds and their environment

    NARCIS (Netherlands)

    Böing, S.J.

    2014-01-01

    Deep convective clouds play a key role in tropical weather patterns, summertime rainfall, and the global transport of energy from the tropics to higher latitudes. Current weather and climate models struggle to realistically represent the development and behavior of these clouds. Both the timing of

  18. Stakeholder interactions to support service creation in cloud computing

    NARCIS (Netherlands)

    Wang, Lei; Ferreira Pires, Luis; Wombacher, Andreas; van Sinderen, Marten J.; Chi, Chihung

    2010-01-01

    Cloud computing is already a major trend in IT. Cloud services are being offered at application (software), platform and infrastructure levels. This paper presents our initial modeling efforts towards service creation at the infrastructure level. The purpose of these modeling efforts is to

  19. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud) for Mobile Cloud Computing Applications.

    Science.gov (United States)

    Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon

    2017-03-01

    This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.

  20. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud for Mobile Cloud Computing Applications

    Directory of Open Access Journals (Sweden)

    Thanh Dinh

    2017-03-01

    Full Text Available This paper presents a location-based interactive model of Internet of Things (IoT and cloud integration (IoT-cloud for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.

  1. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud) for Mobile Cloud Computing Applications †

    Science.gov (United States)

    Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon

    2017-01-01

    This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model. PMID:28257067

  2. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  3. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    Science.gov (United States)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  4. THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. II. NEBULAR PROPERTIES OF THE DISK AND INNER WIND

    International Nuclear Information System (INIS)

    Westmoquette, M. S.; Smith, L. J.; Konstantopoulos, I. S.; Gallagher, J. S.; Trancho, G.; Bastian, N.

    2009-01-01

    In this second paper of the series, we present the results from optical Gemini-North GMOS-IFU and WIYN DensePak IFU spectroscopic observations of the starburst and inner wind zones of M82, with a focus on the state of the T ∼ 10 4 K ionized interstellar medium. Our electron density maps show peaks of a few 1000 cm -3 (implying very high thermal pressures), local small spatial-scale variations, and a falloff in the minor axis direction. We discuss the implications of these results with regards to the conditions/locations that may favor the escape of individual cluster winds that ultimately power the large-scale superwind. Our findings, when combined with the body of literature built up over the last decade on the state of the interstellar medium (ISM) in M82, imply that the starburst environment is highly fragmented into a range of clouds from small/dense clumps with low-filling factors ( e ∼> 10 4 cm -3 ) to larger filling factor, less dense gas. The most compact clouds seem to be found in the cores of the star cluster complexes, whereas the cloud sizes in the inter-complex region are larger. These dense clouds are bathed with an intense radiation field and embedded in an extensive high temperature (T ∼> 10 6 K), X-ray-emitting ISM that is a product of the high star formation rates in the starburst zones of M82. The near-constant state of the ionization state of the ∼10 4 K gas throughout the M82 starburst zone can be explained as a consequence of the small cloud sizes, which allow the gas conditions to respond quickly to any changes. In Paper I, we found that the observed emission lines are composed of multiple components, including a broad (FWHM ∼ 150-350 km s -1 ) feature that we associate with emission from turbulent mixing layers on the surfaces of the gas clouds, resulting from the interaction of the fast wind outflows from the synchrotron self-Comptons. The large number of compact clouds and wind sources provides an ideal environment for broad line

  5. Inverse modeling of cloud-aerosol interactions -- Part 1: Detailed response surface analysis

    NARCIS (Netherlands)

    Partridge, D.G.; Vrugt, J.A.; Tunved, P.; Ekman, A.M.L.; Gorea, D.; Sooroshian, A.

    2011-01-01

    New methodologies are required to probe the sensitivity of parameters describing cloud droplet activation. This paper presents an inverse modeling-based method for exploring cloud-aerosol interactions via response surfaces. The objective function, containing the difference between the measured and

  6. Effects of turbulence on mixed-phase deep convective clouds under different basic-state winds and aerosol concentrations

    Science.gov (United States)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2014-12-01

    The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.

  7. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  8. Teaching Teachers: The Problem with Emphasizing "Isms."

    Science.gov (United States)

    Ormrod, Jeanne Ellis

    This paper argues that in teaching educational psychology, different experts often compartmentalize theories in substantially different ways, and there is considerable disagreement within the field regarding the dividing lines that separate various "isms." The four main "isms" (behaviorism, information processing theory, constructivism, and social…

  9. An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud

    Directory of Open Access Journals (Sweden)

    Thanh Dinh

    2016-06-01

    Full Text Available This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud.

  10. The Evolution of the Large-Scale ISM: Bubbles, Superbubbles and Non-Equilibrium Ionization

    Science.gov (United States)

    de Avillez, M. A.; Breitschwerdt, D.

    2010-12-01

    The ISM, powered by SNe, is turbulent and permeated by a magnetic field (with a mean and a turbulent component). It constitutes a frothy medium that is mostly out of equilibrium and is ram pressure dominated on most of the temperature ranges, except for T 106K, where magnetic and thermal pressures dominate, respectively. Such lack of equilibrium is also imposed by the feedback of the radiative processes into the ISM flow. Many models of the ISM or isolated phenomena, such as bubbles, superbubbles, clouds evolution, etc., take for granted that the flow is in the so-called collisional ionization equilibrium (CIE). However, recombination time scales of most of the ions below 106 K are longer than the cooling time scale. This implies that the recombination lags behind and the plasma is overionized while it cools. As a consequence cooling deviates from CIE. This has severe implications on the evolution of the ISM flow and its ionization structure. Here, besides reviewing several models of the ISM, including bubbles and superbubbles, the validity of the CIE approximation is discussed, and a presentation of recent developments in modeling the ISM by taking into account the time-dependent ionization structure of the flow in a full-blown numerical 3D high resolution simulation is presented.

  11. Soil structure interaction in offshore wind turbine collisions

    DEFF Research Database (Denmark)

    Samsonovs, Artjoms; Giuliani, Luisa; Zania, Varvara

    2014-01-01

    Vessel impact is one of the load cases which should be accounted for in the design of an offshore wind turbine (OWT) according to design codes, but little guidance or information is given on the employed methodology. This study focuses on the evaluation of the distress induced in a wind turbine...... after a ship collision, thus providing an insight on the consequences of a collision event and on the main aspects to be considered when designing for this load case. In particular, the role of the foundation soil properties (site conditions) on the response of the structural system is investigated....... Dynamic finite element analyses have been performed taking into account the geometric and material nonlinearity of the tower, and the effects of soil structure interaction (SSI) have been studied in two representative collision scenarios of a service vessel with the turbine: a moderate energy impact...

  12. Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions

    International Nuclear Information System (INIS)

    Brinkop, S.; Roeckner, E.

    1993-01-01

    Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)

  13. Some necessary parameters for a critical velocity interaction between the ionospheric plasma and a xenon cloud

    International Nuclear Information System (INIS)

    Axnaes, I.

    1979-12-01

    The conditions for an experiment to study the critical ionization velocity effect in the interaction between a Xenon cloud, released from a satellite, and the ionospheric plasma are investigated. The model used is based on the assumption that there exists an effective process that transfers the energy, that is available in the relative motion, to the electrons. Some necessary conditions to obtain significant heating or deceleration of the plasma penetrating the cloud are calculated. The conditions are mainly given by the energy available in the relative motion and the rates of the different binary collision processes involved. As the released gas cloud expands the possibilities for a critical velocity interaction will exist only within a certain range of cloud radii. It is shown that the charge transfer collision cross section between the ionospheric ions and the cloud atoms is an important parameter and that Xenon is a very suitable gas in that respect. (author)

  14. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  15. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  16. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    Directory of Open Access Journals (Sweden)

    Nicholas Meskhidze

    2010-01-01

    Full Text Available Using satellite data for the surface ocean, aerosol optical depth (AOD, and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl-a] and liquid cloud effective radii over productive areas of the oceans varies between −0.2 and −0.6. Special attention is given to identifying (and addressing problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AODdiff is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AODdiff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN correlates well with [Chl-a] over the productive waters of the Southern Ocean. Since [Chl-a] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.

  17. Aerosol-cloud interactions in Arctic mixed-phase stratocumulus

    Science.gov (United States)

    Solomon, A.

    2017-12-01

    Reliable climate projections require realistic simulations of Arctic cloud feedbacks. Of particular importance is accurately simulating Arctic mixed-phase stratocumuli (AMPS), which are ubiquitous and play an important role in regional climate due to their impact on the surface energy budget and atmospheric boundary layer structure through cloud-driven turbulence, radiative forcing, and precipitation. AMPS are challenging to model due to uncertainties in ice microphysical processes that determine phase partitioning between ice and radiatively important cloud liquid water. Since temperatures in AMPS are too warm for homogenous ice nucleation, ice must form through heterogeneous nucleation. In this presentation we discuss a relatively unexplored source of ice production-recycling of ice nuclei in regions of ice subsaturation. AMPS frequently have ice-subsaturated air near the cloud-driven mixed-layer base where falling ice crystals can sublimate, leaving behind IN. This study provides an idealized framework to understand feedbacks between dynamics and microphysics that maintain phase-partitioning in AMPS. In addition, the results of this study provide insight into the mechanisms and feedbacks that may maintain cloud ice in AMPS even when entrainment of IN at the mixed-layer boundaries is weak.

  18. Upstream magnetospheric ion flux tube within a magnetic cloud: Wind/STICS

    Science.gov (United States)

    Posner, Arik; Liemohn, Michael W.; Zurbuchen, Thomas H.

    2003-03-01

    We present a case study of a remarkable upstream O+ and N+ ion outflow event. We present observational evidence for spatially structured outflow of these Low Charge State Heavy Ions (LCSHIs) of magnetospheric origin along a small reconnected field line region within the framework of a magnetic cloud of an ICME. From the particles' in situ 3D distribution function we conclude that in this case the interaction of the outflow with the bow shock is small. We conclude further that the gyrophases of outflowing ions at the reconnection point are randomly distributed. This leads to the formation of a flux tube with a specific geometry. In particular, the outflow reveals spatial dispersion and non-gyrotropy. This result has implications for the size of the dayside reconnection site.

  19. Using satellites and global models to investigate aerosol-cloud interactions

    Science.gov (United States)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  20. The interaction of wind and water in the desertification environment

    Science.gov (United States)

    Jacobberger, P. A.

    1987-01-01

    An appropriate process/response model for the physical basis of desertification is provided by the interactions of wind and water in the desert fringe environment. Essentially, the process of desertification can be thought of as a progressive environmental transition from predominantly fluvial to aeolian processes. This is a simple but useful way of looking at desertification; in this context, desertification is morphogenetic in character. To illustrate the model, a study of drought-related changes in central Mali will serve to trace the interrelated responses of geomorphologic processes to drought conditions.

  1. Improved automatic estimation of winds at the cloud top of Venus using superposition of cross-correlation surfaces

    Science.gov (United States)

    Ikegawa, Shinichi; Horinouchi, Takeshi

    2016-06-01

    Accurate wind observation is a key to study atmospheric dynamics. A new automated cloud tracking method for the dayside of Venus is proposed and evaluated by using the ultraviolet images obtained by the Venus Monitoring Camera onboard the Venus Express orbiter. It uses multiple images obtained successively over a few hours. Cross-correlations are computed from the pair combinations of the images and are superposed to identify cloud advection. It is shown that the superposition improves the accuracy of velocity estimation and significantly reduces false pattern matches that cause large errors. Two methods to evaluate the accuracy of each of the obtained cloud motion vectors are proposed. One relies on the confidence bounds of cross-correlation with consideration of anisotropic cloud morphology. The other relies on the comparison of two independent estimations obtained by separating the successive images into two groups. The two evaluations can be combined to screen the results. It is shown that the accuracy of the screened vectors are very high to the equatorward of 30 degree, while it is relatively low at higher latitudes. Analysis of them supports the previously reported existence of day-to-day large-scale variability at the cloud deck of Venus, and it further suggests smaller-scale features. The product of this study is expected to advance the dynamics of venusian atmosphere.

  2. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    International Nuclear Information System (INIS)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J

    2008-01-01

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization

  3. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    Energy Technology Data Exchange (ETDEWEB)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, MSIN K9-30, Richland, WA (United States)], E-mail: William.Gustafson@pnl.gov

    2008-04-15

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization.

  4. Search for C2- in Diffuse Clouds

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Hosaki, Y.; Kagi, E.; Izumiura, H.; Yanagisawa, K.; Šedivcová, Tereza; Kawaguchi, K.

    2005-01-01

    Roč. 57, - (2005), 605-609 ISSN 0004-6264 R&D Projects: GA AV ČR(CZ) IAA4040104; GA MŠk(CZ) LC512 Grant - others:JSPS(JP) C13640247; JSPS(JP) A14204018 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : ISM : clouds * ISM : lines and bands * ISM : molecules * molecular processes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.376, year: 2005

  5. Simulation of the interaction of positively charged beams and electron clouds

    International Nuclear Information System (INIS)

    Markovik, Aleksandar

    2013-01-01

    The incoherent (head-tail) effect on the bunch due to the interaction with electron clouds (e-clouds) leads to a blow up of the transverse beam size in storage rings operating with positively charged beams. Even more the e-cloud effects are considered to be the main limiting factor for high current, high-brightness or high-luminosity operation of future machines. Therefore the simulation of e-cloud phenomena is a highly active field of research. The main focus in this work was set to a development of a tool for simulation of the interaction of relativistic bunches with non-relativistic parasitic charged particles. The result is the Particle-In-Cell Program MOEVE PIC Tracking which can track a 3D bunch under the influence of its own and external electromagnetic fields but first and foremost it simulates the interaction of relativistic positively charged bunches and initially static electrons. In MOEVE PIC Tracking the conducting beam pipe can be modeled with an arbitrary elliptical cross-section to achieve more accurate space charge field computations for both the bunch and the e-cloud. The simulation of the interaction between positron bunches and electron clouds in this work gave a detailed insight of the behavior of both particle species during and after the interaction. Further and ultimate goal of this work was a fast estimation of the beam stability under the influence of e-clouds in the storage ring. The standard approach to simulate the stability of a single bunch is to track the bunch particles through the linear optics of the machine by multiplying the 6D vector of each particle with the transformation matrices describing the lattice. Thereby the action of the e-cloud on the bunch is approximated by a pre-computed wake kick which is applied on one or more points in the lattice. Following the idea of K.Ohmi the wake kick was pre-computed as a two variable function of the bunch part exiting the e-cloud and the subsequent parts of a bunch which receive a

  6. Classifying Structures in the ISM with Machine Learning Techniques

    Science.gov (United States)

    Beaumont, Christopher; Goodman, A. A.; Williams, J. P.

    2011-01-01

    The processes which govern molecular cloud evolution and star formation often sculpt structures in the ISM: filaments, pillars, shells, outflows, etc. Because of their morphological complexity, these objects are often identified manually. Manual classification has several disadvantages; the process is subjective, not easily reproducible, and does not scale well to handle increasingly large datasets. We have explored to what extent machine learning algorithms can be trained to autonomously identify specific morphological features in molecular cloud datasets. We show that the Support Vector Machine algorithm can successfully locate filaments and outflows blended with other emission structures. When the objects of interest are morphologically distinct from the surrounding emission, this autonomous classification achieves >90% accuracy. We have developed a set of IDL-based tools to apply this technique to other datasets.

  7. Aerosol-cloud interactions in a multi-scale modeling framework

    Science.gov (United States)

    Lin, G.; Ghan, S. J.

    2017-12-01

    Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the

  8. The interaction of fast alpha particles with pellet ablation clouds

    International Nuclear Information System (INIS)

    McChesney, J.M.; Parks, P.B.; Fisher, R.K.; Olson, R.E.

    1997-01-01

    The energy spectra of energetic confined alpha particles are being measured using the pellet charge exchange method [R. K. Fisher, J. S. Leffler, A. M. Howald, and P. B. Parks, Fusion Technol. 13, 536 (1988)]. The technique uses the dense ablation cloud surrounding an injected impurity pellet to neutralize a fraction of the incident alpha particles, allowing them to escape from the plasma where their energy spectrum can be measured using a neutral particle analyzer. The signal calculations given in the above-mentioned reference disregarded the effects of the alpha particles' helical Larmor orbits, which causes the alphas to make multiple passes through the cloud. Other effects such as electron ionization by plasma and ablation cloud electrons and the effect of the charge state composition of the cloud, were also neglected. This report considers these issues, reformulates the signal level calculation, and uses a Monte-Carlo approach to calculate the neutralization fractions. The possible effects of energy loss and pitch angle scattering of the alphas are also considered. copyright 1997 American Institute of Physics

  9. Solar Wind Interaction and Impact on the Venus Atmosphere

    Science.gov (United States)

    Futaana, Yoshifumi; Stenberg Wieser, Gabriella; Barabash, Stas; Luhmann, Janet G.

    2017-11-01

    Venus has intrigued planetary scientists for decades because of its huge contrasts to Earth, in spite of its nickname of "Earth's Twin". Its invisible upper atmosphere and space environment are also part of the larger story of Venus and its evolution. In 60s to 70s, several missions (Venera and Mariner series) explored Venus-solar wind interaction regions. They identified the basic structure of the near-Venus space environment, for example, existence of the bow shock, magnetotail, ionosphere, as well as the lack of the intrinsic magnetic field. A huge leap in knowledge about the solar wind interaction with Venus was made possible by the 14-year long mission, Pioneer Venus Orbiter (PVO), launched in 1978. More recently, ESA's probe, Venus Express (VEX), was inserted into orbit in 2006, operated for 8 years. Owing to its different orbit from that of PVO, VEX made unique measurements in the polar and terminator regions, and probed the near-Venus tail for the first time. The near-tail hosts dynamic processes that lead to plasma energization. These processes in turn lead to the loss of ionospheric ions to space, slowly eroding the Venusian atmosphere. VEX carried an ion spectrometer with a moderate mass-separation capability and the observed ratio of the escaping hydrogen and oxygen ions in the wake indicates the stoichiometric loss of water from Venus. The structure and dynamics of the induced magnetosphere depends on the prevailing solar wind conditions. VEX studied the response of the magnetospheric system on different time scales. A plethora of waves was identified by the magnetometer on VEX; some of them were not previously observed by PVO. Proton cyclotron waves were seen far upstream of the bow shock, mirror mode waves were observed in magnetosheath and whistler mode waves, possibly generated by lightning discharges were frequently seen. VEX also encouraged renewed numerical modeling efforts, including fluid-type of models and particle-fluid hybrid type of models

  10. Clouds-radiation interactions in a general circulation model - Impact upon the planetary radiation balance

    Science.gov (United States)

    Smith, Laura D.; Vonder Haar, Thomas H.

    1991-01-01

    Simultaneously conducted observations of the earth radiation budget and the cloud amount estimates, taken during the June 1979 - May 1980 Nimbus 7 mission were used to show interactions between the cloud amount and raidation and to verify a long-term climate simulation obtained with the latest version of the NCAR Community Climate Model (CCM). The parameterization of the radiative, dynamic, and thermodynamic processes produced the mean radiation and cloud quantities that were in reasonable agreement with satellite observations, but at the expense of simulating their short-term fluctuations. The results support the assumption that the inclusion of the cloud liquid water (ice) variable would be the best mean to reduce the blinking of clouds in NCAR CCM.

  11. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Science.gov (United States)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  12. The interaction of katabatic winds and mountain waves

    Energy Technology Data Exchange (ETDEWEB)

    Poulos, Gregory Steve [Colorado State Univ., Fort Collins, CO (United States)

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  13. Interaction between the SNR Sagittarius A East and the 50-km s-1 Molecular Cloud

    International Nuclear Information System (INIS)

    Tsuboi, Masato; Okumura, Sachiko K; Miyazaki, Atsushi

    2006-01-01

    We performed high-resolution observations of the Galactic Center 50-km s -1 molecular cloud in the CS J = 1 - 0 line using the Nobeyama Millimeter Array. The 50-km s -1 molecular cloud corresponds to a break in the Sagittarius (Sgr) A east shell. A very broad and negative velocity wing feature is detected at an apparent contact spot between the molecular cloud and the Sgr A east shell. The velocity width of the wing feature is over 50-km s -1 . The width is three times wider than those of typical Galactic Center clouds. This strongly suggests that the shell is interacting physically with the molecular cloud. The asymmetric velocity profile of the wing feature indicates that the Sgr A east shell expands and crashes into the far side of the molecular cloud. About 50 clumps are identified in the cloud using CLUMPFIND. The velocity width-size relation and the mass spectrum of clumps in the cloud are similar to those in Central Molecular Zone (CMZ)

  14. Aerosol-Cloud-Precipitation Interactions in WRF Model:Sensitivity to Autoconversion Parameterization

    Institute of Scientific and Technical Information of China (English)

    解小宁; 刘晓东

    2015-01-01

    Cloud-to-rain autoconversion process is an important player in aerosol loading, cloud morphology, and precipitation variations because it can modulate cloud microphysical characteristics depending on the par-ticipation of aerosols, and aff ects the spatio-temporal distribution and total amount of precipitation. By applying the Kessler, the Khairoutdinov-Kogan (KK), and the Dispersion autoconversion parameterization schemes in a set of sensitivity experiments, the indirect eff ects of aerosols on clouds and precipitation are investigated for a deep convective cloud system in Beijing under various aerosol concentration backgrounds from 50 to 10000 cm−3. Numerical experiments show that aerosol-induced precipitation change is strongly dependent on autoconversion parameterization schemes. For the Kessler scheme, the average cumulative precipitation is enhanced slightly with increasing aerosols, whereas surface precipitation is reduced signifi-cantly with increasing aerosols for the KK scheme. Moreover, precipitation varies non-monotonically for the Dispersion scheme, increasing with aerosols at lower concentrations and decreasing at higher concentrations. These diff erent trends of aerosol-induced precipitation change are mainly ascribed to diff erences in rain wa-ter content under these three autoconversion parameterization schemes. Therefore, this study suggests that accurate parameterization of cloud microphysical processes, particularly the cloud-to-rain autoconversion process, is needed for improving the scientifi c understanding of aerosol-cloud-precipitation interactions.

  15. Organic Material in the ISM

    Science.gov (United States)

    Pendleton, Yvonne; Morrison, David (Technical Monitor)

    1994-01-01

    Spectra of objects which lie along several lines of sight through the diffuse interstellar medium (ISM) all contain an absorption feature near 3.4 micrometers which has been attributed to saturated aliphatic hydrocarbons on interstellar grains. The similarity of the absorption bands near 3.4 micrometers along different lines of sight reveal that the carrier of this band lies in the diffuse dust. Several materials have been proposed as "fits" to the 3.4 micrometers feature over the years. A comparison of these identifications is presented. A remarkable similarity between the spectrum of the diffuse dust and an organic extract from the Murchison meteorite suggests that some of the interstellar organic material may be preserved in primitive solar system bodies. The optical depth/extinction tau /A(sub v) ratio for the 3.4 micrometers band is higher toward the Galactic center than toward sources which sample the interstellar medium in the local neighborhood. A similar trend has been observed previously for silicates, indicating that the two materials may be simultaneously enhanced in the Galactic center.

  16. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    Science.gov (United States)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud

  17. Local ISM 3D Distribution and Soft X-ray Background Inferences for Nearby Hot Gas

    Science.gov (United States)

    Puspitarini, L.; Lallement, R.; Snowden, Steven L.; Vergely, J.-L.; Snowden, S.

    2014-01-01

    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and are filled by hot gas. To demonstrate this, and to derive a clearer picture of the local ISM, we compare our recent 3D IS dust distribution maps to the ROSAT diffuse Xray background maps after removal of heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred mean pressure in the local cavities is found to be approx.9,400/cu cm K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in those regions, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas and as a consequence a reduction of the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of the higher energy

  18. The Solar Wind-Mars Interaction Boundaries in Three Dimensions

    Science.gov (United States)

    Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; DiBraccio, G. A.; Soobiah, Y. I. J.

    2017-12-01

    The Martian magnetosphere is a product of the interaction of Mars with the interplanetary magnetic field and the supersonic solar wind. A bow shock forms upstream of the planet as the solar wind is diverted around the planet. Closer to the planet another boundary is located that separates the shock-heated solar wind plasma from the planetary plasma in the Martian magnetosphere. The Martian magnetosphere is induced by the pile-up of the interplanetary magnetic field. This induced magnetospheric boundary (IMB) has been referred to by different names, in part due to the observations available at the time. The location of these boundaries have been previously analyzed using data from Phobos 2, Mars Global Surveyor, and Mars Express resulting in models describing their average shapes. Observations of individual transitions demonstrate that it is a boundary with a finite thickness. The MAVEN spacecraft has been in orbit about Mars since November 2014 resulting in many encounters of the spacecraft with the boundaries. Using data from the Particle and Fields Package (PFP), we identify over 1000 bow shock crossings and over 4000 IMB crossings that we use to model the average locations. We model the boundaries as a 3-dimensional surface allowing observations of asymmetry. The average location of the bow shock and IMB lies further from the planet in the southern hemisphere, where stronger crustal fields are present. The MAVEN PFP dataset allows concurrent observations of the magnetic field and plasma environment to investigate the nature of the IMB and the relationship of the boundary to the different plasma signatures. Finally, we model the upstream and downstream encounters of the boundaries separately to produce shell models that quantify the finite thicknesses of the boundaries.

  19. The Benefits & Drawbacks of Integrating Cloud Computing and Interactive Whiteboards in Teacher Preparation

    Science.gov (United States)

    Blue, Elfreda; Tirotta, Rose

    2011-01-01

    Twenty-first century technology has changed the way tools are used to support and enhance learning and instruction. Cloud computing and interactive white boards, make it possible for learners to interact, simulate, collaborate, and document learning experiences and real world problem-solving. This article discusses how various technologies (blogs,…

  20. Rate of non-linearity in DMS aerosol-cloud-climate interactions

    Directory of Open Access Journals (Sweden)

    M. A. Thomas

    2011-11-01

    Full Text Available The degree of non-linearity in DMS-cloud-climate interactions is assessed using the ECHAM5-HAMMOZ model by taking into account end-to-end aerosol chemistry-cloud microphysics link. The evaluation is made over the Southern oceans in austral summer, a region of minimal anthropogenic influence. In this study, we compare the DMS-derived changes in the aerosol and cloud microphysical properties between a baseline simulation with the ocean DMS emissions from a prescribed climatology, and a scenario where the DMS emissions are doubled. Our results show that doubling the DMS emissions in the current climate results in a non-linear response in atmospheric DMS burden and subsequently, in SO2 and H2SO4 burdens due to inadequate OH oxidation. The aerosol optical depth increases by only ~20 % in the 30° S–75° S belt in the SH summer months. This increases the vertically integrated cloud droplet number concentrations (CDNC by 25 %. Since the vertically integrated liquid water vapor is constant in our model simulations, an increase in CDNC leads to a reduction in cloud droplet radius of 3.4 % over the Southern oceans in summer. The equivalent increase in cloud liquid water path is 10.7 %. The above changes in cloud microphysical properties result in a change in global annual mean radiative forcing at the TOA of −1.4 W m−2. The results suggest that the DMS-cloud microphysics link is highly non-linear. This has implications for future studies investigating the DMS-cloud climate feedbacks in a warming world and for studies evaluating geoengineering options to counteract warming by modulating low level marine clouds.

  1. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fast, JD [Pacific Northwest National Laboratory; Berg, LK [Pacific Northwest National Laboratory

    2015-12-01

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in boundary layer and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign is designed to provide a detailed set of measurements that are needed to obtain a more complete understanding of the life cycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. HI-SCALE consists of 2, 4-week intensive observational periods, one in the spring and the other in the late summer, to take advantage of different stages and distribution of “greenness” for various types of vegetation in the vicinity of the Atmospheric Radiation and Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site as well as aerosol properties that vary during the growing season. Most of the proposed instrumentation will be deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Routine ARM aerosol measurements made at the surface will be supplemented with aerosol microphysical properties measurements. The G-1 aircraft will complete transects over the SGP Central Facility at multiple altitudes within the boundary layer, within clouds, and above clouds.

  2. Observations & modeling of solar-wind/magnetospheric interactions

    Science.gov (United States)

    Hoilijoki, Sanni; Von Alfthan, Sebastian; Pfau-Kempf, Yann; Palmroth, Minna; Ganse, Urs

    2016-07-01

    The majority of the global magnetospheric dynamics is driven by magnetic reconnection, indicating the need to understand and predict reconnection processes and their global consequences. So far, global magnetospheric dynamics has been simulated using mainly magnetohydrodynamic (MHD) models, which are approximate but fast enough to be executed in real time or near-real time. Due to their fast computation times, MHD models are currently the only possible frameworks for space weather predictions. However, in MHD models reconnection is not treated kinetically. In this presentation we will compare the results from global kinetic (hybrid-Vlasov) and global MHD simulations. Both simulations are compared with in-situ measurements. We will show that the kinetic processes at the bow shock, in the magnetosheath and at the magnetopause affect global dynamics even during steady solar wind conditions. Foreshock processes cause an asymmetry in the magnetosheath plasma, indicating that the plasma entering the magnetosphere is not symmetrical on different sides of the magnetosphere. Behind the bow shock in the magnetosheath kinetic wave modes appear. Some of these waves propagate to the magnetopause and have an effect on the magnetopause reconnection. Therefore we find that kinetic phenomena have a significant role in the interaction between the solar wind and the magnetosphere. While kinetic models cannot be executed in real time currently, they could be used to extract heuristics to be added in the faster MHD models.

  3. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Directory of Open Access Journals (Sweden)

    C. Zhou

    2016-01-01

    Full Text Available A comprehensive aerosol–cloud–precipitation interaction (ACI scheme has been developed under a China Meteorological Administration (CMA chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme – WDM6 and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  4. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  5. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  6. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    OpenAIRE

    Tan Jiqiu; Zhong Dingqing; Wang Qiong

    2014-01-01

    In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction fie...

  7. Solar-wind interactions with the Moon: role of oxygen ions

    International Nuclear Information System (INIS)

    Mukherjee, N.R.

    1979-01-01

    The solar-wind interacts directly with the lunar surface due to tenuous atmosphere and magnetic field. The interaction results in an almost complete absorption of the solar-wind corpuscles producing no upstream bowshock but a cavity downstream. The solar-wind oxygen ionic species induce and undergo a complex set of reactions with the elements of the lunar minerals and the solar-wind derived trapped gases. In this paper, the long-term concentration and the role of oxygen derived from the solar-wind is discussed. (Auth.)

  8. ISM Approach to Model Offshore Outsourcing Risks

    Directory of Open Access Journals (Sweden)

    Sunand Kumar

    2014-07-01

    Full Text Available In an effort to achieve a competitive advantage via cost reductions and improved market responsiveness, organizations are increasingly employing offshore outsourcing as a major component of their supply chain strategies. But as evident from literature number of risks such as Political risk, Risk due to cultural differences, Compliance and regulatory risk, Opportunistic risk and Organization structural risk, which adversely affect the performance of offshore outsourcing in a supply chain network. This also leads to dissatisfaction among different stake holders. The main objective of this paper is to identify and understand the mutual interaction among various risks which affect the performance of offshore outsourcing.  To this effect, authors have identified various risks through extant review of literature.  From this information, an integrated model using interpretive structural modelling (ISM for risks affecting offshore outsourcing is developed and the structural relationships between these risks are modeled.  Further, MICMAC analysis is done to analyze the driving power and dependency of risks which shall be helpful to managers to identify and classify important criterions and to reveal the direct and indirect effects of each criterion on offshore outsourcing. Results show that political risk and risk due to cultural differences are act as strong drivers.

  9. AirborneWind Energy: Airfoil-Airmass Interaction

    OpenAIRE

    Zanon , Mario; Gros , Sebastien; Meyers , Johan; Diehl , Moritz

    2014-01-01

    The Airborne Wind Energy paradigm proposes to generate energy by flying a tethered airfoil across the wind flow at a high velocity. While Airborne Wind Energy enables flight in higher-altitude, stronger wind layers, the extra drag generated by the tether motion imposes a significant limit to the overall system efficiency. To address this issue, two airfoils with a shared tether can reduce overall system drag. A study proposed in Zanon et al. (2013) confirms this claim by showing that, in the ...

  10. The Highest Resolution Chandra View of Photoionization and Jet-Cloud Interaction in the Nuclear Region of NGC 4151

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-10-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra High Resolution Camera (HRC) observation. The HRC image resolves the emission on spatial scales of 0farcs5, ~30 pc, showing an extended X-ray morphology overall consistent with the narrow-line region (NLR) seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution techniques both reveal X-ray enhancements that closely match the substructures seen in the Hubble Space Telescope [O III] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [O III]/soft X-ray ratio ~10, despite the distance of the clouds from the nucleus. This ratio is consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density decreasing as r -2 as expected for a nuclear wind scenario. The [O III]/X-ray ratios at the location of radio knots show an excess of X-ray emission, suggesting shock heating in addition to photoionization. We examine various mechanisms for the X-ray emission and find that, in contrast to jet-related X-ray emission in more powerful active galactic nucleus, the observed jet parameters in NGC 4151 are inconsistent with synchrotron emission, synchrotron self-Compton, inverse Compton of cosmic microwave background photons or galaxy optical light. Instead, our results favor thermal emission from the interaction between radio outflow and NLR gas clouds as the origin for the X-ray emission associated with the jet. This supports previous claims that frequent jet-interstellar medium interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated, distinct from those kpc-scale jets in the radio galaxies.

