WorldWideScience

Sample records for wind water waves

  1. Turbulent wind waves on a water current

    Directory of Open Access Journals (Sweden)

    M. V. Zavolgensky

    2008-05-01

    Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.

  2. Spatio-Temporal Measurements of Short Wind Water Waves

    Science.gov (United States)

    Rocholz, Roland; Jähne, Bernd

    2010-05-01

    model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res., 99:16269-16292, Aug. 1994. B. Jähne and K. Riemer. Two-dimensional wave number spectra of small-scale water surface waves. Geophys.Res., 95(C7):11531-11646, 1990 J. Klinke. 2D wave number spectra of short wind waves - results from wind wave facilities and extrapolation to the ocean. Optics of the Air-Sea Interface: Theory and Measurement, Proc. SPIE - Int. Soc. Opt. Eng., 1749:1-13, July 1992 V. N. Kudryavtsev, V. K. Makin, and B. Chapron. Coupled sea surface atmosphere model. 2. Spectrum of short wind waves. J. Geophys. Res., 104:7625-7640, 1999. R. Rocholz, Spatio-Temporal Measurement of Short Wind-Driven Water Wave, Dissertation, University of Heidelberg, 2008, http://hci.iwr.uni-heidelberg.de/publications/dip/2008/Rocholz_2008_Diss.pdf

  3. Simulation of Irregular Waves and Wave Induced Loads on Wind Power Plants in Shallow Water

    Energy Technology Data Exchange (ETDEWEB)

    Trumars, Jenny [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Water Environment Transport

    2004-05-01

    The essay gives a short introduction to waves and discusses the problem with non-linear waves in shallow water and how they effect an offshore wind energy converter. The focus is on the realisation of non-linear waves in the time domain from short-term statistics in the form of a variance density spectrum of the wave elevation. For this purpose the wave transformation from deep water to the near to shore site of a wind energy farm at Bockstigen has been calculated with the use of SWAN (Simulating Waves Near Shore). The result is a wave spectrum, which can be used as input to the realisation. The realisation of waves is done by perturbation theory to the first and second-order. The properties calculated are the wave elevation, water particle velocity and acceleration. The wave heights from the second order perturbation equations are higher than those from the first order perturbation equations. This is also the case for the water particle kinematics. The increase of variance is significant between the first order and the second order realisation. The calculated wave elevation exhibits non-linear features as the peaks become sharper and the troughs flatter. The resulting forces are calculated using Morison's equation. For second order force and base moment there is an increase in the maximum values. The force and base moment are largest approximately at the zero up and down crossing of the wave elevation. This indicates an inertia dominated wave load. So far the flexibility and the response of the structure have not been taken into account. They are, however, of vital importance. For verification of the wave model the results will later on be compared with measurements at Bockstigen off the coast of Gotland in the Baltic Sea.

  4. Secondary current properties generated by wind-induced water waves in experimental conditions

    Directory of Open Access Journals (Sweden)

    Michio Sanjou

    2014-06-01

    Full Text Available Secondary currents such as the Langmuir circulation are of high interest in natural rivers and the ocean because they have striking impacts on scour, sedimentation, and mass transport. Basic characteristics have been well-studied in straight open-channel flows. However, little is known regarding secondary circulation induced by wind waves. The presented study describes the generation properties of wind waves observed in the laboratory tank. Wind-induced water waves are known to produce large scale circulations. The phenomenon is observed together with high-speed and low-speed streaks, convergence and divergence zones, respectively. Therefore, it is important to determine the hydrodynamic properties of secondary currents for wind-induced water waves within rivers and lakes. In this study, using two high-speed CMOS cameras, stereoscopic particle image velocimetry (PIV measurements were conducted in order to reveal the distribution of all three components of velocity vectors. The experiments allowed us to investigate the three-dimensional turbulent structure under water waves and the generation mechanism of large-scale circulations. Additionally, a third CMOS camera was used to measure the spanwise profile of thefree-surface elevation. The time-series of velocity components and the free-surface were obtained simultaneously. From our experiments, free-surface variations were found to influence the instantaneous velocity distributions of the cross-sectional plane. We also considered thegeneration process by the phase analysis related to gravity waves and compared the contribution of the apparent stress.

  5. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin

    2017-09-01

    There are a number of well established methods in the literature describing how to assess and analyze measured wind wave data. However, obtaining reliable results from these methods requires adequate knowledge on their behavior, strengths and weaknesses. A proper implementation of these methods requires a series of procedures including a pretreatment of the raw measurements, and adjustment and refinement of the processed data to provide quality assurance of the outcomes, otherwise it can lead to untrustworthy results. This paper discusses potential issues in these procedures, explains what parameters are influential for the outcomes and suggests practical solutions to avoid and minimize the errors in the wave results. The procedure of converting the water pressure data into the water surface elevation data, treating the high frequency data with a low signal-to-noise ratio, partitioning swell energy from wind sea, and estimating the peak wave frequency from the weighted integral of the wave power spectrum are described. Conversion and recovery of the data acquired by a pressure transducer, particularly in depth-limited water like estuaries and lakes, are explained in detail. To provide researchers with tools for a reliable estimation of wind wave parameters, the Ocean Wave Analyzing toolbox, OCEANLYZ, is introduced. The toolbox contains a number of MATLAB functions for estimation of the wave properties in time and frequency domains. The toolbox has been developed and examined during a number of the field study projects in Louisiana's estuaries.

  6. Millimeter-wave radar scattering from the water surface : a wind-wave tank study

    Science.gov (United States)

    Guerin, Charles-Antoine; Boisot, Olivier; Pioch, Sébastien; Caulliez, Guillemette; Lalaurie, Jean-Claude; Fatras, Christophe; Borderies, Pierre

    2014-05-01

    We report on a recent experiment conducted in the large wind-wave tank of Marseille-Luminy aimed at characterizing the small-scale statistics of ocean- and river-like surfaces as well as their radar return at millimeter waves (Ka-band). Simultaneous measurements of waves elevations and slopes from gravity to capillarity-gravity scale as well as the corresponding Ka-band Normalised Radar Cross Section (NRCS) have been performed for various wind speeds and scattering configurations. For each wind speed, the incidence angle of the radar beam has been varied between 0 and 15 degrees away from nadir and several azimuthal directions with respect to wind have been investigated by step of 45 degrees. Based on this data set we have developed an original technique to estimate the directional wave number spectrum of the water surface from decimeter to millimeter scales. We show that the inclusion of surface current is crucial in the correct derivation of the omnidirectional spectrum and that a non-trivial angular spreading function can be obtained from the measurements of the up-wind and down-wind slope spectra, providing some additional reasonable assumptions. The resulting spectrum is compared with the high-frequency part of the classical oceanic models such as Elfouhaily unified spectrum and Kudryavtsev et al. spectrum. Some consistency tests are proposed to validate the surface model, which is then incorporated in classical analytical scattering models. The main qualitative features of the observed NRCS are a minimum of sensibility to wind speed around 7-8 degrees incidence, non-monotonic variations with incidence at small wind speeds and a marked up/cross wind asymetry. We show that the Physical Optics approximation provides a very satisfactory estimation of the NRCS as compared the experimental values at all wind speeds and azimuths, contrarily to the Geometrical Optics model which is found inaccurate even at the larger wind speeds. The unconventional behavior of the

  7. Stohastic Model for Loads on Offshore Structures from Wave, Wind, Current and Water Elevation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M.J.

    2002-01-01

    For code-based LRFD and for reliability-based assessment of offshore structures such as steel platforms it is essential that consistent stochastic models for the main metocean parameters are available. The most important metocean parameters are the significant wave height, maximum individual wave...... height, maximum crest height, wind speed, current speed and water elevation. In this paper a consistent stochastic model for these parameters is formulated, where the relevant directional dependence is included. For code-based LRFD assessment it is shown how the stochastic models can be used to determine...

  8. Reminiscences on the study of wind waves.

    Science.gov (United States)

    Mitsuyasu, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena.

  9. Wind/water energy converter

    Science.gov (United States)

    Paulkovich, J.

    1979-01-01

    Device will convert wind, water, tidal or wave energy into electrical or mechanical energy. Is comprised of windmill-like paddles or blades synchronously geared to orient themselves to wind direction for optimum energy extraction.

  10. Damping Wind and Wave Loads on a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2013-01-01

    Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due...... to the partly unconstrained movement of the platform and ocean wave excitation. If this additional complexity is not dealt with properly, this may lead to a significant increase in the structural loads and, potentially, instability of the controlled system. In this paper, the wave excitation is investigated......, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system...

  11. Strong winds and waves offshore

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    2016-01-01

    This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report is on the ......This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report...... is on the meteorologi al and o eani onditions related to storm winds and waves over the North Sea. With regard to the o shore wind energy appli ation, the parameters addressed here in lude: extreme wind and extreme waves, storm wind and waves and turbulen e issues for o shore onditions....

  12. Considerations and Optimization of Time-Resolved PIV Measurements near Complex Wind-Generated Air-Water Wave Interface

    Science.gov (United States)

    Stegmeir, Matthew; Markfort, Corey

    2017-11-01

    Time Resolved PIV measurements are applied on both sides of air-water interface in order to study the coupling between air and fluid motion. The multi-scale and 3-dimensional nature of the wave structure poses several unique considerations to generate optimal-quality data very near the fluid interface. High resolution and dynamic range in space and time are required to resolve relevant flow scales along a complex and ever-changing interface. Characterizing the two-way coupling across the air-water interface provide unique challenges for optical measurement techniques. Approaches to obtain near-boundary measurement on both sides of interface are discussed, including optimal flow seeding procedures, illumination, data analysis, and interface tracking. Techniques are applied to the IIHR Boundary-Layer Wind-Wave Tunnel and example results presented for both sides of the interface. The facility combines a 30m long recirculating water channel with an open-return boundary layer wind tunnel, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  13. Dissipation regimes for short wind waves

    Science.gov (United States)

    Caulliez, Guillemette

    2013-02-01

    The dissipation processes affecting short wind waves of centimeter and decimeter scales are investigated experimentally in laboratory. The processes include damping due to molecular viscosity, generation of capillary waves, microbreaking, and breaking. The observations were made in a large wind wave tank for a wide range of fetches and winds, using a laser sheet and a high-resolution video camera. The work aims at constructing a comprehensive picture of dissipative processes in the short wind wave field, to find for which scales particular dissipative mechanism may become important. Four distinct regimes have been identified. For capillary-gravity wave fields, i.e., for dominant waves with scales below 4 cm, viscous damping is found to be the main dissipation mechanism. The gravity-capillary wave fields with dominant wavelength less than 10 cm usually exhibit a train of capillary ripples at the crest wavefront, but no wave breaking. For such waves, the main dissipation process is molecular viscosity occurring through nonlinear energy cascade toward high-frequency motions. Microscale breaking takes place for waves longer than 10 cm and manifests itself in a very localized surface disruption on the forward face of the crest. Such events generate turbulent motions in water and thus enhance wave dissipation. Plunging breaking, characterized by formation of a crest bulge, a microjet hitting the water surface and a splash-up, occurs for short gravity waves of wavelength exceeding 20 cm. Macroscale spilling breaking is also observed for longer waves at high winds. In both cases, the direct momentum transfer from breaking waves to the water flow contributes significantly to wave damping.

  14. The effect of foam on waves and the aerodynamic roughness of the water surface at high winds

    Science.gov (United States)

    Troitskaya, Yuliya; Vdovin, Maxim; Sergeev, Daniil; Kandaurov, Alexander

    2017-04-01

    Air-sea coupling at extreme winds is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients was then confirmed by a number of field (e.g.[2]) and laboratory [3] experiments, which showed that the sea surface drag coefficient was significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. The theoretical explanations of the effect of the sea surface drag reduction exploit either peculiarities of the air flow over breaking waves (e.g.[4,5]) or the effect of sea drops and spray on the wind-wave momentum exchange (e.g. [6,7]). Recently an alternative hypothesis was suggested in [8], where the surface drag reduction in hurricanes was explained by the influence of foam covering sea surface on its aerodynamic roughness. This paper describes a series of laboratory experiments in Thermostratified Wind-Wave Tank (TSWiWaT) of IAP directed to investigation of the foam impact on the short-wave part of the surface waves and the momentum exchange in the atmospheric boundary layer at high winds in the range of equivalent 10-m wind speed from 12 to 38 m/s. A special foam generator was designed for these experiments. The air flow parameters were retrieved from measurements of the velocity profiles. The frequency-wavenumber spectra of surface waves were retrieved from the measurements of water surface elevation by the array 3-channel wave gauge. Foam coverage of water surface was controlled by video filming of the water surface. The results of measurements were compared with predictions of the quasi-linear model of atmospheric boundary layer over

  15. Correlated Increase of High Ocean Waves and Winds in the Ice-Free Waters of the Arctic Ocean.

    Science.gov (United States)

    Waseda, Takuji; Webb, Adrean; Sato, Kazutoshi; Inoue, Jun; Kohout, Alison; Penrose, Bill; Penrose, Scott

    2018-03-14

    The long-term trend of extreme ocean waves in the emerging ice-free waters of the summer Arctic is studied using ERA-Interim wave reanalysis, with validation by two drifting wave buoys deployed in summer 2016. The 38-year-long reanalysis dataset reveals an increase in the expected largest significant wave height from 2.3 m to 3.1 m in the ice-free water from the Laptev to the Beaufort Seas during October. The trend is highly correlated with the expected increase in highest wind speed from 12.0 m/s to 14.2 m/s over the ice-free ocean, and less so with the extent of the ice-free water. Since the storms in this area did not strengthen throughout the analysis period, the increase in the expected largest significant wave height follows from the enhanced probability of storms in ice-free waters, which is pertinent to the estimation of extreme sea conditions along the Northern Sea Route.

  16. Slope and curvature of microbreaking wind waves

    Science.gov (United States)

    Caulliez, G.

    2009-04-01

    Microscale breaking is commonly observed at sea for steep waves less than 30 cm in wavelength. This phenomenon generates high surface slope and curvature roughness at the water surface, which has numerous implications for air-sea exchange and remote-sensing studies. In particular, microbreaking affects momentum transfer from wind to waves, leads to formation of vortices in water, and plays a key role in scattering of electromagnetic and acoustic waves by the air-sea interface. The geometric properties of the parasitic capillaries generated upon steep steady gravity-capillary waves have been well studied over the last decades, both experimentally and numerically. However, owing to their variability, the basic features of naturally occurring wind wave breakers as observed at sea or even in laboratory are far from being identified up to now. To this end, an experimental investigation of microbreaking wind waves was made in a large wind wave tank which combined visualizations of wave breaker profiles with single-point wave elevation and slope measurements. We show that microscale breakers exhibit a characteristic signature in slope and curvature suggesting formation of a bulge on the forward face of the wave crest. Parasitic ripples however are not necessarily generated ahead the bulge. Such breakers are observed for a wide range of wave steepness and wave slope skewness, their structure being only weakly dependent on wavelength and wind forcing. The geometric properties of microbreakers are analysed statistically and compared with the results of the recent numerical simulations by Hung and Tsai (J. Phys. Oceanogr., 2009).

  17. Dossier North Sea Network. Exploitation from wind, waves, gas and water; Het Dossier Noordzeenet. Winning uit wind, golven, gas en water

    Energy Technology Data Exchange (ETDEWEB)

    Van Velzen, T.

    2012-02-24

    The North Sea is on the verge of an energy revolution: wind, waves and seaweeds can provide a considerable contribution to the demand for energy in the surrounding countries. Also, many small offshore natural gas fields contain still a lot of methane to feed offshore electric power plants. However, it is essential for the success of this revolution to construct an offshore grid. [Dutch] De Noordzee staat aan de vooravond van een energierevolutie: wind, golven en wieren kunnen in een groot deel van de energievraag van de omringende landen voorzien en daarnaast bevatten kleine gasvelden nog veel methaan om offshore elektriciteitscentrales op te laten draaien. Essentieel voor het slagen van deze revolutie is de aanleg van een offshore elektriciteitsnet.

  18. Migration of two antibiotics during resuspension under simulated wind-wave disturbances in a water-sediment system.

    Science.gov (United States)

    Li, Shu; Huang, Zheng; Wang, Yi; Liu, Yu-Qing; Luo, Ran; Shang, Jing-Ge; Liao, Qian-Jia-Hua

    2018-02-01

    In this study, the migration of antibiotics (norfloxacin, NOR; and sulfamethoxazole, SMX) under simulated resuspension conditions across the sediment-water interface were quantified for two locations in China: point A, located in Meiliang Bay of Lake Taihu, and point B, located in Dapukou of Lake Taihu. The concentrations of suspended solids (SS) in the overlying water amounted to 100, 500, and 1000 mg/L during background, moderate, and strong simulated wind-wave disturbances, respectively. At each SS level, the initial concentrations of the two antibiotics were set to 1, 5, and 10 mg/L. The results showed that both resuspended SS and the initial concentration of antibiotics could influence the migration of NOR in the water-sediment system. Specifically, both higher SS and initial antibiotic concentrations were associated with higher rates of migration and accumulation of NOR from water to sediment. In contrast, the migration of SMX in the water-sediment system was not impacted by SS or initial antibiotic concentration. The adsorption capacities of sediments for NOR and SMX were significantly different at both locations, possibly reflecting differences in cation exchange capacity (CEC) and organic material (OM) contents. In general, higher CEC and OM values were found in sediments with a higher adsorption capacity for the antibiotics. When CEC and OM values of sediments were higher, the adsorption capacity reached up to 51.73 mg/kg. Large differences in the migration from water to sediment were observed for the two antibiotics, with NOR migration rates higher than those of SMX. The accumulation of NOR in surface sediment during resuspension was about 14 times higher than that of SMX. The main reason for this is that the chemical adsorption of NOR is seldom reversible. Overall, this study demonstrates that resuspension of NOR and SMX attached to sediments under simulated wind-wave disturbances can promote the migration of the antibiotics from water to sediment

  19. Laboratory Measurements of the Water/Air Flux of Dimethylsulfide Using a Wind/Wave Tank

    National Research Council Canada - National Science Library

    Dacey, John

    1998-01-01

    The flux of dimethylsulfide (DMS) from the surface water of the ocean to the atmosphere is an important biogeochemical problem, since DMS contributes to optical haze and potentially impacts global climate by influencing earth's albedo...

  20. Transmission of wave energy through an offshore wind turbine farm

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Johnson, Martin; Sørensen, Ole Rene

    2013-01-01

    The transmission of wave energy passing an offshore wind farm is studied. Three effects that can change the wave field are analysed, which is the A) energy dissipation due to drag resistance, B) wave reflection/diffraction from structures, and C) the effect of a modified wind field inside...... and on the lee side of the wind farm. The drag dissipation, A), is quantified by a quadratic resistance law. The effect of B) is parameterised based on 1st order potential theory. A method to find the amount of reflected and transmitted wave energy is developed based on the panel method WAMIT™ and a radiation...... condition at infinity. From airborne and Satellite SAR (Synthetic Aperture Radar) a model has been derived for the change of the water surface friction C) inside and on the lee side of the offshore wind farm. The effects have been implemented in a spectral wind wave model,MIKE21 SW, and a parametric study...

  1. Wind-wave amplification mechanisms: possible models for steep wave events in finite depth

    Directory of Open Access Journals (Sweden)

    P. Montalvo

    2013-11-01

    Full Text Available We extend the Miles mechanism of wind-wave generation to finite depth. A β-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of β is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the β-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrödinger equation is derived and the Akhmediev, Peregrine and Kuznetsov–Ma breather solutions for weak wind inputs in finite depth h are obtained.

  2. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique

    2015-08-26

    The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.

  3. Ocean Wave Simulation Based on Wind Field.

    Science.gov (United States)

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  4. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  5. Ocean Wave Simulation Based on Wind Field

    Science.gov (United States)

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718

  6. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  7. A numerical study of the wave shoaling effect on wind-wave momentum flux

    Science.gov (United States)

    Hao, Xuanting; Shen, Lian

    2017-11-01

    Momentum transfer between wind and waves is crucial to many physical processes in air-sea interactions. For decades, there has been a number of observational evidence that the surface roughness in the nearshore region is notably higher than in the open sea. In order to explain the mechanism behind this important phenomenon, in particular the wave shoaling effect on surface roughness, we conduct a series of numerical experiments using the wind-wave module of WOW (Wave-Ocean-Wind), a high-fidelity computational framework developed in house. We use prescribed monochromatic waves with linear shoaling effect incorporated, while the wind field is simulated using wall-resolved large-eddy simulation. A comparison between a shallow water wave case and deep water wave cases shows remarkably stronger wave effects on the wind for the former. Detailed analyses show that the increased surface roughness is closely associated with the increased form drag that is mainly due to the reduced wave age in wave shoaling.

  8. The Interaction of Ocean Waves and Wind

    Science.gov (United States)

    Janssen, Peter

    2004-10-01

    Describing in detail the two-way interaction between wind and ocean waves, this book discusses ocean wave evolution in accordance with the energy balance equation. An extensive overview of nonlinear transfer is given, and the role of four-wave interactions in the generation of extreme events as well as the effects on ocean circulation is included. The volume will interest ocean wave modellers, physicists, applied mathematicians, and engineers.

  9. Wind Wave Behavior in Fetch and Depth Limited Estuaries

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin; Twilley, Robert R.

    2017-01-01

    Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.

  10. Predictability and Variability of Wave and Wind

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kofoed, Jens Peter; Sørensen, Hans Christian

    This project covers two fields of study: a) Wave energy predictability and electricity markets. b) Variability of the power output of WECs in diversified systems : diversified renewable systems with wave and offshore wind production. See page 2-4 in the report for a executive summery.......This project covers two fields of study: a) Wave energy predictability and electricity markets. b) Variability of the power output of WECs in diversified systems : diversified renewable systems with wave and offshore wind production. See page 2-4 in the report for a executive summery....

  11. Numerical modelling of wind effects on breaking waves in the surf zone

    Science.gov (United States)

    Xie, Zhihua

    2017-10-01

    Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.

  12. Wind and wave dataset for Matara, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2018-01-01

    Full Text Available We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1 is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017 is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447.

  13. Wind and wave dataset for Matara, Sri Lanka

    Science.gov (United States)

    Luo, Yao; Wang, Dongxiao; Priyadarshana Gamage, Tilak; Zhou, Fenghua; Madusanka Widanage, Charith; Liu, Taiwei

    2018-01-01

    We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1) is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017) is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447" target="_blank">https://doi.org/10.11922/sciencedb.447).

  14. Model-Based Control of a Ballast-Stabilized Floating Wind Turbine Exposed to Wind and Waves

    DEFF Research Database (Denmark)

    Christiansen, Søren

    2013-01-01

    wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hy-drodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure....... A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem...... of negative damped fore--aft tower motion, addi-tional control loops are suggested which stabilize the response of the onshore controller and reduce the impact of the wave induced loads. This research is then extended to model predictive control, to further address wave disturbances. In the context of control...

  15. Numerical wind wave model with a dynamic boundary layer

    Directory of Open Access Journals (Sweden)

    V. G. Polnikov

    2002-01-01

    Full Text Available A modern version of a numerical wind wave model of the fourth generation is constructed for a case of deep water. The following specific terms of the model source function are used: (a a new analytic parameterization of the nonlinear evolution term proposed recently in Zakharov and Pushkarev (1999; (b a traditional input term added by the routine for an atmospheric boundary layer fitting to a wind wave state according to Makin and Kudryavtsev (1999; (c a dissipative term of the second power in a wind wave spectrum according to Polnikov (1991. The direct fetch testing results showed an adequate description of the main empirical wave evolution effects. Besides, the model gives a correct description of the boundary layer parameters' evolution, depending on a wind wave stage of development. This permits one to give a physical treatment of the dependence mentioned. These performances of the model allow one to use it both for application and for investigation aims in the task of the joint description of wind and wave fields.

  16. Numerical wind wave model with a dynamic boundary layer

    Science.gov (United States)

    Polnikov, V. G.; Volkov, Y. A.; Pogarskii, F. A.

    A modern version of a numerical wind wave model of the fourth generation is constructed for a case of deep water. The following specific terms of the model source function are used: (a) a new analytic parameterization of the nonlinear evolution term proposed recently in Zakharov and Pushkarev (1999); (b) a traditional input term added by the routine for an atmospheric boundary layer fitting to a wind wave state according to Makin and Kudryavtsev (1999); (c) a dissipative term of the second power in a wind wave spectrum according to Polnikov (1991). The direct fetch testing results showed an adequate description of the main empirical wave evolution effects. Besides, the model gives a correct description of the boundary layer parameters' evolution, depending on a wind wave stage of development. This permits one to give a physical treatment of the dependence mentioned. These performances of the model allow one to use it both for application and for investigation aims in the task of the joint description of wind and wave fields.

  17. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  18. On the early stages of wind wave under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2017-04-01

    Most efforts in the study of the generation and evolution of wind waves have been conducted under constant wind. The balance of the transfer of different properties has been studied mainly for situations where the wave has already reached the equilibrium with the constant wind conditions. The purpose of these experiments is to study the early stages of the generation of waves under non-stationary wind conditions and to determine a balance in the exchange at the air-water interface for non-equilibrium wind conditions. A total of 16 experiments with a characteristic acceleration and deceleration rate of wind speed were conducted in a large wind-wave facility of Institut Pythéas (Marseille-France). The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. The momentum fluxes were estimated from hot wire anemometry at station 7. Also, the free surface displacement was measured along the channel tank at 11 stations where resistance wires were installed, except at stations 1, 2, and 7 where capacitance wires were installed. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. During experiments the wind intensity was abruptly increased with a constant acceleration rate over time, reaching a constant maximum intensity of 13 m/s. This constant velocity remains some time until the intensity is again reduced suddenly. We observed that wind drag coefficient values are higher for the experiments that present the lower acceleration rate; some field data from previous studies is presented for reference (Large and Pond 1981; Ocampo-Torres et al. 2011; Smith 1980; Yelland and Taylor 1996). The empirical grow curves show that in the experiments with lower acceleration, the wave field is more developed, showing higher dimensional energy and lower dimensional peak frequency. In the evolution of the spectral wave energy, there is first high frequency energy saturation, followed by a downshift of

  19. Predicting location-specific extreme coastal floods in the future climate by introducing a probabilistic method to calculate maximum elevation of the continuous water mass caused by a combination of water level variations and wind waves

    Science.gov (United States)

    Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu

    2017-04-01

    Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and

  20. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    The PhD work evaluated the performance of engineering procedures, used in the design of bottom fixed offshore wind turbines, for the hydrodynamic ULS analysis of a FOWT tension leg platform (TLP). Dynamically sensitive topsides have been included and water depths were considered, where wave shapes...

  1. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane

  2. Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic

    Science.gov (United States)

    2015-08-01

    ERDC) for providing the POT algorithm and helpful insights into extremal analysis; Dr. Robert Jensen and Dr. Tyler Hesser (ERDC) for providing...powerful extratropical storms occurring on 27–29 January and 4–6 February 1998 detailed in Ramsey et al. (1998). These two storms generated winds in...surface wind speeds. Part I: Theory and seawinds observations. Journal of Climate 19:497–520. Ramsey , R., D. Leathers, D. Wells, and H. Talley. 1998

  3. Water wave scattering

    CERN Document Server

    Mandal, Birendra Nath

    2015-01-01

    The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous

  4. Eigenmode Structure in Solar Wind Langmuir Waves

    Science.gov (United States)

    Malaspina, D. M.; Ergun, R.; Bougeret, J.; Kaiser, M. L.; Bale, S.; Cairns, I. H.; Cattell, C. A.; Kellogg, P. J.; Newman, D. L.

    2007-12-01

    Bursty Langmuir waves associated with space plasma phenomena including type II and type III solar radio bursts, auroral field-aligned electrons, and radiation from shocks often exhibit localized beat-type waveforms. A consensus view on the modulation mechanism remains elusive. Current theories include multi-wave interactions, turbulence, or non-linear growth such as kinetic localization. Most of these theories start with the assumption that the density of the background plasma is near-uniform, in spite of numerous observations to the contrary. An alternative approach is to start with the assumption that density perturbations pre-exist. We construct an analytical electric field solution, describing Langmuir waves as a combination of trapped eigenmodes within a parabolic density well. This hypothesis is supported by discreet frequency structure in auroral Langmuir wave observations observed to be associated with density fluctuations, and by the high degree of localization observed in solar wind borne Langmuir waves. This simple, one-dimensional model can reproduce waveform and frequency structure of localized Langmuir waves observed by STEREO/SWAVES. The waveforms can be reasonably reproduced using linear combinations of only a few low-mode eigenmode solutions. The eigenmode solutions are sensitive to plasma environmental parameters such as the electron temperature and solar wind velocity. The trapped-eigenmode solutions can form a theoretical basis to explore the non-linear behavior of Langmuir waves which may allow for efficient conversion and escape of electromagnetic emissions and second harmonic production.

  5. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    and purposes oriented design procedures are the backbone of a cost efficient offshore wind industry. Conventional engineering procedures for the assessment of extreme event impacts, i.e. ultimate limit state (ULS) analysis of floating structures, as they have been used in the oil and gas industry, neglect two...... not be sufficient to describe realistic wave shapes and the respective loads, especially in ULS conditions. In shallow or intermediate water depth environments, i.e. when the ratio between the water depth and the wave length becomes smaller than 0.5, waves need to be described by non-linear approaches, in order...... and water depths are considered, where wave shapes in the extreme sea states deviate from the 1st order description. A design basis is developed, which defines parametric extreme sea state caused by measured cyclonic storm conditions. The sea state parameters are defined, such that their reoccurrence...

  6. Nonlinear Water Waves

    CERN Document Server

    2016-01-01

    This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...

  7. Wind fields of storms from surface isobars for wave hindcasting

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Vaithiyanathan, R.; Santanam, K.

    Marine operations of various types are critically linked to mean and extreme wave statistics. In the Indian seas extreme wave conditions are caused by cyclones and steady strong monsoon winds. Wave data from cyclone areas are not directly available...

  8. Turbulent Structure Under Short Fetch Wind Waves

    Science.gov (United States)

    2015-12-01

    surface gravity waves. While it assumes a flat bottom, it is valid both inside and outside the surf zone (Guza and Thornton 1980). Early research, such...J., T. Crawford, J. Crescenti, T. Farrar, J. French , et al. 2007: The coupled boundary layers and air-sea transfer experiment in low winds (CBLAST...before reaching the deployment site ( ). Map created in Google Earth , October 12, 2015, http://www.google.com/ earth /. 30 Elevations around the

  9. Investigations of Wind/WAVES Dust Impacts

    Science.gov (United States)

    St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.

    2017-12-01

    The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year

  10. Pulsar magnetosphere-wind or wave

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review wave models of exterior pulsar magnetospheres in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strenght, beyond which coherent radio emission is no longer possible. Since the observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is consistent with the pair production threshold, those neutron stars observed as radio pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres, and cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed

  11. Drift current under the action of wind and waves

    International Nuclear Information System (INIS)

    Youssef, M.; Spaulding, M.

    1993-01-01

    Accurate estimates of sea surface drift currents are critical to forecasting oil spill transport and fate. Most existing spill models employ a drift factor and deflection angle, based on local wind speed, to estimate the sea surface drift vector. The effects of wind-induced shear and wave-induced transport are lumped together in this formulation. In the present approach, the conservation of momentum, water mass, and turbulent energy equations are solved using an implicit finite difference method to predict the vertical distribution of current, turbulent energy, and eddy viscosity at one point. The model includes coupling between the wave- and shear-induced currents. Input energy from the atmosphere to the turbulent energy and current fields are represented through free-surface boundary conditions. The numerical model showed excellent agreement compared to an analytic solution of the wind-forced shear flow problem. The model was applied to predict surface drift currents for varying wind speeds and predicted results in general agreement with field observations and other numerical and theoretical studies. The model predicted drift factor F (%) and deflection angle A (degrees) decrease with increasing wind speed W (m/s), and can be approximated by the following curve fits: F=3.91-0.318W, A=23.627-7.97 log W. The model was applied to three intentional oil spills conducted on the Norwegian continental shelf in 1991 and predicted the observed trajectories with reasonable accuracy. 24 refs., 17 figs

  12. Model-based control of a ballast-stabilized floating wind turbine exposed to wind and waves

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Soeren

    2013-01-15

    The wind turbine is a commercial product which is competing against other sources of energy, such as coal and gas. This competition drives a constant development to reduce costs and improve efficiency in order to reduce the total cost of the energy. The latest offshore development is the floating wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hydrodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure, the hydrodynamics and the loads change the dynamic behavior of a floating wind turbine. Consequently, conventional wind turbine control cause instabilities on floating wind turbines. This work addresses the control of a floating spar buoy wind turbine, and focuses on the impact of the additional platform dynamics. A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem of negative damped fore-aft tower motion, additional control loops are suggested which stabilize the response of the onshore controller and reduce the impact of the wave induced loads. This research is then extended to model predictive control, to further address wave disturbances. In the context of control engineering, the dynamics and disturbances of a floating wind turbine have been identified and modeled. The objectives of maximizing the production of electrical power and minimizing fatigue have been reached by using advanced methods of estimation and control. (Author)

  13. Extreme wave and wind response predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Olsen, Anders S.; Mansour, Alaa E.

    2011-01-01

    The aim of the paper is to advocate effective stochastic procedures, based on the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), for extreme value predictions related to wave and wind-induced loads.Due to the efficient optimization procedures implemented in standard FORM...... codes and the short duration of the time domain simulations needed (typically 60–300s to cover the hydro- and aerodynamic memory effects in the response) the calculation of the mean out-crossing rates of a given response is fast. Thus non-linear effects can be included. Furthermore, the FORM analysis...

  14. The influence of waves on the offshore wind resource

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B. [Risoe National Lab., Roskilde (Denmark); Hoejstrup, J. [NEG Micon, Randers (Denmark)

    1999-03-01

    With the growing interest in offshore wind resources, it has become increasingly important to establish and refine models for the interaction between wind and waves in order to obtain accurate models for the sea surface roughness. The simple Charnock relation that has been applied for open sea conditions does not work well in the shallow water near-coastal areas that are important for offshore wind energy. A model for the surface roughness of the sea has been developed based on this concept, using an expression for the Charnock constant as a function of wave age, and then relating the wave `age` to the distance to the nearest upwind coastline. The data used in developing these models originated partly from analysis of data from the Vindeby site, partly from previously published results. The scatter in the data material was considerable and consequently there is a need to test these models further by analysing data from sites exhibiting varying distances to the coast. Results from such analysis of recent data are presented for sites with distances to the coast varying from 10 km to several hundreds of km. The model shows a good agreement also with this data. (au)

  15. Turbulence beneath finite amplitude water waves

    Energy Technology Data Exchange (ETDEWEB)

    Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)

    2012-05-15

    Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)

  16. Dynamic Response of Offshore Wind Turbines subjected to Joint Wave and Wind Loads

    DEFF Research Database (Denmark)

    Liu, Weiliang; Chen, Jianbing; Liu, Wenfeng

    2013-01-01

    into consideration. Wind and wave loads are generated by the physical random models. The aerodynamic loads on blades are calculated by the Blade Element Momentum (BEM) theory, and the wave loads are calculated by the linear theory of wave. The dynamic response of the NREL-5MW wind turbine system is carried out...

  17. Coupling Atmosphere and Waves for Coastal Wind Turbine Design

    DEFF Research Database (Denmark)

    Bolanos, Rodolfo; Larsén, Xiaoli Guo; Petersen, Ole S.

    2014-01-01

    a 50% variation in roughness and 20% in wind, with the better formulation for wind leading degraded predictions of roughness compared with observations. The large estimates of roughness when using a 3rd generation wave model are evident offshore, while a roughness formulation based on wave age produces...

  18. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  19. Wave and offshore wind potential for the island of Tenerife

    International Nuclear Information System (INIS)

    Veigas, M.; Iglesias, G.

    2013-01-01

    Highlights: • The island aims to reduce its carbon footprint by developing renewable energy. • The substantial wave and offshore wind resources around the island are examined. • One area is appropriate for installing a hybrid wave–offshore wind farm. - Abstract: The island of Tenerife, a UNESCO Biosphere Reserve in the Atlantic Ocean, aims to be energy self-sufficient in order to reduce its carbon footprint. To accomplish this goal it should develop the renewable sources, in particular wave and offshore wind energy. The objectives of this work are twofold; (i) to characterize the wave and offshore wind power distribution around the island and (ii) to determine which offshore area is best suited for their exploitation, taking into account the resource and other conditioning factors such as the bathymetry, distance to the coastline and ports, and offshore zoning. To carry out this research, hindcast wave and wind data obtained with numerical models are used alongside observations from meteorological stations. One area, in the vicinity of Puerto de la Cruz, is identified as having great potential for installing a hybrid floating wave–wind farm. Both resources are characterized for the area selected: the wave resource in terms of wave directions, significant wave heights and energy periods; the offshore wind resource in terms of directions and speeds in addition to the seasonality for the both resources. It is found that most of the wave resource is provided by N and NNW waves with significant wave heights between 1.5 m and 3.0 m and energy periods between 10 s and 14 s. It follows that the Wave Energy Converters deployed in the area should have maximum efficiency in those ranges. As for the offshore wind resource, most of the energy corresponds to NNE and NE winds with speeds between 9 and 14 m s −1 , which should be taken into account when selecting the offshore wind turbines

  20. Asymmetry of wind waves studied in a laboratory tank

    Directory of Open Access Journals (Sweden)

    I. A. Leykin

    1995-01-01

    Full Text Available Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves. At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976. The phase shift between o. harmonics is found and shown to increase with the asymmetry of the waves.

  1. Asymmetry of wind waves studied in a laboratory tank

    Science.gov (United States)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  2. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  3. WindWaveFloat (WWF): Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Alla; Roddier, Dominique; Banister, Kevin

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  4. Review of water wave kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Sterndorff, M.J.

    1995-03-01

    The present report covers a comprehensive review of water wave kinematics carried out by Danish Hydraulic Institute (DHI) in connection with the EFP`93 project: Dynamics of Mono Tower Platforms (ref. EFP`93, 1313/93-0009). This project is carried out in cooperation with Ramboell, Hannemann and Hoejlund A/S. The main objectives of the project are to develop and verify a method for the determination of the non-linear wave load and the dynamic response of mono tower platforms. One of the characteristics of mono tower platforms is that due to the small water plane area the hydrodynamic loading will be very concentrated. Such platforms may therefore respond strongly and in a highly dynamic manner to short waves and high order components of extreme waves having periods corresponding to the first natural period of the platform. A key element in the hydrodynamic load process is the wave kinematics. The present report is a comprehensive review of recent literature concerning wave theories, wave-current interaction, laboratory experiments, and field measurements of water wave kinematics. The review has been concentrated on non-breaking waves on deep to intermediate water depths. Papers concerning shallow water waves have only been reviewed if they present methods which may be applied for deep to intermediate water waves. (au) EFP-93; 30 refs.

  5. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  6. Wind-wave modelling aspects within complicate topography

    Directory of Open Access Journals (Sweden)

    S. Christopoulos

    Full Text Available Wave forecasting aspects for basins with complicate geomorphology, such as the Aegean Sea, are investigated through an intercomparison study. The efficiency of the available wind models (ECMWF, UKMO to reproduce wind patterns over special basins, as well as three wave models incorporating different physics and characteristics (WAM, AUT, WACCAS, are tested for selected storm cases representing the typical wind situations over the basin. From the wave results, discussed in terms of time-series and statistical parameters, the crucial role is pointed out of the wind resolution and the reliability of the different wave models to estimate the wave climate in such a basin. The necessary grid resolution is also tested, while for a specific test case (December 1991 ERS-1 satellite data are compared with those of the model.

  7. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  8. Sound wave contours around wind turbine arrays

    International Nuclear Information System (INIS)

    Van Beek, A.; Van Blokland, G.J.

