WorldWideScience

Sample records for wind velocity turbulence

  1. Filament formation in wind-cloud interactions- II. Clouds with turbulent density, velocity, and magnetic fields

    Science.gov (United States)

    Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2018-01-01

    We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.

  2. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  3. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  4. Program to determine space vehicle response to wind turbulence

    Science.gov (United States)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  5. Study on the Influence of Velocity, Turbulence Intensity and Temperature on Ammonia Emission Rate in a Wind Tunnel

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, P V; Zhang, Guo-Qiang

    2009-01-01

    Odor emissions from manure in livestock buildings are an important issue which concerns the human health and air quality as well as animals. Ammonia is one of the most important odors in pig houses. The objective of this paper is to investigate the influence of local velocity, turbulence intensit...

  6. Wind energy impact of turbulence

    CERN Document Server

    Hölling, Michae; Ivanell, Stefan

    2014-01-01

    This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application

  7. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  8. Turbulent wind waves on a water current

    Directory of Open Access Journals (Sweden)

    M. V. Zavolgensky

    2008-05-01

    Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.

  9. Characterising Turbulence Intensity for Fatigue Load Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    Turbulence in wind velocity presents a major factor for modern wind turbine design as cost reduction as are sort for the dynamic structures. Therefore this paper contains a parametrisation of the turbulence intensity at given sites, relevant for the calculation of fatigue loading of wind turbines....... The parameterisation is based on wind speed measurements extracted from the “Database on Wind Characteristics” (www.winddata.com). The parameterisation is based on the LogNormal distribution, which has proven to be suitable distribution to describe the turbulence intensity distribution....

  10. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  11. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...

  12. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  13. Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence

    International Nuclear Information System (INIS)

    Paoletti, M. S.; Fisher, Michael E.; Sreenivasan, K. R.; Lathrop, D. P.

    2008-01-01

    By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid 4 He are strongly non-Gaussian with 1/v 3 power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails

  14. Analysis of turbulent wake behind a wind turbine

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Andersen, Søren Juhl; Sørensen, Jens Nørkær

    2013-01-01

    The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and mome......The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass...... ambient wind velocities (higher thrust coefficients), this trend may be improved due to the faster recovery of the wake and therefore closer values to the theoretical approach may be obtained. In addition, the assumption of self-similarity behavior of the mean velocity profile, when scaled with center...

  15. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels

    2014-01-01

    of the synthetic methods is found to be adequate to model atmospheric turbulence, and the wake flow results of the model are in good agreement with field data. An investigation is also carried out to estimate the wake transport velocity, used to model wake meandering in lower-order models. The conclusion......A method of generating a synthetic ambient wind field in neutral atmosphere is described and verified for modelling the effect of wind shear and turbulence on a wind turbine wake using the flow solver EllipSys3D. The method uses distributed volume forces to represent turbulent fluctuations...... is that the appropriate transport velocity of the wake lies somewhere between the centre velocity of the wake deficit and the free stream velocity. Copyright © 2013 John Wiley & Sons, Ltd....

  16. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  17. Effect of atmospheric turbulence on wind turbine wakes: An LES study

    Science.gov (United States)

    Wu, Y. T.; Porté-Agel, F.

    2012-04-01

    A comprehensive numerical study of atmospheric turbulence effect on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified boundary layers developed over different flat surfaces (forest, farmland, grass, and snow) are performed to investigate the structure of turbine wakes in cases where the incident flows to the wind turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different wind shears and turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region downstream of the turbine. In general, the recovery of the turbine-induced wake (velocity deficit) is faster and the turbulence intensity level is higher and has its maximum closer to the turbine for wakes of turbines over rougher terrain. In order to isolate the effect of turbulence intensity from that of wind shear, simulations have also been performed with synthetic inflow velocity fields that have the same mean wind shear but different turbulence intensity levels. We find that the effect of the inflow turbulence intensity on the wake recovery and turbulence levels is stronger than that of the mean shear.

  18. Effects of forward velocity on turbulent jet mixing noise

    Science.gov (United States)

    Plumblee, H. E., Jr. (Editor)

    1976-01-01

    Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.

  19. Turbulence Driven by Common Non-stationary Weak Winds

    Science.gov (United States)

    Mahrt, L.

    2015-12-01

    Complications with analysis of turbulence in common non-stationary weak-wind conditions are briefly surveyed. The behavior of turbulent transport in the weak-wind stably stratified boundary layer is then examined in terms of the non-stationarity of the wind field using measurements from three field programs with towers ranging from 12 to 20 m and an extensive horizontal network of sonic anemometers. The relationship of the friction velocity to the stratification and small non-stationary submeso motions are studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso motions. Cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The relationship between the heat flux, wind speed and stratification is investigated. Weak wind conditions include frequent vertical convergence of the heat flux and implied temperature advection.

  1. Effects of Freestream Turbulence in a Model Wind Turbine Wake

    Directory of Open Access Journals (Sweden)

    Yaqing Jin

    2016-10-01

    Full Text Available The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at R e ∼ 7 × 10 4 . Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locations. The pre-multiplied spectral difference of the velocity fluctuations between the two cases shows a significant energy contribution from the background turbulence on scales larger than the rotor diameter. The integral scale along the rotor axis is found to grow linearly with distance, independent of the incoming turbulence levels. This scale appears to reach that of the incoming flow in the high turbulence case at x / d ∼ 35–40. The energy contribution from the turbine to the large-scale flow structures in the low turbulence case increases monotonically with distance. Its growth rate is reduced past x / d ∼ 6–7. There, motions larger than the rotor contribute ∼ 50 % of the total energy, suggesting that the population of large-scale motions is more intense in the intermediate field. In contrast, the wake in the high incoming turbulence is quickly populated with large-scale motions and plateau at x / d ∼ 3 .

  2. Anisotropy of turbulence in wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)

    2005-10-01

    This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.

  3. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  4. Lidar Turbulence Measurements for Wind Energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Sathe, Ameya; Gottschall, Julia

    2012-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averaging...

  5. Lidar Turbulence Measurements for Wind Energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Sathe, Ameya; Gottschall, Julia

    2012-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averagi...

  6. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  7. Non-steady wind turbine response to daytime atmospheric turbulence

    Science.gov (United States)

    Nandi, Tarak N.; Herrig, Andreas; Brasseur, James G.

    2017-03-01

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions. This article is part of the themed issue 'Wind energy in complex terrains'.

  8. Lidar for Wind and Optical Turbulence Profiling

    Directory of Open Access Journals (Sweden)

    Fastig Shlomo

    2018-01-01

    Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.

  9. The Solar Wind as a Turbulence Laboratory

    Directory of Open Access Journals (Sweden)

    Vincenzo Carbone

    2013-05-01

    Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

  10. Scaling laws and intermittent structures in solar wind MHD turbulence

    Science.gov (United States)

    Veltri, Pierluigi; Mangeney, André

    1999-06-01

    Thirteen months of velocity and magnetic field data from ISEE space experiment have been used to calculate spectra and structure functions using Haar wavelets technique in the range from 1 minute to about 1 day. Using conditioned structure function definition we have been able to eliminate the intermittency effects in the spectra and thus to evidentiate which kind of phenomenology of nonlinear cascade between Kolmogorov and Kraichnan is taking place in Solar Wind turbulence. By the same technique the most intermittent structures in solar wind turbulence can also be identified and they turn out to be either shock waves or one dimensional current sheets, at variance with ordinary fluid intermittency, where the most intermittent structures are two dimensional vortices.

  11. Fatigue reliability and effective turbulence models in wind farms

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.

    2007-01-01

    Offshore wind farms with 100 or more wind turbines are expected to be installed many places during the next years. Behind a wind turbine a wake is formed where the mean wind speed decreases slightly and the turbulence intensity increases significantly. This increase in turbulence intensity in wak...

  12. Analysis of mean velocity and turbulence measurements with ADCPs

    Science.gov (United States)

    De Serio, Francesca; Mossa, Michele

    2015-07-01

    occurred when two conditions were met: (i) the flow was mainly unidirectional along the vertical; (ii) the interested layer was non-stratified. The second part of the research studies the turbulent statistics derived from the beam signals of the fixed ADCP by means of the variance method. This technique had the advantage of being able to measure the time evolution of the turbulent mixing throughout the entire water column, thus making it possible to perform a detailed study on momentum transfer and turbulence. The deduced vertical profiles of the Reynolds stresses and of the turbulent kinetic energy TKE showed an increasing trend toward the surface, in agreement with previous results in literature. New data-sets of mean velocities and shear stresses, coming from field measurements, are always needed. In fact they represent the first step to derive reliable reference values of coefficients and parameters for the implementation and calibration of the used mathematical hydrodynamic models. Consequently, an effort was made to evaluate consistent bottom drag and wind drag coefficients, on the basis of the calculated bottom and surface shear stresses, respectively.

  13. Non-steady wind turbine response to daytime atmospheric turbulence.

    Science.gov (United States)

    Nandi, Tarak N; Herrig, Andreas; Brasseur, James G

    2017-04-13

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  14. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  15. A stochastic differential equation framework for the turbulent velocity field

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    We discuss a stochastic differential equation, as a modelling framework for the turbulent velocity field, that is capable of capturing basic stylized facts of the statistics of velocity increments. In particular, we focus on the evolution of the probability density of velocity increments...

  16. Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2017-01-01

    A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...

  17. Solar Wind MHD Turbulence: Anomalous Scaling and Intermittency Effects in the Slow and Fast Wind

    Science.gov (United States)

    Salem, C.; Mangeney, A.; Bale, S. D.

    2007-12-01

    Although considerable progress has been made in the understanding of MHD turbulence over the past few decades through the analysis of in-situ solar wind data, two of the primary problems of solar wind MHD turbulence that still remain a puzzle are the nature of the nonlinear energy cascade, and the strong intermittent character of solar wind fluctuations in the inertial range. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. Anomalous scaling of both solar wind magnetic field and velocity fluctuations in the inertial range, as well as intermittency effects have recently been investigated in detail using Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). This powerful technique allows: (1) for a systematic study of intermittency effects on these spectra, structure functions and PDFs, thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs, as well as new results on the nature of the intermittent coherent structures will be presented. The turbulent properties and intermittency effects in different solar wind regimes will be also discussed.

  18. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    and conical scanning. The predictions are compared with the measurements from the ZephIR, WindCube, and sonic anemometers at a flat terrain test site under different atmospheric stability conditions. The sonic measurements are used at several heights on a meteorological mast in combination with lidars...... errors also vary with atmospheric stability and are low for unstable conditions. In general, for both lidars, the model agrees well with the measurements at all heights and under different atmospheric stability conditions. For the ZephIR, the model results are improved when an additional low-pass filter...

  19. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  20. Mirror Instability in the Turbulent Solar Wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.

    2017-01-01

    Roč. 838, č. 2 (2017), č. článku 158. ISSN 0004-637X Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 5.533, year: 2016 http://iopscience.iop.org/article/10.3847/1538-4357/aa67e0

  1. Slip velocity of large neutrally buoyant particles in turbulent flows

    International Nuclear Information System (INIS)

    Bellani, G; Variano, E A

    2012-01-01

    We discuss possible definitions for a stochastic slip velocity that describes the relative motion between large particles and a turbulent flow. This definition is necessary because the slip velocity used in the standard drag model fails when particle size falls within the inertial subrange of ambient turbulence. We propose two definitions, selected in part due to their simplicity: they do not require filtration of the fluid phase velocity field, nor do they require the construction of conditional averages on particle locations. A key benefit of this simplicity is that the stochastic slip velocity proposed here can be calculated equally well for laboratory, field and numerical experiments. The stochastic slip velocity allows the definition of a Reynolds number that should indicate whether large particles in turbulent flow behave (a) as passive tracers; (b) as a linear filter of the velocity field; or (c) as a nonlinear filter to the velocity field. We calculate the value of stochastic slip for ellipsoidal and spherical particles (the size of the Taylor microscale) measured in laboratory homogeneous isotropic turbulence. The resulting Reynolds number is significantly higher than 1 for both particle shapes, and velocity statistics show that particle motion is a complex nonlinear function of the fluid velocity. We further investigate the nonlinear relationship by comparing the probability distribution of fluctuating velocities for particle and fluid phases. (paper)

  2. Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan

    2016-01-01

    the insertion point. The presence of the wind turbine and its wake is found to have insignificant effect on upstream turbulence. Finally, the mean velocity profiles in the wake are found to be in good agreement with both lidar measurements and CFD simulations. (C) 2016 Elsevier Ltd. All rights reserved....

  3. Interaction of turbulent length scales with wind turbine blades

    Science.gov (United States)

    Torres-Nieves, Sheilla N.

    Understanding the effects of free-stream turbulence (FST) and surface roughness on the flow around wind turbine blades is imperative in the quest for higher wind turbine efficiency, specially under stall conditions. While many investigations have focused on the aerodynamic loads on wind turbine airfoils, there are no studies that examine the effects of free-stream turbulence and surface roughness on the velocity field around a wind turbine airfoil. Hence, the aim of this investigation is to study the influence of high levels of FST on the flow around smooth and rough surfaces with pressure gradients. Moreover, of great importance in this study is the examination of how the length scales of turbulence and surface roughness interact in the flow over wind turbine airfoils to affect flow separation. Particle Image Velocimetry measurements were performed to analyze the overall flow around a S809 wind turbine blade. Results indicate that when the flow is fully attached, free-stream turbulence significantly decreases aerodynamic efficiency by 82%, yielding to higher loads and fatigue on the blades. On the contrary, when the flow is separated, the effect is reversed and aerodynamic performance is slightly improved (i.e., by 5%) by the presence of the free-stream turbulence. Analysis of the mean flow over the suction surface shows that, under stall conditions, free-stream turbulence delays separation, and surface roughness advances separation. Interestingly, the highly non-linear interaction between free-stream turbulence and surface roughness results in the further advancement of separation. Of particular interest is the study of the region closer to the wall (i.e., the boundary layer), where the flow interacts with both the surface of the blade and the free-stream. Turbulent boundary layer experiments subject to an external favorable pressure gradient (FPG) were performed to study the influence of FST, surface roughness and external pressure gradient (present around the

  4. Turbulent Burning Velocities and Flame Straining in Explosions

    Science.gov (United States)

    Abdel-Gayed, R. G.; Al-Khishali, K. J.; Bradley, D.

    1984-02-01

    Turbulent burning velocities have been measured in an explosion bomb equipped with four high speed fans. Turbulent parameters were measured by laser doppler anemometry. The turbulent Reynolds numbers were significantly higher than in most previous measurements and high rates of strain were achieved until, ultimately, several of the flames quenched. Results are presented in terms of previously used dimensionless parameters plus a Lewis number and a dimensionless activation energy. The two-eddy theory of burning can allow for flame straining reductions in laminar burning velocity and experimental values of u_t/u_1 were compared with those from such a theory.

  5. Laminar-Turbulent transition on Wind Turbines

    DEFF Research Database (Denmark)

    Martinez Hernandez, Gabriel Gerardo

    The present thesis deals with the study of the rotational effects on the laminar-turbulent transition on wind turbine blades. Linear stability theory is used to formulate the stability equations that include the effect of rotation. The mean flow required as an input to stability computations...... parametrized and adapted to an wind turbine rotor geometry. The blade is resolved in radial sections along which calculations are performed. The obtained mean flow is classified according to the parameters used on the rotating configuration, geometry and operational conditions. The stability diagrams have been...... to define the resultant wave magnitude and direction. The propagation of disturbances in the boundary layers in three dimensional flows is relatively a complicated phenomena. The report discusses the available methods and techniques used to predict the transition location. Some common wind turbine airfoils...

  6. Wind observations from a forested hill: Relating turbulence statistics to surface characteristics in hilly and patchy terrain

    Directory of Open Access Journals (Sweden)

    Lukas Pauscher

    2018-01-01

    Full Text Available This study investigates turbulence characteristics as observed at a 200 m tall mast at a hilly and complex site. It thereby concentrates on turbulence statistics, which are important for the site suitability analysis of a wind turbine. The directional variations in terrain are clearly reflected in the observed turbulence intensities and drag. Integral turbulence statistics showed some variations from their typical flat terrain values. Footprint modelling was used to model the area of effect and to relate the observed turbulence characteristics to the ruggedness and roughness within the estimated fetch area. Among the investigated turbulence quantities, the normalised standard deviation of the wind velocity along the streamlines showed the highest correlation with the effective roughness and ruggedness within the footprint followed by the normalised friction velocity and normalised standard deviation of the vertical wind speed. A differentiation between the effects of roughness and ruggedness was not possible, as forest cover and complex orography are highly correlated at the investigated site. An analysis of turbulence intensity by wind speed indicated a strong influence of atmospheric stability. Stable conditions lead to an overall reduction in turbulence intensity for a wind speed range between approx. 6–12 m s−1 when compared to neutral stratification. The variance of the horizontal wind speed strongly varied over the height range which is typical for a modern wind turbine and was in the order of the differences between different standard turbulence classes for wind turbines.

  7. Turbulent Transport in a Three-dimensional Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  8. Intermittent structures at ion scales in the turbulent solar wind

    Science.gov (United States)

    Perrone, Denise; Alexandrova, Olga; Lion, Sonny; Roberts, Owen W.; Maksimovic, Milan; Escoubet, Philippe C.; Zouganelis, Yannis

    2017-04-01

    Understanding the physical mechanisms of dissipation, and the related heating, in turbulent collisionless plasmas (such as the solar wind) represents nowadays one of the key issues of plasma physics. Although the complex behavior of the solar wind has been matter of investigation of many years, some of the primary problems still remain a puzzle for the scientific community. Here, we study coherent structures responsible for solar wind intermittency around ion characteristic scales. We find that, in fast solar wind, intermittency is due to current sheets and Alfvén vortex-like structures. In slow solar wind, we observe as well compressive structures like magnetic solitons, holes and shocks. By using high-time resolution magnetic field data of multi-point measurements of Cluster spacecraft, we characterize the observed coherent structures in terms of topology and propagation speed. We show that all structures, both in fast and slow solar wind, are characterized by a strong wave-vector anisotropy in the perpendicular direction with respect to the local magnetic field and typical scales around ion characteristic scales. Moreover, some of them propagate in the plasma rest frame. Moreover, a further analysis on the ion velocity distribution shows a high variability; in particular, close to coherent structures the proton distribution function appears strongly deformed and far from the thermodynamic equilibrium. We discuss possible interpretation of the observed structures and their role in the heating process of the plasma.

  9. Coastal Boundary Layer Characteristics of Wind, Turbulence, and Surface Roughness Parameter over the Thumba Equatorial Rocket Launching Station, India

    Directory of Open Access Journals (Sweden)

    K. V. S. Namboodiri

    2014-01-01

    Full Text Available The study discusses the features of wind, turbulence, and surface roughness parameter over the coastal boundary layer of the Peninsular Indian Station, Thumba Equatorial Rocket Launching Station (TERLS. Every 5 min measurements from an ultrasonic anemometer at 3.3 m agl from May 2007 to December 2012 are used for this work. Symmetries in mesoscale turbulence, stress off-wind angle computations, structure of scalar wind, resultant wind direction, momentum flux (M, Obukhov length (L, frictional velocity (u*, w-component, turbulent heat flux (H, drag coefficient (CD, turbulent intensities, standard deviation of wind directions (σθ, wind steadiness factor-σθ relationship, bivariate normal distribution (BND wind model, surface roughness parameter (z0, z0 and wind direction (θ relationship, and variation of z0 with the Indian South West monsoon activity are discussed.

  10. On the spread and decay of wind turbine wakes in ambient turbulence

    Science.gov (United States)

    Johnson, P. B.; Jonsson, C.; Achilleos, S.; Eames, I.

    2014-12-01

    The decay of the downstream wake of a wind turbine plays an important role in the performance of wind farms. The spread and decay of a wake depend both on wake meandering (advection of the wake as a whole) and wake diffusion (widening of the wake within its meandering frame of reference). Both of these effects depend strongly on the intensity of the ambient turbulence relative to the velocity deficit in the wake, and on the integral length scale of the turbulence relative to the wake width. Recent theory, which we review here, shows how intense large-scale turbulence can lead to a rapid x-2 decay in the time-averaged centreline velocity deficit, as compared to a x-1 decay for smaller scale turbulence, where x is distance downstream. We emphasise in this paper that common wind farm models do not predict this rapid decay. We present new experimental measurements of the velocity deficit downstream of a porous disc in relatively large-scale ambient turbulence which corroborate predictions of a x-2 decay, and we show theoretically that the commonly used k-epsilon model does not capture this effect. We further show that a commercial CFD package, configured to match our experiments and employing the k-epsilon model, fails to predict such rapid decay. We conclude that steady simulations of wind turbine wake dynamics are insufficient for informing wind farm layout optimisation.

  11. On the spread and decay of wind turbine wakes in ambient turbulence

    International Nuclear Information System (INIS)

    Johnson, P B; Jonsson, C; Achilleos, S; Eames, I

    2014-01-01

    The decay of the downstream wake of a wind turbine plays an important role in the performance of wind farms. The spread and decay of a wake depend both on wake meandering (advection of the wake as a whole) and wake diffusion (widening of the wake within its meandering frame of reference). Both of these effects depend strongly on the intensity of the ambient turbulence relative to the velocity deficit in the wake, and on the integral length scale of the turbulence relative to the wake width. Recent theory, which we review here, shows how intense large-scale turbulence can lead to a rapid x −2 decay in the time-averaged centreline velocity deficit, as compared to a x −1 decay for smaller scale turbulence, where x is distance downstream. We emphasise in this paper that common wind farm models do not predict this rapid decay. We present new experimental measurements of the velocity deficit downstream of a porous disc in relatively large-scale ambient turbulence which corroborate predictions of a x −2 decay, and we show theoretically that the commonly used k-ε model does not capture this effect. We further show that a commercial CFD package, configured to match our experiments and employing the k-ε model, fails to predict such rapid decay. We conclude that steady simulations of wind turbine wake dynamics are insufficient for informing wind farm layout optimisation

  12. TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, C. E.; Howard, T. A. [Southwest Research Institute, 1050 Walnut Street Suite 300, Boulder, CO 80302 (United States); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Laboratory, Newark, DE 19711 (United States); Rice, D. R. [Northwestern University, 633 Clark St., Evanston, IL 60208 (United States)

    2015-10-20

    By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysis and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.

  13. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  14. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  15. Solar Wind Electron Scattering by Kinetic Instabilities and Whistler Turbulence

    Science.gov (United States)

    Gary, S. P.

    2015-12-01

    The expansion of the solar wind away from the Sun drives electron velocity distributions away from the thermal Maxwellian form, yielding distributions near 1 AU which typically can be characterized as consisting of three anisotropic components: a more dense, relatively cool core, a relatively tenuous , relatively warm halo and a similarly tenuous, warm strahl. Each of these nonthermal components are potential sources of kinetic plasma instabilities; the enhanced waves from each instability can scatter the electrons, acting to reduce the various anisotropies and making their overall velocity distribution more nearly (but not completely) thermal. In contrast, simulations are demonstrating that the forward decay of whistler turbulence can lead to the development of a T||> T_perp electron anisotropy. This presentation will review linear theories of electron-driven kinetic instabilities (following the presentation by Daniel Verscharen at the 2015 SHINE Workshop), and will further consider the modification of electron velocity distributions as obtained from particle-in-cell simulations of such instabilities as well as from the decay of whistler turbulence.

  16. Turbulence and other processes for the scale-free texture of the fast solar wind

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.; Gogoberidze, G.; Wicks, R. T.

    2012-04-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 hours. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ˜1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind which co-exists with the signature of MHD turbulence but extends to lower frequencies. Importantly, scaling and non- Gaussian statistics of fluctuations are not unique to turbulence and can imply other physical mechanisms- our results thus place a strong constraint on theories of the dynamics of the solar corona and solar wind. Intriguingly, the magnetic field and velocity components also show scale-dependent dynamic alignment outside of the inertial range of MHD turbulence.

  17. Turbulent flow velocity distribution at rough walls

    International Nuclear Information System (INIS)

    Baumann, W.

    1978-08-01

    Following extensive measurements of the velocity profile in a plate channel with artificial roughness geometries specific investigations were carried out to verify the results obtained. The wall geometry used was formed by high transverse square ribs having a large pitch. The measuring position relative to the ribs was varied as a parameter thus providing a statement on the local influence of roughness ribs on the values measured. As a fundamental result it was found that the gradient of the logarithmic rough wall velocity profiles, which differs widely from the value 2.5, depends but slightly on the measuring position relative to the ribs. The gradients of the smooth wall velocity profiles deviate from 2.5 near the ribs, only. This fact can be explained by the smooth wall shear stress varying with the pitch of the ribs. (orig.) 891 GL [de

  18. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars

    DEFF Research Database (Denmark)

    Simley, Eric; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    9% and 3% of the freestream longitudinal wind speed were measured for the abovementioned high and low CP values, respectively. Turbulence statistics, calculated using 2.5-min time series, suggest that the standard deviation of the longitudinal wind component decreases close to the rotor, while...... Technical University’s Risø campus is investigated using a scanning Light Detection and Ranging (lidar) system. Three short-range continuous-wave “WindScanner” lidars are positioned in the field around the V27 turbine allowing detection of all three components of the wind velocity vectors within...... the induction zone. The time-averaged mean wind speeds at different locations in the upstream induction zone are measured by scanning a horizontal plane at hub height and a vertical plane centered at the middle of the rotor extending roughly 1.5 rotor diameters (D) upstream of the rotor. Turbulence statistics...

  19. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  20. Velocity and turbulence at a wing-wall abutment

    Indian Academy of Sciences (India)

    Experimental investigation of the 3D turbulent flow field around a 45° wing-wall abutment, resting on a rough rigid bed, is reported. The experiment was conducted ... The shear stresses acting on the bed around the abutment are estimated from the Reynolds stresses and velocity gradients. The data presented in this study ...

  1. Wind farm turbulence impacts on general aviation airports in Kansas.

    Science.gov (United States)

    2014-01-01

    Wind turbines and wind farms have become popular in the State of Kansas. Some general aviation pilots have expressed a concern about the : turbulence that the spinning blades are creating. If a wind farm is built near an airport, does this affect the...

  2. Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data.

    Science.gov (United States)

    Osman, K T; Wan, M; Matthaeus, W H; Weygand, J M; Dasso, S

    2011-10-14

    The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind.

  3. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  4. 3-D Wind and Turbulence Measurement System for UAV Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ wind and turbulence measurements play a key role in the support and validation of Earth science missions using spaced-based technology. NASA has been using...

  5. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics....

  6. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be

  7. Improving Lidar Turbulence Estimates for Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-06

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.

  8. Velocity distribution in a turbulent flow near a rough wall

    Science.gov (United States)

    Korsun, A. S.; Pisarevsky, M. I.; Fedoseev, V. N.; Kreps, M. V.

    2017-11-01

    Velocity distribution in the zone of developed wall turbulence, regardless of the conditions on the wall, is described by the well-known Prandtl logarithmic profile. In this distribution, the constant, that determines the value of the velocity, is determined by the nature of the interaction of the flow with the wall and depends on the viscosity of the fluid, the dynamic velocity, and the parameters of the wall roughness.In extreme cases depending on the ratio between the thickness of the viscous sublayer and the size of the roughness the constant takes on a value that does not depend on viscosity, or leads to a ratio for a smooth wall.It is essential that this logarithmic profile is the result not only of the Prandtl theory, but can be derived from general considerations of the theory of dimensions, and also follows from the condition of local equilibrium of generation and dissipation of turbulent energy in the wall area. This allows us to consider the profile as a universal law of velocity distribution in the wall area of a turbulent flow.The profile approximation up to the maximum speed line with subsequent integration makes possible to obtain the resistance law for channels of simple shape. For channels of complex shape with rough walls, the universal profile can be used to formulate the boundary condition when applied to the calculation of turbulence models.This paper presents an empirical model for determining the constant of the universal logarithmic profile. The zone of roughness is described by a set of parameters and is considered as a porous structure with variable porosity.

  9. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    Science.gov (United States)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  10. An improved k-ε model applied to a wind turbine wake in atmospheric turbulence

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    An improved k-ε turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric boundary layer using a Reynolds averaged Navier–Stokes solver. The proposed model includes a flow-dependent Cμ that is sensitive to high velocity gradients, e.g., at the edge of a wind...... turbine wake. The modified k-ε model is compared with the original k-ε eddy viscosity model, Large-Eddy Simulations and field measurements using eight test cases. The comparison shows that the velocity wake deficits, predicted by the proposed model are much closer to the ones calculated by the Large...

  11. Solar Wind Turbulence at Sub-Ion and Electron Scales

    Science.gov (United States)

    Alexandrova, O.; Lacombe, C.; Matteini, L.; Zaslavsky, A.; Orel, I.

    2017-12-01

    We study magnetic fluctuations at sub-ion scales and down to sub-electron scales (from 1 to 200Hz) using two complementary approaches: (i) a statistical study of the turbulent spectra of the different field components in the reference frame based on the quasi-local mean field B and velocity V; (ii) a detailed analysis of magnetic waveforms in the same reference frame. For this statistical study, we consider 93 10-minute intervals of Cluster/STAFF measurements. We find that the fluctuations are non-gyrotropic at a given frequency f, a property already observed at larger scales. This non-gyrotropy provides indications on the angular distribution of the wave vectors k: at f> k||, mainly in the fast wind; at f>10Hz, the k are more isotropic. We then consider the magnetic compressibility of the fluctuations: it increases with f and at electron scales the fluctuations become isotropic. From 1 to 20Hz, there is a strong correlation between the observed compressibility and the one expected for the kinetic Alfven waves (KAWs), which only depends on the total plasma beta. For f>20Hz, the observed compressibility is larger than the one expected for classical KAWs, and it is stronger in the slow wind: this could be an indication of the presence of a slow-ion acoustic mode of fluctuations, which is more compressive and is favoured by the larger values of the electron to proton temperature ratio generally observed in the slow wind. For the analysis of the magnetic waveforms, we use burst mode intervals in the solar wind and in the Earth's magnetosheath during the Cluster Guest Investigator campaign in 2015, when C3 and C4 were at 7km apart only. Time-frequency analysis using Morlet wavelets shows that the turbulence is non-homogeneous and filled in with intermittent events. A detailed study of magnetic fluctuations on C3 and C4 shows signatures of electron-scale magnetic vortices, but with strong compressible components, in agreement with our statistical study discussed above

  12. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    Science.gov (United States)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  13. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  14. Flow Structure and Turbulence in Wind Farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Meneveau, Charles

    2017-01-01

    Similar to other renewable energy sources, wind energy is characterized by a low power density. Hence, for wind energy to make considerable contributions to the world's overall energy supply, large wind farms (on- and offshore) consisting of arrays of ever larger wind turbines are being envisioned

  15. Atmospheric turbulence affects wind turbine nacelle transfer functions

    Directory of Open Access Journals (Sweden)

    C. M. St. Martin

    2017-06-01

    Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence

  16. Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU

    International Nuclear Information System (INIS)

    Fraternale, F; Gallana, L; Iovieno, M; Tordella, D; Opher, M; Richardson, J D

    2016-01-01

    Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbulence is motivated by a number of factors all keys to the understanding of the Solar Wind origin and thermodynamics. The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between −2.1 and −1.1, depending on frequency subranges. Probability density functions (PDFs) and correlations indicate that the flow has a significant intermittency. (invited comment)

  17. Intermittency in small-scale turbulence: a velocity gradient approach

    Science.gov (United States)

    Meneveau, Charles; Johnson, Perry

    2017-11-01

    Intermittency of small-scale motions is an ubiquitous facet of turbulent flows, and predicting this phenomenon based on reduced models derived from first principles remains an important open problem. Here, a multiple-time scale stochastic model is introduced for the Lagrangian evolution of the full velocity gradient tensor in fluid turbulence at arbitrarily high Reynolds numbers. This low-dimensional model differs fundamentally from prior shell models and other empirically-motivated models of intermittency because the nonlinear gradient self-stretching and rotation A2 term vital to the energy cascade and intermittency development is represented exactly from the Navier-Stokes equations. With only one adjustable parameter needed to determine the model's effective Reynolds number, numerical solutions of the resulting set of stochastic differential equations show that the model predicts anomalous scaling for moments of the velocity gradient components and negative derivative skewness. It also predicts signature topological features of the velocity gradient tensor such as vorticity alignment trends with the eigen-directions of the strain-rate. This research was made possible by a graduate Fellowship from the National Science Foundation and by a Grant from The Gulf of Mexico Research Initiative.

  18. On the difference between the magnetic intermittent micro-structures in fast wind and slow wind and it's implication for the solar wind turbulence cascade

    Science.gov (United States)

    Tu, C.; Wang, X.; He, J.; Marsch, E.; Wang, L.

    2013-12-01

    The magnetic intermittent micro-structures (on time scales of 20-40s) in both fast and slow solar wind are studied by using plasma and field measurements from the WIND spacecraft. In the fast wind these structures are found to be composed of mostly rotational discontinuities (RDs) and rarely tangential current sheets (TCSs). The RDs do not show prominent plasma-parameter changes. Conversely, the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of the magnetic field magnitude. These results show that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to the TCSs found in fast wind. However in slow wind, magnetic intermittent micro-structures are found to consist of mainly magnetic field directional turnings (MFDTs, Tu & Marsch, Ann. Geophysicae, 9, 319,1991) and rarely tangential current sheets (TCSs). The MFDTs are characterized by: (1) clear variation of the field component in the L dimension of the LMN coordinate system using the MVA method; (2) at least one of B_M or B_N is near to zero, or the velocity component V_L is near to zero; (3) the magnetic magnitude does not have a clear change; (4) no significant temperature and density peaks. The TCSs found in slow wind are not associated with prominent temperature enhancements. The TCSs found in both fast and slow wind may be created by turbulence interactions. The heating effect of TCSs in slow wind is weaker because the turbulence level is lower. The origin of the RDs in fast wind and the MFDTs in slow wind will be a topic for future studies. MFDTs may be observed when crossing a magnetic helical micro-tube, which may be formed due to tearing mode instability and magnetic multi-x-point reconnection in the slow wind.

  19. Adaptive control algorithm for improving power capture of wind turbines in turbulent winds

    DEFF Research Database (Denmark)

    Diaz-Guerra, Lluis; Adegas, Fabiano Daher; Stoustrup, Jakob

    2012-01-01

    , the complex and time-varying aerodynamics a WT face due to turbulent winds make their determination a hard task. The selected constant parameters may maximize energy for a particular, but not all, wind regime conditions. Adaptivity can modify the controller to increase power capture under variable wind...

  20. On the measurement of lateral velocity derivatives in turbulent flows

    Science.gov (United States)

    Antonia, R. A.; Zhu, Y.; Kim, J.

    1993-01-01

    Direct numerical simulation data for the lateral velocity derivative delta(u)/delta(y) at the centerline of a fully developed turbulent channel flow provide reasonable support for Wyngaard's analysis of the error involved in measuring this quantity using parallel hot wires. Numerical data in the wall region of the channel flow also provide a useful indication of how to select the separation between the wires. Justification for this choice is obtained by comparing several measured statistics of delta(u)/delta(y) with the corresponding numerical data.

  1. Turbulence and turbulence-generated structural loading in wind turbine clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Sten

    2007-01-15

    Turbulence, in terms of standard deviation of wind speed fluctuations, and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to 'wind farm flow'. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence and horizontal flow-shear also influence the dynamic response and thus fatigue loading. However, these parameters are typically negatively or positively correlated with the standard deviation of wind speed fluctuations, which therefore can, if need be, represent these other variables. Thus, models for spatially averaged turbulence intensity inside the wind farm and direct-wake turbulence intensity are being devised and a method to combine the different load situations is proposed. The combination of the load cases implies a weighting method involving the slope of the considered material's Woehler curve. In the context, this is novel and necessary to avoid excessive safety for fatigue estimation of the structure's steel components, and non-conservatism for fibreglass components. The proposed model offers significant reductions in computational efforts in the design process. The status for the implementation of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms are discussed. (au)

  2. Wind Turbine Power Curves Incorporating Turbulence Intensity

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    2014-01-01

    The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...