  11. THE HIGHEST RESOLUTION CHANDRA VIEW OF PHOTOIONIZATION AND JET-CLOUD INTERACTION IN THE NUCLEAR REGION OF NGC 4151

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-01-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra High Resolution Camera (HRC) observation. The HRC image resolves the emission on spatial scales of 0.''5, ∼30 pc, showing an extended X-ray morphology overall consistent with the narrow-line region (NLR) seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution techniques both reveal X-ray enhancements that closely match the substructures seen in the Hubble Space Telescope [O III] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [O III]/soft X-ray ratio ∼10, despite the distance of the clouds from the nucleus. This ratio is consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density decreasing as r -2 as expected for a nuclear wind scenario. The [O III]/X-ray ratios at the location of radio knots show an excess of X-ray emission, suggesting shock heating in addition to photoionization. We examine various mechanisms for the X-ray emission and find that, in contrast to jet-related X-ray emission in more powerful active galactic nucleus, the observed jet parameters in NGC 4151 are inconsistent with synchrotron emission, synchrotron self-Compton, inverse Compton of cosmic microwave background photons or galaxy optical light. Instead, our results favor thermal emission from the interaction between radio outflow and NLR gas clouds as the origin for the X-ray emission associated with the jet. This supports previous claims that frequent jet-interstellar medium interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated, distinct from those kpc-scale jets in the radio galaxies.

  12. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    Science.gov (United States)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  13. Simulation of interaction between wind farm and power system

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Janosi, L.

    2002-01-01

    A dynamic model of the wind farm Hagesholm has been implemented in the dedicated power system simulation program DIgSILENT. The wind farm con- sists of six 2MW NM2000/72 wind turbines from NEG-Micon. The model has been verified using simultaneous powerquality measurements on the 10 kV terminals...

  14. Local Interactions of Hydrometeors by Diffusion in Mixed-Phase Clouds

    Science.gov (United States)

    Baumgartner, Manuel; Spichtinger, Peter

    2017-04-01

    Mixed-phase clouds, containing both ice particles and liquid droplets, are important for the Earth-Atmosphere system. They modulate the radiation budget by a combination of albedo effect and greenhouse effect. In contrast to liquid water clouds, the radiative impact of clouds containing ice particles is still uncertain. Scattering and absorption highly depends in microphysical properties of ice crystals, e.g. size and shape. In addition, most precipitation on Earth forms via the ice phase. Thus, better understanding of ice processes as well as their representation in models is required. A key process for determining shape and size of ice crystals is diffusional growth. Diffusion processes in mixed-phase clouds are highly uncertain; in addition they are usually highly simplified in cloud models, especially in bulk microphysics parameterizations. The direct interaction between cloud droplets and ice particles, due to spatial inhomogeneities, is ignored; the particles can only interact via their environmental conditions. Local effects as supply of supersaturation due to clusters of droplets around ice particles are usually not represented, although they form the physical basis of the Wegener-Bergeron-Findeisen process. We present direct numerical simulations of the interaction of single ice particles and droplets, especially their local competition for the available water vapor. In addition, we show an approach to parameterize local interactions by diffusion. The suggested parameterization uses local steady-state solutions of the diffusion equations for water vapor for an ice particle as well as a droplet. The individual solutions are coupled together to obtain the desired interaction. We show some results of the scheme as implemented in a parcel model.

  15. Nonlinear internal gravity waves and their interaction with the mean wind

    International Nuclear Information System (INIS)

    Grimshaw, R.

    1975-01-01

    The interaction of a wave packet of internal gravity waves with the mean wind is investigated, for the case when there is a region of wind shear and hence a critical level. The principal equations are the Doppler-shifted dispersion relation, the equation for conservation of wave action and the mean momentum equation, in which the mean wind is accelerated by a 'radiation stress' tensor, due to the waves. These equations are integrated numerically to study the behaviour of a wave packet approaching a critical level, where the horizontal phase speed matches the mean wind. The results demonstrate the exchange of energy from the waves to the mean wind in the vicinity of the critical level. The interaction between the waves and the mean wind is also studied in the absence of any initial wind shear. (author)

  16. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: • Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. • Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. • Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  17. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  18. Interactions Between Atmospheric Aerosols and Marine Boundary Layer Clouds on Regional and Global Scales

    Science.gov (United States)

    Wang, Zhen

    Airborne aerosols are crucial atmospheric constituents that are involved in global climate change and human life qualities. Understanding the nature and magnitude of aerosol-cloud-precipitation interactions is critical in model predictions for atmospheric radiation budget and the water cycle. The interactions depend on a variety of factors including aerosol physicochemical complexity, cloud types, meteorological and thermodynamic regimes and data processing techniques. This PhD work is an effort to quantify the relationships among aerosol, clouds, and precipitation on both global and regional scales by using satellite retrievals and aircraft measurements. The first study examines spatial distributions of conversion rate of cloud water to rainwater in warm maritime clouds over the globe by using NASA A-Train satellite data. This study compares the time scale of the onset of precipitation with different aerosol categories defined by values of aerosol optical depth, fine mode fraction, and Angstrom Exponent. The results indicate that conversion time scales are actually quite sensitive to lower tropospheric static stability (LTSS) and cloud liquid water path (LWP), in addition to aerosol type. Analysis shows that tropical Pacific Ocean is dominated by the highest average conversion rate while subtropical warm cloud regions (far northeastern Pacific Ocean, far southeastern Pacific Ocean, Western Africa coastal area) exhibit the opposite result. Conversion times are mostly shorter for lower LTSS regimes. When LTSS condition is fixed, higher conversion rates coincide with higher LWP and lower aerosol index categories. After a general global view of physical property quantifications, the rest of the presented PhD studies is focused on regional airborne observations, especially bulk cloud water chemistry and aerosol aqueous-phase reactions during the summertime off the California coast. Local air mass origins are categorized into three distinct types (ocean, ships, and land

  19. Who Moved Those Rain Clouds to Town? Making Windbirds to Learn about the Power of Wind

    Science.gov (United States)

    Samarakoon, Deepanee; Smith, Latisha L.

    2016-01-01

    In this practical article, a kindergarten teacher shares a lesson designed to teach students about the power of wind. To address the Next Generation Science Standards engineering standards, students discussed the negative and positive aspects of wind and made daily weather observations (K-ESS2-1). Students constructed bird-shaped windsocks, called…

  20. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    Science.gov (United States)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write

  1. Understanding aerosol-cloud interactions in the development of orographic cumulus congestus during IPHEx

    Science.gov (United States)

    Barros, A. P.; Duan, Y.

    2017-12-01

    A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.

  2. Aircraft-based investigation of Dynamics-Aerosol-Chemistry-Cloud Interactions in Southern West Africa

    Science.gov (United States)

    Flamant, Cyrille

    2017-04-01

    The EU-funded project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa, http://www.dacciwa.eu) is investigating the relationship between weather, climate and air pollution in southern West Africa. The air over the coastal region of West Africa is a unique mixture of natural and anthropogenic gases, liquids and particles, emitted in an environment, in which multi-layer cloud decks frequently form. These exert a large influence on the local weather and climate, mainly due to their impact on radiation, the surface energy balance and thus the diurnal cycle of the atmospheric boundary layer. The main objective for the aircraft detachment was to build robust statistics of cloud properties in southern West Africa in different chemical landscapes to investigate the physical processes involved in their life cycle in such a complex chemical environment. As part of the DACCIWA field campaigns, three European aircraft (the German DLR Falcon 20, the French SAFIRE ATR 42 and the British BAS Twin Otter) conducted a total of 50 research flights across Ivory Coast, Ghana, Togo, and Benin from 27 June to 16 July 2016 for a total of 155 flight hours, including hours sponsored through 3 EUFAR projects. The aircraft were used in different ways based on their strengths, but all three had comparable instrumentation with the the capability to do gas-phase chemistry, aerosol and clouds, thereby generating a rich dataset of atmospheric conditions across the region. Eight types of flight objectives were conducted to achieve the goals of the DACCIWA: (i) Stratus clouds, (ii) Land-sea breeze clouds, (iii) Mid-level clouds, (iv) Biogenic emission, (v) City emissions, (vi) Flaring and ship emissions, (vii) Dust and biomass burning aerosols, and (viii) air-sea interactions. An overview of the DACCIWA aircraft campaign as well as first highlights from the airborne observations will be presented.

  3. Challenges for Cloud Modeling in the Context of Aerosol–Cloud–Precipitation Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lebo, Zachary J. [Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming; Shipway, Ben J. [Met Office, Exeter, United Kingdom; Fan, Jiwen [Pacific Northwest National Laboratory, Richland, Washington; Geresdi, Istvan [Faculty of Science, University of Pécs, Pécs, Hungary; Hill, Adrian [Met Office, Exeter, United Kingdom; Miltenberger, Annette [School of Earth and Environment, University of Leeds, Leeds, United Kingdom; Morrison, Hugh [Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado; Rosenberg, Phil [School of Earth and Environment, University of Leeds, Leeds, United Kingdom; Varble, Adam [Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah; Xue, Lulin [Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

    2017-08-01

    The International Cloud Modeling Workshop (CMW) has been a longstanding tradition in the cloud microphysics modeling community and is typically held the week prior to the International Conference on Clouds and Precipitation (ICCP). For the Ninth CMW, more than 40 participants from 10 countries convened at the Met Office in Exeter, United Kingdom. The workshop included 4 detailed case studies (described in more detail below) rooted in recent field campaigns. The overarching objective of these cases was to utilize new observations to better understand inter-model differences and model deficiencies, explore new modeling techniques, and gain physical insight into the behavior of clouds. As was the case at the Eighth CMW, there was a general theme of understanding the role of aerosol impacts in the context of cloud-precipitation interactions. However, an additional objective was the focal point of several cases at the most recent workshop: microphysical-dynamical interactions. Many of the cases focused less on idealized small-domain simulations (as was the general focus of previous workshops) and more on large-scale nested configurations examining effects at various scales.

  4. THE ORIGIN OF NEUTRAL HYDROGEN CLOUDS IN NEARBY GALAXY GROUPS: EXPLORING THE RANGE OF GALAXY INTERACTIONS

    International Nuclear Information System (INIS)

    Chynoweth, Katie M.; Polisensky, Emil; Holley-Bockelmann, Kelly; Langston, Glen I.

    2011-01-01

    We combine high-resolution N-body simulations with deep observations of neutral hydrogen (H I) in nearby galaxy groups in order to explore two well-known theories of H I cloud formation: H I stripping by galaxy interactions and dark-matter minihalos with embedded H I gas. This paper presents new data from three galaxy groups-Canes Venatici I, NGC 672, and NGC 45-and assembles data from our previous galaxy group campaign to generate a rich H I cloud archive to compare to our simulated data. We find no H I clouds in the Canes Venatici I, NGC 672, or NGC 45 galaxy groups. We conclude that H I clouds in our detection space are most likely to be generated through recent, strong galaxy interactions. We find no evidence of H I clouds associated with dark-matter halos above M HI ∼ 10 6 M sun , within ±700 km s -1 of galaxies, and within 50 kpc projected distance of galaxies.

  5. Ascension Island: The Layered Atlantic Smoke Interactions with Clouds (LASIC) Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, Kim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-30

    The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface.

  6. SDP_wlanger_3: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    Science.gov (United States)

    Langer, W.

    2011-09-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  7. KPOT_wlanger_1: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    Science.gov (United States)

    Langer, W.

    2007-10-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  8. The X CO Conversion Factor from Galactic Multiphase ISM Simulations

    Science.gov (United States)

    Gong, Munan; Ostriker, Eve C.; Kim, Chang-Goo

    2018-05-01

    {CO}(J=1{--}0) line emission is a widely used observational tracer of molecular gas, rendering essential the X CO factor, which is applied to convert CO luminosity to {{{H}}}2 mass. We use numerical simulations to study how X CO depends on numerical resolution, non-steady-state chemistry, physical environment, and observational beam size. Our study employs 3D magnetohydrodynamics (MHD) simulations of galactic disks with solar neighborhood conditions, where star formation and the three-phase interstellar medium (ISM) are self-consistently regulated by gravity and stellar feedback. Synthetic CO maps are obtained by postprocessing the MHD simulations with chemistry and radiation transfer. We find that CO is only an approximate tracer of {{{H}}}2. On parsec scales, W CO is more fundamentally a measure of mass-weighted volume density, rather than {{{H}}}2 column density. Nevertheless, =(0.7{\\textstyle {--}}1.0)× {10}20 {{{cm}}}-2 {{{K}}}-1 {{{km}}}-1 {{s}}, which is consistent with observations and insensitive to the evolutionary ISM state or radiation field strength if steady-state chemistry is assumed. Due to non-steady-state chemistry, younger molecular clouds have slightly lower and flatter profiles of X CO versus extinction than older ones. The {CO}-dark {{{H}}}2 fraction is 26%–79%, anticorrelated with the average extinction. As the observational beam size increases from 1 to 100 pc, increases by a factor of ∼2. Under solar neighborhood conditions, in molecular clouds is converged at a numerical resolution of 2 pc. However, the total CO abundance and luminosity are not converged even at the numerical resolution of 1 pc. Our simulations successfully reproduce the observed variations of X CO on parsec scales, as well as the dependence of X CO on extinction and the CO excitation temperature.

  9. The impact of magnetic fields on the chemical evolution of the supernova-driven ISM

    Czech Academy of Sciences Publication Activity Database

    Pardi, A.; Girichidis, P.; Naab, T.; Walch, S.; Peters, T.; Heitsch, F.; Glover, S.C.O.; Klessen, R.S.; Wünsch, Richard; Gatto, A.

    2017-01-01

    Roč. 465, č. 4 (2017), s. 4611-4633 ISSN 0035-8711 R&D Projects: GA ČR GA15-06012S Institutional support: RVO:67985815 Keywords : turbulent interstellar-medium * molecular cloud formation * ISM: supernova remnants Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  10. Numerical Simulation of Tower Rotor Interaction for Downwind Wind Turbine

    Directory of Open Access Journals (Sweden)

    Isam Janajreh

    2010-01-01

    Full Text Available Downwind wind turbines have lower upwind rotor misalignment, and thus lower turning moment and self-steered advantage over the upwind configuration. In this paper, numerical simulation to the downwind turbine is conducted to investigate the interaction between the tower and the blade during the intrinsic passage of the rotor in the wake of the tower. The moving rotor has been accounted for via ALE formulation of the incompressible, unsteady, turbulent Navier-Stokes equations. The localized CP, CL, and CD are computed and compared to undisturbed flow evaluated by Panel method. The time history of the CP, aerodynamic forces (CL and CD, as well as moments were evaluated for three cross-sectional tower; asymmetrical airfoil (NACA0012 having four times the rotor's chord length, and two circular cross-sections having four and two chords lengths of the rotor's chord. 5%, 17%, and 57% reductions of the aerodynamic lift forces during the blade passage in the wake of the symmetrical airfoil tower, small circular cross-section tower and large circular cross-section tower were observed, respectively. The pronounced reduction, however, is confined to a short time/distance of three rotor chords. A net forward impulsive force is also observed on the tower due to the high speed rotor motion.

  11. ACID Astronomical and Physics Cloud Interactive Desktop: A Prototype of VUI for CTA Science Gateway

    Science.gov (United States)

    Massimino, P.; Costa, A.; Becciani, U.; Vuerli, C.; Bandieramonte, M.; Petta, C.; Riggi, S.; Sciacca, E.; Vitello, F.; Pistagna, C.

    2014-05-01

    The Astronomical & Physics Cloud Interactive Desktop, developed for the prototype of CTA Science Gateway in Catania, Italy, allows to use many software packages without any installation on the local desktop. The users will be able to exploit, if applicable, the native Graphical User Interface (GUI) of the programs that are available in the ACID environment. For using interactively the remote programs, ACID exploits an "ad hoc" VNC-based User Interface (VUI).

  12. A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Directory of Open Access Journals (Sweden)

    Robert Wilkes Ebert

    2014-09-01

    Full Text Available We examine Ulysses solar wind and interplanetary magnetic field (IMF observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 – 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013, Jupiter’s bow shock and magnetopause is expected to be at least 8 – 12% further from Jupiter, if these trends continue.

  13. A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Robert W. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Bagenal, Fran [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); McComas, David J. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); Fowler, Christopher M., E-mail: rebert@swri.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States)

    2014-09-19

    We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1–4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013a), Jupiter's bow shock and magnetopause is expected to be at least 8–12% further from Jupiter, if these trends continue.

  14. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS

    Science.gov (United States)

    Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.

    2017-06-01

    A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.Plain Language SummaryWe survey the environment around the Moon to determine when and where strong amplifications in the charged particle density and magnetic field strength occur. These structures may be some of the smallest shock waves in the solar system, and learning about their formation informs us about the interaction of charged particles with small-scale magnetic fields throughout the solar system and beyond. We find that these compressions occur in an extended region downstream from the lunar dawn and dusk regions and

  15. Implementing lean manufacturing system: ISM approach

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-09-01

    Full Text Available Purpose: Lean Manufacturing System has emerged as an important area of research in Indian context. The requirement of Lean Manufacturing has increased due to defects in products (semi finished and finished and subsequent increase in cost. In this context, this study is an attempt to develop a structural model of the variables, important to implement Lean Manufacturing System in Indian automobile industry. Design/Methodology/Approach: Various variables of lean manufacturing system implementation have been identified from literature review and experts’ opinions. Contextual relationship among these identified variables has been set after carrying out brainstorming session. Further, classification of the variables has been carried out based upon the driving power and dependence. In addition to this, a structural model of variables to implement lean concept in Indian automobile industry has also been developed using Interpretive Structural Modeling (ISM technique. Questionnaire based survey has also been conducted to rank these variables. Findings: Eighteen variables have been identified from the literature and subsequent discussions with experts. Out of which, nine variables have been identified as dependent and nine variables have been identified as driver. No variable has been identified as linkage variable and autonomous variable. From the model developed, ‘Relative cost benefits’ has been identified as top level dependent variable and top management commitment as bottom level most independent variable. Research limitations/Implications: The model so developed is a hypothetical model based upon experts’ opinions. The conclusions so drawn may be further modified to apply in real situation. Practical implication: Clear understanding of interactions among these variables will help organizations to prioritize and manage these variables more effectively and efficiently to draw advantage from lean manufacturing system implementation

  16. Star Formation in High Pressure, High Energy Density Environments: Laboratory Experiments of ISM Dust Analogs

    International Nuclear Information System (INIS)

    Breugel, W. van; Bajt, S.; Bradley, J.; Bringa, E.; Dai, Z.; Felter, T.; Graham, G.; Kucheyev, S.; Torres, D.; Tielens, A.; Baragiola, R.; Dukes, C.; Loeffler, M.

    2005-01-01

    Dust grains control the chemistry and cooling, and thus the gravitational collapse of interstellar clouds. Energetic particles, shocks and ionizing radiation can have a profound influence on the structure, lifetime and chemical reactivity of the dust, and therefore on the star formation efficiency. This would be especially important in forming galaxies, which exhibit powerful starburst (supernovae) and AGN (active galactic nucleus) activity. How dust properties are affected in such environments may be crucial for a proper understanding of galaxy formation and evolution. The authors present the results of experiments at LLNL which show that irradiation of the interstellar medium (ISM) dust analog forsterite (Mg 2 SiO 4 ) with swift heavy ions (10 MeV Xe) and a large electronic energy deposition amorphizes its crystalline structure, without changing its chemical composition. From the data they predict that silicate grains in the ISM, even in dense and cold giant molecular clouds, can be amorphized by heavy cosmic rays (CR's). This might provide an explanation for the observed absence of crystalline dust in the ISM clouds of the Milky Way galaxy. This processing of dust by CR's would be even more important in forming galaxies and galaxies with active black holes

  17. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  18. Gasdynamics of H II regions. V. The interaction of weak R ionization fronts with dense clouds

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, G; Bedijn, P J

    1981-06-01

    The interaction of weak R-type ionization fronts with a density enhancement is calculated numerically as a function of time within the framework of the champagne model of the evolution of H II regions. Calculations are performed under the assumption of plane-parallel geometry for various relative densities of the cloud in which the exciting star is formed and a second cloud with which an ionization front from the first cloud interacts. The supersonic ionization front representing the outer boundary of an H II region experiencing the champagne phase is found to either evolve into a D-type front or remain of type R, depending on the absolute number of photons leaving the H II region that undergoes the champagne phase. Recombinations in the ionized gas eventually slow the ionization front, however photon fluxes allow it to speed up again, resulting in oscillatory propagation of the front. Front-cloud interactions are also shown to lead to the development of a backward-facing shock, a forward-facing shock, and a density maximum in the ionized gas. The results can be used to explain the origin of bright rims in H II regions.

  19. Power Quality of Grid-Connected Wind Turbines with DFIG and Their Interaction with the Grid

    DEFF Research Database (Denmark)

    Sun, Tao

    quality issues of grid-connected wind turbines and the interaction between wind turbines and the grid. The specific goal of the research has been to investigate flicker emission and mitigation of grid-connected wind turbines with doubly fed induction generators (DFIG) during continuous operation...... measures are proposed to mitigate the flicker levels produced by grid-connected wind turbines with DFIG, respectively by wind turbine output reactive power control and using STATCOM. Simulation results demonstrate that these two measures are effective for flicker mitigation regardless of mean wind speed....... To evaluate the flicker levels produced by grid-connected wind turbines with DFIG, a flickermeter model is developed according to the IEC standard IEC 61000-4-15, which simulates the response of the lamp-eye-brain chain and provides on-line statistical analysis ofthe flicker signal and the final results...

  20. Improvement of Representation of the Cloud-Aerosol Interaction in Large-Scale Models

    Energy Technology Data Exchange (ETDEWEB)

    Khain, Alexander [Hebrew Univ. of Jerusalem (Israel); Phillips, Vaughan [Lund Univ. (Sweden); Pinsky, Mark [Hebrew Univ. of Jerusalem (Israel); Lynn, Barry [Hebrew Univ. of Jerusalem (Israel)

    2016-12-20

    The main achievements reached under the DOE award DE-SC0006788 are described. It is shown that the plan of the Project is completed. Unique results concerning cloud-aerosol interaction are obtained. It is shown that aerosols affect intensity of hurricanes. The effects of small aerosols on formation of ice in anvils of deep convective clouds are discovered, for the first time the mechanisms of drizzle formation are found and described quantitatively. Mechanisms of formation of warm rain are clarified and the dominating role of adiabatic processes and turbulence are stressed. Important results concerning the effects of sea spray on intensity of clouds and tropical cyclones are obtained. A novel methods of calculation of hail formation has been developed and implemented.

  1. Interactions of Mineral Dust with Clouds, Sea Surface Temperature, and Climate Modes of Variability

    Science.gov (United States)

    DeFlorio, Michael J.

    Global climate models (GCMs) are a vital tool for ensuring the prosperity and security of modern society. They allow scientists to understand complex interactions between the air, ocean, and land, and are used by policymakers to project future changes in climate on regional and global scales. The previous generation of GCMs, represented by CMIP3 models, are shown to be deficient in their representation of precipitation over the western United States, a region that depends critically on wintertime orographically enhanced precipitation for drinking water. In addition, aerosol-cloud interactions were prescribed in CMIP3 models, which decreased the value of their representation of global aerosol, cloud, and precipitation features. This has potentially large impacts on global radiation budgets, since aerosol-cloud interactions affect the spatial extent and magnitude of clouds and precipitation. The newest suite of GCMs, the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, includes state-of-the-art parameterizations of small-scale features such as aerosols, clouds, and precipitation, and is widely used by the scientific community to learn more about the climate system. The Community Earth System Model (CESM), in conjunction with observations, provides several simulations to investigate the role of aerosols, clouds, and precipitation in the climate system and how they interact with larger modes of climate variability. We show that CESM produces a realistic spatial distribution of precipitation extremes over the western U.S., and that teleconnected signals of ENSO and the Pacific Decadal Oscillation to large-scale circulation patterns and precipitation over the western U.S. are improved when compared to CCSM3. We also discover a new semi-direct effect between dust and stratocumulus clouds over the subtropical North Atlantic, whereby boundary layer inversion strength increases during the most dusty summers due to shortwave absorption of dust above the planetary

  2. Preparing Educational Leaders To Eradicate the 'Isms'.

    Science.gov (United States)

    Terry, Paul M.

    Educational administration programs have an obligation to link theory with practical applications. However, the content of programs must also emphasize that aspiring administrators have a moral responsibility to eradicate the "isms"--classism, racism, sexism, homophobia, ageism, and ableism. This paper asserts that administrators must develop a…

  3. SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Miceli, M.; Orlando, S.; Bocchino, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Acero, F. [ORAU/NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Dubner, G. [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Decourchelle, A., E-mail: miceli@astropa.unipa.it [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, F-91191 Gif-sur-Yvette (France)

    2014-02-20

    The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtained by combining single-dish and interferometric observations. We found that the best-fit value of N {sub H} derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The N {sub H} variation corresponds perfectly with the H I column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for γ-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years.

  4. SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006

    International Nuclear Information System (INIS)

    Miceli, M.; Orlando, S.; Bocchino, F.; Acero, F.; Dubner, G.; Decourchelle, A.

    2014-01-01

    The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtained by combining single-dish and interferometric observations. We found that the best-fit value of N H derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The N H variation corresponds perfectly with the H I column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for γ-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years

  5. Extended neutral atmosphere effect on solar wind interaction with nonmagnetic bodies of the solar system

    International Nuclear Information System (INIS)

    Breus, T.K.; Krymskij, A.M.; Mitnitskij, V.Ya.

    1987-01-01

    Numeric modelling of the Venus flow-around by the solar wind with regard to stream loading by heavy ions, produced under photoionization of the Venus neutral oxygen corona, is conducted. It is shown, that this effect can account for a whole number of peculiarities related to the solar wind interaction with the planet which have not been clearly explained yet, namely, shock wave position, solar wind stream and magnetic field characteristics behind the front

  6. Bird interactions with wind turbines : a Canadian case study

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.; Hamilton, B. [TAEM Ltd., Calgary, AB (Canada)

    2004-07-01

    An environmental study has been conducted on a wind farm adjacent to Castle River, in the foothills of the Rocky Mountains in Alberta. The objective was to determine the impact of the many wind turbines on birds. The study involved observations of different bird species including raptors, waterfowl and passerines. The observations looked at bird numbers, location relative to turbines, and changes in flight pattern. The study found that raptors flew around or over the turbine blades, while passerines remained below, and waterfowl flew up and over the blades. Very few dead birds were found over the monitoring period, suggesting that wind turbines do not have a major impact on birds. figs.

  7. GALAXY INTERACTIONS IN COMPACT GROUPS. I. THE GALACTIC WINDS OF HCG16

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frederic P. A.; Dopita, Michael A.; Kewley, Lisa J., E-mail: fvogt@mso.anu.edu.au [Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2013-05-10

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in compact groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC 838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its H I envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different from the galactic wind in the partner galaxy NGC 839 which contains a symmetric, shock-excited wind. Assuming that both galaxies have similar interaction histories, the two different winds must be a consequence of the intrinsic properties of NGC 838 and NGC 839 and their starbursts.

  8. Interacting Winds in Eclipsing Symbiotic Systems – The Case Study ...

    Indian Academy of Sciences (India)

    produced by the collision of two stellar winds (Vogel 1991, 1993; Girard & Willson ... Therefore, in the nebular environment an energetic zone .... 1b and 1d). .... By applying Kepler's second law, we obtain the time required to cover the corre-.

  9. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions

    Science.gov (United States)

    2016-12-22

    Oceanogr., 46, 1377-1397 Cebeci, T. & P. Bradshaw, 1988: physical and computational aspects of convective heat transfer , Springer-Verlag, p.487...on surface properties and flow separation. Strongly-forced wind seas are characterized by enhanced group modulation , as significant additional...energy flux from the wind augments the hydrodynamic modulations . Using compact steep chirped wave packets, we investigated for the first time the

  10. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  11. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    Science.gov (United States)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  12. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    Directory of Open Access Journals (Sweden)

    Tan Jiqiu

    2014-05-01

    Full Text Available In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction field of MW- level vertical axis wind turbine tower has little effect on the modal vibration mode, but has a great effect on its natural frequency and the maximum deformation, and the influence will decrease with increasing of modal order; MW-level vertical axis wind turbine tower needs to be raised the stiffness and strength, its structure also needs to be optimized; In the case of satisfy the intensity, the larger the ratio of the tower height and wind turbines diameter, the more soft the MW-level vertical axis wind turbine tower, the lower its frequency.

  13. Wake interaction and power production of variable height model wind farms

    International Nuclear Information System (INIS)

    Vested, M H; Sørensen, J N; Hamilton, N; Cal, R B

    2014-01-01

    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream of a tall wind turbine to some extent passes above the standard height wind turbine. Overall the experiments show that the velocity field downstream of the exit row changes considerably when the mast height is alternating

  14. The relative impact of photoionizing radiation and stellar winds on different environments

    Science.gov (United States)

    Haid, S.; Walch, S.; Seifried, D.; Wünsch, R.; Dinnbier, F.; Naab, T.

    2018-05-01

    Photoionizing radiation and stellar winds from massive stars deposit energy and momentum into the interstellar medium (ISM). They might disperse the local ISM, change its turbulent multi-phase structure, and even regulate star formation. Ionizing radiation dominates the massive stars' energy output, but the relative effect of winds might change with stellar mass and the properties of the ambient ISM. We present simulations of the interaction of stellar winds and ionizing radiation of 12, 23, and 60 M⊙ stars within a cold neutral (CNM, n0 = 100 cm-3), warm neutral (WNM, n0 = 1, 10 cm-3) or warm ionized (WIM, n0 = 0.1 cm-3) medium. The FLASH simulations adopt the novel tree-based radiation transfer algorithm TREERAY. With the On-the-Spot approximation and a temperature-dependent recombination coefficient, it is coupled to a chemical network with radiative heating and cooling. In the homogeneous CNM, the total momentum injection ranges from 1.6× 104 to 4× 105 M⊙ km s-1 and is always dominated by the expansion of the ionized HII region. In the WIM, stellar winds dominate (2× 102 to 5× 103 M⊙ km s-1), while the input from radiation is small (˜ 102 M⊙ km s-1). The WNM (n0 = 1 cm-3) is a transition regime. Energetically, stellar winds couple more efficiently to the ISM (˜ 0.1 percent of wind luminosity) than radiation (< 0.001 percent of ionizing luminosity). For estimating the impact of massive stars, the strongly mass-dependent ratios of wind to ionizing luminosity and the properties of the ambient medium have to be considered.

  15. Solar wind interaction with comet 67P: Impacts of corotating interaction regions

    Science.gov (United States)

    Edberg, N. J. T.; Eriksson, A. I.; Odelstad, E.; Vigren, E.; Andrews, D. J.; Johansson, F.; Burch, J. L.; Carr, C. M.; Cupido, E.; Glassmeier, K.-H.; Goldstein, R.; Halekas, J. S.; Henri, P.; Koenders, C.; Mandt, K.; Mokashi, P.; Nemeth, Z.; Nilsson, H.; Ramstad, R.; Richter, I.; Wieser, G. Stenberg

    2016-02-01

    We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1-2.7 AU from the Sun and the neutral outgassing rate ˜1025-1026 s-1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10-30 km. The ionospheric low-energy (˜5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below -20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (˜10-100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2-5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.

  16. AN INTERACTIVE WEB-BASED ANALYSIS FRAMEWORK FOR REMOTE SENSING CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    X. Z. Wang

    2015-07-01

    Full Text Available Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users’ private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook

  17. Winds of Massive Magnetic Stars: Interacting Fields and Flow

    Science.gov (United States)

    Daley-Yates, S.; Stevens, I. R.

    2018-01-01

    We present results of 3D numerical simulations of magnetically confined, radiatively driven stellar winds of massive stars, conducted using the astrophysical MHD code Pluto, with a focus on understanding the rotational variability of radio and sub-mm emission. Radiative driving is implemented according to the Castor, Abbott and Klein theory of radiatively driven winds. Many magnetic massive stars posses a magnetic axis which is inclined with respect to the rotational axis. This misalignment leads to a complex wind structure as magnetic confinement, centrifugal acceleration and radiative driving act to channel the circumstellar plasma into a warped disk whose observable properties should be apparent in multiple wavelengths. This structure is analysed to calculate free-free thermal radio emission and determine the characteristic intensity maps and radio light curves.

  18. Toward Improving the Representation of Convection and Cloud-Radiation Interaction for Global Climate Simulations

    Science.gov (United States)

    Wu, X.; Song, X.; Deng, L.; Park, S.; Liang, X.; Zhang, G. J.