    1993-02-01

    Noise pollution is an important factor in selecting suitable sites for wind turbines in order to realize 1000 MW of wind power as planned by the Dutch government for the year 2000. Therefore an accurate assessment of wind turbine noise is important. The amount of noise pollution from a wind turbine depends on the wind conditions. An existing standard method to assess wind turbine noise is supplemented and adjusted. In the first part of the investigation the method was developed and applied for a solitary sound source. In the second part attention is paid to the use of the method for wind turbine arrays. It appears that the adjusted method results in a shift of the contours of the permitted noise level. In general the contours are 15-25% closer to the wind farm, which means that the minimal permitted distance between houses and wind turbine arrays can be reduced. 14 figs., 1 tab., 4 appendices, 7 refs

  9. Wave power potential in Malaysian territorial waters

    Science.gov (United States)

    Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul

    2016-06-01

    Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.

  10. Nonlinear effects in water waves

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1989-05-01

    This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs

  11. Upper Meter Processes: Short Wind, Waves, Surface Flow and Turbulence

    National Research Council Canada - National Science Library

    Klinke, Jochen

    2001-01-01

    This work is an extension of the early works on measuring short wind waves that have been funded by ONR for seven years, During this seven-year period, we have collected the only available systematic...

  12. Estimation of wind speed and wave height during cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Mandal, S.; AshokKumar, K.

    based on standard Hydromet pressure profile, were used for the hindcast of storm wind fields. For all the cyclones the maximum significant wave height within the storm and its associated spectral peak period was estimated using the Young's model...

  13. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Science.gov (United States)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  14. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Directory of Open Access Journals (Sweden)

    W. Gong

    2018-02-01

    Full Text Available Salt intrusion in the Pearl River estuary (PRE is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  15. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A.K.; Basu, S.K.; Kumar, R.; Sarkar, A.

    NCMRWF (National Centre for Medium Range Weather Forecast) winds assimilated with MSMR (Multi-channel Scanning Microwave Radiometer) winds are used as input to MIKE21 Offshore Spectral Wave model (OSW) which takes into account wind induced wave...

  16. Numerical simulations of irregular wave ensembles affected by variable wind conditions

    Science.gov (United States)

    Slunyaev, Alexey; Sergeeva, Anna

    2014-05-01

    The numerical simulations of irregular wave trains over deep water aim at the solution of the global problem how the wind action affects the sea state in respect of the rogue wave probability associated with the non-gaussianity of the wave statistics. It has been shown that changes of the sea condition of various kinds (winds, currents, etc., see [1-5]) result in the strongly non-stationary 'fast' evolution, when the likelihood of extremely high waves increases greatly. Hence, transitional processes when the momentary Benjamin - Feir index (BFI) restores from a large value to the value of order one are considered in the present work. The departure of the BFI from the stationary value (~1) is due to the strong wind effect, similar to the study conducted in [1, 2]. In the present work the modified nonlinear Schrodinger equation with a forcing term is employed to simulate the wave dynamics. The modulational instability of a plane wave within this framework was analyzed in [6]. We estimate the rate of the wind impact which is required to destabilize the given sea state, causing larger probability of rogue waves, and compare it with some available observations of the in-situ measurements. The reported work may be considered as a simplification of the problem of shoaling nonlinear waves, when all depth-dependent coefficients of the evolution equation are put constants, and only the shoaling term causes wave statistics evolution. Irregular surface waves in basins with different water depths were simulated numerically and in a laboratory facility in [7-10]. When waves travel from deep to shallower water, two situations were shown to exist: when the waves experience a high probability of extreme waves, or when the statistical properties do not change noticeably. No conclusive recipe was formulated how to differentiate these two scenarios. Our work helps to tackle that problem. [1]. S.Y. Annenkov, V.I. Shrira, Evolution of kurtosis for wind waves. Geophys. Res. Lett. 36, L

  17. Breaking wave impact forces on truss support structures for offshore wind turbines

    Science.gov (United States)

    Cieślikiewicz, Witold; Gudmestad, Ove T.; Podrażka, Olga

    2014-05-01

    Due to depletion of the conventional energy sources, wind energy is becoming more popular these days. Wind energy is being produced mostly from onshore farms, but there is a clear tendency to transfer wind farms to the sea. The foundations of offshore wind turbines may be truss structures and might be located in shallow water, where are subjected to highly varying hydrodynamic loads, particularly from plunging breaking waves. There are models for impact forces prediction on monopiles. Typically the total wave force on slender pile from breaking waves is a superposition of slowly varying quasi-static force, calculated from the Morison equation and additional dynamical, short duration force due to the impact of the breaker front or breaker tongue. There is not much research done on the truss structures of wind turbines and there are still uncertainties on slamming wave forces, due to plunging breaking waves on those structures. Within the WaveSlam (Wave slamming forces on truss structures in shallow water) project the large scale tests were carried out in 2013 at the Large Wave Flume in Forschungszentrum Küste (FZK) in Hannover, Germany. The following institutions participated in this initiative: the University of Stavanger and the Norwegian University of Science and Technology (project management), University of Gdańsk, Poland, Hamburg University of Technology and the University of Rostock, Germany and Reinertsen AS, Norway. This work was supported by the EU 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV. The main aim of the experiment was to investigate the wave slamming forces on truss structures, development of new and improvement of existing methods to calculate forces from the plunging breakers. The majority of the measurements were carried out for regular waves with specified frequencies and wave heights as well as for the irregular waves based on JONSWAP spectrum. The truss structure was equipped with both

  18. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...... that calculations of the wind friction velocities using the wave-spectra-dependent expression of Hansen and Larsen agrees quite well with measured values during RASEX. It also gives a trend in Charnock parameter consistent with that found by combining the field data. Last, calculations using a constant Charnock...... parameter (0.018) also give very good results for the wind friction velocities at the RASEX site....

  19. Alfvén wave mixing and non-JWKB waves in stellar winds

    International Nuclear Information System (INIS)

    Webb, G M; McKenzie, J F; Hu, Q; Zank, G P

    2013-01-01

    Alfvén wave mixing equations used in locally incompressible turbulence transport equations in the solar wind contain as a special case, non-Jeffreys–Wentzel–Kramers–Brouillon (non-JWKB) wave equations used in models of Alfvén wave driven winds. We discuss the canonical wave energy equation; the physical wave energy equation, and the JWKB limit of the wave interaction equations. Lagrangian and Hamiltonian variational principles for the waves are developed. Noether’s theorem is used to derive the canonical wave energy equation which is associated with the linearity symmetry of the equations. A further conservation law associated with time translation invariance of the action, applicable for steady background wind flows is also derived. In the latter case, the conserved density is the Hamiltonian density for the waves, which is distinct from the canonical wave energy density. The canonical wave energy conservation law is a special case of a wider class of conservation laws associated with Green’s theorem for the wave mixing system and the adjoint wave mixing system, which are related to Noether’s second theorem. In the sub-Alfvénic flow, inside the Alfvén point of the wind, the backward and forward waves have positive canonical energy densities, but in the super-Alfvénic flow outside the Alfvén critical point, the backward Alfvén waves are negative canonical energy waves, and the forward Alfvén waves are positive canonical energy waves. Reflection and transmission coefficients for the backward and forward waves in both the sub-Alfvénic and super-Alfvénic regions of the flow are discussed. (paper)

  20. Wind-wave, and turbidity time-series data from Little Holland Tract (station HWC), Sacramento-San Joaquin Delta, California

    Data.gov (United States)

    Department of the Interior — Time series data of water surface elevation, wave height, and turbidity were collected in Little Holland Tract (LHT) beginning in December 2015 as part of “Wind-wave...

  1. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [IZMIRAN, Troitsk, 142190, Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  2. Observations of wind and waves in the central Bay of Bengal during ...

    Indian Academy of Sciences (India)

    ... forced mixing are utilized to test the extent of mechanical mixing within the top layer of water by the local wind and wave activity. The same is extended to formulate a new empirical relation for gross estimation of effective depth within which the sound energy is generally trapped during its transmission in the surface duct.

  3. An assessment of wind forcing impact on a spectral wave model for ...

    Indian Academy of Sciences (India)

    The focus of the present study is the assessment of the impact of wind forcing on the spectral wave model MIKE 21 SW in the Indian Ocean region. Three different wind fields, namely the ECMWF analyzed winds, the ECMWF blended winds, and the NCEP blended winds have been used to drive the model. The wave model ...

  4. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  5. Laboratory modelling of the wind-wave interaction with modified PIV-method

    Directory of Open Access Journals (Sweden)

    Sergeev Daniil

    2017-01-01

    Full Text Available Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Flume of the Large Thermostratified Tank of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS, in conditions modeling the near water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The main modifications are: 1 the use of high-speed video recording (1000-10000 frames/sec with continuous laser illumination helps to obtain ensemble of the velocity fields in all phases of the wavy surface for subsequent statistical processing; 2 the development and application of special algorithms for obtaining form of the curvilinear wavy surface of the images for the conditions of parasitic images of the particles and the droplets in the air side close to the surface; 3 adaptive cross-correlation image processing to finding the velocity fields on a curved grid, caused by wave boarder; 4 using Hilbert transform to detect the phase of the wave in which the measured velocity field for subsequent appropriate binning within procedure obtaining the average characteristics.

  6. Laboratory modelling of the wind-wave interaction with modified PIV-method

    Science.gov (United States)

    Sergeev, Daniil; Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Bopp, Maximilian; Jaehne, Bernd

    Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Flume of the Large Thermostratified Tank of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), in conditions modeling the near water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV) was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The main modifications are: 1) the use of high-speed video recording (1000-10000 frames/sec) with continuous laser illumination helps to obtain ensemble of the velocity fields in all phases of the wavy surface for subsequent statistical processing; 2) the development and application of special algorithms for obtaining form of the curvilinear wavy surface of the images for the conditions of parasitic images of the particles and the droplets in the air side close to the surface; 3) adaptive cross-correlation image processing to finding the velocity fields on a curved grid, caused by wave boarder; 4) using Hilbert transform to detect the phase of the wave in which the measured velocity field for subsequent appropriate binning within procedure obtaining the average characteristics.

  7. The potential of wave and offshore wind energy in around the coastline of Malaysia that face the South China Sea

    International Nuclear Information System (INIS)

    Chiang, E.P.; Zainal, Z.A.; Aswatha Narayana, P.A.; Seetharamu, K.N.

    2006-01-01

    The world wide estimated wave resource is more than 2 TW. Offshore wind speeds are generally higher than wind speeds over land, hence higher available energy resource. The estimated offshore wind potential in European waters alone is in excess of 2500 TWh/annum. Offshore area also provides larger area for deploying wind energy devices. In recent year efforts to promote these two types of renewable and green energy sources have been intensify. Using the data obtained from the Malaysia Meteorological Service (MMS) analysis was conducted for the potential of wave energy and wind energy along the coastline of Malaysia facing the South China Sea. Maps of wave power potential were produced. The mean vector wind speed and direction were tabulated

  8. A Note on the Effect of Wind Waves on Vertical Mixing in Franks Tract, Sacramento–San Joaquin Delta, California

    Directory of Open Access Journals (Sweden)

    Nicole L. Jones

    2008-06-01

    Full Text Available A one-dimensional numerical model that simulates the effects of whitecapping waves was used to investigate the importance of whitecapping waves to vertical mixing at a 3-meter-deep site in Franks Tract in the Sacramento-San Joaquin Delta over an 11-day period. Locally-generated waves of mean period approximately 2 s were generated under strong wind conditions; significant wave heights ranged from 0 to 0.3 m. A surface turbulent kinetic energy flux was used to model whitecapping waves during periods when wind speeds > 5 m s-1 (62% of observations. The surface was modeled as a wind stress log-layer for the remaining 38% of the observations. The model results demonstrated that under moderate wind conditions (5–8 m s-1 at 10 m above water level, and hence moderate wave heights, whitecapping waves provided the dominant source of turbulent kinetic energy to only the top 10% of the water column. Under stronger wind (> 8 m s-1, and hence larger wave conditions, whitecapping waves provided the dominant source of turbulent kinetic energy over a larger portion of the water column; however, this region extended to the bottom half of the water column for only 7% of the observation period. The model results indicated that phytoplankton concentrations close to the bed were unlikely to be affected by the whitecapping of waves, and that the formation of concentration boundary layers due to benthic grazing was unlikely to be disrupted by whitecapping waves. Furthermore, vertical mixing of suspended sediment was unlikely to be affected by whitecapping waves under the conditions experienced during the 11-day experiment. Instead, the bed stress provided by tidal currents was the dominant source of turbulent kinetic energy over the bottom half of the water column for the majority of the 11-day period.

  9. Breaking wave impacts on offshore wind turbine foundations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Jacobsen, Niels Gjøl

    2010-01-01

    Extreme wave loads from breaking waves on a monopile foundation are computed within a 3D CFD model. The wave impacts are obtained by application of focused wave groups. For a fixed position of the monopile, the focus location of the wave group is varied to produce impacts with front shapes...... that for the impacts of spilling breakers the peak force gets smaller the more developed the breaking is. This is in qualitative agreement with a finding from shallow water impacts on vertical walls: the strongest wave loads are associated with breakers that hit the structure with slightly overturning front...

  10. Comparison of Model Output of Wind and Wave Parameters with Spaceborne Altimeter Measurements

    National Research Council Canada - National Science Library

    Hwang, Paul

    1998-01-01

    .... While comparisons with point measurements from discrete and sparsely distributed wave buoys provide some measure of statistical confidence, the spatial distribution of the modeled wind and wave...

  11. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  12. Wind, Wave, and Tidal Energy Without Power Conditioning

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  13. Corotating pressure waves without streams in the solar wind

    International Nuclear Information System (INIS)

    Burlaga, L.F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun

  14. Unraveling Climatic Wind and Wave Trends in the Red Sea Using Wave Spectra Partitioning

    KAUST Repository

    Langodan, Sabique

    2017-12-27

    The wind and wave climatology of the Red Sea is derived from a validated 30-year high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.

  15. Simulation of wind wave growth with reference source functions

    Science.gov (United States)

    Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.

    2013-04-01

    We present results of extensive simulations of wind wave growth with the so-called reference source function in the right-hand side of the Hasselmann equation written as follows First, we use Webb's algorithm [8] for calculating the exact nonlinear transfer function Snl. Second, we consider a family of wind input functions in accordance with recent consideration [9] ( )s S = ?(k)N , ?(k) = ? ? ?- f (?). in k 0 ?0 in (2) Function fin(?) describes dependence on angle ?. Parameters in (2) are tunable and determine magnitude (parameters ?0, ?0) and wave growth rate s [9]. Exponent s plays a key role in this study being responsible for reference scenarios of wave growth: s = 4-3 gives linear growth of wave momentum, s = 2 - linear growth of wave energy and s = 8-3 - constant rate of wave action growth. Note, the values are close to ones of conventional parameterizations of wave growth rates (e.g. s = 1 for [7] and s = 2 for [5]). Dissipation function Sdiss is chosen as one providing the Phillips spectrum E(?) ~ ?5 at high frequency range [3] (parameter ?diss fixes a dissipation scale of wind waves) Sdiss = Cdissμ4w?N (k)θ(? - ?diss) (3) Here frequency-dependent wave steepness μ2w = E(?,?)?5-g2 makes this function to be heavily nonlinear and provides a remarkable property of stationary solutions at high frequencies: the dissipation coefficient Cdiss should keep certain value to provide the observed power-law tails close to the Phillips spectrum E(?) ~ ?-5. Our recent estimates [3] give Cdiss ? 2.0. The Hasselmann equation (1) with the new functions Sin, Sdiss (2,3) has a family of self-similar solutions of the same form as previously studied models [1,3,9] and proposes a solid basis for further theoretical and numerical study of wave evolution under action of all the physical mechanisms: wind input, wave dissipation and nonlinear transfer. Simulations of duration- and fetch-limited wind wave growth have been carried out within the above model setup to check its

  16. 77 FR 31839 - Wind and Water Power Program

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology... portfolio. The 2012 Wind Power Peer Review Meeting will be held June 19 through June 21, 2012, in Alexandria...

  17. On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines during Hurricanes: March 2012 - September 2015

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungsoo [Univ. of Texas, Austin, TX (United States); Manuel, Lance [Univ. of Texas, Austin, TX (United States); Curcic, Milan [Univ. of Miami, Coral Gables, FL (United States); Chen, Shuyi S. [Univ. of Miami, Coral Gables, FL (United States); Phillips, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Veers, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of the changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces

  18. Field and numerical study of wind and surface waves at short fetches

    Science.gov (United States)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Measurements were carried out in 2012-2015 from May to October in the waters of Gorky Reservoir belonging to the Volga Cascade. The methods of the experiment focus on the study of airflow in the close proximity to the water surface. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. One of wind sensors (0.1 m) was located on the float tracking the waveform for measuring the wind speed in the close proximity to the water surface. Basic parameters of the atmospheric boundary layer (the friction velocity u∗, the wind speed U10 and the drag coefficient CD) were calculated from the measured profiles of wind speed. Parameters were obtained in the range of wind speeds of 1-12 m/s. For wind speeds stronger than 4 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. However, for weak winds (less than 3 m/s) CD values considerably higher than expected ones. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The suggested parameterization of drag coefficient CD(U10) was implemented within wind input source terms in WAVEWATCH III [3]. The results of the numerical experiments were compared with the results obtained in the field experiments on the Gorky Reservoir. The use of the new drag coefficient improves the agreement in significant wave heights HS [4]. At the same time, the predicted mean wave periods are overestimated using both built-in source terms and adjusted source terms. We associate it with the necessity of the adjusting of the DIA nonlinearity model in WAVEWATCH III to the conditions of the middle-sized reservoir. Test experiments on the adjusting were carried out. The work was supported by the

  19. Floating offshore wind turbines for shallow waters

    NARCIS (Netherlands)

    Bulder, B.H.; Henderson, A.; Huijsmans, R.H.M.; Peeringa, J.M.; Pierik, J.T.G.; Snijders, E.J.B.; Hees, M.Th. van; Wijnants, G.H.; Wolf, M.J.

    2003-01-01

    Bottom mounted Offshore wind turbines seem to have a promising future but they are restricted to shallow waters of Northern Europe. Many projects are planned or are in the phase of construction on the North Sea and the Baltic Sea. All projects that are planned have a water depth up to approximately

  20. Wave Run-Up on Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez

    to the cylinder. Based on appropriate analysis the collected data has been analysed with the stream function theory to obtain the relevant parameters for the use of the predicted wave run-up formula. An analytical approach has been pursued and solved for individual waves. Maximum run-up and 2% run-up were studied......This study has investigated the interaction of water waves with a circular structure known as wave run-up phenomenon. This run-up phenomenon has been simulated by the use of computational fluid dynamic models. The numerical model (NS3) used in this study has been verified rigorously against...... a number of cases. Regular and freak waves have been generated in a numerical wave tank with a gentle slope in order to address the study of the wave run-up on a circular cylinder. From the computational side it can be said that it is inexpensive. Furthermore, the comparison of the current numerical model...

  1. Operational numerical wind-wave model for the Black Sea

    Directory of Open Access Journals (Sweden)

    A. KORTCHEVA

    2000-06-01

    Full Text Available In this paper the discrete spectral shallow water wave model named VAGBUHL1 is presented. This model is used for real-time Black Sea state forecasting. The model was verified against satellite ERS-2 altimeter wave height data.

  2. Wave Run-Up on Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez

    This study has investigated the interaction of water waves with a circular structure known as wave run-up phenomenon. This run-up phenomenon has been simulated by the use of computational fluid dynamic models. The numerical model (NS3) used in this study has been verified rigorously against a num...

  3. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= $T_{p, perp}/T_{p, parallel}{-}1$ became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the

  4. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the low latitude boundary layer (LLBL and duskside magnetosphere occurred under such inflated conditions that the magnetospheric magnetic pressure was insufficient to maintain pressure balance. In these crossings, the inner edge of

  5. What a Sudden Downpour Reveals About Wind Wave Generation

    KAUST Repository

    Cavaleri, Luigi

    2018-04-12

    We use our previous numerical and measuring experience and the evidence from a rather unique episode at sea to summarise our doubts on the present physical approach in wave modelling. The evidence strongly suggests that generation by wind and dissipation by white-capping have a different physics than presently considered. Most of all they should be viewed as part of a single physical process.

  6. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    The small scale ocean-atmosphere interaction at the water-air interface is one of the most important factors determining the processes of heat, mass, and energy exchange in the boundary layers of both geospheres. Another important aspect of the air-sea interaction is excitation of surface waves. One of the most debated open questions of wave modeling is concerned with the wind input in the wave field, especially for the case of steep and breaking waves. Two physical mechanisms are suggested to describe the excitation of finite amplitude waves. The first one is based on the treatment of the wind-wave interaction in quasi-linear approximation in the frameworks of semi-empirical models of turbulence of the low atmospheric boundary layer. An alternative mechanism is associated with separation of wind flow at the crests of the surface waves. The "separating" and "non-separating" mechanisms of wave generation lead to different dependences of the wind growth rate on the wave steepness: the latter predicts a decrease in the increment with wave steepness, and the former - an increase. In this paper the mechanism of the wind-wave interaction is investigated basing on physical and numerical experiments. In the physical experiment, turbulent airflow over waves was studied using the video-PIV method, based on the application of high-speed video photography. Alternatively to the classical PIV technique this approach provides the statistical ensembles of realizations of instantaneous velocity fields. Experiments were performed in a round wind-wave channel at Institute of Applied Physics, Russian Academy of Sciences. A fan generated the airflow with the centerline velocity 4 m/s. The surface waves were generated by a programmed wave-maker at the frequency of 2.5 Hz with the amplitudes of 0.65 cm, 1.4 cm, and 2 cm. The working area (27.4 × 10.7 cm2) was at a distance of 3 m from the fan. To perform the measurements of the instantaneous velocity fields, spherical polyamide

  7. Conditional short-crested waves in shallow water and with superimposed current

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2002-01-01

    wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected linear short-crested wave riding on a uniform current is given. The analysis is based on the conventional shallow water Airy wave theory and the direction of the main wind...... direction can make any direction with the current. A consistent derivation of the wave spectrum taking into account current and finite water depth is used. The numerical results show a significant effect of the water depth, the directional spreading and the current on the conditional mean wave profile...

  8. Temporal variability in wind-wave climate and its validation with ESSO-NIOT wave atlas for the head Bay of Bengal

    Science.gov (United States)

    Patra, Anindita; Bhaskaran, Prasad K.

    2017-08-01

    The head Bay region bordering the northern Bay of Bengal is a densely populated area with a complex geomorphologic setting, and highly vulnerable to extreme water levels along with other factors like sea level rise and impact of tropical cyclones. The influence of climate change on wind-wave regime from this region of Bay of Bengal is not known well and that requires special attention, and there is a need to perform its long-term assessment for societal benefits. This study provides a comprehensive analysis on the temporal variability in domain averaged wind speed, significant wave height (SWH) utilizing satellite altimeter data (1992-2012) and mean wave period using ECMWF reanalysis products ERA-Interim (1992-2012) and ERA-20C (1992-2010) over this region. The SWH derived from WAVEWATCH III (WW3) model along with the ERA-Interim reanalysis supplements the observed variability in satellite altimeter observations. Further, the study performs an extensive error estimation of SWH and mean wave period with ESSO-NIOT wave atlas that shows a high degree of under-estimation in the wave atlas mean wave period. Annual mean and wind speed maxima from altimeter show an increasing trend, and to a lesser extent in the SWH. Interestingly, the estimated trend is higher for maxima compared to the mean conditions. Analysis of decadal variability exhibits an increased frequency of higher waves in the present decade compared to the past. Linear trend analysis show significant upswing in spatially averaged ERA-20C mean wave period, whereas the noticed variations are marginal in the ERA-Interim data. A separate trend analysis for the wind-seas, swell wave heights and period from ERA-20C decipher the fact that distant swells governs the local wind-wave climatology over the head Bay region, and over time the swell activity have increased in this region.

  9. Numerical Study on the Generation and Transport of Spume Droplets in Wind over Breaking Waves

    Directory of Open Access Journals (Sweden)

    Shuai Tang

    2017-12-01

    Full Text Available Sea spray droplets play an important role in the momentum, heat and mass transfer in the marine atmospheric boundary layer. We have developed a new direct numerical simulation method to study the generation and transport mechanisms of spume droplets by wind blowing over breaking waves, with the wave breaking process taken into account explicitly. In this new computational framework, the air and water are simulated as a coherent system on fixed Eulerian grid with the density and viscosity varying with the fluid phase. The air-water interface is captured accurately using a coupled level-set and volume-of-fluid method. The trajectories of sea spray droplets are tracked using a Lagrangian particle-tracking method. The generation of droplets is captured by comparing the fluid particle velocity of water and the phase speed of the wave surface. From the simulation data, we obtain for the first time a detailed description of the instantaneous distribution of droplets at different stages of wave breaking. Furthermore, the time histories of the droplet number and its generation and disappearance rates are analyzed. Simulation cases with different parameters are performed to study the effects of wave age and wave steepness. The flow and droplet fields obtained from simulation provided a detailed physical picture of the problem of interest. It is found that plunging breakers generate more droplets than spilling breakers. Droplets are generated near the wave crest at young and intermediate wave ages, but at old wave ages, droplets are generated both near and behind the wave crest. It is also elucidated that the large-scale spanwise vortex induced by the wave plunging event plays an important role in suspending droplets. Our simulation result of the vertical profile of sea spray concentration is consistent with laboratory measurement reported in the literature.

  10. Metamaterials, from electromagnetic waves to water waves, bending waves and beyond

    KAUST Repository

    Dupont, G.

    2015-08-04

    We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.

  11. MJO-Related Intraseasonal Variation in the Stratosphere: Gravity Waves and Zonal Winds

    Science.gov (United States)

    Alexander, M. J.; Grimsdell, A. W.; Stephan, C. C.; Hoffmann, L.

    2018-01-01

    Previous work has shown eastward migrating regions of enhanced temperature variance due to long-vertical wavelength stratospheric gravity waves that are in sync with intraseasonal precipitation and tropopause wind anomalies associated with the Madden-Julian Oscillation (MJO). Here the origin of these intraseasonal gravity wave variations is investigated with a set of idealized gravity wave-resolving model experiments. The experiments specifically test whether tropopause winds act to control gravity wave propagation into the stratosphere by a critical level filtering mechanism or play a role in gravity wave generation through an obstacle source effect. All experiments use identical convective latent heating variability, but the large-scale horizontal wind profile is varied to investigate relationships between stratospheric gravity waves and zonal winds at different levels. Results show that the observed long vertical wavelength gravity waves are primarily sensitive to stratospheric zonal wind variations, while tropopause wind variations have only a very small effect. Thus, neither the critical level filter mechanism nor the obstacle source play much of a role in the observed intraseasonal gravity wave variations. Instead, the results suggest that the stratospheric waves follow the MJO precipitation sources, and tropopause wind anomalies follow the same sources. We further find evidence of intraseasonal wave drag effects on the stratospheric circulation in reanalyzed winds. The results suggest that waves drive intraseasonal stratospheric zonal wind anomalies that descend in altitude with increasing MJO phases 3 through 7. Eastward anomalies descend farther than westward, suggesting that MJO-related stratospheric waves cause larger eastward drag forces.

  12. Validation Study of Wave Breaking Influence in a Coupled Wave Model for Hurricane Wind Conditions

    Science.gov (United States)

    2008-08-27

    an essential modification to the Janssen (1991) input source term in the spirit of the notion of ’sheltering’ (e.g. Makin & Kudryavtsev , 2001...Ocean Waves, Cambridge University Press, Cambridge, 532pp. Makin, V.K. and V.N. Kudryavtsev , 2001: Coupled sea surface-atmosphere model. 1. Wind over

  13. The interaction of katabatic winds and mountain waves

    Energy Technology Data Exchange (ETDEWEB)

    Poulos, Gregory Steve [Colorado State Univ., Fort Collins, CO (United States)

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  14. Waves in the Red Sea: Response to monsoonal and mountain gap winds

    KAUST Repository

    Ralston, David K.

    2013-08-01

    An unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period. The Red Sea lies in a narrow rift valley, and the steep topography surrounding the basin steers the dominant wind patterns and consequently the wave climate. At large scales, the model results indicated that the primary seasonal variability in waves was due to the monsoonal wind reversal. During the winter, monsoon winds from the southeast generated waves with mean significant wave heights in excess of 2. m and mean periods of 8. s in the southern Red Sea, while in the northern part of the basin waves were smaller, shorter period, and from northwest. The zone of convergence of winds and waves typically occurred around 19-20°N, but the location varied between 15 and 21.5°N. During the summer, waves were generally smaller and from the northwest over most of the basin. While the seasonal winds oriented along the axis of the Red Sea drove much of the variability in the waves, the maximum wave heights in the simulations were not due to the monsoonal winds but instead were generated by localized mountain wind jets oriented across the basin (roughly east-west). During the summer, a mountain wind jet from the Tokar Gap enhanced the waves in the region of 18 and 20°N, with monthly mean wave heights exceeding 2. m and maximum wave heights of 14. m during a period when the rest of the Red Sea was relatively calm. Smaller mountain gap wind jets along the northeast coast created large waves during the fall and winter, with a series of jets providing a dominant source of wave energy during these periods. Evaluation of the wave model results against observations from a buoy and satellites found that the spatial resolution of the wind model significantly affected the quality of the wave model results. Wind forcing from a 10-km grid produced higher skills for waves than winds from a

  15. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  16. Mesoscale wind fluctuations over Danish waters

    DEFF Research Database (Denmark)

    Vincent, Claire Louise

    in generated power are a particular problem for oshore wind farms because the typically high concentration of turbines within a limited geographical area means that uctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water...

  17. Water waves generated by underwater explosion

    CERN Document Server

    Mehaute, Bernard Le

    1996-01-01

    This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to

  18. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  19. Three-wave interactions in a gravity-capillary range of wind waves

    Science.gov (United States)

    Kosnik, M.; Dulov, V.; Kudryavtsev, V.

    2009-04-01

    The effects of three-wave interactions on forming of short wind waves spectrum are investigated. Wavenumber spectrum in gravity-capillary and capillary range is found as a result of evolution of initial arbitrary spectrum under the influence of assigned sources of kinetic equation. Three-wave interactions are taken into account using exact collision integral without any additional assumptions simplifying a problem. Model validity is proved by reproducing Zaharov & Filonenko (1967) theoretical spectra describing the "energy equipartition" and "inertial interval" cases. Numerical calculations show that the main role of three-wave interactions consists in energy transfer from short gravity waves to waves of smaller lengths. The prominent feature of most of resulting spectra is a dip on curvature spectrum in the vicinity of phase speed minimum. Wind forcing, viscous dissipation and mechanism of generation of parasitic capillaries are considered in a number of calculations using parameterization for corresponding sources by Kudryavtsev, Makin, Chapron, 1999. The necessity of additional nonlinear dissipation terms in kinetic equation for short gravity and capillary waves is revealed. The results of calculation with this realistic parameterization of kinetic equation sources show that, when accounted, nonlinear dissipation and parasitic capillaries terms play much more significant part in capillary range than wave-wave interactions. The latter are important only in phase speed minimum area where the typical dip remains at the same wavenumber in all numerical experiments. This work was supported by the EU under the projects INTAS 05-1000008-8014, INTAS/ESA 06-1000025-9264 and Contract # SST5 CT 2006 031001 (MONRUK) of FP6.

  20. Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk

    Science.gov (United States)

    Cieślikiewicz, Witold; Dudkowska, Aleksandra; Gic-Grusza, Gabriela; Jędrasik, Jan

    2017-11-01

    The principal goal of this study is to get some preliminary insights about the intensity of water movement generated by wind waves, and due to the currents in the bottom waters of Gulf of Gdańsk, during severe storms. The Gulf of Gdańsk is located in the southern Baltic Sea. This paper presents the results of analysis of wave and current-induced velocities during extreme wind conditions, which are determined based on long-term historical records. The bottom velocity fields originated from wind wave and wind currents, during analysed extreme wind events, are computed independently of each other. The long-term wind wave parameters for the Baltic Sea region are derived from the 44-year hindcast wave database generated in the framework of the project HIPOCAS funded by the European Union. The output from the numerical wave model WAM provides the boundary conditions for the model SWAN operating in high-resolution grid covering the area of the Gulf of Gdańsk. Wind current velocities are calculated with the M3D hydrodynamic model developed in the Institute of Oceanography of the University of Gdańsk based on the POM model. The three dimensional current fields together with trajectories of particle tracers spreading out of bottom boundary layer are modelled, and the calculated fields of bottom velocities are presented in the form of 2D maps. During northerly winds, causing in the Gulf of Gdańsk extreme waves and most significant wind-driven circulation, the wave-induced bottom velocities are greater than velocities due to currents. The current velocities in the bottom layer appeared to be smaller by an order of magnitude than the wave-induced bottom orbital velocities. Namely, during most severe northerly storms analysed, current bottom velocities ranged about 0.1-0.15 m/s, while the root mean square of wave-induced near-seabed velocities reached maximum values of up to 1.4 m/s in the southern part of Gulf of Gdańsk.

  1. The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas

    KAUST Repository

    Langodan, Sabique

    2016-12-01

    Wind and waves play a major role in important ocean dynamical processes, such as the exchange of heat, momentum and gases between atmosphere and ocean, that greatly contributes to the earth climate and marine lives. Knowledge on wind and wave weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet to be fully explored. Because of the scarcity of waves data in the Red Sea, numerical models become crucial and provide very powerful tools to extrapolate wind and wave data in space, and backward and forward in time. Unlike open oceans, enclosed basins wave have different characteristics, mainly because of their local generation processes. The complex orography on both sides of the Red Sea makes the local wind, and consequently wave, modeling very challenging. This thesis considers the modeling of wind-wave characteristics in the Red Sea, including their climate variability and trends using state-of-the-art numerical models and all available observations. Different approaches are investigated to model and understand the general and unusual wind and wave conditions in the basin using standard global meteorological products and customised regional wind and wave models. After studying and identifying the main characteristics of the wind-wave variability in the Red Sea, we demonstrate the importance of generating accurate atmospheric forcing through data assimilation for reliable wave simulations. In particular, we show that the state-of-the-art physical formulation of wave models is not suitable to model the unique situation of the two opposing wind-waves systems in the Red Sea Convergence Zone, and propose and successfully test a modification to the input and white-capping source functions to address this problem. We further investigate the climate variability and trends of wind

  2. Fully Coupled Three-Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta; Bredmose, Henrik; Sørensen, Jens Nørkær

    2014-01-01

    , which is a consequence of the wave-induced rotor dynamics. Loads and coupled responses are predicted for a set of load cases with different wave headings. Further, an advanced aero-elastic code, Flex5, is extended for the TLP wind turbine configuration and the response comparison with the simpler model......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11...... for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency-and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison's equation, the aerodynamic loads are modeled by means of unsteady blade-element-momentum (BEM) theory...

  3. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    Science.gov (United States)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from

  4. 77 FR 38277 - Wind and Water Power Program

    Science.gov (United States)

    2012-06-27

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... public meeting. SUMMARY: The Department of Energy (DOE) Wind and Water Power Program is planning a... in Washington, DC on June 13, 2012. Mark Higgins, Wind and Water Power Acting Program Manager, Office...

  5. Modelling the 2013 Typhoon Haiyan Storm Surge: Effect of Waves, Offshore Winds, Tide Phase, and Translation Speed

    Science.gov (United States)

    Bilgera, P. H. T.; Villanoy, C.; Cabrera, O.

    2016-02-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  6. A FGGE water vapor wind data set

    Science.gov (United States)

    Stewart, Tod R.; Hayden, Christopher M.

    1985-01-01

    It has been recognized for some time that water vapor structure visible in infrared imagery offers a potential for obtaining motion vectors when several images are considered in sequence (Fischer et al., 1981). A study evaluating water vapor winds obtained from the VISSR atmospheric sounder (Stewart et al., 1985) has confirmed the viability of the approach. More recently, 20 data sets have been produced from METEOSAT water vapor imagery for the FGGE period of 10-25 November 1979. Where possible, two data sets were prepared for each day at 0000 and 1200 GMT and compared with rawinsondes over Europe, Africa, and aircraft observations over the oceans. Procedures for obtaining winds were, in general, similar to the earlier study. Motions were detected both by a single pixel tracking and a cross correlation method by using three images individually separated by one hour. A height assignment was determined by matching the measured brightness temperature to the temperature structure represented by the FGGE-IIIB analyses. Results show that the METEOSAT water vapor winds provide uniform horizontal coverage of mid-level flow over the globe with good accuracy.

  7. Influence of hurricane wind field in the structure of directional wave spectra.

    Science.gov (United States)

    Esquivel-Trava, Bernardo; García-Nava, Hector; Osuna, Pedro; Ocampo-Torres, Francisco J.

    2017-04-01

    Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. One particular objective is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. Additionally the same experiments were carried out using the Wave Watch III model with the source terms formulation proposed by Ardhuin et al., 2010, with the aim of making comparisons between the physical processes that represent each formulation, and the latest results will be addressed. References Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., et al. (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. Journal of Physical Oceanography, 40(9), 1917-1941. doi:10.1175/2010JPO4324.1 Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng., 54(2), 151-170. doi:10.1016/j.coastaleng.2006.08.006

  8. Impact of an offshore wind farm on wave conditions and shoreline development

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Kristensen, Sten Esbjørn; Deigaard, Rolf

    2014-01-01

    The influence of offshore wind farms on the wave conditions and impact on shoreline development is studied in a generic set-up of a coast and a shoreline. The objective was to estimate the impact of a typical sized offshore wind farm on a shoreline in a high wave energetic environment. Especially...... the shoreline’s sensitivity to the distance from the OWF to the shoreline was studied. The effect of the reduced wind speed inside and on the lee side of the offshore wind farm was incorporated in a parameterized way in a spectral wind wave model. The shoreline impact was studied with a one-line model....

  9. Water Waves The Mathematical Theory with Applications

    CERN Document Server

    Stoker, J J

    2011-01-01

    Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.

  10. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect

    Directory of Open Access Journals (Sweden)

    Alvaro Semedo

    2018-03-01

    Full Text Available A climatology of wind sea and swell waves along the Canary eastern boundary current area, from west Iberia to Mauritania, is presented. The study is based on the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis ERA-Interim. The wind regime along the Canary Current, along west Iberia and north-west Africa, varies significantly from winter to summer. High summer wind speeds generate high wind sea waves, particularly along the coasts of Morocco and Western Sahara. Lower winter wind speeds, along with stronger extratropical storms crossing the North Atlantic sub-basin up north lead to a predominance of swell waves in the area during from December to February. In summer, the coast parallel wind interacts with the coastal headlands, increasing the wind speed and the locally generated waves. The spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering.

  11. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Edward G. [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-07-14

    This project used a combination of turbulence-resolving large-eddy simulations, single-column modeling (where turbulence is parameterized), and currently available observations to improve, assess, and develop a parameterization of the impact of non-equilibrium wave states and stratification on the buoy-observed winds to establish reliable wind data at the turbine hub-height level. Analysis of turbulence-resolving simulations and observations illuminates the non-linear coupling between the atmosphere and the undulating sea surface. This analysis guides modification of existing boundary layer parameterizations to include wave influences for upward extrapolation of surface-based observations through the turbine layer. Our surface roughness modifications account for the interaction between stratification and the effects of swell’s amplitude and wavelength as well as swell’s relative motion with respect to the mean wind direction. The single-column version of the open source Weather and Research Forecasting (WRF) model (Skamarock et al., 2008) serves as our platform to test our proposed planetary boundary layer parameterization modifications that account for wave effects on marine atmospheric boundary layer flows. WRF has been widely adopted for wind resource analysis and forecasting. The single column version is particularly suitable to development, analysis, and testing of new boundary layer parameterizations. We utilize WRF’s single-column version to verify and validate our proposed modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer parameterization (Nakanishi and Niino, 2004). We explore the implications of our modifications for two-way coupling between WRF and wave models (e.g.,Wavewatch III). The newly implemented parameterization accounting for marine atmospheric boundary layer-wave coupling is then tested in three-dimensional WRF simulations at grid sizes near 1 km. These simulations identify the behavior of simulated winds at the

  12. Effect of phase coupling on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Nonlinear features of wind generated surface waves are considered here to be caused by nonrandomness (non-Uniform) in the phase spectrum. Nonrandomness in recorded waves, if present, would be generally obscured within the error level of observations...