  3. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    Science.gov (United States)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  4. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Sjöholm, Mikael; Angelou, Nikolas

    2017-01-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated ...

  5. An experimental study of low concentration sludge settling velocity under turbulent condition.

    Science.gov (United States)

    Guo, Lisha; Zhang, Daijun; Xu, Danyu; Chen, Yuan

    2009-05-01

    Particle Image Velocimetry (PIV) was used to study the settling of activated sludge flocs under turbulent flow conditions. Experimental results showed that a larger particle diameter led to a higher settling velocity while the higher turbulence intensity led to lower settling velocity. Based on the measurements a mathematical relation has been derived which correlates the settling velocity for individual sludge flocs under turbulent conditions through a modified Vesilind equation. Settling velocity shows a power-type relation to sludge particle diameter and an exponential-type relation with turbulence intensity and sludge concentration.

  6. Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage

    Science.gov (United States)

    Salazar, Denise; Yuricich, Jillian

    2014-01-01

    In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.

  7. Response of wind shear warning systems to turbulence with implication of nuisance alerts

    Science.gov (United States)

    Bowles, Roland L.

    1988-01-01

    The objective was to predict the inherent turbulence response characteristics of candidate wind shear warning system concepts and to assess the potential for nuisance alerts. Information on the detection system and associated signal processing, physical and mathematical models, wind shear factor root mean square turbulence response and the standard deviation of the wind shear factor due to turbulence is given in vugraph form.

  8. Wind direction variability in Afternoon and Sunset Turbulence

    Science.gov (United States)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations

  9. A New Look at Some Solar Wind Turbulence Puzzles

    Science.gov (United States)

    Roberts, Aaron

    2006-01-01

    Some aspects of solar wind turbulence have defied explanation. While it seems likely that the evolution of Alfvenicity and power spectra are largely explained by the shearing of an initial population of solar-generated Alfvenic fluctuations, the evolution of the anisotropies of the turbulence does not fit into the model so far. A two-component model, consisting of slab waves and quasi-two-dimensional fluctuations, offers some ideas, but does not account for the turning of both wave-vector-space power anisotropies and minimum variance directions in the fluctuating vectors as the Parker spiral turns. We will show observations that indicate that the minimum variance evolution is likely not due to traditional turbulence mechanisms, and offer arguments that the idea of two-component turbulence is at best a local approximation that is of little help in explaining the evolution of the fluctuations. Finally, time-permitting, we will discuss some observations that suggest that the low Alfvenicity of many regions of the solar wind in the inner heliosphere is not due to turbulent evolution, but rather to the existence of convected structures, including mini-clouds and other twisted flux tubes, that were formed with low Alfvenicity. There is still a role for turbulence in the above picture, but it is highly modified from the traditional views.

  10. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  11. Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power

    DEFF Research Database (Denmark)

    Fischer, Andreas

    Flow measurements were carried out in the wind tunnel of LM Wind Power A/S with a Dantec Streamline CTA system to characterize the flow turbulence. Besides the free tunnel flow with empty test section we also investigated the tunnel flow when two grids with different mesh size were introduced dow...

  12. MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures.

    Science.gov (United States)

    Veltri, P.

    1999-03-01

    High-resolution numerical simulations on the one hand and solar wind data analysis on the other hand have allowed for much progress in our understanding of magnetohydrodynamic (MHD) turbulence. In this paper the author gives a schematic view of the main properties of solar wind MHD turbulence and discusses some results obtained from the analysis of velocity and magnetic field data measured during the space experiments of Helios and ISEE. In particular, he shows that applying the Haar wavelets technique to about one year of data taken every minute during the ISEE space experiment, it is possible to calculate spectra and structure functions of the turbulence; moreover the definition of a conditioned structure function allows: (a) the elimination of intermittency effects in spectra and thus for a clear identification of which kind of phenomenology of nonlinear cascade between Kolmogorov (1941) and Kraichnan (1974) is taking place in solar wind turbulence; (b) the identification of the most intermittent structures which turn out to be either shock waves or one-dimensional current sheets, at variance with ordinary fluid intermittency, where the most intermittent structures are found to be two-dimensional vortices.

  13. Mirror Instability in the Turbulent Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Hellinger, Petr [Astronomical Institute, CAS, Bocni II/1401,CZ-14100 Prague (Czech Republic); Landi, Simone; Verdini, Andrea; Franci, Luca [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo, E-mail: petr.hellinger@asu.cas.cz [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)

    2017-04-01

    The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leads to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.

  14. On Usage of Pareto curves to Select Wind Turbine Controller Tunings to the Wind Turbulence Level

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh

    2015-01-01

    Model predictive control has in recently publications shown its potential for lowering of cost of energy of modern wind turbines. Pareto curves can be used to evaluate performance of these controllers with multiple conflicting objectives of power and fatigue loads. In this paper an approach...... to update an model predictive wind turbine controller tuning as the wind turbulence increases, as increased turbulence levels results in higher loads for the same controller tuning. In this paper the Pareto curves are computed using an industrial high fidelity aero-elastic model. Simulations show...

  15. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    Science.gov (United States)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  16. Intermittency in the solar wind turbulence through probability distribution functions of fluctuations

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Vincenzo; Veltri, Pierluigi; Consolini, Giuseppe; Bruno, Roberto

    Intermittency in fluid turbulence can be emphasized through the analysis of Probability Distribution Functions (PDF) for velocity fluctuations, which display a strong non-gaussian behavior at small scales. Castaing et al. (1990) have introduced the idea that this behavior can be represented, in the framework of a multiplicative cascade model, by a convolution of gaussians whose variances is distributed according to a log-normal distribution. In this letter we have tried to test this conjecture on the MHD solar wind turbulence by performing a fit of the PDF of the bulk speed and magnetic field intensity fluctuations calculated in the solar wind, with the model. This fit allows us to calculate a parameter λ² depending on the scale, which represents the width of the log-normal distribution of the variances of the gaussians. The physical implications of the obtained values of the parameter as well as of its scaling law are finally discussed.

  17. The Role of Free Stream Turbulence on the Aerodynamic Performance of a Wind Turbine Blade

    Science.gov (United States)

    Maldonado, Victor; Thormann, Adrien; Meneveau, Charles; Castillo, Luciano; Turbulence Group Collaboration

    2012-11-01

    In the present research, a 2-D wind turbine blade section based on the S809 airfoil was manufactured and tested at Johns Hopkins University in the Stanley Corrsin wind tunnel facility. A free stream velocity of 10 m/s produced a Reynolds number based on blade chord of 2.08.x105. Free stream turbulence was generated using an active grid placed 5.5 m upstream of the blade which generated a turbulence intensity, Tu of up to 6.1% and an integral length scale, L∞ of about 0.15 m. The blade was pitched to a range of angles of attack, α from 0 to 18 degrees in order to study the effects of the integral length scales on the aerodynamic characteristics of the wind turbine under fully attached and separated flow conditions. Pressure measurements around the blade and wake velocity deficit measurements utilizing a hot-wire probe were acquired to compute the lift and drag coefficient. Results suggest that turbulence generally increases aerodynamic performance as measured by the lift to drag ratio, L / D except at 0 degrees angle of attack. A significant enhancement in L / D results with free stream turbulence at post-stall angles of attack of 16 and 18 degrees, where L / D increase from 2.49 to 5.43 and from 0.64 to 4.00 respectively. This is a consequence of delaying flow separation with turbulence (which is observed in the suction pressure distribution) which in turn reduces the momentum loss in the wake particularly at 18 degrees angle of attack.

  18. Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    Science.gov (United States)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-08-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm- 3] ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1to100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with lognormal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{turb}/{p_{{0}}} =23.07 (n_{{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2{M}2))^{1.49}(n_{{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  19. Wind Velocity Vertical Extrapolation by Extended Power Law

    Directory of Open Access Journals (Sweden)

    Zekai Şen

    2012-01-01

    Full Text Available Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard deviations and the cross-correlation coefficient between different elevations are taken into consideration. The application of the presented methodology is performed for wind speed measurements at Karaburun/Istanbul, Turkey. At this location, hourly wind speed measurements are available for three different heights above the earth surface.

  20. Mirror Instability in the Turbulent Solar Wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Landi, S.; Matteini, L.; Verdini, A.; Franci, L.

    2017-01-01

    Roč. 838, č. 2 (2017), 158/1-158/7 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : instabilities * solar wind * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  1. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2004-11-01

    Full Text Available This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers.

  2. LES-based generation of high-frequency fluctuation in wind turbulence obtained by meteorological model

    Science.gov (United States)

    Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao

    2017-11-01

    The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.

  3. Turbulent Structure Under Short Fetch Wind Waves

    Science.gov (United States)

    2015-12-01

    surface gravity waves. While it assumes a flat bottom, it is valid both inside and outside the surf zone (Guza and Thornton 1980). Early research, such...J., T. Crawford, J. Crescenti, T. Farrar, J. French , et al. 2007: The coupled boundary layers and air-sea transfer experiment in low winds (CBLAST...before reaching the deployment site ( ). Map created in Google Earth , October 12, 2015, http://www.google.com/ earth /. 30 Elevations around the

  4. Measurement of acoustic velocity components in a turbulent flow using LDV and high-repetition rate PIV

    Science.gov (United States)

    Léon, Olivier; Piot, Estelle; Sebbane, Delphine; Simon, Frank

    2017-06-01

    The present study provides theoretical details and experimental validation results to the approach proposed by Minotti et al. (Aerosp Sci Technol 12(5):398-407, 2008) for measuring amplitudes and phases of acoustic velocity components (AVC) that are waveform parameters of each component of velocity induced by an acoustic wave, in fully turbulent duct flows carrying multi-tone acoustic waves. Theoretical results support that the turbulence rejection method proposed, based on the estimation of cross power spectra between velocity measurements and a reference signal such as a wall pressure measurement, provides asymptotically efficient estimators with respect to the number of samples. Furthermore, it is shown that the estimator uncertainties can be simply estimated, accounting for the characteristics of the measured flow turbulence spectra. Two laser-based measurement campaigns were conducted in order to validate the acoustic velocity estimation approach and the uncertainty estimates derived. While in previous studies estimates were obtained using laser Doppler velocimetry (LDV), it is demonstrated that high-repetition rate particle image velocimetry (PIV) can also be successfully employed. The two measurement techniques provide very similar acoustic velocity amplitude and phase estimates for the cases investigated, that are of practical interest for acoustic liner studies. In a broader sense, this approach may be beneficial for non-intrusive sound emission studies in wind tunnel testings.

  5. Fish responses to flow velocity and turbulence in relation to size, sex and parasite load.

    Science.gov (United States)

    Hockley, F A; Wilson, C A M E; Brew, A; Cable, J

    2014-02-06

    Riverine fish are subjected to heterogeneous flow velocities and turbulence and may use this to their advantage by selecting regions that balance energy expenditure for station holding while maximizing energy gain through feeding opportunities. This study investigated microhabitat selection by guppies Poecilia reticulata in terms of flow characteristics generated by hemisphere boulders in an open channel flume. Velocity and turbulence influenced the variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the areas of high-velocity and low-turbulence regions beside the boulders, whereas smaller guppies frequented the low-velocity and high-turbulence regions directly behind the boulders. Male guppies selected the regions of low velocity, indicating possible reduced swimming ability owing to hydrodynamic drag imposed by their fins. With increasing Gyrodactylus turnbulli burden, fish spent more time in regions with moderate velocity and lowest turbulent kinetic energy which were the most spatially and temporally homogeneous in terms of velocity and turbulence. These findings highlight the importance of heterogeneous flow conditions in river channel design owing to the behavioural variability within a species in response to velocity and turbulence.

  6. Fish responses to flow velocity and turbulence in relation to size, sex and parasite load

    Science.gov (United States)

    Hockley, F. A.; Wilson, C. A. M. E.; Brew, A.; Cable, J.

    2014-01-01

    Riverine fish are subjected to heterogeneous flow velocities and turbulence and may use this to their advantage by selecting regions that balance energy expenditure for station holding while maximizing energy gain through feeding opportunities. This study investigated microhabitat selection by guppies Poecilia reticulata in terms of flow characteristics generated by hemisphere boulders in an open channel flume. Velocity and turbulence influenced the variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the areas of high-velocity and low-turbulence regions beside the boulders, whereas smaller guppies frequented the low-velocity and high-turbulence regions directly behind the boulders. Male guppies selected the regions of low velocity, indicating possible reduced swimming ability owing to hydrodynamic drag imposed by their fins. With increasing Gyrodactylus turnbulli burden, fish spent more time in regions with moderate velocity and lowest turbulent kinetic energy which were the most spatially and temporally homogeneous in terms of velocity and turbulence. These findings highlight the importance of heterogeneous flow conditions in river channel design owing to the behavioural variability within a species in response to velocity and turbulence. PMID:24284893

  7. Dissipation and heating in solar wind turbulence: from the macro to the micro and back again.

    Science.gov (United States)

    Kiyani, Khurom H; Osman, Kareem T; Chapman, Sandra C

    2015-05-13

    The past decade has seen a flurry of research activity focused on discerning the physics of kinetic scale turbulence in high-speed astrophysical plasma flows. By 'kinetic' we mean spatial scales on the order of or, in particular, smaller than the ion inertial length or the ion gyro-radius--the spatial scales at which the ion and electron bulk velocities decouple and considerable change can be seen in the ion distribution functions. The motivation behind most of these studies is to find the ultimate fate of the energy cascade of plasma turbulence, and thereby the channels by which the energy in the system is dissipated. This brief Introduction motivates the case for a themed issue on this topic and introduces the topic of turbulent dissipation and heating in the solar wind. The theme issue covers the full breadth of studies: from theory and models, massive simulations of these models and observational studies from the highly rich and vast amount of data collected from scores of heliospheric space missions since the dawn of the space age. A synopsis of the theme issue is provided, where a brief description of all the contributions is discussed and how they fit together to provide an over-arching picture on the highly topical subject of dissipation and heating in turbulent collisionless plasmas in general and in the solar wind in particular. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Decay of Solar Wind Turbulence behind Interplanetary Shocks

    International Nuclear Information System (INIS)

    Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk; Franci, Luca

    2017-01-01

    We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.

  9. Decay of Solar Wind Turbulence behind Interplanetary Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk [Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague, CZ-18000 (Czech Republic); Franci, Luca, E-mail: offelius@gmail.com [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, I-50125 Firenze (Italy)

    2017-07-20

    We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.

  10. Alfvénic turbulence in solar wind originating near coronal hole boundaries: heavy-ion effects?

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2006-03-01

    Full Text Available The mid-latitude phases of the Ulysses mission offer an excellent opportunity to investigate the solar wind originating near the coronal hole boundaries. Here we report on Alfvénic turbulence features, revealing a relevant presence of in-situ generated fluctuations, observed during the wind rarefaction phase that charaterizes the transition from fast to slow wind. Heavy-ion composition and magnetic field measurements indicate a strict time correspondence of the locally generated fluctuations with 1 the crossing of the interface between fast and slow wind and 2 the presence of strongly underwound magnetic field lines (with respect to the Parker spiral. Recent studies suggest that such underwound magnetic configurations correspond to fast wind magnetic lines that, due to footpoint motions at the Sun, have their inner leg transferred to slow wind and are stretched out by the velocity gradient. If this is a valid scenario, the existence of a magnetic connection across the fast-slow wind interface is a condition that, given the different state of the two kinds of wind, may favour the development of processes acting as local sources of turbulence. We suggest that heavy-ion effects could be responsible of the observed turbulence features.

  11. Experimental analysis of turbulence effect in settling velocity of suspended sediments

    Directory of Open Access Journals (Sweden)

    H. Salinas–Tapia

    2008-01-01

    Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect

  12. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.

    2003-01-01

    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  13. Adaptive control algorithm for improving power capture of wind turbines in turbulent winds

    OpenAIRE

    Diaz-Guerra, Lluis; Adegas, Fabiano Daher; Stoustrup, Jakob; Monros, Miriam

    2012-01-01

    The standard wind turbine (WT) control law modifies the torque applied to the generator as a quadratic function of the generator speed (K!2) while blades are positioned at some optimal pitch angle (). The value of K and should be properly selected such that energy capture is increased. In practice, the complex and time-varying aerodynamics a WT face due to turbulent winds make their determination a hard task. The selected constant parameters may maximize energy for a particular, but not all, ...

  14. Correlations at large scales and the onset of turbulence in the fast solar wind

    International Nuclear Information System (INIS)

    Wicks, R. T.; Roberts, D. A.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Chen, C. H. K.

    2013-01-01

    We show that the scaling of structure functions of magnetic and velocity fields in a mostly highly Alfvénic fast solar wind stream depends strongly on the joint distribution of the dimensionless measures of cross helicity and residual energy. Already at very low frequencies, fluctuations that are both more balanced (cross helicity ∼0) and equipartitioned (residual energy ∼0) have steep structure functions reminiscent of 'turbulent' scalings usually associated with the inertial range. Fluctuations that are magnetically dominated (residual energy ∼–1), and so have closely anti-aligned Elsasser-field vectors, or are imbalanced (cross helicity ∼1), and so have closely aligned magnetic and velocity vectors, have wide '1/f' ranges typical of fast solar wind. We conclude that the strength of nonlinear interactions of individual fluctuations within a stream, diagnosed by the degree of correlation in direction and magnitude of magnetic and velocity fluctuations, determines the extent of the 1/f region observed, and thus the onset scale for the turbulent cascade.

  15. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number......This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite...... volume method. The study is followed by a detailed investigation of the Sub-Grid Scale (SGS) modeling. New SGS models are implemented into the computing code, and the effect of SGS models are examined for different applications. Fully developed boundary layer flows are investigated at low and high...

  16. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  17. ION KINETIC ENERGY CONSERVATION AND MAGNETIC FIELD STRENGTH CONSTANCY IN MULTI-FLUID SOLAR WIND ALFVÉNIC TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, L.; Horbury, T. S.; Schwartz, S. J. [The Blackett Laboratory, Imperial College London, SW7 2AZ (United Kingdom); Pantellini, F. [LESIA, Observatoire de Paris, CNRS, UPMC, Universit Paris-Diderot, 5 Place Jules Janssen, F-92195 Meudon (France); Velli, M. [Department of Earth, Planetary, and Space Sciences, UCLA, California (United States)

    2015-03-20

    We investigate the properties of plasma fluid motion in the large-amplitude, low-frequency fluctuations of highly Alfvénic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles which, due to their drift with respect to protons at about the Alfvén speed along the magnetic field, do not partake in the fluid low-frequency fluctuations. Using their velocity to transform the proton velocity into the frame of Alfvénic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfvénic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfvénic turbulence, is the origin of the observed constancy of the magnetic field; while the constant velocity corresponding to constant energy can only be observed in the frame of the fluctuations, the corresponding constant total magnetic field, invariant for Galilean transformations, remains the observational signature in the spacecraft frame of the constant total energy in the Alfvén turbulence frame.

  18. Large-scale structure of the Taurus molecular complex. II. Analysis of velocity fluctuations and turbulence. III. Methods for turbulence

    International Nuclear Information System (INIS)

    Kleiner, S.C.; Dickman, R.L.

    1985-01-01

    The velocity autocorrelation function (ACF) of observed spectral line centroid fluctuations is noted to effectively reproduce the actual ACF of turbulent gas motions within an interstellar cloud, thereby furnishing a framework for the study of the large scale velocity structure of the Taurus dark cloud complex traced by the present C-13O J = 1-0 observations of this region. The results obtained are discussed in the context of recent suggestions that widely observed correlations between molecular cloud widths and cloud sizes indicate the presence of a continuum of turbulent motions within the dense interstellar medium. Attention is then given to a method for the quantitative study of these turbulent motions, involving the mapping of a source in an optically thin spectral line and studying the spatial correlation properties of the resulting velocity centroid map. 61 references

  19. The influence of turbulence on the aero-elastic instability of wind turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.

    2014-01-01

    calibrated to the NREL 5 MW baseline wind turbine. Aeroelastic stability of the wind turbine system has been evaluated for various values of the rated generator torque, the rated rotational speed of the rotor, the mean wind speed and the turbulence intensity. Critical turbulence intensity, at which the wind...... turbine shifts from a stable state into an instable state, is determined in different cases. Results show that turbulence intensity has significant influence on the aeroelastic stability of high-performance wind turbines operating close to stall, and the stability of the wind turbine might be changed due...

  20. Statistics of the perceived velocity gradient tensor in a rotating turbulent flow

    International Nuclear Information System (INIS)

    Naso, Aurore; Godeferd, Fabien S

    2012-01-01

    The dynamics and structure of rotating homogeneous turbulence is investigated through the statistical properties of the ‘perceived’ velocity gradient tensor, defined by interpolation from the locations and velocities of a set of four particles. The results of direct numerical simulations of forced homogeneous rotating turbulence at different Rossby numbers are presented. We thus provide a multi-scale analysis of the dynamics of rotating turbulence and some of its important features. We present scaling laws for second- and third-order moments of the perceived velocity gradient tensor. We relate the distribution of the enstrophy and strain variance, and of their production terms, to the topology of the flow, thanks to conditional probability density functions. These quantities demonstrate the role played by the Zeman scale in the elementary processes of rotating turbulence, when compared to the scale at which the perceived velocity gradient tensor is measured. (paper)

  1. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  2. Planar measurements of velocity and concentration of turbulent mixing in a T-junction

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Meyer, Knud Erik; Nielsen, N. F.

    Turbulent mixing of two isothermal air streams in a T-junction of square ducts are investigated. Three dimensional velocity fields and turbulent kinetic energy are measured with stereoscopic Particle Image Velocimetry (PIV). The concentration field is obtained with a planar Mie scattering technique...

  3. Improved observations of turbulence dissipation rates from wind profiling radars

    Directory of Open Access Journals (Sweden)

    K. McCaffrey

    2017-07-01

    Full Text Available Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiple post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. The optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well (R2 = 0. 54 and 0. 41 with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.

  4. Effects of normal and extreme turbulence spectral parameters on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Mann, Jakob

    2017-01-01

    Loads simulations as performed to obtain design loads on wind turbines, requires wind turbulence as an input, characterized by parameters associated with the turbulence length scale, dissipation and anisotropy. The effect of variation in these turbulence spectral parameters on the magnitude...... the recommended values in the IEC 61400-1 Ed.3 that is used for wind turbine design. The present paper investigates the impact of Mann turbulence model parameter variations on the design loads envelope for 5 MW and 10 MW reference wind turbines. Specific focus is made on the blade root loads, tower top moments...

  5. The influence of wind speed on surface layer stability and turbulent ...

    Indian Academy of Sciences (India)

    wind regime (Mahrt et al. ... Influence of wind speed on surface layer stability and turbulent fluxes. 1401. Table 1. Specifications of the eddy ..... different soil and vegetation properties and other regional climatic factors. Earlier, it was found that.

  6. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    International Nuclear Information System (INIS)

    Zaheer, S.; Yoon, P. H.

    2013-01-01

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the κ distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized κ distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index α, where f e ∼ v –α is close to the average index observed during the quiet-time solar wind condition, i.e., α ∼ O(6.5) whereas α average ∼ 6.69, according to observation

  7. The Skipheia Wind Measurement Station. Instrumentation, Wind Speed Profiles and Turbulence Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Aasen, S.E.

    1995-10-01

    This thesis describes the design of a measurement station for turbulent wind and presents results from an analysis of the collected data. The station is located at Skipheia near the south-west end of Froeya, an island off the coast of Mid-Norway. The station is unique for studies of turbulent winds because of the large numbers of sensors, which are located at various heights above ground up to 100 m, a sampling rate of 0.85 Hz and storage of the complete time series. The frequency of lightning and atmospheric discharges to the masts are quite high and much effort has gone into minimizing the damage caused by lightning activity. A major part of the thesis deals with data analysis and modelling. There are detailed discussions on the various types of wind sensors and their calibration, the data acquisition system and operating experiences with it, the database, data quality control, the wind speed profile and turbulence. 40 refs., 78 figs., 17 tabs.

  8. Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.

    Science.gov (United States)

    Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.

    2017-12-01

    Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular

  9. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  10. Near Wall Velocity and Vorticity Measurements, In A Very High R(theta) Turbulent Boundary Layer

    Science.gov (United States)

    2006-06-15

    velocity and vorticity. Extensive work has been carried out at low Reynolds numbers including Balint et al (1990) who studied statistical properties of...boundary layers." J. Fluid Mech. 439, 131-163. Balint , J., Wallace, J.M. & Vukoslavcevic, P. 1991 "The velocity and vorticity vector fields of a turbulent

  11. A stochastic differential equation framework for the timewise dynamics of turbulent velocities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    2008-01-01

    We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density...

  12. Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind

    Science.gov (United States)

    Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay

    2018-03-01

    In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).

  13. Velocity Measurement Systems for a Low-speed Wind Tunnel

    Science.gov (United States)

    2015-04-29

    SECURITY CLASSIFICATION OF: Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment and a Dantec particle- image...Velocity Measurement Systems for a Low-speed Wind Tunnel Report Title Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment...Funds were provided by the Army Research Office for the purchase of TSI hot-wire anemometer equipment and a Dantec particle-image velocimetry system

  14. Entropy-Based Modeling of Velocity Lag in Sediment-Laden Open Channel Turbulent Flow

    Directory of Open Access Journals (Sweden)

    Manotosh Kumbhakar

    2016-08-01

    Full Text Available In the last few decades, a wide variety of instruments with laser-based techniques have been developed that enable experimentally measuring particle velocity and fluid velocity separately in particle-laden flow. Experiments have revealed that stream-wise particle velocity is different from fluid velocity, and this velocity difference is commonly known as “velocity lag” in the literature. A number of experimental, as well as theoretical investigations have been carried out to formulate deterministic mathematical models of velocity lag, based on several turbulent features. However, a probabilistic study of velocity lag does not seem to have been reported, to the best of our knowledge. The present study therefore focuses on the modeling of velocity lag in open channel turbulent flow laden with sediment using the entropy theory along with a hypothesis on the cumulative distribution function. This function contains a parameter η, which is shown to be a function of specific gravity, particle diameter and shear velocity. The velocity lag model is tested using a wide range of twenty-two experimental runs collected from the literature and is also compared with other models of velocity lag. Then, an error analysis is performed to further evaluate the prediction accuracy of the proposed model, especially in comparison to other models. The model is also able to explain the physical characteristics of velocity lag caused by the interaction between the particles and the fluid.

  15. Velocity and turbulence at a wing-wall abutment

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    When a wing-wall abutment is placed vertically on a rigid-bed rectangular channel by attach- ing it to one of the vertical sidewalls of the channel, the approaching turbulent boundary layer undergoes separation and rolles up to form the well-known primary vortex, which swept out by the side of the abutment. Limited research ...

  16. Role and Nature of Intermittency in Solar Wind Alfvénic Turbulence: Wind Observations.

    Science.gov (United States)

    Salem, C. S.; Mangeney, A.; Bale, S. D.

    2006-12-01

    In the Alfvénic regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards much smaller scales, where dissipation via kinetic effects is presumed to act. However, the intermittent character of the solar wind fluctuations in the inertial range is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We will discuss here recent results on scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. More specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs will be reviewed and new results on the nature of the intermittent coherent structures will be presented.

  17. Scale-Invariance and Intermittency in the Solar Wind Alfvénic Turbulence: Wind Observations

    Science.gov (United States)

    Salem, C. S.; Mangeney, A.; Bale, S. D.; Veltri, P.

    2004-12-01

    In the "Alfvénic" regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards the small scales where dissipation by kinetic effects is presumed to act. However, the intermittent character of solar wind fluctuations is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We present here a new approach to study the scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Using the Haar wavelet transform, spectra and structure functions are calculated. We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. We finally discuss the various effects which may be important for the formation of these structures in the absence of collisions.

  18. Coastal wind in the transition from turbulence to mesoscale

    Science.gov (United States)

    Champagne-Philippe, MichèLe

    1989-06-01

    During the second survey of the Travaux d'Océanographie Spatiale: Capteurs actifs dans l'Atlantique Nord-Est (TOSCANE T) experiment (February 14 to April 17, 1985), seven wind masts were operated on the shore of the "Baie d'Audierne." Distances between them ranged from 1.5 to 13.7 km, and the data were sampled at 3 s. An important portion of the data was recorded under severe weather conditions. Results from 27 cases of wind blowing from the sea, which corresponded to synoptically stationary wind regimes, show that for both horizontal components the spectral energy in the transition region between mesoscale and Kolmogorov turbulence takes the shape of a well-marked dip when weather types are stable or slightly unstable. But, in more convective cases the dip disappears and the transition region becomes almost horizontal; spectral energy density follows an n-1 law (where n is equal to frequency) until the Kolmogorov region is reached. Coherences and cross correlations between masts show that in the 6-s to 1-hour period range, only mesoscale fluctuations are coherent. Turbulent fluctuations are not correlated for the separation distances of the masts. Under synoptically steady or slightly unstable conditions, such single-point measurements could reliably be time-averaged for use in satellite wind sensor calibration. In more convective conditions, especially for the ubiquitous open mesoscale cells found over mid-latitude oceans in cold air advections, interpretation problems might occur because mesoscale events, as time-averaged from coastal masts, buoys, or ships, could be different from those spatially integrated in the footprint of a satellite sensor. In these cases, some relationship must be used to relate single-point averaging times to the area illuminated by the satellite. To do so, Taylor's hypothesis is commonly extended to the mesoscale; but, the present data show that such an extension cannot be made under usual actual conditions because of the structure of

  19. Improving Lidar Turbulence Estimates for Wind Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer; Clifton, Andrew; Churchfield, Matthew; Klein, Petra

    2016-10-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  20. Characteristics of turbulent velocity and temperature in a wall channel of a heated rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, T.; Meyer, L. [Forschungszentrum Karlsruhe (Germany)

    1995-09-01

    Turbulent air flow in a wall sub-channel of a heated 37-rod bundle (P/D = 1.12, W/D = 1.06) was investigated. measurements were performed with hot-wire probe with X-wires and a temperature wire. The mean velocity, the mean fluid temperature, the wall shear stress and wall temperature, the turbulent quantities such as the turbulent kinetic energy, the Reynolds-stresses and the turbulent heat fluxes were measured and are discussed with respect to data from isothermal flow in a wall channel and heated flow in a central channel of the same rod bundle. Also, data on the power spectral densities of the velocity and temperature fluctuations are presented. These data show the existence of large scale periodic fluctuations are responsible for the high intersubchannel heat and momentum exchange.

  1. Inclusion of routine wind and turbulence forecasts in the Savannah River Plant's emergency response capabilities

    International Nuclear Information System (INIS)

    Pendergast, M.M.; Gilhousen, D.B.

    1980-01-01

    The Savannah River Plant's emergency response computer system was improved by the implementation of automatic forecasts of wind and turbulence for periods up to 30 hours. The forecasts include wind direction, wind speed, and horizontal and vertical turbulence intensity at 10, 91, and 243 m above ground for the SRP area, and were obtained by using the Model Output Statistics (MOS) technique. A technique was developed and tested to use the 30-hour MOS forecasts of wind and turbulence issued twice daily from the National Weather Service at Suitland, Maryland, into SRP's emergency response program. The technique for combining MOS forecasts, persistence, and adjusted-MOS forecast is used to generate good forecasts any time of day. Wind speed and turbulence forecasts have been shown to produce smaller root mean square errors (RMSE) than forecasts of persistence for time periods over about two hours. For wind direction, the adjusted-MOS forecasts produce smaller RMSE than persistence for times greater than four hours

  2. Turbulence scaling study in an MHD wind tunnel on the Swarthmore Spheromak Experiment

    Science.gov (United States)

    Schaffner, D. A.; Brown, M. R.; Wan, A.

    2013-12-01

    The turbulence of colliding plasmas is explored in an MHD wind tunnel on the SSX in an effort to understand solar wind physics in a laboratory setting. Fully ionized hydrogen plasma is produced by two plasma guns on opposite sides of a 1m by 15cm copper cylinder creating plasma with L/ρi ~ 75-150, β ~ 0.1-0.2 and Lundquist number ~ 1000. Modification of B-field, Ti and β are made through stuffing flux variation of the plasma guns. Presented here are turbulent f-/k-spectra and correlation times and lengths of B-field fluctuations as measured by a 16 channel B-dot radial probe array at the chamber midplane using both FFT and wavelet analysis techniques. Power-law behavior is observed spanning about two decades of frequencies [100kHz-10MHz] and about one decade of wavelength [10cm-1cm]. Power-law fits to spectra show scaling in these regions to be robust to changes in stuffing flux; fits are on the order of f-4 and k-2 for all flux variations. Low frequency fluctuations [law behavior is seen in f-spectra for frequencies around f=fci while changes in k-spectra slopes appear around 1/k ~ 5ρi. Dissipation range fits are made with an exponentially modified power-law model [Terry et al, PoP 2012]. Fluctuation measurements in axial velocity are made using a Mach probe with edge flows reaching M ~ 0.4. Both B-field and velocity fluctuations persist on the same timescale in these experiments, though Mach velocity f-spectra show power-laws slightly shallower than those for B-field. Comparison of spectra from MHD and Hall MHD simulations of SSX performed within the HiFi modeling framework are made to the experimental results.

  3. The vertical structure of airflow turbulence characteristics within a boundary layer during wind blown sand transport over a beach

    Science.gov (United States)

    Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.

    2010-12-01

    Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.

  4. STATISTICS OF THE VELOCITY GRADIENT TENSOR IN SPACE PLASMA TURBULENT FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Consolini, Giuseppe; Marcucci, Maria Federica; Pallocchia, Giuseppe [INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy); Materassi, Massimo, E-mail: giuseppe.consolini@iaps.inaf.it [Istituto dei Sistemi Complessi, CNR, Sesto Fiorentino (Italy)

    2015-10-10

    In the last decade, significant advances have been presented for the theoretical characterization and experimental techniques used to measure and model all of the components of the velocity gradient tensor in the framework of fluid turbulence. Here, we attempt the evaluation of the small-scale velocity gradient tensor for a case study of space plasma turbulence, observed in the Earth's magnetosheath region by the CLUSTER mission. In detail, we investigate the joint statistics P(R, Q) of the velocity gradient geometric invariants R and Q, and find that this P(R, Q) is similar to that of the low end of the inertial range for fluid turbulence, with a pronounced increase in the statistics along the so-called Vieillefosse tail. In the context of hydrodynamics, this result is referred to as the dissipation/dissipation-production due to vortex stretching.

  5. A method for measuring mean wind velocities in a canyon with tracer balloons

    Science.gov (United States)

    Sheih, C. M.; Billman, B. J.; Depaul, F. T.

    1985-08-01

    A method using balloons as tracers for measuring mean wind velocity in street canyons or mountain valleys has been developed. Tests of the method with numerical experiments showed that the method reproduced an assumed wind field quite well provided that the buoyancy component of the balloon velocity was larger than the downward velocity component of the wind. Tests of the method with measurements of wind velocity in a street canyon of downtown Chicago showed that the method yielded flow patterns quite similar to photographic results of flow visualization of phisical simulations by other investigators. However, no direct measurements of wind velocity were available for quantitative comparison.

  6. TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Vech, Daniel; Chen, Christopher H K

    2016-01-01

    We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R E ), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.

  7. SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Sahraoui, F.; Belmont, G.; Rétino, A.; Robert, P.; De Patoul, J.; Huang, S. Y.; Goldstein, M. L.

    2013-01-01

    Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ e , followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW

  8. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise

    Science.gov (United States)

    Gliebe, P. R.