    2006-05-01

    Despite the significant progress made in developing general circulation models (GCMs), major uncertainties related to the parameterization of convection, cloud and radiation processes still remain. The current GCM credibility of seasonal-interannual climate predictions or climate change projections is limited. In particular, the following long-standing biases, common to most GCMs, need to be reduced: 1) over-prediction of high-level cloud amounts although GCMs realistically simulating the global radiation budget; 2) general failure to reproduce the seasonal variation and migration of the ITCZ precipitation; 3) incomplete representation of the Madden-Julian Oscillation (MJO); and 4) false production of an excessive cold tone of sea surface temperature across the Pacific basin and a double ITCZ structure in precipitation when the atmosphere and ocean are fully coupled. The development of cloud-resolving models (CRMs) provides a unique opportunity to address issues aimed to reduce these biases. The statistical analysis of CRM simulations together with the theoretical consideration of subgrid-scale processes will enable us to develop physically-based parameterization of convection, clouds, radiation and their interactions.

  19. Coarse-Grain QoS-Aware Dynamic Instance Provisioning for Interactive Workload in the Cloud

    Directory of Open Access Journals (Sweden)

    Jianxiong Wan

    2014-01-01

    Full Text Available Cloud computing paradigm renders the Internet service providers (ISPs with a new approach to deliver their service with less cost. ISPs can rent virtual machines from the Infrastructure-as-a-Service (IaaS provided by the cloud rather than purchasing them. In addition, commercial cloud providers (CPs offer diverse VM instance rental services in various time granularities, which provide another opportunity for ISPs to reduce cost. We investigate a Coarse-grain QoS-aware Dynamic Instance Provisioning (CDIP problem for interactive workload in the cloud from the perspective of ISPs. We formulate the CDIP problem as an optimization problem where the objective is to minimize the VM instance rental cost and the constraint is the percentile delay bound. Since the Internet traffic shows a strong self-similar property, it is hard to get an analytical form of the percentile delay constraint. To address this issue, we purpose a lookup table structure together with a learning algorithm to estimate the performance of the instance provisioning policy. This approach is further extended with two function approximations to enhance the scalability of the learning algorithm. We also present an efficient dynamic instance provisioning algorithm, which takes full advantage of the rental service diversity, to determine the instance rental policy. Extensive simulations are conducted to validate the effectiveness of the proposed algorithms.

  20. Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Vandas, Marek; Odstrčil, Dušan; Watari, S.

    2002-01-01

    Roč. 107, A9 (2002), s. SSH2-1 - SSH2-11 ISSN 0148-0227 R&D Projects: GA AV ČR KSK3012103; GA ČR GA205/99/1712; GA AV ČR IAA3003003; GA AV ČR IBS1003006 Institutional research plan: CEZ:AV0Z1003909 Keywords : magnetic cloud s * MHD simulations * interplanetary magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.245, year: 2002

  1. cisPath: an R/Bioconductor package for cloud users for visualization and management of functional protein interaction networks.

    Science.gov (United States)

    Wang, Likun; Yang, Luhe; Peng, Zuohan; Lu, Dan; Jin, Yan; McNutt, Michael; Yin, Yuxin

    2015-01-01

    With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services.

  2. Interaction of Accretion Shocks with Winds Kinsuk Acharya , Sandip ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Accretion shocks are known to oscillate in presence of cool- ing processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well. We show examples of shock oscillations under the influence of ...

  3. Chinese isms dimensions in mainland China and Taiwan: Convergence and extension of American isms dimensions.

    Science.gov (United States)

    Chen, Zhuo Job; Hsu, Kung-Yu; Zhou, Xinyue; Saucier, Gerard

    2017-07-21

    Previous studies of American English isms terms have uncovered as many as five broad factors: tradition-oriented religiousness (TR), subjective spirituality (SS), communal rationalism (CR), unmitigated self-interest (USI), and inequality aversion (IA). The present studies took a similar lexical approach to investigate the Chinese-language isms structures in both mainland China and Taiwan. In Study 1, exploratory factor analyses with 915 mainland Chinese subjects uncovered four interpretable factors dimensionalizing 165 mainland Chinese dictionary isms terms. These factors represented contents of a combination of TR and SS, USI, CR, and a culturally unique Communist Party of China (CPC) ideology factor. In Study 2, exploratory factor analyses with 467 Taiwan Chinese subjects revealed four interpretable factors categorizing 291 Taiwan Chinese dictionary isms terms. These factors represented contents of a combination of TR and SS, USI, CR, and a culturally unique dimension expressing aspirations for happiness. The results gave evidence for the existence of the isms factors TR and SS, USI, and CR in Chinese culture. Cultural uniqueness was reflected in the merging of TR and SS into the factor Syncretic Religiousness and the culture-specific factors of CPC ideology in China and Happiness/Peace Promotion in Taiwan. © 2017 Wiley Periodicals, Inc.

  4. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Berg, L. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burleyson, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fan, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Feng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hagos, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guenther, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laskin, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ovchinnikov, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shilling, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shrivastava, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xiao, H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zaveri, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zelenyuk-Imre, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, J. [University of California-Irvine; Turner, D. [National Severe Storms Laboratory; Gentine, P. [Columbia Univ., New York, NY (United States)

    2017-05-01

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in land surface, boundary layer, and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign was designed to provide a detailed set of measurements that are needed to obtain a more complete understanding of the lifecycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. Some of the land-atmosphere-cloud interactions that can be studied using HI-SCALE data are shown in Figure 1. HI-SCALE consisted of two 4-week intensive operation periods (IOPs), one in the spring (April 24-May 21) and the other in the late summer (August 28-September 24) of 2016, to take advantage of different stages of the plant lifecycle, the distribution of “greenness” for various types of vegetation in the vicinity of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site, and aerosol properties that vary during the growing season. As expected, satellite measurements indicated that the Normalized Difference Vegetation Index (NDVI) was much “greener” in the vicinity of the SGP site during the spring IOP than the late summer IOP as a result of winter wheat maturing in the spring and being harvested in the early summer. As shown in Figure 2, temperatures were cooler than average and soil moisture was high during the spring IOP, while temperatures were warmer than average and

  5. Numerical investigation of interactions between marine atmospheric boundary layer and offshore wind farm

    Science.gov (United States)

    Lyu, Pin; Chen, Wenli; Li, Hui; Shen, Lian

    2017-11-01

    In recent studies, Yang, Meneveau & Shen (Physics of Fluids, 2014; Renewable Energy, 2014) developed a hybrid numerical framework for simulation of offshore wind farm. The framework consists of simulation of nonlinear surface waves using a high-order spectral method, large-eddy simulation of wind turbulence on a wave-surface-fitted curvilinear grid, and an actuator disk model for wind turbines. In the present study, several more precise wind turbine models, including the actuator line model, actuator disk model with rotation, and nacelle model, are introduced into the computation. Besides offshore wind turbines on fixed piles, the new computational framework has the capability to investigate the interaction among wind, waves, and floating wind turbines. In this study, onshore, offshore fixed pile, and offshore floating wind farms are compared in terms of flow field statistics and wind turbine power extraction rate. The authors gratefully acknowledge financial support from China Scholarship Council (No. 201606120186) and the Institute on the Environment of University of Minnesota.

  6. MHD shocks in the ISM

    Science.gov (United States)

    Chernoff, D. F.; Hollenbach, David J.; Mckee, Christopher F.

    1990-01-01

    Researchers survey shock solutions of a partially ionized gas with a magnetic field. The gas is modeled by interacting neutral, ion, electron and charged grain components. They employ a small neutral-ion chemical network to follow the dissociation and ionization of the major species. Cooling by molecular hydrogen (rotational, vibrational and dissociation), grains and dipole molecules is included. There are three basic types of solutions (C, C asterisk, and J) and some more complicated flows involving combinations of the basic types. The initial preshock conditions cover hydrogen nuclei densities of 1 less than n less than 10(exp 10) cm(-3) and shock velocities of 5 less than v(sub s) less than 60 km/s. The magnetic field is varied over 5 decades and the sensitivity of the results to grain parameters, UV and cosmic ray fluxes is ascertained. The parameter space is quite complicated, but there exist some simple divisions. When the initial ionization fraction is small (chi sub i less than 10(-5)), there is a sharp transition between fully C solutions at low velocity and strong J solutions at high velocity. When the initial ionization fraction is larger, C asterisk and/or very weak J shocks are present at low velocities in addition to the C solutions. The flow again changes to strong J shocks at high velocities. When the ionization fraction is large and the flow is only slightly greater than the bulk Alfven velocity, there is a complicated mixture of C, C asterisk and J solutions.

  7. Analyzing complex wake-terrain interactions and its implications on wind-farm performance.

    Science.gov (United States)

    Tabib, Mandar; Rasheed, Adil; Fuchs, Franz

    2016-09-01

    Rotating wind turbine blades generate complex wakes involving vortices (helical tip-vortex, root-vortex etc.).These wakes are regions of high velocity deficits and high turbulence intensities and they tend to degrade the performance of down-stream turbines. Hence, a conservative inter-turbine distance of up-to 10 times turbine diameter (10D) is sometimes used in wind-farm layout (particularly in cases of flat terrain). This ensures that wake-effects will not reduce the overall wind-farm performance, but this leads to larger land footprint for establishing a wind-farm. In-case of complex-terrain, within a short distance (say 10D) itself, the nearby terrain can rise in altitude and be high enough to influence the wake dynamics. This wake-terrain interaction can happen either (a) indirectly, through an interaction of wake (both near tip vortex and far wake large-scale vortex) with terrain induced turbulence (especially, smaller eddies generated by small ridges within the terrain) or (b) directly, by obstructing the wake-region partially or fully in its flow-path. Hence, enhanced understanding of wake- development due to wake-terrain interaction will help in wind farm design. To this end the current study involves: (1) understanding the numerics for successful simulation of vortices, (2) understanding fundamental vortex-terrain interaction mechanism through studies devoted to interaction of a single vortex with different terrains, (3) relating influence of vortex-terrain interactions to performance of a wind-farm by studying a multi-turbine wind-farm layout under different terrains. The results on interaction of terrain and vortex has shown a much faster decay of vortex for complex terrain compared to a flatter-terrain. The potential reasons identified explaining the observation are (a) formation of secondary vortices in flow and its interaction with the primary vortex and (b) enhanced vorticity diffusion due to increased terrain-induced turbulence. The implications of

  8. Evolution Of The Cloud Field And Wind Structure Of Ntb Disturbance

    Science.gov (United States)

    Barrado-Izagirre, Naiara; Pérez-Hoyos, S.; García-Melendo, E.; Sánchez-Lavega, A.

    2009-09-01

    The banded visual aspect of cloud patterns in Jupiter hides markedly turbulent areas visible in high resolution images. The North Temperate Belt (NTB) at 21° N planetocentric latitude where the most intense Jovian jet resides (with speeds of 160 - 180 m/s) is a region of particular interest because it is known to suffer almost every 15 years an eruption or disturbance which dramatically changes its appearance. This phenomenon is known as NTB Disturbance (NTBD). The last one of such disturbances happened in 2007 and was captured by the Hubble Space Telescope and with lower resolution by the "International Outer Planet Watch” (IOPW) network [Sánchez-Lavega et al., 2008. Depth of a strong Jovian jet from a planetary-scale disturbance driven by storms, Nature 451.]. In this work we make use of these observations to characterize the morphology of the disturbed cloud field in the wake of the plumes which originated the perturbation. This is done mostly in terms of the brightness spectral distribution in order to characterize the typical spatial frequency of the perturbation and its wavy and turbulent nature. In addition we make a comparison of the jet profile in the NTB just after the disturbance ended (June 2007) with one obtained year later (July 2008). It shows that a change occurred in its anticyclonic side producing a reinforced westward jet at 17°N with a speed change of 30 m/s. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07

  9. Aerodynamic Interactions between Pairs of Vertical-Axis Wind Turbines

    Science.gov (United States)

    Brownstein, Ian; Dabiri, John

    2017-11-01

    Increased power production has been observed in downstream vertical-axis wind turbines (VAWTs) when positioned offset from the wake of upstream turbines. This effect was found to exist in both laboratory and field environments with pairs of co- and counter-rotating turbines. It is hypothesized that the observed power production enhancement is due to flow acceleration adjacent to the upstream turbine caused by bluff body blockage, which increases the incident freestream velocity on appropriately positioned downstream turbines. This type of flow acceleration has been observed in computational and laboratory studies of VAWTs and will be further investigated here using 3D-PTV measurements around pairs of laboratory-scale VAWTs. These measurements will be used to understand the mechanisms behind the performance enhancement effect and seek to determine optimal separation distances and angles between turbines based on turbine design parameters. These results will lead to recommendations for optimizing the power production of VAWT wind farms which utilize this effect.

  10. Applying super-droplets as a compact representation of warm-rain microphysics for aerosol-cloud-aerosol interactions

    Science.gov (United States)

    Arabas, S.; Jaruga, A.; Pawlowska, H.; Grabowski, W. W.

    2012-12-01

    Clouds may influence aerosol characteristics of their environment. The relevant processes include wet deposition (rainout or washout) and cloud condensation nuclei (CCN) recycling through evaporation of cloud droplets and drizzle drops. Recycled CCN physicochemical properties may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions (e.g. SO2 oxidation). The key challenge of representing these processes in a numerical cloud model stems from the need to track properties of activated CCN throughout the cloud lifecycle. Lack of such "memory" characterises the so-called bulk, multi-moment as well as bin representations of cloud microphysics. In this study we apply the particle-based scheme of Shima et al. 2009. Each modelled particle (aka super-droplet) is a numerical proxy for a multiplicity of real-world CCN, cloud, drizzle or rain particles of the same size, nucleus type,and position. Tracking cloud nucleus properties is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. The super-droplet scheme is furthermore characterized by linear scalability in the number of computational particles, and no numerical diffusion in the condensational and in the Monte-Carlo type collisional growth schemes. The presentation will focus on processing of aerosol by a drizzling stratocumulus deck. The simulations are carried out using a 2D kinematic framework and a VOCALS experiment inspired set-up (see http://www.rap.ucar.edu/~gthompsn/workshop2012/case1/).

  11. On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air -- Sea Gas Transfer

    Science.gov (United States)

    Thorpe, S. A.

    1982-02-01

    Clouds of small bubbles generated by wind waves breaking and producing whitecaps in deep water have been observed below the surface by using an inverted echo sounder. The bubbles are diffused down to several metres below the surface by turbulence against their natural tendency to rise. Measurements have been made at two sites, one in fresh water at Loch Ness and the other in the sea near Oban, northwest Scotland. Sonagraph records show bubble clouds of two distinct types, `columnar clouds' which appear in unstable or convective conditions when the air temperature is less than the surface water temperature, and `billow clouds' which appear in stable conditions when the air temperature exceeds that of the water. Clouds penetrate deeper as the wind speed increases, and deeper in convective conditions than in stable conditions at the same wind speed. The response to a change in wind speed occurs in a period of only a few minutes. Measurements of the acoustic scattering cross section per unit volume, Mv, of the bubbles have been made at several depths. The distributions of Mv at constant depth are close to logarithmic normal. The time-averaged value of Mv, {M}v, decreases exponentially with depth over scales of 40-85 cm (winds up to 12 m s-1),, the scale increasing as the wind increases. Values of {M}v at the same depth and at the same wind speed are greater in the sea than in the fresh-water loch, even at smaller fetches. Estimates have been made of the least mean vertical speed at which bubbles must be advected for them to reach the observed depths. Several centimetres per second are needed, the speeds increasing with wind. Results depend on the conditions at the surfaces of the bubbles, that is whether they are covered by a surface active-film. The presence of oxygen (or gases other than nitrogen) in the gas composing the bubbles appears not to be important in determining their general behaviour. The presence of turbulence in the water also appears unlikely to affect

  12. Virtual pools for interactive analysis and software development through an integrated Cloud environment

    International Nuclear Information System (INIS)

    Grandi, C; Italiano, A; Salomoni, D; Melcarne, A K Calabrese

    2011-01-01

    WNoDeS, an acronym for Worker Nodes on Demand Service, is software developed at CNAF-Tier1, the National Computing Centre of the Italian Institute for Nuclear Physics (INFN) located in Bologna. WNoDeS provides on demand, integrated access to both Grid and Cloud resources through virtualization technologies. Besides the traditional use of computing resources in batch mode, users need to have interactive and local access to a number of systems. WNoDeS can dynamically select these computers instantiating Virtual Machines, according to the requirements (computing, storage and network resources) of users through either the Open Cloud Computing Interface API, or through a web console. An interactive use is usually limited to activities in user space, i.e. where the machine configuration is not modified. In some other instances the activity concerns development and testing of services and thus implies the modification of the system configuration (and, therefore, root-access to the resource). The former use case is a simple extension of the WNoDeS approach, where the resource is provided in interactive mode. The latter implies saving the virtual image at the end of each user session so that it can be presented to the user at subsequent requests. This work describes how the LHC experiments at INFN-Bologna are testing and making use of these dynamically created ad-hoc machines via WNoDeS to support flexible, interactive analysis and software development at the INFN Tier-1 Computing Centre.

  13. Magnetic fields in the solar system planets, moons and solar wind interactions

    CERN Document Server

    Wicht, Johannes; Gilder, Stuart; Holschneider, Matthias

    2018-01-01

    This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program ”PlanetMag”, it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet’s magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors an...

  14. Solar-wind interactions with the Moon: nature and composition of nitrogen compounds

    International Nuclear Information System (INIS)

    Mukherjee, N.R.

    1981-01-01

    The lunar atmosphere and magnetic field are very tenuous. The solar wind, therefore, interacts directly with the lunar surface material and the dominant nature of interaction is essentially complete absorption of solar-wind particles by the surface material resulting in no upstream bowshock, but a cavity downstream. The solar-wind nitrogen ion species induce and undergo a complex set of reactions with the elements of lunar material and the solar-wind-derived trapped elements. The nitrogen concentration indigeneous to the lunar surface material is practically nil. Therefore any nitrogen and nitrogen compounds found in the lunar surface material are due to the solar-wind implantation of nitrogen ions. The flux of the solar-wind nitrogen ion species is about 6 X 10 3 cm -2 s -1 . Since there is no evidence for accumulation of nitrogen species in the lunar surface material, the outflux of nitrogen species from the lunar material to the atmosphere is the same as the solar-wind nitrogen ion flux. The species of the outflux are primarily NO and NH 3 , and their respective concentrations in the near surface lunar atmosphere are found to be 327 and 295 cm -3 . (Auth.)

  15. Power Properties of Two Interacting Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær

    2016-01-01

    In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both....... The resulting power capacity has been studied and analyzed at different rotor positions and a range of tip speed ratios from 2 to 8 and a simple algebraic relationship between the velocity deficit in the wake of the front turbine and the power of the second turbine was found, when both rotors have the coaxial...

  16. Power Properties of Two Interacting Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær

    2017-01-01

    In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both....... The resulting power capacity has been studied and analyzed at different rotor positions and a range of tip-speed ratios from 2 to 8, and a simple algebraic relationship between the velocity deficit in the wake of the front turbine and the power of the second turbine was found, when both rotors have the coaxial...

  17. Influence of aerosol-cloud interaction on austral summer precipitation over Southern Africa during ENSO events

    Science.gov (United States)

    Ruchith, R. D.; Sivakumar, V.

    2018-04-01

    In the present study, we are investigating the role of aerosols-and clouds in modulating the austral summer precipitation (December-February) during ENSO events over southern Africa region for the period from 2002 to2012 by using satellite and complimentary data sets. Aerosol radiative forcing (ARF) and Cloud radiative forcing (CRF) shows distinct patterns for El-Nina and La-Nina years. Further analysis were carried out by selecting the four Southern Africa regions where the precipitation shows remarkable difference during El-Nino and La-Nina years. These regions are R1 (33°S-24°S, 18°E-30°E), R2 (17°S-10°S, 24°E-32°E), R3 (19°S-9°S, 33°E-41°E) and R4 (7°S-0°S, 27°E-36°E). Aerosol Optical depth (AOD) shows considerable differences during these events. In region R1, R2 and R3 AOD shows more abundance in El-Nino years as compared to La-Nina years where as in R4 the AOD shows more abundance in La-Nina years. Cloud Droplet Effective radius (CDER) shows higher values during La-Nina years over R1, R2 and R3 regions but in R4 region CDER shows higher values in El-Nino years. Aerosol indirect effect (AIE) is estimated both for fixed cloud liquid water path (CLWP) and for fixed cloud ice path (CIP) bins, ranging from 1 to 300 gm -2 at 25 gm -2 interval over all the selected regions for El-Nino and La-Nina years. The results indicate more influence of positive indirect effect (Twomey effect) over R1 and R3 region during El-Nino years as compared to La-Nina years. This analysis reveals the important role of aerosol on cloud-precipitation interaction mechanism illustrating the interlinkage between dynamics and microphysics during austral summer season over southern Africa.

  18. The Hot ISM of Normal Galaxies

    Science.gov (United States)

    Fabbiano, Giuseppina

    1999-01-01

    X-ray observations of galaxies have shown the presence of hot ISM and gaseous halos. The most spectacular examples am in early-type galaxies (E and S0), and in galaxies hosting intense starforming regions. This talk will review the observational evidence and highlight the outstanding issues in our understanding of this gaseous component, with emphasis on our present understanding of the chemical composition of these hot halos. It will address how Chandra, XMM, and future X-ray missions can address these studies.

  19. CloudSat observations of cloud-type distribution over the Indian summer monsoon region

    Directory of Open Access Journals (Sweden)

    K. V. Subrahmanyam

    2013-07-01

    Full Text Available The three-dimensional distribution of various cloud types over the Indian summer monsoon (ISM region using five years (2006–2010 of CloudSat observations during June-July-August-September months is discussed for the first time. As the radiative properties, latent heat released and microphysical properties of clouds differ largely depending on the cloud type, it becomes important to know what types of clouds occur over which region. In this regard, the present analysis establishes the three-dimensional distribution of frequency of occurrence of stratus (St, stratocumulus (Sc, nimbostratus (Ns, cumulus (Cu, altocumulus (Ac, altostratus (As, cirrus (Ci and deep convective (DC clouds over the ISM region. The results show that the various cloud types preferentially occur over some regions of the ISM, which are consistent during all the years of observations. It is found that the DC clouds frequently occur over northeast of Bay of Bengal (BoB, Ci clouds over a wide region of south BoB–Indian peninsula–equatorial Indian Ocean, and Sc clouds over the north Arabian Sea. Ac clouds preferentially occur over land, and a large amount of As clouds are found over BoB. The occurrence of both St and Ns clouds over the study region is much lower than all other cloud types.The interannual variability of all these clouds including their vertical distribution is discussed. It is envisaged that the present study opens up possibilities to quantify the feedback of individual cloud type in the maintenance of the ISM through radiative forcing and latent heat release.

  20. Preface to the Special Issue on Climate-Chemistry Interactions: Atmospheric Ozone, Aerosols, and Clouds over East Asia

    Directory of Open Access Journals (Sweden)

    Wei-Chyung Wang and Jen-Ping Chen

    2007-01-01

    Full Text Available Atmospheric radiatively-important chemical constituents (e.g., O3 and aerosols are important to maintain the radiation balance of the Earth-atmosphere climate system, and changes in their concentration due to both natural causes and anthropogenic activities will induce climate changes. The distribution of these constituents is sensitive to the state of the climate (e.g., temperature, moisture, wind, and clouds. Therefore, rises in atmospheric temperature and water vapor, and changes in circulation and clouds in global warming can directly affect atmospheric chemistry with subsequent implications for these constituents. Although many coupling mechanisms are identified, the net effect of all these impacts on climate change is not well understood. In particular, changes in water vapor and clouds associated with the hydrologic cycle contain significant uncertainties.

  1. Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind

    Science.gov (United States)

    Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.

    2009-06-01

    The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.

  2. Effect of soil-foundation-structure interaction on the seismic response of wind turbines

    Directory of Open Access Journals (Sweden)

    Sam Austin

    2017-09-01

    Full Text Available Soil-foundation-structure interaction can affect the seismic response of wind turbines. This paper studies the effects of soil-foundation-structure interaction on the seismic response of 65 kW, 1 MW, and 2 MW horizontal-axis wind turbines with truncated cone steel towers. Four types of foundations with frequency-based design were analyzed, including spread foundation, mono pile, pile group with cap, and anchored spread foundation. Soil is modeled both implicitly (subgrade reaction modulus and explicitly. The finite element model developed using the ANSYS program was first validated using experimental data. Numerical models are then analyzed in both frequency and time domains using the Block Lanczos and generalized HHT-α formulations. Recommendations were given to simplify the soil-foundation-structure interaction analysis of wind turbines subjected to seismic loading.

  3. Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions

    Science.gov (United States)

    Sockol, Alyssa; Small Griswold, Jennifer D.

    2017-08-01

    Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.

  4. Solar wind interaction with type-1 comet tails

    International Nuclear Information System (INIS)

    Ershkovich, A.I.

    1977-01-01

    A comet tail is considered as a plasma cylinder separated by a tangential discontinuity surface from the solar wind. Under typical conditions a comet tail boundary is shown to undergo the Kelvin-Helmholtz instability. With infinite amplitude the stabilizing effect of the magnetic field increases, and waves become stable. The proposed model supplies the detailed quantitative description of helical waves observed in type-1 comet tails. This theory enables the evaluation of the comet tail magnetic field by means of the observations of helical waves. The magnetic field in the comet tail turns out to be of the order of the interplanetary field. This conclusion seems to be in accordance with Alfven's idea that the magnetic field in type-1 comet tails is a captured interplanetary field. (Auth.)

  5. Distribution of ionospheric currents induced by the solar wind interaction with Venus

    International Nuclear Information System (INIS)

    Daniell, R.E. Jr.; Cloutier, P.A.

    1977-01-01

    The electric currents induced in the atmosphere of a non-magnetic planet such as Venus by the interaction of the solar wind satisfy a generalized Ohm's Law relationship with tensor conductivity. The distribution of these currents within the planetary ionosphere may be calculated by a variational technique which minimizes the Joule heating over the ionospheric volume. In this paper, we present the development of the variational technique, and apply it to a model of the solar wind interaction with Venus. Potential and current distributions are shown, and the use of these distributions in determining convective transport patterns of planetary ions is discussed. (author)

  6. PRESSURE EQUILIBRIUM BETWEEN THE LOCAL INTERSTELLAR CLOUDS AND THE LOCAL HOT BUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Snowden, S. L.; Chiao, M.; Collier, M. R.; Porter, F. S.; Thomas, N. E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cravens, T.; Robertson, I. P. [Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 (United States); Galeazzi, M.; Uprety, Y.; Ursino, E. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Koutroumpa, D. [Université Versailles St-Quentin, Sorbonne Universités, UPMC Univ. Paris 06, CNRS/INSU, LATMOS-IPSL, 11 Boulevard d' Alembert, F-78280 Guyancourt (France); Kuntz, K. D. [The Henry A. Rowland Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Lallement, R.; Puspitarini, L. [GEPI, Observatoire de Paris, CNRS UMR8111, Université Paris Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Lepri, S. T. [University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); McCammon, D.; Morgan, K. [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States); Walsh, B. M., E-mail: steven.l.snowden@nasa.gov [Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720 (United States)

    2014-08-10

    Three recent results related to the heliosphere and the local interstellar medium (ISM) have provided an improved insight into the distribution and conditions of material in the solar neighborhood. These are the measurement of the magnetic field outside of the heliosphere by Voyager 1, the improved mapping of the three-dimensional structure of neutral material surrounding the Local Cavity using extensive ISM absorption line and reddening data, and a sounding rocket flight which observed the heliospheric helium focusing cone in X-rays and provided a robust estimate of the contribution of solar wind charge exchange emission to the ROSAT All-Sky Survey 1/4 keV band data. Combining these disparate results, we show that the thermal pressure of the plasma in the Local Hot Bubble (LHB) is P/k = 10, 700 cm{sup –3} K. If the LHB is relatively free of a global magnetic field, it can easily be in pressure (thermal plus magnetic field) equilibrium with the local interstellar clouds, eliminating a long-standing discrepancy in models of the local ISM.

  7. One-Way Fluid-Structure Interaction Simulation of an Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhi-Kui Wang

    2014-07-01

    Full Text Available The Fluid-Structure Interaction (FSI has gained great interest of scholars recently, meanwhile, extensive studies have been conducted by the virtue of numerical methods which have been implemented on wind turbine models. The blades of a wind turbine have been gained a deep insight into the FSI analyses, however, few studies have been conducted on the tower and nacelle, which are key components of the wind turbine, using this method. We performed the one-way FSI analysis on a 2-MW offshore wind turbine, using the Finite Volume Method (FVM with ANSYS CFX solver and the RNG k-ε turbulence model, to achieve a comprehensive cognition of it. The grid convergence was studied and verified in this study, and the torque value is chosen to determine the optimal case. The superior case, which was chosen to conduct the FSI analysis, with a relative error is only 2.15%, thus, the accuracy of results is credible.

  8. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  9. A review of our understanding of the aerosol-cloud interaction from the perspective of a bin resolved cloud scale modelling

    Science.gov (United States)

    Flossmann, Andrea I.; Wobrock, Wolfram

    2010-09-01

    This review compiles the main results obtained using a mesoscale cloud model with bin resolved cloud micophysics and aerosol particle scavenging, as developed by our group over the years and applied to the simulation of shallow and deep convective clouds. The main features of the model are reviewed in different dynamical frameworks covering parcel model dynamics, as well as 1.5D, 2D and 3D dynamics. The main findings are summarized to yield a digested presentation which completes the general understanding of cloud-aerosol interaction, as currently available from textbook knowledge. Furthermore, it should provide support for general cloud model development, as it will suggest potentially minor processes that might be neglected with respect to more important ones and can support development of parameterizations for air quality, chemical transport and climate models. Our work has shown that in order to analyse dedicated campaign results, the supersaturation field and the complex dynamics of the specific clouds needs to be reproduced. Only 3D dynamics represents the variation of the supersaturation over the entire cloud, the continuous nucleation and deactivation of hydrometeors, and the dependence upon initial particle size distribution and solubility. However, general statements on certain processes can be obtained also by simpler dynamics. In particular, we found: Nucleation incorporates about 90% of the initial aerosol particle mass inside the cloud drops. Collision and coalescence redistributes the scavenged aerosol particle mass in such a way that the particle mass follows the main water mass. Small drops are more polluted than larger ones, as pollutant mass mixing ratio decreases with drops size. Collision and coalescence mixes the chemical composition of the generated drops. Their complete evaporation will release processed particles that are mostly larger and more hygroscopic than the initial particles. An interstitial aerosol is left unactivated between the

  10. Wind Magnetic Clouds for the Period 2013 - 2015: Model Fitting, Types, Associated Shock Waves, and Comparisons to Other Periods

    Science.gov (United States)

    Lepping, R. P.; Wu, C.-C.; Berdichevsky, D. B.; Szabo, A.

    2018-04-01

    We give the results of parameter fitting of the magnetic clouds (MCs) observed by the Wind spacecraft for the three-year period 2013 to the end of 2015 (called the "Present" period) using the MC model of Lepping, Jones, and Burlaga ( J. Geophys. Res. 95, 11957, 1990). The Present period is almost coincident with the solar maximum of the sunspot number, which has a broad peak starting in about 2012 and extending to almost 2015. There were 49 MCs identified in the Present period. The modeling gives MC quantities such as size, axial attitude, field handedness, axial magnetic-field strength, center time, and closest-approach vector. Derived quantities are also estimated, such as axial magnetic flux, axial current density, and total axial current. Quality estimates are assigned representing excellent, fair/good, and poor. We provide error estimates on the specific fit parameters for the individual MCs, where the poor cases are excluded. Model-fitting results that are based on the Present period are compared to the results of the full Wind mission from 1995 to the end of 2015 (Long-term period), and compared to the results of two other recent studies that encompassed the periods 2007 - 2009 and 2010 - 2012, inclusive. We see that during the Present period, the MCs are, on average, slightly slower, slightly weaker in axial magnetic field (by 8.7%), and larger in diameter (by 6.5%) than those in the Long-term period. However, in most respects, the MCs in the Present period are significantly closer in characteristics to those of the Long-term period than to those of the two recent three-year periods. However, the rate of occurrence of MCs for the Long-term period is 10.3 year^{-1}, whereas this rate for the Present period is 16.3 year^{-1}, similar to that of the period 2010 - 2012. Hence, the MC occurrence rate has increased appreciably in the last six years. MC Type (N-S, S-N, All N, All S, etc.) is assigned to each MC; there is an inordinately large percentage of All S

  11. Irradiated ISM : Discriminating between cosmic rays and X-rays

    NARCIS (Netherlands)

    Meijerink, R.; Spaans, M.; Israel, F. P.