  13. Modelling of environmental and climatic problems: Wind and water erosion

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    Magnitude of wind and water erosion mainly depend on wind velocity, rainfall rate, slope and soil characteristics. The main purpose of this lecture is to define the role of small, meso and large scale phenomena (local and synoptic fluctuations) on water and wind erosion. These lecture notes present some results on wind speed simulation and seasonal fluctuations of water deficit for the selected station in different erosion risque and transition regions of Turkey. (author)

  14. Assessment of the Joint Development Potential of Wave and Wind Energy in the South China Sea

    Directory of Open Access Journals (Sweden)

    Yong Wan

    2018-02-01

    Full Text Available The South China Sea is a major shipping hub between the West Pacific and Indian Oceans. In this region, the demand for energy is enormous, both for residents’ daily lives and for economic development. Wave energy and wind energy are two major clean and low-cost ocean sources of renewable energy. The reasonable development and utilization of these energy sources can provide a stable energy supply for coastal cities and remote islands of China. Before wave energy and wind energy development, however, we must assess the potential of each of these sources. Based on high-resolution and high-accuracy wave field data and wind field data obtained by ERA-Interim reanalysis for the recent 38-year period from 1979–2016, the joint development potential of wave energy and wind energy was assessed in detail for offshore and nearshore areas in the South China Sea. Based on potential installed capacity, the results revealed three promising areas for the joint development of nearshore wave energy and wind energy, including the Taiwan Strait, Luzon Strait and the sea southeast of the Indo-China Peninsula. For these three dominant areas (key stations, the directionality of wave energy and wind energy propagation were good in various seasons; the dominant wave conditions and the dominant wind conditions were the same, which is advantageous for the joint development of wave and wind energy. Existing well-known wave energy converters (WECs are not suitable for wave energy development in the areas of interest. Therefore, we must consider the distributions of wave conditions and develop more suitable WECs for these areas. The economic and environmental benefits of the joint development of wave and wind energy are high in these promising areas. The results described in this paper can provide references for the joint development of wave and wind energy in the South China Sea.

  15. On the Shape of the Crest of Short Wavelength Water Waves at Incipient Breaking

    Science.gov (United States)

    Diorio, J. D.; Liu, X.; Duncan, J. H.

    2007-11-01

    Breaking waves with wavelengths ranging from about 0.1 to 1.2 m are studied experimentally in a wind wave tank that is 11.8 m long, 1.15 m wide and 1.8 m high (1.0 m of water). The tank includes a wind tunnel with speeds up to 10 m/s and a programmable wave maker that resides at the upwind end of the tank. The shortest waves are generated by wind with speeds ranging from about 4 to 7 m/s. The longest waves are generated mechanically from focused wave packets with average frequencies ranging from 1.15 to 1.42 Hz. Waves with intermediate lengths are formed either by wind or by a nonlinear wave train with unstable sidebands generated by the wave maker. At incipient breaking, all the waves have a capillary-ripple pattern at the crest rather than a plunging jet. It is found that in spite of the wide range of wavelengths and major differences in the generation methods, the shapes of the capillary-ripple pattern are remarkably similar. Various geometrical parameters including the length of the first capillary wave and the length and thickness of the bulge that forms at the crest are extracted from the data. The variation of these parameters with gravity wavelength and slope of the front face of the wave is examined.

  16. Analysis of wind and wave events at the MIZ based on TerraSAR-X satellite images

    Science.gov (United States)

    Gebhardt, Claus; Bidlot, Jean-Raymond; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey; Singha, Suman

    2017-04-01

    The seasonal opening-up of large expanses of open water in the Beaufort/Chukchi Sea is a phenomenon observed in recent years. The diameter of the open-water area is on the order of 1000 km around the sea ice minimum in summer. Thus, wind events in the area are accompanied by the build-up of sea waves. Significant wave heights of few to several meters may be reached. Under low to moderate winds, the morphology of the MIZ is governed by oceanic forcing. As a result, the MIZ resembles ocean circulation features such as eddies, meanders, etc.. In the case of strong wind events, however, the wind forcing may gain control. We analyse effects related to wind and wave events at the MIZ using TerraSAR-X satellite imagery. Methods such as the retrieval of sea state and wind data by empirical algorithms and automatic sea ice classification are applied. This is facilitated by a series of TerraSAR-X images acquired in support of a cruise of the research vessel R/V Sikuliaq in the Beaufort/Chukchi Sea in autumn 2015. For selected images, the results are presented and compared to numerical model forecasts which were as well part of the cruise support.

  17. Impact of Diurnal Variation of Winds on Coastal Waves off South East Coast of India

    Directory of Open Access Journals (Sweden)

    P G Remya

    2013-09-01

    Full Text Available The land-sea breeze systems, the most interesting phenomena observed at coastal regions, have significant impact on the costal wave characteristics. Present study also focuses the diurnal variations of winds and its impact on wave parameters like significant wave height and mean wave period off Ennore port located in the south east coast of India The impact of the diurnal variation of winds on complex wave patterns in the coastal regions of Indian Ocean have been addressed earlier also. In the present study an attempt has been made to explore the impact of diurnal variation of winds on coastal waves using numerical model forced with European Centre for Medium Range Weather Forecasts (ECMWF and National Centre for Environmental Prediction (NCEP blended wind fields. It has been observed that most of the time, the ECMWF blended wind field reproduces the diurnal variation.

  18. String theory and water waves

    International Nuclear Information System (INIS)

    Iyer, Ramakrishnan; Johnson, Clifford V; Pennington, Jeffrey S

    2011-01-01

    We uncover a remarkable role that an infinite hierarchy of nonlinear differential equations plays in organizing and connecting certain c-hat <1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A, A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A, D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.

  19. Fully Coupled Three-Dimensional Dynamic Response of a TLP Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Ramachandran, Gireesh Kumar V.R.; Bredmose, Henrik; Sørensen, Jens Nørkær

    2013-01-01

    A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes threedimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the ......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes threedimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11...... for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency- and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison’s equation, aerodynamic loads are modelled by means of unsteady Blade-Element-Momentum (BEM) theory......, including Glauert correction for high values of axial induction factor, dynamic stall, dynamic wake and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographic location, platform responses are obtained for a set of wind and wave climatic...

  20. A high-resolution assessment of wind and wave energy potentials in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2016-08-24

    This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model. This model was initialized with ERA-Interim global data and the Red Sea reanalysis was generated using a cyclic three-dimensional variational approach assimilating available data in the region. The wave hindcast was generated using WAVEWATCH III on a 5 km resolution grid, forced by the Red Sea reanalysis surface winds. The wind and wave products were validated against data from buoys, scatterometers and altimeters. Our analysis suggests that the distribution of wind and wave energy in the Red Sea is inhomogeneous and is concentrated in specific areas, characterized by various meteorological conditions including weather fronts, mesoscale vortices, land and sea breezes and mountain jets. A detailed analysis of wind and wave energy variation was performed at three hotspots representing the northern, central and southern parts of the Red Sea. Although there are potential sites for harvesting wind energy from the Red Sea, there are no potential sites for harvesting wave energy because wave energy in the Red Sea is not strong enough for currently available wave energy converters. Wave energy should not be completely ignored, however, at least from the perspective of hybrid wind-wave projects. (C) 2016 Elsevier Ltd. All rights reserved.

  1. Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting

    modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave model SWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST...... (Hereinafter the WRF-WBLM-SWAN model). WBLM is implemented in SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave......, which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...

  2. Wave loads on foundations for wind turbines. A literature survey; Vaaglaster paa fundament till vindkraftverk - systemdynamik och utmattning: Litteraturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, Ingemar

    2001-05-01

    This report is an overview of literature covering the influence of wave loads on foundations for wind power plants. Relevant subjects are wave motion, wave forces on slender structures, wave statistics for the Swedish coast together with planning and certification.

  3. On the interaction of wind and steep gravity wave groups using Miles' and Jeffreys' mechanisms

    Directory of Open Access Journals (Sweden)

    J. Touboul

    2008-12-01

    Full Text Available The interaction of wind and water wave groups is investigated theoretically and numerically. A steep wave train is generated by means of dispersive focusing, using both the linear theory and fully nonlinear equations. The linear theory is based on the Schrödinger equation while the nonlinear approach is developed numerically within the framework of the potential theory. The interaction between the chirped wave packet and wind is described by the Miles' mechanism. The differences between both approaches are discussed, and the influence of nonlinearity is emphasized. Furthermore, a different mechanism is considered, described by the modified Jeffreys' sheltering theory. From comparison between the two mechanisms, it is found that the persistence of the steep wave group depends on the physical model used, and is significantly increased when we use the latter mechanism.

  4. Impact of an offshore wind farm on wave conditions and shoreline development

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Kristensen, Sten Esbjørn; Deigaard, Rolf

    2014-01-01

    The influence of offshore wind farms on the wave conditions and impact on shoreline development is studied in a generic set-up of a coast and a shoreline. The objective was to estimate the impact of a typical sized offshore wind farm on a shoreline in a high wave energetic environment. Especially...

  5. The effects of tropical wind data on the prediction of ultralong waves

    Science.gov (United States)

    Baker, W. E.

    1981-01-01

    The influence of tropical wind data on the prediction of planetary waves were studied. Two assimilation experiments were performed, one with and one without FGGE tropical winds. The planetary wave error was then analyzed in 72 h forecasts from the initial conditions provided by the two assimilations.

  6. Ocean Wind and Wave Measurements Using X-Band Marine Radar: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Weimin Huang

    2017-12-01

    Full Text Available Ocean wind and wave parameters can be measured by in-situ sensors such as anemometers and buoys. Since the 1980s, X-band marine radar has evolved as one of the remote sensing instruments for such purposes since its sea surface images contain considerable wind and wave information. The maturity and accuracy of X-band marine radar wind and wave measurements have already enabled relevant commercial products to be used in real-world applications. The goal of this paper is to provide a comprehensive review of the state of the art algorithms for ocean wind and wave information extraction from X-band marine radar data. Wind measurements are mainly based on the dependence of radar image intensities on wind direction and speed. Wave parameters can be obtained from radar-derived wave spectra or radar image textures for non-coherent radar and from surface radial velocity for coherent radar. In this review, the principles of the methodologies are described, the performances are compared, and the pros and cons are discussed. Specifically, recent developments for wind and wave measurements are highlighted. These include the mitigation of rain effects on wind measurements and wave height estimation without external calibrations. Finally, remaining challenges and future trends are discussed.

  7. On the propagation of sound waves in a stellar wind traversed by periodic strong shocks

    OpenAIRE

    Pijpers, F. P.

    1994-01-01

    It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the soun...

  8. Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect

    Directory of Open Access Journals (Sweden)

    Sharay Astariz

    2015-07-01

    Full Text Available Wave energy is one of the most promising alternatives to fossil fuels due to the enormous available resource; however, its development may be slowed as it is often regarded as uneconomical. The largest cost reductions are expected to be obtained through economies of scale and technological progress. In this sense, the incorporation of wave energy systems into offshore wind energy farms is an opportunity to foster the development of wave energy. The synergies between both renewables can be realised through these co-located energy farms and, thus, some challenges of offshore wind energy can be met. Among them, this paper focuses on the longer non-operational periods of offshore wind turbines—relative to their onshore counterparts—typically caused by delays in maintenance due to the harsh marine conditions. Co-located wave energy converters would act as a barrier extracting energy from the waves and resulting in a shielding effect over the wind farm. On this basis, the aim of this paper is to analyse wave energy economics in a holistic way, as well as the synergies between wave and offshore wind energy, focusing on the shadow effect and the associated increase in the accessibility to the wind turbines.

  9. 76 FR 66284 - Wind and Water Power Program

    Science.gov (United States)

    2011-10-26

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2011 Wind and Water Power Program, Water Power Peer Review Meeting will review the Program's... 2011 Water Power Peer Review Meeting will be held November 1 through November 3, 2011 in Alexandria, VA...

  10. Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories

    Science.gov (United States)

    Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan

    2017-10-01

    Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.

  11. Effect of Coupled Non linear Wave Kinematics and Soil Flexibility on the Design Loads of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Kim, Taeseong; Natarajan, Anand

    2013-01-01

    in the presence of flexible soil conditions. The impact of moving to 35m water depths on monopile sub structure loads is quantified using irregular non linear wave kinematics interactions with the reduced natural frequencies of the sub structure resulting from soil flexibility. The wave kinematics is modeled...... without the need for geometric stretching methods. The effect of the nonlinear wave interaction sum frequencies on the support structure is investigated when the structural natural frequencies are reduced due to soil flexibility. The impact of the wave sum frequencies during the occurrence of extreme...... in soil properties and adequate damping in the support structure during wind/wave misalignment, without which monopile sub structural loading is highly amplified at 35m water depths compared to the design conditions at 20 m depths....

  12. Impact of the interfaces for wind and wave modeling - interpretation using COAWST, SAR and point measurements

    DEFF Research Database (Denmark)

    Air and sea interacts, where winds generate waves and waves affect the winds. This topic is ever relevant for offshore functions such as shipping, portal routines, wind farm operation and maintenance. In a coupled modeling system, the atmospheric modeling and the wave modeling interfere with each...... use the stress directly, thus avoiding the uncertainties caused by parameterizations. This study examines the efficiency of the wave impact transfer to the atmospheric modeling through the two types of interfaces, roughness length and stress, through the coupled-ocean...

  13. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT region

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-05-01

    Full Text Available Using a fully nonlinear two-dimensional (2-D numerical model, we simulated gravity waves (GWs breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT. An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's apparent horizontal phase velocity and decreases the GW's intrinsic frequency and vertical wavelength. Both the accelerated mean wind and the decreased GW vertical wavelength contribute to the enhancement of wind shears. This, in turn, creates a background condition that favors the occurrence of GW instability, breaking, and momentum deposition, as well as mean wind acceleration, which further enhances the wind shears. We find that GWs with longer vertical wavelengths and faster horizontal phase velocity can induce larger winds, but they may not necessarily induce larger wind shears. In addition, the background temperature can affect the time and height of GW breaking, thus causing accelerated mean winds and wind shears.

  14. Towards the best approach for wind wave modelling in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2015-04-01

    While wind and wave modelling is nowadays quite satisfactory in the open oceans, problems are still present in the enclosed seas. In general, the smaller the basin, the poorer the models perform, especially if the basin is surrounded by a complex orography. The Red Sea is an extreme example in this respect, especially because of its long and narrow shape. This deceivingly simple domain offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Depending on the season, opposite wind regimes, one directed to southeast, the other one to northwest, are present and may coexist in the most northerly and southerly parts of the Red Sea. Where the two regimes meet, the wave spectra can be rather complicated and, crucially dependent on small details of the driving wind fields. We explored how well we could reproduce the general and unusual wind and wave patterns of the Red Sea using different meteorological products. Best results were obtained using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) regional model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts (ECMWF) model. We discuss the reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides in many cases very reasonable results. Because surface winds lead to important uncertainties in wave simulation, we also discuss the impact of data assimilation for simulating the most accurate winds, and consequently waves, over the Red Sea.

  15. Impact of wind waves on the air-sea fluxes: A coupled model

    Science.gov (United States)

    Kudryavtsev, V.; Chapron, B.; Makin, V.

    2014-02-01

    A revised wind-over-wave-coupling model is developed to provide a consistent description of the sea surface drag and heat/moister transfer coefficients, and associated wind velocity and temperature profiles. The spectral distribution of short wind waves in the decimeter to a few millimeters range of wavelengths is introduced based on the wave action balance equation constrained using the Yurovskaya et al. (2013) optical field wave measurements. The model is capable to reproduce fundamental statistical properties of the sea surface, such as the mean square slope and the spectral distribution of breaking crests length. The surface stress accounts for the effect of airflow separation due to wave breaking, which enables a better fit of simulated form drag to observations. The wave breaking controls the overall energy losses for the gravity waves, but also the generation of shorter waves including the parasitic capillaries, thus enhancing the form drag. Breaking wave contribution to the form drag increases rapidly at winds above 15 m/s where it exceeds the nonbreaking wave contribution. The overall impact of wind waves (breaking and nonbreaking) leads to a sheltering of the near-surface layer where the turbulent mixing is suppressed. Accordingly, the air temperature gradient in this sheltered layer increases to maintain the heat flux constant. The resulting deformation of the air temperature profile tends to lower the roughness scale for temperature compared to its value over the smooth surface.

  16. Shallow water sound propagation with surface waves.

    Science.gov (United States)

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  17. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.

    2003-01-01

    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  18. Measurement and modeling of wind waves at the northern coast of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    José Henrique G. M. Alves

    2001-01-01

    Full Text Available Directional measurements of wind-wave spectra made during the year of 1996 are used in a preliminary investigation of the wind-wave climate and its transformation at the São Francisco do Sul island, northern coast of the Santa Catarina state. Four major sea states and associated meteorological conditions are identified through analyses of joint distributions of observed wave parameters. Transformations of these main sea-state patterns due to refraction and shoaling are investigated through a numerical modeling approach that allows the reconstruction of the wave field within extensive coastal areas, using single point measurements of the wave spectrum in shallow waters. Cross-validation of measured and reconstructed spectra at the study site yield consistent results, suggesting that the proposed methodology works well for the São Francisco do Sul coast.Medições do espectro direcional de ondas geradas pelo vento realizadas em 1996 são utilizadas em uma investigação preliminar do clima de ondas no litoral norte de Santa Catarina, Brasil. Quatro estados de mar predominantes são identificados, em conjunto com os padrões meteorológicos associados a sua ocorrência, através de análises estatísticas. As transformações desses quatro estados de mar devido a refraçâo e empinamento são investigadas através de modelos numéricos, que permitem obter estimativas do campo de ondas em áreas extensas a partir de medições pontuais feitas em águas rasas. Comparações entre espectros medidos e modelados produzem resultados consistentes, sugerindo que a metodologia proposta é válida para a costa de São Francisco do Sul.

  19. The effect of wind, ice and waves on the in-situ burning of emulsions and aged oils

    International Nuclear Information System (INIS)

    Bech, C.; Sveum, P.; Buist, I.

    1993-01-01

    A series of small- and meso-scale in-situ burning tests was conducted on Spitsbergen to define the limitations and burn effectiveness of in-situ burning of water-in-oil emulsions in terms of water content, degree of evaporation, and film thickness; and to study how the presence of ice, waves, and wind affect in-situ burning. The tests were conducted in basins cut into the ice on a fjord. The size of the basins ranged from 4 to 300 m 2 . The largest basin was fitted with a wavemaker. Evaporated water-free oil was found to be easily ignited and to burn with high efficiency. The burn efficiency was not affected by waves. Highly evaporated oil with 25% water was hard to ignite with gelled gasoline. In the presence of waves, it was not possible to ignite a 12.5% stable water-in-oil emulsion. The presence of waves reduced the burn efficiency for emulsion with a low water content. The main problem with in-situ burning of emulsions is flame spreading; emulsions require a large initial burn area for the burn to be self-sustaining. Small ice floes and slush did not influence burn efficiency in a negative way. In-situ burning could not be accomplished in wind speeds above 10 m/s. 2 refs., 5 figs., 5 tabs

  20. The influence of solar wind variability on magnetospheric ULF wave power

    International Nuclear Information System (INIS)

    Pokhotelov, D.; Rae, I.J.; Mann, I.R.

    2015-01-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  1. Air-sea fluxes of momentum and mass in the presence of wind waves

    Science.gov (United States)

    Zülicke, Christoph

    2010-05-01

    An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.

  2. Extended onshore control of a floating wind turbine with wave disturbance reduction

    DEFF Research Database (Denmark)

    Christiansen, S.; Knudsen, T.; Bak, Thomas

    2014-01-01

    Reaching for higher wind resources floating wind turbines are being investigated. Wave induced loads significantly increase for floating wind turbines, and applying conventional onshore control strategies to floating wind turbines has been shown to impose negative damped oscillations in fore......-aft due to the low natural frequency of the floating structure. We suggest a control loop extension of the onshore controller which stabilizes the system and reduces the wave disturbance. The result is improved performance in power fluctuations, blade pitch activity, and platform oscillations...

  3. Nonlinear gravity-capillary water waves

    Science.gov (United States)

    Jiang, Lei

    1997-11-01

    Two-dimensional gravity-capillary water waves are analyzed using a fully-nonlinear Cauchy-integral method with spectral accuracy. Standing waves are generated in experiments by vertical oscillation and measured by a non-intrusive optical system along with a wave probe. Nonlinear resonance of standing waves with non-wetting contact line effects are discussed in detail. Amplitude- dependent wave frequency and damping in a glass rectangular tank suggest a new contact-line model. A new type of sideband resonance due to modulated forcing is discovered and explained by weakly-nonlinear analysis. This analytical solution is verified by our numerical simulations and physical experiments. New standing waveforms with dimpled or sharp crests are observed in experiments and computations. These new waveforms have strong symmetry breaking in time as a result of nonlinear harmonic interaction. With increasing wave steepness, steep standing waves experience period- tripling with three distinct forms: sharp crest, dimpled or flat crest, and round crest. Significant breaking occurs in the sharp-crest mode and the dimpled-crest mode. Using a complex-demodulation technique, I find that these breaking waves are related to the same 1:2 internal resonance (harmonic interaction) that causes the new steep waveforms. Novel approaches are used to estimate the (breaking and non-breaking) wave dissipation in steep and breaking standing waves. The breaking events (spray, air entrainment, and plunging) approximately double the wave dissipation. Weak capillarity significantly affects the limiting wave height and the form of standing waves, as demonstrated by both computations and small-scale Faraday-wave experiments. Capillary ripple generation on traveling waves is shown to be significant even at moderate wave steepness. The ubiquitous horizontal asymmetry of traveling waves is shown to be critical to capillary ripple generation. Two new asymmetric modes are identified and are shown to have an

  4. Reliability and Maintenance for Offshore Wind Turbines and Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines are in some countries contributing significantly the production of electricity and wave energy devices have the potential to be developed in a similarway. For both offshore wind turbines and wave energy devices reliability is a key issue since costs to operation and maintenance may...... turbines and wave energy devices with special focus on structural components. The reliability assessment needs include the effects of the control system and possible faults due to failure of electrical/mechanical components and e.g. loss of grid connection. The target reliability level for wind turbine...

  5. Ocean Wind and Wave Measurements Using X-Band Marine Radar: A Comprehensive Review

    OpenAIRE

    Weimin Huang; Xinlong Liu; Eric W. Gill

    2017-01-01

    Ocean wind and wave parameters can be measured by in-situ sensors such as anemometers and buoys. Since the 1980s, X-band marine radar has evolved as one of the remote sensing instruments for such purposes since its sea surface images contain considerable wind and wave information. The maturity and accuracy of X-band marine radar wind and wave measurements have already enabled relevant commercial products to be used in real-world applications. The goal of this paper is to provide a comprehensi...

  6. The Triple Spar campaign: Model tests of a 10MW floating wind turbine with waves, wind and pitch control

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Lemmer, F.; Borg, Michael Borg

    2017-01-01

    Results of a test campaign for a floating wind turbine in simultaneous wind and wave forcing at scale 1:60 are presented. The floater is the Triple Spar floater, a hybrid between a spar buoy and a semi submersible tri-floater, tested here for the first time. The turbine is a model scale version...... of the DTU 10 MW reference wind turbine, which, also for the first time, is tested with active blade pitch control. The tests focus on the effects of aerodynamic damping and interaction effects between the wind forcing, wave forcing and the blade pitch control algorithm. Special focus is devoted...... to the instability of the platform pitch natural mode, that can occur if a standard land-based controller is applied....

  7. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    Science.gov (United States)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  8. Extreme wind-wave modeling and analysis in the south Atlantic ocean

    Science.gov (United States)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.

    2018-04-01

    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  9. Nonlinear dynamics of wind waves: multifractal phase/time effects

    Directory of Open Access Journals (Sweden)

    R. H. Mellen

    1994-01-01

    Full Text Available In addition to the bispectral coherence method, phase/time analysis of analytic signals is another promising avenue for the investigation of phase effects in wind waves. Frequency spectra of phase fluctuations obtained from both sea and laboratory experiments follow an F-β power law over several decades, suggesting that a fractal description is appropriate. However, many similar natural phenomena have been shown to be multifractal. Universal multifractals are quantified by two additional parameters: the Lévy index 0 α 2 for the type of multifractal and the co-dimension 0 C1 1 for intermittence. The three parameters are a full statistical measure the nonlinear dynamics. Analysis of laboratory flume data is reported here and the results indicate that the phase fluctuations are 'hard multifractal' (α > 1. The actual estimate is close to the limiting value α = 2,  which is consistent with Kolmogorov's lognormal model for turbulent fluctuations. Implications for radar and sonar backscattering from the sea surface are briefly considered.

  10. Explosively developing extratropical cyclone associated with the high wind-waves along the east coast of Korea

    Science.gov (United States)

    Heo, Ki-Young; Choi, Jin-Yong; Park, Kwang-Soon

    2017-04-01

    An extreme extratropical cyclone struck the northern part of Korea on May 3, 2016 causing significant damage to property on the land due to extreme winds and abnormal high waves in coastal area. The meteorological composite fields for the cyclone show a strong surface wind velocity (up to 45 m s-1) during its mature phase. This study investigated the development mechanisms of an explosive cyclone through numerical simulation and sensitivity experiments using the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model. The trigger mechanism for the explosive cyclogenesis is the strong baroclinic instability and temperature advection associated with upper-level cut-off low and the interaction of potential vorticity (PV) anomalies between the lower- and upper-level. The efficient placement of the high- and low-level jets forms a favorable condition for its development and transportation of water vapor and the instability energy into the cyclone. The sea-state wave simulation of large swell waves along the eastern coast of the Korean Peninsula is obtained using the wave model WAVEWATCHIII (WW3) forced by the 10-m above ground level wind field from the WRF-ARW simulations. The simulation results of WW3 for the significant wave height were compared against buoy observation data at 1-h intervals. The simulated significant wave height systematically underestimated by 0.5 m. However, strong wind field generated by the cyclone is clarified as key features determining the characteristics of the high waves in terms of the temporal growth and decay patterns.

  11. Water waves in a ripple tank

    Science.gov (United States)

    Kuwabara, Goro; Hasegawa, Toshihiro; Kono, Kimitoshi

    1986-11-01

    The profiles of water waves in a ripple tank were studied for various water depths. Wave forms with moderately large amplitudes varied with propagation at the depths of 0.5 and 1.0 cm due mainly to the nonlinear effects. The front faces of crests became steep, deviating appreciably from a sinusoidal form, and at 0.5-cm depth new ripples were excited in front of the steep forward face. At depths above 2 cm the waves continued to move with almost permanent sinusoidal forms. Ripple tank experiments are appropriate as laboratory work for an undergraduate course as well as for a demonstration of the nature of waves in an elementary physics course.

  12. Wind energy for water pumping in rural areas of China

    International Nuclear Information System (INIS)

    Dechang, S.

    1991-01-01

    After 1980, as the supply of conventional energy has not been able to follow the tremendous increase of the production demand in rural areas of China, a renewed interest for the application of wind energy was shown in many places. Therefore, the Chinese government began to pay more attention to wind energy utilization in rural areas. During the last ten years, several R ampersand D tasks for new modern wind pumps were carried out. Among them, three projects are the developments of wind energy screw pump systems (FDG-5 wind pump, FDG-7 wind pump and TFS-5 wind pump). At present, 50 of these wind pumps are working successfully in the rural areas for farmland drainage, salt ponds water lifting and aquatic product breeding, etc. The field tests show that these wind energy screw pump systems are suitable for low lifting head (< 3 meter) and large water flow (50 m/hr to 120 m/hr) operation in the coastal areas. Because the wind energy resource in many rural areas is sufficient for attractive application of wind pumps, and the supply of electricity as well as fuels is insufficient in these areas, the wind pumps will be spread on a rather large scale in the near future. 7 figs., 2 tabs., 3 refs

  13. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars

    DEFF Research Database (Denmark)

    Simley, Eric; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    9% and 3% of the freestream longitudinal wind speed were measured for the abovementioned high and low CP values, respectively. Turbulence statistics, calculated using 2.5-min time series, suggest that the standard deviation of the longitudinal wind component decreases close to the rotor, while...... Technical University’s Risø campus is investigated using a scanning Light Detection and Ranging (lidar) system. Three short-range continuous-waveWindScanner” lidars are positioned in the field around the V27 turbine allowing detection of all three components of the wind velocity vectors within...... the induction zone. The time-averaged mean wind speeds at different locations in the upstream induction zone are measured by scanning a horizontal plane at hub height and a vertical plane centered at the middle of the rotor extending roughly 1.5 rotor diameters (D) upstream of the rotor. Turbulence statistics...

  14. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress....... The influence varies with wave characteristics for different sea basins. Swell occurs infrequently in the studied area, and one could expect more influence in high-swell-frequency areas (i.e., low-latitude ocean). We conclude that the influence of swell on atmospheric mixing and wind stress should be considered...

  15. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  16. A boundary element model for diffraction of water waves on varying water depth

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Sanne

    1997-12-31

    In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)

  17. Real time wave forecasting using wind time history and numerical model

    Science.gov (United States)

    Jain, Pooja; Deo, M. C.; Latha, G.; Rajendran, V.

    Operational activities in the ocean like planning for structural repairs or fishing expeditions require real time prediction of waves over typical time duration of say a few hours. Such predictions can be made by using a numerical model or a time series model employing continuously recorded waves. This paper presents another option to do so and it is based on a different time series approach in which the input is in the form of preceding wind speed and wind direction observations. This would be useful for those stations where the costly wave buoys are not deployed and instead only meteorological buoys measuring wind are moored. The technique employs alternative artificial intelligence approaches of an artificial neural network (ANN), genetic programming (GP) and model tree (MT) to carry out the time series modeling of wind to obtain waves. Wind observations at four offshore sites along the east coast of India were used. For calibration purpose the wave data was generated using a numerical model. The predicted waves obtained using the proposed time series models when compared with the numerically generated waves showed good resemblance in terms of the selected error criteria. Large differences across the chosen techniques of ANN, GP, MT were not noticed. Wave hindcasting at the same time step and the predictions over shorter lead times were better than the predictions over longer lead times. The proposed method is a cost effective and convenient option when a site-specific information is desired.

  18. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique

    2014-12-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  19. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  20. Ocean Current and Wave Effects on Wind Stress Drag Coefficient Over the Global Ocean

    National Research Council Canada - National Science Library

    Kara, A. B; Metzger, E. J; Bourassa, Mark A

    2007-01-01

    ...%), but the notable impact of the latter is only evident in the tropical Pacific Ocean; (2) the presence of waves generally makes winds weaker and C0 lower almost everywhere over the global ocean; (3...

  1. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  2. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  3. 76 FR 74776 - Forum-Trends in Extreme Winds, Waves, and Extratropical Storms Along the Coasts

    Science.gov (United States)

    2011-12-01

    ... information, please check the forum Web site at https://sites.google.com/a/noaa.gov/extreme-winds-waves... process. As materials for this forum become available, they may be found at https://sites.google.com/a...

  4. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  5. Soliton turbulence in shallow water ocean surface waves.

    Science.gov (United States)

    Costa, Andrea; Osborne, Alfred R; Resio, Donald T; Alessio, Silvia; Chrivì, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E

    2014-09-05

    We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described theoretically by the soliton limit of the Korteweg-deVries equation, a completely integrable soliton system: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic-quasiperiodic boundary conditions the ergodic solutions of Korteweg-deVries are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as ∼ω-1. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ∼ω-1 region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.

  6. Real Time Wave Forecasting Using Wind Time History and Genetic Programming

    Directory of Open Access Journals (Sweden)

    A.R. Kambekar

    2014-12-01

    Full Text Available The significant wave height and average wave period form an essential input for operational activities in ocean and coastal areas. Such information is important in issuing appropriate warnings to people planning any construction or instillation works in the oceanic environment. Many countries over the world routinely collect wave and wind data through a network of wave rider buoys. The data collecting agencies transmit the resulting information online to their registered users through an internet or a web-based system. Operational wave forecasts in addition to the measured data are also made and supplied online to the users. This paper discusses operational wave forecasting in real time mode at locations where wind rather than wave data are continuously recorded. It is based on the time series modeling and incorporates an artificial intelligence technique of genetic programming. The significant wave height and average wave period values are forecasted over a period of 96 hr in future from the observations of wind speed and directions extending to a similar time scale in the past. Wind measurements made by floating buoys at eight different locations around India over a period varying from 1.5 yr to 9.0 yr were considered. The platform of Matlab and C++ was used to develop a graphical user interface that will extend an internet based user-friendly access of the forecasts to any registered user of the data dissemination authority.

  7. Experimental investigation of effect of surface gravity waves and spray on heat and momentum flux at strong wind conditions

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum

  8. Development of an Integrated Water and Wind Erosion Model

    Science.gov (United States)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  9. Whistler Mode Waves and the Electron Heat Flux in the Solar Wind: Cluster Observations

    Science.gov (United States)

    Lacombe, C.; Alexandrova, O.; Matteini, L.; Santolík, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; de Conchy, Y.; Maksimovic, M.

    2014-11-01

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In ~10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor β e∥ is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for β e∥ >= 3, in slow wind at 1 AU.

  10. Whistler mode waves and the electron heat flux in the solar wind: cluster observations

    Energy Technology Data Exchange (ETDEWEB)

    Lacombe, C.; Alexandrova, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC Université Paris 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Matteini, L. [Imperial College, London SW7 2AZ (United Kingdom); Santolík, O. [Institute of Atmospheric Physics ASCR, 141 31 Prague (Czech Republic)

    2014-11-20

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In ∼10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor β {sub e∥} is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for β {sub e∥} ≥ 3, in slow wind at 1 AU.

  11. High-Resolution Wave Energy Assessment in Shallow Water Accounting for Tides

    Directory of Open Access Journals (Sweden)

    Dina Silva

    2016-09-01

    Full Text Available The wave energy in a shallow water location is evaluated considering the influence of the local tide and wind on the wave propagation. The target is the coastal area just north of the Portuguese city of Peniche, where a wave energy converter operates on the sea bottom. A wave modelling system based on SWAN has been implemented and focused on this coastal environment in a multilevel computational scheme. The first three SWAN computational belonging to this wave prediction system were defined using the spherical coordinates. In the highest resolution computational domain, Cartesian coordinates have been considered, with a resolution of 25 m in both directions. An in-depth analysis of the main characteristics of the environmental matrix has been performed. This is based on the results of eight-year model system simulations (2005–2012. New simulations have been carried out in the last two computational domains with the most relevant wave and wind patterns, considering also the tide effect. The results show that the tide level, together with the wind intensity and direction, may influence to a significant degree the wave characteristics. This especially concerns the wave power in the location where the wave converter operates.

  12. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  13. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  14. Statistical study of waves distribution in the inner magnetosphere using geomagnetic indices and solar wind parameters

    Science.gov (United States)

    Aryan, H.; Yearby, K.; Balikhin, M. A.; Krasnoselskikh, V.; Agapitov, O. V.

    2013-12-01

    The interaction of gyroresonant wave particles with chorus waves largely determine the dynamics of the Earth's radiation belts that effects the acceleration and loss of radiation belt electrons. The common approach is to present model waves distribution in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However it is known that solar wind parameters such as bulk velocity (V) and density (n) are more effective in the control of high energy fluxes at the geostationary orbit. Therefore in the present study the set of parameters of the wave distribution is expanded to include the solar wind parameters in addition to the geomagnetic indices. The present study examines almost four years (01, January, 2004 to 29, September, 2007) of Cluster STAFF-SA, Double Star TC1 and OMNI data in order to present a combined model of wave magnetic field intensities for the chorus waves as a function of magnetic local time (MLT), L-shell (L*), geomagnetic activity, and solar wind velocity and density. Generally, the largest wave intensities are observed during average solar wind velocities (3006cm-3. On the other hand the wave intensity is lower and limited between 06:00 to 18:00 MLT for V700kms-1.

  15. Long term numerical simulation of wind waves in the Greek sea

    Science.gov (United States)

    Lavrenov, I.; Athanassoulis, G.; Dymov, V.

    2003-04-01

    A continues ten-year numerical simulation of wind wave is carried out for the Greek sea with the help of mathematical model developed in the Arctic and Antarctic Research Institute. A numerical grid covers eastern part of the Mediterranean Sea with resolution 10 km. Comparison of numerical results with buoy wave observations shows their good correlation. Numerical results give an opportunity to obtain a reliable estimation of regime and statistics for wind waves at the Geek sea. The investigations are supported by the Grants RFBR-01-05-64846, INTAS-99-666, INTAS-01-234, INTAS-01-2156.

  16. Water waves generated by impulsively moving obstacle

    Science.gov (United States)

    Makarenko, Nikolay; Kostikov, Vasily

    2017-04-01

    There are several mechanisms of tsunami-type wave formation such as piston displacement of the ocean floor due to a submarine earthquake, landslides, etc. We consider simplified mathematical formulation which involves non-stationary Euler equations of infinitely deep ideal fluid with submerged compact wave-maker. We apply semi-analytical method [1] based on the reduction of fully nonlinear water wave problem to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Recently, small-time asymptotic solutions were constructed by this method for submerged piston modeled by thin elliptic cylinder which starts with constant acceleration from rest [2,3]. By that, the leading-order solution terms describe several regimes of non-stationary free surface flow such as formation of inertial fluid layer, splash jets and diverging waves over the obstacle. Now we construct asymptotic solution taking into account higher-order nonlinear terms in the case of submerged circular cylinder. The role of non-linearity in the formation mechanism of surface waves is clarified in comparison with linear approximations. This work was supported by RFBR (grant No 15-01-03942). References [1] Makarenko N.I. Nonlinear interaction of submerged cylinder with free surface, JOMAE Trans. ASME, 2003, 125(1), 75-78. [2] Makarenko N.I., Kostikov V.K. Unsteady motion of an elliptic cylinder under a free surface, J. Appl. Mech. Techn. Phys., 2013, 54(3), 367-376. [3] Makarenko N.I., Kostikov V.K. Non-linear water waves generated by impulsive motion of submerged obstacle, NHESS, 2014, 14(4), 751-756.

  17. Co-located wind-wave farm synergies (Operation and Maintenance): A case study

    International Nuclear Information System (INIS)

    Astariz, S.; Perez-Collazo, C.; Abanades, J.; Iglesias, G.

    2015-01-01

    Highlights: • The shielding effect of WECs located around the wind farm is analysed. • The height wave reductions achieved by 15 different layouts are compared. • The increase in the accessibility to the wind turbines is quantified. • Alpha Ventus offshore wind farm is considered as baseline scenario. • High-resolution numerical modelling (SWAN) and real sea conditions are used. - Abstract: Operation and maintenance can jeopardise the financial viability of an offshore wind energy project due to the cost of downtime, repairs and, above all, the inevitable uncertainties. The variability of wave climate can impede or hinder emergency repairs when a failure occurs, and the resulting delays imply additional costs which ultimately reduce the competitiveness of offshore wind energy as an alternative to fossil fuels. Co-located wind turbines and Wave Energy Converters (WECs) are proposed in this paper as a novel solution: the reduction of the significant wave height brought about by the WECs along the periphery of the wind farm results in a milder wave climate within the farm. This reduction, also called shadow effect, enlarges weather windows for Operation and Maintenance (O and M). The objective of this paper is to investigate the increase in the accessibility time to the turbines and to optimise the layout for the co-located wind-wave farm in order to maximise this time. The investigation is carried out through a case study: Alpha Ventus, an operating offshore wind farm. To maximise the reduction of wave height in the turbine area no fewer than 15 layouts are tested using high-resolution numerical modelling, and a sensitivity analysis is conducted. The results show that, thanks to the wave energy extraction by the WECs, weather windows (access time) can increase very significantly – over 80%. This substantial effect, together with other benefits from the combination of wave and offshore wind power in a co-located farm (common electrical infrastructures

  18. Nonlinear water waves: introduction and overview

    Science.gov (United States)

    Constantin, A.