    1980-01-01

    An analytical study of the effects of wind tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80-foot wind tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise, refined and extended to include first-order effects of inlet turbulence anisotropy, was employed to carry out a parametric study of the effects of fan size, blade number, and operating line for outdoor test stand, NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels, they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  9. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Directory of Open Access Journals (Sweden)

    Young-Moon Kim

    2014-01-01

    Full Text Available Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  10. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Science.gov (United States)

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small. PMID:25136681

  11. Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures

    KAUST Repository

    Bradley, Derek

    2013-01-01

    The implosion technique has been used to extend measurements of turbulent burning velocities over greater ranges of fuels and pressures. Measurements have been made up to 3.5 MPa and at strain rate Markstein numbers as low as 23. The implosion technique, with spark ignition at two opposite wall positions within a fan-stirred spherical bomb is capable of measuring turbulent burning velocities, at higher pressures than is possible with central ignition. Pressure records and schlieren high speed photography define the rate of burning and the smoothed area of the flame front. The first aim of the study was to extend the previous measurements with ethanol and propane-air, with further measurements over wider ranges of fuels and equivalence ratios with mixtures of hydrogen, methane, 10% hydrogen-90% methane, toluene, and i-octane, with air. The second aim was to study further the low turbulence regime in which turbulent burning co-exists with laminar flame instabilities. Correlations are presented of turbulent burning velocity normalised by the effective rms turbulent velocity acting on the flame front, ut=u0k , with the Karlovitz stretch factor, K, for different strain rate Markstein numbers, a decrease in which increases ut=u0k . Experimental correlations are presented for the present measurements, combined with previous ones. Different burning regimes are also identified, extending from that of mixed turbulence/laminar instability at low values of K to that at high values of K, in which ut=u0k is gradually reduced due to increasing localised flame extinctions. © 2012 The Combustion Institute.

  12. Wind farm turbulence impacts on general aviation airports in Kansas : [technical summary].

    Science.gov (United States)

    2014-01-01

    Wind turbines and wind farms have become popular in the State of Kansas. Some general aviation : pilots have expressed a concern about the turbulence that the spinning blades are creating. If a : wind farm is built near an airport, does this affect t...

  13. Accounting for the effect of turbulence on wind turbine power curves

    DEFF Research Database (Denmark)

    Clifton, A.; Wagner, Rozenn

    2014-01-01

    Wind turbines require methods to predict the power produced as inflow conditions change. We compare the standard method of binning with a turbulence renormalization method and a machine learning approach using a data set derived from simulations. The method of binning is unable to cope with changes...... in turbulence; the turbulence renormalization method cannot account for changes in shear other than by using the the equivalent wind speed, which is derived from wind speed data at multiple heights in the rotor disk. The machine learning method is best able to predict the power as conditions change, and could...

  14. Consequences of variations in spatial turbulence characteristics for fatigue life time of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.

    1998-09-01

    The fatigue loading of turbines situated in complex terrain is investigated in order to determine the crucial parameters in the spatial structure of the turbulence in such situations. The parameter study is performed by means of numerical calculations, and it embraces three different wind turbine types, representing a pitch controlled concept, a stall controlled concept, and a stall controlled concept with an extremely flexible tower. For each of the turbine concepts, the fatigue load sensibility to the selected turbulence characteristics are investigated for three different mean wind speeds at hub height. The selected mean wind speeds represent the linear-, the stall-, and the post stall aerodynamic region for the stall controlled turbines and analogously the unregulated-, the partly regulated-, and the fully regulated regime for the pitch controlled turbine. Denoting the turbulence component in the mean wind direction by u, the lateral turbulence component by v, and the vertical turbulence component by w, the selected turbulence characteristics comprise the u-turbulence length scale, the ratio between the v- and w-turbulence intensities and the u-turbulence intensity, the uu-coherence decay factor, and finally the u-v and u-w cross-correlations. The turbulence length scale in the mean wind direction gives rise to significant modification of the fatigue loading on all the investigated wind turbine concepts, but for the other selected parameter variations, large individual differences exists between the turbines. With respect to sensitivity to the performed parameter variations, the Vestas V39 wind turbine is the most robust of the investigated turbines. The Nordtank 500/37 turbine, equipped with the (artificial) soft tower, is by far the most sensitive of the investigated turbine concepts - also much more sensitive than the conventional Nordtank 500/37 turbine equipped with a traditional tower. (au) 2 tabs., 43 ills., 7 refs.

  15. Statistics of spatial derivatives of velocity and pressure in turbulent channel flow

    Science.gov (United States)

    Vreman, A. W.; Kuerten, J. G. M.

    2014-08-01

    Statistical profiles of the first- and second-order spatial derivatives of velocity and pressure are reported for turbulent channel flow at Reτ = 590. The statistics were extracted from a high-resolution direct numerical simulation. To quantify the anisotropic behavior of fine-scale structures, the variances of the derivatives are compared with the theoretical values for isotropic turbulence. It is shown that appropriate combinations of first- and second-order velocity derivatives lead to (directional) viscous length scales without explicit occurrence of the viscosity in the definitions. To quantify the non-Gaussian and intermittent behavior of fine-scale structures, higher-order moments and probability density functions of spatial derivatives are reported. Absolute skewnesses and flatnesses of several spatial derivatives display high peaks in the near wall region. In the logarithmic and central regions of the channel flow, all first-order derivatives appear to be significantly more intermittent than in isotropic turbulence at the same Taylor Reynolds number. Since the nine variances of first-order velocity derivatives are the distinct elements of the turbulence dissipation, the budgets of these nine variances are shown, together with the budget of the turbulence dissipation. The comparison of the budgets in the near-wall region indicates that the normal derivative of the fluctuating streamwise velocity (∂u'/∂y) plays a more important role than other components of the fluctuating velocity gradient. The small-scale generation term formed by triple correlations of fluctuations of first-order velocity derivatives is analyzed. A typical mechanism of small-scale generation near the wall (around y+ = 1), the intensification of positive ∂u'/∂y by local strain fluctuation (compression in normal and stretching in spanwise direction), is illustrated and discussed.

  16. Radiation pressure in galactic disks: stability, turbulence, and winds in the single-scattering limit

    Science.gov (United States)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-04-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  17. Velocity field and coherent structures in the near wake of a utility-scale wind turbine

    Science.gov (United States)

    Hong, Jiarong; Dasari, Teja; Wu, Yue; Liu, Yun

    2017-11-01

    Super-large-scale particle image velocity (SLPIV) and the associated flow visualization technique using natural snowfall have been shown as an effective tool to probe turbulent velocity field and coherent structures around utility-scale wind turbines (Hong et al. Nature Comm. 2014). Here we present a follow-up study using the data collected during multiple deployments from 2014 to 2016 around the 2.5 MW turbine at EOLOS field station. The data include SLPIV measurements in the near wake of the turbine in a field of view of 120 m (height) x 60 m (width), and the visualization of tip vortex behavior near the bottom blade tip over a broad range of turbine operational conditions. SLPIV results indicate a highly intermittent flow field in the near wake, consisting of both intense wake expansion and contraction events. Such intermittent states of the near wake are shown to be influenced by both the incoming wind conditions and the turbine operation. The visualization of tip vortex behavior demonstrates the presence of the state of consistent vortex formation as well as various types of disturbed vortex states. The occurrence of these states is statistically analyzed and is shown to be correlated with turbine operational and response parameters under different field conditions. National Science Foundation Fluid Dynamics Program.

  18. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  19. Time-Series Analysis of Intermittent Velocity Fluctuations in Turbulent Boundary Layers

    Science.gov (United States)

    Zayernouri, Mohsen; Samiee, Mehdi; Meerschaert, Mark M.; Klewicki, Joseph

    2017-11-01

    Classical turbulence theory is modified under the inhomogeneities produced by the presence of a wall. In this regard, we propose a new time series model for the streamwise velocity fluctuations in the inertial sub-layer of turbulent boundary layers. The new model employs tempered fractional calculus and seamlessly extends the classical 5/3 spectral model of Kolmogorov in the inertial subrange to the whole spectrum from large to small scales. Moreover, the proposed time-series model allows the quantification of data uncertainties in the underlying stochastic cascade of turbulent kinetic energy. The model is tested using well-resolved streamwise velocity measurements up to friction Reynolds numbers of about 20,000. The physics of the energy cascade are briefly described within the context of the determined model parameters. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).

  20. A local sensor for joint temperature and velocity measurements in turbulent flows

    Science.gov (United States)

    Salort, Julien; Rusaouën, Éléonore; Robert, Laurent; du Puits, Ronald; Loesch, Alice; Pirotte, Olivier; Roche, Philippe-E.; Castaing, Bernard; Chillà, Francesca

    2018-01-01

    We present the principle for a micro-sensor aimed at measuring local correlations of turbulent velocity and temperature. The operating principle is versatile and can be adapted for various types of flow. It is based on a micro-machined cantilever, on the tip of which a platinum resistor is patterned. The deflection of the cantilever yields an estimate for the local velocity, and the impedance of the platinum yields an estimate for the local temperature. The velocity measurement is tested in two turbulent jets: one with air at room temperature which allows us to compare with well-known calibrated reference anemometers, and another one in the GReC jet at CERN with cryogenic gaseous helium which allows a much larger range of resolved turbulent scales. The recording of temperature fluctuations is tested in the Barrel of Ilmenau which provides a controlled turbulent thermal flow in air. Measurements in the wake of a heated or cooled cylinder demonstrate the capability of the sensor to display the cross correlation between temperature and velocity correctly.

  1. Effects of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet

    Science.gov (United States)

    Sadeghi, Hamed; Lavoie, Philippe; Pollard, Andrew

    2018-03-01

    The effect of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet is investigated. To quantify spatial resolution effects, measurements were taken using a nano-scale thermal anemometry probe (NSTAP) and compared to results from conventional hot-wires with sensing lengths of l=0.5 and 1 mm. The NSTAP has a sensing length significantly smaller than the Kolmogorov length scale η for the present experimental conditions, whereas the sensing lengths for the conventional probes are larger than η. The spatial resolution is found to have a significant impact on the dissipation both on and off the jet centreline with the NSTAP results exceeding those obtained from the conventional probes. The resolution effects along the jet centreline are adequately predicted using a Wyngaard-type spectral technique (Wyngaard in J Sci Instr 1(2):1105-1108,1968), but additional attenuation on the measured turbulence quantities are observed off the centreline. The magnitude of this attenuation is a function of both the ratio of wire length to Kolmogorov length scale and the magnitude of the shear. The effect of spatial resolution is noted to have an impact on the power-law decay parameters for the turbulent kinetic energy that is computed. The effect of spatial filtering on the streamwise dissipation energy spectra is also considered. Empirical functions are proposed to estimate the effect of finite resolution, which take into account the mean shear.

  2. Spatial averaging of streamwise and spanwise velocity measurements in wall-bounded turbulence using ∨- and ×-probes

    International Nuclear Information System (INIS)

    Philip, Jimmy; Baidya, Rio; Hutchins, Nicholas; Monty, Jason P; Marusic, Ivan

    2013-01-01

    (more precisely on the two-point correlations) and the measured means depend only on the unfiltered mean. The various results are found to be in accordance with the experimental measurements carried out in a turbulent boundary layer at Re τ ≈ 5000. Finally, considering the physical positioning of wires in the ∨- and ×-probes combined with the above results suggests that ×-probes might be more suitable for stream–spanwise velocity measurements than the ∨-probes in conventional wind tunnels. (paper)

  3. An Error-Reduction Algorithm to Improve Lidar Turbulence Estimates for Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer F.; Clifton, Andrew

    2016-08-01

    Currently, cup anemometers on meteorological (met) towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability. However, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install met towers at potential sites. As a result, remote sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. While lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount of uncertainty surrounding the measurement of turbulence with lidars. This uncertainty in lidar turbulence measurements is one of the key roadblocks that must be overcome in order to replace met towers with lidars for wind energy applications. In this talk, a model for reducing errors in lidar turbulence estimates is presented. Techniques for reducing errors from instrument noise, volume averaging, and variance contamination are combined in the model to produce a corrected value of the turbulence intensity (TI), a commonly used parameter in wind energy. In the next step of the model, machine learning techniques are used to further decrease the error in lidar TI estimates.

  4. Turbulent velocity and concentration measurements in a macro-scale multi-inlet vortex nanoprecipitation reactor

    Science.gov (United States)

    Liu, Zhenping; Fox, Rodney; Hill, James; Olsen, Michael

    2013-11-01

    Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles. Microscale multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide rapid mixing and flexibility of inlet flow conditions. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in industry. In the presented research, the turbulent velocity field inside a scaled-up, macroscale MIVR is measured by particle image velocimetry (PIV). Within the reactor, velocity is measured using both two-dimensional and stereoscopic PIV at two Reynolds numbers (3500 and 8750) based on the flow at each inlet. Data have been collected at numerous locations in the inlet channels, the reaction chamber, and the reactor outlet. Mean velocity and Reynolds stresses have been obtained based on 5000 instantaneous velocity realizations at each measurement location. The turbulent mixing process has also been investigated with passive scalar planar laser-induced fluorescence and simultaneous PIV/PLIF. Velocity and concentration results are compared to results from previous experiments in a microscale MIVR. Scaled profiles of turbulent quantities are similar to those previously found in the microscale MIVR.

  5. Simulation of inhomogeneous, non-stationary and non-Gaussian turbulent winds

    International Nuclear Information System (INIS)

    Nielsen, M; Larsen, G C; Hansen, K S

    2007-01-01

    Turbulence time series are needed for wind turbine load simulation. The multivariate Fourier simulation method often used for this purpose is extended for inhomogeneous and non-stationary processes of general probability distribution. This includes optional conditional simulation matching simulated series to field measurements at selected points. A probability model for the application of turbine wind loads is discussed, and finally the technique for non-stationary processes is illustrated by turbulence simulation during a front passage

  6. A new low-turbulence wind tunnel for animal and small vehicle flight experiments

    OpenAIRE

    Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-01-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a...

  7. VELOCITY FIELD OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE: WAVELET DECOMPOSITION AND MODE SCALINGS

    International Nuclear Information System (INIS)

    Kowal, Grzegorz; Lazarian, A.

    2010-01-01

    We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.

  8. Heating of the Solar Wind Beyond 1 AU by Turbulent Dissipation

    Science.gov (United States)

    Smith, Charles

    The deposition of energy into the solar wind is argued to result from the dissipation of low frequency magnetohydrodynamic turbulence via kinetic processes at spatial scales comparable to the ion gyroradius. We present a theory for heating the solar wind that relies on uid processes such as wind shear inside about 10 AU and the pickup of interstellar ions and the associated generation of waves and turbulence beyond the ionization cavity to serve as energy sources for the heating. We compare the predictions of this theory to the observed magnetic turbulence levels and solar wind temperature measured by Voyager 2 beyond 1 AU. The contribution to the heating of the solar wind provided by interstellar pickup ions is a key feature of this theory and is chie y responsible for the excellent agreement between theory and observation that is seen beyond 10 AU.

  9. The Effect of Wind Velocity on the Cooling Rate of Water

    OpenAIRE

    Shrey Aryan

    2016-01-01

    The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  10. DENSITY AND VELOCITY MEASUREMENTS IN TURBULENT HE-AIR BOUNDARY LAYERS

    Directory of Open Access Journals (Sweden)

    A SOUDANI

    2003-06-01

    Full Text Available A turbulent  boundary layer with large density variations has been generated by tangential injection of air or helium Into a boundary layer of air-helium mixture. Instrumentation based on thermo- anemometry has been successfully developed for the investigation of this flow  Analysis or the mean and fluctuating density fields shows that the flow is mainly governed by the ratio of the injection to the external velocity and that the density ratio plays a secondary role in the mixing processes. However, a sight enhancement of turbulent activity is observed when helium is injected.

  11. Model for vortex turbulence with discontinuities in the solar wind

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2003-01-01

    Full Text Available A model of vortex with embedded discontinuities in plasma flow is developed in the framework of ideal MHD in a low b plasma. Vortex structures are considered as a result of 2-D evolution of nonlinear shear Alfvén waves in the heliosphere. Physical properties of the solutions and vector fields are analyzed and the observational aspects of the model are discussed. The ratio of normal components to the discontinuity Br /Vr can be close to -2. The alignment between velocity and magnetic field vectors takes place. Spacecraft crossing such vortices will typically observe a pair of discontinuities, but with dissimilar properties. Occurrence rate for different discontinuity types is estimated and agrees with observations in high-speed solar wind stream. Discontinuity crossing provides a backward rotation of magnetic field vector and can be observed as part of a backward arc. The Ulysses magnetometer data obtained in the fast solar wind are compared with the results of theoretical modelling.

  12. High order items of turbulent velocity fluctuations in the Kenics static mixer

    Science.gov (United States)

    Meng, HuiBo; Yu, YanFang; Wu, JianHua

    2008-12-01

    The turbulent flow characteristic of flowing velocity field in the Kenics static mixer (KSM) was studied by measuring the time series of pulsant velocity with Laser Doppler Anemometer. The probability density functions of the Cartesian velocity fluctuations were obtained and compared with the corresponding normal distributions. The deviation from the normal distribution described by skewness and flatness factors was analyzed quantitatively. The experimental results indicate that the value of Skewness fluctuates from -2.79 to 3.12 which mean that the distribution of velocity field is not a normal distribution, and the existence of coherent structure is pointed out by the distribution of Flatness of pulsant velocity with a range of 3~9.5.

  13. Measured Properties of Turbulent Premixed Flames for Model Assessment, Including Burning Velocities, Stretch Rates, and Surface Densities (Postprint)

    Science.gov (United States)

    2006-10-01

    conditions was stabilized on a large two-dimensional slot Bunsen burner . It was found that the turbulent burning velocity of Bunsen flames depends...burning velocity of Bunsen flames are inadequate because they should include two additional parameters: mean velocity Ū and burner width W. These...corru- gated) flame with well-defined boundary conditions was stabilized on a large two-dimensional slot Bunsen burner . It was found that the turbulent

  14. Influence of wind velocity fluctuation on air temperature difference between the fan and ground levels and the effect of frost protective fan operation

    International Nuclear Information System (INIS)

    Araki, T.; Matsuo, K.; Miyama, D.; Sumikawa, O.; Araki, S.

    2008-01-01

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition

  15. Turbulent conductivity in parallel with iso-velocities in a planar established flow

    International Nuclear Information System (INIS)

    Jullien, F.

    1968-02-01

    In this thesis are presented the experimental results obtained during the study of the turbulent diffusion of heat using a wire source in a flat air flow. The Taylor statistical theory laws are well respected in the domain studied. The experiments have made it possible to evaluate the influence of the Reynolds number and of the distance from the wall on the quadratic values of velocity fluctuations and on the Lagrange turbulence scales. In particular, the author has found a correlation between the Lagrange scales and the friction coefficient when the Reynolds number varies. A diffusion law is derived from the Taylor theory; it makes it possible to explain more clearly the idea of turbulent conductivity. (author) [fr

  16. Wall-attached structures of streamwise velocity fluctuations in turbulent boundary layer

    Science.gov (United States)

    Hwang, Jinyul; Sung, Hyung Jin

    2017-11-01

    The wall-attached structures of streamwise velocity fluctuations (u) are explored using direct numerical simulation data of turbulent boundary layer at Reτ = 1000 . We identify the structures of u, which are extended close to the wall. Their height (ly) ranges from the near-wall region to the edge of turbulent boundary layer. They are geometrically self-similar in a sense that the length and width of the structures are proportional to the distance from the wall. The population density of the attached structures shows that the tall attached structures (290 wall. The wall-attached structures of u identified in the present work are a proper candidate for Townsend's attached eddy hypothesis and these structures exist in the low Reynolds number turbulent boundary layer. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP) and supported by the Supercomputing Center (KISTI).

  17. Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2014-01-01

    A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines .......A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines ....

  18. Generalized similarity in magnetohydrodynamic turbulence as seen in the solar corona and solar wind

    Science.gov (United States)

    Chapman, S. C.; Leonardis, E.; Nicol, R. M.; Foullon, C.

    2010-12-01

    A key property of turbulence is that it can be characterized and quantified in a robust and reproducible way in terms of the ensemble averaged statistical properties of fluctuations. Importantly, fluctuations associated with a turbulent field show similarity or scaling in their statistics and we test for this in observations of magnetohydrodynamic turbulence in the solar corona and solar wind with both power spectra and Generalized Structure Functions. Realizations of turbulence that are finite sized are known to exhibit a generalized or extended self-similarity (ESS). ESS was recently demonstrated in magnetic field timeseries of Ulysses single point in-situ observations of fluctuations of quiet solar wind for which a single robust scaling function was found [1-2]. Flows in solar coronal prominences can be highly variable, with dynamics suggestive of turbulence. The Hinode SOT instrument provides observations (images) at simultaneous high spatial and temporal resolution which span several decades in both spatial and temporal scales. We focus on specific Calcium II H-line observations of solar quiescent prominences with dynamic, highly variable small-scale flows. We analyze these images from the perspective of a finite sized turbulent flow. We discuss this evidence of ESS in the SOT images and in Ulysses solar wind observations- is there a single universal scaling of the largest eddies in the finite range magnetohydrodynamic turbulent flow? [1] S. C. Chapman, R. M. Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 103, 241101 (2009) [2] S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)

  19. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    Science.gov (United States)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  20. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    Science.gov (United States)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  1. Local velocity scaling in T400 vessel agitated by Rushton turbine in a fully turbulent region

    Directory of Open Access Journals (Sweden)

    Šulc Radek

    2017-01-01

    Full Text Available The hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV. The experiments were carried out in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter. The velocity fields were measured in the zone in upward flow to the impeller for impeller rotation speeds from 300 rpm to 850 rpm and three liquids of different viscosities (i.e. (i distilled water, ii a 28% vol. aqueous solution of glycol, and iii a 43% vol. aqueous solution of glycol, corresponding to the impeller Reynolds number in the range 50 000 < Re < 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller Reynolds number. On the basis of the test results the spatial distributions of dimensionless velocities were calculated. The axial turbulence intensity was found to be in the majority in the range from 0.388 to 0.540, which corresponds to the high level of turbulence intensity.

  2. Local velocity scaling in T400 vessel agitated by Rushton turbine in a fully turbulent region

    Science.gov (United States)

    Šulc, Radek; Ditl, Pavel; Fořt, Ivan; Jašíkova, Darina; Kotek, Michal; Kopecký, Václav; Kysela, Bohuš

    The hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV). The experiments were carried out in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter. The velocity fields were measured in the zone in upward flow to the impeller for impeller rotation speeds from 300 rpm to 850 rpm and three liquids of different viscosities (i.e. (i) distilled water, ii) a 28% vol. aqueous solution of glycol, and iii) a 43% vol. aqueous solution of glycol), corresponding to the impeller Reynolds number in the range 50 000 < Re < 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller Reynolds number. On the basis of the test results the spatial distributions of dimensionless velocities were calculated. The axial turbulence intensity was found to be in the majority in the range from 0.388 to 0.540, which corresponds to the high level of turbulence intensity.

  3. A Model for Determining the Effect of the Wind Velocity on 100 M Sprinting Performance

    Directory of Open Access Journals (Sweden)

    Janjic Natasa

    2017-06-01

    Full Text Available This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10-3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10-2 m/s and cannot be neglected.

  4. A new low-turbulence wind tunnel for animal and small vehicle flight experiments

    Science.gov (United States)

    Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-03-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.

  5. A new low-turbulence wind tunnel for animal and small vehicle flight experiments.

    Science.gov (United States)

    Quinn, Daniel B; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-03-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s -1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s -1 . To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.

  6. PIV and Hotwire Measurement and Analysis of Tip Vortices and Turbulent Wake Generated by a Model Horizontal Axis Wind Turbine

    Science.gov (United States)

    Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.

    2011-12-01

    Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single

  7. Spatial averaging of velocity measurements in wall-bounded turbulence: single hot-wires

    International Nuclear Information System (INIS)

    Philip, Jimmy; Hutchins, Nicholas; Monty, Jason P; Marusic, Ivan

    2013-01-01

    Recent advancements in velocity measurements to understand high Reynolds number (Re) wall turbulence have pushed the boundaries of sensor size required to resolve the smallest scales. We present here a framework for studying the effect of finite sensor size on velocity measurements, and scrutinize in detail the behaviour of single-wire hot-wires. Starting with a general linear filter, expressions for the filtered correlation, spectrum and the corresponding variance are derived. Considering the special case of a box-type filter and a simple model for the two-point correlation, theoretical results are developed, which are favourably compared with the numerical simulation of hot-wires based on the turbulent channel flow direct numerical simulation databases. The results clarify the reason why previous studies found the approximate shape of the spectra not resolved by hot-wires as Gaussian. The length scale based on the correlation over the sensor length is found to be the appropriate length scale for characterizing averaging due to finite sensor size. The efficacy of the linear box filter is established by comparing the numerical simulation of hot-wires with experiments conducted at matched sensor lengths and Re in a channel flow, at least for hot-wire lengths of less than 40 in viscous scaling. Finally, a model of the streamwise two-point correlation is presented, which is employed to estimate the filtering effect on the peak of the streamwise velocity variances for a range of Re, and the model results compare favourably with that obtained from measurements. Even though the theoretical results are compared here in the case of wall turbulence, they are suitable for hot-wire measurements in turbulent flows in general. (paper)

  8. Dynamics of transitional region of the solar wind turbulence with heliocentric distance

    Science.gov (United States)

    Galinsky, V.; Shevchenko, V. I.

    2010-12-01

    Scale-separation model of wave-particle interaction in divergent solar wind was applied to study the transitional region of solar wind turbulence [1]. We concentrated on area from around the end of the inertial range to the region where proton cyclotron dumping is important. Our goal is to investigate how the transitional region changes due to change of the solar wind plasma parameters (and most important due to the change of local cyclotron frequency) with heliocentric distance. Previously we discovered that shell distribution developed in solar wind due to wave-particle interaction is becoming unstable as solar wind expands [2]. Waves that are generated by this instability modify the transitional region of turbulence. [1] Galinsky, V.L and V. I. Shevchenko, Phys. Rev. Letters, 85, 90, 2000. [2] Shevchenko V.I. et al., Phys. of Plasmas, 11, 4290, 2004.

  9. Experimental investigation of acceleration and velocity fields in turbulent channel flow

    Science.gov (United States)

    Christensen, Kenneth Thor

    2001-12-01

    Time-resolved particle-image velocimetry measurements are made in the streamwise-wall-normal plane of turbulent channel flow at Reτ = 547, 1133, and 1734. These measurements are meant to complement efforts in the development of a new class of large-eddy simulation (LES) subgrid-scale models for the simulation of high-Reynolds-number wall turbulence. Optimal formulations of LES are based upon minimizing the mean-square error associated with estimating the short- term dynamics of the resolved scales of the turbulence. However, due to the empirical nature of optimal LES, extension of optimal formulations to higher Reynolds number requires experimental documentation of the statistical and structural behavior of both the velocity and the evolution of the flow at higher Reynolds numbers. It is found that coherent arrangements of hairpin-like vortices in the outer layer leave their imprint upon the statistics of the flow. Estimates of the conditionally- averaged velocity field associated with a spanwise vortex core consist of a series of swirling motions located along a line inclined away from the wall. This pattern is consistent with the observations of outer-layer turbulence in which groups of hairpin/hairpin-like vortices occur aligned in the streamwise direction. The velocity time derivatives are associated predominantly with small scales in both space and time. Examination of instantaneous and estimates of the conditionally averaged velocity time-derivative fields indicates that the smaller-scale vortices leave a convective imprint upon the time derivatives. Further, the streamwise spectra of the velocity time-derivative support the notion that convective effects dominate the smaller scales of the flow. Comparison between the bulk convective-derivative and time-derivative spectra illustrate this behavior. At low wavenumbers, the bulk convective-derivative and time-derivative spectra coincide with one another, implying that the larger scales are dominated by

  10. Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas

    International Nuclear Information System (INIS)

    Dong, Yue

    2014-01-01

    This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling

  11. Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations.

    Science.gov (United States)

    Carbone, V; Marino, R; Sorriso-Valvo, L; Noullez, A; Bruno, R

    2009-08-07

    Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvénic state. An analogous phenomenological scaling law, suitably modified to take into account compressible fluctuations, is observed more frequently in the same data set. Large-scale density fluctuations, despite their low amplitude, thus play a crucial role in the basic scaling properties of turbulence. The turbulent cascade rate in the compressive case can, moreover, supply the energy dissipation needed to account for the local heating of the nonadiabatic solar wind.

  12. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Barthelmie, Rebecca J.; Jensen, Leo E.

    2012-01-01

    unstable conditions, whereas northerly winds have fewer observations in the stable classes. Stable conditions also tend to be associated with lower levels of turbulence intensity, and this relationship persists as wind speeds increase. Power deficit is a function of ambient turbulence intensity. The level...

  13. Wintertime slope winds and its turbulent characteristics in the Yeongdong region of Korea

    Science.gov (United States)

    Jeon, H. R.; Eun, S. H.; Kim, B. G.; Lee, Y. H.

    2015-12-01

    The Yeongdong region has various meteorological phenomenons by virtue of complicated geographical characteristics with high Taebaek Mountains running from the north to the south and an adjacent East Sea to the east. There are few studies on the slope winds and its turbulent characteristics over the complex terrain, which are critical information in mountain climbing, hiking, paragliding, even winter sports such as alpine skiing and ski jump etc. For the understanding of diverse mountain winds in the complex terrain in Yeongdong, hot-wire anemometers (Campbell Scientific) have been installed at a couple of sites since October 2014 and several automatic weather stations at several sites around the mountainous region in Yeongdong since November 2012.WRF model simulations have been also done with an ultra-fine horizontal resolution of 300 m for 10 years. Generally, model and observation show that the dominant wind is westerly, approximately more than 75%. It is quite consistent that wind fields from both model and observation agree with each other in the valley region and at the top of the mountain, but there is a significant disagreement in wind direction specifically in the slide slope. Probably this implies model's performance with even an ultra-fine resolution is still not enough for the slide slope domain of complex terrains. Despite that, the observation clearly showed up- and down slope winds for the weak synoptic conditions carefully selected such as strong insolation and a synoptic wind less than 5m/s in the 850 hPa. The up- and down slope flows are also demonstrated in the snow-covered condition as well as grass ground. Further, planar fit transformation algorithm against the coordinate tilt has been applied to raw wind data (10Hz) of the slope site for the analysis of turbulence properties. Turbulence also increases with synoptic wind strength. Detailed analysis of mechanical turbulence and buoyance will be discussed for different surface properties (grass

  14. The determination by coherent lidar of Doppler-velocity profiles in turbulent atmosphere

    Science.gov (United States)

    Gurdev, Luan L.; Dreischuh, Tanja N.

    2003-11-01

    The influence is investigated quantitatively of the velocity fluctuations in turbulent atmosphere on the formation of the autocovariance of coherent heterodyne aerosol lidar signals. A multishot, high pulse repetition rate lidar operation is supposed. The limit cases of long-term and short-term averaging are especially considered, when the observation (data accumulation) time is respectively much larger or much less than the correlation time of the fluctuation process. As a result, the intuitive conception is proved and illustrated quatitatively that a long-term averaging, under stationary conditions, allows one to obtain (on the basis of the autocovariance) a range-resolved estimate of the parent population mean Doppler-velocity profile; a short-term averaging allows one to determine a (near) instantaneous range-resolved Doppler-velocity profile.

  15. Skin friction and velocity profile family for compressible turbulent boundary layers

    Science.gov (United States)

    Huang, P. G.; Bradshaw, P.; Coakley, T. J.

    1993-01-01

    The paper presents a general approach to constructing mean velocity profiles for compressible turbulent boundary layers with isothermal or adiabatic walls. The theory is based on a density-weighted transformation that allows the extension of the incompressible similarity laws of the wall to the compressible regions. The velocity profile family is compared to a range of experimental data, and excellent agreement is obtained. A self-consistent skin friction law, which satisfies the proposed velocity profile family, is derived and compared with the well-known Van Driest II theory for boundary layers in zero pressure gradient. The results are found to be at least as good as those obtained by using the Van Driest II transformation.

  16. Cross-correlation based time delay estimation for turbulent flow velocity measurements: Statistical considerations

    International Nuclear Information System (INIS)

    Tal, Balazs; Bencze, Attila; Zoletnik, Sandor; Veres, Gabor; Por, Gabor

    2011-01-01

    Time delay estimation methods (TDE) are well-known techniques to investigate poloidal flows in hot magnetized plasmas through the propagation properties of turbulent structures in the medium. One of these methods is based on the estimation of the time lag at which the cross-correlation function (CCF) estimation reaches its maximum value. The uncertainty of the peak location refers to the smallest determinable flow velocity modulation, and therefore the standard deviation of the time delay imposes important limitation to the measurements. In this article, the relative standard deviation of the CCF estimation and the standard deviation of its peak location are calculated analytically using a simple model of turbulent signals. This model assumes independent (non interacting) overlapping events (coherent structures) with randomly distributed spatio-temporal origins moving with background flow. The result of our calculations is the derivation of a general formula for the CCF variance, which is valid not exclusively in the high event density limit, but also for arbitrary event densities. Our formula reproduces the well known expression for high event densities previously published in the literature. In this paper we also present a derivation of the variance of time delay estimation that turns out to be inversely proportional to the applied time window. The derived formulas were tested in real plasma measurements. The calculations are an extension of the earlier work of Bencze and Zoletnik [Phys. Plasmas 12, 052323 (2005)] where the autocorrelation-width technique was developed. Additionally, we show that velocities calculated by a TDE method possess a broadband noise which originates from this variance, its power spectral density cannot be decreased by worsening the time resolution and can be coherent with noises of other velocity measurements where the same turbulent structures are used. This noise should not be confused with the impact of zero mean frequency zonal flow

  17. Modeling of 830 nm FSO Link Attenuation in Fog or Wind Turbulence

    Czech Academy of Sciences Publication Activity Database

    Pešek, J.; Fišer, Ondřej; Svoboda, Jaroslav; Schejbal, V.

    2010-01-01

    Roč. 19, č. 2 (2010), s. 237-241 ISSN 1210-2512 R&D Projects: GA ČR GA102/08/0851; GA MŠk OC09027 Institutional research plan: CEZ:AV0Z30420517 Keywords : Free space optics propagation * fog attenuation, * wind turbulence attenuation * turbulent energy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.503, year: 2010 http://www.radioeng.cz/fulltexts/2010/10_02_237_241.pdf

  18. Predicting viscous-range velocity gradient dynamics in large-eddy simulations of turbulence

    Science.gov (United States)

    Johnson, Perry; Meneveau, Charles

    2017-11-01

    The details of small-scale turbulence are not directly accessible in large-eddy simulations (LES), posing a modeling challenge because many important micro-physical processes depend strongly on the dynamics of turbulence in the viscous range. Here, we introduce a method for coupling existing stochastic models for the Lagrangian evolution of the velocity gradient tensor with LES to simulate unresolved dynamics. The proposed approach is implemented in LES of turbulent channel flow and detailed comparisons with DNS are carried out. An application to modeling the fate of deformable, small (sub-Kolmogorov) droplets at negligible Stokes number and low volume fraction with one-way coupling is carried out. These results illustrate the ability of the proposed model to predict the influence of small scale turbulence on droplet micro-physics in the context of LES. This research was made possible by a graduate Fellowship from the National Science Foundation and by a Grant from The Gulf of Mexico Research Initiative.

  19. Velocity and concentration fields in turbulent buoyant mixing in tilted tubes

    Science.gov (United States)

    Znaien, J.; Moisy, F.; Hulin, J. P.; Salin, D.; Hinch, E. J.

    2008-11-01

    2D PIV and LIF measurements have been performed on buoyancy driven flows of two miscible fluids of the same viscosity in a tube tilted at different angles θ from vertical and at different density contrasts (characterized by the Atwood number At). As θ increases and At decreases, the flow regime evolves, behind the front, from a turbulent shear flow towards a laminar counter flow with 3 layers of different concentrations. Time variations of the structure function show that both intermittent and developed turbulence occur in intermediate conditions. In the turbulent regime (Reλ˜60) the magnitudes of the longitudinal u'^2 and transverse v'^2 velocity fluctuations and of the component u'v' of the Reynolds stress tensor are shown to be largest on the tube axis while viscous stresses is only important close to the walls. The analyzis of the momentum transfer in the flow with buoyancy forces estimated from the concentration gradients demonstrates that 3D effects are required to achieve the momentum balance. These results are discussed in the framework of classical turbulence models.