    2006-01-01

    The interstellar medium ( ISM) at the centers of active galaxies is exposed to a combination of cosmic-ray, far-ultraviolet (FUV), and X-ray radiation. We apply photodissociation region (PDR) models to this ISM with both "normal" and highly elevated (5 x 10(-15) s(-1)) cosmic- ray (CR) rates and

  12. Statistical properties of aerosol-cloud-precipitation interactions in South America

    Directory of Open Access Journals (Sweden)

    T. A. Jones

    2010-03-01

    Full Text Available Given the complex interaction between aerosol, cloud, and atmospheric properties, it is difficult to extract their individual effects to observed rainfall amount. This research uses principle component analysis (PCA that combines Moderate Resolution Imaging Spectroradiometer (MODIS aerosol and cloud products, NCEP Reanalysis atmospheric products, and rainrate estimates from the Tropical Rainfall Measuring Mission (TRMM precipitation radar (PR to assess if aerosols affect warm rain processes. Data collected during September 2006 over the Amazon basin in South America during the biomass-burning season are used. The goal of this research is to combine these observations into a smaller number of variables through PCA with each new variable having a unique physical interpretation. In particular, we are concerned with PC variables whose weightings include aerosol optical thickness (AOT, as these may be an indicator of aerosol indirect effects. If they are indeed occurring, then PC values that include AOT should change as a function of rainrate.

    To emphasize the advantage of PCA, changes in aerosol, cloud, and atmospheric observations are compared to rainrate. Comparing no-rain, rain, and heavy rain only (>5 mm h−1 samples, we find that cloud thicknesses, humidity, and upward motion are all greater during rain and heavy rain conditions. However, no statistically significant difference in AOT exists between each sample, indicating that atmospheric conditions are more important to rainfall than aerosol concentrations as expected. If aerosols are affecting warm process clouds, it would be expected that stratiform precipitation would decrease as a function increasing aerosol concentration through either Twomey and/or semi-direct effects. PCA extracts the latter signal in a variable labeled PC2, which explains 15% of the total variance and is second in importance the variable (PC1 containing the broad atmospheric conditions. PC2

  13. Effects of model resolution and parameterizations on the simulations of clouds, precipitation, and their interactions with aerosols

    Science.gov (United States)

    Lee, Seoung Soo; Li, Zhanqing; Zhang, Yuwei; Yoo, Hyelim; Kim, Seungbum; Kim, Byung-Gon; Choi, Yong-Sang; Mok, Jungbin; Um, Junshik; Ock Choi, Kyoung; Dong, Danhong

    2018-01-01

    This study investigates the roles played by model resolution and microphysics parameterizations in the well-known uncertainties or errors in simulations of clouds, precipitation, and their interactions with aerosols by the numerical weather prediction (NWP) models. For this investigation, we used cloud-system-resolving model (CSRM) simulations as benchmark simulations that adopt high-resolution and full-fledged microphysical processes. These simulations were evaluated against observations, and this evaluation demonstrated that the CSRM simulations can function as benchmark simulations. Comparisons between the CSRM simulations and the simulations at the coarse resolutions that are generally adopted by current NWP models indicate that the use of coarse resolutions as in the NWP models can lower not only updrafts and other cloud variables (e.g., cloud mass, condensation, deposition, and evaporation) but also their sensitivity to increasing aerosol concentration. The parameterization of the saturation process plays an important role in the sensitivity of cloud variables to aerosol concentrations. while the parameterization of the sedimentation process has a substantial impact on how cloud variables are distributed vertically. The variation in cloud variables with resolution is much greater than what happens with varying microphysics parameterizations, which suggests that the uncertainties in the NWP simulations are associated with resolution much more than microphysics parameterizations.

  14. GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM

    Science.gov (United States)

    Langer, William; Velusamy, T.; Goldsmith, P. F.; Li, D.; Pineda, J.; Yorke, H.

    2010-01-01

    Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon CII fine structure line at 1.9 THz is an important tracer of the atomic gas in the diffuse regions and the atomic to molecular cloud transformation. Furthermore, C+ is a major ISM coolant, the Galaxy's strongest emission line, with a total luminosity about a 1000 times that of CO J=1-0. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling CII line emission throughout the Galactic disk. GOT C+ will obtain high spectral resolution CII using the Heterodyne Instrument for the Far Infrared (HIFI) instrument. It employees deep integrations, wide velocity coverage (350 km s-1) with 0.22 km s-1 resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource of the atomic gas properties, in the (a) Galactic disk, (b) Galaxy's central 300pc, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). Along with HI, CO isotopes, and CI spectra, our C+ data will provide the astronomical community with a rich statistical database of diffuse cloud properties, for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale CII surveys. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology and is supported by a NASA grant.

  15. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation.

    Science.gov (United States)

    Charnawskas, Joseph C; Alpert, Peter A; Lambe, Andrew T; Berkemeier, Thomas; O'Brien, Rachel E; Massoli, Paola; Onasch, Timothy B; Shiraiwa, Manabu; Moffet, Ryan C; Gilles, Mary K; Davidovits, Paul; Worsnop, Douglas R; Knopf, Daniel A

    2017-08-24

    Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g ) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.

  16. Hourly interaction between wind speed and energy fluxes in Brazilian Wetlands - Mato Grosso - Brazil

    Directory of Open Access Journals (Sweden)

    THIAGO R. RODRIGUES

    Full Text Available ABSTRACT Matter and energy flux dynamics of wetlands are important to understand environmental processes that govern biosphere-atmosphere interactions across ecosystems. This study presents analyses about hourly interaction between wind speed and energy fluxes in Brazilian Wetlands - Mato Grosso - Brazil. This study was conducted in Private Reserve of Natural Heritage (PRNH SESC, 16º39'50''S; 56º47'50''W in Brazilian Wetland. According to Curado et al. (2012, the wet season occurs between the months of January and April, while the June to September time period is the dry season. Results presented same patterns in energies fluxes in all period studied. Wind speed and air temperature presented same patterns, while LE was relative humidity presented inverse patterns of the air temperature. LE was predominant in all seasons and the sum of LE and H was above 90% of net radiation. Analyses of linear regression presented positive interactions between wind speed and LE, and wind speed and H in all seasons, except in dry season of 2010. Confidence coefficient regression analyses present statistical significance in all wet and dry seasons, except dry season of 2010, suggest that LE and H had interaction with other micrometeorological variables.

  17. Predicting wind farm wake interaction with RANS: an investigation of the Coriolis force

    DEFF Research Database (Denmark)

    van der Laan, Paul; Hansen, Kurt Schaldemose; Sørensen, Niels N.

    2015-01-01

    A Reynolds-averaged Navier-Stokes code is used to simulate the interaction of two neighboring wind farms. The influence of the Coriolis force is investigated by modeling the atmospheric surface/boundary layer with three different methodologies. The results show that the Coriolis force is negligible...

  18. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes.

    Science.gov (United States)

    Seidl, Rupert; Rammer, Werner

    2017-07-01

    Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown. Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances. We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination. iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime. Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.

  19. ISME and the Twilight of History

    Directory of Open Access Journals (Sweden)

    Lorenzo Bianconi

    2016-12-01

    Full Text Available In addition to the International Musicological Society there exists an International Society for Music Education, an association (affiliated with UNESCO that gathers music educators from over 80 countries. Between the end of the last century and the beginning of the present one, the ISME issued three main policy papers: “Declaration of Beliefs for Worldwide Promotion of Music Education” (1994-96; “Policy on Music Education” (2002; and “Vision and Mission: Leading and Supporting Music Education Worldwide” (2006. A comparative analysis of the three ‘manifestos’ reveals that, while in 1994-96 the ISME explicitly included the triad ‘history – culture – aesthetics’ in its conception, and regarded the ‘listening’ of music as an educationally significant activity, after just a few years the first and third notions (‘history,’ ‘aesthetics’ have all but vanished, and music listening has also disappeared from the agenda. The fact that the notion of ‘history’ and the aesthetic approach to musical art have disappeared from the perspective of music educators worldwide may have to do with scruples about political correctness, motivated by the “Mexico City Declaration on Cultural Policies” of UNESCO (1982, where the notion of ‘culture’ had already replaced that of ‘history’. To be sure, this ignorance, or suspicion, about the historical aspects of music production does not in any way facilitate the task of musicologists (or of ethnomusicologists, nor that of music education teachers.

  20. The DACCIWA project: Dynamics-aerosol-chemistry-cloud interactions in West Africa

    Science.gov (United States)

    Knippertz, Peter

    2017-04-01

    This contribution provides an overview of the EU-funded DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project. DACCIWA consists of 16 European and African research organisations and has strong links to universities, weather services and government organisations across West Africa. The project runs from 2010 to 2018 and is built around a major international field campaign in 2016. A key motivation for DACCIWA is the expected tripling of anthropogenic emissions in southern West Africa (SWA) between 2000 and 2030, whose impacts on human health, ecosystems, food security and the regional climate are largely unknown. An integrated assessment of this problem, which is mostly due to massive economic and population growth and urbanization, is challenging due to (a) a superposition of regional effects with global climate change, (b) a strong dependence on the variable West African monsoon, (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation and regional circulations, and (d) a lack of observations. DACCIWA combines measurements in the field in SWA with extensive modelling activities and work on satellite data. In particular during the main DACCIWA field campaign in June-July 2016 high-quality observations of emissions, atmospheric composition and meteorological parameters were sampled. The campaign involved three research aircraft, three ground-based supersites, enhanced radiosonde launches, and intensive measurements at urban sites in Abidjan and Cotonou. These data have already been quality-controlled and will be freely available to the research community through a database at http://baobab.sedoo.fr/DACCIWA/ after the end of the project. The resulting benchmark dataset is currently combined with a wide range of modelling and satellite-based research activities that will ultimately allow (a) an assessment of the roles of relevant physical, chemical and biological processes, (b) an improvement

  1. Cloud-based interactive analytics for terabytes of genomic variants data.

    Science.gov (United States)

    Pan, Cuiping; McInnes, Gregory; Deflaux, Nicole; Snyder, Michael; Bingham, Jonathan; Datta, Somalee; Tsao, Philip S

    2017-12-01

    Large scale genomic sequencing is now widely used to decipher questions in diverse realms such as biological function, human diseases, evolution, ecosystems, and agriculture. With the quantity and diversity these data harbor, a robust and scalable data handling and analysis solution is desired. We present interactive analytics using a cloud-based columnar database built on Dremel to perform information compression, comprehensive quality controls, and biological information retrieval in large volumes of genomic data. We demonstrate such Big Data computing paradigms can provide orders of magnitude faster turnaround for common genomic analyses, transforming long-running batch jobs submitted via a Linux shell into questions that can be asked from a web browser in seconds. Using this method, we assessed a study population of 475 deeply sequenced human genomes for genomic call rate, genotype and allele frequency distribution, variant density across the genome, and pharmacogenomic information. Our analysis framework is implemented in Google Cloud Platform and BigQuery. Codes are available at https://github.com/StanfordBioinformatics/mvp_aaa_codelabs. cuiping@stanford.edu or ptsao@stanford.edu. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  2. Interactions between biomass-burning aerosols and clouds over Southeast Asia: current status, challenges, and perspectives.

    Science.gov (United States)

    Lin, Neng-Huei; Sayer, Andrew M; Wang, Sheng-Hsiang; Loftus, Adrian M; Hsiao, Ta-Chih; Sheu, Guey-Rong; Hsu, N Christina; Tsay, Si-Chee; Chantara, Somporn

    2014-12-01

    The interactions between aerosols, clouds, and precipitation remain among the largest sources of uncertainty in the Earth's energy budget. Biomass-burning aerosols are a key feature of the global aerosol system, with significant annually-repeating fires in several parts of the world, including Southeast Asia (SEA). SEA in particular provides a "natural laboratory" for these studies, as smoke travels from source regions downwind in which it is coupled to persistent stratocumulus decks. However, SEA has been under-exploited for these studies. This review summarizes previous related field campaigns in SEA, with a focus on the ongoing Seven South East Asian Studies (7-SEAS) and results from the most recent BASELInE deployment. Progress from remote sensing and modeling studies, along with the challenges faced for these studies, are also discussed. We suggest that improvements to our knowledge of these aerosol/cloud effects require the synergistic use of field measurements with remote sensing and modeling tools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Interactive Biophysics with Microswimmers: Education, Cloud Experimentation, Programmed Swarms, and Biotic Games

    Science.gov (United States)

    Riedel-Kruse, Ingmar

    Modern biotechnology gets increasingly powerful to manipulate and measure microscopic biophysical processes. Nevertheless, no platform exists to truly interact with these processes, certainly not with the convenience that we are accustomed to from our electronic smart devices. In my talk I will provide the rational for such Interactive Biotechnology and conceptualize its core component, the BPU (biotic processing unit), which is then connected to an according user interface. The biophysical phenomena currently featured on these platforms utilize the phototactic response of motile microorganisms, e.g., Euglena gracilis, resulting in spatio-temporal dynamics from the single cell to the self-organized multi-cellular scale. I will demonstrate multiple platforms, such as scalable biology cloud experimentation labs, tangible museum exhibits, biotic video games, low-cost interactive DIY kits using smartphones, and programming languages for swarm robotics. I will discuss applications for education as well as for professional and citizen science. Hence, we turn traditionally observational microscopy into an interactive experience. I was told that presenting in the educational section does not count against the ''one author - one talk policy'' - so I submit two abstracts. In case of conflict - please contact me: ingmar@stanford.edu.

  4. HST IMAGING OF DUST STRUCTURES AND STARS IN THE RAM PRESSURE STRIPPED VIRGO SPIRALS NGC 4402 AND NGC 4522: STRIPPED FROM THE OUTSIDE IN WITH DENSE CLOUD DECOUPLING

    International Nuclear Information System (INIS)

    Abramson, A.; Kenney, J.; Crowl, H.; Tal, T.

    2016-01-01

    We describe and constrain the origins of interstellar medium (ISM) structures likely created by ongoing intracluster medium (ICM) ram pressure stripping in two Virgo Cluster spirals, NGC 4522 and NGC 4402, using Hubble Space Telescope (HST) BVI images of dust extinction and stars, as well as supplementary H i, H α , and radio continuum images. With a spatial resolution of ∼10 pc in the HST images, this is the highest-resolution study to date of the physical processes that occur during an ICM–ISM ram pressure stripping interaction, ram pressure stripping's effects on the multi-phase, multi-density ISM, and the formation and evolution of ram-pressure-stripped tails. In dust extinction, we view the leading side of NGC 4402 and the trailing side of NGC 4522, and so we see distinct types of features in both. In both galaxies, we identify some regions where dense clouds are decoupling or have decoupled and others where it appears that kiloparsec-sized sections of the ISM are moving coherently. NGC 4522 has experienced stronger, more recent pressure and has the “jellyfish” morphology characteristic of some ram-pressure-stripped galaxies. Its stripped tail extends up from the disk plane in continuous upturns of dust and stars curving up to ∼2 kpc above the disk plane. On the other side of the galaxy, there is a kinematically and morphologically distinct extraplanar arm of young, blue stars and ISM above a mostly stripped portion of the disk, and between it and the disk plane are decoupled dust clouds that have not been completely stripped. The leading side of NGC 4402 contains two kiloparsec-scale linear dust filaments with complex substructure that have partially decoupled from the surrounding ISM. NGC 4402 also contains long dust ridges, suggesting that large parts of the ISM are being pushed out at once. Both galaxies contain long ridges of polarized radio continuum emission indicating the presence of large-scale, ordered magnetic fields. We propose that

  5. Interaction of plasma cloud with external electric field in lower ionosphere

    Directory of Open Access Journals (Sweden)

    Y. S. Dimant

    2010-03-01

    Full Text Available In the auroral lower-E and upper-D region of the ionosphere, plasma clouds, such as sporadic-E layers and meteor plasma trails, occur daily. Large-scale electric fields, created by the magnetospheric dynamo, will polarize these highly conducting clouds, redistributing the electrostatic potential and generating anisotropic currents both within and around the cloud. Using a simplified model of the cloud and the background ionosphere, we develop the first self-consistent three-dimensional analytical theory of these phenomena. For dense clouds, this theory predicts highly amplified electric fields around the cloud, along with strong currents collected from the ionosphere and circulated through the cloud. This has implications for the generation of plasma instabilities, electron heating, and global MHD modeling of magnetosphere-ionosphere coupling via modifications of conductances induced by sporadic-E clouds.

  6. Numerical investigations of wake interactions of two wind turbines in tandem

    Science.gov (United States)

    Qian, Yaoru; Wang, Tongguang

    2018-05-01

    Aerodynamic performance and wake interactions between two wind turbine models under different layouts are investigated numerically using large eddy simulation in conjunction with actuator line method based on the “Blind Test” series wind tunnel experiments from Norwegian University of Science and Technology. Numerical results of the power and thrust coefficients of the two rotors and wake characteristics are in good agreement with the experimental measurements. Extended investigations emphasizing the influence of different layout arrangements on the downstream rotor performance and wake development are conducted. Results show that layout arrangements have great influence on the power and thrust prediction of the downstream turbine.

  7. Studying wind energy/bird interactions: a guidance document. Metrics and methods for determining or monitoring potential impacts on birds at existing and proposed wind energy sites

    Science.gov (United States)

    Anderson, R.; Morrison, M.; Sinclair, K.; Strickland, D.; Davis, H.; Kendall, W.

    1999-01-01

    In the 1980s little was known about the potential environmental effects associated with large scale wind energy development. Although wind turbines have been used in farming and remote location applications throughout this country for centuries, impacts on birds resulting from these dispersed turbines had not been reported. Thus early wind energy developments were planned, permitted, constructed, and operated with little consideration for the potential effects on birds. In the ensuing years wind plant impacts on birds became a source of concern among a number of stakeholder groups. Based on the studies that have been done to date, significant levels of bird fatalities have been identified at only one major commercial wind energy development in the United States. Research on wind energy/bird interactions has spanned such a wide variety of protocols and vastly different levels of study effort that it is difficult to make comparisons among study findings. As a result there continues to be interest, confusion, and concern over wind energy development's potential impacts on birds. Some hypothesize that technology changes, such as less dense wind farms with larger, slower-moving turbines, will decrease the number of bird fatalities from wind turbines. Others hypothesize that, because the tip speed may be the same or faster, new turbines will not result in decreased bird fatalities but may actually increase bird impacts. Statistically significant data sets from scientifically rigorous studies will be required before either hypothesis can be tested.

  8. Fluid-structure interaction modeling of wind turbines: simulating the full machine

    Science.gov (United States)

    Hsu, Ming-Chen; Bazilevs, Yuri

    2012-12-01

    In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.

  9. The evolution of comets and the detectability of Extra-Solar Oort Clouds

    International Nuclear Information System (INIS)

    Stern, S.A.

    1989-01-01

    According the standard theory, comets are natural products of solar system formation, ejected to the Oort Cloud by gravitational scattering events during the epoch of giant planet formation. Stored far from the Sun for billions of years, comets almost certainly contain a record of the events which occurred during (and perhaps even before) the epoch of planetary formation. Two themes are examined of the evolutionary processes that affect comets in the Oort Cloud, and a search for evidence of Extra-Solar Oort Clouds (ESOCs). With regard to cometary evolution in the Oort Cloud, it was found that luminous O stars and supernovae have heated the surface layers of all comets on numerous occasions to 20 to 30 K and perhaps once to 50 K. Interstellar medium (ISM) interactions blow small grains out of the Oort Clouds, and erode the upper few hundred g/cu cm of material from cometary surfaces. The findings presented contradict the standard view that comets do not undergo physical change in the Oort Cloud. A logical consequence of the intimate connection between the Oort Cloud and our planetary system is that the detection of comet clouds around other stars would strongly indicate the sites of extant extra-solar planetary systems. A search was conducted for infrared IR emission from debris in ESOCs. After examining 17 stars using the Infrared Astronomical Satellite data base, only upper limits on ESOC emission could be set

  10. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  11. Disintegration of Dust Aggregates in Interstellar Shocks and the Lifetime of Dust Grains in the ISM

    Science.gov (United States)

    Dominik, C.; Jones, A. P.; Tielens, A. G. G. M.; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    Interstellar grains are destroyed by shock waves moving through the ISM. In fact, the destruction of grains may be so effective that it is difficult to explain the observed abundance of dust in the ISM as a steady state between input of grains from stellar sources and destruction of grains in shocks. This is especially a problem for the larger grains. Therefore, the dust grains must be protected in some way. Jones et al. have already considered coatings and the increased post-shock drag effects for low density grains. In molecular clouds and dense clouds, coagulation of grains is an important process, and the largest interstellar grains may indeed be aggregates of smaller grains rather than homogeneous particles. This may provide a means to protect the larger grains, in that, in moderate velocity grain-grain collisions in a shock the aggregates may disintegrate rather than be vaporized. The released small particles are more resilient to shock destruction (except in fast shocks) and may reform larger grains later, recovering the observed size distribution. We have developed a model for the binding forces in grain aggregates and apply this model to the collisions between an aggregate and fast small grains. We discuss the results in the light of statistical collision probabilities and grain life times.

  12. Wide Field-of-View Soft X-Ray Imaging for Solar Wind-Magnetosphere Interactions

    Science.gov (United States)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; hide

    2016-01-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  13. Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen

    Science.gov (United States)

    Pauls, H. Louis; Zank, Gary P.

    1995-01-01

    We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.

  14. Comet 73P Measurements of Solar Wind Interactions, Cometary Ion Pickup, and Spatial Distribution

    Science.gov (United States)

    Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Combi, M. R.; Zurbuchen, T.

    2015-12-01

    Several fragments of Comet 73P/Schwassmann-Wachmann 3 passed near the Earth following a 2006 disintegration episode. Unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during this time by both the ACE/SWICS and Wind/STICS sensors. As the solar wind passed through the neutral cometary coma, it experienced charge exchange that was observed as an increase in the ratio of He+/He++. In addition, particles originating from fragments trailing the major cometary objects were ionized and picked up by the solar wind. The cometary material can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16-18 amu/e, indicating that these are actively sublimating fragments. Here we present an analysis of cometary composition, spatial distribution, directionality, and heliospheric interactions with a focus on Helium, Carbon (C/O), and water-group ions.

  15. Interaction between water and wind as a driver of passive dispersal in mangroves.

    Directory of Open Access Journals (Sweden)

    Tom Van der Stocken

    Full Text Available Although knowledge on dispersal patterns is essential for predicting long-term population dynamics, critical information on the modalities of passive dispersal and potential interactions between vectors is often missing. Here, we use mangrove propagules with a wide variety of morphologies to investigate the interaction between water and wind as a driver of passive dispersal. We imposed 16 combinations of wind and hydrodynamic conditions in a flume tank, using propagules of six important mangrove species (and genera, resulting in a set of dispersal morphologies that covers most variation present in mangrove propagules worldwide. Additionally, we discussed the broader implications of the outcome of this flume study on the potential of long distance dispersal for mangrove propagules in nature, applying a conceptual model to a natural mangrove system in Gazi Bay (Kenya. Overall, the effect of wind on dispersal depended on propagule density (g l(-1. The low-density Heritiera littoralis propagules were most affected by wind, while the high-density vertically floating propagules of Ceriops tagal and Bruguiera gymnorrhiza were least affected. Avicennia marina, and horizontally floating Rhizophora mucronata and C. tagal propagules behaved similarly. Morphological propagule traits, such as the dorsal sail of H. littoralis, explained another part of the interspecific differences. Within species, differences in dispersal velocities can be explained by differences in density and for H. littoralis also by variations in the shape of the dorsal sail. Our conceptual model illustrates that different propagule types have a different likelihood of reaching the open ocean depending on prevailing water and wind currents. Results suggest that in open water, propagule traits (density, morphology, and floating orientation appear to determine the effect of water and wind currents on dispersal dynamics. This has important implications for inter- and intraspecific

  16. Interaction of intersteller pick-up ions with the solar wind

    International Nuclear Information System (INIS)

    Mobius, E.; Klecker, B.; Hovestadt, D.; Scholer, M.

    1988-01-01

    The interaction of interstellar pick-up ions with the solar wind is studied by comparing a model for the velocity distribution function of pick-up ions with actual measurements of He + ions in the solar wind. The model includes the effects of pitch-angle diffusion due to interplanetary Alfven waves, adiabatic deceleration in the expanding solar wind and the radial variation of the source function. It is demonstrated that the scattering mean free path is in the range ≤0.1 AU and that energy diffusion can be neglected as compared with adiabatic deceleration. The effects of adiabatic focusing, of the radial variation of the neutral density and of an variation of the solar wind velocity with distance from the Sun are investigated. With the correct choice of these parameters the authors can model the measured energy spectra of the pick-up ions does not vary with the solar wind velocity and the direction of the interplanetary magnetic field for a given local neutral gas density and ionization rate. Therefore, the comparison of the model distributions with the measurements leads to a quantitative determination of the local interstellar gas density

  17. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-01-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…

  18. Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Golshan, M.E.H.; Shafie-khah, M.

    2016-01-01

    Highlights: • Interactive incorporation of plug-in electric vehicle parking lots is investigated. • Flexible energy and reserve services are provided by electric vehicle parking lots. • Uncertain characterization of electric vehicle owners’ behavior is taken into account. • Coordinated operation of parking lots can facilitate wind power integration. - Abstract: The increasing share of uncertain wind generation has changed traditional operation scheduling of power systems. The challenges of this additional variability raise the need for an operational flexibility in providing both energy and reserve. One key solution is an effective incorporation of plug-in electric vehicles (PEVs) into the power system operation process. To this end, this paper proposes a two-stage stochastic programming market-clearing model considering the network constraints to achieve the optimal scheduling of conventional units as well as PEV parking lots (PLs) in providing both energy and reserve services. Different from existing works, the paper pays more attention to the uncertain characterization of PLs takes into account the arrival/departure time of PEVs to/from the PL, the initial state of charge (SOC) of PEVs, and their battery capacity through a set of scenarios in addition to wind generation scenarios. The results reveal that although the cost saving as a consequence of incorporating PL to the grid is below 1% of total system cost, however, flexible interactions of PL in the energy and reserve markets can promote the integration of wind power more than 13.5%.

  19. Influence of Solar Wind on the Global Electric Circuit, and Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere

    Science.gov (United States)

    Tinsley, Brian A.

    2000-11-01

    There are at least three independent ways in which the solar wind modulates the flow of current density (Jz) in the global electric circuit. These are (A) changes in the galactic cosmic ray energy spectrum, (B) changes in the precipitation of relativistic electrons from the magnetosphere, and (C) changes in the ionospheric potential distribution in the polar caps due to magnetosphere-ionosphere coupling. The current density J_z flows between the ionosphere and the surface, and as it passes through conductivity gradients it generates space charge concentrations dependent on J_z and the conductivity gradient. The gradients are large at the surfaces of clouds and space charge concentrations of order 1000 to 10,000 elementary charges per cm^3 can be generated at cloud tops. The charge transfers to droplets, many of which are evaporating at the cloud-clear air interface. The charge remains on the residual evaporation nuclei with a lifetime against leakage of order 1000 sec, and for a longer period the nuclei also retain coatings of sulfate and organic compounds adsorbed by the droplet while in the cloud. The charged evaporation nuclei become well mixed with more droplets in many types of clouds with penetrative mixing. The processes of entrainment and evaporation are also efficient for these clouds. The collection of such nuclei by nearby droplets is greatly increased by the electrical attraction between the charge on the particle and the image charge that it creates on the droplet. This process is called electroscavenging. Because the charge on the evaporation nuclei is derived from the original space charge, it depends on J_z, giving a rate of electroscavenging responsive to the solar wind inputs. There may be a number of ways in which the electroscavenging has consequences for weather and climate. One possibility is enhanced production of ice. The charged evaporation nuclei have been found to be good ice forming nuclei because of their coatings, and so in supercooled

  20. First highlights of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field campaigns

    Science.gov (United States)

    Liousse, C.; Knippertz, P.; Flamant, C.; Adon, J.; Akpo, A.; Annesi-Maesano, I.; Assamoi, E.; Baeza, A.; Julien, B.; Bedou, M.; Brooks, B. J.; Chiu, J. Y. C.; Chiron, C.; Coe, H.; Danuor, S.; Djossou, J.; Evans, M. J.; Fayomi, B.; Fink, A. H.; Galy-Lacaux, C.; Gardrat, E.; Jegede, O.; Kalthoff, N.; Kedote, M.; Keita, S.; Kouame, K.; Konare, A.; Leon, J. F.; Mari, C. H.; Lohou, F.; Roblou, L.; Schlager, H.; Schwarzenboeck, A.; Toure, E. N.; Veronique, Y.

    2016-12-01

    The EU-funded project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) is investigating the relationship between weather, climate, air pollution and health in southern West Africa. The air over the coastal region of West Africa is a unique mixture of natural and anthropogenic gases, liquids and particles, emitted in an environment, in which multi-layer cloud decks frequently form. These exert a large influence on the local weather and climate, which has never been studied in detail over West Africa: this information is currently not included in the majority of weather and climate models. For the first time, the entire chain of impacts of natural and manmade emissions on the West African atmosphere was investigated in a coordinated field campaign. As part of this campaign, three research aircraft (Falcon 20, Twin Otter and ATR) based in Lomé (Togo) flew targeted 50 missions over West Africa from 27 June to 16 July 2016. In that campaign also, three highly instrumented measuring sites inland were set up with weather balloons launched several times a day across the region. The main objective was to build robust statistics of cloud properties in southern West Africa in different chemical landscapes (background state, ship/flaring emissions, polluted megacities, agricultural and forest areas, dust from the Sahel/Sahara). In addition, DACCIWA scientists working on measurements of urban emissions, air pollution, and health have set up four urban sites in Abidjan (Cote d'Ivoire) and Cotonou (Benin) focusing on main specific regional combustion sources (domestic fires, traffic and waste burning). Long-term measurements of gases and particles and census of hospital admissions for respiratory diseases were started in January 2015 and will continue until March 2017 to determine the links between human health and air pollution. Intensive measurement periods took place in July 2015, January 2016, and July 2016 (a final one is planned for January 2017) in

  1. Interactive Mapping of Inundation Metrics Using Cloud Computing for Improved Floodplain Conservation and Management

    Science.gov (United States)

    Bulliner, E. A., IV; Lindner, G. A.; Bouska, K.; Paukert, C.; Jacobson, R. B.

    2017-12-01

    Within large-river ecosystems, floodplains serve a variety of important ecological functions. A recent survey of 80 managers of floodplain conservation lands along the Upper and Middle Mississippi and Lower Missouri Rivers in the central United States found that the most critical information needed to improve floodplain management centered on metrics for characterizing depth, extent, frequency, duration, and timing of inundation. These metrics can be delivered to managers efficiently through cloud-based interactive maps. To calculate these metrics, we interpolated an existing one-dimensional hydraulic model for the Lower Missouri River, which simulated water surface elevations at cross sections spaced (step. To translate these water surface elevations to inundation depths, we subtracted a merged terrain model consisting of floodplain LIDAR and bathymetric surveys of the river channel. This approach resulted in a 29000+ day time series of inundation depths across the floodplain using grid cells with 30 m spatial resolution. Initially, we used these data on a local workstation to calculate a suite of nine spatially distributed inundation metrics for the entire model domain. These metrics are calculated on a per pixel basis and encompass a variety of temporal criteria generally relevant to flora and fauna of interest to floodplain managers, including, for example, the average number of days inundated per year within a growing season. Using a local workstation, calculating these metrics for the entire model domain requires several hours. However, for the needs of individual floodplain managers working at site scales, these metrics may be too general and inflexible. Instead of creating a priori a suite of inundation metrics able to satisfy all user needs, we present the usage of Google's cloud-based Earth Engine API to allow users to define and query their own inundation metrics from our dataset and produce maps nearly instantaneously. This approach allows users to

  2. Magnetohydrodynamic Simulations of the Formation of Molecular Clouds toward the Stellar Cluster Westerlund 2: Interaction of a Jet with a Clumpy Interstellar Medium

    International Nuclear Information System (INIS)

    Asahina, Yuta; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo; Matsumoto, Ryoji

    2017-01-01

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ -ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed by shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet–cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.

  3. Magnetohydrodynamic Simulations of the Formation of Molecular Clouds toward the Stellar Cluster Westerlund 2: Interaction of a Jet with a Clumpy Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Yuta; Kawashima, Tomohisa [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Matsumoto, Ryoji, E-mail: asahina@cfca.jp [Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2017-02-20

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ -ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed by shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet–cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.

  4. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    Science.gov (United States)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Piketh, S.; Formenti, P.; L'Ecuyer, T.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Shinozuka, Y.; hide

    2016-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  5. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2003-11-01

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma

  6. Interaction of Supernova Blast Waves with Wind-Driven Shells: Formation of "Jets", "Bullets", "Ears", Etc.

    Science.gov (United States)

    Gvaramadze, V. V.

    Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.

  7. Overview of ISM bands and Software-defined Radio Experimentation

    OpenAIRE

    Kumbhar, Abhaykumar

    2016-01-01

    Wireless systems using low-power wireless communication protocol are rapidly gain popularity in the license-free industrial scientific, and medical (ISM) frequency bands. One such emerging trend in ISM frequency bands is home automation. Historically, all the home devices were once unconnected, today are now being connected either by a wired or wireless connection. The low-power wireless communication protocols enable integration of all the digital home devices into a single system and enhanc...