    2017-12-01

    For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme `Nonlinear water waves' that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results. This article is part of the theme issue 'Nonlinear water waves'.

  19. Wind, waves, and wing loading: Morphological specialization may limit range expansion of endangered albatrosses

    Science.gov (United States)

    Suryan, R.M.; Anderson, D.J.; Shaffer, S.A.; Roby, D.D.; Tremblay, Y.; Costa, D.P.; Sievert, P.R.; Sato, F.; Ozaki, K.; Balogh, G.R.; Nakamura, N.

    2008-01-01

    Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and

  20. Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses.

    Directory of Open Access Journals (Sweden)

    Robert M Suryan

    Full Text Available Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp. inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis, which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to

  1. Numerical Buckling Analysis of Large Suction Caissons for Wind Turbines on Deep Water

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2013-01-01

    Using large suction caissons for offshore wind turbines is an upcoming cost-effective technology also referred to as bucket foundations. During operation, the monopod bucket foundation is loaded by a large overturning moment from the wind turbine and the wave loads. However, during installation...... the suction caisson is loaded by external pressure (internal suction) due to evacuation of water inside the bucket and vertical forces due to gravity. The risk of structural buckling during installation of large-diameter suction caissons is addressed using numerical methods. Initial imperfect geometries...

  2. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    Science.gov (United States)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  3. Statistical study of chorus wave distributions in the inner magnetosphere using Ae and solar wind parameters

    Science.gov (United States)

    Aryan, Homayon; Yearby, Keith; Balikhin, Michael; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Boynton, Richard

    2014-08-01

    Energetic electrons within the Earth's radiation belts represent a serious hazard to geostationary satellites. The interactions of electrons with chorus waves play an important role in both the acceleration and loss of radiation belt electrons. The common approach is to present model wave distributions in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However, it has been shown that only around 50% of geomagnetic storms increase flux of relativistic electrons at geostationary orbit while 20% causes a decrease and the remaining 30% has relatively no effect. This emphasizes the importance of including solar wind parameters such as bulk velocity (V), density (n), flow pressure (P), and the vertical interplanetary magnetic field component (Bz) that are known to be predominately effective in the control of high energy fluxes at the geostationary orbit. Therefore, in the present study the set of parameters of the wave distributions is expanded to include the solar wind parameters in addition to the geomagnetic activity. The present study examines almost 4 years (1 January 2004 to 29 September 2007) of Spatio-Temporal Analysis of Field Fluctuation data from Double Star TC1 combined with geomagnetic indices and solar wind parameters from OMNI database in order to present a comprehensive model of wave magnetic field intensities for the chorus waves as a function of magnetic local time, L shell (L), magnetic latitude (λm), geomagnetic activity, and solar wind parameters. Generally, the results indicate that the intensity of chorus emission is not only dependent upon geomagnetic activity but also dependent on solar wind parameters with velocity and southward interplanetary magnetic field Bs (Bz < 0), evidently the most influential solar wind parameters. The largest peak chorus intensities in the order of 50 pT are observed during active conditions, high solar wind velocities, low solar wind densities, high

  4. Extreme waves in New Zealand waters

    Science.gov (United States)

    Godoi, Victor A.; Bryan, Karin R.; Stephens, Scott A.; Gorman, Richard M.

    2017-09-01

    A detailed climatology of extreme wave events for New Zealand waters is presented, in addition to estimates of significant wave height (Hs) for up to a 100-year return period. Extreme events were explored using 44 years (1958-2001) of wave hindcast data. Comparisons to buoy data at three locations around New Zealand showed negative biases in the model, which nevertheless provided a suitable basis for trends, spatial distribution, and frequency analyses. Results indicate some similarities to patterns previously shown in the mean wave climate, with the largest waves found in southern New Zealand, and the smallest ones observed in areas sheltered from southwesterly swells. The number of extreme events varies substantially throughout the year, while the differences in intensity are more consistent. Events occur more/less frequently in winter/summer months. The greatest mean annual variability of extreme Hs is found on the north coasts of both the North and South Islands, where more locally-generated storms drive the extremes. The interannual variability is largest along the north coast of the country and on the east coast of the South Island, suggesting relationships with La Niña-like effects and the Southern Annular Mode, respectively, which past work showed to be important drivers in these regions. Moreover, the known trend for a more positive Southern Annular Mode may explain the increasing number of extreme events shown in our study.

  5. The distribution of waves in the inner magnetosphere as a function of solar wind parameters

    Science.gov (United States)

    Aryan, Homayon; Balikhin, Michael A.; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Yearby, Keith

    Energetic electrons within the Earth’s radiation belts represent a serious hazard to geostationary satellites. The interactions of electrons with chorus waves play an important role in both the acceleration and loss of radiation belt electrons. Studies of the evolution of energetic electron fluxes rely heavily on numerical codes in order to model energy and pitch angle diffusion due to electron interaction with plasma waves in the frame of quasilinear approximation. Application of these codes requires knowledge of statistical wave models to present wave distributions in the magnetosphere. A number of such models are based on CRESS, Cluster, THEMIS and other mission data. These models present wave distributions as a function of L-shell, magnetic local time, magnetic latitude and geomagnetic activity expressed by geomagnetic indices (Kp or Ae). However, it has been shown by G. Reeves and co-authors that only 50% of geomagnetic storms increase flux of relativistic electrons at GEO while 20% cause a decrease. This emphasizes the importance of including solar wind parameters in addition to geomagnetic indices. The present study examines almost four years (01, January, 2004 to 29, September, 2007) of STAFF (Spatio-Temporal Analysis of Field Fluctuation) data from Double Star TC1 combined with geomagnetic indices and solar wind parameters from OMNI database in order to present a comprehensive model of chorus wave intensities as a function of L-shell, magnetic local time, magnetic latitude, geomagnetic indices and solar wind parameters. The results show that chorus emission is not only sub-storm dependent but also dependent upon solar wind parameters with solar wind velocity evidently the most influential solar wind parameter. The largest peak intensities are observed for lower band chorus during active conditions, high solar wind velocity, low density and high pressure.

  6. Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2018-02-01

    We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.

  7. Aero-hydro-elastic simulation platform for wave energy systems and floating wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, B.S.

    2011-01-15

    This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world's first combined wave and wind energy platform. The floating energy conversion platform, Poseidon, is owned and operated by Floating Power Plant A/S. The platform has been operating for two test periods; one period where it was operating as a wave energy conversion platform only and one period where the three turbines was mounted and the platform operated as a combined wind and wave energy platform. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the first test period has been used for determine if the turbine could be mounted on the platform. Preliminary analysis of data from the second test period indicates that the platform is suitable as wind turbine foundation and that the turbines reduce the platform motion. (Author)

  8. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  9. Wind and water erosion control on semiarid lands

    International Nuclear Information System (INIS)

    Siddoway, F.H.

    1980-01-01

    Commercial crop production on semiarid lands is difficult because insufficient water is often present to manage the system effectively. Erosion control presents the major management problem. The factors contributing to wind erosion and their interaction have been quantified into a wind erosion equation. The control of wind erosion through agronomic alteration of the various factors is discussed. The quantification and control of water erosion is also discussed with respect to the Universal Soil Loss Equation. Radioisotopes tracers have been used in conjunction with these erosion equations to measure soil losses. (author)

  10. Identifying Wave-Particle Interactions in the Solar Wind using Statistical Correlations

    Science.gov (United States)

    Broiles, T. W.; Jian, L. K.; Gary, S. P.; Lepri, S. T.; Stevens, M. L.

    2017-12-01

    Heavy ions are a trace component of the solar wind, which can resonate with plasma waves, causing heating and acceleration relative to the bulk plasma. While wave-particle interactions are generally accepted as the cause of heavy ion heating and acceleration, observations to constrain the physics are lacking. In this work, we statistically link specific wave modes to heavy ion heating and acceleration. We have computed the Fast Fourier Transform (FFT) of transverse and compressional magnetic waves between 0 and 5.5 Hz using 9 days of ACE and Wind Magnetometer data. The FFTs are averaged over plasma measurement cycles to compute statistical correlations between magnetic wave power at each discrete frequency, and ion kinetic properties measured by ACE/SWICS and Wind/SWE. The results show that lower frequency transverse oscillations ( 0.4 Hz) are positively correlated with enhancements in the heavy ion thermal and drift speeds. Moreover, the correlation results for the He2+ and O6+ were similar on most days. The correlations were often weak, but most days had some frequencies that correlated with statistical significance. This work suggests that the solar wind heavy ions are possibly being heated and accelerated by both transverse and compressional waves at different frequencies.

  11. Effects of wind waves versus ship waves on tidal marsh plants: a flume study on different life stages of Scirpus maritimus.

    Science.gov (United States)

    Silinski, Alexandra; Heuner, Maike; Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.

  12. Vertical Wave Impacts on Offshore Wind Turbine Inspection Platforms

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Jacobsen, Niels Gjøl

    2011-01-01

    Breaking wave impacts on a monopile at 20 m depth are computed with a VOF (Volume Of Fluid) method. The impacting waves are generated by the second-order focused wave group technique, to obtain waves that break at the position of the monopile. The subsequent impact from the vertical run-up flow....... The dependence of the vertical platform load to the platform level is discussed. Attention is given to the significant downward force that occur after the upward force associated with the vertical impact. The effect of the numerical resolution on the results is assessed. The position of wave overturning is found...... to be influenced by the grid resolution. For the lowest platform levels, the vertical impact is found to contribute to the peak values of in-line force and overturning moment....

  13. Constrained non-linear waves for offshore wind turbine design

    International Nuclear Information System (INIS)

    Rainey, P J; Camp, T R

    2007-01-01

    Advancements have been made in the modelling of extreme wave loading in the offshore environment. We give an overview of wave models used at present, and their relative merits. We describe a method for embedding existing non-linear solutions for large, regular wave kinematics into linear, irregular seas. Although similar methods have been used before, the new technique is shown to offer advances in computational practicality, repeatability, and accuracy. NewWave theory has been used to constrain the linear simulation, allowing best possible fit with the large non-linear wave. GH Bladed was used to compare the effect of these models on a generic 5 MW turbine mounted on a tripod support structure

  14. Ocean Wave Characteristics in Indonesian Waters for Sea Transportation Safety and Planning

    Directory of Open Access Journals (Sweden)

    Roni Kurniawan

    2016-02-01

    Full Text Available This study was aimed to learn about ocean wave characteristics and to identify times and areas with vulnerability to high waves in Indonesian waters. Significant wave height of Windwaves-05 model output was used to obtain such information, with surface level wind data for 11 years period (2000 to 2010 from NCEP-NOAA as the input. The model output data was then validated using multimission satellite altimeter data obtained from Aviso. Further, the data were used to identify areas of high waves based on the high wave’s classification by WMO. From all of the processing results, the wave characteristics in Indonesian waters were identified, especially on ALKI (Indonesian Archipelagic Sea Lanes. Along with it, which lanes that have high potential for dangerous waves and when it occurred were identified as well. The study concluded that throughout the years, Windwaves-05 model had a magnificent performance in providing of ocean wave characteristics information in Indonesian waters. The information of height wave vulnerability needed to make a decision on the safest lanes and the best time before crossing on ALKI when the wave and its vulnerability is likely low. Throughout the years, ALKI II is the safest lanes among others since it has been identified of having lower vulnerability than others. The knowledge of the wave characteristics for a specific location is very important to design, plan and vessels operability including types of ships and shipping lanes before their activities in the sea.

  15. Temporal variations in the wind and wave climate at a location in the eastern Arabian Sea based on ERA-Interim reanalysis data.

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.

    Temporal variations in wind speed and significant wave height (SWH) at a location in the eastern Arabian Sea are studied using ERA-Interim reanalysis data from 1979 to 2012. A shallow water location is selected for the study since measured buoy data...

  16. Aspects of the Kelvin wave response to episodic wind forcing

    Science.gov (United States)

    Giese, Benjamin S.; Harrison, D. E.

    1990-01-01

    Episodes of westerly wind are an important aspect of surface stress variability in the western Pacific. During ENSO periods, the presence of such wind episodes comprises much of the LF relaxation of the trades over the central and western Pacific. This paper describes the oceanic Kelvin pulse response to a single idealized episode of westerly wind stress, using results from linear theory as well as from a 27-level general circulation model. When stratification typical of the western and eastern Pacific is used, the conservation of energy flux predicts a reduction of surface currents associated with the first baroclinic mode and an enhancement of surface currents associated with the second baroclinic mode. The idealized wind anomaly is also used to drive an ocean general circulation model. When the wind anomaly is weak, the model Kelvin response agrees with predictions of linear theory. For more realistic strong forcing there are three important deviations from linear theory: the amplitude of low baroclinic modes increases; the amplitude of higher baroclinic modes decreases; and the phase speed increases.

  17. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    for further optimization and the consequent potential to make FOWT cost competitive. Generally the study shows that the hybrid modelling approach might currently be sufficient for pre-Detailed Design stages, where higher degrees of conservatism are acceptable. However for multi-unit production the current......While the design of floating offshore wind turbines (FOWT) is still at an infant stage, the general desire to realise them is strong. According to a poll conducted by GL Garrad Hassan at the HUSUM 2012 Wind Energy Trade Fair, 62% of the attendees believed that floaters will be a part of the mix...... and will even overtake bottom fixed foundation within the coming two decades, Bossler (2011). FOWTs are believed having a large potential of lowering the cost of energy (CoE). The CoE minimization is currently the main driver for technological development in the offshore wind industry. Therefore reliable...

  18. Evaluation of wind flow with a nacelle-mounted, continuous wave wind lidar

    DEFF Research Database (Denmark)

    Medley, John; Barker, Will; Harris, Mike

    2014-01-01

    IR, increasing the confidence in the ZephIR for measuring wind parameters in this configuration. SCADA data from the turbine was combined with measured wind speeds and directions to derive power curves from the mast data (hub-height) and from ZephIR data (hub-height and rotor-equivalent). The rotor...

  19. Extreme water level and wave estimation for nearshore of Ningde City

    Science.gov (United States)

    Jin, Y. D.; Wang, E. K.; Xu, G. Q.

    2017-08-01

    The high and low design water levels are calculated by observation tidal data in sea areas of Ningde offshore wind power project from September 2010 to August 2011, with the value 318 cm and -246 cm, respectively. The extreme high and low levels are also calculated using synchronous difference ratio method based on station data from 1973 to 2005 at Sansha station. The value is 431 cm and -378 cm respectively. The design wave elements are estimated using the wave data from Beishuang Station and Pingtan station. On this basis, the SWAN wave model is applied to calculating the design wave elements in the engineering sea areas. The results show that the southern sea area is mainly affected by the wave effect on ESE, and the northern is mainly affected by the E waves. This paper is helpful and useful for design and construction of offshore and coastal engineering.

  20. Directional short wind wave spectra derived from the sea surface photography

    Science.gov (United States)

    Dulov, Vladimir; Yurovskaya, Maria; Chapron, Bertrand; Kudryavtsev, Vladimir

    2014-05-01

    New field measurements of 2-D wave number short wind wave spectra in the wavelength range from few millimeters to few decimeters are reported and discussed. The measurement method proposed by [Kosnik and Dulov, 2011] is based on stereophotography and image brightness contrast processing. The method strongly builds on the brightness cross-spectral analysis to reduce the noise within this short wave gravity and capillary range. Field measurements of wind wave spectra are still rare, and the reported data thus provide valuable information to bring new evidences on the 2-D spectral distribution of short wind waves in the wavelength range from decimeters to millimeters. As found, the folded spectra of decimeter waves are very weakly dependent on the wind speed and its direction. Wind speed and direction sensitivity only starts to appear in the short wavelength range, more precisely in the vicinity of the wave number 100 rad/m, where the wind exponent grows from 0.5 to 1.5-2.5 at 800 rad/m, and angular anisotropy parameter introduced by [Elfouhaily et al., 1997] amounts the value of 0.5. These aspects are consistent with other previously reported optical and radar data. For the latter, we solely extracted the polarization sensitivity to best isolate the contribution associated to the wave saturation spectrum around the Bragg resonant wave number. For the former, mean-squared slope statistics were used to assess the integrated shortscale directional spectral properties. As revealed, observed direction spectral distributions are significantly different from those previously suggested [Elfouhaily et al., 1997; Kudryavtsev et al., 2003, 2005]. On the basis of these new in situ measurements, we then propose to revise the semiempirical analytical model of short wind wave spectra developed by [Kudryavtsev et al., 2003, 2005]. In this model the key parameter is exponent n governing the nonlinear dissipation rate as D ~ Bn+1, where B is saturation spectrum. Accordingly, new

  1. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  2. Importance of air-sea interaction on wind waves, storm surge and hurricane simulations

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2017-04-01

    It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the air-sea interaction process as well as the energy dissipation due to the presence of sea spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum sea level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current

  3. Wind and wave frequency distributions for sites around the British Isles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report presents wind and wave frequency distributions and roses for forty sites around the British Isles. These have been produced using hindcast wind and wave time series data from the NEXT model, for the combined periods January 1977 to December 1979 and January 1989 to December 1994. The database has been subdivided into eight areas: Hebrides Shelf, seven grid points; West Shetland Shelf, four grid points; Northern North Sea, eight grid points; Central North Sea, eight grid points; Southern North Sea, six grid points; English Channel, two grid points; Celtic Sea, three grid points; Irish Sea, two grid points. (author)

  4. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  5. Wind Fab: Manufacturer of water pumping windmills in India

    International Nuclear Information System (INIS)

    Gurumoorthy, S.

    1991-01-01

    Wind Fab is one of the four manufacturers appointed recently by the Indian government to produce a classic gear type wind pump for deep well pumping (H = 50-100 meter). In various regions, the ground water table has been lowering considerably and a deep well wind pump is required. Wind Fab is still producing the 12PU500 windmill. The main problem is that the wind pumps are applied in a wide range of climatological, hydrological and agricultural conditions. Different types of windmills suitable for the different application ranges should be produced. It is explained that the drawings of the 12PU500 windmills were easily available and consequently the windmills were produced all over the country. There was no quality control and the 12PU500 was applied under low lift to high lift conditions. 5 figs., 5 tabs

  6. Radiative amplification of sound waves in the winds of O and B stars

    Science.gov (United States)

    Macgregor, K. B.; Hartmann, L.; Raymond, J. C.

    1979-01-01

    The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. A linearized theory applicable to optically thin waves is used to show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of Zeta Pup (O4f), it is found that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars.

  7. Radiative amplification of sound waves in the winds of O and B stars

    International Nuclear Information System (INIS)

    MacGregor, K.B.; Hartmann, L.; Raymond, J.C.

    1979-01-01

    The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. Using a linearized theory applicable to optically thin waves, we show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that the significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of zeta Pup (O4f), we find that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars

  8. Exact travelling wave solutions for the generalized shallow water wave equation

    International Nuclear Information System (INIS)

    Elwakil, S.A.; El-labany, S.K.; Zahran, M.A.; Sabry, R.

    2003-01-01

    Using homogeneous balance method an auto-Baecklund transformation for the generalized shallow water wave equation is obtained. Then solitary wave solutions are found. Also, modified extended tanh-function method is applied and new exact travelling wave solutions are obtained. The obtained solutions include rational, periodical, singular and solitary wave solutions

  9. Exact travelling wave solutions for the generalized shallow water wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Elwakil, S.A.; El-labany, S.K.; Zahran, M.A.; Sabry, R

    2003-07-01

    Using homogeneous balance method an auto-Baecklund transformation for the generalized shallow water wave equation is obtained. Then solitary wave solutions are found. Also, modified extended tanh-function method is applied and new exact travelling wave solutions are obtained. The obtained solutions include rational, periodical, singular and solitary wave solutions.

  10. Deep water periodic waves as Hamiltonian relative equilibria

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Lie She Liam, L.S.L.; Lakhturov, I.; Andonowati, A.; Biggs, N.

    2007-01-01

    We use a recently derived KdV-type of equation for waves on deep water to study Stokes waves as relative equilibria. Special attention is given to investigate the cornered Stokes-120 degree wave as a singular solution in the class of smooth steady wave profiles.

  11. Spar-Type Vertical-Axis Wind Turbines in Moderate Water Depth: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Ting Rui Wen

    2018-03-01

    Full Text Available The applications of floating vertical-axis wind turbines (VAWTs in deep water have been proposed and studied by several researchers recently. However, the feasibility of deploying a floating VAWT at a moderate water depth has not yet been studied. In this paper, this feasibility is thoroughly addressed by comparing the dynamic responses of spar-type VAWTs in deep water and moderate water depth. A short spar VAWT supporting a 5 MW Darrieus rotor at moderate water depth is proposed by following the deep spar concept in deep water. A fully coupled simulation tool, SIMO-RIFLEX-DMS code, is utilized to carry out time domain simulations under turbulent wind and irregular waves. Dynamic responses of the short spar and deep spar VAWTs are analyzed and compared, including the natural periods, wind turbine performance, platform motions, tower base bending moments, and tension of mooring lines. The statistical characteristics of the thrust and power production for both spars are similar. The comparison of platform motions and tower base bending moments demonstrate a good agreement for both spars, but the short spar has better performance in surge/sway motions and side–side bending moments. The 2P response dominates the bending moment spectra for both spars. A significant variation in tension of Mooring Line 1 and a larger corresponding spectrum value are found in the short spar concept. The results indicate that the application of short spar VAWTs is feasible and could become an alternative concept at moderate water depth.

  12. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions

    Science.gov (United States)

    2016-12-22

    mean wind profile, and a minor reduction in the form drag fraction. This supports recent theoretical perspectives that propose very differing... turnover times. For the results, wind and pressure fields are made dimensionless by (u*, u* 2 ) and all lengths are made dimensionless by  where... turnover times (~ 50) owing to the reduction in the timestep on the fine grid. We found the fine mesh runs were similar in character to the coarse mesh

  13. Flow, waves and water exchange in the Suur Strait, Gulf of Riga, in 2008:

    Directory of Open Access Journals (Sweden)

    Tarmo Kõuts

    2011-03-01

    Full Text Available Wind, flow and wave measurements were performed in November-December in 2008 in the relatively narrowand shallow Suur Strait connecting the waters of the Väinameri and the Gulf of Riga.During the measurement period wind conditions were extremely variable, including a severe storm on 23 November. The flow speedalong the strait varied between ±0.2 m s-1, except for the 0.4 m s-1 that occurred after the storm as a result of the sealevel gradient. The mean and maximum significant wave heights were 0.53 m and 1.6 m respectively. Because of their longer fetch, southerlywinds generated higher waves in the strait than winds from the north. All wave events caused by the stronger southerly windsinduced sediment resuspension, whereas the current-induced shear velocity slightly exceeded the critical value for resuspensiononly when the current speed was 0.4 m s-1. A triple-nested two-dimensional high resolution (100 m in the Suur Strait circulation model and the SWANwave model were used to simulate water exchange in 2008 and the wave-induced shear velocity field in the Suur Strait respectively. Circulation model simulations demonstrated that water exchange was highly variable, that cumulative transport followed an evident seasonal cycle, and that there was an grossannual outflow of 23 km3 from the Gulf of Riga. The horizontal distribution of wave-induced shear velocityduring the strong southerly wind event indicated large shear velocities and substantial horizontal variability. The shearvelocities were less than the critical value for resuspension in the deep area of the Suur Strait.

  14. Wind vs Water in Hurricanes: The Challenge of Multi-peril Hazard Modeling

    Science.gov (United States)

    Powell, M. D.

    2017-12-01

    With the advancing threat of Sea Level Rise much of the U. S. is in danger of falling into the "protection gap". Residential property flood risk is not yet covered by the insurance market. Many coastal properties are not paying into the National Flood Insurance Program (NFIP) at premiums commensurate with the risk. This is exasperated by the program being deep in debt, despite only covering a fraction of the potential loss, while windstorm insurance covers up to replacement value. This results in a battle that benefits nobody. Any significant hurricane will include both wind and storm surge perils at the same time and any coastal property has to contend with the risk of damage by both. If you have extensive flood damage your wind storm policy might deny your claim and your flood policy (if you even have one) will in most cases be constrained to a $250,000 limit. Bring on the litigators! Some homeowners will claim that the wind destroyed the home first and then it was carried away by flood waters or pulverized by waves. Insurers might respond that the storm surge did all the damage and deny the claim. We've seen this already following Hurricane Katrina in 2005, and Hurricane Ike in 2008, with thousands of litigation claims and a cottage industry of scientists serving as expert witnesses on both sides of the aisle. Congress responded in 2012 with the Coastal Act, which provided an "unfunded mandate" directing NOAA to provide wind and water level data to FEMA for input to their "Coastal Formula" for attributing loss to wind and water. The results of the formula would then limit the amount paid by the NFIP by subtracting out the wind loss portion. The Texas Windstorm Insurance Association (TWIA) went further by assembling a panel of experts to recommend guidelines for how the state should respond to future hurricane impacting properties on the Texas coast. The expert panel report was released in April of 2016, and TWIA is currently developing a comprehensive

  15. Combining Probability Distributions of Wind Waves and Sea Level Variations to Assess Return Periods of Coastal Floods

    Science.gov (United States)

    Leijala, U.; Bjorkqvist, J. V.; Pellikka, H.; Johansson, M. M.; Kahma, K. K.

    2017-12-01

    Predicting the behaviour of the joint effect of sea level and wind waves is of great significance due to the major impact of flooding events in densely populated coastal regions. As mean sea level rises, the effect of sea level variations accompanied by the waves will be even more harmful in the future. The main challenge when evaluating the effect of waves and sea level variations is that long time series of both variables rarely exist. Wave statistics are also highly location-dependent, thus requiring wave buoy measurements and/or high-resolution wave modelling. As an initial approximation of the joint effect, the variables may be treated as independent random variables, to achieve the probability distribution of their sum. We present results of a case study based on three probability distributions: 1) wave run-up constructed from individual wave buoy measurements, 2) short-term sea level variability based on tide gauge data, and 3) mean sea level projections based on up-to-date regional scenarios. The wave measurements were conducted during 2012-2014 on the coast of city of Helsinki located in the Gulf of Finland in the Baltic Sea. The short-term sea level distribution contains the last 30 years (1986-2015) of hourly data from Helsinki tide gauge, and the mean sea level projections are scenarios adjusted for the Gulf of Finland. Additionally, we present a sensitivity test based on six different theoretical wave height distributions representing different wave behaviour in relation to sea level variations. As these wave distributions are merged with one common sea level distribution, we can study how the different shapes of the wave height distribution affect the distribution of the sum, and which one of the components is dominating under different wave conditions. As an outcome of the method, we obtain a probability distribution of the maximum elevation of the continuous water mass, which enables a flexible tool for evaluating different risk levels in the

  16. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    Science.gov (United States)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  17. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2013-01-01

    Abstract—Sea-surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate

  18. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Ainslie, M.A.; Colin, M.E.G.D.; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform-related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modelling

  19. Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Velli, M.; Trávníček, Pavel; Gary, S. P.; Goldstein, B. E.; Liewer, P. C.

    2005-01-01

    Roč. 110, - (2005), A12109/1-A12109/11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3042403 Institutional research plan: CEZ:AV0Z30420517 Keywords : Alfvén waves * solar wind heating * microinstabilities Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.784, year: 2005

  20. Integration of Wave and Offshore Wind Energy in a European Offshore Grid

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Sørensen, H. C.; Korpås, M.

    2010-01-01

    of offshore renewable energy sources. According to this, the paper covers i) public and private initiatives for offshore transmission networks, ii) the synergies between the wave and the offshore wind energy sector within an offshore grid, iii) power transmission options for offshore generation and iv...

  1. Observations of wind and waves in the central Bay of Bengal during ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    experiment lasted for about 45 days and various oceanographic and marine meteorological para- meters including wind and waves were collected onboard two research ships which occupied two predetermined positions in the Bay of Bengal. The primary concern of this field experiment was to study the air-sea coupling ...

  2. Influence of Nonlinear Irregular Waves on the Fatigue Loads of an Offshore Wind Turbine

    NARCIS (Netherlands)

    Van der Meulen, M.B.; Ashuri, T.; Van Bussel, G.J.W.; Molenaar, D.P.

    2012-01-01

    In order to make offshore wind power a cost effective solution that can compete with the traditional fossil energy sources, cost reductions on the expensive offshore support structures are required. One way to achieve this, is to reduce the uncertainty in wave load calculations by using a more

  3. On the impact of wind on the development of wave field during storm Britta

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Du, Jianting; Bolaños, Rodolfo

    2017-01-01

    images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea...

  4. Development of a global satellite database of wind and wave data

    Science.gov (United States)

    Sanina, Elena; Babanin, Alexander; Young, Ian

    2016-04-01

    During last almost 30 years a variety of oceanographic satellites have been operating. Data from their instruments such as altimeters (wind speed and wave height), SSMI radiometers (wind speed), scatterometers (wind speed and direction) and Synthetic Aperture Radar, SAR (full directional wave spectrum) is important for design and operation of coastal and offshore structures. In the last decade the database containing data from all these instruments over their full period of operation has been created. In contains calibration and cross-validation of the instruments including validation with the extensive buoy dataset. This study presents the development of the database with the analysis of the average spatial and temporal criteria used in the calibration and addition of interpolated data between the buoy measurements to get values at time of satellite records.

  5. Ionospheric cusp flows pulsed by solar wind Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2002-02-01

    Full Text Available Pulsed ionospheric flows (PIFs in the cusp foot-print have been observed by the SuperDARN radars with periods between a few minutes and several tens of minutes. PIFs are believed to be a consequence of the interplanetary magnetic field (IMF reconnection with the magnetospheric magnetic field on the dayside magnetopause, ionospheric signatures of flux transfer events (FTEs. The quasiperiodic PIFs are correlated with Alfvénic fluctuations observed in the upstream solar wind. It is concluded that on these occasions, the FTEs were driven by Alfvén waves coupling to the day-side magnetosphere. Case studies are presented in which the dawn-dusk component of the Alfvén wave electric field modulates the reconnection rate as evidenced by the radar observations of the ionospheric cusp flows. The arrival of the IMF southward turning at the magnetopause is determined from multipoint solar wind magnetic field and/or plasma measurements, assuming plane phase fronts in solar wind. The cross-correlation lag between the solar wind data and ground magnetograms that were obtained near the cusp footprint exceeded the estimated spacecraft-to-magnetopause propagation time by up to several minutes. The difference can account for and/or exceeds the Alfvén propagation time between the magnetopause and ionosphere. For the case of short period ( < 13 min PIFs, the onset times of the flow transients appear to be further delayed by at most a few more minutes after the IMF southward turning arrived at the magnetopause. For the case of long period (30 – 40 min PIFs, the observed additional delays were 10–20 min. We interpret the excess delay in terms of an intrinsic time scale for reconnection (Russell et al., 1997 which can be explained by the surface-wave induced magnetic reconnection mechanism (Uberoi et al., 1999. Here, surface waves with wavelengths larger than the thickness of the neutral layer induce a tearing-mode instability whose rise time explains the

  6. Ionospheric cusp flows pulsed by solar wind Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    Full Text Available Pulsed ionospheric flows (PIFs in the cusp foot-print have been observed by the SuperDARN radars with periods between a few minutes and several tens of minutes. PIFs are believed to be a consequence of the interplanetary magnetic field (IMF reconnection with the magnetospheric magnetic field on the dayside magnetopause, ionospheric signatures of flux transfer events (FTEs. The quasiperiodic PIFs are correlated with Alfvénic fluctuations observed in the upstream solar wind. It is concluded that on these occasions, the FTEs were driven by Alfvén waves coupling to the day-side magnetosphere. Case studies are presented in which the dawn-dusk component of the Alfvén wave electric field modulates the reconnection rate as evidenced by the radar observations of the ionospheric cusp flows. The arrival of the IMF southward turning at the magnetopause is determined from multipoint solar wind magnetic field and/or plasma measurements, assuming plane phase fronts in solar wind. The cross-correlation lag between the solar wind data and ground magnetograms that were obtained near the cusp footprint exceeded the estimated spacecraft-to-magnetopause propagation time by up to several minutes. The difference can account for and/or exceeds the Alfvén propagation time between the magnetopause and ionosphere. For the case of short period ( < 13 min PIFs, the onset times of the flow transients appear to be further delayed by at most a few more minutes after the IMF southward turning arrived at the magnetopause. For the case of long period (30 – 40 min PIFs, the observed additional delays were 10–20 min. We interpret the excess delay in terms of an intrinsic time scale for reconnection (Russell et al., 1997 which can be explained by the surface-wave induced magnetic reconnection mechanism (Uberoi et al., 1999. Here, surface waves with wavelengths larger than the thickness of the neutral layer induce a tearing-mode instability whose rise time explains the

  7. Simulations of Wind Field Effect on Two-Stream Waves in the Equatorial Electrojet

    Directory of Open Access Journals (Sweden)

    Chi-Lon Fern

    2009-01-01

    Full Text Available The wind field effect on the phase veloc i ties of 3- to 10-me ter Farley-Buneman two-stream waves in the equato rial E region ion o sphere at al titudes in the range of 95 - 110 km is stud ied by nu mer i cal simu la tion. The behav ior of this two-stream wave in the uni form wind field Un in a plane per pen dic u lar to the Earth’s mag netic field is simu lated with a two-di men sional two-fluid code in which elec tron in er tia is ne glected while ion in er tia is re tained. It is con firmed that, the thresh old con di tion for the ap pear ance of two-stream waves is VD C U th » + s + n (1 / cos Y0 q ; and the phase ve loc ity of the two-stream wave at the thresh old con di tion is Vp » Cs + Un cos q, where q is the ele va tion an gle of the wave prop a ga tion in a limited range and Y0 = ninnen / WiWe. The first formula in di cates that the wind field paral lel (anti-par al lel to the elec tron drift ve loc ity will raise (lower the thresh old drift ve loc ity by the amount of the wind speed. This means that par al lel wind is a sta ble fac tor, while anti-paral lel wind is an un sta ble fac tor of two-stream waves. This may ex plain why high speed (larger than acous tic speed two-stream waves were rarely ob served, since larger thresh old drift veloc ity de mands larger po larization elec tric field. The result of the simu la tions at the sat u ra tion stage show that when VD was only slightly larger than VD th , the hor i zon tal phase ve loc ity of the two-stream wave would grad u ally down-shift to the thresh old phase ve loc ity Cs + Un. The physical implications of which are discussed

  8. Horns Rev offshore wind power farm. Environmental impact assessment on water quality

    International Nuclear Information System (INIS)

    Andersen, Per

    2000-05-01

    As part of an overall Environmental Impact Assessment (EIA) undertaken in connection with a planned 150 MW offshore wind farm at Horns Rev, an assessment was made of the effects the wind farm would have on the water quality in the area. This EIA study was drawn up in accordance with the guidelines laid down by the Danish Ministry of Environment and Energy in the publication 'Guidelines for the preparation of EIA studies for offshore wind farms'. Horns Rev is situated off Blaevands Huk, which is Denmark's most westerly point. It is a shallow reef with water depths between 2 and 9 metres and is primarily composed of sand, gravel and pebbles. Only local and minor changes are anticipated in connection with the currents, sediments and wave conditions during the production phase. These will occur in the immediate vicinity of the individual foundations. For these reasons, no changes are expected in the water quality. This also includes also the pelagic primary production and the occurrence of plankton in the area. Increased local copper contamination of phytoplankton and zooplankton may be expected during the production phase, as a result of the total annual discharge of 206 kg copper from the slip-rings in the wind turbines. The contamination will potentially result in a local reduction of the pelagic primary production and changes in the species composition of the plankton. The wind turbines will be sandblasted and painted once during their lifetime, as part of the routine maintenance. The sandblasting and painting will lead to a temporary spill of paint, paint waste and sand. The impacts on water quality and plankton production are unknown. It is recommended that factors such as the toxicity of the paint be investigated, and that spills and the impact of waste be reduced as much as possible. The water quality and the plankton in the wind farm area and along the cable line's passage to shore through the international protected area, will only be affected in a minor way

  9. Intensity statistics of very high frequency sound scattered from wind-driven waves.

    Science.gov (United States)

    Walstead, Sean P; Deane, Grant B

    2016-05-01

    The interaction of vhf 100-1000 kHz underwater sound with the ocean surface is explored. The bistatic forward scatter of 300 kHz sound is measured in a wind driven wave channel. Fluctuations in arrival amplitude are described by the scintillation index (SI) which is a measure of arrival intensity variance. SI initially increases with wind speed but eventually saturates to a value of 0.5 when the root-mean-square (rms) roughness is 0.5 mm. An adjusted scintillation index (SI*) is suggested that accounts for the multiple arrivals and properly saturates to a value of 1. Fluctuations in arrival time do not saturate and increase proportionately to the dominant surface wave component. Forward scattering is modeled at frequencies ranging from 50 to 2000 kHz using the Helmholtz-Kirchhoff integral with surface wave realizations derived from wave gauge data. The amplitude and temporal statistics of the simulated scattering agree well with measured data. Intensity saturation occurs at lower wind speeds for higher frequency sound. Both measured and modeled vhf sound is characterized by many surface arrivals at saturation. Doppler shifts associated with wave motion are expected to vary rapidly for vhf sound however further analysis is required.

  10. Unidirectionally propagating whistler waves in the solar wind: Particle-in-cell simulations

    Science.gov (United States)

    Seough, J.

    2017-12-01

    The right-handed circularly polarized whistler fluctuations have often been observed in a free solar wind region. Interestingly, the measured whistlers propagate preferentially anti-sunward and appear to be characterized by nearly unidirectional propagation quasi-parallel to the local mean magnetic field at propagation angles smaller than 20o. Even though the solar wind electrons including the core and halo components possess temperature anisotropies that could drive the whistler instability, the free energy source of locally generated whistler waves is thought to be heat flux instability due to its unidirectional property. The purpose of this study is to present the possibility that not only heat flux instability but also whistler instability could be a local source of unidirectional whistler wave generation in the solar wind. By making use of both linear Vlasov analysis and electromagnetic particle-in-cell simulation, we show that unidirectionally propagating whistler waves can be naturally generated in situ by electron core temperature anisotropy-driven whistler instability when one takes into account the core-halo relative drift velocity in the proton rest frame. We also carry out particle-in-cell simulations of heat flux instability and compare between the two possible instabilities for understanding nonlinear property such as wave-particle interaction, especially halo electrons and whistler waves.

  11. Periodic folded waves for a (2+1)-dimensional modified dispersive water wave equation

    International Nuclear Information System (INIS)

    Wen-Hua, Huang

    2009-01-01

    A general solution, including three arbitrary functions, is obtained for a (2+1)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and the degenerated single folded solitary waves are investigated graphically and found to be completely elastic. (general)

  12. EXPERIMENTAL DETERMINATION OF WHISTLER WAVE DISPERSION RELATION IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Stansby, D.; Horbury, T. S.; Chen, C. H. K.; Matteini, L., E-mail: david.stansby14@imperial.ac.uk [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-09-20

    The origins and properties of large-amplitude whistler wavepackets in the solar wind are still unclear. In this Letter, we utilize single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wavepackets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarized, travel anti-sunward, and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.

  13. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    Science.gov (United States)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; hide

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  14. A Review of Parametric Descriptions of Tropical Cyclone Wind-Wave Generation

    Directory of Open Access Journals (Sweden)

    Ian R. Young

    2017-10-01

    Full Text Available More than three decades of observations of tropical cyclone wind and wave fields have resulted in a detailed understanding of wave-growth dynamics, although details of the physics are still lacking. These observations are presented in a consistent manner, which provides the basis to be able to characterize the full wave spectrum in a parametric form throughout tropical cyclones. The data clearly shows that an extended fetch model can be used to represent the maximum significant wave height in such storms. The shape stabilizing influence of nonlinear interactions means that the spectral shape is remarkably similar to fetch-limited cases. As such, the tropical cyclone spectrum can also be described by using well-known parametric models. A detailed process is described to parameterize the wave spectrum at any point in a tropical cyclone.