  20. Velocity-vorticity correlation structures (VVCS) in spatially developing compressible turbulent boundary layer

    Science.gov (United States)

    Li, Shi-Yao; She, Zhen-Su; Chen, Jun

    2017-11-01

    A velocity-vorticity correlation structure (VVCS) analysis is applied to the direct numerical simulation (DNS) of compressible turbulent boundary layer (CTBL) at Mach numbers, Ma = 2.25 , 4.50 and 6.0 . It is shown that the VVCS analysis captures the geometry variation in the streamwise direction during the transition and in the wall-normal direction in the fully developed regime. Specifically, before transition, the VVCS captures the instability wave number, while in the transition region it displays a distinct scaling change of the dimensions. The fully developed turbulence regime is characterized by a nearly constant spatial extension of the VVCS. Particularly, after turbulence is well developed, a multi-layer structure in the wall normal direction is observed in the maximum correlation coefficient and in the length scales of the VVCS, as expected from a recent symmetry-based theory, the ensemble structure dynamics (SED). The most interesting outcome is an observed linear dependence of the length scale of the VVCS from y+ 50 to 200, which is a direct support to Townsend's attached-eddy theory. In conclusion, the VVCS analysis quantifies the geometrical characteristics of the coherent structures in turbulent compressible shear flows throughout the whole domain. Supported by NSFC (11172006, 11221062, 11452002) and by MOST (China) 973 project (2009CB724100).

  1. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  2. RANS simulations of wind turbine wakes: optimal tuning of turbulence closure and aerodynamic loads from LiDAR and SCADA data

    Science.gov (United States)

    Letizia, Stefano; Puccioni, Matteo; Zhan, Lu; Viola, Francesco; Camarri, Simone; Iungo, Giacomo Valerio

    2017-11-01

    Numerical simulations of wakes produced by utility-scale wind turbines still present challenges related to the variability of the atmospheric conditions and, in the most of the cases, the lack of information about the geometry and aerodynamic performance of the wind turbine blades. In order to overcome the mentioned difficulties, we propose a RANS solver for which turbine aerodynamic forcing and turbulence closure are calibrated through LiDAR and SCADA data acquired for an onshore wind farm. The wind farm under examination is located in North Texas over a relatively flat terrain. The experimental data are leveraged to maximize accuracy of the RANS predictions in terms of wake velocity field and power capture for different atmospheric stability conditions and settings of the wind turbines. The optimization of the RANS parameters is performed through an adjoint-RANS formulation and a gradient-based procedure. The optimally-tuned aerodynamic forcing and turbulence closure are then analyzed in order to investigate effects of the atmospheric stability on the evolution of wind turbine wakes and power performance. The proposed RANS solver has low computational costs comparable to those of wake engineering models, which make it a compelling tool for wind farm control and optimization. Acknowledgments: NSF I/UCRC WindSTAR IIP 1362033 and TACC.

  3. The Statistical Distribution of Turbulence Driven Velocity Extremes in the Atmosperic Boundary Layer cartwright/Longuet-Higgins Revised

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2007-01-01

    associated with large excursions from the mean [2]. Thus, the more extreme turbulence excursions (i.e. the upper tail of the turbulence PDF) seem to follow an Exponential-like distribution rather than a Gaussian distribution, and a Gaussian estimate may under-predict the probability of large turbulence......The statistical distribution of extreme wind excursions above a mean level, for a specified recurrence period, is of crucial importance in relation to design of wind sensitive structures. This is particularly true for wind turbine structures. Based on an assumption of a Gaussian "mother......" distribution, Cartwright and Longuet-Higgens [1] derived an asymptotic expression for the distribution of the largest excursion from the mean level during an arbitrary recurrence period. From its inception, this celebrated expression has been widely used in wind engineering (as well as in off-shore engineering...

  4. Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non Kolmogorov strong turbulence

    International Nuclear Information System (INIS)

    Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun

    2011-01-01

    In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.

  5. Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales

    International Nuclear Information System (INIS)

    Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.

    2011-01-01

    A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.

  6. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

    KAUST Repository

    Im, Hong G.

    2015-04-02

    A theoretical scaling analysis is conducted to propose a diagram to predict weak and strong ignition regimes for a compositionally homogeneous reactant mixture with turbulent velocity and temperature fluctuations. The diagram provides guidance on expected ignition behavior based on the thermo-chemical properties of the mixture and the flow/scalar field conditions. The analysis is an extension of the original Zeldovich’s analysis by combining the turbulent flow and scalar characteristics in terms of the characteristic Damköhler and Reynolds numbers of the system, thereby providing unified and comprehensive understanding of the physical and chemical mechanisms controlling ignition characteristics. Estimated parameters for existing experimental measurements in a rapid compression facility show that the regime diagram predicts the observed ignition characteristics with good fidelity.

  7. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  8. Description of signature scales in a floating wind turbine model wake subjected to varying turbulence intensity

    Science.gov (United States)

    Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon

    2017-11-01

    The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.

  9. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)

    2012-07-01

    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  10. Relevant Criteria for Testing the Quality of Models for Turbulent Wind Speed Fluctuations

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, John Dalsgaard

    2008-01-01

    10% smaller than the IEC model for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3  s and 10  s preaveraging of wind speed data are relevant for megawatt......Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approximately...

  11. Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe; Giebel, Gregor

    2016-01-01

    varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data. The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared...... with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed...... is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside...

  12. Investigation on Effect of Air Velocity in Turbulent Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Namazian Zafar

    2016-09-01

    Full Text Available In this study, the turbulent non-premixed methane-air flame is simulated to determine the effect of air velocity on the length of flame, temperature distribution and mole fraction of species. The computational fluid dynamics (CFD technique is used to perform this simulation. To solve the turbulence flow, k-ε model is used. In contrast to the previous works, in this study, in each one of simulations the properties of materials are taken variable and then the results are compared. The results show that at a certain flow rate of fuel, by increasing the air velocity, similar to when the properties are constant, the width of the flame becomes thinner and the maximum temperature is higher; the penetration of oxygen into the fuel as well as fuel consumption is also increased. It is noteworthy that most of the pollutants produced are NOx, which are strongly temperature dependent. The amount of these pollutants rises when the temperature is increased. As a solution, decreasing the air velocity can decrease the amount of these pollutants. Finally, comparing the result of this study and the other work, which considers constant properties, shows that the variable properties assumption leads to obtaining more exact solution but the trends of both results are similar.

  13. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  14. The Effect of Wind Velocity on the Cooling Rate of Water

    Directory of Open Access Journals (Sweden)

    Shrey Aryan

    2016-01-01

    Full Text Available The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  15. On Intermittent Turbulence Heating of the Solar Wind: Differences between Tangential and Rotational Discontinuities

    Science.gov (United States)

    Wang, Xin; Tu, Chuanyi; He, Jiansen; Marsch, Eckart; Wang, Linghua

    2013-08-01

    The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These results confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.

  16. Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence

    Science.gov (United States)

    Danish, Mohammad; Meneveau, Charles

    2018-04-01

    Knowledge of local flow-topology, the patterns of streamlines around a moving fluid element as described by the velocity-gradient tensor, is useful for developing insights into turbulence processes, such as energy cascade, material element deformation, or scalar mixing. Much has been learned in the recent past about flow topology at the smallest (viscous) scales of turbulence. However, less is known at larger scales, for instance, at the inertial scales of turbulence. In this work, we present a detailed study on the scale dependence of various quantities of interest, such as the population fraction of different types of flow-topologies, the joint probability distribution of the second and third invariants of the velocity gradient tensor, and the geometrical alignment of vorticity with strain-rate eigenvectors. We perform the analysis on a simulation dataset of isotropic turbulence at Reλ=433 . While quantities appear close to scale invariant in the inertial range, we observe a "bump" in several quantities at length scales between the inertial and viscous ranges. For instance, the population fraction of unstable node-saddle-saddle flow topology shows an increase when reducing the scale from the inertial entering the viscous range. A similar bump is observed for the vorticity-strain-rate alignment. In order to document possible dynamical causes for the different trends in the viscous and inertial ranges, we examine the probability fluxes appearing in the Fokker-Plank equation governing the velocity gradient invariants. Specifically, we aim to understand whether the differences observed between the viscous and inertial range statistics are due to effects caused by pressure, subgrid-scale, or viscous stresses or various combinations of these terms. To decompose the flow into small and large scales, we mainly use a spectrally compact non-negative filter with good spatial localization properties (Eyink-Aluie filter). The analysis shows that when going from the inertial

  17. Effects of solid inertial particles on the velocity and temperature statistics of wall bounded turbulent flow

    DEFF Research Database (Denmark)

    Nakhaei, Mohammadhadi; Lessani, B.

    2016-01-01

    is reduced by the presence of particles,and in spite of the additional heat exchange between the carrier fluid and the particles, the total heattransfer rate stays always lower for particle-laden flows. To further clarify this issue, the total Nusseltnumber is split into a turbulence contribution...... Eulerian–Lagrangianapproach is adopted to solve the carrier flow field and the motion of dispersed particles. Three differentparticle Stokes numbers of St = 24, 60, 192, at a constant particle mass loading of φm = 0:54, are considered.The mean and rms profiles of velocity and temperature for fluid...

  18. Reducing Wind Turbine Load Simulation Uncertainties by Means of a Constrained Gaussian Turbulence Field

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Lazarov, Boyan Stefanov

    2015-01-01

    . A numerical study shows the application of the constrained turbulence method to load simulations on a 10MW wind turbine model, using two example lidar patterns – a 5-point pattern forming a square with a central point, and a circular one. Based on the results of this study, we assess the influence of applying...... the proposed method on the statistical uncertainty in wind turbine extreme and fatigue loads....

  19. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  20. Wind observations from a forested hill: Relating turbulence statistics to surface characteristics in hilly and patchy terrain

    OpenAIRE

    Pauscher, L.; Callies, D.; Klaas, T.; Foken, T.

    2018-01-01

    This study investigates turbulence characteristics as observed at a 200 m tall mast at a hilly and complex site. It thereby concentrates on turbulence statistics, which are important for the site suitability analysis of a wind turbine. The directional variations in terrain are clearly reflected in the observed turbulence intensities and drag. Integral turbulence statistics showed some variations from their typical flat terrain values. Footprint modelling was used to model the area of effect a...

  1. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.

    of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...

  2. Wind turbine power production and annual energy production depend on atmospheric stability and turbulence

    Directory of Open Access Journals (Sweden)

    C. M. St. Martin

    2016-11-01

    Full Text Available Using detailed upwind and nacelle-based measurements from a General Electric (GE 1.5sle model with a 77 m rotor diameter, we calculate power curves and annual energy production (AEP and explore their sensitivity to different atmospheric parameters to provide guidelines for the use of stability and turbulence filters in segregating power curves. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes based on turbulence parameters such as turbulence intensity (TI as well as atmospheric stability parameters such as the bulk Richardson number (RB. We also calculate AEP with and without these atmospheric filters and highlight differences between the results of these calculations. The power curves for different TI regimes reveal that increased TI undermines power production at wind speeds near rated, but TI increases power production at lower wind speeds at this site, the US Department of Energy (DOE National Wind Technology Center (NWTC. Similarly, power curves for different RB regimes reveal that periods of stable conditions produce more power at wind speeds near rated and periods of unstable conditions produce more power at lower wind speeds. AEP results suggest that calculations without filtering for these atmospheric regimes may overestimate the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to incorporate effects of atmospheric stability and turbulence across the rotor disk.

  3. Turbulent and Stable/Unstable Laminar Burning Velocity Measurements from Outwardly Propagating Spherical Hydrogen-Air Flames at Elevated Pressures

    Science.gov (United States)

    Smallbone, Andrew; Tsuneyoshi, Kousaku; Kitagawa, Toshiaki

    The laminar burning velocity of pre-mixed hydrogen-air mixtures was measured in a fan stirred combustion bomb. Unstretched laminar burning velocities and Markstein lengths were obtained at 0.10MPa for equivalence ratios of 0.4, 0.6, 0.8 and 1.0 using high speed flame imaging. The difficulties which arose whilst obtaining similar measurements at 0.25MPa and 0.50MPa are outlined. The turbulent burning velocity was measured at equivalence ratios of 0.4 and 0.8 from explosions carried out at 0.10MPa with turbulence intensities of 0.8 and 1.6m/s. Higher turbulent burning velocity ratios were observed for mixtures which yielded lower Markstein lengths in the laminar combustion experiments.

  4. Statistics of the relative velocity of particles in bidisperse turbulent suspensions

    Science.gov (United States)

    Bhatnagar, Akshay; Gustavsson, Kristian; Mehlig, Bernhard; Mitra, Dhrubaditya

    2017-11-01

    We calculate the joint probability distribution function (JPDF) of relative distances (R) and velocities (V with longitudinal component VR) of a pair of bidisperse heavy inertial particles in homogeneous and isotropic turbulent flows using direct numerical simulations (DNS). A recent paper (J. Meibohm, et. al. 2017), using statistical-model simulations and mathematical analysis of an one-dimensional white-noise model, has shown that the JPDF, P (R ,VR) , for two particles with Stokes numbers, St1 and St2 , can be interpreted in terms of StM , the harmonic mean of St1 and St2 and θ ≡ | St1 - St2 | / (St1 + St2) . For small θ there emerges a small-scale cutoff Rc and a small-velocity cutoff Vc such that for VR Foundation, Dnr. KAW 2014.0048.

  5. Effect of velocity fluctuations length on the calculation accuracy of turbulent shearing stresses

    Directory of Open Access Journals (Sweden)

    Volgin Georgiy Valentinovich

    Full Text Available This article focuses on the method of improving shear stresses calculation accuracy based on the experimental data. It was proven that shear stresses value considerably changes (even up to change of sign from positive to negative depending on different velocity fluctuations amount (or length. Experimental database consists of velocity in turbulent flow at different times. Recommendations for practical use of methods of calculation depending on the type of engineering problems are presented. The method of finding optimal amount of the experimental database is proposed by the analysis of the values convergence of the standard deviations calculated for the whole sample and the standard deviation calculated by increasing interval. The calculation results for these intervals are at the points of the measuring system and the hypothesis about finding the optimal length of implementation is offered. The steps for further research are set out.

  6. Wind reversals in turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Fontenele Araujo Junior, F.; Grossmann, Siegfried; Lohse, Detlef

    2005-01-01

    The phenomenon of irregular cessation and subsequent reversal of the large-scale circulation in turbulent Rayleigh-Be´nard convection is theoretically analyzed. The force and thermal balance on a single plume detached from the thermal boundary layer yields a set of coupled nonlinear equations, whose

  7. Multi-Spacecraft Study of Kinetic scale Turbulence Using MMS Observations in the Solar Wind

    Science.gov (United States)

    Chasapis, A.; Matthaeus, W. H.; Parashar, T.; Fuselier, S. A.; Maruca, B.; Burch, J.; Moore, T. E.; Phan, T.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.

    2017-12-01

    We present a study investigating kinetic scale turbulence in the solar wind. Most previous studies relied on single spacecraft measurements, employing the Taylor hypothesis in order to probe different scales. The small separation of MMS spacecraft, well below the ion inertial scale, allow us for the first time to directly probe turbulent fluctuations at the kinetic range. Using multi-spacecraft measurements, we are able to measure the spatial characteristics of turbulent fluctuations and compare with the traditional Taylor-based single spacecraft approach. Meanwhile, combining observations from Cluster and MMS data we were able to cover a wide range of scales from the inertial range where the turbulent cascade takes place, down to the kinetic range where the energy is eventually dissipated. These observations present an important step in understanding the nature of solar wind turbulence and the processes through which turbulent energy is dissipated into particle heating and acceleration. We compute statistical quantities such as the second order structure function and the scale-dependent kurtosis, along with their dependence on the parameters such as the mean magnetic field direction. Overall, we observe an overall agreement between the single spacecraft and the multi-spacecraft approach. However, a small but significant deviation is observed at the smaller scales near the electron inertial scale. The high values of the scale dependent kurtosis at very small scales, observed via two-point measurements, open up a compelling avenue of investigation for theory and numerical modelling.

  8. Development of a High Energy Amplifier for an Airborne Coherent Wind Turbulence Lidar Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The capacity of coherent LIDAR systems to produce a continuous, real-time, 3D scan of wind velocities via detection of backscatter of atmospheric aerosols in...

  9. Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment

    Science.gov (United States)

    Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, R. T.; Coops, N. C.; Parlange, M. B.

    2017-08-01

    Large-eddy simulations (LES) are used to gain insight into the effects of trees on turbulence, aerodynamic parameters, and momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighborhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Data from airborne light detection and ranging (LiDAR) are used to represent both buildings and vegetation at the LES resolution. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed including and excluding vegetation from the considered urban areas, varying wind direction and leaf area density. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI /λfb lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI / λfSUP>b = 0.74 , leaves-on LAI /λfb = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI / λfb increases, due in large part to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. LES and measurements both predict an increase in the ratio of turbulent to mean kinetic energy (TKE/MKE) at the tower sampling height going from winter to summer, and LES also show how including vegetation results in a more (positive) negatively skewed (horizontal) vertical velocity distribution - reflecting a more intermittent velocity field which favors sweep motions when compared to ejections. Within the urban canopy, the effects of trees are twofold: on one hand, they act

  10. Plasma Turbulence and Kinetic Instabilities at Ion Scales in the Expanding Solar Wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Matteini, L.; Landi, S.; Franci, L.; Trávníček, Pavel M.

    2015-01-01

    Roč. 812, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 R&D Projects: GA ČR GA15-10057S Grant - others:European Commission(XE) 284515 Institutional support: RVO:67985815 Keywords : instabilities * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015

  11. Plasma turbulence and kinetic instabilities at ion scales in the expanding solar wind

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Matteini, L.; Landi, S.; Verdini, A.; Franci, L.; Trávníček, Pavel M.

    2015-01-01

    Roč. 811, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015 http://iopscience.iop.org/article/10.1088/2041-8205/811/2/L32/pdf

  12. Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence

    International Nuclear Information System (INIS)

    Hadid, L. Z.; Sahraoui, F.; Galtier, S.

    2017-01-01

    Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.

  13. Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hadid, L. Z.; Sahraoui, F.; Galtier, S., E-mail: lina.hadid@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC Univ Paris 06, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne Universités, PSL Research University, F-91128 Palaiseau (France)

    2017-03-20

    Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.

  14. Influence of Turbulence, Orientation, and Site Configuration on the Response of Buildings to Extreme Wind

    Science.gov (United States)

    2014-01-01

    Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings. PMID:24701140

  15. The influence of wind speed on surface layer stability and turbulent ...

    Indian Academy of Sciences (India)

    The influence of wind speed on surface layer stability and turbulent fluxes over southern Indian peninsula station. M N Patil∗. , R T Waghmare, T Dharmaraj, G R Chinthalu,. Devendraa Siingh and G S Meena. Indian Institute of Tropical Meteorology, Dr Homi Bhabha Road, Pashan, Pune 411 008, India. ∗. Corresponding ...

  16. Influence of turbulence, orientation, and site configuration on the response of buildings to extreme wind.

    Science.gov (United States)

    Aly, Aly Mousaad

    2014-01-01

    Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings.

  17. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, J.-P.; Courtney, Michael

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence...

  18. Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae).

    Science.gov (United States)

    Timerman, David; Greene, David F; Urzay, Javier; Ackerman, Josef D

    2014-12-06

    In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind-stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    Science.gov (United States)

    Irtaza, Hassan; Agarwal, Ashish

    2018-02-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  20. Solar-wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV.

    2009-01-01

    A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.

  1. Rotational Raman-based temperature measurements in a high-velocity, turbulent jet

    Science.gov (United States)

    Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.

    2018-01-01

    Spontaneous rotational Raman scattering spectroscopy is used to acquire measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing non-linear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5% for temperature, and rms variations in temperature between  ±2.2% at 296 K and  ±4.5% at 850 K. The mean and normalized rms temperatures measured here were then compared to NASA’s Consensus data set of PIV velocity and turbulence measurements in similar jet flows. The results of this and planned follow-on studies will support NASA GRC’s development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.

  2. Upper Meter Processes: Short Wind, Waves, Surface Flow and Turbulence

    National Research Council Canada - National Science Library

    Klinke, Jochen

    2001-01-01

    This work is an extension of the early works on measuring short wind waves that have been funded by ONR for seven years, During this seven-year period, we have collected the only available systematic...

  3. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  4. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  5. Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs

    Science.gov (United States)

    Bakhoday-Paskyabi, Mostafa; Fer, Ilker; Reuder, Joachim

    2018-01-01

    We report concurrent measurements of ocean currents and turbulence at two sites in the North Sea, one site at upwind of the FINO1 platform and the other 200-m downwind of the Alpha Ventus wind farm. At each site, mean currents, Reynolds stresses, turbulence intensity and production of turbulent kinetic energy are obtained from two bottom-mounted 5-beam Nortek Signature1000s, high-frequency Doppler current profiler, at a water depth of approximately 30 m. Measurements from the two sites are compared to statistically identify the effects of wind farm and waves on ocean current variability and the turbulent structure in the water column. Profiles of Reynolds stresses are found to be sensible to both environmental forcing and the wind farm wake-induced distortions in both boundary layers near the surface and the seabed. Production of turbulent kinetic energy and turbulence intensity exhibit approximately similar, but less pronounced, patterns in the presence of farm wake effects.

  6. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    Science.gov (United States)

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  7. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

    Science.gov (United States)

    Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.

    2016-06-01

    Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind

  8. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    , installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean...

  9. An error reduction algorithm to improve lidar turbulence estimates for wind energy

    Directory of Open Access Journals (Sweden)

    J. F. Newman

    2017-02-01

    Full Text Available Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidars in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine

  10. The influence of turbulence on the aero-elastic instability of wind turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.

    2014-01-01

    Modern multi-megawatt wind turbines are designed with longer and slender blades using new composite materials and advanced fabrication methods. The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, thus resulting...... aerodynamic damping. A 13-degree-of-freedom (13-DOF) wind turbine model is developed using Euler-Lagrange equations, which includes the couplings of the tower-blade-drivetrain vibration, the quasi-static aeroelasticity and a collective pitch controller. Numerical simulations are carried out using data...... turbine shifts from a stable state into an instable state, is determined in different cases. Results show that turbulence intensity has significant influence on the aeroelastic stability of high-performance wind turbines operating close to stall, and the stability of the wind turbine might be changed due...

  11. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible...

  12. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    Science.gov (United States)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  13. Structural characterization of wind-sheared turbulent flow using self-organized mapping

    Science.gov (United States)

    Scott, Nicholas V.; Handler, Robert A.

    2016-05-01

    A nonlinear cluster analysis algorithm is used to characterize the spatial structure of a wind-sheared turbulent flow obtained from the direct numerical simulation (DNS) of the three-dimensional temperature and momentum fields. The application of self-organizing mapping to DNS data for data reduction is utilized because of the dimensional similitude in structure between DNS data and remotely sensed hyperspectral and multispectral data where the technique has been used extensively. For the three Reynolds numbers of 150, 180, and 220 used in the DNS, self-organized mapping is successful in the extraction of boundary layer streaky structures from the turbulent temperature and momentum fields. In addition, it preserves the cross-wind scale structure of the streaks exhibited in both fields which loosely scale with the inverse of the Reynolds number. Self-organizing mapping of the along wind component of the helicity density shows a layer of the turbulence field which is spotty suggesting significant direct coupling between the large and small-scale turbulent structures. The spatial correlation of the temperature and momentum fields allows for the possibility of the remote extrapolation of the momentum structure from thermal structure.

  14. Solar wind velocity and daily variation of cosmic rays

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.; Riker, J.F.

    1985-01-01

    Recently parameters applicable to the solar wind and the interplanetary magnetic field (IMF) have become much better defined. Superior quality of data bases that are now available, particularly for the post-1971 period, make it possible to believe the long-term trends in the data. These data are correlated with the secular changes observed in the diurnal variation parameters obtained from neutron monitor data at Deep River and underground muon telescope data at Embudo (30 MEW) and Socorro (82 MWE). The annual mean amplitudes appear to have large values during the epochs of high speed solar wind streams. Results are discussed

  15. Turbulent kinetic energy of the ocean winds over the Kuroshio Extension from QuikSCAT winds (1999-2009)

    Science.gov (United States)

    Yu, Kai; Dong, Changming; King, Gregory P.

    2017-06-01

    We investigate mesoscale turbulence (10-1000 km) in the ocean winds over the Kuroshio Extension (28°N-40°N, 140°E-180°E) using the QuikSCAT data set (November 1999 to October 2009). We calculate the second (Djj) and third-order structure functions (Djjj) and the spatial variance (Vj) as a function of scale r (j=L,T denotes, respectively, the longitudinal (divergent) and transverse (vortical) component). The most interesting results of the analysis follow. Although both Vj>(r>) and Djj>(r>) measure the turbulent kinetic energy (TKE), we find that Vj>(r>) is the more robust measure. The spatial variance density (dVj/dr) has a broad peak near 450 km (close to the midlatitude Rossby radius of deformation). On interannual time scales, TKE correlates well with the El Niño 3.4 index. According to turbulence theory, the kinetic energy cascades downscale (upscale) if DLLL>(r>) (also skewness SL=DLLL/DLL3/2) is negative (positive). Our results for the Kuroshio Extension are consistent with a downscale cascade (indicating convergence dominates). Furthermore, classical turbulence theory predicts that SL=-0.3 and independent of r; however, we find SL varies strongly with r, from -4 at small scales to -0.3 at large scales. This nonclassical behavior implies strong-scale interaction, which we attribute to the rapid, and sometimes explosive, growth of storms in the region through baroclinic instability. Finally, we find that ST (a measure of cyclonic/anticyclonic asymmetry) is positive (cyclonic) and also varies strongly with r, from 4 at small scales to 0.5 at large scales. New turbulence models are needed to explain these results, and that will benefit Weather Prediction and climate modeling.Plain Language SummaryThe turbulent winds near the ocean surface give rise to air-sea heat and momentum exchange. The turbulence is caused by convective processes - processes generated at weather fronts, in squalls, tropical disturbances and extra-tropical cyclones. In order to improve

  16. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise. [NASA Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Gliebe, P. R.; Kerschen, E. J.

    1979-01-01

    The influence of tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80 foot tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise was refined and extended to include first-order effects of inlet turbulence anisotropy. This theory was then verified by carrying out extensive data/theory comparisons. The resulting model computer program was then employed to carry out a parametric study of the effects of fan size, blade number, and operating line on rotor/turbulence noise for outdoor test stand. NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  17. The Dissipation of Solar Wind Turbulent Fluctuations at Electron Scales

    NARCIS (Netherlands)

    E. Camporeale (Enrico); D. Burgess

    2011-01-01

    textabstractWe present two-dimensional fully kinetic particle-in-cell simulations of decaying electromagnetic fluctuations. The computational box is such that wavelengths ranging from electron to ion gyroradii are resolved. The parameters used are realistic for the solar wind, and the

  18. Profile of the horizontal wind variance near the ground in near neutral flow – K-theory and the transport of the turbulent kinetic energy

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2009-05-01

    Full Text Available This paper deals with the characteristics of the atmospheric turbulent flow in the vicinity of the ground, and particularly with the profile of the horizontal wind variance. The study is based on experimental measurements performed with fast cup anemometers located near the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. The experiment was carried over two agricultural plots with various tillage treatments in a fallow semiarid area (Central Aragon, Spain. The results of this study reveal that near the ground surface and under moderate wind, the horizontal wind variance logarithmically increases with height, in direct relationship with the friction velocity and the roughness length scale. A theoretical development has allowed us to link this behaviour to the modeling of the turbulent kinetic energy (TKE transport through the eddy diffusivity. Thus, the study proposes a formulation of the similarity universal function of the horizontal wind variance. Besides, the formulation offers a new method for the determination of the friction velocity and the roughness length scale and can be used for the evaluation of the TKE transport rate.

  19. Improved velocity law parameterization for hot star winds (Research Note)

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2011-01-01

    Roč. 534, October (2011), A97/1-A97/3 ISSN 0004-6361 R&D Projects: GA ČR GA205/08/0003 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  20. Imaging the Breakup of Coronal Structure and the Onset of Turbulence in the Solar Wind

    Science.gov (United States)

    DeForest, C. E.

    2016-12-01

    The slow solar wind is dominated by gusty, variable structure that has been associated by many authors with turbulence. The slow wind is thought to arise from the vicinity of the coronal streamer belt, which is dominated by quasi-stationary, highly anisotropic, radially aligned density structure shaped by the solar magnetic field. Photometric analysis of the top of the streamers, in the range of apparent distances between roughly 4° and 24° from the Sun, reveals the ultimate fate of the streamers. In the range above 10° from the Sun, where the transition from low-plasma-beta to high-plasma-beta is thought to occur, we have imaged the fading and breakup of quiescent coronal streamers, pseudostreamers, and/or rays (together, "Striae"), and the textural transition at large scales from smooth background flow with sporadic ejecta, to turbulent and variable flow. The result constrains and illuminates turbulent theories of solar wind evolution, and highlights the need for better imaging measurements in this critical transition zone between corona and solar wind - the final unexplored frontier of the heliosphere.

  1. The influence of instantaneous velocity gradients on turbulence properties measured with multi-sensor hot-wire probes

    Science.gov (United States)

    Park, Seong-Ryong; Wallace, James M.

    1993-11-01

    The necessary assumption that the instantaneous flow field seen by hot-wire probes with two or more sensors is uniform, i.e. that all sensors are cooled by identically the same instantaneous velocity field, is often quite erroneous in highly sheared turbulent flow, such as near the wall in a turbulent boundary layer. Intense local shear layers occur, resulting in large instantaneous velocity gradients across the sensing volume of the probe. The effects of these neglected velocity gradients on the ability of a four-sensor probe, consisting of a pair of orthogonal X-arrays, to measure the three velocity and the streamwise vorticity components is assessed. This is done by determining the synthetic response of the probe to the turbulent boundary layer database of Balint et al. (1991), in which all the velocity gradients are known. The effects of neglecting the binormal components of velocity which cool each sensor are also assessed, when the probe is treated as two uncoupled X-arrays. A small improvement to the probe's coupled X-array response is found when an estimate of the mean wall-normal velocity gradient is incorporated in the response equations.

  2. Blind test comparison of the performance and wake flow between two in-line wind turbines exposed to different turbulent inflow conditions

    Directory of Open Access Journals (Sweden)

    J. Bartl

    2017-02-01

    Full Text Available This is a summary of the results of the fourth blind test workshop that was held in Trondheim in October 2015. Herein, computational predictions on the performance of two in-line model wind turbines as well as the mean and turbulent wake flow are compared to experimental data measured at the wind tunnel of the Norwegian University of Science and Technology (NTNU. A detailed description of the model geometry, the wind tunnel boundary conditions and the test case specifications was published before the workshop. Expert groups within computational fluid dynamics (CFD were invited to submit predictions on wind turbine performance and wake flow without knowing the experimental results at the outset. The focus of this blind test comparison is to examine the model turbines' performance and wake development with nine rotor diameters downstream at three different turbulent inflow conditions. Aside from a spatially uniform inflow field of very low-turbulence intensity (TI = 0.23 % and high-turbulence intensity (TI = 10.0 %, the turbines are exposed to a grid-generated highly turbulent shear flow (TI = 10.1 %.Five different research groups contributed their predictions using a variety of simulation models, ranging from fully resolved Reynolds-averaged Navier–Stokes (RANS models to large eddy simulations (LESs. For the three inlet conditions, the power and the thrust force of the upstream turbine is predicted fairly well by most models, while the predictions of the downstream turbine's performance show a significantly higher scatter. Comparing the mean velocity profiles in the wake, most models approximate the mean velocity deficit level sufficiently well. However, larger variations between the models for higher downstream positions are observed. Prediction of the turbulence kinetic energy in the wake is observed to be very challenging. Both the LES model and the IDDES (improved delayed detached eddy simulation model, however

  3. Velocity derivative skewness in isotropic turbulence and its measurement with hot wires

    Energy Technology Data Exchange (ETDEWEB)

    Burattini, Paolo [Universite Libre de Bruxelles, Physique Statistique et des Plasmas, Brussels (Belgium); University of Newcastle, Discipline of Mechanical Engineering, Newcastle, NSW (Australia); Lavoie, Philippe [Imperial College London, Department of Aeronautics, London (United Kingdom); Antonia, Robert A. [University of Newcastle, Discipline of Mechanical Engineering, Newcastle, NSW (Australia)

    2008-09-15

    We investigate the effect of the hot wire resolution on the measurement of the velocity derivative skewness in homogeneous isotropic turbulence. Single- and cross-wire configurations (with different lengths and separations of the wires, and temporal sampling resolution) are considered. Predictions of the attenuation on the basis of a model for the energy spectrum are compared to experimental and numerical data in grid and box turbulence, respectively. It is shown that the model-based correction is accurate for the single wire but not for the cross-wire. In the latter case, the effect of the separation between the wires is opposite to that found in the experiments and simulations. Moreover, the attenuation predicted by the numerical data is in good agreement with that observed in the experiment. For both probe configurations, the sampling resolution has a sizeable attenuation effect, but, for the X-probe, the impact of the separation between the wires is more important. In both cases, the length of the wires has only a minor effect, in the non-dimensional range of wire length investigated. Finally, the present experimental data support the conclusion that the skewness is constant with the Reynolds number, in agreement with Kolmogorov's 41 theory. (orig.)

  4. Statistics of the relative velocity of particles in turbulent flows: Monodisperse particles.

    Science.gov (United States)

    Bhatnagar, Akshay; Gustavsson, K; Mitra, Dhrubaditya

    2018-02-01

    We use direct numerical simulations to calculate the joint probability density function of the relative distance R and relative radial velocity component V_{R} for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, D_{2}. It was argued [K. Gustavsson and B. Mehlig, Phys. Rev. E 84, 045304 (2011)PLEEE81539-375510.1103/PhysRevE.84.045304; J. Turbul. 15, 34 (2014)1468-524810.1080/14685248.2013.875188] that the scale invariant part of the distribution has two asymptotic regimes: (1) |V_{R}|≪R, where the distribution depends solely on R, and (2) |V_{R}|≫R, where the distribution is a function of |V_{R}| alone. The probability distributions in these two regimes are matched along a straight line: |V_{R}|=z^{*}R. Our simulations confirm that this is indeed correct. We further obtain D_{2} and z^{*} as a function of the Stokes number, St. The former depends nonmonotonically on St with a minimum at about St≈0.7 and the latter has only a weak dependence on St.

  5. Statistics of the relative velocity of particles in turbulent flows: Monodisperse particles

    Science.gov (United States)

    Bhatnagar, Akshay; Gustavsson, K.; Mitra, Dhrubaditya

    2018-02-01

    We use direct numerical simulations to calculate the joint probability density function of the relative distance R and relative radial velocity component VR for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, D2. It was argued [K. Gustavsson and B. Mehlig, Phys. Rev. E 84, 045304 (2011), 10.1103/PhysRevE.84.045304; J. Turbul. 15, 34 (2014), 10.1080/14685248.2013.875188] that the scale invariant part of the distribution has two asymptotic regimes: (1) | VR|≪R , where the distribution depends solely on R , and (2) | VR|≫R , where the distribution is a function of | VR| alone. The probability distributions in these two regimes are matched along a straight line: | VR|= z*R . Our simulations confirm that this is indeed correct. We further obtain D2 and z* as a function of the Stokes number, St. The former depends nonmonotonically on St with a minimum at about St≈0.7 and the latter has only a weak dependence on St.