  8. Happiness in Economics as Understood Across Ism and Religion

    Directory of Open Access Journals (Sweden)

    Abdul Ghafar Ismail

    2014-12-01

    Full Text Available The concept of happiness has been discussed long time ago by economists. Recently, it became the most related and important thing to be studied because of its impact in societies. Discussion about happiness basically interprets within two separate views. First, happiness related with economic variable, for instance, how money can create happiness. Second happiness is discussed within the context of religion. However, the discussion did not combine both contexts, economic variable and religion, to interpret happiness. Therefore, it is important to highlight the concept of happiness in a different way such as in this article. Different cultures will have their own perspective on the determination of happiness. From just “individual perspective” of happiness, they then formed an ism through involvement of a big society from the same culture. Some isms such as hedonism and materialism are synonyms in characterizing the concept of happiness in this modern world. At the same time, the isms are actually working with the economic and non-economic indicators as elements to strengthen the ism itself. On the other hand, the concept of happiness from the perspective of religion will also be a part of discussion in this article. Therefore, this article will reveal that the meaning of happiness is different in terms of religion and ism. So, to carry out both ism and religion simultaneously in shaping a more intrinsic value of happiness is not an easy task. Furthermore, religion is always associated with spiritual value that makes it hard for some people to practice religion and their isms at the same time. Thus, this article will propose that the right interpretation of isms based on their faith in religion can contribute to the concept of genuine happiness.

  9. Solar Wind 0.1-1 keV Electrons in the Corotating Interaction Regions

    Science.gov (United States)

    Wang, L.; Tao, J.; Li, G.; Wimmer-Schweingruber, R. F.; Jian, L. K.; He, J.; Tu, C.; Tian, H.; Bale, S. D.

    2017-12-01

    Here we present a statistical study of the 0.1-1 keV suprathermal electrons in the undisturbed and compressed slow/fast solar wind, for the 71 corotating interaction regions (CIRs) with good measurements from the WIND 3DP and MFI instruments from 1995 to 1997. For each of these CIRs, we separate the strahl and halo electrons based on their different behaviors in pitch angle distributions in the undisturbed and compressed solar wind. We fit both the strahl and halo energy spectra to a kappa function with an index κ index and effective temperature Teff, and calculate the pitch-angle width at half-maximum (PAHM) of the strahl population. We also integrate the electron measurements between 0.1 and 1.0 keV to obtain the number density n and average energy Eavg for the strahl and halo populations. We find that for both the strahl and halo populations within and around these CIRs, the fitted κ index strongly correlates with Teff, similar to the quiet-time solar wind (Tao et al., ApJ, 2016). The number density of both the strahl and halo shows a strong positive correlation with the electron core temperature. The strahl number density ns is correlated with the magnitude of interplanetary magnetic field, and the strahl PAHM width is anti-correlated with the solar wind speed. These results suggest that the origin of strahl electrons from the solar corona is likely related to the electron core temperature and magnetic field strength, while the production of halo electrons in the interplanetary medium could depend on the solar wind velocity.

  10. TWO REGIMES OF INTERACTION OF A HOT JUPITER’S ESCAPING ATMOSPHERE WITH THE STELLAR WIND AND GENERATION OF ENERGIZED ATOMIC HYDROGEN CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Shaikhislamov, I. F.; Prokopov, P. A.; Berezutsky, A. G.; Zakharov, Yu. P.; Posukh, V. G. [Institute of Laser Physics SB RAS, Novosibirsk (Russian Federation); Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.; Fossati, L. [Space Research Institute, Austrian Acad. Sci., Graz (Austria); Johnstone, C. P., E-mail: maxim.khodachenko@oeaw.ac.at [Department of Astrophysics, University of Vienna, Vienna (Austria)

    2016-12-01

    The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “ captured by the star ” regime, when the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “ blown by the wind ” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “ blown by the wind ” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “ captured by the star ” regime) are of importance for the interpretation of Ly α absorption features in exoplanetary transit spectra and characterization of the plasma environments.

  11. TWO REGIMES OF INTERACTION OF A HOT JUPITER’S ESCAPING ATMOSPHERE WITH THE STELLAR WIND AND GENERATION OF ENERGIZED ATOMIC HYDROGEN CORONA

    International Nuclear Information System (INIS)

    Shaikhislamov, I. F.; Prokopov, P. A.; Berezutsky, A. G.; Zakharov, Yu. P.; Posukh, V. G.; Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.

    2016-01-01

    The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “ captured by the star ” regime, when the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “ blown by the wind ” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “ blown by the wind ” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “ captured by the star ” regime) are of importance for the interpretation of Ly α absorption features in exoplanetary transit spectra and characterization of the plasma environments.

  12. Solar System Connections to the Organic Material In the ISM

    Science.gov (United States)

    Pendleton, Yvonne J.

    2003-01-01

    The organic component of the interstellar medium (ISM) has relevance to the formation of the early solar nebula, since our solar system formed out of ISM material. Comparisons of near infrared spectra of the diffuse ISM dust with those of primitive solar system bodies (such as comets and meteorites) show a remarkable similarity, suggesting that perhaps some of the interstellar organic material made its way, unaltered, into our solar system. Tracing the interstellar organic material is necessary to understand how these materials may be important links in the development of prebiotic phenomena. Studies of the ISM reveal that the organic refractory component of the diffuse ISM is largely hydrocarbon in nature, possessing little N or O, with carbon distributed between the aromatic and aliphatic forms. There is a strong similarity in the near IR spectra of the diffuse ISM (the 3.4 micron hydrocarbon bands) and those seen in the Murchison and Orgueil meteorites, however, detailed comparisons at longer wavelengths reveal critical dissimilarities. Here we will present comparisons and discussion of relevant spectra. As we continue to explore, we will gain insight into the connection between planetesimals in the solar system and chemistry in the dusty space between the stars.

  13. Laboratory modeling of air-sea interaction under severe wind conditions

    Science.gov (United States)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow

  14. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    Directory of Open Access Journals (Sweden)

    Han Zaw

    2016-01-01

    Full Text Available Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff, we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  15. Descriptor Data Bank (DDB): A Cloud Platform for Multiperspective Modeling of Protein-Ligand Interactions.

    Science.gov (United States)

    Ashtawy, Hossam M; Mahapatra, Nihar R

    2018-01-22

    Protein-ligand (PL) interactions play a key role in many life processes such as molecular recognition, molecular binding, signal transmission, and cell metabolism. Examples of interaction forces include hydrogen bonding, hydrophobic effects, steric clashes, electrostatic contacts, and van der Waals attractions. Currently, a large number of hypotheses and perspectives to model these interaction forces are scattered throughout the literature and largely forgotten. Instead, had they been assembled and utilized collectively, they would have substantially improved the accuracy of predicting binding affinity of protein-ligand complexes. In this work, we present Descriptor Data Bank (DDB), a data-driven platform on the cloud for facilitating multiperspective modeling of PL interactions. DDB is an open-access hub for depositing, hosting, executing, and sharing descriptor extraction tools and data for a large number of interaction modeling hypotheses. The platform also implements a machine-learning (ML) toolbox for automatic descriptor filtering and analysis and scoring function (SF) fitting and prediction. The descriptor filtering module is used to filter out irrelevant and/or noisy descriptors and to produce a compact subset from all available features. We seed DDB with 16 diverse descriptor extraction tools developed in-house and collected from the literature. The tools altogether generate over 2700 descriptors that characterize (i) proteins, (ii) ligands, and (iii) protein-ligand complexes. The in-house descriptors we extract are protein-specific which are based on pairwise primary and tertiary alignment of protein structures followed by clustering and trilateration. We built and used DDB's ML library to fit SFs to the in-house descriptors and those collected from the literature. We then evaluated them on several data sets that were constructed to reflect real-world drug screening scenarios. We found that multiperspective SFs that were constructed using a large number

  16. Interaction of mass-loaded solar wind flow with blunt body

    International Nuclear Information System (INIS)

    Breus, T.K.; Krymskii, A.M.; Mitnitskii, V.Ya.

    1987-01-01

    The aim of this paper is the numerical modeling of the solar wind interaction with Venus taking into account the mass loading effect due to the photoionization of the Venus neutral oxygen corona. The analysis has shown that this effect unambiguously explains the number of peculiarities of the SW-Venus interaction pattern that could not be quantitatively explained before, namely the shock front position, and the characteristics of the SW flow and magnetic field in the Venus ionosheath observed from experiments onboard of Venera-9 and -10 and Pioneer-Venus spacecraft. (author)

  17. Standard metrics and methods for conducting Avian/wind energy interaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.L. [California Energy Commission, Sacramento, CA (United States); Davis, H. [National Renewable Energy Lab., Golden, CO (United States); Kendall, W. [National Biological Service, Laurel, MD (United States)] [and others

    1997-12-31

    The awareness of the problem of avian fatalities at large scale wind energy developments first emerged in the late 1980`s at the Altamont Pass Wind Resource Area (WRA) in Central California. Observations of dead raptors at the Altamont Pass WRA triggered concern on the part of regulatory agencies, environmental/conservation groups, resource agencies, and wind and electric utility industries. This led the California Energy Commission staff, along with the planning departments of Alameda, Contra Costa, and Solano counties, to commission a study of bird mortality at the Altamont Pass WRA. In addition to the Altamont Pass WRA, other studies and observations have established that windplants kill birds. Depending upon the specific factors, this may or may not be a serious problem. The current level of scrutiny and caution exhibited during the permitting of a new windplant development in the United States results in costly delays and studies. This is occurring during a highly competitive period for electrical production companies in the USA. Clarification of the bird fatality issue is needed to bring it into perspective. This means standardizing metrics, defining terms, and recommending methods to be used in addressing or studying wind energy/bird interactions.

  18. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  19. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  20. Dynamic Analysis of A 5-MW Tripod Offshare Wind Turbine by Considering Fluid-Structure Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-wei; LI Xin

    2017-01-01

    Fixed of fshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod of fshore wind turbine considering the pile–soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of of fshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of of fshore wind turbines fixed in deep seawater.

  1. Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction

    Science.gov (United States)

    Zhang, Li-wei; Li, Xin

    2017-10-01

    Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.

  2. REGIONAL AIR-SEA INTERACTION (RASI) GAP WIND AND COASTAL UPWELLING EVENTS CLIMATOLOGY GULF OF PAPAGAYO, COSTA RICA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology Gulf of Papagayo, Costa Rica dataset was created using an automated...

  3. Three-Dimensional, Ten-Moment, Two-Fluid Simulation of the Solar Wind Interaction with Mercury

    Science.gov (United States)

    Dong, C. F.; Wang, L.; Hakim, A.; Bhattacharjee, A.; Germaschewski, K.; DiBraccio, G. A.

    2018-05-01

    We investigate solar wind interaction with Mercury’s magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum, and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations.

  4. Kameleon Live: An Interactive Cloud Based Analysis and Visualization Platform for Space Weather Researchers

    Science.gov (United States)

    Pembroke, A. D.; Colbert, J. A.

    2015-12-01

    The Community Coordinated Modeling Center (CCMC) provides hosting for many of the simulations used by the space weather community of scientists, educators, and forecasters. CCMC users may submit model runs through the Runs on Request system, which produces static visualizations of model output in the browser, while further analysis may be performed off-line via Kameleon, CCMC's cross-language access and interpolation library. Off-line analysis may be suitable for power-users, but storage and coding requirements present a barrier to entry for non-experts. Moreover, a lack of a consistent framework for analysis hinders reproducibility of scientific findings. To that end, we have developed Kameleon Live, a cloud based interactive analysis and visualization platform. Kameleon Live allows users to create scientific studies built around selected runs from the Runs on Request database, perform analysis on those runs, collaborate with other users, and disseminate their findings among the space weather community. In addition to showcasing these novel collaborative analysis features, we invite feedback from CCMC users as we seek to advance and improve on the new platform.

  5. Cometary jets in interaction with the solar wind: a hybrid simulation study

    Science.gov (United States)

    Wiehle, Stefan; Motschmann, Uwe; Gortsas, Nikolaos; Mueller, Joachim; Kriegel, Hendrik; Koenders, Christoph; Glassmeier, Karl-Heinz

    The effect of a cometary jet on the solar wind interaction is studied using comet 67P/Churyumov-Gerasimenko as case study. This comet is the target of the Rosetta-mission which will arrive in 2014. Observations suggest that cometary outgassing is confined to only a few percent of the cometary surface; thus, the measurement of jets is expected. Most former comet simulations did not attend to this fact and used an isotropic outgassing scheme or simplified outgassing patterns. Here, a single sun-facing jet is set to be the only source of cometary gas produc-tion. Using an analytic profile, this outgassing jet was implemented in a hybrid simulation code which treats protons and cometary heavy ions as particles and electrons as massless fluid. In a simulation series, the geometric parameters of the jet were varied to study the effect of different opening angles while the integrated outgassing rate remained constant. It was shown that the resulting solar wind interaction is highly dependent on the geometry of the jet. The plasma-structures like the solar wind pile-up found in the situation with isotropic outgassing are moved more and more sunward as the opening angle of the jet decreases. Furthermore, the cometary ion tail shows some kind of splitting which is not known from isotropic models.

  6. The global morphology of the solar wind interaction with comet Churyumov-Gerasimenko

    International Nuclear Information System (INIS)

    Mendis, D. A.; Horányi, M.

    2014-01-01

    The forthcoming Rosetta-Philae mission to comet 67P/Churyumov-Gerasimenko provides a novel opportunity to observe the variable nature of the solar wind interaction with a comet over an extended range of heliocentric distance. We use a simple analytical one-dimensional MHD model to estimate the sizes of the two most prominent features in the global structure of the solar wind interaction with a comet. When the heliocentric distance of the comet reaches d ≤ 1.51 AU, we expect a sharp shock to be observed, whose size would increase monotonically as the comet approaches the Sun, reaching a value ≅ 15, 000 km at perihelion (d ≅ 1.29 AU). Upstream of the shock, we expect the velocity-space distribution of the picked up cometary ions to be essentially gyrotropic. A well-defined ionopause is predicted when d ≤1.61 AU, though its size is expected to be only ≅25 km at perihelion, and it is expected to be susceptible to the 'flute' instability due to its small size. Consequently, we expect the magnetic field to penetrate all the way to the surface of the nucleus. We conclude with a brief discussion of the response of the comet's plasma environment to fast temporal variations in the solar wind.

  7. Aerosol-radiation-cloud interactions in the South-East Atlantic: first results from the ORACLES-2016 deployment and plans for future activities

    Science.gov (United States)

    Redemann, J.; Wood, R.; Zuidema, P.; Haywood, J. M.; Piketh, S.; Formenti, P.; Abel, S.

    2016-12-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for regional and global climate change predictions. Our understanding of aerosol-cloud interactions in the SE Atlantic is severely limited. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We describe first results from various synergistic, international research activities aimed at studying aerosol-cloud interactions in the region: NASA's airborne ORACLES (ObseRvations of Aerosols Above Clouds and Their IntEractionS) deployment in August/September of 2016, the DoE's LASIC (Layered Atlantic Smoke Interactions with Clouds) deployment of the ARM Mobile Facility to Ascension Island (June 2016 - October 2017), the ground-based components of CNRS' AEROCLO-sA (Aerosols Clouds and Fog over the west coast of southern Africa), and ongoing regional-scale integrative, process-oriented science efforts as part of SEALS-sA (Sea Earth Atmosphere Linkages Study in southern Africa). We expect to describe experimental

  8. Ionized carbon atomic ISM explorer (ICE)

    International Nuclear Information System (INIS)

    Kulkarni, S.R.; Watson, D.M.

    1987-01-01

    An Explorer-class satellite for an all-sky survey in the forbidden C II 157.7-micron line at low angular resolution (4 arcmin) and high spectral resolution (0.3 km/s) with complete Galactic velocity coverage (+ or - 300 km/s) is proposed. The C II line is as ubiquitous as the H I 21-cm line and the 2.6-mm line of CO and in addition provides crucial information complementary to the 21-cm and 2.6-mm data. Such a survey will map the large-scale Galactic distribution of the three phases of the atomic component as well as identify photoionized edges of star-forming regions. In particular, it will cleanly separate the cold, diffuse clouds and the intercloud H I along every line of sight. It will map the large-scale distribution of the warm, ionized medium, as well as the pressure in diffuse clouds. 15 references

  9. Cirrus cloud-temperature interactions in the tropical tropopause layer: a case study

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    2011-10-01

    Full Text Available Thin cirrus clouds in the Tropical Tropopause Layer (TTL have important ramifications for radiative transfer, stratospheric humidity, and vertical transport. A horizontally extensive and vertically thin cirrus cloud in the TTL was detected by the Cloud Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO on 27–29 January 2009 in the Tropical Eastern Pacific region, distant from any regions of deep convection. These observations indicate that the cloud is close to 3000 km in length along the CALIPSO orbit track. Measurements over this three day period indicate that the cloud event extended over a region from approximately 15° S to 10° N and 90° W to 150° W and may be one of the most extensive cirrus events ever observed. Coincident temperature observations from the Constellation of Observing Satellites for Meteorology, Ionosphere, and Climate (COSMIC suggest that the cloud formed in-situ as a result of a cold anomaly arising from a midlatitude intrusion. The event appears to last for up to 2 days and the temperature observations do not show any indication of the expected infrared heating. It is hypothesized that the cloud could be maintained by either nucleation of numerous small ice crystals that don't sediment or by multiple localized ice nucleation events driven by temperature variability at scales smaller than the overall cloud field, producing small ice-crystal sizes which have sufficiently long residence times (≈53 h to maintain the cloud. It is possible that the residence times are augmented by vertical motion which could also act to offset the expected infrared heating. Further observations of similar events will be required in order to conclusively explain this curious cloud.

  10. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  11. The Research of Dr. Joanne Simpson: Fifty Years Investigating Hurricanes, Tropical Clouds and Cloud Systems

    Science.gov (United States)

    Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)

    2001-01-01

    This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.

  12. Neutral ISM, Ly α , and Lyman-continuum in the Nearby Starburst Haro 11

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew; Puschnig, Johannes, E-mail: trive@astro.su.se [Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden)

    2017-03-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper, we reanalyze Hubble Space Telescope ( HST )-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Ly α line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Ly α , but low enough to be at least partly transparent to LyC and undetected in Si ii. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium.

  13. Neutral ISM, Ly α , and Lyman-continuum in the Nearby Starburst Haro 11

    International Nuclear Information System (INIS)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew; Puschnig, Johannes

    2017-01-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper, we reanalyze Hubble Space Telescope ( HST )-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Ly α line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Ly α , but low enough to be at least partly transparent to LyC and undetected in Si ii. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium.

  14. The Distribution and Ages of Star Clusters in the Small Magellanic Cloud: Constraints on the Interaction History of the Magellanic Clouds

    Science.gov (United States)

    Bitsakis, Theodoros; González-Lópezlira, R. A.; Bonfini, P.; Bruzual, G.; Maravelias, G.; Zaritsky, D.; Charlot, S.; Ramírez-Siordia, V. H.

    2018-02-01

    We present a new study of the spatial distribution and ages of the star clusters in the Small Magellanic Cloud (SMC). To detect and estimate the ages of the star clusters we rely on the new fully automated method developed by Bitsakis et al. Our code detects 1319 star clusters in the central 18 deg2 of the SMC we surveyed (1108 of which have never been reported before). The age distribution of those clusters suggests enhanced cluster formation around 240 Myr ago. It also implies significant differences in the cluster distribution of the bar with respect to the rest of the galaxy, with the younger clusters being predominantly located in the bar. Having used the same setup, and data from the same surveys as for our previous study of the LMC, we are able to robustly compare the cluster properties between the two galaxies. Our results suggest that the bulk of the clusters in both galaxies were formed approximately 300 Myr ago, probably during a direct collision between the two galaxies. On the other hand, the locations of the young (≤50 Myr) clusters in both Magellanic Clouds, found where their bars join the H I arms, suggest that cluster formation in those regions is a result of internal dynamical processes. Finally, we discuss the potential causes of the apparent outside-in quenching of cluster formation that we observe in the SMC. Our findings are consistent with an evolutionary scheme where the interactions between the Magellanic Clouds constitute the major mechanism driving their overall evolution.

  15. Evaluation of cumulus cloud – radiation interaction effects on air quality –relevant meteorological variables from WRF, from a regional climate perspective

    Science.gov (United States)

    Aware only of the resolved, grid-scale clouds, the Weather Research & Forecasting model (WRF) does not consider the interactions between subgrid-scale convective clouds and radiation. One consequence of this omission may be WRF’s overestimation of surface precipitation during sum...

  16. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    International Nuclear Information System (INIS)

    S, Motty G; Satyanarayana, M.; Krishnakumar, V.; Dhaman, Reji k.

    2014-01-01

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5 0 N, 79.2 0 E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology

  17. Grid-Free 2D Plasma Simulations of the Complex Interaction Between the Solar Wind and Small, Near-Earth Asteroids

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Poppe, A. R.

    2014-01-01

    We present results from a new grid-free 2D plasma simulation code applied to a small, unmagnetized body immersed in the streaming solar wind plasma. The body was purposely modeled as an irregular shape in order to examine photoemission and solar wind plasma flow in high detail on the dayside, night-side, terminator and surface-depressed 'pocket' regions. Our objective is to examine the overall morphology of the various plasma interaction regions that form around a small body like a small near-Earth asteroid (NEA). We find that the object obstructs the solar wind flow and creates a trailing wake region downstream, which involves the interplay between surface charging and ambipolar plasma expansion. Photoemission is modeled as a steady outflow of electrons from illuminated portions of the surface, and under direct illumination the surface forms a non-monotonic or ''double-sheath'' electric potential upstream of the body, which is important for understanding trajectories and equilibria of lofted dust grains in the presence of a complex asteroid geometry. The largest electric fields are found at the terminators, where ambipolar plasma expansion in the body-sized night-side wake merges seamlessly with the thin photoelectric sheath on the dayside. The pocket regions are found to be especially complex, with nearby sunlit regions of positive potential electrically connected to unlit negative potentials and forming adjacent natural electric dipoles. For objects near the surface, we find electrical dissipation times (through collection of local environmental solar wind currents) that vary over at least 5 orders of magnitude: from 39 Micro(s) inside the near-surface photoelectron cloud under direct sunlight to less than 1 s inside the particle-depleted night-side wake and shadowed pocket regions

  18. A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2016-09-01

    Full Text Available Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = −0.01 ± 0.03, whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02.

  19. Experimental and Modeling Studies of Interactions of Marine Aerosols and Clouds

    National Research Council Canada - National Science Library

    Kreidenweis, Sonia

    1995-01-01

    The specific objectives of the modeling component are to develop models of the marine boundary layer, including models that predict cloud formation and evolution and the effects of such processes on the marine aerosol (and vice versa...

  20. Organic Signature of Dust from the Interstellar Medium (ISM)

    Science.gov (United States)

    Freund, Friedemann; Freund, Minoru; Staple, Aaron; Scoville, John

    2001-01-01

    Dust in the ISM carries an "organic" signature in form of a distinct group of C-H stretching bands, both in emission and absorption, around 3.4 micrometers. These bands agree with the symmetrical and asymmetrical C-H stretching vibrations of aliphatic -CH2- entities and are thought to be associated with organic molecules on the surface of dust grains. We show that this interpretation is inconsistent with laboratory experiments. Synthetic MgO and natural olivine single crystals, grown from a CO/CO2/H2O-saturated melt, exhibit the same C-H stretching bands but those bands are clearly associated with C-H entities inside the dense mineral matrix. The multitude of C-H stretching bands suggests that the C-H bonds arise from polyatomic C(sub n) entities. We heated the MgO and olivine crystals to temperatures between 550-1000 K to pyrolyze the C-H bonds and to cause the C-H stretching bands to disappear. Upon annealing at moderate temperatures between 300-390 K the C-H stretching bands reappear within a few days to weeks. The C-H stretching band intensity increases linearly with the square root of time. Thus, while the pyrolysis broke the C-H bonds and caused the H to disperse in the mineral matrix, the H atoms (or H2 molecules) are sufficiently mobile to return during annealing and reestablish the C-H bonds. Dust grains that condense in a gas-laden environment (outflow of late-stage stars or in dense molecular clouds) probably incorporate the same type of Cn-H entities. Imbedded in and in part bonded to the surrounding mineral matrix, the Cn-H entities display C-H stretching bands in the 3.4 micrometer region, but their lower frequency librational modes are so strongly coupled to the lattice modes that they broaden excessively and thus become unobservable.

  1. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  2. Investigating Power System Primary and Secondary Reserve Interaction under High Wind Power Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Jin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Krad, Ibrahim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, Erik [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2016-12-01

    Power system frequency needs to be maintained close to its nominal value at all times to successfully balance load and generation and maintain system reliability. Adequate primary frequency response and secondary frequency response are the primary forces to correct an energy imbalance at the second-to-minute level. As wind energy becomes a larger portion of the world's energy portfolio, there is an increased need for wind to provide frequency response. This paper addresses one of the major concerns about using wind for frequency regulation: the unknown factor of the interaction between primary and secondary reserves. The lack of a commercially available tool to model this has limited the energy industry's understanding of when the depletion of primary reserves will impact the performance of secondary response or vice versa. This paper investigates the issue by developing a multi-area frequency response integration tool with combined primary and secondary capabilities. The simulation is conducted in close coordination with economical energy scheduling scenarios to ensure credible simulation results.

  3. Wind turbine wake interactions at field scale: An LES study of the SWiFT facility

    International Nuclear Information System (INIS)

    Yang, Xiaolei; Boomsma, Aaron; Sotiropoulos, Fotis; Barone, Matthew

    2014-01-01

    The University of Minnesota Virtual Wind Simulator (VWiS) code is employed to simulate turbine/atmosphere interactions in the Scaled Wind Farm Technology (SWiFT) facility developed by Sandia National Laboratories in Lubbock, TX, USA. The facility presently consists of three turbines and the simulations consider the case of wind blowing from South such that two turbines are in the free stream and the third turbine in the direct wake of one upstream turbine with separation of 5 rotor diameters. Large-eddy simulation (LES) on two successively finer grids is carried out to examine the sensitivity of the computed solutions to grid refinement. It is found that the details of the break-up of the tip vortices into small-scale turbulence structures can only be resolved on the finer grid. It is also shown that the power coefficient C P of the downwind turbine predicted on the coarse grid is somewhat higher than that obtained on the fine mesh. On the other hand, the rms (root-mean-square) of the C P fluctuations are nearly the same on both grids, although more small-scale turbulence structures are resolved upwind of the downwind turbine on the finer grid

  4. The importance of including dynamic soil-structure interaction into wind turbine simulation codes

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance of the founda......A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance...... of the foundation from a rigorous analysis can be formulated into a so-called lumped-parameter model consisting of a few springs, dashpots and point masses which are easily implemented into aeroelastic codes. In this paper, the quality of consistent lumped-parameter models of rigid surface footings and mono piles...... is examined. The optimal order of the models is determined and implemented into the aeroelastic code HAWC2, where the dynamic response of a 5.0 MW wind turbine is evaluated. In contrast to the fore-aft vibrations, the inclusion of soil-structure interaction is shown to be critical for the side-side vibrations...

  5. IMPROVED PARAMETERIZATION OF WATER CLOUD MODEL FOR HYBRID-POLARIZED BACKSCATTER SIMULATION USING INTERACTION FACTOR

    Directory of Open Access Journals (Sweden)

    S. Chauhan

    2017-07-01

    Full Text Available The prime aim of this study was to assess the potential of semi-empirical water cloud model (WCM in simulating hybrid-polarized SAR backscatter signatures (RH and RV retrieved from RISAT-1 data and integrate the results into a graphical user interface (GUI to facilitate easy comprehension and interpretation. A predominant agricultural wheat growing area was selected in Mathura and Bharatpur districts located in the Indian states of Uttar Pradesh and Rajasthan respectively to carry out the study. The three-date datasets were acquired covering the crucial growth stages of the wheat crop. In synchrony, the fieldwork was organized to measure crop/soil parameters. The RH and RV backscattering coefficient images were extracted from the SAR data for all the three dates. The effect of four combinations of vegetation descriptors (V1 and V2 viz., LAI-LAI, LAI-Plant water content (PWC, Leaf water area index (LWAI-LWAI, and LAI-Interaction factor (IF on the total RH and RV backscatter was analyzed. The results revealed that WCM calibrated with LAI and IF as the two vegetation descriptors simulated the total RH and RV backscatter values with highest R2 of 0.90 and 0.85 while the RMSE was lowest among the other tested models (1.18 and 1.25 dB, respectively. The theoretical considerations and interpretations have been discussed and examined in the paper. The novelty of this work emanates from the fact that it is a first step towards the modeling of hybrid-polarized backscatter data using an accurately parameterized semi-empirical approach.

  6. Sensitivity study of cloud/radiation interaction using a second order turbulence radiative-convective model

    International Nuclear Information System (INIS)

    Kao, C.Y.J.; Smith, W.S.

    1993-01-01

    A high resolution one-dimensional version of a second order turbulence convective/radiative model, developed at the Los Alamos National Laboratory, was used to conduct a sensitivity study of a stratocumulus cloud deck, based on data taken at San Nicolas Island during the intensive field observation marine stratocumulus phase of the First International Satellite Cloud Climatology Program (ISCCP) Regional Experiment (FIRE IFO), conducted during July, 1987. Initial profiles for liquid water potential temperature, and total water mixing ratio were abstracted from the FIRE data. The dependence of the diurnal behavior in liquid water content, cloud top height, and cloud base height were examined for variations in subsidence rate, sea surface temperature, and initial inversion strength. The modelled diurnal variation in the column integrated liquid water agrees quite well with the observed data, for the case of low subsidence. The modelled diurnal behavior for the height of the cloud top and base show qualitative agreement with the FIRE data, although the overall height of the cloud layer is about 200 meters too high

  7. Quantifying chemical uncertainties in simulations of the ISM

    Science.gov (United States)

    Glover, Simon

    2018-06-01

    The ever-increasing power of large parallel computers now makes it possible to include increasingly sophisticated chemical models in three-dimensional simulations of the interstellar medium (ISM). This allows us to study the role that chemistry plays in the thermal balance of a realistically-structured, turbulent ISM, as well as enabling us to generated detailed synthetic observations of important atomic or molecular tracers. However, one major constraint on the accuracy of these models is the accuracy with which the input chemical rate coefficients are known. Uncertainties in these chemical rate coefficients inevitably introduce uncertainties into the model predictions. In this talk, I will review some of the methods we can use to quantify these uncertainties and to identify the key reactions where improved chemical data is most urgently required. I will also discuss a few examples, ranging from the local ISM to the high-redshift universe.

  8. Evaluating the impact of ERP systems on SC performance with ISM

    Directory of Open Access Journals (Sweden)

    Cristina López Vargas

    2017-06-01

    Full Text Available Most companies nowadays have already implemented on-premise or cloud -based ERP systems into their IT infraestrutures. These packages allow firms to integrate, standardize and execute the whole business processes in real time, improving their productivity and operational efficiency. Previous studies highlight their beneficial effects go beyond the single firm. Indeed, ERP system can assist supply‐chain partners to work in close coordination. In order to reach a better understanding in this matter, the present study aims to develop a comprehensive framework. This will represent the benefits derived from ERP adoption in Supply Chain performance. In doing so, we applied an interpretive structural modelling (ISM. Finally, we provide a case study that explores the viability of this framework.

  9. A new mechanical stellar wind feedback model for the Rosette Nebula

    Science.gov (United States)

    Wareing, C. J.; Pittard, J. M.; Wright, N. J.; Falle, S. A. E. G.

    2018-04-01

    The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, -0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 M⊙ star in a thin sheet-like molecular cloud. We form the 135 000 M⊙ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.

  10. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Results from the ORACLES-2016 Deployment and a First Look at ORACLES-2017 and Beyond

    Science.gov (United States)

    Redemann, Jens; Wood, R.; Zuidema, P.

    2018-01-01

    Seasonal biomass burning (BB) in Southern Africa during the Southern hemisphere spring produces almost a third of the Earth's BB aerosol particles. These particles are lofted into the mid-troposphere and transported westward over the South-East (SE) Atlantic, where they interact with one of the three semi-permanent subtropical stratocumulus (Sc) cloud decks in the world. These interactions include adjustments to aerosol-induced solar heating and microphysical effects. The representation of these interactions in climate models remains highly uncertain, because of the scarcity of observational constraints on both, the aerosol and cloud properties, and the governing physical processes. The first deployment of the NASA P-3 and ER-2 aircraft in the ORACLES (ObseRvations of Aerosols Above Clouds and Their IntEractionS) project in August/September of 2016 has started to fill this observational gap by providing an unprecedented look at the SE Atlantic cloud-aerosol system. We provide an overview of the first deployment, highlighting aerosol absorptive and cloud-nucleating properties, their vertical distribution relative to clouds, the locations and degree of aerosol mixing into clouds, cloud changes in response to such mixing, and cloud top stability relationships to the aerosol. We also expect to describe preliminary results of the second ORACLES deployment from Sao Tome and Pri­ncipe in August 2017. We will make an initial assessment of the differences and similarities of the BB plume and cloud properties as observed from a deployment site near the plume's northern edge. We will conclude with an outlook for the third ORACLES deployment in October 2018.

  11. Remote Sensing of Aerosols from Satellites: Why Has It Been Do Difficult to Quantify Aerosol-Cloud Interactions for Climate Assessment, and How Can We Make Progress?

    Science.gov (United States)

    Kahn, Ralph A.