  15. Wind Turbines Make Waves: Why Some Residents near Wind Turbines Become Ill

    Science.gov (United States)

    Havas, Magda; Colling, David

    2011-01-01

    People who live near wind turbines complain of symptoms that include some combination of the following: difficulty sleeping, fatigue, depression, irritability, aggressiveness, cognitive dysfunction, chest pain/pressure, headaches, joint pain, skin irritations, nausea, dizziness, tinnitus, and stress. These symptoms have been attributed to the…

  16. Selecting optimum locations for co-located wave and wind energy farms. Part I: The Co-Location Feasibility index

    International Nuclear Information System (INIS)

    Astariz, S.; Iglesias, G.

    2016-01-01

    Highlights: • New approach to identifying suitable sites for co-located wave and wind farms. • A new tool, the Co-Location Feasibility (CLF) index, is defined. • Its application is analysed by means of a case study off the Danish coast. • Hindcast and measured wave and wind data from 2005 to 2015 are used. • Third-generation models of winds and waves (WAsP and SWAN) are used. - Abstract: Marine energy is poised to play a fundamental role in meeting renewable energy and carbon emission targets thanks to the abundant, and still largely untapped, wave and tidal resources. However, it is often considered difficult and uneconomical – as is usually the case of nascent technologies. Combining various renewables, such as wave and offshore wind energy, has emerged as a solution to improve their competitiveness and in the process overcome other challenges that hinder their development. The objective of this paper is to develop a new approach to identifying suitable sites for co-located wave and wind farms based on the assessment of the available resources and technical constraints, and to illustrate its application by means of a case study off the Danish coast – an area of interest for combining wave and wind energy. The method is based on an ad hoc tool, the Co-Location Feasibility (CLF) index, and is based on a joint characterisation of the wave and wind resources, which takes into account not only the available power but also the correlation between both resources and the power variability. The analysis is carried out based on hindcast data and observations from 2005 to 2015, and using third-generation models of winds and waves – WAsP and SWAN, respectively. Upon selection and ranking, it is found that a number of sites in the study region are indeed suited to realising the synergies between wave and offshore wind energy. The approach developed in this work can be applied elsewhere.

  17. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    coded maps, showing the distribution of mean monthly values of wind and wave parameters over 2.5 degrees square grids. Altimeter derived wind and wave parameters are compared with (1) winds and waves obtained through ships of opportunity and documented...

  18. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the following five lectures: 1. Definitions. Governing equations and boundary conditions. Derivation of velocity potential for linear waves. Dispersion relationship. 2. Particle......The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University. The prerequisites for the course are the course in fluid dynamics also given on the 7th semester and some basic mathematical and physical...... paths, velocities, accelerations, pressure variation, deep and shallow water waves, wave energy and group velocity. 3. Shoaling, refraction, diffraction and wave breaking. 4. Irregular waves. Time domain analysis of waves. 5. Wave spectra. Frequency domain analysis of waves. The present notes are based...

  19. Future wave and wind projections for United States and United-States-affiliated Pacific Islands

    Science.gov (United States)

    Storlazzi, Curt D.; Shope, James B.; Erikson, Li H.; Hegermiller, Christine A.; Barnard, Patrick L.

    2015-01-01

    Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Spatially and temporally varying waves dominate coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact coastal infrastructure, natural and cultural resources, and coastal-related economic activities of the islands. Wave heights, periods, and directions were forecast through the year 2100 using wind parameter outputs from four atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5, for Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive a global WAVEWATCH-III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific for the years 1976–2005 (historical), 2026–2045 (mid-century projection), and 2085–2100 (end-of-century projection). Although the results show some spatial heterogeneity, overall the December-February extreme significant wave heights, defined as the mean of the top 5 percent of significant wave height time-series data modeled within a specific period, increase from present to mid-century and then decrease toward the end of the century; June-August extreme wave heights increase throughout the century within the Central region of the study area; and September-November wave heights decrease strongly throughout the 21st century, displaying the largest and most widespread decreases of any season. Peak wave periods increase east of the International Date Line during the December-February and June-August seasons under RCP4.5. Under the RCP8.5 scenario, wave periods decrease west of the International Date Line during December-February but increase in the eastern half of the study area. Otherwise, wave periods decrease

  20. Wave run-up on offshore wind turbine foundations

    DEFF Research Database (Denmark)

    Baden, Elisabeth; Skourup, Jesper; Andersen, Thomas Lykke

    2012-01-01

    the measured data and the methodology for determination of run-up given by De Vos et al. (2007) and Lykke Andersen et al. (2010) are reassessed with the purpose of avoiding overly conservative designs. It is shown that uncritical use of the Rayleigh distribution in combination with the conventional method...... not known. A comparison is made between wave run-up assessments according to Lykke Andersen et al. (2010) and the proposed alternative methodology is made for existing model test data as well as for extreme North Sea design conditions....

  1. Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic wind-wave loads

    Directory of Open Access Journals (Sweden)

    Haoran Li

    2018-01-01

    Full Text Available Due to integrated stochastic wind and wave loads, the supporting platform of a Floating Offshore Wind Turbine (FOWT has to bear six Degrees of Freedom (DOF motion, which makes the random cyclic loads acting on the structural components, for instance the tower base, more complicated than those on bottom-fixed or land-based wind turbines. These cyclic loads may cause unexpected fatigue damages on a FOWT. This paper presents a study on short-term fatigue damage at the tower base of a 5 MW FOWT with a spar-type platform. Fully coupled time-domain simulations code FAST is used and realistic environment conditions are considered to obtain the loads and structural stresses at the tower base. Then the cumulative fatigue damage is calculated based on rainflow counting method and Miner's rule. Moreover, the effects of the simulation length, the wind-wave misalignment, the wind-only condition and the wave-only condition on the fatigue damage are investigated. It is found that the wind and wave induced loads affect the tower base's axial stress separately and in a decoupled way, and the wave-induced fatigue damage is greater than that induced by the wind loads. Under the environment conditions with rated wind speed, the tower base experiences the highest fatigue damage when the joint probability of the wind and wave is included in the calculation. Moreover, it is also found that 1 h simulation length is sufficient to give an appropriate fatigue damage estimated life for FOWT.

  2. On the Long-term Behaviour of Wind-Wave Climatology over the West Region of Scotland, UK

    Directory of Open Access Journals (Sweden)

    Tarek M El-Geziry

    2015-08-01

    Full Text Available Using 38 years (January 1973-December 2010 of hourly wind records, the present paper aims at drawing the possible long-term trends of winds and ten surface wave parameters over the west region of Scotland using the quadratic regression approach. Four dominant wind components were determined: the southern, the western, the south-western and the north-western. Two opposite groups of oscillations were proven: one for the southern groups and one for the western groups.The examined wave parameters were: the wave frequency, the wave angular frequency, the peak angular frequency, the wave spectral density, the significant wave height, the peak period, both the peak and group velocities and lastly the wave energy and the wave power. Results revealed that every examined parameter tended to have a cyclic behaviour except the wave spectral density, which appeared to be linearly decreasing. All wave frequencies were in an inverse correlation to the mean monthly wind speed. All other wave parameters appeared to be highly correlated to the mean monthly wind speed with correlation factors exceeding 0.95 except the wave power, which had a correlation factor of 0.89.In conclusion, the general behaviours of the dominant wind components over the west region of Scotland, and of the different wave parameters tend to be cyclic. A longer time series, than that presently used, will be advantageous in order to strengthen this outcome with more robust investigation. This concluded cyclic behaviour may positively impact on the engineering work within the wave energy resource off the western coasts of Scotland.

  3. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  4. Wind and water dispersal of wetland plants across fragmented landscapes

    NARCIS (Netherlands)

    Soomers, H.; Karssenberg, D.J.; Soons, M.B.; Verweij, P.A.; Verhoeven, J.T.A.; Wassen, M.J.

    2013-01-01

    Biodiversity in wetlands is threatened by habitat loss and fragmentation, of which agricultural activities often are a cause. Dispersal of plant seeds via wind and ditches (water) may contribute to connecting remnant wetland plant populations in modern agricultural landscapes, and help to

  5. Livestock water pumping with wind and solar power

    Science.gov (United States)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  6. Nutrient losses by wind and water, measurements and modelling

    NARCIS (Netherlands)

    Visser, S.M.; Stroosnijder, L.; Chardon, W.J.

    2005-01-01

    In the Sahelian zone of West-Africa, erosion by both wind and water causes a serious decline in fertility of the already low fertile soils. Despite the fact that the flow of nutrients has been intensively investigated by the use of nutrient balances, little attention has been paid to the

  7. Quasilinear ridge structures in water surface waves

    Science.gov (United States)

    Blümel, R.; Davidson, I. H.; Reinhardt, W. P.; Lin, H.; Sharnoff, M.

    1992-02-01

    Nodal patterns of stationary capillary waves formed on the surface of water enclosed in an agitated ripple tank with circular and stadium-shaped cylindrical walls are examined in the low-frequency (ν700 Hz) regimes. In the low-frequency regime, in agreement with predictions of quantum-chaos theory, the shape of the tank's boundaries (integrable or nonintegrable) dictates the type of nodal patterns obtained. In the high-frequency regime we obtain nodal patterns characterized by short-range order (called ``scarlets'' because they are believed to be the precursors of quantum scars), as recently predicted in the quantum-chaos context by P. O'Connor, J. Gehlen, and E. J. Heller [Phys. Rev. Lett. 58, 1296 (1987)].

  8. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    International Nuclear Information System (INIS)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-01-01

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.

  9. On the impact of wind on the development of wave field during storm Britta

    Science.gov (United States)

    Larsén, Xiaoli Guo; Du, Jianting; Bolaños, Rodolfo; Larsen, Søren

    2017-11-01

    The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height ( H s ) for open sea. It was also demonstrated that the impact of the open cells has negligible contribution to the development of extreme H s observed at FINO 1. At the same time, stability alone is not sufficient in explaining the development of extreme H s . The controlling conditions for the development of Britta extreme H s observed at FINO 1 are the persistent strong winds and a long and undisturbed fetch over a long period.

  10. Ocean swell within the kinetic equation for water waves

    Directory of Open Access Journals (Sweden)

    S. I. Badulin

    2017-06-01

    Full Text Available Results of extensive simulations of swell evolution within the duration-limited setup for the kinetic Hasselmann equation for long durations of up to 2  ×  106 s are presented. Basic solutions of the theory of weak turbulence, the so-called Kolmogorov–Zakharov solutions, are shown to be relevant to the results of the simulations. Features of self-similarity of wave spectra are detailed and their impact on methods of ocean swell monitoring is discussed. Essential drop in wave energy (wave height due to wave–wave interactions is found at the initial stages of swell evolution (on the order of 1000 km for typical parameters of the ocean swell. At longer times, wave–wave interactions are responsible for a universal angular distribution of wave spectra in a wide range of initial conditions. Weak power-law attenuation of swell within the Hasselmann equation is not consistent with results of ocean swell tracking from satellite altimetry and SAR (synthetic aperture radar data. At the same time, the relatively fast weakening of wave–wave interactions makes the swell evolution sensitive to other effects. In particular, as shown, coupling with locally generated wind waves can force the swell to grow in relatively light winds.

  11. Implementation and validation of a coastal forecasting system for wind waves in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    R. Inghilesi

    2012-02-01

    Full Text Available A coastal forecasting system was implemented to provide wind wave forecasts over the whole Mediterranean Sea area, and with the added capability to focus on selected coastal areas. The goal of the system was to achieve a representation of the small-scale coastal processes influencing the propagation of waves towards the coasts. The system was based on a chain of nested wave models and adopted the WAve Model (WAM to analyse the large-scale, deep-sea propagation of waves; and the Simulating WAves Nearshore (SWAN to simulate waves in key coastal areas. Regional intermediate-scale WAM grids were introduced to bridge the gap between the large-scale and each coastal area. Even applying two consecutive nestings (Mediterranean grid → regional grid → coastal grid, a very high resolution was still required for the large scale WAM implementation in order to get a final resolution of about 400 m on the shores. In this study three regional areas in the Tyrrhenian Sea were selected, with a single coastal area embedded in each of them. The number of regional and coastal grids in the system could easily be modified without significantly affecting the efficiency of the system. The coastal system was tested in three Italian coastal regions in order to optimize the numerical parameters and to check the results in orographically complex zones for which wave records were available. Fifteen storm events in the period 2004–2009 were considered.

  12. Turbulent cascade in the solar wind at kinetic scales and quasi-parallel whistler waves

    Science.gov (United States)

    Alexandrova, O.; Lacombe, C.; Mangeney, A.; Grappin, R.; Maksimovic, M.; Matteini, L.; Santolik, O.; Cornilleau-Wehrlin, N.; de Conchy, Y.

    2014-12-01

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies 1-400 Hz, during five years (2001-2005) when Cluster was in the free solar wind, i.e. not magnetically connected to the Earth's bow-shock.In most of the analyzed time intervals, the fluctuations are non-polarized and they have a general spectral shape between the ion scales and a fraction of electron scales. The intensity of these spectra is well correlated to the ion thermal pressure. These non-polarized fluctuations seem to have a negligible frequency in the solar wind frame, and a wavevector anisotropy kperp>>k||. In the rest ~10% of the selected data, we observe narrow-band, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The life time of such waves varies between a few seconds and several hours. We analyze in details the long-lived whistler waves, i.e. with a life time longer than five minutes. We find several conditions for the appearance of such waves: (1) a low level of the background turbulence; (2) a low ion thermal pressure; (3) a slow solar wind speed; (4) an electron heat flux Qe>4μW/m2; (5) an electron mean free path larger than 0.5 AU, i.e., a low collisional frequency; (6) a change in the magnetic field direction. When the level of the background turbulence is high, we cannot affirm that whistler waves do not exist: they can be just masked by the turbulence. The six above conditions for the presence of parallel whistlers in the free solar wind are necessary but are not sufficient. When the electron parallel beta factor βe is larger than 3, the whistler waves are seen along the heat flux

  13. Effect of second-order and fully nonlinear wave kinematics on a tension-leg-platform wind turbine in extreme wave conditions

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Borg, Michael; Robertson, Amy

    2017-01-01

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equa...

  14. Space-time extreme wind waves: Analysis and prediction of shape and height

    Science.gov (United States)

    Alvise, Benetazzo; Francesco, Barbariol; Filippo, Bergamasco; Sandro, Carniel; Mauro, Sclavo

    2017-05-01

    In this study, we present the analysis of the temporal profile and height of space-time (ST) extreme wind waves. Wave data were gathered from an observational ST sample of sea surface elevations collected during an active sea state, and they were examined to detect the highest waves (exceeding the rogue wave threshold) of specific 3D wave groups close to the apex of their development. Two different investigations are conducted. Firstly, local maximum elevations of the groups are examined within the framework of statistical models for ST extreme waves, and compared with observations and predictions of maxima derived by one-point time series of sea surface elevations. Secondly, the temporal profile near the maximum wave crests is analyzed and compared with the expectations of the linear and second-order nonlinear extension of the Quasi-Determinism (QD) theory. Our goal is to verify, with real sea data, to what extent, one can estimate the shape and the crest-to-trough height of near-focusing large 3D wave groups using the QD and ST extreme model results. From this study, it emerges that the elevations close to the crest apex are narrowly distributed around a mean profile, whilst a larger dispersion is observed away from the maximum elevation. Yet the QD model furnishes, on average, a fair prediction of the maximum wave heights, especially when nonlinearities are taken into account. Moreover, we discuss how the combination of ST extreme and QD model predictions allows establishing, for a given sea condition, the portrait of waves with very large crest height. Our results show that these theories have the potential to be implemented in a numerical spectral model for wave extreme prediction.

  15. HF Radar Observations of Current, Wave and Wind Parameters in the South Australian Gulf

    Science.gov (United States)

    Middleditch, A.; Cosoli, S.

    2016-12-01

    The Australian Coastal Ocean Radar Network (ACORN) has been measuring metocean parameters from an array of HF radar systems since 2007. Current, wave and wind measurements from a WERA phased-array radar system in the South Australian Gulf are evaluated using current meter, wave buoy and weather station data over a 12-month period. The spatial and temporal scales of the radar deployment have been configured for the measurement of surface currents from the first order backscatter spectra. Quality control procedures are applied to the radar currents that relate to the geometric configurations, statistical properties, and diagnostic variables provided by the analysis software. Wave measurements are obtained through an iterative inversion algorithm that provides an estimate of the directional frequency spectrum. The standard static configurations and data sampling strategies are not optimised for waves and so additional signal processing steps need to be implemented in order to provide reliable estimates. These techniques are currently only applied in offline mode but a real-time approach is in development. Improvements in the quality of extracted wave data are found through increased averaging of the raw radar data but the impact of temporal non-stationarity and spatial inhomogeneities in the WERA measurement region needs to be taken into account. Validations of wind direction data from a weather station on Neptune Island show the potential of using HF radar to combat the spread of bushfires in South Australia.

  16. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  17. Wave Disturbance Reduction of a Floating Wind Turbine Using a Reference Model-based Predictive Control

    DEFF Research Database (Denmark)

    Christiansen, Søren; Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2013-01-01

    a controller designed for an onshore wind turbine yields instability in the fore-aft rotation. In this paper, we propose a general framework, where a reference model models the desired closed-loop behavior of the system. Model predictive control combined with a state estimator finds the optimal rotor blade...... pitch such that the state trajectories of the controlled system tracks the reference trajectories. The framework is demonstrated with a reference model of the desired closed-loop system undisturbed by the incident waves. This allows the wave-induced motion of the platform to be damped significantly...... compared to a baseline floating wind turbine controller at the cost of more pitch action....

  18. Spectral characteristics of high shallow water waves

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; AshokKumar, K.

    .0081 and 3.3, respectively. By carrying out a multi-regression analysis, an empirical equation is arrived relating the JONSWAP parameters with significant wave height, peak wave period and mean wave period. It was found that the Scott spectra underestimate...

  19. Wave Forces on Transition Pieces for Bucket Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nezhentseva, Anastasia; Andersen, Thomas Lykke; Andersen, Lars Vabbersgaard

    to a bucket foundation (suction caisson) located at 35 m water depth in the North Sea. Several models of the TPs (wedge-shaped steel flange-reinforced shear panels, conical and doubly curved with or without cutaways) are tested in a wave flume and compared with respect to wave loading. Due to a larger size...

  20. Modeling and Observing the Role of Wind-Waves in Lake-Climate Interactions on Titan using the T104 Flyby of Kraken Mare

    Science.gov (United States)

    Hayes, A. G., Jr.; Lorenz, R. D.; Zebker, H. A.; Donelan, M. A.; Karatekin, O.; Mastrogiuseppe, M., Sr.; Le Gall, A. A.; Hofgartner, J. D.; Encrenaz, P.; Poggiali, V.

    2014-12-01

    Oceanography is no longer just an Earth Science. Standing bodies of liquid that interact with both atmospheric and surface reservoirs are known to exist on Titan, and are thought to have existed on early Mars. The exchange of heat, moisture, and momentum between lakes/seas and the atmosphere are of fundamental importance to the hydrologic systems of all three bodies. The generation and propagation of wind-waves, and their consequent shoreline erosion, are key factors in air-sea-surface exchange. Titan, in particular, offers a laboratory in which to understand these processes at a more fundamental level. Much of the parameterization for wave models on Earth are empirical, despite laboratory studies that have demonstrated wave growth depends on both gravity and fluid properties. Titan's exotic environment ensures that even rudimentary measurements of wave generation will provide valuable data to anchor physical models. Furthermore, in the presence of wind waves, Cassini can be used as an anemometer to measure wind speeds over hydrocarbon liquids. Herein, we will report on the results of the Aug 21st altimetry observation over Titan's largest sea, Kraken Mare, and interpret them in the context of wave activity and composition (from passive radiometry). On Earth, it is rare to observe a body of water whose surface is not disturbed by some form of wave activity. On Titan, Cassini observations through the end of its Equinox Mission in Dec 2010 showed no indication of waves. These observations are intriguing given the predominance of aeolian features at equatorial latitudes and have been attributed to the light winds predicted during the Titan winter. More recently, however, the previous series of upper limits and non-detections are giving way to indications that the expected freshening of winds in northern summer may be causing sporadic ruffling of the sea surfaces. Specifically, apparent sunglints offset from the geometric specular point has been observed by VIMS in

  1. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University.......The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University....

  2. Hydrodynamic coefficients for water-wave diffraction by spherical ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The work presented here is the result of water-wave interaction with submerged spheres. Analytical expressions for various hydrodynamic coefficients and loads due to the diffraction of water waves by a submerged sphere are obtained. The exciting force components due to surge and heave motions are derived by solving ...

  3. Hydrodynamic coefficients for water-wave diffraction by spherical ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The work presented here is the result of water-wave interaction with submerged spheres. Analytical ... Since the days of Havelock, the study of water waves has been considered a major part of fluid dynamics. ..... multipole expansions has, on one hand taken care of the singularities in the flow, and on the other hand, help in ...

  4. Modeling Solar Wind Expansion with Wave-Particle Interactions and Coulomb Collisions

    Science.gov (United States)

    Matteini, L.; Hellinger, P.; Landi, S.; Pantellini, F. G. E.; Velli, M.; Franci, L.; Verdini, A.

    2017-12-01

    The evolution of the solar wind plasma is strongly influenced by its spherical expansion in interplanetary space. Due to the weak - but not fully negligible - collisionality of the plasma, the behaviour of the system can be hardly modelled through standard approaches, either fluid or fully collisionless. Moreover, solar wind microphysics depends on many different processes, including the interaction of particles with background waves and turbulence, and plasma instabilities. Disentangling the effect of these processes from the role of intra- and inter-species particle collisions in the framework of the overall secular evolution imposed by the expansion is particularly challenging.In this presentation we will review some basics of the solar wind expansion as well as some of the recent results obtained by means of kinetic numerical models which take into account the radial expansion on the plasma, with emphasis on the comparison with in situ observations and the role of the forthcoming Solar Orbiter and Parker Solar Probe missions.

  5. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    Science.gov (United States)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.

    2014-01-01

    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  6. Whistler mode waves and the electron heat flux in the solar wind: Cluster observations

    Czech Academy of Sciences Publication Activity Database

    Lacombe, C.; Alexandrova, O.; Matteini, L.; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M.

    2014-01-01

    Roč. 796, č. 1 (2014), s. 1-11 ISSN 0004-637X R&D Projects: GA ČR GAP205/10/2279; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : solar wind * turbulence * waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.993, year: 2014 http://iopscience.iop.org/0004-637X/796/1/5/article

  7. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  8. An attempt to define critical wave and wind scenarios leading to capsize in beam sea

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Choi, Ju-hyuck; Kristensen, Hans Otto Holmegaard

    2016-01-01

    for current new buildings with large superstructures. Thus it seems rea-sonable to investigate the possibility of capsizing in beam sea under the joint action of waves and wind using direct time domain simulations. This has already been done in several studies. Here it is combined with the First Order...... for a large container vessel and a small ferry will be discussed in the light of the current weather criterion....

  9. Ultrafast Kelvin waves in the MLT airglow and wind, and their interaction with the atmospheric tides

    Science.gov (United States)

    Egito, Fabio; Arlen Buriti, Ricardo; Fragoso Medeiros, Amauri; Takahashi, Hisao

    2018-02-01

    Airglow and wind measurements from the Brazilian equatorial region were used to investigate the presence and the effects of the 3-4-day ultrafast Kelvin waves in the MLT. The airglow integrated intensities of the OI557.7 nm, O2b(0-1) and OH(6-2) emissions, as well as the OH rotational temperature, were measured by a multichannel photometer, and the zonal and meridional wind components between 80 and 100 km were obtained from a meteor radar. Both instruments are installed in the Brazilian equatorial region at São João do Cariri (7.4° S, 36.5° W). Data from 2005 were used in this study. The 3-4-day oscillations appear intermittently throughout the year in the airglow. They were identified in January, March, July, August and October-November observations. The amplitudes induced by the waves in the airglow range from 26 to 40 % in the OI557.7 nm, 17 to 43 % in the O2b(0-1) and 15 to 20 % in the OH(6-2) emissions. In the OH rotational temperature, the amplitudes were from 4 to 6 K. Common 3-4-day oscillations between airglow and neutral wind compatible with ultrafast Kelvin waves were observed in March, August and October-November. In these cases, the amplitudes in the zonal wind were found to be between 22 and 28 m s-1 and the vertical wavelength ranges from 44 to 62 km. Evidence of the nonlinear interaction between the ultrafast Kelvin wave and diurnal tide was observed.

  10. Ultrafast Kelvin waves in the MLT airglow and wind, and their interaction with the atmospheric tides

    Directory of Open Access Journals (Sweden)

    F. Egito

    2018-02-01

    Full Text Available Airglow and wind measurements from the Brazilian equatorial region were used to investigate the presence and the effects of the 3–4-day ultrafast Kelvin waves in the MLT. The airglow integrated intensities of the OI557.7 nm, O2b(0-1 and OH(6-2 emissions, as well as the OH rotational temperature, were measured by a multichannel photometer, and the zonal and meridional wind components between 80 and 100 km were obtained from a meteor radar. Both instruments are installed in the Brazilian equatorial region at São João do Cariri (7.4° S, 36.5° W. Data from 2005 were used in this study. The 3–4-day oscillations appear intermittently throughout the year in the airglow. They were identified in January, March, July, August and October–November observations. The amplitudes induced by the waves in the airglow range from 26 to 40 % in the OI557.7 nm, 17 to 43 % in the O2b(0-1 and 15 to 20 % in the OH(6-2 emissions. In the OH rotational temperature, the amplitudes were from 4 to 6 K. Common 3–4-day oscillations between airglow and neutral wind compatible with ultrafast Kelvin waves were observed in March, August and October–November. In these cases, the amplitudes in the zonal wind were found to be between 22 and 28 m s−1 and the vertical wavelength ranges from 44 to 62 km. Evidence of the nonlinear interaction between the ultrafast Kelvin wave and diurnal tide was observed.

  11. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2003-07-01

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  12. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  13. CFD Analysis of Water Solitary Wave Reflection

    Directory of Open Access Journals (Sweden)

    K. Smida

    2011-12-01

    Full Text Available A new numerical wave generation method is used to investigate the head-on collision of two solitary waves. The reflection at vertical wall of a solitary wave is also presented. The originality of this model, based on the Navier-Stokes equations, is the specification of an internal inlet velocity, defined as a source line within the computational domain for the generation of these non linear waves. This model was successfully implemented in the PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series code. The collision of two counter-propagating solitary waves is similar to the interaction of a soliton with a vertical wall. This wave generation method allows the saving of considerable time for this collision process since the counter-propagating wave is generated directly without reflection at vertical wall. For the collision of two solitary waves, numerical results show that the run-up phenomenon can be well explained, the solution of the maximum wave run-up is almost equal to experimental measurement. The simulated wave profiles during the collision are in good agreement with experimental results. For the reflection at vertical wall, the spatial profiles of the wave at fixed instants show that this problem is equivalent to the collision process.

  14. Comparative rates of wind versus water erosion from a small semiarid watershed in southern Arizona, USA

    Science.gov (United States)

    Both wind erosion and water erosion can be serious land degradation processes in semi-arid dry-lands. However, the relative erosion rates of wind and water erosion have rarely been studied simultaneously and are poorly quantified. In this study, wind erosion and water erosion rates were simultaneous...

  15. Tropospheric mid-latitude geopotential wave characteristics associated with strong wind events in the North Atlantic/European region

    Science.gov (United States)

    Wild, Simon; Simmonds, Ian; Leckebusch, Gregor C.

    2015-04-01

    The variability of strong synoptic scale wind events in the mid-latitudes have long been linked to baroclinic wave activity in the mid troposphere. Previous studies have also shown that greater amplitudes of planetary waves in the mid troposphere are likely to increase the occurrence of regional extremes in temperature and precipitation. In this study we examine whether characteristics of planetary and synoptic mid-latitude waves show systematic anomalies in the North Atlantic/ European region which can be related to the occurrence of a strong surface wind event. We will mainly focus on two questions: 1) Do amplitudes for waves with different wave lengths show a systematic anomaly when a strong wind event occurs? 2) Can phases of the individual wave components be detected that favour strong wind events? In order to decompose the mid-tropospheric flow into longitudinal waves we employ the fast Fourier transform to the meridional mean of the geopotential height in 500hPa between 35° and 60°N for i) the entire latitude belt and ii) for a North Atlantic/European sector (36°W to 36°E). Our definition of strong wind events is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. First results using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM) for the 50 most intense strong wind systems with respect to the SSI reveal a greater amplitude for all investigated wave numbers. Especially waves with wave lengths below 2000km show an increase of about 25% of the daily standard deviation on average. The distribution of wave phases for the different wave numbers with respect to the location of a strong wind event shows a less homogenous picture. There is however a high proportion of events that can be associated with phases around 3π/4 and 5π/4 of waves with lengths of around 6000km, equivalent to wave number 5 on a planetary scale

  16. Directionality Effects of Aligned Wind and Wave Loads on a Y-Shape Semi-Submersible Floating Wind Turbine under Rated Operational Conditions

    Directory of Open Access Journals (Sweden)

    Shengtao Zhou

    2017-12-01

    Full Text Available The Y-shape (triangular semi-submersible foundation has been adopted by most of the built full-scale floating wind turbines, such as Windfloat, Fukushima Mirai and Shimpuu. Considering the non-fully-symmetrical shape and met-ocean condition, the foundation laying angle relative to wind/wave directions will not only influence the downtime and power efficiency of the floating turbine, but also the strength and fatigue safety of the whole structure. However, the dynamic responses induced by various aligned wind and wave load directions have scarcely been investigated comparatively before. In our study, the directionality effects are investigated by means of combined wind and wave tests and coupled multi-body simulations. By comparing the measured data in three load directions, it is found that the differences of platform motions are mainly derived from the wave loads and larger pitch motion can always be observed in one of the directions. To make certain the mechanism underlying the observed phenomena, a coupled multi-body dynamic model of the floating wind turbine is established and validated. The numerical results demonstrate that the second-order hydrodynamic forces contribute greatly to the directionality distinctions for surge and pitch, and the first-order hydrodynamic forces determine the variations of tower base bending moments and nacelle accelerations. These findings indicate the directionality effects should be predetermined comprehensively before installation at sea, which is important for the operation and maintenance of the Y-shape floating wind turbines.

  17. Effect of Breaking Waves on Scour Processes around Circular Offshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Frigaard, Peter; Hansen, Erik Asp; Christensen, Erik Damgaard

    2005-01-01

    Scour and scour protection is a major issue for the construction of offshore wind farms. The engineer can either include the scour in his design or he can place a scour protection on the seabed. The optimal solution is highly dependent on the maximal scour depth an unprotected foundation will exp......Scour and scour protection is a major issue for the construction of offshore wind farms. The engineer can either include the scour in his design or he can place a scour protection on the seabed. The optimal solution is highly dependent on the maximal scour depth an unprotected foundation...... will experience during its lifetime. Today's design practice has not yet been defined for foundations placed in areas with breaking waves. Some engineers include possible wave breaking in the design by increasing scour depth for current alone. So that the design scour depth is considered to be more than 1.5 times...... the pile diameter. The present study includes some study of scour processes in physical models as well as in a numerical model, under the influence of breaking and broken waves. Only minor influence on the scour depths are observed for the breaking waves....

  18. A study of shock-associated magnetohydrodynamic waves in the solar wind

    Science.gov (United States)

    Spangler, Steven R.

    1992-01-01

    Three major topics were addressed, one theoretical and two observational. The topics were: (1) an attempt to understand the evolution of the large-amplitude magnetohydrodynamic (MHD) waves in the foreshock, using a nonlinear wave equation called the Derivative Nonlinear Schrodinger equation (henceforth DNLS) as a model, (2) using the extensive set of ISE data to test for the presence of various nonlinear wave processes which might be present, and (3) a study of plasma turbulence in the interstellar medium which might be physically similar to that in the solar wind. For these investigations we used radioastronomical techniques. Good progress was made in each of these areas and a separate discussion of each is given.

  19. Multiscale Deterministic Wave Modeling with Wind Input and Wave Breaking Dissipation

    Science.gov (United States)

    2009-01-01

    Kudryavtsev , V. N., Makin, V. K. & Meirink, J. F. 2001 “Simplified model of the air flow above the waves,” Boundary-Layer Meteorol. 100, 63-90. 5 Li...Figure 6. Comparison of pressure profiles with exponential decays: solid line, the Kudryavtsev et al. (2001) profile estimated by Donelan et al

  20. Evolution of statistically inhomogeneous degenerate water wave quartets

    Science.gov (United States)

    Stuhlmeier, R.; Stiassnie, M.

    2017-12-01

    A discretized equation for the evolution of random surface wave fields on deep water is derived from Zakharov's equation, allowing for a general treatment of the stability and long-time behaviour of broad-banded sea states. It is investigated for the simple case of degenerate four-wave interaction, and the instability of statistically homogeneous states to small inhomogeneous disturbances is demonstrated. Furthermore, the long-time evolution is studied for several cases and shown to lead to a complex spatio-temporal energy distribution. The possible impact of this evolution on the statistics of freak wave occurrence is explored. This article is part of the theme issue 'Nonlinear water waves'.

  1. Role of Wind Filtering and Unbalanced Flow Generation in Middle Atmosphere Gravity Wave Activity at Chatanika Alaska

    Directory of Open Access Journals (Sweden)

    Colin C. Triplett

    2017-01-01

    Full Text Available The meteorological control of gravity wave activity through filtering by winds and generation by spontaneous adjustment of unbalanced flows is investigated. This investigation is based on a new analysis of Rayleigh LiDAR measurements of gravity wave activity in the upper stratosphere-lower mesosphere (USLM,40–50kmon 152 nights at Poker Flat Research Range (PFRR, Chatanika, Alaska (65◦ N, 147◦ W, over 13 years between 1998 and 2014. The LiDAR measurements resolve inertia-gravity waves with observed periods between 1 h and 4 h and vertical wavelengths between 2 km and 10 km. The meteorological conditions are defined by reanalysis data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA. The gravity wave activity shows large night-to-night variability, but a clear annual cycle with a maximum in winter,and systematic interannual variability associated with stratospheric sudden warming events. The USLM gravity wave activity is correlated with the MERRA winds and is controlled by the winds in the lower stratosphere through filtering by critical layer filtering. The USLM gravity wave activity is also correlated with MERRA unbalanced flow as characterized by the residual of the nonlinear balance equation. This correlation with unbalanced flow only appears when the wind conditions are taken into account, indicating that wind filtering is the primary control of the gravity wave activity.

  2. Water waves interacting with a current of constant vorticity: estimating the vorticity of the wave field

    Science.gov (United States)

    Simon, Bruno; Seez, William; Abid, Malek; Kharif, Christian; Touboul, Julien

    2017-04-01

    During the last ten years, the topic of water waves interacting with sheared current has drawn a lot of attention, since the interaction of water waves with vorticity was recently found to be significant when modeling the propagation of water waves. In this framework, the configuration involving constantly sheared current (indeed a constant vorticity) is of special interst, since the equations remain tractable. In this framework, it is demonstrated that the flow related to water waves can be described by means of potential theory, since the source term in the vorticity equation is proportionnal to the curvature of the current profile (Nwogu, 2009). In the mean time, the community often wonders if this argument is valid, since the existence of a perfectly linearly sheared current is purely theoretical, and the presence of the vorticity within the wave field can be external (through wave generation mechanisms, for instance). Thus, this work is dedicated to investigate the magnitude of the vorticity related to the wave field, in conditions similar to this analytical case of constant vorticity. This approach is based on the comparison of experimental data, and three models. The first model is linear, supposing a constantly seared current and water waves described by potential theory. The second is fully nonlinear, but still supposing that water waves are potential, and finally, the third model is fully nonlinear, but solves the Euler equations, allowing the existence of vorticity related to the waves. The confrontation of these three approaches with the experimental data will allow to quantify the wave-related vorticity within the total flow, and analyze its importance as a function of nonlinearity and vorticity magnitude. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N°ANR-13-ASTR-0007.

  3. Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    Science.gov (United States)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-08-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm- 3] ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1to100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with lognormal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{turb}/{p_{{0}}} =23.07 (n_{{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2{M}2))^{1.49}(n_{{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  4. Comparison of simulations and offshore measurement data of a prototype of a floating combined wind and wave energy conversion system

    DEFF Research Database (Denmark)

    Yde, Anders; Larsen, Torben J.; Hansen, Anders Melchior

    2015-01-01

    . The numerical model of the platform is based on the aeroelastic code, HAWC2, developed by DTU Wind Energy, which is coupled with a special external system that reads the output generated directly by the wave analysis software, WAMIT. The model also includes models for the dynamic mooring lines as well...... as the turbines non-linear yaw and teeter motion behavior. The main focus on the comparison will be on the statistical trends of the platform motion, mooring loads and turbine loads in measurements and simulations during different operational conditions such as increasing wind speed, wave height and wind...

  5. Shock wave focusing in water inside convergent structures

    Directory of Open Access Journals (Sweden)

    C Wang

    2016-09-01

    Full Text Available Experiments on shock focusing in water-filled convergent structures have been performed. A shock wave in water is generated by means of a projectile, launched from a gas gun, which impacts a water-filled convergent structure. Two types of structures have been tested; a bulk material and a thin shell structure. The geometric shape of the convergent structures is given by a logarithmic spiral, and this particular shape is chosen because it maximizes the amount of energy reaching the focal region. High-speed schlieren photography is used to visualize the shock dynamics during the focusing event. Results show that the fluid-structure interaction between the thin shell structure and the shock wave in the water is different from that of a bulk structure; multiple reflections of the shock wave inside the thin shell are reflected back into the water, thus creating a wave train, which is not observed for shock focusing in a bulk material.

  6. Modeling and Observing the Role of Wind-Waves in Titan's Hydrocarbon Seas

    Science.gov (United States)

    Hayes, A. G., Jr.; Soderblom, J. M.; Donelan, M. A.; Barnes, J. W.; Lorenz, R. D.

    2016-12-01

    Oceanography is no longer just an Earth Science. Standing bodies of liquid that interact with both atmospheric and surface reservoirs are known to exist on Titan and are thought to have existed on early Mars. The exchange of heat, moisture, and momentum between lakes/seas and the atmosphere are of fundamental importance to the hydrologic systems of all three bodies. On Earth, surface liquids are almost always disturbed by some form of wave activity. On Titan, however, Cassini observations through the end of the Equinox Mission (12/2010) showed no indication of surface waves. This was intriguing given the predominance of aeolian features at equatorial latitudes and has been attributed to the light winds predicted during the Titan winter. More recently, the previous series of upper limits and non-detections have given way to indications that the expected freshening of winds in northern summer is causing sporadic ruffling of sea surfaces. Specifically, apparent sunglints offset from the geometric specular point have become a common observation by VIMS and transient radar signatures have been observed over the surfaces of both Ligeia Mare and Kraken Mare. SAR images also reveal morphologies consistent with secondary coastlines, most notably Ontario Lacus and Ligeia Mare. This presentation will review Cassini observations of transient surface activity on Titan's Mare and quantitatively describe the implied constraints on sea surface roughness. Assuming that the transient activity is due to wind waves, we can turn the Cassini spacecraft into an anemometer by coupling roughness constraints to a physics-based model of wave generation and propagation in the Titan environment. By determining the fraction of the lake surface that is oriented in a specific geometry, which can be obtained from either nadir RADAR backscatter or VIMS specular reflection measurements, we can determine the driving wind speeds that best match the observations by matching the fraction of the

  7. Condensation of long-term wave climates for the fatigue design of hydrodynamically sensitive offshore wind turbine support structures

    DEFF Research Database (Denmark)

    Passon, Patrik; Branner, Kim

    2016-01-01

    Cost-efficient and reliable fatigue designs of offshore wind turbine support structures require an adequate representation of the site-specific wind–wave joint distribution. Establishment of this wind–wave joint distribution for design load calculation purposes requires typically a correlation of...