  6. Experimental Study of Inertial Particle-Pair Relative Velocity in Isotropic Turbulence

    Science.gov (United States)

    Dou, Zhongwang

    The investigation of turbulence-enhanced inertial particle collision in isotropic turbulence could improve our understanding and modeling of many particle-laden turbulent flows in engineering and nature. In this study, we investigate one of the most critical factors of particle collision - particle-pair relative velocity (RV) in three major steps. First, to generate a reliable homogeneous and isotropic turbulence (HIT) field, we have designed and implemented a high Reynolds number (R lambda), enclosed, fan-driven HIT chamber in the shape of 'soccer ball', conducive for studying inertial particle dynamics using whole-field imaging techniques. The characterization of turbulence in this near-zero-mean flow chamber was performed using a new two-scale particle imaging velocimetry (PIV) approach. The measurement results showed that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48mm diameter) of the chamber with minimized gravity effect. A maximum Rlambda of 384 was achieved. Second, to measure particle-pair RV accurately, we have employed numerical experiments to systemically analyze the measurement error in the previous particle-pair RV measurement by holographic PIV. We found that accurate RV measurement requires high accuracy of both particle positioning and particle pairing. To meet these requirements, we have devised a novel planar 4-frame particle tracking velocimetry technique (4F-PTV) combining two PIV systems. It tracks particles in four consecutive frames in high speed to increase particle pairing accuracy. Furthermore, the particles are tracked only in a thin laser light sheet, thus negating the intrinsic position uncertainty in the depth direction in holographic PIV. In addition, we have studied the laser thickness effect on the RV measurement and attempted to use Monte Carlo analysis to correct this effect. Third, and most importantly, to better understand turbulence-enhanced inertial particle collision, we

  7. Evolution of scalar and velocity dynamics in planar shock-turbulence interaction

    Science.gov (United States)

    Boukharfane, R.; Bouali, Z.; Mura, A.

    2018-01-01

    Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a

  8. The Parametric Decay Instability of Alfvén Waves in Turbulent Plasmas and the Applications in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Mijie; Xiao, Chijie; Wang, Xiaogang [State Key Laboratory of Nuclear Physics and Technology, Fusion Simulation Center, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: cjxiao@pku.edu.cn [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-06-10

    We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. This result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.

  9. Artificial neural network approach to spatial estimation of wind velocity data

    International Nuclear Information System (INIS)

    Oztopal, Ahmet

    2006-01-01

    In any regional wind energy assessment, equal wind velocity or energy lines provide a common basis for meaningful interpretations that furnish essential information for proper design purposes. In order to achieve regional variation descriptions, there are methods of optimum interpolation with classical weighting functions or variogram methods in Kriging methodology. Generally, the weighting functions are logically and geometrically deduced in a deterministic manner, and hence, they are imaginary first approximations for regional variability assessments, such as wind velocity. Geometrical weighting functions are necessary for regional estimation of the regional variable at a location with no measurement, which is referred to as the pivot station from the measurements of a set of surrounding stations. In this paper, weighting factors of surrounding stations necessary for the prediction of a pivot station are presented by an artificial neural network (ANN) technique. The wind speed prediction results are compared with measured values at a pivot station. Daily wind velocity measurements in the Marmara region from 1993 to 1997 are considered for application of the ANN methodology. The model is more appropriate for winter period daily wind velocities, which are significant for energy generation in the study area. Trigonometric point cumulative semivariogram (TPCSV) approach results are compared with the ANN estimations for the same set of data by considering the correlation coefficient (R). Under and over estimation problems in objective analysis can be avoided by the ANN approach

  10. Preliminary proposal for the study of the turbulence of the wind the roofs of the buildings

    International Nuclear Information System (INIS)

    Fariñas Wong, Ernesto Yoel; Cabeza Fereira, Javier Enrique; Baracaldo, Hector; Fleck, Brian; Fernandez Bonilla, Alexeis

    2017-01-01

    The research is aimed at identifying the best safety conditions, efficiency for the use of renewable technologies in urban environments, anemometers of vanes and sonic are applied near the edge and at low height of the floor in the highest building of the INETC in order to know Wind behavior close to the edge as well as vertical wind potentialities and turbulent wind behavior. The data obtained from 3D sonic anemometers and weather vane shall be extrapolated to relate it to the data base of the Davis reference meteorological station, located in the undisturbed stream. The wind data will be linked to the effort and load regime that will be recorded at the same time on solar panels and their support structure, which will be done by means of extensive gauges metric. The meteorological data and the load stresses will be related to three-dimensional numerical simulations obtained by computational fluid mechanics numerical tests. (author)

  11. The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake

    OpenAIRE

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping

    2017-01-01

    Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,52...

  12. The role of turbulence in coronal heating and solar wind expansion.

    Science.gov (United States)

    Cranmer, Steven R; Asgari-Targhi, Mahboubeh; Miralles, Mari Paz; Raymond, John C; Strachan, Leonard; Tian, Hui; Woolsey, Lauren N

    2015-05-13

    Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic 'magnetic carpet' in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Franci, Luca; Verdini, Andrea; Landi, Simone [Dipartimento di Fisica e Astronomia, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, Petr [Astronomical Institute, AS CR, Bocni II/1401, CZ-14100 Prague (Czech Republic)

    2015-05-10

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.

  14. DETAILED FIT OF 'CRITICAL BALANCE' THEORY TO SOLAR WIND TURBULENCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Forman, Miriam A.; Wicks, Robert T.; Horbury, Timothy S.

    2011-01-01

    We derive the reduced spectrum of turbulent magnetic fluctuations at different frequencies f which would be observed by a single spacecraft in the solar wind when the magnetic field was at an angle θ B to the solar wind flow, if the wavevector spectrum in the solar wind frame were in anisotropic 'critical balance' (CB) as proposed by Goldreich and Sridhar in 1995 (GS95). The anisotropic power spectrum in the inertial range, P(f, θ B ), is scaled onto one curve with f- 5/3 behavior at θ B near 90 0 and f -2 behavior at small θ B . The transition between the two limiting spectra depends on the form of the GS95 wavevector spectrum and the CB scaling parameter L. Using wavelet analysis of Ulysses magnetic field data in three 30-day periods in the high-latitude solar wind in 1995, we verify that the scaling of power with angle and frequency is qualitatively consistent with GS95 theory. However, the scale length L required to fit the observed P(f, θ B ) to the original CB theory is rather less than the scale predicted by that theory for the solar wind. Part, possibly all, of this discrepancy is removed when the GS95 theory modified for imbalanced turbulence is used.

  15. OBSERVATION OF UNIVERSALITY IN THE GENERALIZED SIMILARITY OF EVOLVING SOLAR WIND TURBULENCE AS SEEN BY ULYSSES

    International Nuclear Information System (INIS)

    Chapman, S. C.; Nicol, R. M.; Leonardis, E.; Kiyani, K.; Carbone, V.

    2009-01-01

    We perform statistical analysis of the fluctuating magnetic field observed in-situ by the Ulysses spacecraft, from the perspective of quantitative characterization of the evolving magnetohydrodynamic (MHD) turbulence. We focus on two successive polar passes around solar minimum which provide extended intervals of quiet, fast solar wind at a range of radial distances and latitudes: the south polar pass of 1994 and the north polar pass of 1995. Fully developed inertial range turbulence has a characteristic statistical similarity property of quantities that characterize the flow, such as the magnetic field components B k (t), so that the pth moment of fluctuations has power-law dependence on scale τ such that k (t + τ) - B k (t)| p > ∼ τ ζ(p) . We instead find a generalized similarity k (t + τ) - B k (t)| p > ∼ g(τ/τ 0 ) ζ(p) consistent with extended self-similarity; and in particular all of these Ulysses observations, from both polar passes, share the same single function g(τ/τ 0 ). If these observations are indeed characteristic of MHD turbulence evolving in-situ, then this quantifies for the first time a key aspect of the universal nature of evolving MHD turbulence in a system of finite size, with implications both for theoretical development, and for our understanding of the evolving solar wind.

  16. Turbulence descriptors for scaling fatigue loading spectra of wind turbine structural components

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, N D

    1994-07-01

    The challenge for the designer in developing a new wind turbine is to incorporate sufficient strength in its components to safely achieve a 20- or 30-year service life. To accomplish this, the designer must understand the load and stress distributions (in a statistical sense at least) that the turbine is likely to encounter during its operating life. Sources of loads found in the normal operating environment include start/stop cycles, emergency shutdowns, the turbulence environment associated with the specific site and turbine location, and extreme or ``rare`` events that can challenge the turbine short-term survivability. Extreme events can result from an operational problem (e.g., controller failure) or violent atmospheric phenomena (tornadic circulations, strong gust fronts). For the majority of the operating time, however, the character of the turbulent inflow is the dominant source of the alternating stress distributions experienced by the structural components. Methods of characterizing or scaling the severity of the loading spectra (or the rate of fatigue damage accumulation) must be applicable to a wide range of turbulent inflow environments -- from solitary isolation to the complex flows associated with multi-row wind farms. The metrics chosen must be related to the properties of the turbulent inflow and independent of the nature of local terrain features.

  17. Generalized similarity observed in finite range magnetohydrodynamic turbulence in the corona and solar wind

    Science.gov (United States)

    Nicol, R.; Leonardis, E.; Chapman, S. C.; Foullon, C.

    2011-12-01

    Fluctuations associated with fully developed magnetohydrodynamic (MHD) turbulent flows in an infinite medium are characterized by non-Gaussian statistics which are scale invariant; this implies power law power spectra and multiscaling for the Generalized Structure Functions (GSFs). Given an observable f(r,t) and assuming statistical stationary, the p'th order moment of the GSF of the fluctuating differences scales as Lzeta(p), where L is the observation scale and ζ (p) are the scaling exponents. For turbulence in a system that is of finite size, or that is not fully developed, the statistical property of scale invariance is replaced by a generalized scale invariance, or extended self- similarity (ESS), for which the various moments of the GSF have a power-law dependence on an initially unknown functions, G, such that Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett. 103, 241101 (2009); S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)

  18. Spanwise vorticity and wall normal velocity structure in the inertial region of turbulent boundary layers

    Science.gov (United States)

    Cuevas Bautista, Juan Carlos; Morrill-Winter, Caleb; White, Christopher; Chini, Gregory; Klewicki, Joseph

    2017-11-01

    The Reynolds shear stress gradient is a leading order mechanism on the inertial domain of turbulent wall-flows. This quantity can be described relative to the sum of two velocity-vorticity correlations, vωz and wωy . Recent studies suggest that the first of these correlates with the step-like structure of the instantaneous streamwise velocity profile on the inertial layer. This structure is comprised of large zones of uniform momentum segregated by slender regions of concentrated vorticity. In this talk we study the contributions of the v and ωz motions to the vorticity transport (vωz) mechanism through the use of experimental data at large friction Reynolds numbers, δ+. The primary contributions to v and ωz were estimated by identifying the peak wavelengths of their streamwise spectra. The magnitudes of these peaks are of the same order, and are shown to exhibit a weak δ+ dependence. The peak wavelengths of v, however, exhibit a strong wall-distance (y) dependence, while the peak wavelengths of ωz show only a weak y dependence, and remain almost O (√{δ+}) in size throughout the inertial domain. This research was partially supported by the National Science Foundation and partially supported by the Australian Research Council.

  19. Prandtl-Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Zhou, Quan; Stevens, Richard Johannes Antonius Maria; Sugiyama, K.; Grossmann, Siegfried; Lohse, Detlef; Xia, K.

    2010-01-01

    The shapes of the velocity and temperature profiles near the horizontal conducting plates' centre regions in turbulent Rayleigh–Bénard convection are studied numerically and experimentally over the Rayleigh number range 108 ≲ Ra ≲ 3 × 1011 and the Prandtl number range 0.7 ≲ Pr ≲ 5.4. The results

  20. On magnetic field strength effect on velocity and turbulence characterization using Phase-Contrast Magnetic Resonance Imaging (PC-MRI)

    Science.gov (United States)

    van de Moortele, Pierre-Francois; Amili, Omid; Coletti, Filippo; Toloui, Mostafa

    2017-11-01

    Cardiovascular flows are predominantly laminar. Nevertheless, transient and even turbulent flows have been observed in the vicinity of the heart (e.g. valves, ascending aorta, valvular/vascular stenosis). Effective in-vivo hemodynamic-based diagnostics in these sites require both high-resolution velocity measurements (especially in the near-vessel wall regions) and accurate evaluation of blood flow turbulence level (e.g. in terms of TKE). In addition to phase contrast (PC), appropriately designed PC-MRI sequences provide intravoxel incoherent motion encoding, a unique tool for simultaneous, non-invasive evaluation of velocity 3D vector fields and Reynolds stresses in cardiovascular flows in vivo. However, limited spatial and temporal resolution of PC-MRI result in inaccuracies in the estimation of hemodynamics (e.g. WSS) and of flow turbulence characteristics. This study aims to assess whether SNR gains at higher magnetic field could overcome these limits, providing more accurate velocity and turbulence characterization at higher spatial resolution. Experiments are conducted on MR Scanners at 3 and 7 Tesla with a U-bent pipe flow shaped phantom. 3D velocity fields, Reynolds stresses and TKE are analyzed and compared to a reference PIV experiments.

  1. Ocean Ekman Response to Wind Forcing in Frontal Regions and Implications for Vertical Velocity

    Science.gov (United States)

    Cronin, M. F.; Tozuka, T.

    2016-12-01

    Wind forcing is fundamental to the ocean circulation. According to the classic "Ekman" theory developed in the early twentieth century, wind-induced steady flow spirals to the right of the wind stress in the Northern Hemisphere and to the left in the Southern Hemisphere, resulting in a net wind-forced "Ekman" transport that is 90 degrees to the right of the wind stress in the Northern Hemisphere and to the left in the Southern Hemisphere. This theory, however, assumes that the near-surface ocean is uniform in density (i.e., has no fronts). In frontal regions the surface "geostrophic" currents have a vertical shear aligned with the density front and this oceanic "thermal wind" shear can balance a portion of the surface wind stress. In this study we show that in frontal regions, the classic Ekman response is altered. Surface ocean currents respond to the effective wind stress—the portion of the wind stress that is out of balance with the ocean's surface geostrophic shear. Consequently, the vertical velocity at the base of the mixed layer is better approximated by the curl of the effective wind stress, rather than the full wind stress. Wind blowing along a front can give rise to a local minimum in the effective wind stress and result in a secondary circulation with downwelling on the cold side of the front and upwelling on the warm side. Using data from the high-resolution Japanese Ocean general circulation model For the Earth Simulator (OFES), we show that these frontal effects cannot be ignored in the Tropics or in strong frontal regions in the extratropics, such as found in coastal regions and in western boundary currents of all basins. Furthermore, these frontal effects dominate the classic Ekman response in regions of both hemispheres where trade winds change to westerlies.

  2. Effects of Blade Boundary Layer Transition and Daytime Atmospheric Turbulence on Wind Turbine Performance Analyzed with Blade-Resolved Simulation and Field Data

    Science.gov (United States)

    Nandi, Tarak Nath

    , ≈3 s) and sub-1P scale (inclination in the airfoil plane, modulated by eddy passage at longer time scales. Generator power is found to respond strongly to large-eddy wind modulations. The experimental data show that internal dynamics of blade boundary layer near the trailing edge is temporally modulated by the nonsteady external ABL flow that was measured at the leading edge, as well as blade generated turbulence motions. A blade boundary layer resolved CFD study of a GE 1.5MW wind turbine blade is carried out using a hybrid URANS/LES framework to quantify the influence of transition on the blade boundary layer dynamics and subsequent loadings, and also to predict the velocity magnitude data set measured by the trailing edge rakes in the experiment. A URANS based transition model is used as the near-wall model, and its ability to predict nonsteady boundary layer dynamics is assessed for flow over an oscillating airfoil exhibiting varying extents of nonsteady behavior. The CFD study shows that, at rated conditions, the transition and separation locations on the blade surface can be quite dynamic, but the transitional flow has negligible influence on the determination of the separation location and the overall pressure distribution at various blade sections, and subsequently the power output. But this conclusion should be accepted with caution for wind turbines running in off-design conditions (e.g. with significant yaw error, off-design pitch or rapid changes in pitch), where massive separation and dynamic stall may occur. Analysis of the near-blade flow field shows strong three dimensional flow in the inboard regions, which can possibly weaken the chordwise flow in the relatively outboard regions and make them more prone to separation. The trailing edge velocity profiles show qualitative resemblance with some specific cycles observed in the field experiment. The factors leading to the observed differences from the experimental data are also mentioned.

  3. Anomalous scaling and the role of intermittency in solar wind MHD turbulence: new insights

    Science.gov (United States)

    Salem, C.; Mangeney, A.; Bale, S. D.; Veltri, P.; Bruno, R.

    2007-08-01

    In the Alfvénic regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large ``energy containing'' scales towards much smaller scales, where dissipation via kinetic effects is presumed to act. However, the intermittent character of the solar wind fluctuations in the inertial range is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale ``singular'' or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We will discuss here recent results on scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. More specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). We show that this powerful technique allows: (1) for a systematic study of intermittency effects on these spectra, structure functions and PDFs, thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs and new results on the nature of the intermittent coherent structures will be presented.

  4. Reduction of the Random Variables of the Turbulent Wind Field

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.

    2012-01-01

    Applicability of the Probability Density Evolution Method (PDEM) for realizing evolution of the probability density for the wind turbines has rather strict bounds on the basic number of the random variables involved in the model. The efficiency of most of the Advanced Monte Carlo (AMC) methods, i...... of the integral domain; this becomes increasingly difficult as the dimensions of the integral domain increase. On the other hand efficiency of the AMC methods is closely dependent on the design points of the problem. Presence of many random variables may increase the number of the design points, hence affects.......e. Importance Sampling (IS) or Subset Simulation (SS), will be deteriorated on problems with many random variables. The problem with PDEM is that a multidimensional integral has to be carried out over the space defined by the random variables of the system. The numerical procedure requires discretization...

  5. Effect of Wind Velocity on Flame Spread in Microgravity

    Science.gov (United States)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  6. Analysis of wind velocity and release angle effects on discus throw using computational fluid dynamics.

    Science.gov (United States)

    Rouboa, Abel I; Reis, Victor M; Mantha, Vishveshwar R; Marinho, Daniel A; Silva, António J

    2013-01-01

    The aim of this paper is to study the aerodynamics of discus throw. A comparison of numerical and experimental performance of discus throw with and without rotation was carried out using the analysis of lift and drag coefficients. Initial velocity corresponding to variation angle of around 35.5° was simulated. Boundary condition, on the top and bottom boundary edges of computational domain, was imposed in order to eliminate external influences on the discus; a wind resistance was calculated for the velocity values of 25 and 27 m/s. The results indicate that the flight distance (D) was strongly affected by the drag coefficient, the initial velocity, the release angle and the direction of wind velocity. It was observed that these variables change as a function of discus rotation. In this study, results indicate a good agreement of D between experimental values and numerical results.

  7. On a relation of geomagnetic activity, solar wind velocity and irregularity of daily rotation of the Earth

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Kiselev, V.M.

    1980-01-01

    A possibility of the presence of statistic relation between the changes of the Earth rotation regime and the mean velocity of solar wind is discussed. The ratio between the solar wind velocity observed and planetary index of geomagnetic activity am is used to determine the annual average values of solar wind velocity beyond the twentieth cycle of solar activity. The restored changes of solar wind velocity are compared with solar conditioned variations of the Earth day duration and it is shown that the correspondence takes place only at frequencies lower the frequency of 11-year cycle [ru

  8. Tracking of macroscopic particle motions generated by a turbulent wind via digital image analysis

    Science.gov (United States)

    Ciccone, A. D.; Kawall, J. G.; Keffer, J. F.

    A novel technique utilizing the basic principles of two-dimensional signal analysis and artificial intelligence/computer vision to reconstruct the Lagrangian particle trajectories from flow visualization images of macroparticle motions in a turbulent boundary layer is presented. Since, in most cases, the entire trajectory of a particle could not be viewed in one photographic frame (the particles were moving at a high velocity over a small field of view), a stochastic model was developed to complete the trajectories and obtain statistical data on particle velocities. The associated programs were implemented on a Cray supercomputer to optimize computational costs and time.

  9. Automated prediction of boundary layer winds and turbulence for the Savannah River Laboratory. Final report

    International Nuclear Information System (INIS)

    Gilhousen, D.B.

    1979-01-01

    Objective forecasts of many weather elements produced twice daily for about 230 US cities are made by applying the Model Output Statistics (MOS) technique (Glahn and Lowry, 1972). This technique relates by a statistical method the output of numerical models interpolated to a location (predictors) to a corresponding sample of observed local weather at that location (predictand). This study describes the development and testing of MOS wind forecasts for an instrumented TV tower located near the Savannah River Laboratory (SRL). If shown to be useful, these forecasts could serve as valuable guidance in case of a nuclear incident at the installation. This study introduces several new applications of the MOS technique. In addition to forecasts of wind speed and direction, forecasts of two turbulence parameters were developed and evaluated. These turbulence parameters were the standard deviations of both the azimuth and elevation of the wind. These quantities help to estimate the amount of plume and puff spread. Forecasts of all these elements were produced for several levels on the 335 m WJBF-TV tower. Tests were conducted to see if MOS forecasts of each element were capable of resolving differences between tower levels. MOS forecasts were compared to two other types of forecasts to determine their utility. Short range persistence forecasts served as one type of comparison since SRL uses the current observed winds in their diffusion models. Climatology forecasts served as the other comparison set

  10. Ion-Scale Spectral Break in the Normal Plasma Beta Range in the Solar Wind Turbulence

    Science.gov (United States)

    Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.

    2018-01-01

    The spectral break (fb) of magnetic fluctuations at the ion scale in the solar wind is considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable two are related respectively to proton thermal gyroradius ρi and proton inertial length di. The corresponding frequencies of them are fρi=VSW/(2πρi) and fdi=VSW/(2πdi), respectively, where VSW is the solar wind speed. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar value when plasma beta β ˜ 1. Here we do a statistical study to see if the two ratios fb/fρi and fb/fdi have different dependence on β in the solar wind turbulence with 0.1 fdi is statistically not dependent on β, and the average value of it is 0.48 ± 0.06. However, fb/fρi increases with increasing β clearly and is significantly smaller than fb/fdi when β fdi, and the influence of β could be negligible in the studied β range. It indicates a preference of the dissipation mechanism associated with di in the solar wind with 0.1 < β < 0.8. Further theoretical studies are needed to give detailed explanation.

  11. Preliminary investigation of the effect of electric charge on particle-pair relative velocity in isotropic turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Kailu, Tushar; Liang, Zach; Meng, Hui

    2017-11-01

    In many particle-laden turbulent flows including thunderstorm clouds and aerosol sprays, the particles may be electrically charged. How the Coulomb force between charged particles competes with the turbulence forces on particle motion is not yet fully understood. Mean inward particle pair relative velocity (particle RV), a quantity relevant for particle collision in isotropic turbulence, is expected to be affected by charge. We extend our recent particle tracking velocimetry (PTV) study on particle pair relative velocity in fan-driven isotropic turbulence to particles with charge. To accomplish this, we established a method to independently vary particle charge distributions by balancing particle density and size while keeping constant Reλ and St, developed a unique instrument to measure particle charge using in-line holography, and measured particle RV using PTV at three levels of charge under a single flow condition. We present charged particle RV measurements from the experiments at Reλ = 343, St 1.19, and charge of order 10-15 Coulombs, which show that particle RV increases with magnitude of bipolar charge. This study paves the way for a comprehensive exploration of relative motion of charged particle in isotropic turbulence. This work was supported by NSF CBET-0967407.

  12. Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, E. [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro (Mexico); Jaramillo, O.A.; Rivera, W. [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2010-05-15

    In this paper the analysis and forecasting of wind velocities in Chetumal, Quintana Roo, Mexico is presented. Measurements were made by the Instituto de Investigaciones Electricas (IIE) during two years, from 2004 to 2005. This location exemplifies the wind energy generation potential in the Caribbean coast of Mexico that could be employed in the hotel industry in the next decade. The wind speed and wind direction were measured at 10 m above ground level. Sensors with high accuracy and a low starting threshold were used. The wind velocity was recorded using a data acquisition system supplied by a 10 W photovoltaic panel. The wind speed values were measured with a frequency of 1 Hz and the average wind speed was recorded considering regular intervals of 10 min. First a statistical analysis of the time series was made in the first part of the paper through conventional and robust measures. Also the forecasting of the last day of measurements was made utilizing the single exponential smoothing method (SES). The results showed a very good accuracy of the data with this technique for an {alpha} value of 0.9. Finally the SES method was compared with the artificial neural network (ANN) method showing the former better results. (author)

  13. Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves.

    Science.gov (United States)

    Woo, Y R; Yoganathan, A P

    1985-01-01

    The velocity and turbulent shear stress measured in the immediate vicinity of prosthetic heart valves play a vital role in the design and evaluation of these devices. In the past hot wire/film and one-component laser Doppler anemometer (LDA) systems were used extensively to obtain these measurements. Hot wire/film anemometers, however, have some serious disadvantages, including the inability to measure the direction of the flow, the disturbance of the flow field caused by the probe, and the need for frequent calibration. One-component LDA systems do not have these problems, but they cannot measure turbulent shear stresses directly. Since these measurements are essential and are not available in the open literature, a two-component LDA system for measuring velocity and turbulent shear stress fields under pulsatile flow conditions was assembled under an FDA contract. The experimental methods used to create an in vitro data base of velocity and turbulent shear stress fields in the immediate vicinity of prosthetic heart valves of various designs in current clinical use are also discussed.

  14. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  15. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    Science.gov (United States)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-09-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-β, magnetically structured flow dominated by radial structures to high-β, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  16. FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND

    International Nuclear Information System (INIS)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  17. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    Science.gov (United States)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  18. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; A. Christopher Oishi; Cheng-I Hsieh; Nathan Phillips; Kimberly A. Novick; Paul C. Stoy

    2014-01-01

    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to...

  19. Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: The nature of turbulent fluctuations near the proton gyroradius scale

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Kristopher G.; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States); Podesta, John J., E-mail: kristopher-klein@uiowa.edu [Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 (United States)

    2014-04-20

    Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.

  20. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  1. Clustering and relative velocity of heavy particles under gravitational settling in isotropic turbulent flows

    Science.gov (United States)

    Jin, Guodong; He, Guo-Wei

    2015-11-01

    Clustering and intermittency in radial relative velocity (RRV) of heavy particles of same size settling in turbulent flows can be remarkably changed due to gravity. Clustering is monotonically reduced at Stokes number less than 1 under gravity due to the disability of the centrifugal mechanism, however it is non-monotonically enhanced at Stokes number greater than 1 due to the multiplicative amplification in the case that the proposed effective Kubo number is less than 1. Although gravity causes monotonical reduction in the rms of RRV of particles at a given Stokes number with decreasing Froude number, the variation tendency in the tails of standardized PDF of RRV versus Froude number is obviously different: the tails become narrower at a small Stokes number, while they become broader at a large Stokes number. The mechanism of this variation stems from the compromise between the following two competing factors. The mitigation of correlation of particle positions and the regions of high strain rate which are more intermittent reduces the intermittency in RRV at small Stokes numbers, while the significant reduction in the backward-in-time relative separations will make particle pairs see small-scale structures, leading to a higher intermittency in RRV at large Stokes numbers. NSAF of China (grant number U1230126); NSFC (grant numbers 11072247 and 11232011).

  2. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions

    Science.gov (United States)

    2016-12-22

    mean wind profile, and a minor reduction in the form drag fraction. This supports recent theoretical perspectives that propose very differing... turnover times. For the results, wind and pressure fields are made dimensionless by (u*, u* 2 ) and all lengths are made dimensionless by  where... turnover times (~ 50) owing to the reduction in the timestep on the fine grid. We found the fine mesh runs were similar in character to the coarse mesh

  3. Passive A-band Wind Sounder (PAWS) for measuring tropospheric wind velocity profile

    Science.gov (United States)

    Miecznik, Grzegorz; Pierce, Robert; Huang, Pei; Slaymaker, Philip A.; Kaptchen, Paul; Roark, Shane; Johnson, Brian R.; Heath, Donald F.

    2007-09-01

    The Passive A-Band Wind Sounder (PAWS) was funded through NASA's Instrument Incubator Program (IIP) to determine the feasibility of measuring tropospheric wind speed profiles from Doppler shifts in absorption O II A-band. It is being pursued as a low-cost and low-risk alternative capable of providing better wind data than is currently available. The instrument concept is adapted from the Wind Imaging Interferometer (WINDII) sensor on the Upper Atmosphere Research Satellite. The operational concept for PAWS is to view an atmospheric limb over an altitude range from the surface to 20 km with a Doppler interferometer in a sun-synchronous low-earth orbit. Two orthogonal views of the same sampling volume will be used to resolve horizontal winds from measured line-of-sight winds. A breadboard instrument was developed to demonstrate the measurement approach and to optimize the design parameters for the subsequent engineering unit and future flight sensor. The breadboard instrument consists of a telescope, collimator, filter assembly, and Michelson interferometer. The instrument design is guided by a retrieval model, which helps to optimize key parameters, spectral filter and optical path difference in particular.

  4. Dissipation of Turbulence in the Solar Wind as Measured by Cluster

    Science.gov (United States)

    Goldstein, Melvyn

    2012-01-01

    Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.

  5. Turbulent cascade in the solar wind at kinetic scales and quasi-parallel whistler waves

    Science.gov (United States)

    Alexandrova, O.; Lacombe, C.; Mangeney, A.; Grappin, R.; Maksimovic, M.; Matteini, L.; Santolik, O.; Cornilleau-Wehrlin, N.; de Conchy, Y.

    2014-12-01

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies 1-400 Hz, during five years (2001-2005) when Cluster was in the free solar wind, i.e. not magnetically connected to the Earth's bow-shock.In most of the analyzed time intervals, the fluctuations are non-polarized and they have a general spectral shape between the ion scales and a fraction of electron scales. The intensity of these spectra is well correlated to the ion thermal pressure. These non-polarized fluctuations seem to have a negligible frequency in the solar wind frame, and a wavevector anisotropy kperp>>k||. In the rest ~10% of the selected data, we observe narrow-band, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The life time of such waves varies between a few seconds and several hours. We analyze in details the long-lived whistler waves, i.e. with a life time longer than five minutes. We find several conditions for the appearance of such waves: (1) a low level of the background turbulence; (2) a low ion thermal pressure; (3) a slow solar wind speed; (4) an electron heat flux Qe>4μW/m2; (5) an electron mean free path larger than 0.5 AU, i.e., a low collisional frequency; (6) a change in the magnetic field direction. When the level of the background turbulence is high, we cannot affirm that whistler waves do not exist: they can be just masked by the turbulence. The six above conditions for the presence of parallel whistlers in the free solar wind are necessary but are not sufficient. When the electron parallel beta factor βe is larger than 3, the whistler waves are seen along the heat flux

  6. Prediction of velocity distributions in rod bundle axial flow, with a statistical model (K-epsilon) of turbulence

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da.

    1978-12-01

    Reactor fuel elements generally consist of rod bundles with the coolant flowing axially through the region between the rods. The confiability of the thermohydraulic design of such elements is related to a detailed description of the velocity field. A two-equation statistical model (K-epsilon) of turbulence is applied to compute main and secondary flow fields, wall shear stress distributions and friction factors of steady, fully developed turbulent flows, with incompressible, temperature independent fluid flowing axially through triangular or square arrays of rod bundles. The numerical procedure uses the vorticity and the stream function to describe the velocity field. Comparison with experimental and analytical data of several investigators is presented. Results are in good agreement. (Author) [pt

  7. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute

    Science.gov (United States)

    Felder, Stefan; Chanson, Hubert

    2009-07-01

    In high-velocity free-surface flows, air entrainment is common through the interface, and intense interactions take place between turbulent structures and entrained bubbles. Two-phase flow properties were measured herein in high-velocity open channel flows above a stepped chute. Detailed turbulence measurements were conducted in a large-size facility, and a comparative analysis was applied to test the validity of the Froude and Reynolds similarities. The results showed consistently that the Froude similitude was not satisfied using a 2:1 geometric scaling ratio. Lesser number of entrained bubbles and comparatively greater bubble sizes were observed at the smaller Reynolds numbers, as well as lower turbulence levels and larger turbulent length and time scales. The results implied that small-size models did underestimate the rate of energy dissipation and the aeration efficiency of prototype stepped spillways for similar flow conditions. Similarly a Reynolds similitude was tested. The results showed also some significant scale effects. However a number of self-similar relationships remained invariant under changes of scale and confirmed the analysis of Chanson and Carosi (Exp Fluids 42:385-401, 2007). The finding is significant because self-similarity may provide a picture general enough to be used to characterise the air-water flow field in large prototype channels.

  8. Modeling turbulent compressible flows - The mass fluctuating velocity and squared density

    Science.gov (United States)

    Taulbee, D.; Vanosdol, J.

    1991-01-01

    This paper deals with single-point closure theory for compressible turbulent flow, including the effects of compressibility on the turbulence. In particular, the combination of the pressure dilatation and the dilatation dissipation, terms which appear on the turbulent kinetic energy equation, are modeled. Model parameters in these transport equations are determined by comparing predictions with boundary layer measurements. Finally, predictions with a k-epsilon model, including the new formulations, are presented for the compressible shear layer.

  9. Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Ribičić, Mihael; Pospíšil, Stanislav; Plut, Mihael; Trush, Arsenii; Kozmar, H.

    2017-01-01

    Roč. 41, č. 6 (2017), s. 643-661 ISSN 0732-8818 R&D Projects: GA ČR(CZ) GA14-12892S; GA MŠk(CZ) LO1219 Keywords : turbulent flow * atmospheric boundary layer * wind-tunnel simulation * castellated barrier wall * Counihan vortex generators * surface roughness elements * hot-wire measurements Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 0.932, year: 2016 https://link.springer.com/article/10.1007/s40799-017-0196-z

  10. Detection of magnetic discontinuities in the dissipation regime of solar wind turbulence

    Science.gov (United States)

    Perri, S.; Goldstein, M. L.; Dorelli, J.; Sahraoui, F.

    2012-12-01

    Recent spacecraft observations of solar wind magnetic field fluctuations have shown the existence of a cascade of magnetic energy from the scale of the proton Larmor radius ρ_cp, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius ρ_ce, where electrons become demagnetized. This energy cascade has been conjectured to consist of highly oblique kinetic Alfvénic fluctuations (KAW) that are dissipated by proton and electron Landau damping. Analyzing the 450 vec/s resolution data from the STAFF search-coil magnetometer on Cluster, we report, for the first time, evidence for the existence in the solar wind of thin current sheets and discontinuities that exhibit spatial scales that range from the proton Larmor scale down to the electron Larmor scale. In the cases studied, the current sheets are very localized and have an extent between 20-200 km, size that is often close to both the proton Larmor radius and the proton inertial length. These isolated structures appear to be a manifestation of intermittency and may localize sites turbulent dissipation. Furthermore, we compare in-situ observations of thin current sheets and discontinuities in the solar wind at proton scales with results that come from two-dimensional Hall MHD turbulence simulations in the presence of a strong guide field. The initial condition in the simulations is a large scale flux rope structure which breaks down into smaller and smaller current sheets due to the turbulent energy transfer. The comparison shows good qualitative agreement between the properties of the structures observed in Cluster data and the properties of current sheets that arise in the simulations. Our results highlight two competing processes that contribute to the dissipation of solar wind turbulence when the plasma beta is of order unity; viz., kinetic (Landau) damping by protons and electrons and the general tendency of the cascade to form thin current sheets where reconnection and

  11. Computerized system for building 'the rose' of the winds and defining the velocity and the average density of the wind power for a given place

    International Nuclear Information System (INIS)

    Valkov, I.; Dekova, I.; Arnaudov, A.; Kostadinov, A.

    2002-01-01

    This paper considers the structure and the working principle of a computerized system for building 'the rose' of the winds. The behaviour of the system has been experimentally investigated and on the basis of the received data 'the rose' of the winds has been built, a diagram of the average wind velocity at a predefined step in the course of time has been made, and the average density of the wind power has been quantitatively defined. The proposed system enables possibilities for creating a data base of wind parameters, their processing and graphical visualizing of the received results. The system allows to improve the work of devices of wild's wind gauge type. (authors)

  12. Full vector (3-D) inflow simulation in natural and wind farm environments using an expanded version of the SNLWIND (Veers) turbulence code

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, N.D.

    1992-11-01

    We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers [1] to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers's original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.

  13. Full vector (3-D) inflow simulation in natural and wind farm environments using an expanded version of the SNLWIND (Veers) turbulence code

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, N.D.

    1992-11-01

    We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers [1] to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers`s original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.

  14. Evaluation of tetroon flights and turbulent diffusion under weak wind conditions during the field experiment SIESTA

    International Nuclear Information System (INIS)

    Hu Erbang; Vogt, S.