    2015-01-01

    The organizers of the National Academy of Sciences Arthur M. Sackler Colloquia Series on Improving Our Fundamental Understanding of the Role of Aerosol-Cloud Interactions in the Climate System would like to post Ralph Kahn's presentation entitled Remote Sensing of Aerosols from Satellites: Why has it been so difficult to quantify aerosol-cloud interactions for climate assessment, and how can we make progress? to their public website.

  12. The ISM in the M82 starburst

    Science.gov (United States)

    Lord, Steven

    1993-01-01

    We have observed (O 1) (63 microns) and (Si 2) (35 microns) in the central 700 pc of the starburst galaxy M82. The luminosities in these transitions are 7.1 x 10(exp 7) solar luminosity and 6.2 x 10(exp 7) solar luminosity, respectively, which are each approx. 0.15% of the bolometric luminosity from this region. The ratios of (O 1) line luminosity to (O 3), (Si 2) (35 microns), and to bolometric luminosities in M82 are similar to those in M42, M17, and Sgr A. These similarities, and the association of the bulk of the (O 1) and (Si 2) emission with the ionized emission, suggest that the dominant emission mechanism for (O 1) and (Si 2) in M82 is the same as in these Galactic regions, namely warm gas photodissociated by UV flux from the OB stars responsible for the nearby H 2 regions. We argue that shock or x ray heated gas or H 2 plasma is a minor contributor to the intensities of these fine structure lines. Both the (O 1) (53 microns) and the (Si 2) (35 microns) spectrum show an asymmetric line profile indistinguishable in shape from those of the (O 3) (52 and 88 microns) and (N 3) (57 microns) lines and similar to that of the more extended (C 2) 158 micron line measured previously in M82. We detect two distinct velocity components, which we attribute to emission from two regions at either end of the central bar, where the bar connects to an orbiting torus of neutral gas seen in H 1 and CO J = 1-0. We model separately the two velocity components and derive the physical conditions in these two regions. The clouds in these regions are small, R approx. 1-2 pc, have warm neutral gas surfaces, T approx. 200 K, and are concentrated with volume filling factors of approx. 0.02 and area filling factors of 1-5. The entire central region (R approx. 700 pc) is characterized by a large number, approx. 5 x 10(exp 4), of 2 x 10(exp 3) solar mass clouds with surface densities of approx. 3 x 10(exp 4) cm(exp -3), illuminated by FUV fluxes 10(exp 4) times the average local

  13. Interactive Classification of Construction Materials: Feedback Driven Framework for Annotation and Analysis of 3d Point Clouds

    Science.gov (United States)

    Hess, M. R.; Petrovic, V.; Kuester, F.

    2017-08-01

    Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.

  14. A fast plasma analyser for the study of the solar wind interaction with Mars

    Science.gov (United States)

    James, Adrian Martin

    This thesis describes the design and development of the FONEMA instrument to be flown aboard the Russian mission to Mars in 1996. Many probes have flown to Mars yet despite this many mysteries still remain, among them the nature of the interaction of the solar wind with the planetary obstacle. In this thesis I will present some of the results from earlier spacecraft and the models of the interaction that they suggest paying particular attention to the contribution of ion analysers. From these results it will become clear that a fast ion sensor is needed to resolve many of the questions about the magnetosphere of Mars. The FONEMA instrument was designed for this job making use of a novel electrostatic mirror and particle collimator combined with parallel magnetic and electrostatic fields to resolve the ions into mass and energy bins. Development and production of the individual elements is discussed in detail.

  15. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    Science.gov (United States)

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  16. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    Science.gov (United States)

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  17. Large-eddy simulation of wind turbine wake interactions on locally refined Cartesian grids

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2014-11-01

    Performing high-fidelity numerical simulations of turbulent flow in wind farms remains a challenging issue mainly because of the large computational resources required to accurately simulate the turbine wakes and turbine/turbine interactions. The discretization of the governing equations on structured grids for mesoscale calculations may not be the most efficient approach for resolving the large disparity of spatial scales. A 3D Cartesian grid refinement method enabling the efficient coupling of the Actuator Line Model (ALM) with locally refined unstructured Cartesian grids adapted to accurately resolve tip vortices and multi-turbine interactions, is presented. Second order schemes are employed for the discretization of the incompressible Navier-Stokes equations in a hybrid staggered/non-staggered formulation coupled with a fractional step method that ensures the satisfaction of local mass conservation to machine zero. The current approach enables multi-resolution LES of turbulent flow in multi-turbine wind farms. The numerical simulations are in good agreement with experimental measurements and are able to resolve the rich dynamics of turbine wakes on grids containing only a small fraction of the grid nodes that would be required in simulations without local mesh refinement. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the National Science Foundation under Award number NSF PFI:BIC 1318201.

  18. Simulation of cloud/radiation interaction using a second-order turbulence radiative-convective model

    International Nuclear Information System (INIS)

    Kao, C.Y.; Smith, W.S.

    1994-01-01

    Extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasi-permanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net shortwave flux entering the atmosphere, and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory. Future work includes sensitivity tests to ascertain the model validity as well as to systematically include all the possible ambient atmospheric and surface conditions. Detailed budget analyses are also useful in categorizing the cloud-capped boundary layers into a few classes

  19. An ISM approach for analyzing the factors in technology transfer

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdavi Mazdeh

    2015-07-01

    Full Text Available Technology transfer, from research and technology organizations (RTOs toward local industries, is considered as one of important and significant strategies for countries' industrial development. In addition to recover the enormous costs of research and development for RTOs, successful technology transfer from RTOs toward local firms forms technological foundations and develops the ability to enhance the competitiveness of firms. Better understanding of factors influencing process of technology transfer helps RTOs and local firms prioritize and manage their resources in an effective and efficient way to maximize the success of technology transfer. This paper aims to identify important effective factors in technology transfer from Iranian RTOs and provides a comprehensive model, which indicate the interactions of these factors. In this regard, first, research background is reviewed and Cummings and Teng’s model (2003 [Cummings, J. L., & Teng, B.-S. (2003. Transferring R&D knowledge: The key factors affecting knowledge transfer success. Journal of Engineering and Technology Management, 20(1-2, 39-68.] was selected as the basic model in this study and it was modified through suggesting new factors identified from literature of inter-organizational knowledge and technology transfer and finally a Delphi method was applied for validation of modified model. Then, research conducted used Interpretive Structural Modeling (ISM to evaluate the relationship between the factors of final proposed model. Results indicate that there were twelve factors influencing on technology transfer process from Iranian RTOs to local firms and also the intensity of absorption capability in transferee could influence on the intensity of desorption capability in transferor.

  20. IRAS observations of the ISM in the gamma CAS reflection nebula

    Science.gov (United States)

    Buss, Richard H., Jr.; Werner, Michael W.

    1990-01-01

    Mid-infrared emission from other galaxies originates both from interstellar grains heated by diffuse starlight and local excitation of grains by hot OB stars. Thus, a detailed examination of the Infrared Astronomy Satellite (IRAS) data from a B star interacting with the interstellar medium (ISM) could provide insight into infrared (IR) emission processes in external galaxies. Researchers have therefore used IRAS data to study the B0 IVe star gamma Cas and its surroundings, which they find to exhibit evidence of grain heating, destruction, and possible star formation.

  1. Airborne electromagnetics data interactive visualisation and exploratory data analysis using Cloud technologies

    Science.gov (United States)

    Golodoniuc, P.; Davis, A. C.; Klump, J. F.

    2017-12-01

    Electromagnetic exploration techniques are extensively used for remote detection and measurement of subsurface electrical conductivity structures for a variety of geophysical applications such as mineral exploration and groundwater detection. The Electromagnetic Applications group in the Mineral Resources business unit of CSIRO heavily relies upon the use of airborne electromagnetic (AEM) data for the development of new exploration methods. AEM data, which are often originally acquired for green- or brown-fields exploration for minerals, can be re-used for groundwater resource detection in the near-surface. This makes AEM data potentially useful beyond their initial purpose for decades into the future. Increasingly, AEM data are also used as a primary mapping tool for groundwater resources. With surveys ranging from under 1000 km to tens of thousands of km in total length, AEM data are spatially and temporally dense. Sounding stations are often sampled every 0.2 seconds, with about 30-50 measurements taken at each site, resulting in a spacing of measurements along the flight lines of approximately 20­-50 metres. This means that typical AEM surveys can easily have on the order of millions of individual stations, with tens of millions of measurements. AEM data needs to be examined for data quality before it can be inverted into conductivity-depth information. Data, which is gathered in survey transects or lines, is examined both along the line, in a plan view and for the transient decay of the electromagnetic signal of individual stations before noise artefacts can be removed. The complexity of the data, its size and dimensionality require efficient tools that support interactive visual data analysis and allows easy navigation through the dataset. A suite of numerical algorithms for data quality assurance facilitates this process through efficient visualisations and data quality metrics. The extensible architecture of the toolkit allows application of custom

  2. Simulation of interaction between wind farm and power system[Flicker

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.; Hansen, A.; Janosi, L.; Bech, J.; Bak-Jensen, B.

    2001-12-01

    A dynamic model of the wind farm Hagesholm has been implemented in the dedicated power system simulation program DIgSILENT. The wind farm consists of six 2MW NM2000/72 wind turbines from NEG-Micon. The model has been verified using simultaneous power quality measurements on the 10 kV terminals of a single wind turbine and power performance measurements on two wind turbines. The verification shows a generally good agreement between simulations and measurements, although the simulations at higher wind speeds seem to underestimate the power and voltage fluctuations. A way to improve the simulation at higher wind speeds is suggested. (au)

  3. Mechanical feedback in the molecular ISM of luminous IR galaxies

    NARCIS (Netherlands)

    Loenen, A. F.; Spaans, M.; Baan, W. A.; Meijerink, R.

    Aims. Molecular emission lines originating in the nuclei of luminous infra-red galaxies are used to determine the physical properties of the nuclear ISM in these systems. Methods. A large observational database of molecular emission lines is compared with model predictions that include heating by UV

  4. In-Space Manufacturing (ISM): Pioneering Space Exploration

    Science.gov (United States)

    Werkheiser, Niki

    2015-01-01

    ISM Objective: Develop and enable the manufacturing technologies and processes required to provide on-demand, sustainable operations for Exploration Missions. This includes development of the desired capabilities, as well as the required processes for the certification, characterization & verification that will enable these capabilities to become institutionalized via ground-based and ISS demonstrations.

  5. Modelling the supernova-driven ISM in different environments

    Czech Academy of Sciences Publication Activity Database

    Gatto, A.; Walch, S.; Mac Low, M.-M.; Naab, T.; Girichidis, P.; Glover, S.C.O.; Wünsch, Richard; Klessen, R.S.; Clark, P.C.; Baczynski, C.; Peters, T.; Ostriker, J.P.; Ibanez-Mejia, J.C.; Haid, S.

    2015-01-01

    Roč. 449, č. 1 (2015), s. 1057-1075 ISSN 0035-8711 R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : numerical methods * ISM evolution * kinematics and dynamics Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.952, year: 2015

  6. Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST

    International Nuclear Information System (INIS)

    Furman, M.A.; Furman, M.A.; Celata, C.M.; Sonnad, K.; Venturini, M.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Vay, J.-L.

    2007-01-01

    To predict the evolution of electron clouds and their effect on the beam, the high energy physics community has relied so far on the complementary use of 'buildup' and 'single/multi-bunch instability' reduced descriptions. The former describes the evolution of electron clouds at a given location in the ring, or 'station', under the influence of prescribed beams and external fields [1], while the latter (sometimes also referred as the 'quasi-static' approximation [2]) follows the interaction between the beams and the electron clouds around the accelerator with prescribed initial distributions of electrons, assumed to be concentrated at a number of discrete 'stations' around the ring. Examples of single bunch instability codes include HEADTAIL [3], QuickPIC [4, 5], and PEHTS [6]. By contrast, a fully self-consistent approach, in which both the electron cloud and beam distributions evolve simultaneously under their mutual influence without any restriction on their relative motion, is required for modeling the interaction of high-intensity beams with electron clouds for heavy-ion beam-driven fusion and warm-dense matter science. This community has relied on the use of Particle-In-Cell (PIC) methods through the development and use of the WARP-POSINST code suite [1, 7, 8]. The development of novel numerical techniques (including adaptive mesh refinement, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps) has enabled the first application of WARP-POSINST to the fully self-consistent modeling of beams and electron clouds in high energy accelerators [9], albeit for only a few betatron oscillations. It was recently observed [10] that there exists a preferred frame of reference which minimizes the number of computer operations needed to simulate the interaction of relativistic objects. This opens the possibility of reducing the cost of fully self-consistent simulations for the interaction of ultrarelativistic

  7. Interaction of clouds, radiation, and the tropical warm pool sea surface temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, N.; Zhang, G.J.; Barnett, T.P.; Ramanathan, V. [Scripps Institution of Oceanography, La Jolla, CA (United States)] [and others

    1996-04-01

    The primary focus of this study is the Tropical Western Pacific (TWP). In this study, we combine in-situ observations Tropical Ocean Global Atmosphere [TOGA]-Coupled Ocean Atmosphere Response Experiment [COARE] and Central Equatorial Pacific Experiment [CEPEX] with satellite cloud data.

  8. Beam-Beam Interaction, Electron Cloud and Intrabeam Scattering for Proton Super-bunches

    CERN Document Server

    Ruggiero, F; Rumolo, Giovanni; Papaphilippou, Y

    2003-01-01

    Super-bunches are long bunches with a flat longitudinal profile, which could potentially increase the LHC luminosity in a future upgrade. We present example parameters and discuss a variety of issues related to such superbunches, including beam-beam tune shift, tune footprints, crossing schemes, luminosity, intrabeam scattering, and electron cloud. We highlight the benefits, disadvantages and open questions.

  9. Interactivity Technologies to Improve the Learning in Classrooms through the Cloud

    Science.gov (United States)

    Fardoun, Habib M.; Alghazzawi, Daniyal M.; Paules, Antonio

    2018-01-01

    In this paper, the authors present a cloud system that incorporate tools developed in HTML5 and JQuery technologies, which are offered to professors and students in the development of a teaching methodology called flipped classroom, where the theoretical content is usually delivered by video files and self-assessment tools that students can…

  10. The singing comet 67P: utilizing fully kinetic simulations to study its interaction with the solar wind plasma

    Science.gov (United States)

    Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.

    2016-12-01

    We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.

  11. Large-scale interaction of the solar wind with cometary plasma tails

    International Nuclear Information System (INIS)

    Niedner, M.B. Jr.

    1979-01-01

    The study of the behavior of plasma tails in the context of their interaction with the solar wind could have important implications for the structure of the interplanetary medium in three dimensions. Comet Kohoutek 1973f exhibited a broad range of plasma tail behavior. On 1974 January 20, the tail was in a highly disturbed condition. Comet Kohoutek was encountering the leading edge of a very strong high-speed stream at the time the plasma tail disturbance started to develop. Comparison of the observed tail geometry on January 20 with the theoretical position angles generated from the wind sock theory of plasma tails and the corotated satellite observations shows that the tail disturbance was probably caused by large gradients of the polar component of the solar-wind velocity. Within hours after the disturbance of January 20, the plasma tail of comet Kohoutek became disconnected from the cometary head, and was replaced by a new plasma tail. The comet was very near an interplanetary sector boundary at the time of disconnection. The disconnection event (DE) is suggested to have resulted from the magnetic reconnection of plasma tail field lines. A similar analysis of other DEs found in original plate material and in published photographs shows the most DEs occur near corotated sector boundaries. Thus, the sector boundary model is further supported, and the finding provides the only known method of probing sector structure to high latitudes. Sector boundaries can often extend to high latitudes in a nearly North-South orientation, and this property is not restricted to times away from solar minimum. Furthermore, the boundaries are inferred to be randomly tilted with respect to the polarity sequence across the boundary and to the magnetic signs of the solar poles

  12. Can the chirality of the ISM be measured

    International Nuclear Information System (INIS)

    Pendleton, Y.; Sandford, S.A.; Werner, M.W.; Lauer, J.; Chang, S.

    1990-01-01

    Many moderately complex carbon-based molecules of the type associated with biological systems can exist in one of two mirror-image forms (left-handed and right-handed), which can be distinguished on the basis of their influence on the state of polarization of a light beam. Both forms are possible in nature; yet in living organisms it is invariably the rule that one of these two species predominates. This gives rise to a net chirality. One possible explanation for the net chirality is that the early earth was somehow seeded from the ISM with an excess of chiral organic compounds which led to the development of life forms which are based on left-handed amino acids and right-handed sugars. Molecular spectroscopy of the interstellar medium (ISM) has revealed a complex variety of molecular species similar to those thought to have been available in the oceans and atmospheres of the earth at the time life formed. The detection of such molecules demonstrates the generality of the chemical processes occurring in both environments. If this generality extends to the processes which produce chirality, it may be possible to detect a net chirality in the ISM. This is of particular interest because determining whether or not net chirality exists elsewhere in the universe is an essential aspect of understanding how life developed on earth and how widely distributed it might be. Researchers report preliminary results of a feasibility study to determine whether or not a net chirality in the ISM can be measured. If laboratory results identify candidate chiral molecules that might exist in the ISM, the next step in this feasibility study will be to estimate the detectability of the chiral signature in astrophysical environments

  13. Can the chirality of the ISM be measured

    Science.gov (United States)

    Pendleton, Y.; Sandford, S. A.; Werner, Michael W.; Lauer, J.; Chang, Sherwood

    1990-01-01

    Many moderately complex carbon-based molecules of the type associated with biological systems can exist in one of two mirror-image forms (left-handed and right-handed), which can be distinguished on the basis of their influence on the state of polarization of a light beam. Both forms are possible in nature; yet in living organisms it is invariably the rule that one of these two species predominates. This gives rise to a net chirality. One possible explanation for the net chirality is that the early earth was somehow seeded from the ISM with an excess of chiral organic compounds which led to the development of life forms which are based on left-handed amino acids and right-handed sugars. Molecular spectroscopy of the interstellar medium (ISM) has revealed a complex variety of molecular species similar to those thought to have been available in the oceans and atmospheres of the earth at the time life formed. The detection of such molecules demonstrates the generality of the chemical processes occurring in both environments. If this generality extends to the processes which produce chirality, it may be possible to detect a net chirality in the ISM. This is of particular interest because determining whether or not net chirality exists elsewhere in the universe is an essential aspect of understanding how life developed on earth and how widely distributed it might be. Researchers report preliminary results of a feasibility study to determine whether or not a net chirality in the ISM can be measured. If laboratory results identify candidate chiral molecules that might exist in the ISM, the next step in this feasibility study will be to estimate the detectability of the chiral signature in astrophysical environments.

  14. Distinct spatiotemporal expression of ISM1 during mouse and chick development.

    Science.gov (United States)

    Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun

    2014-01-01

    Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain-hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species.

  15. Two-way Fluid-Structure Interaction Simulation of a Micro Horizontal Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yi-Bao Chen

    2015-01-01

    Full Text Available A two-way Fluid-Structure Interaction (FSI analyses performed on a micro horizontal axis wind turbine (HAWT which coupled the CFX solver with Structural solver in ANSYS Workbench was conducted in this paper. The partitioned approach-based non-conforming mesh methods and the k-ε turbulence model were adopted to perform the study. Both the results of one-way and two-way FSI analyses were presented and compared with each other, and discrepancy of the results, especially the mechanical properties, were analysed. Grid convergence which is crucial to the results was performed, and the relationship between the inner flow field domain (rotational domain and the number of grids (number of cells, elements was verified for the first time. Dynamical analyses of the wind turbine were conducted using the torque as a reference value, to verify the rationality of the model which dominates the accuracy of results. The optimal case was verified and used to conduct the study, thus, the results derived from the simulation of the FSI are accurate and credible.

  16. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    Science.gov (United States)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  17. An electrodynamic model of the solar wind interaction with the ionospheres of Mars and Venus

    International Nuclear Information System (INIS)

    Cloutier, P.A.; Daniell, R.E. Jr.

    1979-01-01

    the electrodynamic model for the solar wind interaction with non-magnetic planets (Cloutier and Daniell, Planet. Space Sci. 21, 463, 1973; Daniell and Cloutier, Planet. Space Sci. 25, 621, 1977) is modified to include the effects of non-ohmic currents in the upper ionosphere. The model is then used to calculate convection patterns induced by the solar wind in the ionospheres of Mars and Venus. For Mars the observations of the neutral mass spectrometer or Vikings 1 and 2 provided the neutral atmosphere. Model calculations reproduced the retarding potential analyzer data and indicate that the ionosphere above about 200 km is probably controlled by convection rather than chemistry or diffusion. For Venus a model atmosphere based on Dickenson and Ridley, J. Atmos. Sci. 32, 1219 (1975) and Mayr et al., J. Geophys. Res. 83, 4411 (1978) was used. The resulting model calculations were compared to radio occultation data from Mariners 5 and 10 and Venera 9 which represent extremes in the variability of the upper Cytherean ionosphere. The model calculations are shown to fall within this variation. These results represent the state of the theory immediately prior to the Pioneer-Venus encounter. (author)

  18. Interaction of the solar wind with the planet Mars: Phobos 2 magnetic field observations

    International Nuclear Information System (INIS)

    Riedler, W.; Schwingenschuh, K.; Lichtenegger, H.

    1991-01-01

    The magnetometers on board the Phobos 2 spacecraft provided the opportunity to study the magnetic environment around Mars, including regions which have never been explored before, such as at low altitudes (down to 850 km above the surface of Mars) and in the tail. The data revealed a bow shock, characterized by a distinct jump in the magnetic field strength and a boundary denoted ''planetopause'', where the level of turbulence of the magnetic field changes. Inside the planetopause the field remains quiet. Some of the main characteristics of the bow shock and the magnetosheath can be reproduced by computer simulations within the framework of a gas-dynamic model using the observed planetopause as an obstacle for the incoming solar wind. In many spacecraft orbits around Mars, reversals of the B x -component were found which are typical for tail crossings. A first analysis of the tail data from the circular orbits at a distance of 2.8 Mars radii showed several cases where the reversal of the tail lobes was controlled by the IMF. This supports the idea of an induced character of the solar wind interaction with Mars outside a distance of about 2.8 Mars radii. However, there are certain features in the magnetic field data which could be interpreted as traces of a weak Martian intrinsic field. (author)

  19. Solar Wind Plasma Interaction with Asteroid 16 Psyche: Implication for Formation Theories

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.

    2018-01-01

    The asteroid 16 Psyche is a primitive metal-rich asteroid that has not yet been visited by spacecraft. Based on remote observations, Psyche is most likely composed of iron and nickel metal; however, the history of its formation and solidification is still unknown. If Psyche is a remnant core of a differentiated planetesimal exposed by collisions, it opens a unique window toward understanding the cores of the terrestrial bodies, including the Earth and Mercury. If not, it is perhaps a reaccreted rubble pile that has never melted. In the former case, Psyche may have a remanent, dipolar magnetic field; in the latter case, Psyche may have no intrinsic field, but nevertheless would be a conductive object in the solar wind. We use Advanced Modeling Infrastructure in Space Simulation (AMITIS), a three-dimensional GPU-based hybrid model of plasma that self-consistently couples the interior electromagnetic response of Psyche (i.e., magnetic diffusion) to its ambient plasma environment in order to quantify the different interactions under these two cases. The model results provide estimates for the electromagnetic environment of Psyche, showing that the magnetized case and the conductive case present very different signatures in the solar wind. These results have implications for an accurate interpretation of magnetic field observations by NASA's Discovery mission (Psyche mission) to the asteroid 16 Psyche.

  20. Multiple tuned mass damper based vibration mitigation of offshore wind turbine considering soil-structure interaction

    Science.gov (United States)

    Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie

    2017-08-01

    The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.

  1. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    Science.gov (United States)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  2. Low-frequency magnetic field fluctuations in Venus' solar wind interaction region: Venus Express observations

    Directory of Open Access Journals (Sweden)

    L. Guicking

    2010-04-01

    Full Text Available We investigate wave properties of low-frequency magnetic field fluctuations in Venus' solar wind interaction region based on the measurements made on board the Venus Express spacecraft. The orbit geometry is very suitable to investigate the fluctuations in Venus' low-altitude magnetosheath and mid-magnetotail and provides an opportunity for a comparative study of low-frequency waves at Venus and Mars. The spatial distributions of the wave properties, in particular in the dayside and nightside magnetosheath as well as in the tail and mantle region, are similar to observations at Mars. As both planets do not have a global magnetic field, the interaction process of the solar wind with both planets is similar and leads to similar instabilities and wave structures. We focus on the spatial distribution of the wave intensity of the fluctuating magnetic field and detect an enhancement of the intensity in the dayside magnetosheath and a strong decrease towards the terminator. For a detailed investigation of the intensity distribution we adopt an analytical streamline model to describe the plasma flow around Venus. This allows displaying the evolution of the intensity along different streamlines. It is assumed that the waves are generated in the vicinity of the bow shock and are convected downstream with the turbulent magnetosheath flow. However, neither the different Mach numbers upstream and downstream of the bow shock, nor the variation of the cross sectional area and the flow velocity along the streamlines play probably an important role in order to explain the observed concentration of wave intensity in the dayside magnetosheath and the decay towards the nightside magnetosheath. But, the concept of freely evolving or decaying turbulence is in good qualitative agreement with the observations, as we observe a power law decay of the intensity along the streamlines. The observations support the assumption of wave convection through the magnetosheath, but

  3. The influence of Oort clouds on the mass and chemical balance of the interstellar medium

    International Nuclear Information System (INIS)

    Stern, S.A.; Shull, J.M.

    1990-01-01

    The contribution of stellar encounters and interstellar erosion to comet cloud mass injection to the ISM is calculated. It is shown that evaporative mass loss from passing stars and SNe results in an average Galactic mass injection rate of up to 10 to the -5th solar mass/yr if such clouds are frequent around solar-type stars. Cometary erosion by interstellar grains produces an injection rate of 10 to the -5th to 10 to the -4th solar mass/yr. An injection rate of 2 x 10 to the -5th solar mass/yr is calculated. Each of these rates could be increased by a factor of about 15 if the comet clouds contain a significant amount of smaller debris. It is concluded that the total mass injection rate of material to the ISM by comet clouds is small compared to other ISM mass injection sources. Comet cloud mass loss to the ISM could be responsible for a sizeable fraction of the metal and dust abundances of the ISM if Oort clouds are common. 50 refs

  4. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  5. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    Science.gov (United States)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  6. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    Energy Technology Data Exchange (ETDEWEB)

    McFarquhar, Greg [Univ. of Illinois, Urbana, IL (United States)

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  7. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  8. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    Science.gov (United States)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  9. Spiral structure and star formation. II. Stellar lifetimes and cloud kinematics

    International Nuclear Information System (INIS)

    Hausman, M.A.; Roberts, W.W. Jr.

    1984-01-01

    We present further results of our model, introduced in Paper I, of star formation and star-gas interactions in the cloud-dominated ISMs of spiral density wave galaxies. The global density distribution and velocity field of the gas clouds are virtually independent of stellar parameters and even of mean free path for the wide range of values studied, but local density variations are found which superficially resemble cloud complexes. Increasing the average life span of ''spiral tracer'' stellar associations beyond about 20 Myr washes out the spiral pattern which younger associations show. Allowing clouds to form several successive associations (sequential star formation) slightly increases the frequency of interarm, young-star spurs and substantially increases the average star formation rate. The mean velocity field of clouds shows tipped oval streamlines, similar to both continuum gas dynamical models and stellar-kinematic models of spiral density waves. These streamlines are almost ballistic orbits except close to the spiral arms. Newly formed stellar associations leave the spiral density peak with initial tangential velocitie shigher than ''postshock'' values and do not fall back into the ''preshock'' region. By varying our stellar parametes within physically reasonable limits, we may reproduce spiral galaxies with a wide range of morphological appearaces

  10. Analysis of factors that inhibiting implementation of Information Security Management System (ISMS) based on ISO 27001

    Science.gov (United States)

    Tatiara, R.; Fajar, A. N.; Siregar, B.; Gunawan, W.

    2018-03-01

    The purpose of this research is to determine multi factors that inhibiting the implementation of the ISMS based on ISO 2700. It is also to propose a follow-up recommendation on the factors that inhibit the implementation of the ISMS. Data collection is derived from questionnaires to 182 respondents from users in data center operation (DCO) at bca, Indonesian telecommunication international (telin), and data centre division at Indonesian Ministry of Health. We analysing data collection with multiple linear regression analysis and paired t-test. The results are multiple factors which inhibiting the implementation of the ISMS from the three organizations which has implement and operate the ISMS, ISMS documentation management, and continual improvement. From this research, we concluded that the processes of implementation in ISMS is the necessity of the role of all parties in succeeding the implementation of the ISMS continuously.

  11. A Framework to Improve Communication and Reliability Between Cloud Consumer and Provider in the Cloud

    OpenAIRE

    Vivek Sridhar

    2014-01-01

    Cloud services consumers demand reliable methods for choosing appropriate cloud service provider for their requirements. Number of cloud consumer is increasing day by day and so cloud providers, hence requirement for a common platform for interacting between cloud provider and cloud consumer is also on the raise. This paper introduces Cloud Providers Market Platform Dashboard. This will act as not only just cloud provider discoverability but also provide timely report to consumer on cloud ser...

  12. Martian spectral units derived from ISM imaging spectrometer data

    Science.gov (United States)

    Murchie, S.; Mustard, J.; Saylor, R.

    1993-01-01

    Based on results of the Viking mission, the soil layer of Mars has been thought to be fairly homogeneous and to consist of a mixture of as few as two components, a 'dark gray' basaltic material and a 'bright red' altered material. However, near-infrared reflectance spectra measured recently both telescopically and from spacecraft indicate compositional heterogeneity beyond what can be explained by just two components. In particular, data from the ISM imaging spectrometer, which observed much of the equatorial region at a spatial resolution of approximately 22 km, indicate spatial differences in the presence and abundance of Fe-containing phases, hydroxylated silicates, and H2O. The ISM data was used to define, characterize, and map soil 'units' based on their spectral properties. The spatial distribution of these 'units' were compared to morphologic, visible color, and thermal inertia features recognized in Viking data.

  13. Large scale excitation of the ISM in NGC 1068

    Science.gov (United States)

    Sokolowski, J.; Bland, Jonathan; Cecil, G. N.; Tully, R. B.

    1990-01-01

    Researchers have shown that photoionization by the continuum of the hidden Seyfert I nucleus in NGC 1068 can have a significant effect on the ionization state and energetics of this disk's Interstellar Medium (ISM). Photoionization models with appropriate power law spectra can produce (NII) lambda lambda 6538, 6584/H alpha line ratios of 1.25 for ionization parameters Q approx. 10 (exp -12). However the data indicate large regions where the (NII)/H alpha ratio is 1 to 3. Since the abundances are known to be solar, there must be additional heating sources. Hardening of the incident radiation field by intervening absorption should be able to raise T sub e, thereby raising the (NII)/H alpha ratio. Heating with moderate efficiency by the intense starburst ring should also be a significant factor in raising the temperature of the ISM. The photoionization models with additional heating predict enhanced emission from other forbidden lines including (OII) lambda 3727 and (SII) lambda 6731.

  14. Pressure Balance at Mars and Solar Wind Interaction with the Martian Atmosphere

    Science.gov (United States)

    Krymskii, A. M.; Ness, N. F.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.

    2003-01-01

    The strongest crustal fields are located in certain regions in the Southern hemisphere. In the Northern hemisphere, the crustal fields are rather weak and usually do not prevent direct interaction between the SW and the Martian ionosphere/atmosphere. Exceptions occur in the isolated mini-magnetospheres formed by the crustal anomalies. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A study of 523 electron density profiles obtained at latitudes from +67 deg. to +77 deg. has been conducted. The effective scale-height of the electron density for two altitude ranges, 145-165 km and 165-185 km, and the effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak have been derived for each of the profiles studied. For the regions outside of the potential mini-magnetospheres, the thermal pressure of the ionospheric plasma for the altitude range 145-185 km has been estimated. In the high latitude ionosphere at Mars, the total pressure at altitudes 160 and 180 km has been mapped. The solar wind interaction with the ionosphere of Mars and origin of the sharp drop of the electron density at the altitudes 200-210 km will be discussed.

  15. Laboratory Simulations of CME-Solar Wind Interactions Using a Coaxial Gun and Background Plasma

    Science.gov (United States)

    Wallace, B. H.; Zhang, Y.; Fisher, D.; Gilmore, M.

    2016-12-01

    Understanding and predicting solar coronal mass ejections (CMEs) is of critical importance for mitigating their disruptive behavior on ground- and space-based technologies. While predictive models of CME propagation and evolution have relied primarily on sparse in-situ data along with ground and satellite images for validation purposes, emerging laboratory efforts have shown that CME-like events can be created with parameters applicable to the solar regime that may likewise aid in predictive modeling. A modified version of the coaxial plasma gun from the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. 52, 53 (2007)] will be used in conjunction with the Helicon-Cathode (HelCat) basic plasma science device in order to observe the magnetic characteristics of CMEs as they propagate through the solar wind. The evolution of these interactions will be analyzed using a multi-tip Langmuir probe array, a 33-position B-dot probe array, and a high speed camera. The results of this investigation will be used alongside the University of Michigan's BATS-R-US 3-D MHD numerical code, which will be used to perform simulations of the coaxial plasma gun experiment. The results of these two approaches will be compared in order to validate the capabilities of the BATS-R-US code as well as to further our understanding of magnetic reconnection and other processes that take place as CMEs propagate through the solar wind. The details of the experimental setup as well as the analytical approach are discussed.