  8. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-08-02

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  9. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-06-03

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  10. Nonlinear shallow water waves: A fractional order approach

    Directory of Open Access Journals (Sweden)

    Sarmad Arshad

    2016-03-01

    Full Text Available Nonlinear partial differential equations governing the obscure phenomena of shallow water waves are discussed in this article. Time fractional model is considered to understand the upcoming solutions on the basis of all historical states of the solution. A semi-analytic technique, Homotopy Perturbation Transform Method (HPTM is used in conjunction with a numerical technique to validate the approximate solutions. With the aid of graphical interpretation, the favorable wave parameters, to avoid wave breaking are estimated.

  11. Pollen, water, and wind: Chaotic mixing in a puddle of water

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig

    2016-01-01

    This paper talks about how pine pollen grains dispersedin an approximately 1 m wide and 1 cm deep water puddle. The pollen has mixed due to wind blowing across the liquid surface, revealing a strikingly complex flow pattern. The flows revealed by nature’s tracer particles may influence circulation...... and nutrient distribution in puddles and small ponds.The flow patterns are generated by wind blowing across the puddle surface. This causes a shear stress at the atmospheric interface, which drives a flow in the liquid below. Chaotic mixing can occur if the wind direction changes over time. A fluid patch...

  12. Short?term statistics of waves observed in deep water

    NARCIS (Netherlands)

    Casas-Prat, M.; Holthuijsen, L.H.

    2010-01-01

    The short?term statistics of 10 million individual waves observed with buoys in deep water have been investigated, corrected for a sample?rate bias, and normalized with the standard deviation of the surface elevation (the range of normalized wave heights is 0 < H < 10). The observed normalized

  13. The Parametric Decay Instability of Alfvén Waves in Turbulent Plasmas and the Applications in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Mijie; Xiao, Chijie; Wang, Xiaogang [State Key Laboratory of Nuclear Physics and Technology, Fusion Simulation Center, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: cjxiao@pku.edu.cn [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-06-10

    We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. This result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.

  14. Wind and Water Power Modeling and Simulation at the NWTC (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-02-01

    Researchers and engineers at the National Wind Technology Center have developed a wide range of computer modeling and simulation tools to support the wind and water power industries with state-of-the-art design and analysis capabilities.

  15. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  16. Wave Loads on Ships Sailing in Restricted Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2003-01-01

    moment a ship may be subjected to during its operational lifetime. Whereas the influence of forward speed and ship heading with respect to the waves usually is accounted for, the effect of water depth is seldom considered, except in non-linear time domain formulations where a confined water domain must...... be specified anyhow. Usually, two-dimensional strip theories, either linear or non-linear, are applied for actual design cases and these theories are normally based on incident deep-water waves and furthermore apply added mass and damping calculations based on infinite water depth. Only a few papers have...... in ship motion with decreasing keel clearance was observed. In the present paper a rigorous implementation of finite water depth in the consistent linear strip theory by Salvesen et al. (1970) is presented together with results for the variation of the motion and wave-induced bending moment with water...

  17. Marine renewables: Exploring the opportunity for combining wind and wave energy

    International Nuclear Information System (INIS)

    Azzellino, Arianna; Riefolo, Luigia; Lanfredi, Caterina; Vicinanza, Diego

    2015-01-01

    Resource diversity is considered the key to manage the intrinsic variability of renewable energy sources and to lower their system integration costs. The expected development of Marine Renewable Energy Installations is likely to result in further transformation of coastal sea areas, already heavily impacted. In this perspective, the combination of different renewables and their potential impact on the environment must be evaluated in the context of the existing pressures. In this study the opportunity of co-locating offshore wind turbines and wave energy converters and their environmental sustainability is evaluated through a quantitative Marine Spatial Planning (MSP) approach. [it

  18. WAVECALC: an Excel-VBA spreadsheet to model the characteristics of fully developed waves and their influence on bottom sediments in different water depths

    Science.gov (United States)

    Le Roux, Jacobus P.; Demirbilek, Zeki; Brodalka, Marysia; Flemming, Burghard W.

    2010-10-01

    The generation and growth of waves in deep water is controlled by winds blowing over the sea surface. In fully developed sea states, where winds and waves are in equilibrium, wave parameters may be calculated directly from the wind velocity. We provide an Excel spreadsheet to compute the wave period, length, height and celerity, as well as horizontal and vertical particle velocities for any water depth, bottom slope, and distance below the reference water level. The wave profile and propagation can also be visualized for any water depth, modeling the sea surface change from sinusoidal to trochoidal and finally cnoidal profiles into shallow water. Bedload entrainment is estimated under both the wave crest and the trough, using the horizontal water particle velocity at the top of the boundary layer. The calculations are programmed in an Excel file called WAVECALC, which is available online to authorized users. Although many of the recently published formulas are based on theoretical arguments, the values agree well with several existing theories and limited field and laboratory observations. WAVECALC is a user-friendly program intended for sedimentologists, coastal engineers and oceanographers, as well as marine ecologists and biologists. It provides a rapid means to calculate many wave characteristics required in coastal and shallow marine studies, and can also serve as an educational tool.

  19. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  20. Non-dispersive traveling waves in inclined shallow water channels

    International Nuclear Information System (INIS)

    Didenkulova, Ira; Pelinovsky, Efim

    2009-01-01

    Existence of traveling waves propagating without internal reflection in inclined water channels of arbitrary slope is demonstrated. It is shown that traveling non-monochromatic waves exist in both linear and nonlinear shallow water theories in the case of a uniformly inclined channel with a parabolic cross-section. The properties of these waves are studied. It is shown that linear traveling waves should have a sign-variable shape. The amplitude of linear traveling waves in a channel satisfies the same Green's law, which is usually derived from the energy flux conservation for smoothly inhomogeneous media. Amplitudes of nonlinear traveling waves deviate from the linear Green's law, and the behavior of positive and negative amplitudes are different. Negative amplitude grows faster than positive amplitude in shallow water. The phase of nonlinear waves (travel time) is described well by the linear WKB approach. It is shown that nonlinear traveling waves of any amplitude always break near the shoreline if the boundary condition of the full absorption is applied.

  1. Effects of waves on water dispersion in a semi-enclosed estuarine bay

    Science.gov (United States)

    Delpey, M. T.; Ardhuin, F.; Otheguy, P.

    2012-04-01

    The bay of Saint Jean de Luz - Ciboure is a touristic destination located in the south west of France on the Basque coast. This small bay is 1.5km wide for 1km long. It is semi-enclosed by breakwaters, so that the area is mostly protected from waves except in its eastern part, where wave breaking is regularly observed over a shallow rock shelf. In the rest of the area the currents are generally weak. The bay receives fresh water inflows from two rivers. During intense raining events, the rivers can introduce pollutants in the bay. The input of pollutants combined with the low level dynamic of the area can affect the water quality for several days. To study such a phenomenon, mechanisms of water dispersion in the bay are investigated. The present paper focuses on the effects of waves on bay dynamics. Several field experiments were conducted in the area, combining wave and current measurements from a set of ADCP and ADV, lagrangian difter experiments in the surfzone, salinity and temperature profile measurements. An analysis of this set of various data is provided. It reveals that the bay combines remarkable density stratification due to fresh water inflows and occasionally intense wave-induced currents in the surfzone. These currents have a strong influence on river plume dynamics when the sea state is energetic. Moreover, modifications of hydrodynamics in the bay passes are found to be remarkably correlated with sea state evolutions. This result suggests a significant impact of waves on the bay flushing. To further analyse these phenomena, a three dimensional numerical model of bay hydrodynamics is developed. The model aims at reproducing fresh water inflows combined with wind-, tide- and wave-induced currents and mixing. The model of the bay is implemented using the code MOHID , which has been modified to allow the three dimensional representation of wave-current interactions proposed by Ardhuin et al. [2008b] . The circulation is forced by the wave field modelled

  2. Fatigue and extreme wave loads on bottom fixed offshore wind turbines. Effects from fully nonlinear wave forcing on the structural dynamics

    DEFF Research Database (Denmark)

    Schløer, Signe

    2013-01-01

    are investigated. Focus is on the sectional moments in the tower and monopile. The equivalent loads and accumulated equivalent load due to the six wind and sea states are further calculated and compared. The wind forcing and the aerodynamic damping are often dominating over the effects from the waves...... response is an important parameter, when the nonlinearity of the waves is investigated. Besides aerodynamic damping other damping effects also exist which affect the structural dynamics. The magnitude of the hydrodynamic damping is therefore also investigated in the thesis. To investigate the effects...

  3. Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline

    Science.gov (United States)

    Zaqarashvili, Teimuraz

    2018-03-01

    The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.

  4. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    Science.gov (United States)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  5. The Combined Effects of Light-wind and Surfactants on Spilling Breakers

    Science.gov (United States)

    Duncan, J. H.; Liu, X.; Wang, D.

    2010-11-01

    Spilling breaking waves in the presence of light-winds and surfactants were studied experimentally in a wind-wave tank. The breaking waves were mechanically generated with a single wave maker motion that produces a weak spilling breaker in clean water without wind. Separate experiments were performed with the same wave maker motion and very low wind speeds in clean water and in water with various concentrations of Triton X-100 (a soluble surfactant). The crest-profiles of the waves along the center plane of the tank were measured with a cinematic laser-induced fluorescence technique. In clean water with a wind speed lower than 2.3 m/s (the minimum wind speed of wind-generated waves in our tank), the wave breaking is initiated with a bulge-capillary-ripple pattern. When the wind speed is above 2.3 m/s, wind waves are generated. These wind waves steepen on the front face of the crest of the mechanically generated waves and trigger breaking of these larger scale waves. In the presence of surfactants, the bulge-capillary-ripple pattern occurs at even higher wind speeds (3 m/s). Geometrical parameters describing the wave crest shape were found to scale with the wind speed to the third power.

  6. Role of 3D-Dispersive Alfven Waves in Coronal Heating and Solar Wind

    Science.gov (United States)

    Sharma, R. P.; Yadav, N.

    2013-03-01

    Dispersive Alfven waves (DAWs) play a very important role in the acceleration and heating of plasma particles in space as well in laboratory plasmas. DAWs may be Kinetic Alfven waves (KAW) or Inertial Alfven waves (IAW) depending upon the plasma beta (here beta is ratio of the plasma thermal pressure and magnetic pressure). Using two-fluid model of plasma DAWs have been studied extensively in literature but to explain the dynamics of Alfvén vortices one has to study the three dimensional (3D) propagation of these waves rather than 2D- propagation. 3D- DAW itself propagates in magnetized plasma in the form of a vortex beam which is manifestation of orbital angular momentum. These magnetic flux ropes or Alfvén vortices trap charged plasma particles and energize and transport them from one place to another. Thus these Alfvén vortices can also be an alternative mechanism to explain the energy transport in space plasmas. Coronal heating is one of the unresolved problems in solar physics. A number of theories have been given to explain the mystery behind coronal heating but no satisfactory solution has been found yet. We propose to study the nonlinear interaction between 3D-DAW and Ion acoustic wave as a mechanism in solar environment to generate the 3D- DAW localized structures. In the absence of ponderomotive non-linearity we get Laguerre Gauss (LG) polynomials as solutions of paraxial wave equation governing propagation of 3D-KAW. These LG modes are characterized by spiral phase front and concentric rings as intensity pattern. The relevance of this nonlinear process to coronal heating and solar wind turbulence has been pointed out. For this we have developed a (numerical) code based on pseudo-spectral technique and simulate this nonlinear interaction.

  7. Numerical simulation of wave-current interaction under strong wind conditions

    Science.gov (United States)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  8. Methods development for cost-effective marine environmental monitoring at offshore wind farms in Norwegian waters

    Energy Technology Data Exchange (ETDEWEB)

    Dahlgren, Thomas; Schlaeppy, Marie-Lise; Olenin, Sergej; Shashkov, Alexej; Heggoey, Erling; Troedsson, Christofer

    2011-07-01

    Full text: Current understanding of the environmental impact from offshore wind farms and experiences in monitoring practices, are restricted to soft-bottom habitats. Due to the large expansion of this source of energy, and the national and international drive to place large parks offshore, there is at present a strong need to further increase our knowledge of the impact on the marine environment in a wider range of habitats. At a national level, it is of importance to develop monitoring methods that are suitable for Norwegian sites and that are adjusted to impact levels expected from wind parks. Biological data on the impact of offshore wind farms in marine ecosystems are predominantly focused on the southern Baltic and southern North Sea. It is shown that large wind farms do have an impact on the marine ecosystem. The most studied effects relate to the introduction of hard substrate (the turbine foundation and scour protection) in an area made exclusively of soft sediments. This leads to an introduction of a new category of fauna, a higher productivity and a shift in community structure and species composition. In addition, the construction of an offshore wind farm excludes other activities with potentially high negative impacts on the marine ecosystem such as bottom trawling. These findings are not necessary applicable to rocky shorelines such as those bordering the Norwegian coast and the first full-scale offshore wind farm, Havsul 1. The Havsul site borders an open ocean with high average yearly wind-speeds of more than 20 knots. A relatively narrow shelf and steep underwater topography creates waves of substantial heights and a benthic marine ecosystem that is fundamentally different from the shallow water, soft sediment substrates in the southern Baltic and North Seas. Instead, areas in Norway with water depths suitable for today.s design of offshore wind farms (down to a depth of about 30-50 m) have a complex topography and a mosaic of substrate types are

  9. Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents

    Science.gov (United States)

    Diez, M.; Redondo, J. M.

    2009-04-01

    As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities

  10. Calming the Waters or Riding the Waves?

    DEFF Research Database (Denmark)

    Rydén, Pernille; Kottika, Efthymia; Hossain, Muhammad Ismail

    Traditional consumer anger management tends to be compromising rather than empowering the brand. This paper conceptualizes and provides a case example on how consumer empowerment and negative emotions can in fact create opportunities for companies to ride the waves of consumer anger in a way that...

  11. Modelling and simulation of surface water waves

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Westhuis, J.H.

    2002-01-01

    The evolution of waves on the surface of a layer of fluid is governed by non-linear effects from surface deformations and dispersive effects from the interaction with the interior fluid motion. Several simulation tools are described in this paper and compared with real life experiments in large

  12. Mountain waves modulate the water vapor distribution in the UTLS

    Science.gov (United States)

    Heller, Romy; Voigt, Christiane; Beaton, Stuart; Dörnbrack, Andreas; Giez, Andreas; Kaufmann, Stefan; Mallaun, Christian; Schlager, Hans; Wagner, Johannes; Young, Kate; Rapp, Markus

    2017-12-01

    The water vapor distribution in the upper troposphere-lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m-2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our

  13. Mountain waves modulate the water vapor distribution in the UTLS

    Directory of Open Access Journals (Sweden)

    R. Heller

    2017-12-01

    Full Text Available The water vapor distribution in the upper troposphere–lower stratosphere (UTLS region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m−2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor

  14. The Role of Solar Wind Structures in the Generation of ULF Waves in the Inner Magnetosphere

    Science.gov (United States)

    Alves, L. R.; Souza, V. M.; Jauer, P. R.; da Silva, L. A.; Medeiros, C.; Braga, C. R.; Alves, M. V.; Koga, D.; Marchezi, J. P.; de Mendonça, R. R. S.; Dallaqua, R. S.; Barbosa, M. V. G.; Rockenbach, M.; Dal Lago, A.; Mendes, O.; Vieira, L. E. A.; Banik, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C. A.

    2017-07-01

    The plasma of the solar wind incident upon the Earth's magnetosphere can produce several types of geoeffective events. Among them, an important phenomenon consists of the interrelation of the magnetospheric-ionospheric current systems and the charged-particle population of the Earth's Van Allen radiation belts. Ultra-low-frequency (ULF) waves resonantly interacting with such particles have been claimed to play a major role in the energetic particle flux changes, particularly at the outer radiation belt, which is mainly composed of electrons at relativistic energies. In this article, we use global magnetohydrodynamic simulations along with in situ and ground-based observations to evaluate the ability of two different solar wind transient (SWT) events to generate ULF (few to tens of mHz) waves in the equatorial region of the inner magnetosphere. Magnetic field and plasma data from the Advanced Composition Explorer (ACE) satellite were used to characterize these two SWT events as being a sector boundary crossing (SBC) on 24 September 2013, and an interplanetary coronal mass ejection (ICME) in conjunction with a shock on 2 October 2013. Associated with these events, the twin Van Allen Probes measured a depletion of the outer belt relativistic electron flux concurrent with magnetic and electric field power spectra consistent with ULF waves. Two ground-based observatories apart in 90°C longitude also showed evidence of ULF-wave activity for the two SWT events. Magnetohydrodynamic (MHD) simulation results show that the ULF-like oscillations in the modeled electric and magnetic fields observed during both events are a result from the SWT coupling to the magnetosphere. The analysis of the MHD simulation results together with the observations leads to the conclusion that the two SWT structures analyzed in this article can be geoeffective on different levels, with each one leading to distinct ring current intensities, but both SWTs are related to the same disturbance in the

  15. The Effect of Wind Velocity on the Cooling Rate of Water

    OpenAIRE

    Shrey Aryan

    2016-01-01

    The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  16. Do wave heights and water levels increase ocean lifeguard rescues?

    Science.gov (United States)

    Koon, William; Rowhani-Rahbar, Ali; Quan, Linda

    2017-12-05

    To investigate the association of wave height and tidal water level changes with the frequency of ocean lifeguard rescues. All ocean lifeguard rescues recorded by Newport Beach Lifeguards in 2015 and 2016 were linked by time and location to weather and ocean variables contained in other historical databases. We performed separate multivariable analyses using mixed effects negative binomial regression to evaluate the total effects of wave height, mean water level (primarily set by tidal elevation), and rising vs. falling water level, on the frequency of ocean rescue in the study location, controlling for confounding variables. Newport Beach Lifeguards made 8046 rescues during the study period. In all areas of the beach, rescue frequency increased as waves got larger (IRR: 3.25; 95%CI: 2.91-3.79) but then decreased in large surf (IRR: 0.52; 95%CI: 0.37-0.73). In two sections of beach, lifeguards made more rescues during lower water levels, but in the third section of beach, made more rescues during higher water levels. Rescue frequency increased in two sections of beach with rising water levels, but did not in the other section. Wave height, water level, and water level direction were associated with rescue frequency, but the environmental factors included in the analysis did not fully account for most variation in rescue frequency. Other factors need to be evaluated to identify major determinants of rescue frequency. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Wind energy applications for municipal water services: Opportunities, situational analyses, and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miner-Nordstrom, L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.

  18. Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean

    Science.gov (United States)

    Gallagher, Sarah; Gleeson, Emily; Tiron, Roxana; McGrath, Ray; Dias, Frédéric

    2016-04-01

    Ireland has a highly energetic wave and wind climate, and is therefore uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of the marine resource to Ireland makes it critical to quantify how the wave and wind climate may change in the future due to global climate change. Projected changes in winds, ocean waves and the frequency and severity of extreme weather events should be carefully assessed for long-term marine and coastal planning. We derived an ensemble of future wave climate projections for Ireland using the EC-Earth global climate model and the WAVEWATCH III® wave model, by comparing the future 30-year period 2070-2099 to the period 1980-2009 for the RCP4.5 and the RCP8.5 forcing scenarios. This dataset is currently the highest resolution wave projection dataset available for Ireland. The EC-Earth ensemble predicts decreases in mean (up to 2 % for RCP4.5 and up to 3.5 % for RCP8.5) 10 m wind speeds over the North Atlantic Ocean (5-75° N, 0-80° W) by the end of the century, which will consequently affect swell generation for the Irish wave climate. The WAVEWATCH III® model predicts an overall decrease in annual and seasonal mean significant wave heights around Ireland, with the largest decreases in summer (up to 15 %) and winter (up to 10 %) for RCP8.5. Projected decreases in mean significant wave heights for spring and autumn were found to be small for both forcing scenarios (less than 5 %), with no significant decrease found for RCP4.5 off the west coast in those seasons.

  19. Structured Slow Solar Wind Variability: Streamer Blob Flux Ropes and Torsional Alfven Waves

    Science.gov (United States)

    Lynch, B. J.; Higginson, A. K.

    2017-12-01

    The slow solar wind exhibits strong variability on timescales from minutes to days, in addition to changing with the heliosphere on longer timescales from months to years. While the large-scale changes are likely due to the emerging or restructuring of coronal flux, the variability in magnetic field and plasma properties on the smaller timescales is likely related to magnetic reconnection processes in the extended solar corona. Higginson et al. (2017, ApJ 840, L10) presented a numerical magnetohydrodynamic simulation which showed that interchange magnetic reconnection is likely responsible for the release of much of the slow solar wind, including along topological features known as the Separatrix-web (S-web). Here, we continue our analysis of the Higginson et al. simulation, focusing now on two specific aspects of structured slow solar wind variability. First, we examine the formation and evolution of three-dimensional magnetic flux ropes that form at the top of the helmet streamer belt by reconnection in the heliospheric current sheet (HCS). Second, we examine the simulated remote and in situ signatures of the large-scale torsional Alfven wave (TAW) which propagates along an S-web arc to high latitudes. We describe the similarities and differences between the reconnection-generated flux ropes in the HCS, which resemble the well-known "streamer blob" observations, and the similarly structured TAW. We discuss the implications of our results for the complexity of the HCS and surrounding plasma sheet, and the potential for particle acceleration, as well as the interchange reconnection scenarios which may generate TAWs in the solar corona. We consider our simulation results within the context of the future Parker Solar Probe and Solar Orbiter observations, and make predictions for the dynamic slow solar wind in the extended corona and inner heliosphere.

  20. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    Science.gov (United States)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  1. Comparison of Simulations and Offshore Measurement Data of a Combined Floating Wind and Wave Energy Demonstration Platform

    DEFF Research Database (Denmark)

    Yde, Anders; Larsen, Torben J.; Hansen, Anders Melchior

    2015-01-01

    In this paper, results from comparisons of simulations and measured offshore data from a floating combined wind and wave energy conversion system are presented. The numerical model of the platform is based on the aeroelastic code, HAWC2, developed by DTU Wind Energy, which is coupled with a special...... external system that reads the output generated directly by the wave analysis software WAMIT. The main focus of the comparison is on the statistical trends of the platform motion, mooring loads, and turbine loads in measurements and simulations during different operational conditions. Finally, challenges...

  2. Conservation laws for shallow water waves on a sloping beach

    OpenAIRE

    Akyildiz, Yilmaz

    1986-01-01

    Shallow water waves are governed by a pair of non-linear partial differential equations. We transfer the associated homogeneous and non-homogeneous systems, (corresponding to constant and sloping depth, respectively), to the hodograph plane where we find all the non-simple wave solutions and construct infinitely many polynomial conservation laws. We also establish correspondence between conservation laws and hodograph solutions as well as Bäcklund transformations by using the linear nature of...

  3. Lake St. Clair: Storm Wave and Water Level Modeling

    Science.gov (United States)

    2013-06-01

    moving synoptic , and meso-scale meteorological events as they crossed Lake Michigan. It was observed at the onset of this study that Lake St...significant wave height, and a negative bias in the wave period estimates. All of these results present a different picture than the previous tests. As in...simulation forcing parameters:  Input the ADCIRC mesh (fort.14) and the water level adjustment to the synoptic lake level (fort.13) for a specific storm

  4. Shock waves in water at low energy pulsed electric discharges

    International Nuclear Information System (INIS)

    Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu

    2012-01-01

    Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of ≤1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.

  5. IFREMER-ADEME colloquium 'Offshore renewable energies: offshore wind energy - sea currents and waves. Collection of abstracts

    International Nuclear Information System (INIS)

    2004-10-01

    This document contains programme and abstracts of contributions presented during a colloquium. These contributions first addresses the context, and regulatory and economic aspects of offshore wind and sea energy: specificities related to the Public Maritime Domain for the implantation of offshore wind turbines, economy of sea energies within a perspective of de-carbonation of the world energy sector, case of offshore wind turbines and assessment of economic impacts of the implantation of sea renewable energy production units, financing stakes for offshore wind energy projects. A second set of contribution addresses the state-of -the-art and feedbacks for offshore wind energy installations. The third set addresses the assessment of resource potential, measurements, models and production prediction for offshore wind energy: case of French coasts, use of radar for remote sensing, wind climatology modelling, data acquisition for wind farm and data processing. The fourth set of contributions addresses the state-of-the-art, feedback, and R and D for sea current energy, while the fifth one addressed the same aspects for sea wave energy. Technology, installations, maintenance and storage in the field of wind energy are then addressed, and the last set deals with environmental and social-economical impacts of sea renewable energies

  6. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    Science.gov (United States)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  7. System for harvesting water wave energy

    Science.gov (United States)

    Wang, Zhong Lin; Su, Yanjie; Zhu, Guang; Chen, Jun

    2016-07-19

    A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.

  8. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  9. Influence of winds on temporally varying short and long period gravity waves in the near shore regions of the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Glejin, J.; SanilKumar, V.; Nair, T.M.B.; Singh, J.

    Wave data collected off Ratnagiri, west coast of India, during 1 May 2010 to 30 April 2012 are used in this study. Seasonal and annual variations in wave data controlled by the local wind system such as sea breeze and land breeze, and remote wind...

  10. Effect of Coupled Non linear Wave Kinematics and Soil Flexibility on the Design Loads of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Kim, Taeseong; Natarajan, Anand

    2013-01-01

    The design driving loads on offshore wind turbine monopile support structures at water depths of 35m, which are beyond current monopile installation depths, are derived based on fully coupled aerohydroelastic simulations of the wind turbine in normal operation and in storm conditions in the prese...

  11. Wave-Particle Interactions in the Radiation Belts, Aurora,and Solar Wind: Opportunities for Lab Experiments

    Science.gov (United States)

    Kletzing, C.

    2017-12-01

    The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.

  12. Analytical approximation and numerical simulations for periodic travelling water waves.

    Science.gov (United States)

    Kalimeris, Konstantinos

    2018-01-28

    We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).

  13. Conditionally invariant solutions of the rotating shallow water wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Huard, Benoit, E-mail: huard@dms.umontreal.c [Departement de mathematiques et de statistique, CP 6128, Succc. Centre-ville, Montreal, (QC) H3C 3J7 (Canada)

    2010-06-11

    This paper is devoted to the extension of the recently proposed conditional symmetry method to first-order nonhomogeneous quasilinear systems which are equivalent to homogeneous systems through a locally invertible point transformation. We perform a systematic analysis of the rank-1 and rank-2 solutions admitted by the shallow water wave equations in (2 + 1) dimensions and construct the corresponding solutions of the rotating shallow water wave equations. These solutions involve in general arbitrary functions depending on Riemann invariants, which allow us to construct new interesting classes of solutions.

  14. Water vapor estimation using digital terrestrial broadcasting waves

    Science.gov (United States)

    Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.

    2017-03-01

    A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.

  15. [Impact of wind-water alternate erosion on the characteristics of sediment particles].

    Science.gov (United States)

    Tuo, Deng-Feng; Xu, Ming-Xiang; Ma, Xin-Xin; Zheng, Shi-Qing

    2014-02-01

    Wind and water are the two dominant erosion agents that caused soil and water losses in the wind-water alternate erosion region on the Loess Plateau. It is meaningful to study the impact of wind-water alternate erosion on the characteristics of soil particles for understanding the response of soil quality and environment to erosion. Through wind tunnel combined rainfall simulation, this paper studied the characteristics of the erosive sediment particles under the effect of wind-water alternate erosion. The results showed that the particles of 0-1 cm soil were coarsened by wind erosion at the wind speeds of 11 and 14 m x s(-1) compared with no wind erosion. Soil fine particles ( 0.05 mm) increased by 16.8%-20.8%. The physical property of surface soil was changed by the wind erosion, which, in turn, caused an increase in finer particles content in the sediment. Compared with no wind erosion, fine particles (water-wind alternate erosion increased by 2.7%-18.9% , and coarse particles (> 0.05 mm) decreased by 3.7%-9.3%. However, the changing trend of erosive sediment particles after the wind erosion at wind speeds of 11 and 14 m x s(-1) was different along with the rainfall intensity and duration. The erosive sediment particles at the rainfall intensities of 60, 80, 100 mm x h(-1) changed to greater extents than at the 150 mm x h(-1) rainfall intensity with longer than 15 min runoff flowing.

  16. Joint Evaluation of the Wave and Offshore Wind Energy Resources in the Developing Countries

    Directory of Open Access Journals (Sweden)

    Eugen Rusu

    2017-11-01

    Full Text Available The objective of the present work is to assess the global wind and wave resources in the vicinity of some developing countries by evaluating 16-year of data (2001–2016, coming from the European Centre for Medium range Weather Forecast (ECMWF. Until now, not much work has been done to evaluate and use the renewable energy sources from these marine environments. This is because most of the attention was focused on more promising areas, such as the European coasts, which are more advanced in terms of technical and economical aspects. A general perspective of the current energy market from the selected target areas is first presented, indicating at the same time the progresses that have been reported in the field of the renewable energy. Besides the spatial and seasonal variations of the marine resources considered, the results also indicate the energy potential of these coastal environments as well as the performances of some offshore wind turbines, which may operate in these regions.

  17. The Reduction of Partitioned Wind and Water Erosion by Conservation Agriculture

    Science.gov (United States)

    Soil loss due to wind and water erosion degrades the soil and results in environmental problems downstream and downwind of the source field. Wind and water erosion may both occur to varying extents particularly in semi-arid environments. Soil conservation strategies require information about the p...

  18. Farmers' perceptions of erosion by wind and water in northern Burkina Faso

    NARCIS (Netherlands)

    Visser, S.M.; Leenders, J.K.; Leeuwis, M.

    2003-01-01

    Wind and water erosion are widespread phenomena throughout the Sahel, especially in the early rainy season, when high-intensity rainstorms are often preceded by severe windstorms. This paper describes the results of a survey on the farmers' perceptions of wind and water erosion processes and control

  19. Techniques for simultaneous quantification of wind and water erosion in semi-arid regions

    NARCIS (Netherlands)

    Visser, S.M.; Sterk, G.; Ribolzi, O.

    2004-01-01

    Wind and water erosion are usually studied as two separate processes. However, in semi-arid zones both processes contribute significantly to soil degradation. Whereas for water erosion the direction of sediment transport is controlled by topography, in wind erosion the direction of transport is

  20. Design Loads on Platforms on Offshore wind Turbine Foundations with Respect to Vertical Wave Run-up

    DEFF Research Database (Denmark)

    Damsgaard, Mathilde L.; Gravesen, Helge; Andersen, Thomas Lykke

    2007-01-01

    Experiences have shown that the vertical run-up generated by waves meeting the offshore wind turbine foundations, can result in rather vigorous loads on appurtenances and platform structures. This study aims to provide a qualitative method of determining run-up height and the following loads...

  1. Energetics of Wind-Induced Internal Wave Radiation from the Base of the Mixed Layer in the North Atlantic

    Science.gov (United States)

    Voelker, G. S.; Mertens, C.; Myers, P. G.; Olbers, D. J.; Walter, M.

    2016-02-01

    Energy transfer mechanisms between atmosphere and the deep ocean have been studied for many years. Their importance to the ocean's energy balance and possible implications on mixing are widely accepted. The slab model is a well-established simulation of near-inertial motion and energy inferred through wind-ocean interaction. However, temporally coarse resolution wind forcing data in combination with rough internal wave energy flux assumptions are mainly used. A slab model using hourly wind forcing from the NCEP-CFSR reanalysis allowing computations up to high latitudes without loss of resonance was set up. It was validated with buoy data from 44 sites in the Atlantic, Indian and Pacific Oceans and the Mediterranean Sea. Augmenting the one-dimensional model by the horizontal divergence of the near-inertial current field at the mixed layer base led to direct estimates of energy transfer spectra of radiation of internal waves into the ocean interior. No crucial assumptions on transfer physics were made. Results of the hybrid model indicated the presence of internal wave modes at the base of the mixed layer. Spatially-advancing wind stress fronts were identified as their main driver and thus they acted as the major source for internal wave radiation into the deep ocean. Accordingly, mid-latitude storms with a strong seasonal cycle as well as isolated tropical storm tracks are dominant in energy fluxes in the North Atlantic.

  2. Surface-wave-sustained plasma torch for water treatment

    Science.gov (United States)

    Marinova, P.; Benova, E.; Todorova, Y.; Topalova, Y.; Yotinov, I.; Atanasova, M.; Krcma, F.

    2018-02-01

    In this study the effects of water treatment by surface-wave-sustained plasma torch at 2.45 GHz are studied. Changes in two directions are obtained: (i) changes of the plasma characteristics during the interaction with the water; (ii) water physical and chemical characteristics modification as a result of the plasma treatment. In addition, deactivation of Gram positive and Gram negative bacteria in suspension are registered. A number of charged and excited particles from the plasma interact with the water. As a result the water chemical and physical characteristics such as the water conductivity, pH, H2O2 concentration are modified. It is observed that the effect depends on the treatment time, wave power, and volume of the treated liquid. At specific discharge conditions determined by the wave power, gas flow, discharge tube radius, thickness and permittivity, the surface-wave-sustained discharge (SWD) operating at atmospheric pressure in argon is strongly non-equilibrium with electron temperature T e much higher than the temperature of the heavy particles (gas temperature T g). It has been observed that SWD argon plasma with T g close to the room temperature is able to produce H2O2 in the water with high efficiency at short exposure times (less than 60 sec). The H2O2 decomposition is strongly dependant on the temperature thus the low operating gas temperature is crucial for the H2O2 production efficiency. After scaling up the device, the observed effects can be applied for the waste water treatment in different facilities. The innovation will be useful especially for the treatment of waters and materials for medical application.

  3. Application of Monochromatic Ocean Wave Forecasts to Prediction of Wave-Induced Currents

    Science.gov (United States)

    Poole, L. R.

    1975-01-01

    Stoke's wave-induced currents are compared, for variety of wind conditions resulting in partially developed seas and for two water depths, with currents induced by average and significant monochromatic waves related to Bretschneider spectrum.

  4. A multi-decadal wind-wave hindcast for the North Sea 1949-2014: coastDat2

    Science.gov (United States)

    Groll, Nikolaus; Weisse, Ralf

    2017-12-01

    Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such wave data are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949-2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular, comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement, while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the doi:10.1594/WDCC/coastDat-2_WAM-North_Sea Groll and Weisse(2016) or via the coastDat web-page http://www.coastdat.de.

  5. Assessing the Controversy between Altimetry, Radiometry, and Scatterometry: Satellite Observation Requirements for Trends in Extreme Winds and Waves

    Science.gov (United States)

    Keefer, J.; Bourassa, M. A.

    2014-12-01

    A recent study (Young et al. 2011) investigated recent global trends in mean and extreme (90th- and 99th-percentile) wind speed and wave height. Wentz and Ricciardulli (2011) have criticized the study, citing the methodology solely employing data collected from a series of altimetry missions and lack of adequate verification of the results. An earlier study (Wentz et al. 2007) had differing results using data from microwave radiometers and scatterometers. This study serves as a response to these studies, employing a similar methodology but with a different set of data. Data collected from the QuikSCAT and ADEOS-2 SeaWinds scatterometers, SSMI(S), and TOPEX/POSEIDON and JASON-1 altimetry missions are used to calculate trends in the mean, 90th-, and 99th-percentile wind speed and wave height over the period 1999—2009. Linear regression analyses from the satellite missions are verified against regression analyses of data from the ERA-Interim reanalysis dataset. Temporal sampling presents the most critical consideration in the study. The scatterometers have a much greater independent temporal sampling (about 1.5 observations per day per satellite) than the altimeters (about 1 observation per 10 days). With this consideration, the satellite data are also used to sample the wind speeds in the ERA-Interim dataset. That portion of the study indicates the sampling requirements needed to accurately estimate the trends in the ERA-Interim reanalysis. Wentz, F.J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233-235. Wentz, F.J. and L. Ricciardulli, 2011: Comment on "Global trends in wind speed and wave height." Science, 334, 905. Young, I.R., S. Zieger, and A.V. Babanin, 2011a: Global trends in wind speed and wave height. Science, 332, 451-455.

  6. Holistic genetic optimization of a Generalized Multiple Discrete Interaction Approximation for wind waves

    Science.gov (United States)

    Tolman, Hendrik L.; Grumbine, Robert W.

    2013-10-01

    A key element of wind wave models is the parameterization of the resonant nonlinear interactions between spectral wave components. In a companion paper a new Generalized Multiple Discrete Interaction Approximation (GMD) has been developed. The present paper addresses the optimization of the free parameters of the GMD. A holistic optimization approach is used where full model integration results are optimized. Fifteen objective metrics are used, defined to measure the accuracy of a model using the GMD relative to a model using the full (exact) interactions. Due to the large number of free parameters to be optimized, and due to the existence of many local error minima in parameter space, traditional error mapping or steepest descent search algorithms are not suitable to optimize the GMD. The focus of the present study is on establishing genetic optimization techniques as a feasible and economical way to optimize the free parameters in the GMD. The behavior of the GMD with optimized parameters is outside the scope of this study, and is discussed in detail in the companion paper.

  7. An implicit discontinuous Galerkin finite element model for water waves

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Tomar, S.K.; Yao, Z.H.; Yuan, M.W.; Zhong, W.X.

    2004-01-01

    An overview is given of a discontinuous Galerkin finite element method for linear free surface water waves. The method uses an implicit time integration method which is unconditionally stable and does not suffer from the frequently encountered mesh dependent saw-tooth type instability at the free

  8. Hydrodynamic analysis of oscillating water column wave energy devices

    DEFF Research Database (Denmark)

    Bingham, Harry B.; Ducasse, Damien; Nielsen, Kim

    2015-01-01

    A 40-chamber I-Beam attenuator-type, oscillating water column, wave energy converter is analyzed numerically based on linearized potential flow theory, and experimentally via model test experiments. The high-order panel method WAMIT by Newman and Lee (WAMIT; a radiation–diffraction panel program...

  9. Trends in surface wind speed and significant wave height as revealed by ERA-Interim wind wave hindcast in the Central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.

    to the coast. Journal of Energy and Power Engineering 5, 730-742. Bidlot J-R, Janssen P, Abdalla S. 2007. Impact of the revised formulation for ocean wave dissipation on the ECMWF operational wave model. Tech. Memo. 509, ECMWF: Reading, UK. Chandramohan P... of the basin (Shankar and Shetye, 2001). A comprehensive understanding of the properties of the waves and their potential changes represents the major knowledge necessary for sustainable management of the offshore and coastal region. Moreover, the wave...

  10. Continuous Dependence on the Density for Stratified Steady Water Waves

    Science.gov (United States)

    Chen, Robin Ming; Walsh, Samuel

    2016-02-01

    There are two distinct regimes commonly used to model traveling waves in stratified water: continuous stratification, where the density is smooth throughout the fluid, and layer-wise continuous stratification, where the fluid consists of multiple immiscible strata. The former is the more physically accurate description, but the latter is frequently more amenable to analysis and computation. By the conservation of mass, the density is constant along the streamlines of the flow; the stratification can therefore be specified by prescribing the value of the density on each streamline. We call this the streamline density function. Our main result states that, for every smoothly stratified periodic traveling wave in a certain small-amplitude regime, there is an L ∞ neighborhood of its streamline density function such that, for any piecewise smooth streamline density function in that neighborhood, there is a corresponding traveling wave solution. Moreover, the mapping from streamline density function to wave is Lipschitz continuous in a certain function space framework. As this neighborhood includes piecewise smooth densities with arbitrarily many jump discontinues, this theorem provides a rigorous justification for the ubiquitous practice of approximating a smoothly stratified wave by a layered one. We also discuss some applications of this result to the study of the qualitative features of such waves.

  11. Molding acoustic, electromagnetic and water waves with a single cloak

    KAUST Repository

    Xu, Jun

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.

  12. Wind energy input into the upper ocean over a lengthening open water season

    Science.gov (United States)

    Mahoney, A. R.; Rolph, R.; Walsh, J. E.

    2017-12-01

    Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional

  13. Wave Loads on Ships Sailing in Restricted Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2003-01-01

    in the past addressed the influence of water depth on the ship response. In an early work Kim (1968) presented results for the variation of the added mass and hydrodynamic damping and for the heave and pitch motion for a Series 60 model using a relative motion strip theory formulation. A significant reduction......, ranging from semi-empirical formulas to three-dimensional non-linear procedures. A review of the state-of-the art can be found in ISSC.VI.1 (2000). These procedures must be combined with operational and sea state information to predict the probability distribution of the maximum wave-induced bending...... be specified anyhow. Usually, two-dimensional strip theories, either linear or non-linear, are applied for actual design cases and these theories are normally based on incident deep-water waves and furthermore apply added mass and damping calculations based on infinite water depth. Only a few papers have...