    1986-08-01

    During several days in November 1985 an international field experiment took place in the Swiss plateau region near the cities of Aarau, Olten. As indicated by the name of the project SIESTA (SF 6 International Experiments in Stagnant Air) its aim is to obtain knowledge of the general nature of turbulence advection and atmospheric dispersion processes in a cold pool with very low wind speed and undefined wind direction. An outline of the general concept of the project is followed by a more detailed description of a special research activity with Radar tracked tetroons. In the second part of the report it is shown how to determine the horizontal dispersion parameter from the trajectories of the tetroon flights. Two different methods are described and the results of the flights performed during SIESTA are presented. (orig.) [de

  15. RADIAL EVOLUTION OF SOLAR WIND TURBULENCE DURING EARTH AND ULYSSES ALIGNMENT OF 2007 AUGUST

    International Nuclear Information System (INIS)

    D'Amicis, R.; Bruno, R.; Pallocchia, G.; Bavassano, B.; Telloni, D.; Carbone, V.; Balogh, A.

    2010-01-01

    At the end of 2007 August, during the minimum of solar cycle 23, a lineup of Earth and Ulysses occurred, giving the opportunity to analyze, for the first time, the same plasma sample at different observation points, namely at 1 and 1.4 AU. In particular, it allowed us to study the radial evolution of solar wind turbulence typical of fast wind streams as proposed in a Coordinated Investigation Programme for the International Heliophysical Year. This paper describes both the macrostructure and the fluctuations at small scales of this event. We find that soon after detecting the same fast stream, the Advanced Composition Explorer (ACE) observed a change of magnetic polarity being the interplanetary current sheet located between the orbits of the two spacecraft. Moreover, we observe that the compression region formed in front of the fast stream detected at ACE's location evolves in a fast forward shock at Ulysses' orbit. On the other hand, small-scale analysis shows that turbulence is evolving. The presence of a shift of the frequency break separating the injection range from the inertial range toward lower frequencies while distance increases is a clear indication that nonlinear interactions are at work. Moreover, we observe that intermittency, as measured by the flatness factor, increases with distance. This study confirms previous analyses performed using Helios observations of the same fast wind streams at different heliocentric distances, allowing us to relax about the hypothesis of the stationarity of the source regions adopted in previous studies. Consequently, any difference noticed in the solar wind parameters would be ascribed to radial (time) evolution.

  16. The most intense electric currents in turbulent high speed solar wind

    Science.gov (United States)

    Podesta, J. J.

    2017-12-01

    Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.

  17. Geostatistical analysis of the effects of stage and roughness on reach-scale spatial patterns of velocity and turbulence intensity

    Science.gov (United States)

    Legleiter, Carl J.; Phelps, Tracy L.; Wohl, Ellen E.

    2007-01-01

    Although previous research has documented well-organized interactions between the turbulent flow field and an irregular boundary, the spatial variability of turbulent flow characteristics at the reach-scale remains poorly understood. In this paper, we present detailed field measurements of three-dimensional flow velocities and turbulence intensities in a high-gradient, cobble-bed riffle from three discharges; additional data on sediment grain size and bed topography were used to characterize boundary roughness. An acoustic Doppler velocimeter was used to measure velocities along five cross-sections within a 6 m long reach of the North Fork Cache La Poudre River; vertical profiles were also measured along the channel thalweg. We adopted a spatially explicit stochastic hydraulic approach and focused not on coherent flow structures per se but rather time-averaged, reach-scale variability and spatial pattern. Scaling velocities and turbulence intensities by the reach-averaged friction velocity U* accounted for changes in flow depth and enabled comparisons among the three discharges. We quantified the effects of stage and roughness by assessing differences among probability distributions of hydraulic quantities and by examining geostatistical metrics of spatial variability. We computed semivariograms for streamwise and transverse directions and fit parametric models to summarize the spatial structure of each variable at each discharge. Cross-correlograms were also used to describe the local and lagged effects of boundary roughness on flow characteristics. Although the probability distributions yielded some insight, incorporating spatial information revealed important elements of stage-dependent flow structure. The development of secondary currents and flow convergence at higher stages were clearly documented in maps and semivariograms. In general, the spatial structure of the flow field became smoother and more continuous as stage increased and the effects of boundary

  18. Effect of wind turbine surge motion on rotor thrust and induced velocity

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    velocity on a wind turbine rotor is investigated. Specifically, the performance of blade element momentum theory with a quasisteady wake as well as two widely used engineering dynamic inflow models is evaluated. A moving actuator disc model is used as reference, since the dynamics associated with the wake...... will be inherently included in the solution of the associated fluid dynamic problem. Through analysis of integrated rotor loads, induced velocities and aerodynamic damping, it is concluded that typical surge motions are sufficiently slow to not affect the wake dynamics predicted by engineering models significantly...

  19. Study of wind turbine wake modeling based on a modified actuator disk model and extended k-ε turbulence model

    DEFF Research Database (Denmark)

    Xu, Chang; Han, Xingxing; Wang, Xin

    2015-01-01

    This paper presented an improved computational fluid dynamics (CFD) model for simulating a horizontal-axis wind turbine wake. The model used the actuator disk model to simplify the wind turbine effect on the aerodynamic field by adding an extra momentum source and an improved term to correct...... the underestimation issue of the wind speed deficit when applying the STD k-ε model. In addition, the model also introduced a radial distribution function to assess the non-uniform load on the actuator disk and a coefficient C4ε of the turbulent source. To validate the model, the wind turbines of Nibe `B' and Dawin...

  20. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities

    Science.gov (United States)

    Levine, J. S.; Guerra, M.; Javan, A.

    1980-01-01

    The problem of laser energy extraction at a tunable monochromatic frequency from an energetic high pressure CO2 pulsed laser plasma, for application to remote sensing of atmospheric pollutants by Differential Absorption Lidar (DIAL) and of wind velocities by Doppler Lidar, was investigated. The energy extraction principle analyzed is based on transient injection locking (TIL) at a tunable frequency. Several critical experiments for high gain power amplification by TIL are presented.

  1. Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units

    Science.gov (United States)

    Ruiz, M. E.; Dasso, S.; Matthaeus, W. H.; Weygand, J. M.

    2014-10-01

    The solar wind is a structured and complex system, in which the fields vary strongly over a wide range of spatial and temporal scales. As an example, the turbulent activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or correlation length [ λ], usually associated with the breakpoint in the turbulent-energy spectrum that separates the inertial range from the injection range. This large variability of the fields demands a statistical description of the solar wind. We study the probability distribution function (PDF) of the magnetic-autocorrelation lengths observed in the solar wind at different distances from the Sun. We used observations from the Helios, ACE, and Ulysses spacecraft. We distinguished between the usual solar wind and one of its transient components (interplanetary coronal mass ejections, ICMEs), and also studied solar-wind samples with low and high proton beta [βp]. We find that in the last three regimes the PDF of λ is a log-normal function, consistent with the multiplicative and nonlinear processes that take place in the solar wind, the initial λ (before the Alfvénic point) being larger in ICMEs.

  2. Controlled Velocity Testing of an 8-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Larwood, S.; Sencenbaugh, J.; Acker, B.

    2001-07-31

    This paper describes a case study of the controlled-velocity test of an 8-kW wind turbine. The turbine was developed in response to the U.S. Department of Energy's small wind turbine program. As background, the prototype development is discussed. The turbine mechanical and electrical components are described. The turbine was tested on a flatbed truck and driven down an airfield runway at constant relative wind speed. Horizontal furling was used to control over-speed. Various parameters were changed to determine their effects on furling. The testing showed that the machine had insufficient rotor offset for adequate furling. Also, a rotor resonance problem was discovered and remedied. Problems associated with taking the measurements made it difficult to determine if the truck test was a suitable method for code validation. However, qualitative observations gleaned from the testing justified the effort.

  3. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    Science.gov (United States)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  4. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K.H.

    1996-11-01

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.

  5. Characterizing the turbulent porosity of stellar wind structure generated by the line-deshadowing instability

    Science.gov (United States)

    Owocki, Stanley P.; Sundqvist, Jon O.

    2018-03-01

    We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.

  6. Cascade and Dissipation of Solar Wind Turbulence at Electron Scales: Whistlers or Kinetic Alfv\\'en Waves?

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn L.

    2010-01-01

    Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.

  7. Determination of the Burning Velocity Domain of a Statistically Stationary Turbulent Premixed Flame in Presence of Counter-Gradient Transport

    Directory of Open Access Journals (Sweden)

    V. A. Sabel'nikov

    2011-01-01

    Full Text Available The present study aims at providing a complete picture of the various propagation scenarios that a statistically stationary turbulent premixed flame may possibly undergo. By explicitly splitting the scalar turbulent flux between its gradient and counter-gradient contributions, the scalar governing equation is rewritten as an ordinary differential equation in the phase space. Then, an analysis of the characteristic equations in the vicinity of the reactants and products side is carried out. The domain of existence of the propagation velocity is then determined and positioned over the relevant Bray number range. It is shown in particular that when a counter-gradient transport at the cold leading edge of the flame is dominant, there still exists a possibility of observing a steady regime of propagation. This conclusion is compatible with recent experimental data and observations based on the analysis of direct numerical simulations.

  8. Generation of Synthetic Turbulence in Arbitrary Domains

    DEFF Research Database (Denmark)

    Gilling, Lasse; Nielsen, Søren R.K.; Sørensen, Niels

    2009-01-01

    A new method for generating synthetic turbulence is presented. The method is intended for generating a turbulent velocity field with a fine spatial resolution but only covering a small moving part of the rotor area of a wind turbine. For this application the Mann and Sandia methods cannot be used......-spectra a realization of a velocity field is determined by factorization and Fourier transform as in the Sandia method....

  9. An atmospheric turbulence model for spatiotemporal variability of geographically-diverse, aggregated wind-generated electricity to accelerate wide-scale wind energy deployment (Invited)

    Science.gov (United States)

    Lundquist, J. K.; Handschy, M.

    2013-12-01

    During the year 2012, the cumulative wind power capacity installed in the United States could provide roughly 4.4% of electricity demand. Although the wind resource can provide many times over the entire US electrical needs, and costs for onshore wind deployment are continually dropping, the variability of the wind represents one of the greatest remaining barriers to wide-scale wind deployment. This study focuses on the nature of this variability. We quantify the axiom 'geographic diversity reduces variability' (of wind generation) by relating resource variability characteristics to the well-understood physical phenomena of turbulence in the Earth's atmosphere. Many existing studies focus on datasets of a few years' duration in a particular geographic area; such results are difficult to generalize. Our approach builds on the fundamental nonlinear characteristics of turbulence in the atmosphere to characterize wind speed and power generation correlations between wind plants from local to continental scales. The resulting general principles enable estimation of the benefits of geographic aggregation absent detailed site-specific historical data, thereby enabling more efficient transmission grid models, expediting transmission plans, and providing a framework for evaluating the requirements and benefits of electric storage at higher wind penetrations. To validate these general principles, we compare them to observed inter-station correlations in a number of wind-speed data sets, including a 40-year Canadian dataset that spans the continent of North America, as well as shorter-duration datasets in smaller regions within the United States. This presentation will present general rules for the dependence of correlation between wind turbines on separation and time scale. We suggest these general rules could help shift renewable integration planning from simulation towards optimization.

  10. Using the coupled wake boundary layer model to evaluate the effect of turbulence intensity on wind farm performance

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2015-01-01

    We use the recently introduced coupled wake boundary layer (CWBL) model to predict the e ect of turbulence intensity on the performance of a wind farm. The CWBL model combines a standard wake model with a \\top-down" approach to get improved predictions for the power output compared to a stand-alone

  11. Aerodynamic Analysis of a Vertical Axis Wind Turbine in a Diffuser

    NARCIS (Netherlands)

    Geurts, B.M.; Simao Ferreira, C.; Van Bussel, G.J.W.

    Wind energy in the urban environment faces complex and often unfavorable wind conditions. High turbulence, lower average wind velocities and rapid changes in the wind direction are common phenomena in the complex built environments. A possible way to improve the cost-efficiency of urban wind

  12. A study of the condensation of a high-velocity vapor jet on a coflowing turbulent liquid jet

    Science.gov (United States)

    Ovsiannikov, V. A.; Levin, A. A.

    A method for the experimental determination of the local value of the heat transfer coefficient under conditions of jet condensation is proposed which employs a heat balance expression in differential form. The method is used in an experimental study of the heat transfer characteristics of the condensation of a high-velocity coaxial jet of a slightly superheated (3 percent) steam on a coflowing cylindrical turbulent water jet. In the experiment, the relative velocities reach hundreds of m/s; the temperature nonequilibrium of the phases is high, as is the steam flow mass density during the initial contact; heat transfer between the phases is significant. The results can be used as the basis for determining experimental criterial dependences for jet condensation.

  13. Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series

    Directory of Open Access Journals (Sweden)

    M. Wacławczyk

    2017-11-01

    Full Text Available In this paper we propose two approaches to estimating the turbulent kinetic energy (TKE dissipation rate, based on the zero-crossing method by Sreenivasan et al. (1983. The original formulation requires a fine resolution of the measured signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors, velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cutoffs. In contrast to the original formulation the new approaches are suitable for use with signals originating from airborne experiments. The suitability of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top (POST airborne research campaign as well as synthetic turbulence data. They appear useful and complementary to existing methods. We show the number-of-crossings-based approaches respond differently to errors due to finite sampling and finite averaging than the classical power spectral method. Hence, their application for the case of short signals and small sampling frequencies is particularly interesting, as it can increase the robustness of turbulent kinetic energy dissipation rate retrieval.

  14. Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series

    Science.gov (United States)

    Wacławczyk, Marta; Ma, Yong-Feng; Kopeć, Jacek M.; Malinowski, Szymon P.

    2017-11-01

    In this paper we propose two approaches to estimating the turbulent kinetic energy (TKE) dissipation rate, based on the zero-crossing method by Sreenivasan et al. (1983). The original formulation requires a fine resolution of the measured signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors, velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cutoffs. In contrast to the original formulation the new approaches are suitable for use with signals originating from airborne experiments. The suitability of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top (POST) airborne research campaign as well as synthetic turbulence data. They appear useful and complementary to existing methods. We show the number-of-crossings-based approaches respond differently to errors due to finite sampling and finite averaging than the classical power spectral method. Hence, their application for the case of short signals and small sampling frequencies is particularly interesting, as it can increase the robustness of turbulent kinetic energy dissipation rate retrieval.

  15. Simulation of Wind Speed Effect on the Fall Velocity of Raindrops

    Directory of Open Access Journals (Sweden)

    Sefri Ayuliana

    2013-08-01

    causes the terminal velocities of raindrops to get larger, and so does their kinetic energy. In that condition, raindrops fall with certain inclination angle. The stronger wind speed, the larger raindrops’ inclination angle and their kinetic energy are when hitting soil surface. Therefore it increases the risk of soil erosion at place where the soil is unstable. Through this study, speed and direction of raindrop when hitting soil surface could be investigated in order to decrease the risk of avalanche at high risk area.

  16. Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence

    Science.gov (United States)

    Vech, Daniel; Mallet, Alfred; Klein, Kristopher G.; Kasper, Justin C.

    2018-03-01

    The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well-defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a “disruption scale” {λ }{{D}}, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius ρ i , ion inertial length d i , ion sound radius ρ s , proton–cyclotron resonance scale ρ c , and disruption scale {λ }{{D}} as a function of {β }\\perp i. We find that the steepest spectral indices of the dissipation range occur when β e is in the range of 0.1–1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 au), in qualitative agreement with the reconnection model. In this range, the break scale shows a remarkably good correlation with {λ }{{D}}. Our findings suggest that, at least at low β e , reconnection may play an important role in the development of the dissipation range turbulent cascade and cause unusually steep (steeper than ‑3) spectral indices.

  17. The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake.

    Science.gov (United States)

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping

    2017-12-04

    Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,520,231 high quality sequence reads and 74,842 OTUs were obtained in all samples with α-proteobacteria, γ-proteobacteria and Actinobacteria being the most dominant taxa. The diversity and structure of bacterioplankton communities varied during the experiment, but were highly similar based on the same time of sampling, suggesting that bacterioplankton communities are insensitive to wind wave turbulence in the lake. This stability could be associated with the traits associated with bacteria. In particular, turbulence favored the growth of bacterioplankton, which enhanced biogeochemical cycling of nutrients in the lake. This study provides a better understanding of bacterioplankton communities in lake ecosystems exposed to natural mixing/disturbances.

  18. Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor: What have we learned about turbulence?a)

    Science.gov (United States)

    Wallace, James M.

    2009-02-01

    Twenty years ago there was no experimental access to the velocity gradient tensor for turbulent flows. Without such access, knowledge of fundamental and defining properties of turbulence, such as vorticity dissipation, and strain rates and helicity, could not be studied in the laboratory. Although a few direct simulations at very low Reynolds numbers had been performed, most of these did not focus on properties of the small scales of turbulence defined by the velocity gradient tensor. In 1987 the results of the development and first successful use of a multisensor hot-wire probe for simultaneous measurements of all the components of the velocity gradient tensor in a turbulent boundary layer were published by Balint et al. [Advances in Turbulence: Proceedings of the First European Turbulence Conference (Springer-Verlag, New York, 1987), p. 456]. That same year measurements of all but one of the terms in the velocity gradient tensor were carried out, although not simultaneously, in the self-preserving region of a turbulent circular cylinder wake by Browne et al. [J. Fluid Mech. 179, 307 (1987)], and the first direct numerical simulation (DNS) of a turbulent channel flow was successfully carried out and reported by Kim et al. [J. Fluid Mech. 177, 133 (1987)], including statistics of the vorticity field. Also in that year a DNS of homogeneous shear flow by Rogers and Moin [J. Fluid Mech. 176, 33 (1987)] was published in which the authors examined the structure of the vorticity field. Additionally, Ashurst et al. [Phys. Fluids 30, 2343 (1987)] examined the alignment of the vorticity and strainrate fields using this homogeneous shear flow data as well as the DNS of isotropic turbulence of Kerr [J. Fluid Mech. 153, 31 (1985)] who had initiated such studies. Furthermore, Metcalfe et al. [J. Fluid Mech. 184, 207 (1987)] published results from their direct simulation of a temporally developing planar mixing layer in which they examined coherent vortical states resulting from

  19. Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.

    Science.gov (United States)

    Chandran, Benjamin D G

    2018-02-01

    In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .

  20. Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk

    Science.gov (United States)

    Cieślikiewicz, Witold; Dudkowska, Aleksandra; Gic-Grusza, Gabriela; Jędrasik, Jan

    2017-11-01

    The principal goal of this study is to get some preliminary insights about the intensity of water movement generated by wind waves, and due to the currents in the bottom waters of Gulf of Gdańsk, during severe storms. The Gulf of Gdańsk is located in the southern Baltic Sea. This paper presents the results of analysis of wave and current-induced velocities during extreme wind conditions, which are determined based on long-term historical records. The bottom velocity fields originated from wind wave and wind currents, during analysed extreme wind events, are computed independently of each other. The long-term wind wave parameters for the Baltic Sea region are derived from the 44-year hindcast wave database generated in the framework of the project HIPOCAS funded by the European Union. The output from the numerical wave model WAM provides the boundary conditions for the model SWAN operating in high-resolution grid covering the area of the Gulf of Gdańsk. Wind current velocities are calculated with the M3D hydrodynamic model developed in the Institute of Oceanography of the University of Gdańsk based on the POM model. The three dimensional current fields together with trajectories of particle tracers spreading out of bottom boundary layer are modelled, and the calculated fields of bottom velocities are presented in the form of 2D maps. During northerly winds, causing in the Gulf of Gdańsk extreme waves and most significant wind-driven circulation, the wave-induced bottom velocities are greater than velocities due to currents. The current velocities in the bottom layer appeared to be smaller by an order of magnitude than the wave-induced bottom orbital velocities. Namely, during most severe northerly storms analysed, current bottom velocities ranged about 0.1-0.15 m/s, while the root mean square of wave-induced near-seabed velocities reached maximum values of up to 1.4 m/s in the southern part of Gulf of Gdańsk.

  1. A Data-driven Model of the Solar Wind, Interstellar Pickup Ions, and Turbulence Throughout the Interplanetary Space

    Science.gov (United States)

    Kim, T. K.; Kryukov, I.; Pogorelov, N. V.; Elliott, H. A.; Zank, G. P.

    2017-12-01

    The outer heliosphere is an interesting region characterized by the interaction between the solar wind and the interstellar neutral atoms. Having accomplished the mission to Pluto in 2015 and currently on the way to the Kuiper Belt, the New Horizons spacecraft is following the footsteps of the two Voyager spacecraft that previously explored this region lying roughly beyond 30 AU from the Sun. We model the three-dimensional, time-dependent solar wind plasma flow to the outer heliosphere using our own software Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which, in addition to the thermal solar wind plasma, takes into account charge exchange of the solar wind protons with interstellar neutral atoms and treats nonthermal ions (i.e., pickup ions) born during this process as a separate fluid. Additionally, MS-FLUKSS allows us to model turbulence generated by pickup ions. We use MS-FLUKSS to investigate the evolution of plasma and turbulent fluctuations along the trajectory of the New Horizons spacecraft using plasma and turbulence parameters from OMNI data as time-dependent boundary conditions at 1 AU for the Reynolds-averaged MHD equations. We compare the model with in situ plasma observations by New Horizons, Voyager 2, and Ulysses. We also compare the model pickup proton parameters with those derived from the Ulysses-SWICS data.

  2. Remote Sensing Data in Wind Velocity Field Modelling: a Case Study from the Sudetes (SW Poland)

    Science.gov (United States)

    Jancewicz, Kacper

    2014-06-01

    The phenomena of wind-field deformation above complex (mountainous) terrain is a popular subject of research related to numerical modelling using GIS techniques. This type of modelling requires, as input data, information on terrain roughness and a digital terrain/elevation model. This information may be provided by remote sensing data. Consequently, its accuracy and spatial resolution may affect the results of modelling. This paper represents an attempt to conduct wind-field modelling in the area of the Śnieżnik Massif (Eastern Sudetes). The modelling process was conducted in WindStation 2.0.10 software (using the computable fluid dynamics solver Canyon). Two different elevation models were used: the Global Land Survey Digital Elevation Model (GLS DEM) and Digital Terrain Elevation Data (DTED) Level 2. The terrain roughness raster was generated on the basis of Corine Land Cover 2006 (CLC 2006) data. The output data were post-processed in ArcInfo 9.3.1 software to achieve a high-quality cartographic presentation. Experimental modelling was conducted for situations from 26 November 2011, 25 May 2012, and 26 May 2012, based on a limited number of field measurements and using parameters of the atmosphere boundary layer derived from the aerological surveys provided by the closest meteorological stations. The model was run in a 100-m and 250-m spatial resolution. In order to verify the model's performance, leave-one-out cross-validation was used. The calculated indices allowed for a comparison with results of former studies pertaining to WindStation's performance. The experiment demonstrated very subtle differences between results in using DTED or GLS DEM elevation data. Additionally, CLC 2006 roughness data provided more noticeable improvements in the model's performance, but only in the resolution corresponding to the original roughness data. The best input data configuration resulted in the following mean values of error measure: root mean squared error of velocity

  3. Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall

    International Nuclear Information System (INIS)

    Skote, Martin

    2014-01-01

    Highlights: • Scaling analysis is used to derive a log-law for drag reduced flow. • The slope of the log layer is directly linked to the drag reduction. • The result is only valid for wall manipulated flows – not fluid altering methods. • Extensive comparison with data found in the literature is made. - Abstract: Scaling analysis of the velocity profiles in strongly drag reduced flows reveals that the slope of the logarithmic part depends on the amount of drag reduction (DR). Unlike DR due to polymeric fluids, the slope changes gradually and can be predicted by the analysis. Furthermore, the intercept of the profiles is found to vary linearly with the DR. Two velocity scales are utilized: the reference (undisturbed) and the actual friction velocity. The theory is based on the assumption that the near-wall linear region is only governed by the actual friction velocity, while the outer part is governed by the reference friction velocity. As a result, logarithmic part is influenced by both velocity scales and the slope of the velocity profile is directly linked to the DR. The theoretically obtained results are verified by data from six previously performed direct numerical simulations (DNSs) of boundary layers over spatial and temporal wall oscillations, with a wide range of resulting DR. The theory is further supported by data from numerous investigations (DNSs as well as experiments) of wall-bounded flows forced by various forms of oscillating wall-motion. The assumption that the outer part is unaffected by the actual friction velocity limits the validity of the proposed log-law to flows not fully adapted to the imposed wall forcing, hence the theory provides a measure of the level of adjustment. In addition, a fundamental difference in the applicability of the theory to spatially developing boundary flow and infinite channel flow is discussed

  4. A Tall-Tower Instrument for Mean and Fluctuating Velocity, Fluctuating Temperature and Sensible Heat Flux Measurements

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Thomson, D. W.

    1979-01-01

    For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor. The tem......For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor...

  5. Velocity-intermittency structure for wake flow of the pitched single wind turbine under different inflow conditions

    Science.gov (United States)

    Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael

    2017-11-01

    The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.

  6. Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test

    Science.gov (United States)

    Aryan, Homayon; Boynton, Richard J.; Walker, Simon N.

    2013-02-01

    A correlation between solar wind velocity (VSW) and energetic electron fluxes (EEF) at the geosynchronous orbit was first identified more than 30 years ago. However, recent studies have shown that the relation between VSW and EEF is considerably more complex than was previously suggested. The application of process identification technique to the evolution of electron fluxes in the range 1.8 - 3.5 MeV has also revealed peculiarities in the relation between VSW and EEF at the geosynchronous orbit. It has been revealed that for a constant solar wind density, EEF increase with VSW until a saturation velocity is reached. Beyond the saturation velocity, an increase in VSW is statistically not accompanied with EEF enhancement. The present study is devoted to the investigation of saturation velocity and its dependency upon solar wind density using the reverse arrangement test. In general, the results indicate that saturation velocity increases as solar wind density decreases. This implies that solar wind density plays an important role in defining the relationship between VSW and EEF at the geosynchronous orbit.

  7. Climatology of Velocity and Temperature Turbulence Statistics Determined from Rawinsonde and ACARS/AMDAR Data

    Science.gov (United States)

    2010-06-01

    Lindborg (2001), and have been used for other meteoro- logical applications (Buell 1960; Barnes and Lilly 1975; Maddox and Vonder Haar 1979; Gomis and...spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–288. ——, 2005: The effect of rotation on the mesoscale energy cascade in...the free atmosphere. Geophys. Res. Lett., 32, L01809, doi:10.1029/2004GL021319. ——, 2006: The energy cascade in a strongly stratified fluid. J. Fluid

  8. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...

  9. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  10. Anomalous scaling of low-order structure functions of turbulent velocity

    International Nuclear Information System (INIS)

    Chen, S.Y.; Dhruva, B.; Kurien, S.; Sreenivasan, K.R.; Taylor, M.A.

    2006-12-01

    It is now believed that the scaling exponents of moments of velocity increments are anomalous, or that the departures from Kolmogorov's (1941) self-similar scaling increase nonlinearly with the increasing order of the moment. This appears to be true whether one considers velocity increments themselves or their absolute values. However, moments of order lower than 2 of the absolute values of velocity increments have not been investigated thoroughly for anomaly. Here, we discuss the importance of the scaling of non-integer moments of order between +2 and -1, and obtain them from direct numerical simulations at moderate Taylor microscale Reynolds numbers R λ ≤ 450, and experimental data at high Reynolds numbers (R λ ∼ 10 000). The relative difference between the measured exponents and Kolmogorov's prediction increases as the moment order decreases towards -1, thus showing that the anomaly is manifested in low-order moments as well. (author)

  11. A comparison of predicted and observed turbulent wind fields present in natural and internal wind park environments

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, N D; Wright, A D

    1991-10-01

    This paper assesses the accuracy of simulated wind fields for both the natural flow and that within a wind park environment. The simulated fields are compared with the observed ones in both the time and frequency domains. Actual measurements of the wind fields and the derived kinematic scaling parameters upwind and downwind of a large San Gorgonio Pass wind park are used. The deviations in the modeled wind field from the observed are discussed. 10 refs., 6 figs., 2 tabs.

  12. Coordinated Study on Solar Wind Turbulence During the Venus-Express, ACE and Ulysses Alignment of August 2007

    Czech Academy of Sciences Publication Activity Database

    Bruno, R.; Carbone, V.; Vörös, Z.; D'Amicis, R.; Bavassano, B.; Cattaneo, M. B.; Mura, A.; Milillo, A.; Orsini, S.; Veltri, P.; Sorriso-Valvo, L.; Zhang, T. L.; Biernat, H.; Rucker, H.; Baumjohann, W.; Jankovičová, Dana; Kovács, B.

    2009-01-01

    Roč. 104, 1-4 (2009), s. 101-104 ISSN 0167-9295. [European General Assembly on International Heliophysics Year. Torino, 18.06.2007-22.06.2007] Institutional research plan: CEZ:AV0Z30420517 Keywords : Solar wind * MHD turbulence * Space plasma physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.655, year: 2009 http://www.springerlink.com/content/4368229757764645/fulltext.pdf

  13. Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2011-10-01

    Full Text Available Using the four Cluster spacecraft, we have determined the three-dimensional wave-vector spectra of fluctuating magnetic fields in the solar wind. Three different solar wind intervals of Cluster data are investigated for this purpose, representing three different spatial scales: 10 000 km, 1000 km, and 100 km. The spectra are determined using the wave telescope technique (k-filtering technique without assuming the validity of Taylor's frozen-in-flow hypothesis nor are any assumptions made as to the symmetry properties of the fluctuations. We find that the spectra are anisotropic on all the three scales and the power is extended primarily in the directions perpendicular to the mean magnetic field, as might be expected of two-dimensional turbulence, however, the analyzed fluctuations are not axisymmetric. The lack of axisymmetry invalidates some earlier techniques using single spacecraft observations that were used to estimate the percentage of magnetic energy residing in quasi-two-dimensional power. However, the dominance of two-dimensional turbulence is consistent with the relatively long mean free paths of cosmic rays in observed in the heliosphere. On the other hand, the spectra also exhibit secondary extended structures oblique from the mean magnetic field direction. We discuss possible origins of anisotropy and asymmetry of solar wind turbulence spectra.

  14. Plasma turbulence resulting from the interaction between the solar wind and the earth's magnetic field

    International Nuclear Information System (INIS)

    Roux, A.

    1989-01-01

    The interaction between the supersonic and super-Alfvenic solar wind plasma and the Earth's magnetic field leads to the formation of critical layers, such as the bow shock, the magnetopause, the polar cusp, and the inner and outer edge of the plasmasheet. The mean free path between binary colisions being much larger than the transverse scale of these layers, plasma turbulence must ensure the thermalization, the magnetic diffusion, the dissipation within these critical layers. We suggest the existence of small scale, presumably 2D structures, developing within these thin layers. The unambiguous characterization of these small-scale structures is, however, beyond the capabilities of existing spacecraft, which cannot spatially resolve them, nor disentangle spatial/temporal variations. We present a new mission concept: a cluster of four relatively simple spacecraft, which will make it possible (i) to disentangle spatial from temporal variations, (ii) to evaluate, by finite differences between spacecraft measurements, the gradients, divergences, curls of MHD parameters, and )iii) to characterize small-scale structures, via inter-spacecraft correlations. (author). 10 refs.; 10 figs

  15. Measurements of surface-layer turbulence in awide norwegian fjord using synchronized long-range doppler wind lidars

    DEFF Research Database (Denmark)

    Cheynet, Etienne; Jakobsen, Jasna B.; Snæbjörnsson, Jónas

    2017-01-01

    lidar data with point-measurement to reduce the uncertainties linked to the atmospheric stability and the spatial averaging of the lidar probe volume. The measured lateral coherence was associated with a decay coefficient larger than expected for the along-wind component, with a value around 21...... for a mean wind velocity bounded between 10m·s-1 and 14m·s-1, which may be related to a stable atmospheric stratification....

  16. AXAOTHER XL -- A spreadsheet for determining doses for incidents caused by tornadoes or high-velocity straight winds

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    1996-09-01

    AXAOTHER XL is an Excel Spreadsheet used to determine dose to the maximally exposed offsite individual during high-velocity straight winds or tornado conditions. Both individual and population doses may be considered. Potential exposure pathways are inhalation and plume shine. For high-velocity straight winds the spreadsheet has the capability to determine the downwind relative air concentration, however for the tornado conditions, the user must enter the relative air concentration. Theoretical models are discussed and hand calculations are performed to ensure proper application of methodologies. A section has also been included that contains user instructions for the spreadsheet

  17. Influence of Rigid Body Motions on Rotor Induced Velocities and Aerodynamic Loads of a Floating Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    de Vaal, Jacobus B.; Hansen, Martin Otto Laver; Moan, Torgeir

    2014-01-01

    This paper discusses the influence of rigid body motions on rotor induced velocities and aerodynamic loads of a floating horizontal axis wind turbine. Analyses are performed with a simplified free wake vortex model specifically aimed at capturing the unsteady and non-uniform inflow typically......, and captures the essential influences of rigid body motions on the rotor loads, induced velocities and wake influence....... experienced by a floating wind turbine. After discussing the simplified model in detail, comparisons are made to a state of the art free wake vortex code, using test cases with prescribed platform motion. It is found that the simplified model compares favourably with a more advanced numerical model...

  18. Wind gusts and plant aeroelasticity effects on the aerodynamics of pollen shedding: a hypothetical turbulence-initiated wind-pollination mechanism.

    Science.gov (United States)

    Urzay, Javier; Llewellyn Smith, Stefan G; Thompson, Elinor; Glover, Beverley J

    2009-08-21

    Plant reproduction depends on pollen dispersal. For anemophilous (wind-pollinated) species, such as grasses and many trees, shedding pollen from the anther must be accomplished by physical mechanisms. The unknown nature of this process has led to its description as the 'paradox of pollen liberation'. A simple scaling analysis, supported by experimental measurements on typical wind-pollinated plant species, is used to estimate the suitability of previous resolutions of this paradox based on wind-gust aerodynamic models of fungal-spore liberation. According to this scaling analysis, the steady Stokes drag force is found to be large enough to liberate anemophilous pollen grains, and unsteady boundary-layer forces produced by wind gusts are found to be mostly ineffective since the ratio of the characteristic viscous time scale to the inertial time scale of acceleration of the wind stream is a small parameter for typical anemophilous species. A hypothetical model of a stochastic aeroelastic mechanism, initiated by the atmospheric turbulence typical of the micrometeorological conditions in the vicinity of the plant, is proposed to contribute to wind pollination.

  19. Turbulence for different background conditions using fuzzy logic and clustering

    Directory of Open Access Journals (Sweden)

    K. Satheesan

    2010-08-01

    Full Text Available Wind and turbulence estimated from MST radar observations in Kiruna, in Arctic Sweden are used to characterize turbulence in the free troposphere using data clustering and fuzzy logic. The root mean square velocity, νfca, a diagnostic of turbulence is clustered in terms of hourly wind speed, direction, vertical wind speed, and altitude of the radar observations, which are the predictors. The predictors are graded over an interval of zero to one through an input membership function. Subtractive data clustering has been applied to classify νfca depending on its homogeneity. Fuzzy rules are applied to the clustered dataset to establish a relationship between predictors and the predictant. The accuracy of the predicted turbulence shows that this method gives very good prediction of turbulence in the troposphere. Using this method, the behaviour of νfca for different wind conditions at different altitudes is studied.

  20. Overview of the TurbSim Stochastic Inflow Turbulence Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, N. D.; Jonkman, B. J.

    2005-09-01

    The TurbSim stochastic inflow turbulence code was developed to provide a numerical simulation of a full-field flow that contains coherent turbulence structures that reflect the proper spatiotemporal turbulent velocity field relationships seen in instabilities associated with nocturnal boundary layer flows that are not represented well by the IEC Normal Turbulence Models (NTM). Its purpose is to provide the wind turbine designer with the ability to drive design code (FAST or MSC.ADAMS) simulations of advanced turbine designs with simulated inflow turbulence environments that incorporate many of the important fluid dynamic features known to adversely affect turbine aeroelastic response and loading.