  16. Impact of Incremental Sampling Methodology (ISM) on Metals Bioavailability

    Science.gov (United States)

    2016-05-01

    Analysis Date Ca K Na Mg P Si (mg/kg) BL-1B Background Loam 0.61 Sieved >2 mm 4013004-05 29-Jan-14 30-Jan-14 1330 601 24 9570 396 21 BL-1AUa... analysis of soil. In contrast, L. rigidum grown in loam had much lower recoverable lead. Milling of the soil as part of the ISM process had no...19 3.4.6 Metals analysis

  17. Integration of prognostic aerosol-cloud interactions in a chemistry transport model coupled offline to a regional climate model

    Science.gov (United States)

    Thomas, M. A.; Kahnert, M.; Andersson, C.; Kokkola, H.; Hansson, U.; Jones, C.; Langner, J.; Devasthale, A.

    2015-06-01

    To reduce uncertainties and hence to obtain a better estimate of aerosol (direct and indirect) radiative forcing, next generation climate models aim for a tighter coupling between chemistry transport models and regional climate models and a better representation of aerosol-cloud interactions. In this study, this coupling is done by first forcing the Rossby Center regional climate model (RCA4) with ERA-Interim lateral boundaries and sea surface temperature (SST) using the standard cloud droplet number concentration (CDNC) formulation (hereafter, referred to as the "stand-alone RCA4 version" or "CTRL" simulation). In the stand-alone RCA4 version, CDNCs are constants distinguishing only between land and ocean surface. The meteorology from this simulation is then used to drive the chemistry transport model, Multiple-scale Atmospheric Transport and Chemistry (MATCH), which is coupled online with the aerosol dynamics model, Sectional Aerosol module for Large Scale Applications (SALSA). CDNC fields obtained from MATCH-SALSA are then fed back into a new RCA4 simulation. In this new simulation (referred to as "MOD" simulation), all parameters remain the same as in the first run except for the CDNCs provided by MATCH-SALSA. Simulations are carried out with this model setup for the period 2005-2012 over Europe, and the differences in cloud microphysical properties and radiative fluxes as a result of local CDNC changes and possible model responses are analysed. Our study shows substantial improvements in cloud microphysical properties with the input of the MATCH-SALSA derived 3-D CDNCs compared to the stand-alone RCA4 version. This model setup improves the spatial, seasonal and vertical distribution of CDNCs with a higher concentration observed over central Europe during boreal summer (JJA) and over eastern Europe and Russia during winter (DJF). Realistic cloud droplet radii (CD radii) values have been simulated with the maxima reaching 13 μm, whereas in the stand

  18. Aerosol-Cloud Interactions in the South-East Atlantic: Knowledge Gaps, Planned Observations to Address Them, and Implications for Global Climate Change Modeling

    Science.gov (United States)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Luna, B.; Abel, S.

    2015-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical Stratocumulus (Sc) cloud decks in the world. The stratocumulus "climate radiators" are critical to the regional and global climate system. They interact with dense layers of BB aerosols that initially overlay the cloud deck, but later subside and are mixed into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects. As emphasized in the latest IPCC report, the global representation of these aerosol-cloud interaction processes in climate models is one of the largest uncertainty in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling, and describe planned field campaigns in the region. Specifically, we describe the scientific objectives and implementation of the following four synergistic, international research activities aimed at providing a process-level understanding of aerosol-cloud interactions over the SE Atlantic: 1) ORACLES (Observations of Aerosols above Clouds and their interactions), a five-year investigation between 2015 and 2019 with three Intensive Observation Periods (IOP), recently funded by the NASA Earth-Venture Suborbital Program, 2) CLARIFY-2016 (Cloud-Aerosol-Radiation Interactions and Forcing: Year 2016), a comprehensive observational and modeling programme funded by the UK's Natural Environment Research Council (NERC), and supported by the UK Met Office. 3) LASIC (Layered Atlantic Smoke Interactions with Clouds), a funded

  19. Using a second-order turbulence radiative-convective model to study the cloud/radiation interaction with the FIRE data

    International Nuclear Information System (INIS)

    Kao, C.Y.J.

    1992-01-01

    It is well recognized that extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasipermanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net incoming shortwave flux into the atmosphere and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. Randall et al.[1984] estimated that an increase of a few percent of global low-level stratiform clouds may offset the warming caused by a doubling of the atmos-pheric CO 2 . The Atmospheric Radiation Measure-ment (ARM) Program, sponsored by the US Department of Energy, is envisioning a locale in the Eastern North Pacific for extensive measure-ments of stratiform boundary-layer clouds and their interaction with atmospheric radiation. Thus, a physically-based parameterization sheme for marine low-level stratiform clouds can be developed for general circulation models (GCMs). This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory

  20. UCLALES-SALSA v1.0: a large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation

    Science.gov (United States)

    Tonttila, Juha; Maalick, Zubair; Raatikainen, Tomi; Kokkola, Harri; Kühn, Thomas; Romakkaniemi, Sami

    2017-01-01

    Challenges in understanding the aerosol-cloud interactions and their impacts on global climate highlight the need for improved knowledge of the underlying physical processes and feedbacks as well as their interactions with cloud and boundary layer dynamics. To pursue this goal, increasingly sophisticated cloud-scale models are needed to complement the limited supply of observations of the interactions between aerosols and clouds. For this purpose, a new large-eddy simulation (LES) model, coupled with an interactive sectional description for aerosols and clouds, is introduced. The new model builds and extends upon the well-characterized UCLA Large-Eddy Simulation Code (UCLALES) and the Sectional Aerosol module for Large-Scale Applications (SALSA), hereafter denoted as UCLALES-SALSA. Novel strategies for the aerosol, cloud and precipitation bin discretisation are presented. These enable tracking the effects of cloud processing and wet scavenging on the aerosol size distribution as accurately as possible, while keeping the computational cost of the model as low as possible. The model is tested with two different simulation set-ups: a marine stratocumulus case in the DYCOMS-II campaign and another case focusing on the formation and evolution of a nocturnal radiation fog. It is shown that, in both cases, the size-resolved interactions between aerosols and clouds have a critical influence on the dynamics of the boundary layer. The results demonstrate the importance of accurately representing the wet scavenging of aerosol in the model. Specifically, in a case with marine stratocumulus, precipitation and the subsequent removal of cloud activating particles lead to thinning of the cloud deck and the formation of a decoupled boundary layer structure. In radiation fog, the growth and sedimentation of droplets strongly affect their radiative properties, which in turn drive new droplet formation. The size-resolved diagnostics provided by the model enable investigations of these

  1. Face-ism and Objectification in Mainstream and LGBT Magazines

    Science.gov (United States)

    Cheek, Nathan N.

    2016-01-01

    In visual media, men are often shown with more facial prominence than women, a manifestation of sexism that has been labeled face-ism. The present research extended the study of facial prominence and gender representation in media to include magazines aimed at lesbian, gay, bisexual, and transgender (LGBT) audiences for the first time, and also examined whether overall gender differences in facial prominence can still be found in mainstream magazines. Face-ism emerged in Newsweek, but not in Time, The Advocate, or Out. Although there were no overall differences in facial prominence between mainstream and LGBT magazines, there were differences in the facial prominence of men and women among the four magazines included in the present study. These results suggest that face-ism is still a problem, but that it may be restricted to certain magazines. Furthermore, future research may benefit from considering individual magazine titles rather than broader categories of magazines, given that the present study found few similarities between different magazines in the same media category—indeed, Out and Time were more similar to each other than they were to the other magazine in their respective categories. PMID:27074012

  2. Factors affecting strategic plan implementation using interpretive structural modeling (ISM).

    Science.gov (United States)

    Bahadori, Mohammadkarim; Teymourzadeh, Ehsan; Tajik, Hamidreza; Ravangard, Ramin; Raadabadi, Mehdi; Hosseini, Seyed Mojtaba

    2018-06-11

    Purpose Strategic planning is the best tool for managers seeking an informed presence and participation in the market without surrendering to changes. Strategic planning enables managers to achieve their organizational goals and objectives. Hospital goals, such as improving service quality and increasing patient satisfaction cannot be achieved if agreed strategies are not implemented. The purpose of this paper is to investigate the factors affecting strategic plan implementation in one teaching hospital using interpretive structural modeling (ISM). Design/methodology/approach The authors used a descriptive study involving experts and senior managers; 16 were selected as the study sample using a purposive sampling method. Data were collected using a questionnaire designed and prepared based on previous studies. Data were analyzed using ISM. Findings Five main factors affected strategic plan implementation. Although all five variables and factors are top level, "senior manager awareness and participation in the strategic planning process" and "creating and maintaining team participation in the strategic planning process" had maximum drive power. "Organizational structure effects on the strategic planning process" and "Organizational culture effects on the strategic planning process" had maximum dependence power. Practical implications Identifying factors affecting strategic plan implementation is a basis for healthcare quality improvement by analyzing the relationship among factors and overcoming the barriers. Originality/value The authors used ISM to analyze the relationship between factors affecting strategic plan implementation.

  3. Face-ism and Objectification in Mainstream and LGBT Magazines.

    Directory of Open Access Journals (Sweden)

    Nathan N Cheek

    Full Text Available In visual media, men are often shown with more facial prominence than women, a manifestation of sexism that has been labeled face-ism. The present research extended the study of facial prominence and gender representation in media to include magazines aimed at lesbian, gay, bisexual, and transgender (LGBT audiences for the first time, and also examined whether overall gender differences in facial prominence can still be found in mainstream magazines. Face-ism emerged in Newsweek, but not in Time, The Advocate, or Out. Although there were no overall differences in facial prominence between mainstream and LGBT magazines, there were differences in the facial prominence of men and women among the four magazines included in the present study. These results suggest that face-ism is still a problem, but that it may be restricted to certain magazines. Furthermore, future research may benefit from considering individual magazine titles rather than broader categories of magazines, given that the present study found few similarities between different magazines in the same media category--indeed, Out and Time were more similar to each other than they were to the other magazine in their respective categories.

  4. Face-ism and Objectification in Mainstream and LGBT Magazines.

    Science.gov (United States)

    Cheek, Nathan N

    2016-01-01

    In visual media, men are often shown with more facial prominence than women, a manifestation of sexism that has been labeled face-ism. The present research extended the study of facial prominence and gender representation in media to include magazines aimed at lesbian, gay, bisexual, and transgender (LGBT) audiences for the first time, and also examined whether overall gender differences in facial prominence can still be found in mainstream magazines. Face-ism emerged in Newsweek, but not in Time, The Advocate, or Out. Although there were no overall differences in facial prominence between mainstream and LGBT magazines, there were differences in the facial prominence of men and women among the four magazines included in the present study. These results suggest that face-ism is still a problem, but that it may be restricted to certain magazines. Furthermore, future research may benefit from considering individual magazine titles rather than broader categories of magazines, given that the present study found few similarities between different magazines in the same media category--indeed, Out and Time were more similar to each other than they were to the other magazine in their respective categories.

  5. Unveiling aerosol-cloud interactions - Part 2: Minimising the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data

    Science.gov (United States)

    Neubauer, David; Christensen, Matthew W.; Poulsen, Caroline A.; Lohmann, Ulrike

    2017-11-01

    Aerosol-cloud interactions (ACIs) are uncertain and the estimates of the ACI effective radiative forcing (ERFaci) magnitude show a large variability. Within the Aerosol_cci project the susceptibility of cloud properties to changes in aerosol properties is derived from the high-resolution AATSR (Advanced Along-Track Scanning Radiometer) data set using the Cloud-Aerosol Pairing Algorithm (CAPA) (as described in our companion paper) and compared to susceptibilities from the global aerosol climate model ECHAM6-HAM2 and MODIS-CERES (Moderate Resolution Imaging Spectroradiometer - Clouds and the Earth's Radiant Energy System) data. For ECHAM6-HAM2 the dry aerosol is analysed to mimic the effect of CAPA. Furthermore the analysis is done for different environmental regimes. The aerosol-liquid water path relationship in ECHAM6-HAM2 is systematically stronger than in AATSR-CAPA data and cannot be explained by an overestimation of autoconversion when using diagnostic precipitation but rather by aerosol swelling in regions where humidity is high and clouds are present. When aerosol water is removed from the analysis in ECHAM6-HAM2 the strength of the susceptibilities of liquid water path, cloud droplet number concentration and cloud albedo as well as ERFaci agree much better with those of AATSR-CAPA or MODIS-CERES. When comparing satellite-derived to model-derived susceptibilities, this study finds it more appropriate to use dry aerosol in the computation of model susceptibilities. We further find that the statistical relationships inferred from different satellite sensors (AATSR-CAPA vs. MODIS-CERES) as well as from ECHAM6-HAM2 are not always of the same sign for the tested environmental conditions. In particular the susceptibility of the liquid water path is negative in non-raining scenes for MODIS-CERES but positive for AATSR-CAPA and ECHAM6-HAM2. Feedback processes like cloud-top entrainment that are missing or not well represented in the model are therefore not well

  6. Interactive graphics on large datasets drives remote condition monitoring on a cloud

    International Nuclear Information System (INIS)

    Hickinbotham, Simon; Austin, James; McAvoy, John

    2012-01-01

    We demonstrate a new system for condition monitoring using the cloud. The system combines state of the art pattern search capability with youShare, a platform that allows people to run compute-intensive research in an ordered manner over the internet. Data from sensors distributed across one or more assets at one or more sites are uploaded to the cloud compute resource. The uploading triggers the deployment of a range of pattern search services, and is capable of rapidly detecting novel patterns in the data. The outputs of these processes are archived as a matter of course, but are also sent to a further service which processes the data for remote visualisation on a web browser. The system is built in Java, using GWT and RaphaelGWT for graphics rendering. The design of these systems must satisfy conflicting requirements of data currency and data throughput. We present an evaluation of our system that involves processing data at a range of frequencies and bandwidths that are commensurate with commercial requirements. We show that our system has the potential to satisfy a range of processing requirements with minimal latency, and that the user experience is easily sufficient for rapid interpretation of complex condition monitoring data.

  7. New pathway of stratocumulus to cumulus transition via aerosol-cloud-precipitation interaction

    Science.gov (United States)

    Yamaguchi, T.; Feingold, G.; Kazil, J.

    2017-12-01

    The stratocumulus to cumulus transition (SCT) is typically considered to be a slow, multi-day process, caused primarily by dry air entrainment associated with overshooting cumulus rising under stratocumulus, with minor influence of precipitation. In this presentation, we show rapid SCT induced by a strong precipitation-induced modulation with Lagrangian SCT large eddy simulations. A large eddy model is coupled with a two-moment bulk microphysics scheme that predicts aerosol and droplet number concentrations. Moderate aerosol concentrations (100-250 cm-3) produce little to no drizzle from the stratocumulus deck. Large amounts of rain eventually form and wash out stratocumulus and much of the aerosol, and a cumulus state appears for approximately 10 hours. Initiation of strong rain formation is identified in penetrative cumulus clouds which are much deeper than stratocumulus, and they are able to condense large amounts of water. We show that prediction of cloud droplet number is necessary for this fast SCT since it is a result of a positive feedback of collision-coalescence induced aerosol depletion enhancing drizzle formation. Simulations with fixed droplet concentrations that bracket the time varying aerosol/drop concentrations are therefore not representative of the role of drizzle in the SCT.

  8. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  9. Framework of cloud parameterization including ice for 3-D mesoscale models

    Energy Technology Data Exchange (ETDEWEB)

    Levkov, L; Jacob, D; Eppel, D; Grassl, H

    1989-01-01

    A parameterization scheme for the simulation of ice in clouds incorporated into the hydrostatic version of the GKSS three-dimensional mesoscale model. Numerical simulations of precipitation are performed: over the Northe Sea, the Hawaiian trade wind area and in the region of the intertropical convergence zone. Not only some major features of convective structures in all three areas but also cloud-aerosol interactions have successfully been simulated. (orig.) With 19 figs., 2 tabs.

  10. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  11. Interacting star clusters in the Large Magellanic Cloud. Overmerging problem solved by cluster group formation

    Science.gov (United States)

    Leon, Stéphane; Bergond, Gilles; Vallenari, Antonella

    1999-04-01

    We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from 1.8x 10(3) to 3x 10(4) \\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as r(-gamma ) , with gamma = 2.27 and gamma =3.44, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few 10(6) years to 10(8) years). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai \\cite{fujimoto97}). We refer to this as the ``overmerging'' problem. A different scenario is proposed: the formation proceeds in large molecular complexes giving birth to groups of clusters over a few 10(7) years. In these groups the expected cluster encounter rate is larger, and tidal capture has higher probability. Cluster pairs are not born together through the splitting of the parent cloud, but formed later by tidal capture. For 3 pairs, we tentatively identify the star cluster group (SCG) memberships. The SCG formation, through the recent cluster starburst triggered by the LMC-SMC encounter, in contrast with the quiescent open cluster formation in the Milky Way can be an explanation to the paucity of binary clusters observed in our Galaxy. Based on observations collected at the European Southern Observatory, La Silla, Chile}

  12. Plasma turbulence resulting from the interaction between the solar wind and the earth's magnetic field

    International Nuclear Information System (INIS)

    Roux, A.

    1989-01-01

    The interaction between the supersonic and super-Alfvenic solar wind plasma and the Earth's magnetic field leads to the formation of critical layers, such as the bow shock, the magnetopause, the polar cusp, and the inner and outer edge of the plasmasheet. The mean free path between binary colisions being much larger than the transverse scale of these layers, plasma turbulence must ensure the thermalization, the magnetic diffusion, the dissipation within these critical layers. We suggest the existence of small scale, presumably 2D structures, developing within these thin layers. The unambiguous characterization of these small-scale structures is, however, beyond the capabilities of existing spacecraft, which cannot spatially resolve them, nor disentangle spatial/temporal variations. We present a new mission concept: a cluster of four relatively simple spacecraft, which will make it possible (i) to disentangle spatial from temporal variations, (ii) to evaluate, by finite differences between spacecraft measurements, the gradients, divergences, curls of MHD parameters, and )iii) to characterize small-scale structures, via inter-spacecraft correlations. (author). 10 refs.; 10 figs

  13. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    Science.gov (United States)

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  14. CLOUD-BASED INTERACTIVE EDUCATIONAL AND METHODICAL COMPLEX FOR THE COURSE “INFORMATICS” IN INDEPENDENT WORK OF STUDENTS

    Directory of Open Access Journals (Sweden)

    И Н Куринин

    2016-12-01

    Full Text Available This article concentrates on the basic materials of the educational and methodical complex of a modern format (cloud-based and interactive, used in the educational process of the course “Informatics”, which significantly expands the share of independent work of students according to the increased number of students’ practical work (laboratory work, educational projects, essays. This workshop focuses on mastering the methods of work with personal mobile and office computers, Office programs, Internet technologies by students and making students receive the competences to solve topical applied problems. Efficiency of students’ independent work is additionally ensured by educational and methodical tutorials (lecture notes and compilations of test tasks, excercises, models and examples of performing all tasks, developed by the authors of the article.

  15. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    Science.gov (United States)

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  16. Numerical simulation of wave-current interaction under strong wind conditions

    Science.gov (United States)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  17. CO and IRAS detection of an intermediate-velocity cloud

    International Nuclear Information System (INIS)

    Desert, F.X.; Bazell, D.; Blitz, L.

    1990-01-01

    In the course of a radio survey of high-Galactic-latitude clouds, CO emission was detected at the position l = 210.8 deg and b = 63.1 deg with an LSR velocity of -39 km/sec. This molecular cloud constitutes the third one with an unusually large absolute velocity at these latitudes, as compared with the 5.4-km/sec cloud-to-cloud velocity dispersion of the high-latitude molecular clouds. The position is coincident with an H I intermediate-velocity cloud (GHL 11, Verschuur H, OLM 268) and the IR-excess cloud 306 in the list by Desert et al. (1988). This cloud is clearly detected at all four IRAS wavelengths and has warmer colors than the local ISM. 27 refs

  18. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    Science.gov (United States)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  19. Analysis of co-located MODIS and CALIPSO observations near clouds

    Directory of Open Access Journals (Sweden)

    T. Várnai

    2012-02-01

    Full Text Available This paper aims at helping synergistic studies in combining data from different satellites for gaining new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects. In particular, the paper examines the way cloud information from the MODIS (MODerate resolution Imaging Spectroradiometer imager can refine our perceptions based on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization lidar measurements about the systematic aerosol changes that occur near clouds.

    The statistical analysis of a yearlong dataset of co-located global maritime observations from the Aqua and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellites reveals that MODIS's multispectral imaging ability can greatly help the interpretation of CALIOP observations. The results show that imagers on Aqua and CALIPSO yield very similar pictures, and that the discrepancies – due mainly to wind drift and differences in view angle – do not significantly hinder aerosol measurements near clouds. By detecting clouds outside the CALIOP track, MODIS reveals that clouds are usually closer to clear areas than CALIOP data alone would suggest. The paper finds statistical relationships between the distances to clouds in MODIS and CALIOP data, and proposes a rescaling approach to statistically account for the impact of clouds outside the CALIOP track even when MODIS cannot reliably detect low clouds, for example at night or over sea ice. Finally, the results show that the typical distance to clouds depends on both cloud coverage and cloud type, and accordingly varies with location and season. In maritime areas perceived cloud free, the global median distance to clouds below 3 km altitude is in the 4–5 km range.

  20. THE INTERACTION OF ASYMPTOTIC GIANT BRANCH STARS WITH THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, Cantoblanco 28049 Madrid (Spain); Manchado, Arturo [Instituto de Astrofisica de Canarias, Via Lactea S/N, E-38200 La Laguna, Tenerife (Spain); Garcia-Segura, Guillermo, E-mail: eva.villaver@uam.es, E-mail: amt@ll.iac.es, E-mail: ggs@astrosen.unam.mx [Instituto de Astronomia-UNAM, Apartado postal 877, Ensenada, 22800 Baja California (Mexico)

    2012-04-01

    We study the hydrodynamical behavior of the gas expelled by moving asymptotic giant branch stars interacting with the interstellar medium (ISM). Our models follow the wind modulations prescribed by stellar evolution calculations, and we cover a range of expected relative velocities (10-100 km s{sup -1}), ISM densities (between 0.01 and 1 cm{sup -3}), and stellar progenitor masses (1 and 3.5 M{sub Sun }). We show how and when bow shocks and cometary-like structures form, and in which regime the shells are subject to instabilities. Finally, we analyze the results of the simulations in terms of the different kinematical stellar populations expected in the Galaxy.

  1. Solar control on the cloud liquid water content and integrated water vapor associated with monsoon rainfall over India

    Science.gov (United States)

    Maitra, Animesh; Saha, Upal; Adhikari, Arpita

    2014-12-01

    A long-term observation over three solar cycles indicates a perceptible influence of solar activity on rainfall and associated parameters in the Indian region. This paper attempts to reveal the solar control on the cloud liquid water content (LWC) and integrated water vapor (IWV) along with Indian Summer Monsoon (ISM) rainfall during the period of 1977-2012 over nine different Indian stations. Cloud LWC and IWV are positively correlated with each other. An anti-correlation is observed between the Sunspot Number (SSN) and ISM rainfall for a majority of the stations and a poor positive correlation obtained for other locations. Cloud LWC and IWV possess positive correlations with Galactic Cosmic Rays (GCR) and SSN respectively for most of the stations. The wavelet analyses of SSN, ISM rainfall, cloud LWC and IWV have been performed to investigate the periodic characteristics of climatic parameters and also to indicate the varying relationship of solar activity with ISM rainfall, cloud LWC and IWV. SSN, ISM rainfall and IWV are found to have a peak at around 10.3 years whereas a dip is observed at that particular period for cloud LWC.

  2. Features of solar wind streams on June 21-28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes

    Science.gov (United States)

    Shugay, Yu. S.; Slemzin, V. A.; Rod'kin, D. G.

    2017-11-01

    Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Correspondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.

  3. Gamma titanium aluminide production using the Induction Skull Melting (ISM) process

    International Nuclear Information System (INIS)

    Reed, S.

    1995-01-01

    Since 1985, more than 2,000 titanium aluminide heats have been produced using the Induction Skull Melting (ISM) process. The history of ISM/Gamma production will be discussed in this paper. Gamma titanium aluminide processing with Induction Skull Melting offers many advantages over other types of reactive alloy melting methods. These advantages will be discussed as well as drawbacks. Also, potential markets and applications for ISM/Gamma will be presented

  4. Supernova-regulated ISM. V. Space and Time Correlations

    Science.gov (United States)

    Hollins, J. F.; Sarson, G. R.; Shukurov, A.; Fletcher, A.; Gent, F. A.

    2017-11-01

    We apply correlation analysis to random fields in numerical simulations of the supernova-driven interstellar medium (ISM) with the magnetic field produced by dynamo action. We solve the magnetohydrodynamic (MHD) equations in a shearing Cartesian box representing a local region of the ISM, subject to thermal and kinetic energy injection by supernova explosions, and parameterized, optically thin radiative cooling. We consider the cold, warm, and hot phases of the ISM separately; the analysis mostly considers the warm gas, which occupies the bulk of the domain. Various physical variables have different correlation lengths in the warm phase: 40,50, and 60 {pc} for the random magnetic field, density, and velocity, respectively, in the midplane. The correlation time of the random velocity is comparable to the eddy turnover time, about {10}7 {year}, although it may be shorter in regions with a higher star formation rate. The random magnetic field is anisotropic, with the standard deviations of its components {b}x/{b}y/{b}z having approximate ratios 0.5/0.6/0.6 in the midplane. The anisotropy is attributed to the global velocity shear from galactic differential rotation and locally inhomogeneous outflow to the galactic halo. The correlation length of Faraday depth along the z axis, 120 {pc}, is greater than for electron density, 60{--}90 {pc}, and the vertical magnetic field, 60 {pc}. Such comparisons may be sensitive to the orientation of the line of sight. Uncertainties of the structure functions of synchrotron intensity rapidly increase with the scale. This feature is hidden in a power spectrum analysis, which can undermine the usefulness of power spectra for detailed studies of interstellar turbulence.

  5. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region

    Science.gov (United States)

    Bastankhah, M.; Porté-Agel, F.

    2017-06-01

    Comprehensive wind tunnel experiments were carried out to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements were performed to characterize the variation of thrust force (both magnitude and direction) and generated power of the wind turbine under different operating conditions. Moreover, flow measurements, collected using high-resolution particle-image velocimetry as well as hot-wire anemometry, were employed to systematically study the flow in the upwind, near-wake, and far-wake regions. These measurements provide new insights into the effect of turbine operating conditions on flow characteristics in these regions. For the upwind region, the results show a strong lateral asymmetry under yawed conditions. For the near-wake region, the evolution of tip and root vortices was studied with the use of both instantaneous and phase-averaged vorticity fields. The results suggest that the vortex breakdown position cannot be determined based on phase-averaged statistics, particularly for tip vortices under turbulent inflow conditions. Moreover, the measurements in the near-wake region indicate a complex velocity distribution with a speed-up region in the wake center, especially for higher tip-speed ratios. In order to elucidate the meandering tendency of far wakes, particular focus was placed on studying the characteristics of large turbulent structures in the boundary layer and their interaction with wind turbines. Although these structures are elongated in the streamwise direction, their cross sections are found to have a size comparable to the rotor area, so that they can be affected by the presence of the turbine. In addition, the study of spatial coherence in turbine wakes reveals that any statistics based on streamwise velocity fluctuations cannot provide reliable information about the size of large turbulent structures in turbine wakes due to the effect of wake

  6. Large Scale Monte Carlo Simulation of Neutrino Interactions Using the Open Science Grid and Commercial Clouds

    International Nuclear Information System (INIS)

    Norman, A.; Boyd, J.; Davies, G.; Flumerfelt, E.; Herner, K.; Mayer, N.; Mhashilhar, P.; Tamsett, M.; Timm, S.

    2015-01-01

    Modern long baseline neutrino experiments like the NOvA experiment at Fermilab, require large scale, compute intensive simulations of their neutrino beam fluxes and backgrounds induced by cosmic rays. The amount of simulation required to keep the systematic uncertainties in the simulation from dominating the final physics results is often 10x to 100x that of the actual detector exposure. For the first physics results from NOvA this has meant the simulation of more than 2 billion cosmic ray events in the far detector and more than 200 million NuMI beam spill simulations. Performing these high statistics levels of simulation have been made possible for NOvA through the use of the Open Science Grid and through large scale runs on commercial clouds like Amazon EC2. We details the challenges in performing large scale simulation in these environments and how the computing infrastructure for the NOvA experiment has been adapted to seamlessly support the running of different simulation and data processing tasks on these resources. (paper)

  7. General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano to global scales

    NARCIS (Netherlands)

    Kulmala, M.; Asmi, A.; Lappalainen, H.K.; Baltensperger, U.; Brenguier, J.-L.; Facchini, M.C.; Hansson, H.-C.; Hov, Ø.; O'Dowd, C.D.; Pöschl, U.; Wiedensohler, A.; Boers, R.; Boucher, O.; Leeuw, G. de; Denier van der Gon, H.A.C.; Feichter, J.; Krejci, R.; Laj, P.; Lihavainen, H.; Lohmann, U.; McFiggans, G.; Mentel, T.; Pilinis, C.; Riipinen, I.; Schulz, M.; Stohl, A.; Swietlicki, E.; Vignati, E.; Alves, C.; Amann, M.; Ammann, M.; Arabas, S.; Artaxo, P.; Baars, H.; Beddows, D.C.S.; Bergström, R.; Beukes, J.P.; Bilde, M.; Burkhart, J.F.; Canonaco, F.; Clegg, S.L.; Coe, H.; Crumeyrolle, S.; D'Anna, B.; Decesari, S.; Gilardoni, S.; Fischer, M.; Fjaeraa, A.M.; Fountoukis, C.; George, C.; Gomes, L.; Halloran, P.; Hamburger, T.; Harrison, R.M.; Herrmann, H.; Hoffmann, T.; Hoose, C.; Hu, M.; Hyvärinen, A.; Hõrrak, U.; Iinuma, Y.; Iversen, T.; Josipovic, M.; Kanakidou, M.; Kiendler-Scharr, A.; Kirkevåg, A.; Kiss, G.; Klimont, Z.; Kolmonen, P.; Komppula, M.; Kristjánsson, J.-E.; Laakso, L.; Laaksonen, A.; Labonnote, L.; Lanz, V.A.; Lehtinen, K.E.J.; Rizzo, L.V.; Makkonen, R.; Manninen, H.E.; McMeeking, G.; Merikanto, J.; Minikin, A.; Mirme, S.; Morgan, W.T.; Nemitz, E.; O'Donnell, D.; Panwar, T.S.; Pawlowska, H.; Petzold, A.; Pienaar, J.J.; Pio, C.; Plass-Duelmer, C.; Prévôt, A.S.H.; Pryor, S.; Reddington, C.L.; Roberts, G.; Rosenfeld, D.; Schwarz, J.; Seland, O.; Sellegri, K.; Shen, X.J.; Shiraiwa, M.; Siebert, H.; Sierau, B.; Simpson, D.; Sun, J.Y.; Topping, D.; Tunved, P.; Vaattovaara, P.; Vakkari, V.; Veefkind, J.P.; Visschedijk, A.; Vuollekoski, H.; Vuolo, R.; Wehner, B.; Wildt, J.; Woodward, S.; Worsnop, D.R.; Zadelhoff, G.J. van; Zardini, A.A.; Zhang, K.; Zyl, P.G. van; Kerminen, V.-M.; Carslaw, K.S.; Pandis, S.N.

    2011-01-01

    In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of

  8. Resolving The ISM Surrounding GRBs with Afterglow Spectroscopy

    International Nuclear Information System (INIS)

    Prochaska, J. X.; Chen, H.-W.; Dessauges-Zavadsky, M.; Bloom, J. S.

    2008-01-01

    We review current research related to spectroscopy of gamma-ray burst (GRB) after-glows with particular emphasis on the interstellar medium (ISM) of the galaxies hosting these high redshift events. These studies reveal the physical conditions of star-forming galaxies and yield clues to the nature of the GRB progenitor. We offer a pedagogical review of the experimental design and review current results. The majority of sightlines are characterized by large HI column densities, negligible molecular fraction, the ubiquitous detection of UV pumped fine-structure transitions, and metallicities ranging from 1/100 to nearly solar abundance

  9. 24-71 GHz PCB Array for 5G ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.

  10. Distinct spatiotemporal expression of ISM1 during mouse and chick development

    OpenAIRE

    Os?rio, Liliana; Wu, Xuewei; Zhou, Zhongjun

    2014-01-01

    Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain-hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains ...

  11. LCT-coil design: Mechanical interaction between composite winding and steel casing under various test conditions

    International Nuclear Information System (INIS)

    Dolensky, B.; Messemer, G.; Zehlein, H.; Erb, J.