  14. Air and water trade winds, hurricanes, gulf stream, tsunamis and other striking phenomena

    CERN Document Server

    Moreau, René

    2017-01-01

    Air and water are so familiar that we all think we know them. Yet how difficult it remains to predict their behavior, with so many questions butting against the limits of our knowledge. How are cyclones, tornadoes, thunderstorms, tsunamis or floods generated — sometimes causing devastation and death? What will the weather be tomorrow, next week, next summer? This book brings some answers to these questions with a strategy of describing before explaining. Starting by considering air and water in equilibrium (i.e., at rest), it progresses to discuss dynamic phenomena first focusing on large scale structures, such as El Niño or trade winds, then on ever smaller structures, such as low-pressure zones in the atmosphere, clouds, rain, as well as tides and waves. It finishes by describing man-mad e constructions (dams, ports, power plants, etc.) that serve to domesticate our water resources and put them to work for us.  Including over one hundred illustrations and very few equations, most of the�...

  15. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter; Burcharth, Hans F.

    knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the first four lectures of the course: • Definitions. Governing equations and boundary conditions. • Derivation of velocity potential for linear waves. Dispersion relationship......The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University. The prerequisites for the course are the course in fluid dynamics also given on the 7th semester and some basic mathematical and physical...

  16. Recent studies of acoustic wave propagation in shallow water waveguides with variable water column properties

    Science.gov (United States)

    Badiey, M.; Lynch, J. F.

    2012-11-01

    In the past half-century numerous scientific research programs have been conducted which have advanced our understanding of shallow water acoustics far beyond the original and pioneering work by Ewing, Worzel, and Pekeris (1948). In particular, during the last three decades several major initiatives have focused on both observation and modeling of acoustic waves in shallow water region with extremely variable environmental properties. We now realize that the shallow water acoustic wave propagation problem is a complicated study of wave propagation in a 4D partially random media with anisotropic, time and space dependent physical properties. The nonlinear internal wave field, the shelf break front, and coastal eddies are good examples of oceanographic processes that cause this type of variability. A review of our progress, which focuses on the effects of the water column, is presented, as well as an assessment of what future questions will be of interest and importance.

  17. Mechanistic Drifting Forecast Model for A Small Semi-Submersible Drifter Under Tide-Wind-Wave Conditions

    Science.gov (United States)

    Zhang, Wei-Na; Huang, Hui-ming; Wang, Yi-gang; Chen, Da-ke; Zhang, lin

    2018-03-01

    Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide-wind-wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5-6; while wind drag contributes mostly at wind scale 2-4.

  18. Retrieving mesospheric winds and gravity waves using high resolution radar measurements of polar mesospheric summer echoes with MAARSY

    Science.gov (United States)

    Stober, G.; Sommer, S.; Schult, C.; Chau, J. L.; Latteck, R.

    2013-12-01

    The Middle Atmosphere Alomar Radar System (MAARSY) located at the northern Norwegian island of Andøya (69.3 ° N, 16° E) observes polar mesosphere summer echoes (PMSE) on a regular basis. This backscatter turned out to be an ideal tracer of atmospheric dynamics and to investigate the wind field at the mesosphere/lower thermosphere (MLT) at high spatial and temporal scales. MAARSY is dedicated to explore the polar mesosphere at such high resolution and employs an active phased array antenna with the capability to steer the beam on a pulse-to-pulse basis, which permits to perform systematic scanning of PMSE and to investigate the horizontal structure of the backscatter. The radar also uses a 16 channel receiver system for interferometric applications e.g. mean angle of arrival analysis or coherent radar imaging. Here we present measurements using these features of MAARSY to study the wind field at the MLT applying sophisticated wind analysis algorithms such as velocity azimuth display or volume velocity processing to derive gravity wave parameters such as horizontal wave length, phase speed and propagation direction. Further, we compare the interferometrically corrected and uncorrected wind measurements to emphasize the importance to account for likely edge effects using PMSE as tracer of the dynamics. The observations indicate huge deviations from the nominal beam pointing direction at the upper and lower edges of the PMSE altering the wind analysis.

  19. Planetary Waves Seasonality from Meteor Wind Measurements at 7.4°S and 23°S

    Science.gov (United States)

    Araujo, L. R.; Lima, L. M.; Takahashi, H.; Batista, P. P.; Clemesha, B. R.

    2013-05-01

    Dynamical characteristics of the terrestrial mesopause region can be observed from the atmospheric fields, such as wind and temperature. The purpose of this study was to contribute to a better understanding of mesopause dynamics of the equatorial and low latitude regions in the southern hemisphere, through the characterization of the wind flow between 80 and 100 km altitude. In this study we used wind observation data from mesosphere and lower thermosphere region (MLT), obtained from meteor radar measurements at São João do Cariri (7.4° S, 35° W) from July 2004 to December 2008 and at Cachoeira Paulista (22.7° S, 45.0° W) from January 2002 to July 2006 and from September 2007 to November 2008. From the spectral and harmonic analysis it was possible to identify the presence of planetary-scale oscillations in the mean winds for two latitudes and to study their transient character, which allowed to elaborate a climatology of planetary oscillation signatures. The planetary waves with periods near 2-day, 6-7 days, 16 days and the 3-4 days equatorial waves, also known as ultra fast Kelvin wave, were focused in this study. The 2-day waves in the meteoric winds showed a seasonal cycle, with intense amplitudes after the southern summer solstice until the end of season, the 6-7 day oscillations had more intense amplitudes during August-November and presence with lower amplitudes during April-May in both sites. The 16-day oscillations showed no clear seasonality over C. Paulista, however, the Cariri amplitudes were intense from spring until mid-summer and weak from autumn until early austral winter. The 3-4 day oscillations showed intermittent amplifications throughout the year and it was not possible to identify a seasonal cycle over the two sites.

  20. Directional characteristics of shallow water waves along southwestern Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Johnson, G.; SanilKumar, V.; Anoop, T.R.; Joseph, J.

    the coast during southwest monsoon season (June–September) and intrusion of moderate easterly winds propagating from Gulf of Thailand over the narrow land mass of Thailand and Myanmar. The reflected wave energy is maximum (14%) during the southwest monsoon...

  1. Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves

    NARCIS (Netherlands)

    Gagarina, Elena; Ambati, V.R.; van der Vegt, Jacobus J.W.; Bokhove, Onno

    2014-01-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles’ variational principle for water waves together with a finite element

  2. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  3. Water-hydraulic power transmission for offshore wind farms

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.; Kempenaar, A.S.

    2012-01-01

    The current state of the art of offshore wind turbine power transmission technology is expensive, heavy and maintenance intensive. The Delft Offshore Turbine project considers a radically new concept for power transmission in an offshore wind farm: using seawater as power transmission medium. For

  4. Spectral structure of mesoscale winds over the water

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Vincent, Claire Louise; Larsen, Søren Ejling

    2013-01-01

    Standard meteorological measurements from a number ofmasts around two Danish offshore wind farms have been used to study the spectral structure of the mesoscale winds, including the power spectrum, the co- and quadrature spectrum and the coherence. When average conditions are considered, the powe...

  5. The Effect of Wind Velocity on the Cooling Rate of Water

    Directory of Open Access Journals (Sweden)

    Shrey Aryan

    2016-01-01

    Full Text Available The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  6. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  7. Gravity wave amplitudes and momentum fluxes inferred from OH airglow intensities and meteor radar winds during SpreadFEx

    Directory of Open Access Journals (Sweden)

    F. Vargas

    2009-06-01

    Full Text Available We show in this report the momentum flux content input in the mesosphere due to relatively fast and small scale gravity waves (GWs observed through OH airglow images. The acquisition of OH NIR images was carried out in Brazil at Brasilia (14.8° S, 47.6° W and Cariri (7.4° S, 36.5° W from September 2005 to November 2005 during the SpreadFEx Campaign. Horizontal wind information from meteor radar was available in Cariri only. Our findings showed strong wave activity in both sites, mainly in Cariri. High wave directionality was also observed in both sites during SpreadFEx, which have been observed by other investigators using different analysis' techniques and different types of data during the campaign. We discuss also the possibility of plasma bubble seeding by gravity waves presenting spatial and temporal scales estimated with our novel analysis technique during the SpreadFEx campaign.

  8. Modelling nutrient losses by wind and water erosion in northern Burkina Faso

    NARCIS (Netherlands)

    Visser, S.M.

    2004-01-01

    In the semi-arid environment of northern Burkina Faso the processes of wind and water erosion occur almost simultaneously and may cause severe soil degradation. Especially in the early rainy season when soils are bare and unprotected, violent winds preceding intense rainfall events result in intense

  9. Periodic waves with constant vorticity in water of infinite depth

    Science.gov (United States)

    vanden-Broeck, J.-M.

    1996-06-01

    Periodic waves propagating at a constant velocity at the surface of a fluid with constant vorticity in water of infinite depth are considered. The problem is solved numerically by a boundary-integral-equation method. Simmen & Saffman (Stud. Appl. Maths 75, 35, 1985) showed that there are families of solutions which have limiting configurations with a 120 degree angle at their crests or a trapped bubble at their troughs. It is shown that there are additional families of solutions. These families have limiting configurations with trapped bubbles at their crests. Each bubble is circular and contains fluid in rigid-body rotation. The results are consistent with previous calculations for solitary waves in water of finite depth.

  10. Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply

    DEFF Research Database (Denmark)

    Lund, Henrik

    2006-01-01

    ancillary services are needed in order to secure the electricity supply system. The idea is to benefit from the different patterns in the fluctuations of different renewable sources. And the purpose is to identify optimal mixtures from a technical point of view. The optimal mixture seems to be when onshore...... wind power produces approximately 50% of the total electricity production from RES. Meanwhile, the mixture between PV and wave power seems to depend on the total amount of electricity production from RES. When the total RES input is below 20% of demand, PV should cover 40% and wave power only 10%. When...

  11. Plasma waves observed by the IRM and UKS spacecraft during the AMPTE solar wind lithium releases: Overview

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, B.; Woolliscroft, L.J.; Anderson, R.R.; Gurnett, D.A.; Holzworth, R.H.; Koons, H.C.; Bauer, O.H.; Haerendel, G.; Treumann, R.A.; Christiansen, P.J.

    1986-02-01

    The two September 1984 solar wind lithium releases produced a rich variety of plasma waves which have been measured in situ by the plasma wave instrumentation on board the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM and UKS spacecraft. Reflection of the natural galactic and terrestrial electromagnetic radiation from the dense Li plasma caused a cutoff in the high-frequency electric field intensities from which the temporal and spatial variation of the plasma density can be determined. Inside the diamagnetic cavity the electron plasma frequency and also temporarily the Li plasma frequency have been excited.

  12. Influence of water waves on hyperspectral remote sensing of subsurface water features

    Science.gov (United States)

    Bostater, Charles R., Jr.; Bassetti, Luce

    2004-11-01

    Modeled hyperspectral reflectance signatures with water wave influences are simulated using an analytical-based, iterative radiative transport model applicable to shallow or deep waters. Light transport within the water body is simulated using a fast, accurate radiative transfer model that calculates the light distribution in any layered media and incorporates realistic water surfaces which are synthesized using empirically-based spectral models of the water surface to generate water surface wave facets. The model simulated synthetic images are displayed as 24 bit RGB images of the water surface using selected channels from the simulated synthetic hyperspectral image cube. We show selected channels centered at 490, 530 and 676 nm. We also demonstrate the use of the model to show the capability of the sensor and image modeling approach to detect or "recover" known features or targets submerged within or on the shallow water bottom in a tidal inlet area in Indian River Lagoon, Florida. Line targets are simulated in shallow water and indicate the influence of water waves in different water quality conditions. The technique demonstrates a methodology to help to develop remote sensing protocols for shallow water remote sensing as well as to develop information useful for future hyperspectral sensor system developments.

  13. Theoretical Model of Acoustic Wave Propagation in Shallow Water

    Directory of Open Access Journals (Sweden)

    Kozaczka Eugeniusz

    2017-06-01

    Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.

  14. The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake

    OpenAIRE

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping

    2017-01-01

    Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,52...

  15. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean

    CSIR Research Space (South Africa)

    Schmidt, KM

    2017-12-01

    Full Text Available Surface ocean wind datasets are required to be of high spatial and temporal resolution and high precision to accurately force or be assimilated into coupled atmosphere–ocean numerical models and to understand ocean–atmospheric processes. In situ...

  16. Observation of chorus waves by the Van Allen Probes: dependence on solar wind parameters and scale size

    Science.gov (United States)

    Aryan, H.; Sibeck, D. G.; Balikhin, M. A.; Agapitov, O. V.; Kletzing, C.

    2016-12-01

    Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems, and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are non-specific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters, but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity respectively. Results show that the average scale size of chorus wave packets is approximately 1300 - 2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere, and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  17. Observation of Chorus Waves by the Van Allen Probes: Dependence on Solar Wind Parameters and Scale Size

    Science.gov (United States)

    Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig

    2016-01-01

    Highly energetic electrons in the Earths Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 13002300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  18. Econometric analysis of the changing effects in wind strength and significant wave height on the probability of casualty in shipping.

    Science.gov (United States)

    Knapp, Sabine; Kumar, Shashi; Sakurada, Yuri; Shen, Jiajun

    2011-05-01

    This study uses econometric models to measure the effect of significant wave height and wind strength on the probability of casualty and tests whether these effects changed. While both effects are in particular relevant for stability and strength calculations of vessels, it is also helpful for the development of ship construction standards in general to counteract increased risk resulting from changing oceanographic conditions. The authors analyzed a unique dataset of 3.2 million observations from 20,729 individual vessels in the North Atlantic and Arctic regions gathered during the period 1979-2007. The results show that although there is a seasonal pattern in the probability of casualty especially during the winter months, the effect of wind strength and significant wave height do not follow the same seasonal pattern. Additionally, over time, significant wave height shows an increasing effect in January, March, May and October while wind strength shows a decreasing effect, especially in January, March and May. The models can be used to simulate relationships and help understand the relationships. This is of particular interest to naval architects and ship designers as well as multilateral agencies such as the International Maritime Organization (IMO) that establish global standards in ship design and construction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Technical Evaluation of Constructing Wind and Wave Climatologies Using Spaceborne Altimeter Output with a Demonstration Study in the Yellow and East China Seas

    National Research Council Canada - National Science Library

    Hwang, Paul

    1998-01-01

    .... The accuracy of the measurements is summarized from several earlier comparison studies. The results indicate that the wind speeds and wave heights measured by satellite altimeters are of outstanding quality...

  20. Effects of internal waves on sound propagation in the shallow waters of the continental shelves

    OpenAIRE

    Ong, Ming Yi

    2016-01-01

    Approved for public release; distribution is unlimited Sound waves propagating through the oceans are refracted by internal waves. In the shallow waters of the continental shelves, an additional downward refraction of sound waves due to internal waves can cause them to interact more often with the seabed, resulting in additional energy from the sound waves being dissipated into the seabed. This study investigates how internal waves affect sound propagation on the continental shelves. It fi...

  1. Comparison of the Experimental and Numerical Results of Modelling a 32-Oscillating Water Column (OWC, V-Shaped Floating Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    John V. Ringwood

    2013-08-01

    Full Text Available Combining offshore wind and wave energy converting apparatuses presents a number of potentially advantageous synergies. To facilitate the development of a proposed floating platform combining these two technologies, proof of concept scale model testing on the wave energy converting component of this platform has been conducted. The wave energy component is based on the well-established concept of the oscillating water column. A numerical model of this component has been developed in the frequency domain, and the work presented here concerns the results of this modelling and testing. The results of both are compared to assess the validity and usefulness of the numerical model.

  2. Water wave communication in the genus Bombina (amphibia)

    Science.gov (United States)

    Seidel, B.; Yamashita, M.; Choi, I.-H.; Dittami, J.

    2001-01-01

    Amphibians were phylogenetically the first vertebrates to leave the aquatic environment and cope with terrestrial conditions including effects of gravity and substrate on movement and communication. Studies of extant primitive amphibians, which have conserved ancestral morphology and behavior, may help us to understand how gravitational adaptation from aquatic to terrestrial environments occurred. The anuran genus Bombina is a candidate for this type of investigation. In particular, a member of this genus, B. orientalis, is known for its low reaction threshold to minor changes of angular acceleration. We hypothesize that a heightened sensitivity to angular and mechanical accelerations evolved with wave communication. Comparisons of such behavior among B. variegata, B. bombina and B. orientalis may shed light on the evolution of reproductive systems based on water wave communication and relevant vestibular sensitivity. This may represent a transition to derived vocalization modes, which is seen in B. bombina to a certain degree.

  3. Soliton interaction as a possible model for extreme waves in shallow water

    NARCIS (Netherlands)

    Peterson, P.; Soomere, T.; Engelbrecht, J.; van Groesen, Embrecht W.C.

    2003-01-01

    Interaction of two long-crested shallow water waves is analysed in the framework of the two-soliton solution of the Kadomtsev-Petviashvili equation. The wave system is decomposed into the incoming waves and the interaction soliton that represents the particularly high wave hump in the crossing area

  4. Computation of nonlinear water waves with a high-order Boussinesq model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.; Bingham, Harry

    2005-01-01

    -crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...

  5. Wind effect on currents in a thin surface layer of coastal waters faced open-sea

    International Nuclear Information System (INIS)

    Nakano, Masanao; Isozaki, Hisaaki; Isozaki, Tokuju; Nemoto, Masashi; Hasunuma, Keiichi; Kitamura, Takashi

    2009-01-01

    Two-years of continuous observation of wind and current were carried out to investigate the relationship between them in the coastal waters off Tokai-mura, Ibaraki prefecture. Three instruments to measure the current were set in a thin surface layer of 3 m above the strong pycnocline, which is a common feature in coastal waters. Both of the power spectra of wind and currents showed very similar features, an outstanding high peak at 24-hour period and a range of high peaks longer than several-days period. The long term variation of the wind field always contained north-wind component, which contributed to forming the southward current along the shore throughout the year. A high correlation coefficient (0.64) was obtained between the wind and the current at a depth of 0.5 m on the basis of the two-year observation. Harmonic analysis revealed that an outstanding current with 24-hour period was the S 1 component (meteorological tide), and was driven by land and sea breezes. These breezes also contained solar tidal components such as K 1 , P 1 and S 2 . These wind components added their own wind driven currents on the original tidal currents. This meant that land and sea breezes generated wind driven currents with solar tidal periods which behaved like astronomical tidal currents. As result, coastal currents contained pseudo tidal currents which behaved like astronomical tidal currents. (author)

  6. Leaf temperature and transpiration of rice plants in relation to short-wave radiation and wind speed

    International Nuclear Information System (INIS)

    Ito, D.; Haseba, T.

    1984-01-01

    Leaf temperature and transpiration amount of rice plants were measured in a steady environment in a laboratory and in field situations. The plants set in Wagner pots were used. Experiments were carried out at the tillering and booting stages, and on the date of maturity. Measured leaf temperatures and transpiration rates were analyzed in connection with incident short-wave radiation on a leaf and wind speed measured simultaneously.Instantaneous supplying and turning-off of steady artificial light caused cyclic changes in leaf temperature and transpiration. Leaf temperature dropped in feeble illumination compared with the steady temperature in the preceeding dark.On the date of maturity, a rice plant leaf was warmer than the air, even in feeble light. Then, the leaf-air temperature difference and transpiration rate showed approximately linear increases with short-wave radiation intensity. On the same date, an increase in wind speed produced a decrease in leaf-air temperature difference, i.e., leaf temperature dropped, and an increase in transpiration rate. The rates of both changes in leaf temperature and transpiration rate were fairly large in a range of wind speed below about 1m/s.For rice plants growing favorably from the tillering stage through the booting stage, the leaves were considerably cooler than the air, even in an intense light and/or solar radiation. The leaf temperature showed the lowest value at short-wave radiations between 0.15 and 0.20ly/min, at above which the leaf temperature rised with an increase in short-wave radiation until it approached the air temperature. Transpiration rate of rice plants increased rapidly with an increase in short-wave radiation ranging below 0.2 or 0.3ly/min, at above which the increase in transpiration rate slowed.The relationships between leaf temperature and/or transpiration rate and wind speed and/or incident short-wave radiation (solar radiation) which were obtained experimentally, supported the relationships

  7. Cross-wind fatigue analysis of a full scale offshore wind turbine in the case of wind–wave misalignment

    DEFF Research Database (Denmark)

    Koukoura, Christina; Brown, Cameron; Natarajan, Anand

    2016-01-01

    -measurements. The aim of the current study is to examine the sensitivity of the side–side fatigue to the wind–wave misalignment and different values of additional offshore damping in the system. It was found that the additional offshore damping of the physical system may be higher than what is typically used...

  8. The "shallow-waterness" of the wave climate in European coastal regions

    Science.gov (United States)

    Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind

    2017-07-01

    In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.

  9. Satellite-Derived Water Vapor Winds for Regional Climate Studies

    Science.gov (United States)

    Jedlovce, Gary J.; Lerner, Jeffery A.; Iwai, Hisaki; Haines, Stephanie

    1999-01-01

    The retrieval of winds and humidity in the upper-troposphere has matured to the point where it may now be possible to better understand and diagnose regional climate variations from geostationary satellites than from conventional measurements or model analysis, especially in data sparse regions. In this poster paper, upper-tropospheric circulation features and moisture transport covering ENSO periods are presented and discussed. Precursor and other detectable interannual climate signals are analyzed and compared to model diagnosed features. Estimates of winds and humidity over data-rich regions (from conventional measurements) are used to show the robustness of the data and its value over regions which are currently poorly sampled.

  10. Ammonia removal from water: The comparison between using the wind speed and agitation method

    Directory of Open Access Journals (Sweden)

    Intamanee, J.

    2005-01-01

    Full Text Available Ammonia removal from skim latex is an essential step in skim block production process. In general, skim latex contains about 0.4% ammonia by weight of skim latex and needs to be reduced in order to minimize acid usage during rubber coagulation step. The method used to remove ammonia from skim latex in many concentrated rubber latex plants is ammonia volatilization by agitating skim latex using a large agitator in a mixing pool. In this research, a new method to remove ammonia from water by blowing wind over the water surface was investigated. The effects of agitation speed and wind speed on overall mass transfer coefficient and removal rate of ammonia were investigated in a pilot scale experiment. The result has shown that the overall mass transfer coefficient and the ammonia removal rate increase linearly with increasing Reynolds number of air and liquid. However, the ammonia removal rate by using wind speed was much higher than that given by agitation method. The wind speed method proposed in this study is then recommended for ammonia removal from skim latex. Possible ways for applying the wind speed method for skim latex production plant are also suggested. The relationship between the wind speed or Reynolds number and the mass transfer coefficient can also be used to design the system for ammonia removal from water byusing wind speed.

  11. Feasibility study of a wind powered water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-12-01

    Full Text Available Water is the primary source of life for mankind and one of the most basic necessities for rural development. Most of the rural areas of Ethiopia do not have access to potable water. Is some regions of the country access potable water is available through use of manual pumping and Diesel engine. In this research, wind water pump is designed to supply drinking water for three selected rural locations in Ethiopia. The design results show that a 5.7 m diameter windmill is required for pumping water from borehole through a total head of 75, 66 and 44 m for Siyadberand Wayu, Adami Tulu and East Enderta to meet the daily water demand of 10, 12 and 15 m3, respectively. The simulation for performance of the selected wind pump is conducted using MATLAB software and the result showed that monthly water discharge is proportional to the monthly average wind speed at the peak monthly discharge of 685 m3 in June, 888 m3 in May and 1203 m3 in March for Siyadberand Wayu, Adami Tulu and East Enderta sites, respectively. An economic comparison is conducted, using life cycle cost analysis, for wind mill and Diesel water pumping systems and the results show that windmill water pumping systems are more feasible than Diesel based systems.

  12. Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach

    KAUST Repository

    Collier, Nathan

    2011-05-14

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.

  13. The environmental impacts of wind and water power

    International Nuclear Information System (INIS)

    Twidell, J.W.

    1994-01-01

    The success of a typical renewable energy project depends about 40% on technology and about 60% on institutional factors. The latter include regulations, financing and environmental impact, with many of the regulations and some financial factors themselves relating to environmental impact. This paper attempts to define and categorize aspects of environmental impact, especially regarding wind and hydro power projects. (author)

  14. Effect of climate change on wind waves generated by anticyclonic cold front intrusions in the Gulf of Mexico

    Science.gov (United States)

    Appendini, Christian M.; Hernández-Lasheras, Jaime; Meza-Padilla, Rafael; Kurczyn, Jorge A.

    2018-01-01

    Anticyclonic cold surges entering the Gulf of Mexico (Nortes) generate ocean waves that disrupt maritime activities. Norte derived waves are less energetic than the devastating waves from tropical cyclones, but more frequent ( 22 events/year) and with larger spatial influence. Despite their importance, few studies characterize Nortes derived waves and assess the effects of climate change on their occurrence. This study presents a method to identify and characterize Nortes with relation to their derived waves in the Gulf of Mexico. We based the identification of Nortes on synoptic measurements of pressure differences between Yucatan and Texas and wind speed at different buoy locations in the Gulf of Mexico. Subsequently, we identified the events in the CFSR reanalysis (present climate) and the CNRM-M5 model for the present climate and the RCP 8.5 scenario. We then forced a wave model to characterize the wave power generated by each event, followed by a principal component analysis and classification by k-means clustering analysis. Five different Nortes types were identified, each one representing a characteristic intensity and area of influence of the Norte driven waves. Finally, we estimated the occurrence of each Norte type for the present and future climates, where the CNRM-M5 results indicate that the high-intensity events will be less frequent in a warming climate, while mild events will become more frequent. The consequences of such changes may provide relief for maritime and coastal operations because of reduced downtimes. This result is particularly relevant for the operational design of coastal and marine facilities.

  15. Beryllium-7 measurements of wind erosion on sloping fields in the wind-water erosion crisscross region on the Chinese Loess Plateau.

    Science.gov (United States)

    Zhang, Jiaqiong; Yang, Mingyi; Deng, Xinxin; Liu, Zhang; Zhang, Fengbao; Zhou, Weiying

    2018-02-15

    Soil erosion is complex in the wind-water erosion crisscross region of the Chinese Loess Plateau, as interleaving of wind and water erosion occurs on both temporal and spatial scales. It is difficult to distinguish wind erosion from the total erosion in previous studies due to the untraceable of aeolian particles and the limitation of feasible methods and techniques. This study used beryllium-7 measurements to study wind erosion in the wind-water erosion crisscross region on the Chinese Loess Plateau arms to delineate wind erosion distribution, to analyze its implication to erosive winds and surface microrelief, and to determine correlations between erosion rates and slope gradients. Results obtained using beryllium-7 measurements based on observation plots were verified with saltating particle collection method, and were also verified on a field scale. Results indicated that the effective resultant erosion wind was from northward, which was proved by the eight-directional distributed saltating particles. The microrelief of the ground surface contributed to the formation of high or low erosion centers. Wind erosion rates increased with a linear (R 2 ≥0.95) or exponential (R 2 ≥0.83) fitting increase in the slope gradients as reported in previous studies. Compared to wind erosion on field scale, both the plots and fields exhibited similar distribution patterns in wind erosion isolines. We also determined that the wind erosion rate for two fields estimated, based on equations developed from plot scale was acceptable. This study validates the feasibility of beryllium-7 measurements for soil-wind erosion field experiments and the potential to expand this approach to real field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The study of droplet-laden turbulent air-flow over waved water surface by direct numerical simulation

    Science.gov (United States)

    Druzhinin, Oleg A.; Troitskaya, Yuliya I.; Zilitinkevich, Sergej S.

    2016-04-01

    The detailed knowledge of the interaction of wind with surface water waves is necessary for correct parameterization of turbulent exchange at the air-sea interface in prognostic models. At sufficiently strong winds, sea-spray-generated droplets interfere with the wind-waves interaction. The results of field experiments and laboratory measurements (Andreas et al., JGR 2010) show that mass fraction of air-borne spume water droplets increases with the wind speed and their impact on the carrier air-flow may become significant. Phenomenological models of droplet-laden marine atmospheric boundary layer (Kudryavtsev & Makin, Bound.-Layer Met. 2011) predict that droplets significantly increase the wind velocity and suppress the turbulent air stress. The results of direct numerical simulation (DNS) of a turbulent particle-laden Couette flow over a flat surface show that inertial particles may significantly reduce the carrier flow vertical momentum flux (Richter & Sullivan, GRL 2013). The results also show that in the range of droplet sizes typically found near the air-sea interface, particle inertial effects are significant and dominate any particle-induced stratification effects. However, so far there has been no attempt to perform DNS of a droplet-laden air-flow over waved water surface. In this report, we present results of DNS of droplet-laden, turbulent Couette air-flow over waved water surface. The carrier, turbulent Couette-flow configuration in DNS is similar to that used in previous numerical studies (Sullivan et al., JFM 2000, Shen et al., JFM 2010, Druzhinin et al., JGR 2012). Discrete droplets are considered as non-deformable solid spheres and tracked in a Lagrangian framework, and their impact on the carrier flow is modeled with the use of a point-force approximation. The droplets parameters in DNS are matched to the typical known spume-droplets parameters in laboratory and field experiments. The DNS results show that both gravitational settling of droplets and

  17. Combined wind, hydropower and photovoltaic systems for generation of electric power and control of water resources

    International Nuclear Information System (INIS)

    Abid, M.; Karimov, K.S.; Akhmedov, K.M.

    2011-01-01

    In this paper the present day energy consumption and potentialities of utilization of wind- and hydropower resources in some Central and Southern Asian Republics, in particular, in the Republic of Tajikistan, Kyrgyzstan and Pakistan are presented. The maximum consumption of electric power is observed in winter time when hydropower is the minimum, but wind power is the maximum. At the same time water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between countries that utilize water mostly for irrigation and those which use water for generation of electric power. It is proposed that the utilization of water with the supplement of wind and solar energy will facilitate the proper and efficient management of water resources in Central Asia. In the future in Tajikistan, wind power systems with a capacity of 30-100 MW and more will be installed, providing power balance of the country in winter; hence saving water in reservoirs, especially in drought years. This will provide the integration of electricity generated by wind, hydroelectric power and photovoltaic system in the unified energy system of the country. (author)

  18. Effect of attenuation correction on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Some selected wave profiles recorded using a ship borne wave recorder are analysed to study the effect of attenuation correction on the distribution of the surface amplitudes. A new spectral width parameter is defined to account for wide band...

  19. Shallow water wave spectral characteristics along the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Shanas, P.R.; Dubhashi, K.K.

    -west monsoon period. Fifty per cent of the waves recorded had spectral peak wave periods between 6 and 12 s. The narrowest directional spectra were found for waves with 10–12-s peak wave periods. Inverse wave age values were biased towards lower values...

  20. Directionality and spread of shallow water waves along the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Anoop, T.R.

    The directional characteristics of shallow water waves are described based on measured data during 2011 at two locations spaced at 350 km along the eastern Arabian Sea. Study shows that, for high swells (significant wave height > 1 m) approaching...

  1. An experimental study of water absorption characteristics for generator stator winding insulation

    International Nuclear Information System (INIS)

    Lee, D. S.; Bae, Y. C.; Kim, H. S.; Kim, Y. H.; Lee, H.

    2004-01-01

    Leaking water coolant into stator electrical insulation is a growing concern for the aging water-cooled generator since leaks in the generator water-cooled stator winding can affect machine availability and insulation life. But a domestic techniques of such field are insufficient and depend wholly on GE or TOSHIBA technique. Therefore this paper introduces measuring principle and developed measuring system, which has been used to detecting wet absorption. We accomplished the experiment with a stator promotion of virtue which is used in actual power plant. Also, experimental method of generator stator winding, which is investigated into wet absorption test

  2. Observations of wind and waves in the central Bay of Bengal during ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    relation for gross estimation of effective depth within which the sound energy is generally trapped .... variations are considerably high in the northern ... ical Indian Ocean. During July and August, the southwesterly winds sweep the south central Bay of Bengal and the wind speed reaches up to 9 to. 15m/s in July which is the ...

  3. Evaluation of wind flow with a nacelle-mounted continuous-wave lidar

    DEFF Research Database (Denmark)

    Medley, John; Slinger, Chris; Barker, Will

    IR, increasing the confidence in the ZephIR for measuring wind parameters in this configuration. SCADA data from the turbine was combined with measured wind speeds and directions to derive power curves from the mast data (hub-height) and from ZephIR data (hub-height and rotor-equivalent). The rotor...

  4. Any Way the Wind Blows does Really Matter to Ecosystem Water Use Efficiency

    Science.gov (United States)

    Montaldo, Nicola; Oren, Ram

    2015-04-01

    In many regions, atmospheric conditions change frequently with shifts of wind direction, extending maritime influences far inland or continental influences to coastal ecosystems. However, depending on their origin, high velocity winds can bring dry continental air to the coast (e.g., Santa Ana winds along the mid-eastern Pacific coast2-3) or cool maritime air far inland. In these regions, water and carbon fluxes may respond to meso- and macroscale weather patterns, yet the effects of wind direction have been explicitly considered only in footprint analyses, limited mostly to climate and ecosystem-scale data from Sardinia, our work shows that wind direction affects biosphere-atmosphere exchange of carbon but not water. Summer Mistral winds from continental Europe remain cool as they cross the island, but warmer Saharan Sirocco winds, arriving with similar vapour pressure deficit (D) but 30±16% higher specific humidity (Qa), heat up and lose humidity, trebling D only 50 km inland. Over a mixed pasture-woodland (grass-wild olive), while soil moisture was stable and limiting, daytime net carbon exchange (NEEd) averaged 2.3-fold higher (Pclimate will amplify or negate the positive effect of increased atmospheric [CO2] on We, and should be considered in earth-system models.

  5. Hollow vortices, capillary water waves and double quadrature domains

    International Nuclear Information System (INIS)

    Crowdy, Darren G; Roenby, Johan

    2014-01-01

    Two new classes of analytical solutions for hollow vortex equilibria are presented. One class involves a central hollow vortex, comprising a constant pressure region having non-zero circulation, surrounded by an n-polygonal array of point vortices with n⩾2. The solutions generalize the non-rotating polygonal point vortex configurations of Morikawa and Swenson (1971 Phys. Fluids 14 1058–73) to the case where the point vortex at the centre of the polygon is replaced by a hollow vortex. The results of Morikawa and Swenson would suggest that all equilibria for n≠3 will be linearly unstable to point vortex mode instabilities. However even the n = 3 case turns out to be unstable to a recently discovered displacement instability deriving from a resonance between the natural modes of an isolated circular hollow vortex. A second class of analytical solutions for periodic water waves co-travelling with a submerged point vortex row is also described. The analysis gives rise to new theoretical connections with free surface Euler flows with surface tension and, in particular, with Crapper's classical solutions for capillary water waves. It is pointed out that the equilibrium fluid regions found here have a mathematical interpretation as an abstract class of planar domains known as double quadrature domains. (ss 1)

  6. Increasing the technical and economic performance of wind diesel systems by including fresh water production

    DEFF Research Database (Denmark)

    Bindner, H.; Lundsager, P.

    1996-01-01

    In many remote regions of the world there is a lack of both electricity and potable water. In order to increase the standard of living and thus maintain the population both power and water have to be supplied at reasonable prices. A good option at many of these places are wind diesel systems...

  7. Shallow water effects on wave energy converters with hydraulic power take-off system

    Directory of Open Access Journals (Sweden)

    Ashank Sinha

    2016-12-01

    Full Text Available The effect of water depth on the power absorption by a single heaving point absorber wave energy converter, attached to a hydraulic power take-off system, is simulated and analysed. The wave energy flux for changing water depths is presented and the study is carried out at a location in the north-west Portuguese coast, favourable for wave power generation. This analysis is based on a procedure to modify the wave spectrum as the water depth reduces, namely, the TMA spectrum (Transformation spectrum. The present study deals with the effect of water depth on the spectral shape and significant wave heights. The reactive control strategy, which includes an external damping coefficient and a negative spring term, is used to maximize power absorption by the wave energy converter. The presented work can be used for making decisions regarding the best water depth for the installation of point absorber wave energy converters in the Portuguese nearshore.

  8. Extreme Value Predictions for Wave- and Wind-induced Loads on Floating Offshore Wind Turbines using FORM

    DEFF Research Database (Denmark)

    Joensen, Sunvard; Jensen, Jørgen Juncher; Mansour, Alaa E.

    2007-01-01

    The aim of the present paper is to advocate for a very effective stochastic procedure, based on the First Order Reliability Method (FORM), for extreme value predic-tions related to wave induced loads. Due to the efficient optimisation procedures implemented in standard FORM codes and the short...... duration of the time domain simulations needed (typically 60-300s to cover the hy-drodynamic memory effects in the response) the calcu-lation of the mean out-crossing rates of a given response are very fast. Thus complicated non-linear effects can be included. The FORM analysis also identifies the most...

  9. Reduction of fatigue loads on jacket substructure through blade design optimization for multimegawatt wind turbines at 50 m water depths

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried; Pavese, Christian; Natarajan, Anand

    2016-01-01

    This paper addresses the reduction of the fore-aft damage equivalent moment at the tower base for multi-megawatt offshore wind turbines mounted on jacket type substructures at 50 m water depths. The study investigates blade design optimization of a reference 10 MW wind turbine under standard wind...... on the efficient design of other components such as the constituents of the nacelle....

  10. Time-dependent Occurrence Rate of Electromagnetic Cyclotron Waves in the Solar Wind: Evidence for the Effect of Alpha Particles?

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Feng, H. Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing (China); Chu, Y. H. [Institute of Space Science, National Central University, Chungli, Taiwan (China); Huang, J. [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing (China)

    2017-09-20

    Previous studies revealed that electromagnetic cyclotron waves (ECWs) near the proton cyclotron frequency exist widely in the solar wind, and the majority of ECWs are left-handed (LH) polarized waves. Using the magnetic field data from the STEREO mission, this Letter carries out a survey of ECWs over a long period of 7 years and calculates the occurrence rates of ECWs with different polarization senses. Results show that the occurrence rate is nearly a constant for the ECWs with right-handed polarization, but it varies significantly for the ECWs with LH polarization. Further investigation of plasma conditions reveals that the LH ECWs take place preferentially in a plasma characterized by higher temperature, lower density, and larger velocity. Some considerable correlations between the occurrence rate of LH ECWs and the properties of ambient plasmas are discussed. The present research may provide evidence for the effect of alpha particles on the generation of ECWs.

  11. Elite Opposition-Based Water Wave Optimization Algorithm for Global Optimization

    OpenAIRE

    Wu, Xiuli; Zhou, Yongquan; Lu, Yuting

    2017-01-01

    Water wave optimization (WWO) is a novel metaheuristic method that is based on shallow water wave theory, which has simple structure, easy realization, and good performance even with a small population. To improve the convergence speed and calculation precision even further, this paper on elite opposition-based strategy water wave optimization (EOBWWO) is proposed, and it has been applied for function optimization and structure engineering design problems. There are three major optimization s...

  12. Planetary wave seasonality from meteor wind measurements at 7.4° S and 22.7° S

    Science.gov (United States)

    Araújo, L. R.; Lima, L. M.; Batista, P. P.; Clemesha, B. R.; Takahashi, H.