  1. Measurement of rotor centre flow direction and turbulence in wind farm environment

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Sommer, A.

    2014-01-01

    The measurement of inflow to a wind turbine rotor was made with a spinner anemometer on a 2 MW wind turbine in a wind farm of eight wind turbines. The wind speed, yaw misalignment and flow inclination angle was measured during a five months measurement campaign. Angular measurements were calibrat...

  2. Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Segalini, A.

    2015-01-01

    A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...

  3. Lifetimes of flame balls dragged by model turbulent flows: Role of velocity gradient fluctuations.

    Science.gov (United States)

    D'Angelo, Yves; Joulin, Guy

    2004-03-01

    An isolated combustion spot-known as a flame ball (FB)-is considered while it is advected by a turbulent flow of a lean premixture of such a light fuel as hydrogen. A Batchelor approximation for the surrounding Lagrangian flow is made. This in principle gives one an access to the FB lifetime t(life) and to its response to the ambiant Lagrangian rate-of-strain tensor g(t), by means of a nonlinear and forced integro-differential equation for the current FB radius. For a diagonal g(t) deduced from random Markov processes of the Ornstein-Uhlenbeck type, or linearly filtered versions thereof, extensive numerical simulations and approximate theoretical analyses agree that (i) flame balls can definitely live for much longer than their time of spontaneous expansion/collapse; (ii) large enough values of t(life) are compatible with Poisson statistics; (iii) the variations of with the characteristics of g(t) mirror the latter's statistics, more precisely that of trace(g(2)). Open problems, dealing with a nondiagonal g(t), ignition-related transients and/or collective effects, finally are evoked.

  4. Turbulent Density Fluctuations and Proton Heating Rate in the Solar Wind from 9-20 R ⊙

    Science.gov (United States)

    Sasikumar Raja, K.; Subramanian, Prasad; Ramesh, R.; Vourlidas, Angelos; Ingale, Madhusudan

    2017-12-01

    We obtain scatter-broadened images of the Crab Nebula at 80 MHz as it transits through the inner solar wind in 2017 and 2016 June. These images are anisotropic, with the major axis oriented perpendicular to the radially outward coronal magnetic field. Using these data, we deduce that the density modulation index (δ {N}e/{N}e) caused by turbulent density fluctuations in the solar wind ranges from 1.9× {10}-3 to 7.7× {10}-3 between 9 and 20 R ⊙. We also find that the heating rate of solar wind protons at these distances ranges from 2.2× {10}-13 to 1.0× {10}-11 {erg} {{cm}}-3 {{{s}}}-1. On two occasions, the line of sight intercepted a coronal streamer. We find that the presence of the streamer approximately doubles the thickness of the scattering screen.

  5. Application of simulated lidar scanning patterns to constrained Gaussian turbulence fields for load validation

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand

    2017-01-01

    We demonstrate a method for incorporating wind velocity measurements from multiple-point scanning lidars into threedimensional wind turbulence time series serving as input to wind turbine load simulations. Simulated lidar scanning patterns are implemented by imposing constraints on randomly gener...

  6. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew; Muljadi, Eduard; Gevorgian, Vahan; Wang, Jianhui; Yan, Weihang; Zhang, Huaguang

    2017-10-18

    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.

  7. Investigation of Velocity Distribution in Open Channel Flows Based on Conditional Average of Turbulent Structures

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-01-01

    Full Text Available We report the development of a new analytical model similar to the Reynolds-averaged Navier-Stokes equations to determine the distribution of streamwise velocity by considering the bursting phenomenon. It is found that, in two-dimensional (2D flows, the underlying mechanism of the wake law in 2D uniform flow is actually a result of up/down events. A special experiment was conducted to examine the newly derived analytical model, and good agreement is achieved between the experimental data in the inner region and the model’s prediction. The obtained experimental data were also used to examine the DML-Law (dip-modified-log-law, MLW-Law (modified-log-wake law, and CML-Law (Cole’s wake law, and the agreement is not very satisfactory in the outer region.

  8. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    DEFF Research Database (Denmark)

    Berg, Jacob; Natarajan, Anand; Mann, Jakob

    2016-01-01

    taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...

  9. Regional Analysis of Long-term Local and Synoptic Effects on Wind Velocity and Energy Patterns in Complex Terrain

    Science.gov (United States)

    Belu, R.; Koracin, D. R.

    2017-12-01

    Investments in renewable energy are justified in both environmental and economic terms. Climate change risks call for mitigation strategies aimed to reduce pollutant emissions, while the energy supply is facing high uncertainty by the current or future global economic and political contexts. Wind energy is playing a strategic role in the efforts of any country for sustainable development and energy supply security. Wind energy is a weather and climate-dependent resource, having a natural spatio-temporal variability at time scales ranging from fraction of seconds to seasons and years, while at spatial scales is strongly affected by the topography and vegetation. Main objective of the study is to investigate spatio-temporal characteristics of the wind velocity in the Southwest U.S., that are relevant to wind energy assessment, analysis, development, operation, and grid integration, by using long-term multiple meteorological tower observations. Wind velocity data and other meteorological parameters from five towers, located near Tonopah, Nevada, operated between 2003 to 2008, and from three towers are located in Carson Valley, Nevada, operated between 2006 and 2014 were used in this study. Multi-annual wind speed data collected did not show significant increase trends with increasing elevation; the differences are mainly governed by the topographic complexity, including local atmospheric circulations. Auto- and cross-correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multi-day periodicity with increasing lag periods. Besides pronounced diurnal periodicity at all locations, detrended fluctuation analysis also showed significant seasonal and annual periodicities, and long-memory persistence with similar characteristics. In spite of significant differences in mean wind speeds among the towers, due to location specifics, the relatively high auto- and cross-correlation coefficients among the towers indicate

  10. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    International Nuclear Information System (INIS)

    Krakauer, Nir Y.

    2006-01-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO 2 , between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14 C and 13 C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14 CO 2 and 13 CO 2 . While the atmosphere and ocean inventories of 14 CO 2 and 13 CO 2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14 C and 13 C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14 C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14 C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14 C in atmospheric CO 2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 ± 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 ± 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13 C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed

  11. Tempered fractional time series model for turbulence in geophysical flows

    Science.gov (United States)

    Meerschaert, Mark M.; Sabzikar, Farzad; Phanikumar, Mantha S.; Zeleke, Aklilu

    2014-09-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model.

  12. Tempered fractional time series model for turbulence in geophysical flows

    International Nuclear Information System (INIS)

    Meerschaert, Mark M; Sabzikar, Farzad; Phanikumar, Mantha S; Zeleke, Aklilu

    2014-01-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model. (paper)

  13. Turbulence in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.

  14. Vegetation as an indicator of high wind velocity. Annual progress report, June 15, 1978--March 14, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, E. W.; Wade, J. E.; Baker, R. W.

    1979-03-01

    The most important results are presented of work completed during the past year of the study Vegetation as an Indicator of High Wind Velocity. The most important achievement during the past year was the completion of a draft of a handbook on the use of trees as an indicator of wind power potential. This handbook describes relationships between mean annual wind speed and indices of wind deformation of two species of trees widely distributed in the western United States. Work during the past year on other species of trees indicates that the techniques calibrated initially for only Douglas-fir and Ponderosa Pine can also be calibrated on other trees including broadleaf trees such as oaks.

  15. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi

    2014-01-01

    the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so......We extend the functionality of a low-cost CW diode lasercoherent lidar from radial wind speed (scalar) sensing to wind velocity(vector) measurements. Both speed and horizontal direction of the wind at~80 m remote distance are derived from two successive radial speedestimates by alternately steering...... it either transmits throughor reflects off a polarization splitter. The room-temperature switching timebetween the two LOS is measured to be in the order of 100μs in one switchdirection but 16 ms in the opposite transition. Radial wind speedmeasurement (at 33 Hz rate) while the lidar beam is repeatedly...

  16. Turbulent wind field characterization and re-generation based on pitot tube measurements mounted on a wind turbine

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge

    2015-01-01

    This paper describes a new method to estimate the undisturbed inflow field of a wind turbine based on measurements obtained from one or more five-hole pitot tubes mounted directly on the blades. Based on the measurements, the disturbance caused by the wind turbine is estimated using aerodymanic m...

  17. Improving a two-equation eddy-viscosity turbulence model to predict the aerodynamic performance of thick wind turbine airfoils

    Science.gov (United States)

    Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus

    2018-03-01

    Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.

  18. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  19. Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)

    2016-01-15

    The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

  20. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  1. Coherent structures in the solar wind and their role in basic turbulence processes and particle energization at low and high heliolatitudes

    Science.gov (United States)

    Khabarova, O.

    2017-12-01

    Despite the existence of main sources of accelerated particles in the solar wind such as flares and shocks, turbulence and associated coherent structures may be responsible for heating and particle energization throughout the heliosphere. Recent studies convincingly link turbulence, intermittency and magnetic reconnection and show the necessity of a complex approach to investigation of these phenomena. Observations of energetic particle enhancements in turbulent wakes of interplanetary shocks, near reconnecting current sheets and within magnetic cavities filled with magnetic islands support theoretical expectations of particle energization in the presence of coherent structures in the solar wind. It has been shown that such energetic particle enhancements may be as intense as ordinary solar energetic particle events. Therefore, the investigation of all possible manifestations of turbulence is essential for better understanding of local processes of particle acceleration in the solar wind. General characteristics of turbulence in the solar wind plasma are usually studied via the analysis of the power spectrum of magnetic and plasma fluctuations, and more detailed studies suggest using the partial variance of increments method. Such studies are predominantly undertaken at 1 AU, and there has been only a limited number of attempts of understanding the spatial evolution of intermittency from in situ observations of magnetic and plasma fluctuations. We report first results of the "Current Sheets, Turbulence, Structures and Particle Acceleration in the Heliosphere" project (ISSI team 405) on the evolution of intermittent turbulence with heliocentric distance and latitude, up to 5.4 AU (http://www.issibern.ch/teams/structpartaccel/). The role of current sheets, magnetic reconnection and processes in the turbulent neighborhood of reconnecting current sheets in initial and secondary particle acceleration throughout the heliosphere is discussed.

  2. Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

    International Nuclear Information System (INIS)

    Saito, S.; Gary, S. Peter; Narita, Y.

    2010-01-01

    The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.

  3. Investigation of a Novel Turbulence Model and Using Leading-Edge Slots for Improving the Aerodynamic Performance of Airfoils and Wind Turbines

    Science.gov (United States)

    Beyhaghi, Saman

    Because of the problems associated with increase of greenhouse gases, as well as the limited supplies of fossil fuels, the transition to alternate, clean, renewable sources of energy is inevitable. Renewable sources of energy can be used to decrease our need for fossil fuels, thus reducing impact to humans, other species and their habitats. The wind is one of the cleanest forms of energy, and it can be an excellent candidate for producing electrical energy in a more sustainable manner. Vertical- and Horizontal-Axis Wind Turbines (VAWT and HAWT) are two common devices used for harvesting electrical energy from the wind. Due to the development of a thin boundary layer over the ground surface, the modern commercial wind turbines have to be relatively large to be cost-effective. Because of the high manufacturing and transportation costs of the wind turbine components, it is necessary to evaluate the design and predict the performance of the turbine prior to shipping it to the site, where it is to be installed. Computational Fluid Dynamics (CFD) has proven to be a simple, cheap and yet relatively accurate tool for prediction of wind turbine performance, where the suitability of different designs can be evaluated at a low cost. High accuracy simulation methods such as Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) are developed and utilized in the past decades. Despite their superior importance in large fluid domains, they fail to make very accurate predictions near the solid surfaces. Therefore, in the present effort, the possibility of improving near-wall predictions of CFD simulations in the near-wall region by using a modified turbulence model is also thoroughly investigated. Algebraic Stress Model (ASM) is employed in conjunction with Detached Eddy Simulation (DES) to improve Reynolds stresses components, and consequently predictions of the near-wall velocities and surface pressure distributions. The proposed model shows a slightly better performance

  4. PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Hellinger, Petr; Trávnícek, Pavel M. [Astronomical Institute, CAS, Bocni II/1401, CZ-14100 Prague (Czech Republic); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Landi, Simone; Verdini, Andrea; Franci, Luca, E-mail: petr.hellinger@asu.cas.cz [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy)

    2015-10-01

    The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.

  5. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Mérand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schöller, M.; Teodoro, M.; Wittkowski, M.

    2016-10-01

    Context. The mass loss from massive stars is not understood well. η Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims: We want to investigate the structure and kinematics of η Car's primary star wind and wind-wind collision zone with a high spatial resolution of ~6 mas (~14 au) and high spectral resolution of R = 12 000. Methods: Observations of η Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results: We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Brγ 2.166 μm emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to - 376 km s-1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of - 277 km s-1, the position angle of the symmetry axis of the fan is ~126°. The fan-shaped structure extends approximately 8.0 mas (~18.8 au) to the southeast and 5.8 mas (~13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  6. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  7. Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars

    International Nuclear Information System (INIS)

    Mikkelsen, T; Mann, J; Courtney, M; Sjoeholm, M

    2008-01-01

    At RISOe DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed

  8. Effects of Vegetation Morphology on Mean Velocity and Turbulence Intensity under Oscillatory Flows and Their Implications for Sediment Transport in Benthic Zone

    Science.gov (United States)

    San Juan Blanco, J. E.; Veliz, G.; Tinoco, R. O.

    2016-12-01

    Aquatic vegetation modifies the flow by generating coherent structures and imposing resistance. Flow-vegetation interaction becomes function of individual plant morphology (stem and leaf shape and dimensions), canopy density, and spatial distribution of vegetation. We investigate the effect of plant morphology on turbulence intensity under oscillatory flows. By using a state-of-the-art 3D volumetric Particle Image Velocimetry system (3D-PIV), we characterize the mean velocity and turbulence statistics near and around submerged vegetation within an oscillatory tunnel. The U-shape oscillatory tunnel allows us to reproduce well-defined waves over a wide range of periods and amplitudes, whereas the 3D-PIV system allows us to obtain instantaneous velocity fields with high temporal frequency and spatial resolution in the vicinity of several types of vegetation. Our study of the three-dimensional velocity field provides further insight into the near-bed flow conditions and its interactions with the observed leaf-, stem- and canopy-scale flow structures, which in turn control resuspension and deposition of sediment within and around patches of vegetation. Since vegetation-induced turbulence drives essential transport mechanisms for ecosystem development, such as gas exchange, nutrient transport, bed and suspended sediment transport, among others, characterization of its dependence on plant morphology and flow conditions will improve our understanding of their role in aquatic environments and the impacts caused by human activities on coastal and tidal vegetated areas.

  9. Influence of free stream turbulence on a trailing line vortex

    Science.gov (United States)

    Ash, Robert L.; Stead, Daniel J.

    1990-01-01

    Low-speed wind tunnel experiments have been conducted to investigate the influence of free stream turbulence on the mean behavior of a trailing line vortex. Perforated plates and screens were used to produce turbulence levels ranging between 0.03 percent and 5 percent of the free stream velocity in the vicinity of the vortex generator. Smoke was used to provide a visual image of the vortex and photographic and videotape records were taken. Experiments have shown that high turbulence levels cause vortices to meander but with little evidence of structural change. At lower turbulence intensities, some types of vortex oscillations were observed which suggest possible instabilities.

  10. Field computation of winds-aloft velocities from single theodolite pilot balloon observations

    Science.gov (United States)

    Bill C. Ryan

    1976-01-01

    The ability to determine wind speeds and directions in the first few thousand meters of the atmosphere is important in many forestry operations such as smolce management, aircraft seeding and spraying, prescribed burning, and wildfire suppression. A hand-held electronic calculator can be used to compute winds aloft as balloon observations are taken. Calculations can...

  11. Study of wind forces on low-rise hip-roof building

    African Journals Online (AJOL)

    DR OKE

    Wind pressures on buildings and structures depend upon the velocity profile and turbulence ... the interaction between wind and structures numerically offering an alternative technique to practical applications. Earlier the ..... Areas of research are masonry structures, Computational Fluid Dynamics and Wind engineering.

  12. Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor

    Energy Technology Data Exchange (ETDEWEB)

    Beccali, M.; Marvuglia, A. [Dipartimento di Ricerche Energetiche ed Ambientali (DREAM), Universita degli Studi di Palermo, Viale delle Scienze - edificio 9, 90128 Palermo (Italy); Cirrincione, G. [Department de Genie Electrique, Universite de Picardie Jules Verne, 33, Rue Saint Leu, 80039 Amiens (France); Serporta, C. [ISSIA-CNR (Institute on Intelligent Systems for the Automation), Section of Palermo, Via Dante12, Palermo (Italy)

    2010-03-15

    Wind energy evaluation is an important goal in the conversion of energy systems to more environmentally friendly solutions. In this paper, we present a novel approach to wind speed spatial estimation on the isle of Sicily (Italy): an incremental self-organizing neural network (Generalized Mapping Regressor - GMR) is coupled with exploratory data analysis techniques in order to obtain a map of the spatial distribution of the average wind speed over the entire region. First, the topographic surface of the island was modelled using two different neural techniques and by exploiting the information extracted from a digital elevation model of the region. Then, GMR was used for automatic modelling of the terrain roughness. Afterwards, a statistical analysis of the wind data allowed for the estimation of the parameters of the Weibull wind probability distribution function. In the last sections of the paper, the expected values of the Weibull distributions were regionalized using the GMR neural network. (author)

  13. Development of ultrasonic velocity profile method for flow rate measurements of power plant (effect of measurement volume on turbulent flow measurement)

    International Nuclear Information System (INIS)

    Hiroshige, Kikura; Gentaro, Yamanaka; Tsuyoshi, Taishi; Masanori, Aritomi; Yasushi, Takeda; Michitsugu, Mori

    2001-01-01

    Ultrasonic Velocity Profile method has many advantages for flow rate measurement of power plant over the conventional flow measurement methods, such as measurement of the instantaneous velocity profile along the measuring line and its applicability to opaque liquids. Furthermore, the method has an advantage of being non-intrusive. Hence, it is applicable to various flow conditions, although it requires a relatively large measurement volume. In this paper, the effects of the measurement volume on the mean velocity profile for flow rate measurements of power plant and the Reynolds stress measurement have been investigated for fully developed turbulent pipe flows in a vertical pipe. The results are then compared with data obtained by Direct Numerical Simulation (DNS). (authors)

  14. Measurements of turbulent velocity profiles in combined system of polymer additives and riblets; Kobunshi tenkazai to riblet tono fukugokei ni okeru ranryu sokudo bunpu no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Mizunuma, H. [Tokyo Metropolitan Univ., Tokyo (Japan); Ban, T. [Hino Motors, Ltd., Tokyo (Japan)

    2000-03-25

    In the combined system of polymer additives and riblets, the polymer additives expand the range of non-dimensionalized riblet width s{sup +} where the riblets reduce the frictional drag. Although in the higher region of s{sup +} the riblets increase the frictional drag as the rough surface, the polymer additives thicken the wall layer, which dumps the drag increase due to riblets and then gives the benefical combined effect in this higher region of s{sup +}. Based on this scinario, the velocity profile and the pipe frictional coefficient for the combined system were derived from the velocity profile of each system. The turbulent velocity profiles were measured for the combined system using a laser Doppler velocimetry. The measured results agreed well with the derived prediction for the combined system. (author)

  15. Influence of the control system on wind turbine reliability in extreme turbulence

    DEFF Research Database (Denmark)

    Abdallah, Imad; Natarajan, Anand; Sørensen, J. D.

    2014-01-01

    alleviation control features. It is shown that large uncertainties in inflow conditions and turbulence can be significantly reduced while maintaining an acceptable structural reliability through the use of advanced structural load alleviation control features. However, that comes at a cost of increased...... controller complexity and loss in annual energy production....

  16. Comparison of a simulated velocity profile of a turbulent boundary layer with measurements obtained by Femtosecond Laser Electronic Excitation Tagging (FLEET)

    Science.gov (United States)

    New-Tolley, Matthew; Zhang, Yibin; Shneider, Mikhail; Miles, Richard

    2017-11-01

    Accurate velocimetry measurements of turbulent flows are essential for improving our understanding of turbulent phenomena and validating numerical approaches. Femtosecond Laser Electronic Excitation Tagging (FLEET) is an unseeded molecular tagging method for velocimetry measurements in flows which contain nitrogen. A femtosecond laser pulse is used to ionize and dissociate nitrogen molecules within its focal zone. The decaying plasma fluoresces in the visible and infrared spectrum over a period of microseconds which allows the displacement of the tagged region to be photographed to determine velocity. This study compares the experimental and numerical advection of the tagged region in a turbulent boundary layer generated by a supersonic flow over a flat plate. The tagged region in the simulation is approximated as an infinitely thin cylinder while the flow field is generated using the steady state boundary layer equations with an algebraic turbulence model. This approximation is justified by previous computational analyses, using an unsteady three-dimensional Navier-Stokes solver, which indicate that the radial perturbations of the tagged region are negligible compared to its translation. This research was conducted with government support from the Air Force Office of Scientific Research under Dr. Ivett Leyva and the Army Research Office under Dr. Matthew Munson.

  17. Turbulent conductivity in parallel with iso-velocities in a planar established flow; Conductibilite turbulente parallelement aux isovitesses dans un ecoulement plan en regime etabli

    Energy Technology Data Exchange (ETDEWEB)

    Jullien, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires, Direction des piles atomiques

    1968-02-01

    In this thesis are presented the experimental results obtained during the study of the turbulent diffusion of heat using a wire source in a flat air flow. The Taylor statistical theory laws are well respected in the domain studied. The experiments have made it possible to evaluate the influence of the Reynolds number and of the distance from the wall on the quadratic values of velocity fluctuations and on the Lagrange turbulence scales. In particular, the author has found a correlation between the Lagrange scales and the friction coefficient when the Reynolds number varies. A diffusion law is derived from the Taylor theory; it makes it possible to explain more clearly the idea of turbulent conductivity. (author) [French] Cette these presente les resultats experimentaux de l'etude de la diffusion turbulente de la chaleur a partir d'un fil source dans un ecoulement d'air plan. Les lois de la theorie statistique de Taylor sont bien verifiees dans le domaine d'etude. Les experiences ont permis d'evaluer l'influence du nombre de Reynolds et de la distance a la paroi sur les valeurs quadratiques des fluctuations de vitesse et les echelles lagrangiennes de turbulence. En particulier, l'auteur a trouve une correlation entre les echelles lagrangiennes et le coefficient de frottement lorsque le nombre de Reynolds varie. Comme consequences de la theorie de Taylor, une loi de diffusion est etablie et permet de preciser la notion de conductibilite turbulente. (auteur)

  18. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  19. Plasma Beta Dependence of the Ion-scale Spectral Break of Solar Wind Turbulence: High-resolution 2D Hybrid Simulations

    Czech Academy of Sciences Publication Activity Database

    Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, Petr

    2016-01-01

    Roč. 833, č. 1 (2016), 91/1-91/7 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : plasmas * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  20. DISCLOSURE OF WIND SHIFT ON SMALL HEIGHT AND ATMOSPHERIC TURBULENCE ON TAKE-OFF - LANDING STRIPE WITH USE REGISTER ARRANGEMENTS ON MICROWAVE AND OPTICS BEAMS

    Directory of Open Access Journals (Sweden)

    S. A. Dubyanskiy

    2014-01-01

    Full Text Available The method of detecting of wind shear at low height and atmospheric turbulence on take-off and landing runways with the use of parametric register arrangements on microwave and optics beams are considered. The results of the research of register arrangements response when these beams are being used.

  1. A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2016-01-01

    Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...

  2. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    International Nuclear Information System (INIS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-01-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  3. Magnetic Geared Radial Axis Vertical Wind Turbine for Low Velocity Regimes

    Directory of Open Access Journals (Sweden)

    Wei Wei Teow

    2018-01-01

    Full Text Available In the 21st century, every country is seeking an alternative source of energy especially the renewable sources. There are considerable developments in the wind energy technology in recent years and in more particular on the vertical axis wind turbine (VAWT as they are modular, less installation cost and portable in comparison with that of the horizontal axis wind turbine (HAWT systems. The cut-in speed of a conventional wind turbine is 3.5 m/s to 5 m/s. Mechanical geared generators are commonly found in wind technology to step up power conversion to accommodate the needs of the generator. Wind turbine gearboxes suffer from overload problem and frequent maintenance in spite of the high torque density produced. However, an emerging alternative to gearing system is Magnetic Gear (MG as it offers significant advantages such as free from maintenance and inherent overload protection. In this project, numerical analysis is done on designed magnetic gear greatly affects the performance of the generator in terms of voltage generation. Magnetic flux density is distributed evenly across the generator as seen from the uniform sinusoidal output waveform. Consequently, the interaction of the magnetic flux of the permanent magnets has shown no disturbance to the output of the generator as the voltage generated shows uniform waveform despite the rotational speed of the gears. The simulation is run at low wind speed and the results show that the generator starts generating a voltage of 240 V at a wind speed of 1.04 m/s. This shows great improvement in the operating capability of the wind turbine.

  4. Remote Sensing of Turbulence and Transverse Atmospheric Wind Profiles using Optical Reference Sources

    Science.gov (United States)

    1992-12-01

    traveling from space to Earth are distorted when they pass through the Earth’s atmosphere. This distortion gives rise to the well known twinkling...same point in space at all times. Such an approach requires knowledge of the quantity being measured, therefore the variance of the intersection will...IEEE, 66:651-697 (June 1978). 9. Kolmogoroff , A. N. "The Local Structure of Turbulence in Incompressible Viscous Fluids for Very Large Reynolds

  5. Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer

    Science.gov (United States)

    Sheng, J.; Malkiel, E.; Katz, J.

    2008-12-01

    A digital holographic microscope is used to simultaneously measure the instantaneous 3D flow structure in the inner part of a turbulent boundary layer over a smooth wall, and the spatial distribution of wall shear stresses. The measurements are performed in a fully developed turbulent channel flow within square duct, at a moderately high Reynolds number. The sample volume size is 90 × 145 × 90 wall units, and the spatial resolution of the measurements is 3 8 wall units in streamwise and spanwise directions and one wall unit in the wall-normal direction. The paper describes the data acquisition and analysis procedures, including the particle tracking method and associated method for matching of particle pairs. The uncertainty in velocity is estimated to be better than 1 mm/s, less than 0.05% of the free stream velocity, by comparing the statistics of the normalized velocity divergence to divergence obtained by randomly adding an error of 1 mm/s to the data. Spatial distributions of wall shear stresses are approximated with the least square fit of velocity measurements in the viscous sublayer. Mean flow profiles and statistics of velocity fluctuations agree very well with expectations. Joint probability density distributions of instantaneous spanwise and streamwise wall shear stresses demonstrate the significance of near-wall coherent structures. The near wall 3D flow structures are classified into three groups, the first containing a pair of counter-rotating, quasi streamwise vortices and high streak-like shear stresses; the second group is characterized by multiple streamwise vortices and little variations in wall stress; and the third group has no buffer layer structures.

  6. Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-11-15

    Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.

  7. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  8. Turbulence in Natural Environments

    Science.gov (United States)

    Banerjee, Tirtha

    Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be

  9. Wind Tunnel Measurement of Turbulent and Advective Scalar Fluxes: A Case Study on Intersection Ventilation

    Czech Academy of Sciences Publication Activity Database

    Kukačka, Libor; Nosek, Štěpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    Roč. 2012, č. 381357 (2012), s. 1-13 ISSN 1537-744X Institutional research plan: CEZ:AV0Z20760514 Keywords : air pollution * atmospheric boundary layer * wind tunnel modelling * contaminant spreading * street canyon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.730, year: 2012 http://www.tswj.com/2012/381357/

  10. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  11. Hybrid simulations of the expanding solar wind: Temperatures and drift velocities

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel; Mangeney, A.; Grappin, R.

    2003-01-01

    Roč. 30, č. 5 (2003), s. 15-1-15-4 ISSN 0094-8276 R&D Projects: GA AV ČR IAB3042106 Grant - others:CNRS(FR) PICS 1175 Institutional research plan: CEZ:AV0Z3042911 Keywords : expanding solar wind * hybrid simulations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.422, year: 2003

  12. Qualitative comparison of calculated turbulence responses with wind-tunnel measurements for a DC-10 derivative wing with an active control system

    Science.gov (United States)

    Perry, B., III

    1981-01-01

    Comparisons are presented analytically predicted and experimental turbulence responses of a wind tunnel model of a DC-10 derivative wing equipped with an active control system. The active control system was designed for the purpose of flutter suppression, but it had additional benefit of alleviating gust loads (wing bending moment) by about 25%. Comparisions of various wing responses are presented for variations in active control system parameters and tunnel speed. The analytical turbulence responses were obtained using DYLOFLEX, a computer program for dynamic loads analyses of flexible airplanes with active controls. In general, the analytical predictions agreed reasonably well with the experimental data.

  13. Comparison of wavelet analysis with velocity derivatives for detection of shear layer and vortices inside a turbulent boundary layer

    Czech Academy of Sciences Publication Activity Database

    Kellnerová, Radka; Kukačka, Libor; Jurčáková, Klára; Uruba, Václav; Jaňour, Zbyněk

    2011-01-01

    Roč. 318, - (2011), s. 1-10 E-ISSN 1742-6596. [European Turbulence Conference /13./. Warsaw, 12.09.2011-15.09.2011] Institutional research plan: CEZ:AV0Z20760514 Keywords : Wavelet analysis * street canyon * POD Subject RIV: DG - Athmosphere Sciences, Meteorology http://iopscience.iop.org/1742-6596/318/6/062012?fromSearchPage=true

  14. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, Jean-Pierre; Courtney, Michael

    2009-01-01

    to a 3D sonic anemometer mounted at 78 m above the ground. The results show generally very good correlation between the lidar and the sonic times series, except that the variance of the velocity measured by the lidar is attenuated due to spatial filtering. The amount of attenuation can however...

  15. Numerical calculation of gas and liquid velocities along a vertical flat plate immersed in turbulent tow-phase bubbly flow. Kihoryuchu ni okareta suichoku heiban mawari no ranryu kieki 2 soryu ni kansuru suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, A.; Nakamura, H. (Daido Inst. of Technology, Nagoya (Japan)); Hiraoka, S.; Tada, Y.; Kato, Y. (Nagoya Inst. of Tech. (Japan))

    1993-11-10

    A numerical calculation was made on the bubbly flow using the Prandtl's mixing length theory. The calculation results agreed well with the experimental results in the turbulent flow rather than in the laminar flow. The necessity of discussion on the turbulent flow analysis was clarified. It was elucidated that the experimental results could be explained sufficiently even by the simplest mixing model. The liquid phase velocity vector was aligned on the same direction when the bubbly flow length exceeded 1 cm, and little change took place in the velocity distribution shape. In the analysis of laminar flow, the velocity boundary layer was developed together with tie bubbly flow length, while in the analysis of turbulent flow, such change did not take place. The liquid phase velocity in the vicinity of the inlet had a velocity component which directed to the outside of the wall at the wall side. It was quite different from the analytical result of the laminar flow. The gas phase velocity vector behaved in the similar way to the liquid phase. The velocity direction at the periphery of the velocity distribution in the vicinity of tie inlet was toward the wall surface, and the inlet velocity was rapidly accelerated. 12 refs., 4 figs.

  16. Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations

    Czech Academy of Sciences Publication Activity Database

    Franci, L.; Verdini, A.; Matteini, L.; Landi, S.; Hellinger, Petr

    2015-01-01

    Roč. 804, č. 2 (2015), L39/1-L39/5 ISSN 2041-8205 R&D Projects: GA ČR(CZ) GA15-10057S Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * plasmas * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015

  17. What Do the Hitomi Observations Tell Us About the Turbulent Velocities in the Perseus Cluster? Probing the Velocity Field with Mock Observations

    Science.gov (United States)

    ZuHone, J. A.; Miller, E. D.; Bulbul, E.; Zhuravleva, I.

    2018-02-01

    Hitomi made the first direct measurements of galaxy cluster gas motions in the Perseus cluster, which implied that its core is fairly “quiescent,” with velocities less than ∼200 km s‑1, despite the presence of an active galactic nucleus and sloshing cold fronts. Building on previous work, we use synthetic Hitomi/X-ray Spectrometer (SXS) observations of the hot plasma of a simulated cluster with sloshing gas motions and varying viscosity to analyze its velocity structure in a similar fashion. We find that sloshing motions can produce line shifts and widths similar to those measured by Hitomi. We find these measurements are unaffected by the value of the gas viscosity, since its effects are only manifested clearly on angular scales smaller than the SXS ∼1‧ PSF. The PSF biases the line shift of regions near the core as much as ∼40–50 km s‑1, so it is crucial to model this effect carefully. We also infer that if sloshing motions dominate the observed velocity gradient, Perseus must be observed from a line of sight that is somewhat inclined from the plane of these motions, but one that still allows the spiral pattern to be visible. Finally, we find that assuming isotropy of motions can underestimate the total velocity and kinetic energy of the core in our simulation by as much as ∼60%. However, the total kinetic energy in our simulated cluster core is still less than 10% of the thermal energy in the core, in agreement with the Hitomi observations.

  18. The role of wind field induced flow velocities in destratification and hypoxia reduction at Meiling Bay of large shallow Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud

    2018-01-01

    Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication

  19. On the nature of interstellar turbulence

    International Nuclear Information System (INIS)

    Altunin, V.I.

    1981-01-01

    Possible reasons of interstellar medium turbulence manifested in pulsar scintillation and radio-frequency emission scattering of extragalactic sources near by the Galaxy plane, are discussed. Sources and conditions of turbulence emergence in HII region shells, supernova, residue and in stellar wind giving observed scattering effects are considered. It is shown that in the formation of the interstellar scintillation pattern of discrete radio-frequency emission sources a certain role can be played by magnetosound turbulence, which arises due to shock-waves propagating in the interstellar medium at a velocity Vsub(sh) approximately 20-100 km/s as well as by stellar-wind inhomogeneity of OB classes stars [ru

  20. Coexistence and interplay of quantum and classical turbulence in superfluid 4He: Decay, velocity decoupling, and counterflow energy spectra

    Czech Academy of Sciences Publication Activity Database

    Babuin, Simone; L'vov, V.S.; Pomyalov, A.; Skrbek, L.; Varga, E.

    2016-01-01

    Roč. 94, č. 17 (2016), s. 1-18, č. článku 174504. ISSN 2469-9950 Institutional support: RVO:68378271 Keywords : liquid helium-ii * 3-dimensional vortex dynamics * mutual friction * heat current * hydrodynamic turbulence * 2-fluid flow Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  1. Nearly constant ratio between the proton inertial scale and the spectrum break length scale in the plasma beta range from 0.2 to 1.4 in the solar wind turbulence

    Science.gov (United States)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.

  2. ‘Postage-stamp PIV’: small velocity fields at 400 kHz for turbulence spectra measurements

    Science.gov (United States)

    Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Spitzer, Seth M.

    2018-03-01

    Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4000 frames but for an array of only 128  ×  120 pixels, giving the moniker of ‘postage-stamp PIV’. The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 120 kHz, at which point a noise floor emerges whose magnitude is dependent on the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. The frequency response of the present measurement configuration exceeds nearly all previous velocimetry measurements in high speed flow.

  3. Prediction of velocity of the wind generation in Kobe City College of Technology; Kobe Kosen ni okeru furyoku hatsuden no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, K.; Kanemura, M.; Amako, K.

    1997-11-25

    Wind conditions, such as average wind velocity for 10 minutes, maximum instantaneous wind velocity and wind directions, are measured by the anemometer and anemoscope installed 3m above the roof of the Kobe City College of Technology`s Information Processing Center building, to collect the data necessary to validate possibility of wind power generation, if the wind system is installed in the college site. Monthly availability of power is estimated from the output power characteristics curve for a generator having a rated capacity of 200W and wind velocity data collected for 9 months. It will generate power of only 144kWh, even when operated to give the rated output, or approximately 8.5kWh at the highest in a month, because of availability of wind power limited to around 30% of the total as estimated from the relative frequency distribution. It is therefore desirable to install a number of units having a rated capacity of 200W or else a smaller number of larger units. Assuming that days that give the highest output for 24 hours last 1 month, a power of 54.3kWh will be generated. It is estimated, based on these results, that a hybrid unit, in which a wind power generator installed at a high place is combined with a solar unit, can provide power required for nighttime lighting, if a wind power unit having a rated capacity of 2kW is field-controlled under an optimum condition. 13 figs., 3 tabs.