    1981-01-01

    Finite element computations for the structural design of the large superconducting toroidal field coil contributed by EURATOM to the Large Coil Test Facility (LCTF) at ORNL, USA were performed at KfK, using the ASKA code. The layout of the coil must consider different types of requirements: firstly, an optimal D-shaped contour minimizing circumferential stress gradients under normal operation in the toroidal arrangement must be defined. Secondly, the three-dimensional real design effects due to the actual support conditions, manufacturing tolerances etc. must be mastered for different basic operational and failure load cases. And, thirdly, the design must stand a single coil qualification test in the TOSKA-facility at KfK, Karlsruhe, FRG, before it is plugged into the LCTF. The emphasis of the paper is three-pronged according to these requirements: i) the 3D magnetic body forces as well as the underlying magnetic fields as computed by the HEDO-code are described. ii) The mechanical interaction between casing and winding as given elsewhere in terms of high stress regions, gaps, slide movements and contact forces for various load cases representing the LCTF test conditions is illustrated here by a juxtaposition of the operational deformations and stresses within the LCTF and the TOSKA. iii) Particular effects like the restraint imposed by a corset-type reinforcement of the coil in the TOSKA test facility to limit the breathing deformation are parametrically studied. Moreover, the possibilities to derive scaling laws which make essential results transferable to larger coils by extracting a 1D mechanical response from the 3D finite element model is also demonstrated. (orig./GG)

  12. Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction

    Directory of Open Access Journals (Sweden)

    Djillali Amar Bouzid

    2018-04-01

    Full Text Available A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines (OWTs chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KR and cross-coupling stiffness KLR, of which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements (displacements and rotations, the values of KL, KR and KLR were obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness. Keywords: Nonlinear finite element analysis, Vertical slices model, Monopiles under horizontal loading, Natural frequency, Monopile head stiffness, Offshore wind turbines (OWTs

  13. SOME CONSIDERATIONS ON CLOUD ACCOUNTING

    OpenAIRE

    Doina Pacurari; Elena Nechita

    2013-01-01

    Cloud technologies have developed intensively during the last years. Cloud computing allows the customers to interact with their data and applications at any time, from any location, while the providers host these resources. A client company may choose to run in the cloud a part of its business (sales by agents, payroll, etc.), or even the entire business. The company can get access to a large category of cloud-based software, including accounting software. Cloud solutions are especially reco...

  14. WR 110: A SINGLE WOLF-RAYET STAR WITH COROTATING INTERACTION REGIONS IN ITS WIND?

    International Nuclear Information System (INIS)

    Chene, A.-N.; Moffat, A. F. J.; Fahed, R.; St-louis, N.; Muntean, V.; Chevrotiere, A. De La; Cameron, C.; Matthews, J. M.; Gamen, R. C.; Lefevre, L.; Rowe, J. F.; Guenther, D. B.; Kuschnig, R.; Weiss, W. W.; Rucinski, S. M.; Sasselov, D.

    2011-01-01

    A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 ± 0.55 days along with a number of harmonics at periods P/n, with n ∼ 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ∼0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ∼two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.

  15. Mitigation of Wind Turbine/Vortex Interaction Using Disturbance Accommodating Control

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M.

    2003-12-01

    Wind turbines, a competitive source of emission-free electricity, are being designed with diameters and hub heights approaching 100 m, to further reduce the cost of the energy they produce. At this height above the ground, the wind turbine is exposed to atmospheric phenomena such as low-level jets, gravity waves, and Kelvin-Helmholtz instabilities, which are not currently modeled in wind turbine design codes. These atmospheric phenomena can generate coherent turbulence that causes high cyclic loads on wind turbine blades. These fluctuating loads lead to fatigue damage accumulation and blade lifetime reduction. Advanced control was used to mitigate vortex-induced blade cyclic loading. A full-state feedback controller that incorporates more detailed vortex inputs achieved significantly greater blade load reduction. Blade loads attributed to vortex passage, then, can be reduced through advanced control, and further reductions appear feasible.

  16. Dust-wind interactions can intensify aerosol pollution over eastern China.

    Science.gov (United States)

    Yang, Yang; Russell, Lynn M; Lou, Sijia; Liao, Hong; Guo, Jianping; Liu, Ying; Singh, Balwinder; Ghan, Steven J

    2017-05-11

    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land-sea surface air temperature difference and further decrease winds by -0.06 (±0.05) m s -1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies.

  17. General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales

    DEFF Research Database (Denmark)

    Kulmala, M.; Asmi, A.; Lappalainen, H. K.

    2011-01-01

    In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year...... of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol...

  18. Influence of pile–soil interaction on the dynamic properties of offshore wind turbines supported by jacket foundations

    DEFF Research Database (Denmark)

    Yi, Jin-Hak; Kim, Sun-Bin; Yoon, Gil-Lim

    2015-01-01

    Monopiles are the most widely utilized foundation for offshore wind turbines (OWTs) in shallow waters. However, jacket-type foundations are being considered as one of the good alternatives to monopole foundations for relatively deep water in the range of 25–50 m of water depth. Jacket structures...... are conventionally used in the oil and gas industry. However, there are still several issues unsolved for utilization of jacket structures for OWTs including pile–soil-interaction (PSI) effects, dynamically stable design, installation, and so on. In this study,the effects of pile–soil interaction on the dynamic...

  19. A Report of Clouds on Titan

    Science.gov (United States)

    Corlies, Paul; Hayes, Alexander; Adamkovics, Mate; Rodriguez, Sebastien; Kelland, John; Turtle, Elizabeth P.; Mitchell, Jonathan; Lora, Juan M.; Rojo, Patricio; Lunine, Jonathan I.

    2017-10-01

    We present in this work a detailed analysis of many of the clouds in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) dataset in order to understand their global and seasonal properties. Clouds are one of the few direct observables in Titan’s atmosphere (Griffith et al 2009, Rodriguez et al 2009, Adamkovics et al 2010), and so determining their characteristics allows for a better understanding of surface atmosphere interactions, winds, transport of volatile material, and general circulation. We find the clouds on Titan generally reside in at 5-15km altitude, which agrees with previous modelling efforts (Rafkin et al. 2015), as well as a power law distribution for cloud optical depth. We assume an average cloud droplet size of 100um. No seasonal dependence is observed with either cloud altitude or optical depth, suggesting there is no preferred seasonal formation mechanisms. Combining these characteristics with cloud size (Kelland et al 2017) can trace the transport of volatiles in Titan’s atmosphere, which can be compared against general circulation models (GCMs) (Lora et al 2015). We also present some specific analysis of interesting cloud systems including hypothesized surface fogs (Brown et al 2009) and orographic cloud formation (Barth et al 2010, Corlies et al 2017). In this analysis we use a correlation between Cassini VIMS and RADAR observations as well as an updated topographic map of Titan’s southern hemisphere to better understand the role that topography plays in influencing and driving atmospheric phenomena.Finally, with the end of the Cassini mission, ground based observing now acts as the only means with which to observe clouds on Titan. We present an update of an ongoing cloud campaign to search for clouds on Titan and to understand their seasonal evolution.References:Adamkovics et al. 2010, Icarus 208:868Barth et al. 2010, Planet. Space Sci. 58:1740Corlies et al. 2017, 48th LPSC, 2870CGriffith et al. 2009, ApJ 702:L105Kelland et al

  20. Raptor interactions with wind energy: Case studies from around the world

    Science.gov (United States)

    Watson, Richard T.; Kolar, Patrick S.; Ferrer, Miguel; Nygård, Torgeir; Johnston, Naira; Hunt, W. Grainger; Smit-Robinson, Hanneline A.; Farmer, Christopher J; Huso, Manuela; Katzner, Todd

    2018-01-01

    The global potential for wind power generation is vast, and the number of installations is increasing rapidly. We review case studies from around the world of the effects on raptors of wind-energy development. Collision mortality, displacement, and habitat loss have the potential to cause population-level effects, especially for species that are rare or endangered. The impact on raptors has much to do with their behavior, so careful siting of wind-energy developments to avoid areas suited to raptor breeding, foraging, or migration would reduce these effects. At established wind farms that already conflict with raptors, reduction of fatalities may be feasible by curtailment of turbines as raptors approach, and offset through mitigation of other human causes of mortality such as electrocution and poisoning, provided the relative effects can be quantified. Measurement of raptor mortality at wind farms is the subject of intense effort and study, especially where mitigation is required by law, with novel statistical approaches recently made available to improve the notoriously difficult-to-estimate mortality rates of rare and hard-to-detect species. Global standards for wind farm placement, monitoring, and effects mitigation would be a valuable contribution to raptor conservation worldwide.

  1. The ISM From the Soft X-ray Background Perspective

    Science.gov (United States)

    Snowden, S. L.

    2003-01-01

    In the past few years progress in understanding the local and Galactic ISM in terms of the diffuse X-ray background has been as much about what hasn't been seen as it has been about detections. High resolution spectra of the local SXRB have been observed, but are inconsistent with current thermal emission models. An excess over the extrapolation of the high-energy (most clearly visible at E greater than 1.5 keV) extragalactic power law down to 3/4 keV has been observed but only at the level consistent with cosmological models, implying the absence of at least a bright hot Galactic halo. A very recent FUSE result indicates that O VI emission from the Local Hot Bubble is insignificant, if it exists at all, a result which is also inconsistent with current thermal emission models. A short review of the current status of our (well, at least my) understanding of the Galactic SXRB and ISM is presented here.

  2. Absorption and Emission of EUV Radiation by the Local ISM

    Science.gov (United States)

    Paresce, F.

    1984-01-01

    The Berkeley extreme ultraviolet radiation (EUV) telescope flown on the Apollo Soyuz mission in July, 1975 established the existence of a measurable flux of EUV (100 lambda or = or = 1000 A) originating from sources outside the solar system. White dwarfs, flare stars and cataclysmic variables were dicovered to be relatively intense compact sources of EUV photons. Moreover, this and other subsequent experiments have strongly suggested the presence of a truly diffuse component of the FUV radiation field possibly due to thermal emission from hot interstellar gas located in the general vicinity of the Sun. Closer to the H1, 912 A edge, the effect of a few hot O and B stars has been shown to be very important in establishing the interstellar flux density. All these results imply that the local interstellar medium (ISM) is immersed in a non-negligible EUV radiation field which, because of the strong coupling between EUV photons and matter, will play a crucial role in determining its physical structure. The available information on the local ISM derived from the limited EUV observations carried out so far is assembled and analyzed. These include measurements of the spectra of bright EUV sources that reveal clear evidence of H photo absorption at lambda 400 A and of the He ionization edge at 228 A.

  3. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  4. Open and partially closed models of the solar wind interaction with outer planet magnetospheres. The case of Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Belenkaya, Elena S.; Alexeev, Igor I.; Kalegaev, Vladimir V.; Pensionerov, Ivan A.; Blokhina, Marina S.; Parunakian, David A. [Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State Univ., Moscow (Russian Federation). Skobeltsyn Inst. of Nuclear Physics (SINP MSU); Cowley, Stanley W. H. [Leicester Univ. (United Kingdom). Dept. of Physics and Astronomy

    2017-07-01

    A wide variety of interactions take place between the magnetized solar wind plasma outflow from the Sun and celestial bodies within the solar system. Magnetized planets form magnetospheres in the solar wind, with the planetary field creating an obstacle in the flow. The reconnection efficiency of the solar-wind-magnetized planet interaction depends on the conditions in the magnetized plasma flow passing the planet. When the reconnection efficiency is very low, the interplanetary magnetic field (IMF) does not penetrate the magnetosphere, a condition that has been widely discussed in the recent literature for the case of Saturn. In the present paper, we study this issue for Saturn using Cassini magnetometer data, images of Saturn's ultraviolet aurora obtained by the HST, and the paraboloid model of Saturn's magnetospheric magnetic field. Two models are considered: first, an open model in which the IMF penetrates the magnetosphere, and second, a partially closed model in which field lines from the ionosphere go to the distant tail and interact with the solar wind at its end. We conclude that the open model is preferable, which is more obvious for southward IMF. For northward IMF, the model calculations do not allow us to reach definite conclusions. However, analysis of the observations available in the literature provides evidence in favor of the open model in this case too. The difference in magnetospheric structure for these two IMF orientations is due to the fact that the reconnection topology and location depend on the relative orientation of the IMF vector and the planetary dipole magnetic moment. When these vectors are parallel, two-dimensional reconnection occurs at the low-latitude neutral line. When they are antiparallel, three-dimensional reconnection takes place in the cusp regions. Different magnetospheric topologies determine different mapping of the open-closed boundary in the ionosphere, which can be considered as a proxy for the poleward edge

  5. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

    Science.gov (United States)

    Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.

    2017-05-01

    Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the

  6. Exploring the Powerful Ionised Wind in the Seyfert Galaxy PG1211+143

    Science.gov (United States)

    Pounds, Ken

    2013-10-01

    Highly-ionised high-speed winds in AGN (UFOs) were first detected with XMM-Newton a decade ago, and are now established as a key factor in the study of SMBH accretion, and in the growth and metal enrichment of their host galaxies. However, information on the ionisation and dynamical structure, and the ultimate fate of UFOs remains very limited. We request a 600ks extended XMM-Newton study of the prototype UFO PG1211+143 in AO-13, to obtain high quality EPIC and RGS spectra, to map the flow structure and variability, while seeking evidence for the anticipated interaction with the ISM and possible conversion of the energetic wind to a momentum-driven flow.

  7. Dynamics of magnetic clouds in interplanetary space

    International Nuclear Information System (INIS)

    Yeh, T.

    1987-01-01

    Magnetic clouds observed in interplanetary space may be regarded as extraneous bodies immersed in the magnetized medium of the solar wind. The interface between a magnetic cloud and its surrounding medium separates the internal and external magnetic fields. Polarization currents are induced in the peripheral layer to make the ambient magnetic field tangential. The motion of a magnetic cloud through the interplanetary medium may be partitioned into a translational motion of the magnetic cloud as a whole and an expansive motion of the volume relative to the axis of the magnetic cloud. The translational motion is determined by two kinds of forces, i.e., the gravitational force exerted by the Sun, and the hydromagnetic buoyancy force exerted by the surrounding medium. On the other hand, the expansive motion is determined by the pressure gradient sustaining the gross difference between the internal and external pressures and by the self-induced magnetic force that results from the interaction among the internal currents. The force resulting from the internal and external currents is a part of the hydromagnetic buoyancy force, manifested by a thermal stress caused by the inhomogeneity of the ambient magnetic pressure

  8. Dynamics of magnetic clouds in interplanetary space

    Science.gov (United States)

    Yeh, Tyan

    1987-09-01

    Magnetic clouds observed in interplanetary space may be regarded as extraneous bodies immersed in the magnetized medium of the solar wind. The interface between a magnetic cloud and its surrounding medium separates the internal and external magnetic fields. Polarization currents are induced in the peripheral layer to make the ambient magnetic field tangential. The motion of a magnetic cloud through the interplanetary medium may be partitioned into a translational motion of the magnetic cloud as a whole and an expansive motion of the volume relative to the axis of the magnetic cloud. The translational motion is determined by two kinds of forces, i.e., the gravitational force exerted by the Sun, and the hydromagnetic buoyancy force exerted by the surrounding medium. On the other hand, the expansive motion is determined by the pressure gradient sustaining the gross difference between the internal and external pressures and by the self-induced magnetic force that results from the interaction among the internal currents. The force resulting from the internal and external currents is a part of the hydromagnetic buoyancy force, manifested by a thermal stress caused by the inhomogeneity of the ambient magnetic pressure.

  9. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  10. Cumulative impact assessments and bird/wind farm interactions: Developing a conceptual framework

    International Nuclear Information System (INIS)

    Masden, Elizabeth A.; Fox, Anthony D.; Furness, Robert W.; Bullman, Rhys; Haydon, Daniel T.

    2010-01-01

    The wind power industry has grown rapidly in the UK to meet EU targets of sourcing 20% of energy from renewable sources by 2020. Although wind power is a renewable energy source, there are environmental concerns over increasing numbers of wind farm proposals and associated cumulative impacts. Individually, a wind farm, or indeed any action, may have minor effects on the environment, but collectively these may be significant, potentially greater than the sum of the individual parts acting alone. EU and UK legislation requires a cumulative impact assessment (CIA) as part of Environmental Impact Assessments (EIA). However, in the absence of detailed guidance and definitions, such assessments within EIA are rarely adequate, restricting the acquisition of basic knowledge about the cumulative impacts of wind farms on bird populations. Here we propose a conceptual framework to promote transparency in CIA through the explicit definition of impacts, actions and scales within an assessment. Our framework requires improved legislative guidance on the actions to include in assessments, and advice on the appropriate baselines against which to assess impacts. Cumulative impacts are currently considered on restricted scales (spatial and temporal) relating to individual development EIAs. We propose that benefits would be gained from elevating CIA to a strategic level, as a component of spatially explicit planning.

  11. Observation of bird interaction with wind turbines : Canadian applications and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.; Brown, K.; Hamilton, B. [Vision Quest Windelectric Inc., Calgary, AB (Canada)

    2002-07-01

    An environmental study has been conducted on a wind farm adjacent to Castle River, in the foothills of the Rocky Mountains in Alberta, to determine the impact of wind turbines on birds. The wind farm includes a total of 60 turbines. The study consisted of 30 observation days between March and December 2001 during which time nearly 2000 birds were monitored. These included 27 different species, including 181 raptors, 1021 waterfowl, and 821 passerines. The observations focused on spring and fall migration of birds. The observations looked at bird numbers, location relative to turbines, and changes in flight pattern. The study found that raptors flew around or over the turbine blades, while passerines remained below, and waterfowl flew up and over the blades. In total, 4 dead birds were found over the 9 month period, which translates to 0.15 birds per turbine per year. This study demonstrates that there are few bird fatalities associated with wind turbines, therefore it was concluded that wind turbines do not have a major impact on birds. The results of this study are consistent with international studies. 2 figs.

  12. Interactions Between Wind Erosion, Vegetation Structure, and Soil Stability in Groundwater Dependent Plant Communities

    Science.gov (United States)

    Vest, K. R.; Elmore, A. J.; Okin, G. S.

    2009-12-01

    Desertification is a human induced global phenomenon causing a loss of biodiversity and ecosystem productivity. Semi-arid grasslands are vulnerable to anthropogenic impacts (i.e., groundwater pumping and surface water diversion) that decrease vegetation cover and increase bare soil area leading to a greater probability of soil erosion, potentially enhancing feedback processes associated with desertification. To enhance our understanding of interactions between anthropogenic, physical, and biological factors causing desertification, this study used a combination of modeling and field observations to examine the relationship between chronic groundwater pumping and vegetation cover change and its effects on soil erosion and stability. The work was conducted in Owens Valley California, where a long history of groundwater pumping and surface water diversion has lead to documented vegetation changes. The work examined hydrological, ecological and biogeochemical factors across thirteen sites in Owens Valley. We analyzed soil stability, vegetation and gap size, soil organic carbon, and we also installed Big Spring Number Eight (BSNE) catchers to calculate mass transport of aeolian sediment across sites. Mass transport calculations were used to validate a new wind erosion model that represents the effect of porous vegetation on surface windshear velocity. Results across two field seasons show that the model can be used to predict mass transport, and areas with increased groundwater pumping show a greater susceptibility to erosion. Sediment collected in BSNE catchers was positively correlated with site gap size. Additionally, areas with larger gap sizes have a greater threshold shear velocity and soil stability, yet mass transport was greater at these sites than at sites with smaller gap sizes. Although modeling is complicated by spatial variation in multiple model parameters (e.g., gap size, threshold shear velocity in gaps), our results support the hypothesis that soils

  13. ISMS: A New Model for Improving Student Motivation and Self-Esteem in Primary Education

    Science.gov (United States)

    Ghilay, Yaron; Ghilay, Ruth

    2015-01-01

    In this study we introduce a new model for primary education called ISMS: Improving Student Motivation and Self-esteem. Following a two-year study undertaken in a primary school (n = 67), the new model was found to be successful. Students who participated in the research, reported that a course based on ISMS principles was very helpful for…

  14. An interactive graphics program to retrieve, display, compare, manipulate, curve fit, difference and cross plot wind tunnel data

    Science.gov (United States)

    Elliott, R. D.; Werner, N. M.; Baker, W. M.

    1975-01-01

    The Aerodynamic Data Analysis and Integration System (ADAIS), developed as a highly interactive computer graphics program capable of manipulating large quantities of data such that addressable elements of a data base can be called up for graphic display, compared, curve fit, stored, retrieved, differenced, etc., was described. The general nature of the system is evidenced by the fact that limited usage has already occurred with data bases consisting of thermodynamic, basic loads, and flight dynamics data. Productivity using ADAIS of five times that for conventional manual methods of wind tunnel data analysis is routinely achieved. In wind tunnel data analysis, data from one or more runs of a particular test may be called up and displayed along with data from one or more runs of a different test. Curves may be faired through the data points by any of four methods, including cubic spline and least squares polynomial fit up to seventh order.

  15. Preliminary development of a global 3-D magnetohydrodynamic computational model for solar wind-cometary and planetary interactions

    International Nuclear Information System (INIS)

    Stahara, S.S.

    1986-05-01

    This is the final summary report by Resource Management Associates, Inc., of the first year's work under Contract No. NASW-4011 to the National Aeronautics and Space Administration. The work under this initial phase of the contract relates to the preliminary development of a global, 3-D magnetohydrodynamic computational model to quantitatively describe the detailed continuum field and plasma interaction process of the solar wind with cometary and planetary bodies throughout the solar system. The work extends a highly-successful, observationally-verified computational model previously developed by the author, and is appropriate for the global determination of supersonic, super-Alfvenic solar wind flows past planetary obstacles. This report provides a concise description of the problems studied, a summary of all the important research results, and copies of the publications

  16. CWEX: Crop/wind-energy experiment: Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    Science.gov (United States)

    Large wind turbines perturb mean and turbulent wind characteristics, which modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could create significant changes in surface fluxes of heat, momentum, moisture, and CO2 over hundreds ...

  17. Crop/Wind-energy Experiment (CWEX): Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    Science.gov (United States)

    Perturbations of mean and turbulent wind characteristics by large wind turbines modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could significantly change surface fluxes of heat, momentum, moisture, and CO2 over hundreds of s...

  18. Dead battery? Wind power, the spot market, and hydro power interaction in the Nordic electricity market

    OpenAIRE

    Mauritzen, Johannes

    2011-01-01

    It is well established within both the economics and power system engineering literature that hydro power can act as a complement to large amounts of intermittent energy. In particular hydro power can act as a "battery" where large amounts of wind power are installed. In this paper I use simple distributed lag models with data from Denmark and Norway. I find that increased wind power in Denmark causes increased marginal exports to Norway and that this effect is larger during periods of net ex...

  19. Wind turbine inverter robust loop-shaping control subject to grid interaction effects

    DEFF Research Database (Denmark)

    Gryning, Mikkel Peter Sidoroff; Wu, Qiuwei; Blanke, Mogens

    2015-01-01

    the grid and the number of wind turbines connected. Power converter based turbines inject harmonic currents, which are attenuated by passive filters. A robust high order active filter controller is proposed to complement the passive filtering. The H∞ design of the control loop enables desired tracking......An H∞ robust control of wind turbine inverters employing an LCL filter is proposed in this paper. The controller dynamics are designed for selective harmonic filtering in an offshore transmission network subject to parameter perturbations. Parameter uncertainty in the network originates from...

  20. Developing ISM Dust Grain Models with Precision Elemental Abundances from IXO

    Science.gov (United States)

    Valencic, L. A.; Smith, R. K.; Juet, A.

    2009-01-01

    The exact nature of interstellar dust grains in the Galaxy remains mysterious, despite their ubiquity. Many viable models exist, based on available IR-UV data and assumed elemental abundances. However, the abundances, which are perhaps the most stringent constraint, are not well known: modelers must use proxies in the absence of direct measurements for the diffuse interstellar medium (ISM). Recent revisions of these proxy values have only added to confusion over which is the best representative for the diffuse ISM, and highlighted the need for direct, high signal-to-noise measurements from the ISM itself. The International X-ray Observatory's superior facilities will enable high-precision elemental abundance measurements. We ill show how these results will measure both the overall ISM abundances and challenge dust models, allowing us to construct a more realistic picture of the ISM.

  1. Numerical study on interaction of local air cooler with stratified hydrogen cloud in a large vessel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z. [Atomic Energy of Canada Limited, Chalk River Laboratories, ON K0J 1J0 (Canada); Andreani, M. [Laboratory for Thermal-Hydraulics, Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2012-07-01

    Within the framework of the ERCOSAM project, planning calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the cooler tests to be performed in the PANDA facility. The cooler elevation and geometry, helium layer thickness, steam distribution in the vessel, and the vessel geometry (inter-connected multi-compartments versus a single volume) on the erosion process as well as the cooling capacity are studied. This analysis is valuable because only a limited number of conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of a cooler with a stratified atmosphere. (authors)

  2. Observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    Science.gov (United States)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-01-01

    Based on airborne spectral imaging observations three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and ice floes have been identified and quantified. A method is presented to discriminate sea ice and open water in case of clouds from imaging radiance measurements. This separation simultaneously reveals that in case of clouds the transition of radiance between open water and sea ice is not instantaneously but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of sea ice - open water boundaries, while the nadir radiance above dark surfaces is enhanced compared to situations with clouds located above horizontal homogeneous surfaces. With help of the observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge. This affected distance Δ L was found to depend on both, cloud and sea ice properties. For a ground overlaying cloud in 0-200 m altitude, increasing the cloud optical thickness from τ = 1 to τ = 10 decreases Δ L from 600 to 250 m, while increasing cloud base altitude or cloud geometrical thickness can increase Δ L; Δ L(τ = 1/10) = 2200 m/1250 m for 500-1000 m cloud altitude. To quantify the effect for different shapes and sizes of the ice floes, various albedo fields (infinite straight ice edge, circles, squares, realistic ice floe field) were modelled. Simulations show that Δ L increases by the radius of the ice floe and for sizes larger than 6 km (500-1000 m cloud altitude) asymptotically reaches maximum values, which corresponds to an infinite straight ice edge. Furthermore, the impact of these 3-D-radiative effects on retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30% in retrievals of cloud optical thickness and effective radius reff, respectively. With help of Δ L quantified here, an

  3. Light-element nucleosynthesis in a molecular cloud interacting with a supernova remnant and the origin of beryllium-10 in the protosolar nebula

    International Nuclear Information System (INIS)

    Tatischeff, Vincent; Duprat, Jean; De Séréville, Nicolas

    2014-01-01

    density of about 1 H-atom cm –3 , and eventually interacted with the presolar molecular cloud only during the radiative stage. This model naturally provides an explanation for the injection of other short-lived radionuclides of stellar origin into the cold presolar molecular cloud ( 26 Al, 41 Ca, and 36 Cl) and is in agreement with the solar system originating from the collapse of a molecular cloud shocked by a supernova blast wave.

  4. A new laboratory facility to study the interactions of aerosols, cloud droplets/ice crystals, and trace gases in a turbulent environment: The Π Chamber

    Science.gov (United States)

    Cantrell, W. H., II; Chang, K.; Ciochetto, D.; Niedermeier, D.; Bench, J.; Shaw, R. A.

    2014-12-01

    A detailed understanding of gas-aerosol-cloud interaction within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. As one example: While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in mixed phase clouds is also catalyzed by aerosol particles. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes. At least two other factors contribute significantly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, so thermodynamic and compositional variables, such as water vapor or other trace gas concentrations, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is one of the major research challenges in cloud physics. We have developed a multiphase, turbulent reaction chamber, (dubbed the Π Chamber, after the internal volume of 3.14 cubic meters) designed to address the problems outlined above. It is capable of pressures ranging from sea level to ~ 100 mbar, and can sustain temperatures of +40 to -55 ºC. We can independently control the temperatures on the surfaces of three heat transfer zones. This allows us to establish a temperature gradient between the floor and ceiling inducing Rayleigh-Benard convection and inducing a turbulent environment. Interior surfaces are electropolished stainless steel to facilitate cleaning before and after chemistry experiments. At present, supporting

  5. Impact of Transpacific Aerosol on Air Quality over the United States: A Perspective from Aerosol-Cloud-Radiation Interactions

    Science.gov (United States)

    Tao, Zhining; Yu, Hongbin; Chin, Mian

    2015-01-01

    Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3- month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 micro-g/cu m over the west coast and about 0.5 micro-g/cu m over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (+/-6 micro-g/cu m3) and ozone (+/-12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.

  6. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    Science.gov (United States)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  7. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 mg m3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere’s near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth’s surface with a global average reduction in shortwave radiation of 1.2 W m2 . This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR’s CCSM simulation, which does not include the advanced chemistry and aerosol

  8. Weaving the history of the solar wind with magnetic field lines

    Science.gov (United States)

    Alvarado Gomez, Julian

    2017-08-01

    Despite its fundamental role for the evolution of the solar system, our observational knowledge of the wind properties of the young Sun comes from a single stellar observation. This unexpected fact for a field such as astrophysics arises from the difficulty of detecting Sun-like stellar winds. Their detection relies on the appearance of an astrospheric signature (from the stellar wind-ISM interaction region), visible only with the aid of high-resolution HST Lyman-alpha spectra. However, observations and modelling of the present day Sun have revealed that magnetic fields constitute the main driver of the solar wind, providing guidance on how such winds would look like back in time. In this context we propose observations of four young Sun-like stars in order to detect their astrospheres and characterise their stellar winds. For all these objects we have recovered surface magnetic field maps using the technique of Zeeman Doppler Imaging, and developed detailed wind models based on these observed field distributions. Even a single detection would represent a major step forward for our understanding of the history of the solar wind, and the outflows in more active stars. Mass loss rate estimates from HST will be confronted with predictions from realistic models of the corona/stellar wind. In one of our objects the comparison would allow us to quantify the wind variability induced by the magnetic cycle of a star, other than the Sun, for the first time. Three of our targets are planet hosts, thus the HST spectra would also provide key information on the high-energy environment of these systems, guaranteeing their legacy value for the growing field of exoplanet characterisation.

  9. Conceptions of Tornado Wind Speed and Land Surface Interactions among Undergraduate Students in Nebraska

    Science.gov (United States)

    Van Den Broeke, Matthew S.; Arthurs, Leilani

    2015-01-01

    To ascertain novice conceptions of tornado wind speed and the influence of surface characteristics on tornado occurrence, 613 undergraduate students enrolled in introductory science courses at a large state university in Nebraska were surveyed. Our findings show that students lack understanding of the fundamental concepts that (1) tornadoes are…

  10. Wake interaction and power production of variable height model wind farms

    DEFF Research Database (Denmark)

    Vested, Malene Hovgaard; Hamilton, N.; Sørensen, Jens Nørkær

    2014-01-01

    of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream...

  11. Computationally Efficient Modelling of Dynamic Soil-Structure Interaction of Offshore Wind Turbines on Gravity Footings

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    of a 5.0 MW offshore wind turbine is evaluated for different stratifications, environmental conditions and foundation geometries by the aeroelastic nonlinear multi-body code HAWC2. Analyses show that a consistent lumped-parameter model with three to five internal degrees of freedom per displacement...

  12. Laboratory modelling of the wind-wave interaction with modified PIV-method

    Directory of Open Access Journals (Sweden)

    Sergeev Daniil

    2017-01-01

    Full Text Available Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Flume of the Large Thermostratified Tank of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS, in conditions modeling the near water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The main modifications are: 1 the use of high-speed video recording (1000-10000 frames/sec with continuous laser illumination helps to obtain ensemble of the velocity fields in all phases of the wavy surface for subsequent statistical processing; 2 the development and application of special algorithms for obtaining form of the curvilinear wavy surface of the images for the conditions of parasitic images of the particles and the droplets in the air side close to the surface; 3 adaptive cross-correlation image processing to finding the velocity fields on a curved grid, caused by wave boarder; 4 using Hilbert transform to detect the phase of the wave in which the measured velocity field for subsequent appropriate binning within procedure obtaining the average characteristics.

  13. Laboratory modelling of the wind-wave interaction with modified PIV-method

    Science.gov (United States)

    Sergeev, Daniil; Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Bopp, Maximilian; Jaehne, Bernd

    Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Flume of the Large Thermostratified Tank of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), in conditions modeling the near water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV) was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The main modifications are: 1) the use of high-speed video recording (1000-10000 frames/sec) with continuous laser illumination helps to obtain ensemble of the velocity fields in all phases of the wavy surface for subsequent statistical processing; 2) the development and application of special algorithms for obtaining form of the curvilinear wavy surface of the images for the conditions of parasitic images of the particles and the droplets in the air side close to the surface; 3) adaptive cross-correlation image processing to finding the velocity fields on a curved grid, caused by wave boarder; 4) using Hilbert transform to detect the phase of the wave in which the measured velocity field for subsequent appropriate binning within procedure obtaining the average characteristics.

  14. Rain chemistry and cloud composition and microphysics in a Caribbean tropical montane cloud forest under the influence of African dust

    Science.gov (United States)

    Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.

    2015-04-01

    It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place durin