    2014-05-01

    In this study we have used wind observation data from the mesosphere and lower thermosphere (MLT) region, obtained from meteor radar measurements in São João do Cariri (7.4° S, 36.5° W) from July 2004 to December 2008 and in Cachoeira Paulista (22.7° S, 45.0° W) from January 2002 to July 2006 and from September 2007 to November 2008. From the spectral analysis it was possible to identify the presence of planetary-scale oscillations in the hourly winds for the two latitudes and to study their transient character, which allowed elaboration of a climatology of planetary oscillation signatures. Planetary waves with periods near 2-days, 6-7 days, and 16 days were focussed on in this study. The quasi-2-day waves in the meteoric winds showed a seasonal cycle, with intense amplitudes occurring after the austral summer solstice and extending until the end of the season. The vertical wavelengths of the 2-day wave over Cachoeira Paulista were larger than those at São João do Cariri. A possible modulation of the quasi-2-day wave amplitudes by the quasi-biennial oscillation (QBO) has been observed only at São João do Cariri. The 6-7 day oscillations presented more intense amplitudes during August-November but were present with lower amplitudes during March-April at both sites. The 6-7 day vertical wavelengths over São João do Cariri were larger than at Cachoeira Paulista. The 6-7 day amplitudes exhibited intra-seasonal and annual behavior, however, there was no clear evidence of QBO modulation. The 16-day oscillations showed a seasonal cycle at São João do Cariri, with amplifications from austral spring to mid-summer and weaker amplitudes from autumn until early winter, however, there was no clear seasonality over Cachoeira Paulista. The 16-day vertical wavelengths have assumed values of λz ~ 45-85 km over both sites. 16-day wave amplitudes at the two sites showed different long-term behaviors.

  13. Observations and estimates of wave-driven water level extremes at the Marshall Islands

    Science.gov (United States)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-10-01

    Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.

  14. Waves in shallow water off west coast of India during the onset of summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Philip, C.S.; Nair, T.N.B.

    Information System (Ministry of Earth Sciences), P.O. 21, IDA-Jeedimetla, Hyderabad – 72, India Received: 11 November 2009 – Revised: 11 March 2010 – Accepted: 17 March 2010 – Published: 19 March 2010 Abstract. The wave growth characteristics during the onset...) were transformed to wind speeds at 10 m elevation (U10), using Prandtl 1/7 law approx- imation, U10/Uz=(10/z)1/7 (4) where z is the height at which the wind is measured, and U10 and Uz are the wind speeds at 10 m and zm heights. Ann. Geophys., 28, 817...

  15. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  16. Wind speed effects on leaf energy balance, transpiration and water use efficiency

    Science.gov (United States)

    Schymanski, S. J.; Or, D.

    2014-12-01

    Transpiration and heat exchange rates by plant leaves involve coupled physiological processes of significant ecohydrological importance. Prediction of the effects of changing environmental conditions such as irradiance, temperature, humidity and wind speed requires a thorough understanding of these processes. The common assumption that leaf temperature equals air temperature may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). Theoretical considerations and observations suggest that leaf temperatures may deviate substantially from air temperature under typical environmental conditions, leading to greatly modified transpiration rates compared to isothermal conditions. In particular, effects of wind on gas exchange must consider feedbacks with leaf temperature. Systematic quantification of the effects of wind speed on leaf heat and gas exchange rates yield some surprising insights. We found a range of conditions where increased wind speed can suppress transpiration rates. The result reflects unintuitive feedbacks between sensible heat flux, leaf temperature, leaf-to-air vapour pressure deficit and latent heat flux. Modelling results suggest that with high wind speeds the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. This leads to positive relation between water use efficiency and wind speed across a wide range of conditions. The presentation will report results from a lab experiment allowing separation of the different leaf energy balance components under fully controlled conditions (wind speed, temperature, humidity, irradiance) and put them into perspective with a detailed leaf energy balance model and the commonly used Penman-Monteith equation.

  17. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    Methods for mechanical generation of 2-dimensional (2-D) and 3-dimensional (3-D) linear water waves in physical models are presented. The results of a series of laboratory 3-D wave generation tests are presented and discussed. The tests preformed involve reproduction of wave fields characterised...... is based on a new principle for active absorption of reflected waves: the wave generator displacement correction signal corresponding to absorption of the reflected wave train is determined by means of linear filtering and subsequent superposition of surface elevation signals measured in two positions...... in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...

  18. Military Training: Observations on Efforts to Prepare Personnel to Survive Helicopter Crashes into Water

    Science.gov (United States)

    2014-07-14

    Air Force Environmental conditions simulation equipment Equipment that simulates conditions such as waves, wind, rain, thunder , lightning , and...Environmental conditions simulation equipment Equipment that simulates conditions such as waves, wind, rain, thunder , lightning , and combat sounds...items such as wave generators, heavy-duty fans to simulate high winds, strobe lights to simulate lightning , water spray and injection systems to

  19. Attenuation of ultrasonic waves in coal-water slurries

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S.H.; Raptis, A.C.

    1979-02-01

    Attenuation of ultrasonic waves in coal-water slurries was investigated in the frequency range of 200 kHz to 1 MNZ (up to 30% by weight). The coal used in this study was West Kentucky number nine coal with particle size ranging from 90 to 30 ..mu..m. Attenuation data show a linear dependence on both frequency and coal concentration in the region of investigation. Results were compared with theoretical predictions from the equations derived by Urick, and by Allegra and Hawley. The experimental attenuation was found to be higher than that from the theories by an order of magnitude. The discrepancy is discussed and further investigations are suggested. Results of this work provide valuable information for the design of an ultrasonic mass flowmeter for coal-conversion processes.

  20. Higher-Order Hamiltonian Model for Unidirectional Water Waves

    Science.gov (United States)

    Bona, J. L.; Carvajal, X.; Panthee, M.; Scialom, M.

    2018-04-01

    Formally second-order correct, mathematical descriptions of long-crested water waves propagating mainly in one direction are derived. These equations are analogous to the first-order approximations of KdV- or BBM-type. The advantage of these more complex equations is that their solutions corresponding to physically relevant initial perturbations of the rest state may be accurate on a much longer timescale. The initial value problem for the class of equations that emerges from our derivation is then considered. A local well-posedness theory is straightforwardly established by a contraction mapping argument. A subclass of these equations possess a special Hamiltonian structure that implies the local theory can be continued indefinitely.

  1. Stochastic model for joint wave and wind loads on offshore structures

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2002-01-01

    The stochastic wave load environment of offshore structures is of such a complicated nature that any engineering analysis requires extensive simplifications. This concerns both the transformation of the wave field velocities and accelerations to forces on the structure and the probabilistic descr...

  2. Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin

    Science.gov (United States)

    Jaksic, V.; O'Shea, R.; Cahill, P.; Murphy, J.; Mandic, D. P.; Pakrashi, V.

    2015-01-01

    Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson–Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. PMID:25583866

  3. The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake.

    Science.gov (United States)

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping

    2017-12-04

    Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,520,231 high quality sequence reads and 74,842 OTUs were obtained in all samples with α-proteobacteria, γ-proteobacteria and Actinobacteria being the most dominant taxa. The diversity and structure of bacterioplankton communities varied during the experiment, but were highly similar based on the same time of sampling, suggesting that bacterioplankton communities are insensitive to wind wave turbulence in the lake. This stability could be associated with the traits associated with bacteria. In particular, turbulence favored the growth of bacterioplankton, which enhanced biogeochemical cycling of nutrients in the lake. This study provides a better understanding of bacterioplankton communities in lake ecosystems exposed to natural mixing/disturbances.

  4. Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin.

    Science.gov (United States)

    Jaksic, V; O'Shea, R; Cahill, P; Murphy, J; Mandic, D P; Pakrashi, V

    2015-02-28

    Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson-Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa

    Directory of Open Access Journals (Sweden)

    Ron Karl Hoeke

    2015-09-01

    Full Text Available Wind-wave contributions to tropical cyclone (TC-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR, particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.

  6. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam

    2017-04-11

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester\\'s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  7. Adjustment of sand ripples under changing water waves

    Science.gov (United States)

    Testik, F. Y.; Voropayev, S. I.; Fernando, H. J. S.

    2005-07-01

    The results of an experimental investigation on the adjustment of vortex sand ripples under shoaling waves to changing of wave conditions are presented in this paper. A large wave tank was used to generate shoaling waves. Waves with small (S), moderate (M), and large (L) intensities (as specified by the wave paddle excursion) were used to model three basic cases of cyclic variation of wave forcing, namely, M-L-M, L-M-L, and L-S-L. Depending on the forcing transitions (L-M, M-L, or L-S), three main ripple adjustment processes were identified: (i) ripple splitting, (ii) ripple regrowth, and (iii) ripple flattening. Quantitative data on the time evolution of ripple characteristics were collected using the structured light technique. The results of the observations were explained by extending a simplified physical model proposed earlier for ripples under constant wave forcing to the case of changing wave forcing.

  8. The influence of solar wind on extratropical cyclones – Part 2: A link mediated by auroral atmospheric gravity waves?

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2009-01-01

    Full Text Available Cases of mesoscale cloud bands in extratropical cyclones are observed a few hours after atmospheric gravity waves (AGWs are launched from the auroral ionosphere. It is suggested that the solar-wind-generated auroral AGWs contribute to processes that release instabilities and initiate slantwise convection thus leading to cloud bands and growth of extratropical cyclones. Also, if the AGWs are ducted to low latitudes, they could influence the development of tropical cyclones. The gravity-wave-induced vertical lift may modulate the slantwise convection by releasing the moist symmetric instability at near-threshold conditions in the warm frontal zone of extratropical cyclones. Latent heat release associated with the mesoscale slantwise convection has been linked to explosive cyclogenesis and severe weather. The circumstantial and statistical evidence of the solar wind influence on extratropical cyclones is further supported by a statistical analysis of high-level clouds (<440 mb extracted from the International Satellite Cloud Climatology Project (ISCCP D1 dataset. A statistically significant response of the high-level cloud area index (HCAI to fast solar wind from coronal holes is found in mid-to-high latitudes during autumn-winter and in low latitudes during spring-summer. In the extratropics, this response of the HCAI to solar wind forcing is consistent with the effect on tropospheric vorticity found by Wilcox et al. (1974 and verified by Prikryl et al. (2009. In the tropics, the observed HCAI response, namely a decrease in HCAI at the arrival of solar wind stream followed by an increase a few days later, is similar to that in the northern and southern mid-to-high latitudes. The amplitude of the response nearly doubles for stream interfaces associated with the interplanetary magnetic field BZ component shifting southward. When the IMF BZ after the stream interface shifts northward, the autumn-winter effect weakens or shifts to lower (mid latitudes

  9. Numerical comparison between deep water and intermediate water depth expressions applied to a wave energy converter

    Directory of Open Access Journals (Sweden)

    Pedro Beirão

    2015-09-01

    Full Text Available The energy that can be captured from the sea waves and converted into electricity should be seen as a contribution to decrease the excessive dependency and growing demand of fossil fuels. Devices suitable to harness this kind of renewable energy source and convert it into electricity—wave energy converters (WECs—are not yet commercially competitive. There are several types of WECs, with different designs and working principles. One possible classification is their distance to the shoreline and thus their depth. Near-shore devices are one of them since they are typically deployed at intermediate water depth (IWD. The selection of the WEC deployment site should be a balance between several parameters; water depth is one of them. Another way of classifying WECs is grouping them by their geometry, size and orientation. Considering a near-shore WEC belonging to the floating point category, this paper is focused on the numerical study about the differences arising in the power captured from the sea waves when the typical deep water (DW assumption is compared with the more realistic IWD consideration. Actually, the production of electricity will depend, among other issues, on the depth of the deployment site. The development of a dynamic model including specific equations for the usual DW assumption as well as for IWD is also described. Derived equations were used to build a time domain simulator (TDS. Numerical results were obtained by means of simulations performed using the TDS. The objective is to simulate the dynamic behavior of the WEC due to the action of sea waves and to characterize the wave power variations according with the depth of the deployment site.

  10. Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

    Directory of Open Access Journals (Sweden)

    Kesayoshi Hadano

    2017-05-01

    Full Text Available As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1 setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2 workability in installation and maintenance operations; (3 high energy conversion potential; and (4 low cost. In this system, neither the wall(s of the chambers nor the energy conversion device(s are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s. Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

  11. Cascade and Dissipation of Solar Wind Turbulence at Electron Scales: Whistlers or Kinetic Alfv\\'en Waves?

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn L.

    2010-01-01

    Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.

  12. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kajdič, P. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alexandrova, O.; Maksimovic, M.; Lacombe, C. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC UniversitéParis 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Fazakerley, A. N., E-mail: primoz@geofisica.unam.mx [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-12-20

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  13. Demonstration and study of the dispersion of water waves with a computer-controlled ripple tank

    Science.gov (United States)

    Ströbel, Bernhard

    2011-06-01

    The design of a ripple tank built in an undergraduate student project is described. Water waves are excited acoustically using computer programmable wave shapes. The projected wave patterns are recorded with a video camera and analyzed quantitatively. From the propagation of wave packets in distilled water at three different depths, the phase and group velocities are measured in the frequency range from 2 to 50 Hz. Good agreement with theory is found. The propagation of wave trains of different shapes is recorded and explained on the basis of the stationary phase approximation. Various types of precursors are detected. For a depth slightly above the critical depth and thus nearly dispersion-free, the solitary-like propagation of a single pulse is observed. In shallow water, the compression of a chirped pulse is demonstrated. Circular waves produced by falling water drops are recorded and analyzed.

  14. Existence and amplitude bounds for irrotational water waves in finite depth

    Science.gov (United States)

    Kogelbauer, Florian

    2017-12-01

    We prove the existence of solutions to the irrotational water-wave problem in finite depth and derive an explicit upper bound on the amplitude of the nonlinear solutions in terms of the wavenumber, the total hydraulic head, the wave speed and the relative mass flux. Our approach relies upon a reformulation of the water-wave problem as a one-dimensional pseudo-differential equation and the Newton-Kantorovich iteration for Banach spaces. This article is part of the theme issue 'Nonlinear water waves'.

  15. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao

    2017-11-27

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  16. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2010-01-01

    In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2...

  17. Traveling wave solutions of a highly nonlinear shallow water equation

    NARCIS (Netherlands)

    Geyer, A.; Quirchmayr, Ronald

    2018-01-01

    Motivated by the question whether higher-order nonlinear model equations, which go beyond the Camassa-Holm regime of moderate amplitude waves, could point us to new types of waves profiles, we study the traveling wave solutions of a quasilinear evolution equation which models the propagation of

  18. The unexpected effects of wind speeds on plant water use efficiency

    Science.gov (United States)

    Schymanski, S. J.; Or, D.

    2013-12-01

    Transpiration and heat exchange by plant leaves are coupled physiological processes of significant ecohydrological importance. The common practice of modelling transpiration as an isothermal process (assuming equal leaf and air temperatures) may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). In a recent study (Schymanski et al., 2013), we investigated effects of fluctuating irradiance (sunflecks) on leaf thermal regime and transpiration rates using a physically-based leaf model. Results suggest that leaf temperatures may deviate substantially from air temperature, leading to greatly modified transpiration rates compared to isothermal conditions. This presentation reports a systematic study of the effects of wind speed on leaf heat and gas exchange rates. Surprisingly, under certain conditions, an increase in wind speed can suppress transpiration rates. This is due to feedbacks between sensible heat flux, leaf temperature, leaf-to-air vapour pressure deficit and latent heat flux. The model predicts that for high wind velocities, the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. If this leaf-scale effect is consistent across most leaves, it may have profound implications for canopy-scale water use efficiency under globally decreasing wind speeds. Experimental verification of the modelling study is under way and first results will be presented.

  19. Optimization of hybrid system (wind-solar energy) for pumping water ...

    African Journals Online (AJOL)

    This paper presents an optimization method for a hybrid (wind-solar) autonomous system designed for pumping water. This method is based on mathematical models demonstrated for the analysis and control of the performance of the various components of the hybrid system. These models provide an estimate of ...

  20. Numerical simulation of wind wave surface profiles with tuned phase spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    It is known that the phases of the individual harmonic components in a linear narrow band wave spectrum are uniformly random. It has been suggested by some workers that some sort of phase coupling and `locking' between the different spectral...

  1. The Way the Wind Blows Matters to Ecosystem Water Use Efficiency

    Science.gov (United States)

    Montaldo, N.; Oren, R.

    2015-12-01

    In many regions, atmospheric conditions change frequently with shifts of wind direction, extending maritime influences far inland or continental influences to coastal ecosystems. Climate models predict changes in both wind direction and velocity; these changes could potentially impact ecosystems mass and energy exchanges with the atmosphere. Using climate and ecosystem-scale eddy-covariance data from Sardinia, we evaluated whether the frequency of certain wind characteristics, potentially improving ecosystem CO2 uptake, have changed over five decades, and whether these characteristics are indeed linked to ecosystem gas-exchange responses of the studied ecosystem. The analyses shows that days dominated by summer Mistral winds decreased on average 3% per decade, and that wind direction affects biosphere-atmosphere exchange of carbon but not water. High velocity cool Mistral winds from continental Europe treble vapor pressure deficit (D) as they cross the island. In contrast, arriving with a similar D, lower velocity, warmer Saharan Sirocco winds heat up, thus increasing D five-fold only 50 km inland. Over a mixed ecosystem (grass-wild olive), while soil moisture was low and constant, daytime net carbon exchange (NEE) averaged 2.3-fold higher in Mistral than Sirocco days, largely reflecting the theoretically expected response of canopy conductance (gc) to variation of D. Because the product of gc and D encodes the key ecosystem compensatory mechanism, the reciprocal gc-D response maintained similar ecosystem evapotranspiration (E). Thus, summertime ecosystem water-use efficiency (W=NEE/E), was ~66% higher during Mistral than other days. The historical decrease of Mistral frequency reduced the estimated summertime NEE >30 %. The analyses demonstrate that alteration of dominance of air masses predicted with future climate will amplify or negate the positive effect of increased atmospheric [CO2] on W, and should be considered when assessing climate change impact on NEE.

  2. Retrieving wind statistics from average spectrum of continuous-wave lidar

    DEFF Research Database (Denmark)

    Branlard, Emmanuel; Pedersen, Anders Tegtmeier; Mann, Jakob

    2013-01-01

    -order atmospheric turbulence statistics. An atmospheric field campaign and a wind tunnel experiment are carried out to show that the use of an average Doppler spectrum instead of a time series of velocities determined from individual Doppler spectra significantly reduces the differences with the standard deviation...

  3. On the interaction of deep water waves and exponential shear currents

    Science.gov (United States)

    Cheng, Jun; Cang, Jie; Liao, Shi-Jun

    2009-05-01

    A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.

  4. Spill behaviour of Maui B crude oil (offshore Taranaki, New Zealand) under simulated wind and wave conditions

    International Nuclear Information System (INIS)

    Sulzberger, C.

    2000-01-01

    The objective of this study was to improve the response capabilities of New Zealand to an oil spill by the conduct of experiments designed to identify the behaviour of indigenous crude oil when spilled in seawater. The study aimed to determine the weathering properties and the accuracy of the standard rule that oil travels at 3 per cent of the wind speed. The weathering properties, evaporation rate and the expected velocity of the oil in water were measured for the Maui B crude oil, which boasted a moderate wax and high pour point. This information was considered essential to elaborate accurate Offshore Oil Spill Contingency plans. Two cleanup aids, two chemical dispersants and one organic cleaner were evaluated to determine their suitability for clean up operations. The results showed that the behaviour of the Maui B crude oil was greatly affected by the seasonal temperature variations off the coast of Taranaki, New Zealand. The oil travelled at approximately 3 per cent of the wind velocity in the warm sea temperatures, but travelled at 3.7 per cent of the wind velocity in colder seas. In all cases, the formation of tar balls and entrained water was present. 8 refs., 9 tabs., 3 figs

  5. Results from experimental research on wave components in wind speed taken at the ''Khazar'' off-shore drilling installation

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanov, N.F.; Babaev, A.B.; Ismailov, A.A.; Seidova, N.A.

    1980-01-01

    The statistical characteristics of wave parameters and wind velocity which were measured in natural conditions during severe storms on the ''Khazarn'' off-shore drilling installation are given for sea depths of 45,50 and 54 meters in the Neftianii Kamen, the former Azi Aslanova, and the Livanova-east regions. Using a spectral method, the parameters of the wave are calculated on data from a severe storm.

  6. Experimental investigation of the wake behind a model of wind turbine in a water flume

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, Igor; Kabardin, I.

    2014-01-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert’s optimization. The transitional regime, generally characterized as in between...... the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities...

  7. Intertidal water column meiofauna in relation to wave intensity on an exposed beach

    Directory of Open Access Journals (Sweden)

    J. Germán Rodríguez

    2004-04-01

    Full Text Available Since the 1970s, various studies have shown that some meiofaunal taxa frequently occur in the water column. Water currents or any process that disturbs the sediments are possible factors that can facilitate the passive entry of meiofauna in the water column. Wave action has been predicted as one of these factors (Armonies, 1994, suggesting a correlation between the number of eroded specimens and wave intensity should exist. As a test of this prediction, replicated samples were taken in the water column, swash sediment and back-swash water in an exposed beach (Island of Sylt, northern Wadden Sea. Wave height and period were measured to characterise the energy regime. Samplings were carried out over a nine day period in August 2000, at diurnal mid-tide time. Wave height and period varied significantly among collections. Densities of nematodes, harpacticoids, nauplii, platyhelminthes, ostracods and bivalve larvae in the water column, swash sediment and back-swash water varied significantly among collections. Nevertheless, no significant correlation was found between water column density and wave characteristics. Density of meiofauna in the water column was not correlated with density in the sediment or in back-swash water. Therefore wave intensity did not explain the variability of meiofaunal densities present in the water column.

  8. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2010-01-01

    In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...

  9. Observation of Bernstein Waves Excited by Newborn Interstellar Pickup Ions in the Solar Wind

    Science.gov (United States)

    Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Gary, S. Peter; Murphy, Neil; Gray, Perry C.; Burlaga, Leonard F.

    2012-01-01

    A recent examination of 1.9 s magnetic field data recorded by the Voyager 2 spacecraft in transit to Jupiter revealed several instances of strongly aliased spectra suggestive of unresolved high-frequency magnetic fluctuations at 4.4 AU. A closer examination of these intervals using the highest resolution data available revealed one clear instance of wave activity at spacecraft frame frequencies from 0.2 to 1 Hz. Using various analysis techniques, we have characterized these fluctuations as Bernstein mode waves excited by newborn interstellar pickup ions. We can find no other interpretation or source consistent with the observations, but this interpretation is not without questions. In this paper, we report a detailed analysis of the waves, including their frequency and polarization, that supports our interpretation.

  10. Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT

    Science.gov (United States)

    Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.

    2017-09-01

    We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important

  11. Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    Science.gov (United States)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.

    2011-01-01

    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".

  12. The Distribution of Chorus and Plasmaspheric Hiss Waves in the Inner Magnetospahere as Functions of Geomagnetic Activity and Solar Wind Parameters as Observed by The Van Allen Probes.

    Science.gov (United States)

    Aryan, H.; Sibeck, D. G.; Balikhin, M. A.; Agapitov, O. V.; Kletzing, C.

    2015-12-01

    The dynamics of the radiation belts is dependent upon the acceleration and loss of radiation belt electrons that is largely determined by the interaction of georesonant wave particles with chorus and plasmaspheric hiss waves. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity as expressed by the geomagnetic indices (Ae, Kp, and Dst). However, it has been shown that not all geomagnetic storms necessarily increase the flux of energetic electrons at the radiation belts. In fact, almost 20% of all geomagnetic storms cause a decrease in the flux of energetic electrons, while 30% has relatively no effect. Also, the geomagnetic indices are indirect, nonspecific parameters compiled from imperfectly covered ground based measurements that lack time history. This emphasises the need to present wave distributions as a function of both geomagnetic activity and solar wind parameters, such as velocity (V), density (n), and interplanetary magnetic field component (Bz), that are known to be predominantly effective in the control of radiation belt energetic electron fluxes. This study presents the distribution of chorus and plasmaspheric hiss waves in the inner magnetosphere as functions of both geomagnetic activity and solar wind parameters for different L-shell, magnetic local time, and magnetic latitude. This study uses almost three years of data measured by the EMFISIS on board the Van Allen Probes. Initial results indicate that the intensity of chorus and plasmaspheric hiss emissions are not only dependent on the geomagnetic activity but also dependent on solar wind parameters. The largest average wave intensities are observed with equatorial chorus in the region 4wind velocity, low solar wind density, and highly negative Bz respectively.

  13. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves

    Science.gov (United States)

    2015-09-30

    Dispersion Relations for Sound Waves and Shear Waves Michael J. Buckingham Marine Physical Laboratory , Scripps Institution of Oceanography University...dry, were all from laboratory experiments, since no in situ broadband shear-wave data were available at the time. (Since then, Megan Ballard and...Texas, 11 March 2014. 5. My graduate student, Simon Freeman, won Outstanding Student Paper Award for “Array-based hydroacoustic characterization of P, S

  14. Study of Green Shipping Technologies - Harnessing Wind, Waves and Solar Power in New Generation Marine Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Grzegorz Rutkowski

    2016-12-01

    Full Text Available The purpose and scope of this paper is to describe the complexity of the new generation marine propulsion technologies implemented in the shipping industry to promote green ships concept and change the view of sea transportation to a more ecological and environment-friendly. Harnessing wind, waves and solar power in shipping industry can help the ship’s owners reduce the operational costs. Reducing fuel consumption results in producing less emissions and provides a clean source of renewable energy. Green shipping technologies can also effectively increase the operating range of vessels and help drive sea transportation towards a greener future and contribute to the global reduction of harmful gas emissions from the world's shipping fleets.

  15. Evaluation of the Fluid Model Approach for the Sizing of Energy Storage in Wave-Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    José A. Domínguez-Navarro

    2016-03-01

    Full Text Available The application of energy storage in offshore renewable generation systems allows managing the intrinsic uncertainty of the resources and improving the utilization factor of the electrical network. Optimal storage design algorithms generally have to evaluate the behavior of the whole system thousands times before converging to the optimal solution and the reliability of the results obviously depends on the quality of input data. On the other hand, the utilization of simplified storage models in the design stage can reduce the simulation time drastically, while still providing useful information. The goal of this paper is to evaluate the applicability of a methodology for sizing the energy storage system in a hybrid wind and wave farm, which is based on fluid models. The description and performance of this modeling approach will be introduced and compared to standard design procedures based on extensive simulations. Advantages and limitations of each approach will be underlined and the impact of input data quality will be discussed.

  16. Wave Run-Up on Cylindrical and Cone Shaped Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    De Vos, Leen; Frigaard, Peter; De Rouck, Julien

    2007-01-01

    order Stokes equations are used to calculate the wave kinematics in the crest. The variation of the run-up around the pile is measured and it is found that the position with the lowest run-up level is located under 135°, while the run-up at that position amounts to approximately 40% to 50...

  17. Integration of a wind farm with a wave- and an aquaculture farm

    DEFF Research Database (Denmark)

    He, W.; Weissenberger, J.; Bergh, Ø.

    with other marine energy producers such as wave energy and other maritime users such as aquaculture farms may result in significant benefits in terms of economics, optimising spatial utilization, and minimising the environmental impact. In this research project, the integration benefits and disadvantages...

  18. K2 photometry and HERMES spectroscopy of the blue supergiant ρ Leo: rotational wind modulation and low-frequency waves

    Science.gov (United States)

    Aerts, C.; Bowman, D. M.; Símon-Díaz, S.; Buysschaert, B.; Johnston, C.; Moravveji, E.; Beck, P. G.; De Cat, P.; Triana, S.; Aigrain, S.; Castro, N.; Huber, D.; White, T.

    2018-05-01

    We present an 80-d long uninterrupted high-cadence K2 light curve of the B1Iab supergiant ρ Leo (HD 91316), deduced with the method of halo photometry. This light curve reveals a dominant frequency of frot = 0.0373 d-1 and its harmonics. This dominant frequency corresponds with a rotation period of 26.8 d and is subject to amplitude and phase modulation. The K2 photometry additionally reveals multiperiodic low-frequency variability (modulation by a dynamic aspherical wind with an amplitude of about 20 km s-1 in the H α line, as well as photospheric velocity variations of a few km s-1 at frequencies in the range 0.2-0.6 d-1 in the Si III 4567 Å line. Given the large macroturbulence needed to explain the spectral line broadening of the star, we interpret the detected photospheric velocity as due to travelling superinertial low-degree large-scale gravity waves with dominant tangential amplitudes and discuss why ρ Leo is an excellent target to study how the observed photospheric variability propagates into the wind.

  19. Noise Model Analysis and Estimation of Effect due to Wind Driven Ambient Noise in Shallow Water

    Directory of Open Access Journals (Sweden)

    S. Sakthivel Murugan

    2011-01-01

    Full Text Available Signal transmission in ocean using water as a channel is a challenging process due to attenuation, spreading, reverberation, absorption, and so forth, apart from the contribution of acoustic signals due to ambient noises. Ambient noises in sea are of two types: manmade (shipping, aircraft over the sea, motor on boat, etc. and natural (rain, wind, seismic, etc., apart from marine mammals and phytoplanktons. Since wind exists in all places and at all time: its effect plays a major role. Hence, in this paper, we concentrate on estimating the effects of wind. Seven sets of data with various wind speeds ranging from 2.11 m/s to 6.57 m/s were used. The analysis is performed for frequencies ranging from 100 Hz to 8 kHz. It is found that a linear relationship between noise spectrum and wind speed exists for the entire frequency range. Further, we developed a noise model for analyzing the noise level. The results of the empirical data are found to fit with results obtained with the aid of noise model.

  20. Wind or water turbine power augmentation using the system of guiding surfaces

    Science.gov (United States)

    Bashurin, V. P.; Budnikov, I. N.; Hatunkin, V. Yu; Klevtsov, V. A.; Ktitorov, L. V.; Lazareva, A. S.; Meshkov, E. E.; Novikova, I. A.; Pletenev, F. A.; Yanbaev, G. M.

    2016-04-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines.

  1. Wind or water turbine power augmentation using the system of guiding surfaces

    International Nuclear Information System (INIS)

    Bashurin, V P; Ktitorov, L V; Lazareva, A S; Pletenev, F A; Budnikov, I N; Hatunkin, V Yu; Klevtsov, V A; Meshkov, E E; Novikova, I A; Yanbaev, G M

    2016-01-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines. (paper)

  2. Ocean surface waves and winds over the north Indian Ocean from satellite altimeter - preliminary results of SAC-NIO joint project

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Rajkumar, R.; Gairola, R.M.; Gohil, B.S.; Vethamony, P.; Rao, L.V.G.

    With the aim of retrieving, validating and mapping ocean surface winds and waves in the north Indian Ocean, GEOSAT altimeter data for the period November 1986 to October 1987 and available sea truth data for the above period were processed in SAC...

  3. Meteor Wind Radar Observations of Gravity Wave Momentum Fluxes at Middle and Lower Latitudes at Brazil

    Science.gov (United States)

    Fátima Andrioli, Vânia; Clemesha, Barclay; Prado Batista, Paulo; Schuch, Nelson Jorge; Buriti, Ricardo

    It is well known that the upward propagation of internal gravity waves from the lower atmo-sphere to the mesosphere plays an important role in the dynamics and energy balance of this region. Hocking (2005) developed a technique to calculate gravity wave momentum flux using meteor radar data. This technique is a generalization of the 2-beam technique of Vincent and Reid (1983). Hocking's technique uses radial velocity variances, from 80 to 100 km, which are mainly caused by gravity waves, to determine the gravity wave momentum fluxes. We apply this technique to data from a SKiMET meteor radar located at Santa Maria (29.7S, 53.7o W) during 2005. The data were analyzed in 3-km/2-h bins centered on 82, 85, 88 km etc. and 1, 3, 5 UT etc., generating monthly means. It was found that the meridional variances showed a fairly constant behavior throughout the year, with maximum at around 90 km. The zonal and vertical variances were less consistent. The monthly means of the horizontal momentum flux, uv, showed an oscillatory behavior with phase decreasing with increasing altitude and similar behavior was observed in the v'w' component. Although the behavior of u'w' was observed to be oscillatory, its phase did not show altitude propagation. In order to study the features of gravity wave activity in different latitude these results will be compared with two other radars located at São João do Cariri (7.3S, 36.4W) and Cachoeira Paulista (22.7S, 45.0W) for the a a same period.

  4. Design of monopiles for multi-megawatt wind turbines at 50 m water depth

    DEFF Research Database (Denmark)

    Njomo Wandji, Wilfried; Natarajan, Anand; Dimitrov, Nikolay Krasimirov

    2015-01-01

    The design of a monopile substructure for wind turbines of 10 MW capacity installed at 50 m water depth is presented. The design process starts with the design of a monopile at a moderate water depth of 26 m and is then up scaled to a 50 m water depth. The baseline geometry is then modified...... to specific frequency constraints for the support structure. The specific design requirements including the soil boundary conditions of this large diameter monopile has been described and fully coupled hydro-aero-servo elastic simulations are performed for ultimate limit state design. Soil plasticization...

  5. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses.

    Science.gov (United States)

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-18

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

  6. Stationary wave patterns in deep water | Doyle | Quaestiones ...

    African Journals Online (AJOL)

    ship" or an obstacle in a stream, is revisited. The wave patterns are calculated using the results of the method of stationary phase. This allows for an elegant geometrical construction in which the reciprocal polar of the wave normal diagram ...

  7. The effect of broad-band Alfvén-cyclotron waves spectra on the preferential heating and differential acceleration of He++ ions in the solar wind

    International Nuclear Information System (INIS)

    Maneva, Y. G.; Ofman, L.; Viñas, A. F.

    2013-01-01

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He ++ ions in the solar wind. We consider the effects of nonlinear Alfvén-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfvén-alpha-cyclotron waves are known to preferentially heat and accelerate He ++ ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfvén-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He ++ ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  8. Effects of the North Atlantic Oscillation and wind waves on salt marsh dynamics in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Kim, Daehyun; Grant, William E.; Cairns, David M.

    2013-01-01

    this notion has been conceptually introduced for the Wadden Sea, no modeling attempts have been made yet. As a proof of concept, this study developed a simulation model using the commercially available STELLAA (R) software, based on long-term data on water level and sedimentation collected at a back....... Despite continuous increases in surface elevation, increases in simulated submergence duration were apparently due to wind-driven HWL events, which generally increased in frequency after 1980. These findings for the Danish Wadden Sea add to the growing body of evidence that the role of atmospheric...

  9. Water wave generation with source function in the level set finite element framework

    International Nuclear Information System (INIS)

    Lee, Hae Gyun

    2015-01-01

    Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full three-dimensional Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation and propagation of water waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the wave generation and the problem of wave force evaluation on the vertical wall. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problems. The results of numerical simulations are compared with theoretical values and good agreements are observed.

  10. Millimeter Wave Radar for Atmospheric Turbulence Characterization and Wind Profiling for Improved Naval Operations

    Science.gov (United States)

    2016-12-29

    Profiling for Improved Naval Operations Benjamin Rock Bahman hafizi RichaRd fischeR Beam Physics Branch Plasma Physics Division antonio ting...Bahman Hafizi and Rich Fischer Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375 Tony Ting Research Support Instruments...which will be discussed in turn and then compared. A. Rayleigh Scattering In clear unperturbed air, the reflection of electromagnetic waves is

  11. Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD

    Directory of Open Access Journals (Sweden)

    Ahmed Elhanafi

    2016-12-01

    Full Text Available In this paper, hydrodynamic wave loads on an offshore stationary–floating oscillating water column (OWC are investigated via a 2D and 3D computational fluid dynamics (CFD modeling based on the RANS equations and the VOF surface capturing scheme. The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge. Following the validation stage, the numerical model is modified to consider the pneumatic damping effect, and an extensive campaign of numerical tests is carried out to study the wave–OWC interactions for different wave periods, wave heights and pneumatic damping factors. It is found that the horizontal wave force is usually larger than the vertical one. Also, there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency, whereas the pneumatic damping has a little effect on the horizontal force. Additionally, simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening. Furthermore, 3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads, respectively.

  12. The effect of water temperature and synoptic winds on the development of surface flows over narrow, elongated water bodies

    Science.gov (United States)

    Segal, M.; Pielke, R. A.

    1985-01-01

    Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.

  13. Wave Run-up on Slender Piles in Design Conditions

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter; Damsgaard, M. L.

    2011-01-01

    Wave run-up on foundations is a very important factor in the design of entrance platforms for offshore wind turbines. When the Horns Reef 1 wind turbine park in Denmark was designed the vertical wave run-up phenomenon was not well known in the industry, hence not sufficiently considered in the de......Wave run-up on foundations is a very important factor in the design of entrance platforms for offshore wind turbines. When the Horns Reef 1 wind turbine park in Denmark was designed the vertical wave run-up phenomenon was not well known in the industry, hence not sufficiently considered...... for different values of diameter to water depth ratios (D/h) and different wave heights to water depth ratios (H/h) for both regular and irregular waves. A calculation model is calibrated based on stream function theory for crest kinematics and velocity head stagnation theory. Due to increased velocities close...

  14. Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations

    Science.gov (United States)

    Kanoglu, U.; Aydin, B.

    2014-12-01

    The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV

  15. Spectral Wave Characteristics in the Nearshore Waters of Northwestern Bay of Bengal

    Science.gov (United States)

    Anjali Nair, M.; Sanil Kumar, V.; Amrutha, M. M.

    2018-03-01

    The spectral wave characteristics in the nearshore waters of northwestern Bay of Bengal are presented based on the buoy-measured data from February 2013 to December 2015 off Gopalpur at 15-m water depth. The mean seasonal significant wave height and mean wave period indicate that the occurrence of higher wave heights and wave periods is during the southwest monsoon period (June-September). 74% of the sea surface height variance in a year is a result of waves from 138 to 228° and 16% are from 48 to 138°. Strong inter-annual variability is observed in the monthly average wave parameters due to the occurrence of tropical cyclones. Due to the influence of the tropical cyclone Phailin, maximum significant wave height of 6.7 m is observed on 12 October 2013 and that due to tropical cyclone Hudhud whose track is 250 southwest of the study location is 5.84 m on 12 October 2014. Analysis revealed that a single tropical cyclone influenced the annual maximum significant wave height and not the annual average value which is almost same ( 1 m) in 2014 and 2015. The waves in the northwestern Bay of Bengal are influenced by the southwest and northeast monsoons, southern ocean swells and cyclones.

  16. Spatial and temporal variation of surface waves in shallow waters along the eastern Arabian Sea.

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Shanas, P.R.

    We studied the spatial and temporal variation of surface waves along the eastern Arabian Sea during 2011 and 2012. Measured directional wave data at two shallow water locations and re-analysis datasets (ERA-Interim) at 0.751 intervals at four...

  17. Waves in the nearshore waters of northern Arabian Sea during the summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Singh, J.; Pednekar, P.S.; Gowthaman, R.

    Waves at 15 m water depth in the northern Arabian Sea are measured during the summer monsoon for a period of 45 days and the characteristics are described. The significant wave height varied from 1.1 to 4.5 m with an average value of 2.5m. 75...

  18. On the pressure field of nonlinear standing water waves

    Science.gov (United States)

    Schwartz, L. W.

    1980-01-01

    The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.

  19. Midlatitude mesopause region winds and waves and comparison with stratospheric variability

    Czech Academy of Sciences Publication Activity Database

    Jacobi, C.; Hoffmann, P.; Liu, R. Q.; Križan, Peter; Laštovička, Jan; Merzlyakov, E. G.; Solovjova, T. V.; Portnyagin, Yu. I.

    2009-01-01

    Roč. 71, 14-15 (2009), s. 1540-1546 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GC205/07/J052 Grant - others:Deutsche Forschungsgemeinschaft(DE) JA836/22-1; Russian Foundation for Basic Research(RU) 08-05-91950 Institutional research plan: CEZ:AV0Z30420517 Keywords : middle atmosphere * stratospheric ozone * planetary waves * long-term trends Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.643, year: 2009 http://www.sciencedirect.com/science/journal/13646826

  20. Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures

    DEFF Research Database (Denmark)

    Natarajan, Anand

    2014-01-01

    using linear waves and Wheeler stretching. The effect of the spatial derivatives of the wave velocity on the wave surface kinematics is quantified and shown to determine the wave spectral cut-off frequency limit. The spatial derivatives of wave velocity also participate in the expression for the wave...