  4. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    , that can accurately and efficiently simulate wind turbine wakes. The linear k-ε eddy viscosity model (EVM) is a popular turbulence model in RANS; however, it underpredicts the velocity wake deficit and cannot predict the anisotropic Reynolds-stresses in the wake. In the current work, nonlinear eddy...... viscosity models (NLEVM) are applied to wind turbine wakes. NLEVMs can model anisotropic turbulence through a nonlinear stress-strain relation, and they can improve the velocity deficit by the use of a variable eddy viscosity coefficient, that delays the wake recovery. Unfortunately, all tested NLEVMs show...... numerically unstable behavior for fine grids, which inhibits a grid dependency study for numerical verification. Therefore, a simpler EVM is proposed, labeled as the k-ε - fp EVM, that has a linear stress-strain relation, but still has a variable eddy viscosity coefficient. The k-ε - fp EVM is numerically...

  5. Gas Transfer Velocity in the Presence of Wave Breaking

    Science.gov (United States)

    Li, S.

    2016-02-01

    Wave breaking is known to intensify the gas exchange across the air-sea interface through air entrainment and enhancement of the near-surface turbulence. We proposed a composite model for the gas transfer velocity by examining the near-surface turbulence induced by wave breaking, which was determined based on the combination of the vertical distribution of the turbulence in the wave-affected layer and the breaking wave energy dissipation rate in the wave-breaking layer. The gas transfer velocity was calculated as a function of the air frictional velocity, wave age, and whitecap coverage. The model was validated for both the wind and wave-age dependence against field and laboratory measurements. The results supported the hypothesis that the large uncertainties in the traditional wind speed-based gas transfer velocities at moderate to high wind speeds can be ascribed to the neglect of the wind-wave effect, which is mainly attributed to the whitecap coverage as a function of the wind-wave Reynolds number.

  6. COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud

    2016-01-01

    In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.

  7. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    Science.gov (United States)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  8. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel

    Directory of Open Access Journals (Sweden)

    M. F. van Dooren

    2017-06-01

    Full Text Available This paper combines the research methodologies of scaled wind turbine model experiments in wind tunnels with short-range WindScanner lidar measurement technology. The wind tunnel at the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner lidars to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The dual-lidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u and v components of the wind speed, respectively, validating the 2-D measurement capability of the lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hot-wire probes are the larger measurement probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing techniques do not disturb the flow during measuring. The research campaign revealed a high potential for using short-range synchronised scanning lidars to measure the flow around wind turbines in a wind tunnel and increased the knowledge about the corresponding uncertainties.

  9. Tangential discontinuities in the solar wind: Correlated field and velocity changes in the Kelvin-Helmholtz Instability

    International Nuclear Information System (INIS)

    Neugebauer, M.; Alexander, C.J.; Schwenn, R.; Richter, A.K.

    1986-01-01

    Three-dimensional Helios plasma and field data are used to investigate the relative changes in direction of the velocity and magnetic field vectors across tangential discontinuities, (TDs) in the solar wind at solar distances of 0.29--0.50 AU. It is found for tangential discontinuities with both Δv and ΔB/B large that Δv and ΔB are closely aligned with each other, in agreement with the unexpected results of previous studies of tangential discontinuities observed at 1 AU and beyond. It is shown that this effect probably results from the destruction by the Kelvin-Helmholtz instability of TDs for which Δv and ΔB are not aligned. The observed decrease in the number of interplanetary discontinuities with increasing solar distance may be associated with the growth of the Kelvin-Helmholtz instability with decreasing Alfven speed

  10. Evaporation of Arabian light crude oil spilled on sea and on beach sands : influence of solar radiation and wind velocity

    International Nuclear Information System (INIS)

    Bergueiro, J.R.; Marti, A.; Fuertes, A.; Moreno, S.; Guijarro, S.

    1998-01-01

    The evaporation of crude oil resulting from a spill on sea water was studied to develop a simulation model. Evaporation takes place within a complex process of mass and energy transfer. The effects of physical and chemical variables (such as wind velocity and direct and diffused solar radiation) and the environmental conditions of the spillage were also considered. Arabian crude oil was used in the simulation model for crude oil spillage on sea water. An equation for the evaporation process was used to correlate the evaporated fraction of oil as a function of time. The area of spreading was determined as a function of the dominant stage at each moment of spreading. The evaporation of spilled crude oil on beach sand consisting of three different particle sizes was also studied and used for a simulation model for crude oil spillage on a polluted beach. 7 refs., 6 tabs., 10 figs

  11. Capturing the journey of wind from the wind turbines (poster)

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Wind turbine design, control strategies often assume Taylor’s frozen turbulence where the fluctuating part of the wind is assumed to be constant. In practise, the wind turbine faces higher turbulence in case of gusts and lower turbulence in some cases. With Lidar technology, the frozen turbulence

  12. Local topology via the invariants of the velocity gradient tensor within vortex clusters and intense Reynolds stress structures in turbulent channel flow

    Science.gov (United States)

    Buchner, Abel-John; Lozano-Durán, Adrián; Kitsios, Vassili; Atkinson, Callum; Soria, Julio

    2016-04-01

    Previous works have shown that momentum transfer in the wall-normal direction within turbulent wall-bounded flows occurs primarily within coherent structures defined by regions of intense Reynolds stress [1]. Such structures may be classified into wall-attached and wall-detached structures with the latter being typically weak, small-scale, and isotropically oriented, while the former are larger and carry most of the Reynolds stresses. The mean velocity fluctuation within each structure may also be used to separate structures by their dynamic properties. This study aims to extract information regarding the scales, kinematics and dynamics of these structures within the topological framework of the invariants of the velocity gradient tensor (VGT). The local topological characteristics of these intense Reynolds stress structures are compared to the topological characteristics of vortex clusters defined by the discriminant of the velocity gradient tensor. The alignment of vorticity with the principal strain directions within these structures is also determined, and the implications of these findings are discussed.

  13. Effects of sleeve blockages on axial velocity and intensity of turbulence in an unheated 7 x 7 rod bundle. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Rowe, D.S.; Bates, J.M.; Sutey, A.M.

    1976-01-01

    An experimental study is described which was performed to investigate the turbulent flow phenomena near postulated sleeve blockages in a model nuclear fuel rod bundle. The sleeve blockages were characteristic of fuel clad ''swelling'' or ''ballooning'' which could occur during loss-of-coolant accidents (LOCA) in pressurized water reactors. The study was conducted to provide information relative to the flow phenomena near postulated blockages to support detailed safety analyses of LOCAs. The results of the study are especially useful for verification of the hydraulic treatment of reactor core computer programs such as COBRA.

  14. Turbulence Dissipation Rates in the Planetary Boundary Layer from Wind Profiling Radars and Mesoscale Numerical Weather Prediction Models during WFIP2

    Science.gov (United States)

    Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.

    2016-12-01

    When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.

  15. High-resolution Statistics of Solar Wind Turbulence at Kinetic Scales Using the Magnetospheric Multiscale Mission

    Energy Technology Data Exchange (ETDEWEB)

    Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Maruca, B. A. [University of Delaware, Newark, DE (United States); Fuselier, S. A.; Burch, J. L. [Southwest Research Institute, San Antonio, TX (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Moore, T. E.; Pollock, C. J.; Gershman, D. J. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T.; Strangeway, R. J., E-mail: chasapis@udel.edu [University of California, Los Angeles, CA (United States)

    2017-07-20

    Using data from the Magnetospheric Multiscale (MMS) and Cluster missions obtained in the solar wind, we examine second-order and fourth-order structure functions at varying spatial lags normalized to ion inertial scales. The analysis includes direct two-spacecraft results and single-spacecraft results employing the familiar Taylor frozen-in flow approximation. Several familiar statistical results, including the spectral distribution of energy, and the sale-dependent kurtosis, are extended down to unprecedented spatial scales of ∼6 km, approaching electron scales. The Taylor approximation is also confirmed at those small scales, although small deviations are present in the kinetic range. The kurtosis is seen to attain very high values at sub-proton scales, supporting the previously reported suggestion that monofractal behavior may be due to high-frequency plasma waves at kinetic scales.

  16. A canopy-type similarity model for wind farm optimization

    Science.gov (United States)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2013-04-01

    The atmospheric boundary layer (ABL) flow through and over wind farms has been found to be similar to canopy-type flows, with characteristic flow development and shear penetration length scales (Markfort et al., 2012). Wind farms capture momentum from the ABL both at the leading edge and from above. We examine this further with an analytical canopy-type model. Within the flow development region, momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This spatial heterogeneity of momentum within the wind farm is characterized by large dispersive momentum fluxes. Once the flow within the farm is developed, the area-averaged velocity profile exhibits a characteristic inflection point near the top of the wind farm, similar to that of canopy-type flows. The inflected velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The new model is tested with results from wind tunnel experiments, which were conducted to characterize the turbulent flow in and above model wind farms in aligned and staggered configurations. The model is useful for representing wind farms in regional scale models, for the optimization of wind farms considering wind turbine spacing and layout configuration, and for assessing the impacts of upwind wind farms on nearby wind resources. Markfort CD, W Zhang and F Porté-Agel. 2012. Turbulent flow and scalar transport through and over aligned and staggered wind farms. Journal of Turbulence. 13(1) N33: 1-36. doi:10.1080/14685248.2012.709635.

  17. Offshore winds using remote sensing techniques

    International Nuclear Information System (INIS)

    Pena, Alfredo; Hasager, Charlotte Bay; Gryning, Sven-Erik; Courtney, Michael; Antoniou, Ioannis; Mikkelsen, Torben; Soerensen, Paul

    2007-01-01

    Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors

  18. Fourier Simulation of a Non-Isotropic Wind Field Model

    DEFF Research Database (Denmark)

    Mann, J.; Krenk, S.

    -spectra. In this paper a method is described which builds on a recently developed model of a spectral tensor for atmospheric surface layer turbulence at high wind speeds. Although the tensor does not in principle contain more information than the cross-spectra, it leads to a more natural and direct representation...... the vertical velocity fluctuations give rise to loads. There may even be structures where combinations of velocity fluctuations in different direction are of importance. Most methods that have been developed to simulate the turbulent wind field are based on one-point (cross-)spectra and two-point cross...

  19. Dogs with hearth diseases causing turbulent high-velocity blood flow have changes in patelet function and von Willebrand factor multimer distribution

    DEFF Research Database (Denmark)

    Tarnow, Inge; Kristensen, Annemarie Thuri; Olsen, Lisbeth Høier

    2005-01-01

    and echocardiography were performed in all dogs. PFA100 closure times (the ability of platelets to occlude a hole in a membrane at high shear rates), platelet activation markers (plasma thromboxane B2 concentration, platelet surface P-selectin expression), platelet aggregation (in whole blood and platelet-rich plasma......The purpose of this prospective study was to investigate platelet function using in vitro tests based on both high and low shear rates and von Willebrand factor (vWf) multimeric composition in dogs with cardiac disease and turbulent high-velocity blood flow. Client-owned asymptomatic, untreated...... with MVP (regardless of MR status) compared with control dogs. No significant difference in platelet activation markers was found among groups. The data suggest that a form of platelet dysfunction detected at high shear rates was present in dogs with MR and SAS, possibly associated with a qualitative v...

  20. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  1. Dogs with hearth diseases causing turbulent high-velocity blood flow have changes in patelet function and von Willebrand factor multimer distribution

    DEFF Research Database (Denmark)

    Tarnow, Inge; Kristensen, Annemarie Thuri; Olsen, Lisbeth Høier

    2005-01-01

    The purpose of this prospective study was to investigate platelet function using in vitro tests based on both high and low shear rates and von Willebrand factor (vWf) multimeric composition in dogs with cardiac disease and turbulent high-velocity blood flow. Client-owned asymptomatic, untreated...... dogs were divided into 4 groups: 14 Cavalier King Charles Spaniels (Cavaliers) with mitral valve prolapse (MVP) and no or minimal mitral regurgitation (MR), 17 Cavaliers with MVP and moderate to severe MR, 14 control dogs, and 10 dogs with subaortic stenosis (SAS). Clinical examinations...... and echocardiography were performed in all dogs. PFA100 closure times (the ability of platelets to occlude a hole in a membrane at high shear rates), platelet activation markers (plasma thromboxane B2 concentration, platelet surface P-selectin expression), platelet aggregation (in whole blood and platelet-rich plasma...

  2. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    Science.gov (United States)

    Li, Junran; Flagg, Cody B.; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-01-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS–NIR, 350–2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400–700 nm) and the short-wavelength infrared (SWIR) area (1100–2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  3. Large-eddy simulation of turbulent winds during the Fukushima Daiichi Nuclear Power Plant accident by coupling with a meso-scale meteorological simulation model

    Science.gov (United States)

    Nakayama, H.; Takemi, T.; Nagai, H.

    2015-06-01

    A significant amount of radioactive material was accidentally discharged into the atmosphere from the Fukushima Dai-ichi Nuclear Power Plant from 12 March 2011, which produced high contaminated areas over a wide region in Japan. In conducting regional-scale atmospheric dispersion simulations, the computer-based nuclear emergency response system WSPEEDI-II developed by Japan Atomic Energy Agency was used. Because this system is driven by a meso-scale meteorological (MM) model, it is difficult to reproduce small-scale wind fluctuations due to the effects of local terrain variability and buildings within a nuclear facility that are not explicitly represented in MM models. In this study, we propose a computational approach to couple an LES-based CFD model with a MM model for detailed simulations of turbulent winds with buoyancy effects under real meteorological conditions using turbulent inflow technique. Compared to the simple measurement data, especially, the 10 min averaged wind directions of the LES differ by more than 30 degrees during some period of time. However, distribution patterns of wind speeds, directions, and potential temperature are similar to the MM data. This implies that our coupling technique has potential performance to provide detailed data on contaminated area in the nuclear accidents.

  4. Turbulence, selective decay, and merging in the SSX plasma wind tunnel

    Science.gov (United States)

    Gray, Tim; Brown, Michael; Flanagan, Ken; Werth, Alexandra; Lukin, V.

    2012-10-01

    A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0.08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti= 25 eV, ne>=10^15 cm-3, and B = 0.25 T. The relaxed state is rapidly attained in 1--2 axial Alfv'en times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β= 0.5) and does not have a flat λ profile. Merging of two plasmoids in this configuration results in noticeably more dynamic activity compared to a single plasmoid. These episodes of activity exhibit s

  5. The effect of wind velocity, air temperature and humidity on NH 3 and SO 2 transfer into bean leaves ( phaseolus vulgaris L.)

    Science.gov (United States)

    van Hove, L. W. A.; Vredenberg, W. J.; Adema, E. H.

    The influence of wind velocity, air temperature and vapour pressure deficit of the air (VPD) on NH 3 and SO 2 transfer into bean leaves ( Phaseolus vulgaris L.) was examined using a leaf chamber. The measurements suggested a transition in the properties of the leaf boundary layer at a wind velocity of 0.3-0.4 ms -1 which corresponds to a Recrit value of about 2000. At higher wind velocities the leaf boundary layer resistance ( rb) was 1.5-2 times lower than can be calculated from the theory. Nevertheless, the assessed relationships between rb and wind velocity appeared to be similar to the theoretical derived relationship for rb. The NH 3 flux and in particular the SO 2 flux into the leaf strongly increased at a VPD decline. The increase of the NH 3 flux could be attributed to an increase of the stomatal conductance ( gs). However, the increase of the SO 2 flux could only partly be explained by an increase of gs. An apparent additional uptake was also observed for the NH 3 uptake at a low temperature and VPD. The SO 2 flux was also influenced by air temperature which could be explained by a temperature effect on gs. The results suggest that calculation of the NH 3 and SO 2 flux using data of gs gives a serious understimation of the real flux of these gases into leaves at a low temperature and VPD.

  6. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  7. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    International Nuclear Information System (INIS)

    Keylock, Christopher J; Nishimura, Kouichi

    2016-01-01

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  8. Experiments on the turbulent boundary layer on a thin cylinder rotating in an axial flow. 3rd Report. Turbulent energy budget for each velocity component and cross-spectrum; Jikuryuchu no saicho kaiten entojo no ranryu kyokaiso no jikken. 3. Hendo seibun energy no shushi to cross supekutoru

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, S.; Inoue, Y. [Gifu University, Gifu (Japan). Faculty of Engineering; Yano, H. [Daido Institute of Technology, Nagoya (Japan)

    1998-10-25

    This study is concerned with the turbulent structure of three-dimensional boundary layer on a thin cylinder rotating in a uniform stream. A ratio of the turbulent shear-stress to the turbulent intensity, that is, a structure parameter, is significantly larger than the turbulent boundary layer on a stationary cylinder which has nearly the same value as in two-dimensional turbulent boundary layer. Terms appearing in the equations for the turbulent energy of each component of fluctuating velocities are estimated, and their roles in the energy budgets in this boundary layer are clarified. Particularly, the importance of redistribution terms and exchange terms between v- and w-energy is reconfirmed. Cross-spectra between u*- and w-fluctuating velocities are examined across the boundary layer. The distribution of co-spectra and quad-spectra (i.e., the real and imaginary parts of the cross-spectra respectively) shows the existence of large-scale organized structure in this turbulent boundary layer. 12 refs., 8 figs.

  9. RETRACTED: The influence of sand diameter and wind velocity on sand particle lift-off and incident angles in the windblown sand flux

    Science.gov (United States)

    Bo, Tian-Li; Zheng, Xiao-Jing; Duan, Shao-Zhen; Liang, Yi-Rui

    2013-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editors-in-Chief. This article also contains significant similarity with parts of text, written by the same author(s), that have appeared in Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, The influence of wind velocity and sand grain diameter on the falling velocities of sand particles, Powder Technology, Volume 241, June 2013, Pages 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux, Acta Mechanica Sinica, April 2013, Volume 29, Issue 2, pp 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles, The European Physical Journal E, May 2013, 36:50. Tian-Li Bo, Shao-Zhen Duan, Xiao-Jing Zheng, Yi-Rui Liang, The influence of sand bed temperature on lift-off and falling parameters in windblown sand flux, Geomorphology, Volume 204, 1 January 2014, Pages 477-484. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  10. The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales

    Science.gov (United States)

    Woodham, Lloyd D.; Wicks, Robert T.; Verscharen, Daniel; Owen, Christopher J.

    2018-03-01

    We use magnetic field and ion moment data from the MFI and SWE instruments on board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyze the spectral properties of magnetic field fluctuations between 0.1 and 5.4 Hz during 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI “noise-floor” using tail-lobe crossings of the Earth’s magnetosphere during early 2004. We utilize Taylor’s hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton cyclotron resonance scale, 1/k c , rather than the proton inertial length, d i , or proton gyroscale, ρ i . This agreement is strongest when we consider periods where β i,\\perp ∼ 1, and is consistent with a spectral break at d i for β i,\\perp ≪1 and at ρ i for β i,\\perp ≫1. We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/k c , and its absolute value reaches a maximum at ρ i . These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.

  11. Intermittent structures in atmospheric wind fields

    Energy Technology Data Exchange (ETDEWEB)

    Yueksek, Oersan; Muecke, Tanja; Peinke, Joachim [Wind Center for Wind Energy Research, University of Oldenburg (Germany)

    2011-07-01

    For design processes and load calculations of wind energy convertors (WEC) realistic synthetic wind fields are needed. The widely used norm is the standard IEC 61400. The IEC standard considers different simulation methods based on Gaussian statistics. However, the analysis of the measured wind fields by means of velocity increment statistics yields that these do not obey Gaussian statistics but are quite intermittent. The intermittent nature of atmospheric wind affects the whole chain of the wind energy conversion process and is assumed to be a major effect for additional loads and fatigue. A recently proposed method based on continuous time random walks (CTRWs) adequately reproduces the intermittency of turbulent atmospheric velocity increments on small time scales and provides wind fields with the desired high order two point statistics. In this work, we analyze highly time-resolved data sets measured in an extensive grid over the whole rotor plane of a WEC. The atmospheric wind fields are characterized statistically and the dependency of the higher order two point statistics on turbulence intensity, mean wind speed and height is shown. With this knowledge we are able to generate synthetic CTRW wind fields with the correct small scale structure.

  12. Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry

    Science.gov (United States)

    Dou, Zhongwang; Ireland, Peter J.; Bragg, Andrew D.; Liang, Zach; Collins, Lance R.; Meng, Hui

    2018-02-01

    The radial relative velocity (RV) between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence—planar 4-frame particle tracking velocimetry—using routine PIV hardware. It improves particle positioning and pairing accuracy over the 2-frame holographic approach by de Jong et al. (Int J Multiphas Flow 36:324-332; de Jong et al., Int J Multiphas Flow 36:324-332, 2010) without using high-speed cameras and lasers as in Saw et al. (Phys Fluids 26:111702, 2014). Homogeneous and isotropic turbulent flow ({R_λ }=357) in a new, fan-driven, truncated iscosahedron chamber was laden with either low-Stokes (mean St=0.09, standard deviation 0.05) or high-Stokes aerosols (mean St=3.46, standard deviation 0.57). For comparison, DNS was conducted under similar conditions ({R_λ }=398; St=0.10 and 3.00, respectively). Experimental RV probability density functions (PDF) and mean inward RV agree well with DNS. Mean inward RV increases with St at small particle separations, r, and decreases with St at large r, indicating the dominance of "path-history" and "inertial filtering" effects, respectively. However, at small r, the experimental mean inward RV trends higher than DNS, possibly due to the slight polydispersity of particles and finite light sheet thickness in experiments. To confirm this interpretation, we performed numerical experiments and found that particle polydispersity increases mean inward RV at small r, while finite laser thickness also overestimates mean inward RV at small r, This study demonstrates the feasibility of accurately measuring RV using routine hardware, and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.

  13. CFD and laboratory analysis of axial cross-flow velocity in porous tube packed with differently structured static turbulence promoters

    Directory of Open Access Journals (Sweden)

    Gaspar Igor

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD was used for modelling flow regime in a porous tube. This tube is an ultrafiltration membrane filter made from zirconium-oxide which is very effective in the separation of stable oil-in-water microemulsions, especially when the tube is filled with static mixer. The results of the CFD analysis were used in the preliminary optimisation of the static mixer’s geometry since it has significant effect the energy requirement of this advanced membrane technology. The self-developed static mixers were tested “in vitro” from the aspect of separation quality and process productivity as well to validate CFD results and to develop a cost effective, green method to recover unmanageable oily wastewaters for sustainable development. In this work the results of computational simulation of the fluid velocity and membrane separation experiments are discussed.

  14. Stochastic modelling of turbulence

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...

  15. Soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  16. Vertical evolution of wind meandering in a nocturnal boundary layer during low-wind speed conditions

    Science.gov (United States)

    Stefanello, Michel; Acevedo, Otávio; Mortarini, Luca; Cava, Daniela; Giostra, Umberto; Degrazia, Gervásio; Anfossi, Domenico

    2017-04-01

    In the nocturnal boundary layer episodes of horizontal wind meandering are frequent. These episodes are characterised by low-wind regimes (wind speed less than 1.5 m s-1) in which submeso motions drive the wind dynamics and turbulence is weak and often intermittent. The inception of the meandering phenomenon as well as the interaction between turbulence and the submeso oscillations are still poorly understood. In this work we study the vertical evolution of the wind meandering by analysingnight-time anemometric data. The observations were carried on at a coastal site in Espirito Santo state, south-eastern Brazil from august to November 2016. The turbulent data, divided in hourly series, were collected in a 140-m tower designed to provide micrometeorological observations with high vertical resolution and deep coverage of the lower portion of the atmospheric boundary layer. Particularly, turbulence observations of the wind components and temperature are carried at 11 vertical levels. The tower has been deployed next to a natural gas power plant, at 3 km from the ocean. The terrain is generally flat for an area of 30 km from the tower, where moderate hills exist. The meandering timescale at each level is evaluated through the Eulerian Autocorrelation Functions of the horizontal wind velocity components and temperature, while the interactions between the different scales of motions is studied using the multi-correlation analysis. Thus the vertical evolution of meandering and time scales structure can be studied.

  17. Astronomical site survey report on dust measurement, wind profile, optical turbulence, and their correlation with seeing over IAO-Hanle. Astronomical site survey report over IAO-Hanle

    Science.gov (United States)

    Ningombam, Shantikumar S.; Kathiravan, S.; Parihar, P. S.; L. Larson, E. J.; Mohanan, Sharika; Angchuk, Dorje; Jorphel, Sonam; Rangarajan, K. E.; Prabhu, K.

    2017-04-01

    The present work discusses astronomical site survey reports on dust content, vertical distribution of atmospheric turbulence, precipitable water vapor (PWV), surface and upper-air data, and their effects on seeing over the Indian Astronomical Observatory (IAO) Hanle. Using Laser Particulate Counter, ambient dust measurements at various sizes (0.3 μm to 25 μm) were performed at various locations at the site during November 2015. Estimated volume concentration for the particle size at 0.5 μm was around 10,000 per cubic foot, which is equivalent to ten thousand class of clean room standard protocol. During the measurement, surface wind speed varied from 0-20 m s -1, while estimated aerosol optical depth (AOD) using Sky radiometer (Prede) varied from 0.02-0.04 at 500 nm, which indicates the site is fairly clean. The two independent measurements of dust content and aerosol concentrations at the site agreed well. The turbulence or wind gust at the site was studied with wind profiles at three different heights above the ground. The strength of the wind gust varies with time and altitude. Nocturnal temperature across seasons varied with a moderate at summer (6-8 ∘C) and lower in winter (4-5 ∘C). However, the contrast between the two is significantly small due to cold and extremely dry typical climatic conditions of the site. The present study also examined the effects of surface and upper-air data along with Planetary Boundary Layer (PBL) dynamics with seeing measurement over the site. Further, a comparative study of such observed parameters was conducted with other high altitude astronomical observatories across the globe.

  18. Non-universality of the turbulent spectra at sub-ion scales in the solar wind: dispersive effects vs the Doppler shif

    Science.gov (United States)

    Sahraoui, F.; Huang, S.

    2017-12-01

    Large surveys of power spectral density (PSD) of the magnetic fluctuations in the solar wind have reported different slopes distributions at MHD, sub-ion and sub-electron scales; the smaller the scale the broader the distribution. Several explanations of the variability the slopes at sub-ion scales have been proposed. Here, we present a new one that has been overlooked in the literature, which is based on the relative importance of the dispersive effects w.r.t. the Doppler shift due to the flow speed. We build a toy model based on a dispersion relation of a linear mode that matches at high frequency (ω ≳ ω ci) the Alfvén (resp. whistler) mode at high oblique (resp. quasi-parallel) propagation angles θ kB. Starting with double power-law spectrum of turbulence {k⊥}-1.66 in the inertial range and {k⊥}-2.8 at the sub-ion scales, the transformed spectrum (in frequency f) as it would be measured in the spacecraft frame shows a broad range of slopes at the sub-ion scales that depend both on the angle θ kB and the flow speed V. Varying θ kB in the range 10o-100o and V in the range 400-800 km/s, the resulting distribution of slopes at the sub-ion scales reproduces quite well the observed one in the solar wind. Fluctuations in the solar wind speed and the anisotropy of the turbulence may explain (or at least contribute to) the variability of the spectral slopes reported in the solar wind.

  19. TEGENA: Detailed experimental investigations of temperature and velocity distributions in rod bundle geometries with turbulent sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.

    1989-02-01

    Precise knowledge of the velocity and temperature distributions is necessary in fuel element design (rod bundles with longitudinal flow). The detail codes required in the fine analysis of non-uniformly cooled bundle zones are presently at the stage of development. In order to verify these computer codes, the mean fluid temperatures and the related RMS values of the temperature fluctuations were measured in a heated bundle TEGENA, containing 4 rods arranged in one row (P/D = W/D = 1.147) with sodium cooling (Pr ≅ 0.005). The temperature distribution in the structures was determined as the necessary boundary condition for the temperature profiles in the fluid. The experiments were carried out with different types of heating (uniform load and load tilting) and the flow conditions were varied in the range from 4000 ≤ Re ≤ 76.000, 20 ≤ Pe ≤ 400. The essential process of thermal development took place under uniform load within a heated bundle length of about 100 hydraulic diameters. In the main measuring plane at the end of the heated zone, after 200 hydraulic diameters, the flow can be termed largely developed thermally. There, the temperature profiles measured in the fluid exhibit pronounced maxima in the narrowest gaps of the subchannels as well as pronounced minima in the centers of the subchannels at the unheated wall. In the zones of maximum temperature gradients the temperature fluctuations attain maximum and minimum values, respectively, at the points of disappearance of the temperature gradients. In all cases of load tilting investigated the flow at the end of the heated zone had not yet developed thermally. By inspection of all thermocouples in isothermal experiments performed at regular intervals, by redundant arrangement of the mobile probe thermocouples and by demonstration of the reproducibility of results of measurement the experiments have been validated satisfactorily. (orig./GL) [de

  20. TEGENA: Detailed experimental investigations of temperature and velocity distributions in rod bundle geometries with turbulent sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.

    1989-12-01

    Precise knowlege of the velocity and temperature distributions is necessary in fuel element design (rod bundles with longitudinal flow). The detail codes required in the fine analysis of non-uniformly cooled bundle zones are presently at the stage of development. In order to verify these computer codes, the mean fluid temperatures and the related RMS values of the temperature fluctuations were measured in a heated bundle, TEGENA, containing four rods arranged in one row (P/D = W/D = 1.147) with sodium cooling (Pr≅0.005). The temperature distribution in the structures was determined as the necessary boundary condition for the temperature profiles in the fluid. The experiments were carried out with different types of heating (uniform load and flux tilting) and the flow conditions were varied in the ranges 4000≤Re≤76,000; 20≤Pe≤400. The essential processes of thermal development took place under uniform load within a heated bundle length of about 100 hydraulic diameters. In the main measuring plane at the end of the heated zone, after 200 hydraulic diameters, the flow can be termed largely developed thermally. There, the temperature profiles measured in the fluid exhibit pronounced maxima in the narrowest gaps of the subchannels as well as pronounced minima in the centers of the subchannels at the unheated wall. In the zones of maximum temperature gradients the temperature fluctuations attain maximum and minimum values, respectively, at the points of disappearance of the temperature gradients. In all cases of flux tilting investigated the flow at the end of the heated zone had not yet developed thermally. (orig.) [de

  1. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  2. Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds

    Directory of Open Access Journals (Sweden)

    T. G. Bell

    2017-07-01

    Full Text Available Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS and carbon dioxide (CO2 were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw over a range of wind speeds up to 21 m s−1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.

  3. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  4. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    Science.gov (United States)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  5. Magnetohydrodynamics turbulence: An astronomical perspective

    Indian Academy of Sciences (India)

    theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the. Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence.

  6. Offshore and onshore wind turbine wake meandering studied in an ABL wind tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; Glabeke, Gertjan

    2015-01-01

    Scaled wind turbine models have been installed in the VKI L1-B atmospheric boundary layer wind tunnel at offshore and onshore conditions. Time-resolved measurements were carried out with three component hot wire anemometry and stereo-PIV in the middle vertical plane of the wake up to eleven turbine...... spectrum, present in the entire wake mainly for offshore inflow condition. It was found that the Strouhal number, based on the rotor diameter and the wind velocity at hub height, was in the order of 0.25. Below the meandering frequency, turbulence power spectrum decreased, whereas above it increased. Wake...... diameter downstream. The results show an earlier wake recovery for the onshore case. The effect of inflow conditions and the wind turbine’s working conditions on wake meandering was investigated. Wake meandering was detected by hot wire anemometry through a low frequency peak in the turbulent power...

  7. Adaptive optics in coherent lidar wind measurements: A feasibility study

    Science.gov (United States)

    Leland, Robert P.

    1991-01-01

    Laser Doppler radar (lidar) is widely used for remote sensing of wind velocities. Usable wavelengths for the laser are limited by the effects of atmospheric turbulence. An adaptive optical system is proposed to compensate for turbulence effects on signal power. The feasibility of an adaptive system is considered in light of the effects of speckle from the aerosol target. It is concluded that adaptive optics is a promising technique for improving the performance of a 2 micron lidar wind measurement system. The chief technical challenges are a laser that will give the required output and pulse repetition rate, a combined Hartmann sensor and heterodyne detector, and a suitable reconstruction algorithm.

  8. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  9. Observational tests of the properties of turbulence in the Very Local Interstellar Medium

    Directory of Open Access Journals (Sweden)

    S. R. Spangler

    2010-12-01

    Full Text Available The Very Local Interstellar Medium (VLISM contains clouds which consist of partially-ionized plasma. These clouds can be effectively diagnosed via high resolution optical and ultraviolet spectroscopy of the absorption lines they form in the spectra of nearby stars. Information provided by these spectroscopic measurements includes values for ξ, the root-mean-square velocity fluctuation due to turbulence in these clouds, and T, the ion temperature, which may be partially determined by dissipation of turbulence. We consider whether this turbulence resembles the extensively studied and well-diagnosed turbulence in the solar wind and solar corona. Published observations are used to determine if the velocity fluctuations are primarily transverse to a large-scale magnetic field, whether the temperature perpendicular to the large scale field is larger than that parallel to the field, and whether ions with larger Larmor radii have higher temperatures than smaller gyroradius ions. We ask if the spectroscopically-deduced parameters such as ξ and T depend on the direction on the sky. We also consider the degree to which a single temperature T and turbulence parameter ξ account for the spectral line widths of ions with a wide range of masses. A preliminary examination of the published data shows no evidence for anisotropy of the velocity fluctuations or temperature, nor Larmor radius-dependent heating. These results indicate differences between solar wind and Local Cloud turbulence. Possible physical reasons for these differences are discussed.

  10. Mathematical Modeling for Lateral Displacement Induced by Wind Velocity Using Monitoring Data Obtained from Main Girder of Sutong Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2014-01-01

    Full Text Available Based on the health monitoring system installed on the main span of Sutong Cable-Stayed Bridge, GPS displacement and wind field are real-time monitored and analyzed. According to analytical results, apparent nonlinear correlation with certain discreteness exists between lateral static girder displacement and lateral static wind velocity; thus time series of lateral static girder displacement are decomposed into nonlinear correlation term and discreteness term, nonlinear correlation term of which is mathematically modeled by third-order Fourier series with intervention of lateral static wind velocity and discreteness term of which is mathematically modeled by the combined models of ARMA(7,4 and EGARCH(2,1. Additionally, stable power spectrum density exists in time series of lateral dynamic girder displacement, which can be well described by the fourth-order Gaussian series; thus time series of lateral dynamic girder displacement are mathematically modeled by harmonic superposition function. By comparison and verification between simulative and monitoring lateral girder displacements from September 1 to September 3, the presented mathematical models are effective to simulate time series of lateral girder displacement from main girder of Sutong Cable-Stayed Bridge.

  11. Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence

    Science.gov (United States)

    Cheynet, Etienne; Jakobsen, Jasna Bogunović; Snæbjörnsson, Jónas; Mikkelsen, Torben; Sjöholm, Mikael; Mann, Jakob; Hansen, Per; Angelou, Nikolas; Svardal, Benny

    2016-12-01

    Two synchronized continuous wave scanning lidars are used to study the coherence of the along-wind and across-wind velocity components. The goal is to evaluate the potential of the lidar technology for application in wind engineering. The wind lidars were installed on the Lysefjord Bridge during four days in May 2014 to monitor the wind field in the horizontal plane upstream of the bridge deck. Wind records obtained by five sonic anemometers mounted on the West side of the bridge are used as reference data. Single- and two-point statistics of wind turbulence are studied, with special emphasis on the root-coherence and the co-coherence of turbulence. A four-parameter decaying exponential function has been fitted to the measured co-coherence, and a good agreement is observed between data obtained by the sonic anemometers and the lidars. The root-coherence of turbulence is compared to theoretical models. The analytical predictions agree rather well with the measured coherence for the along-wind component. For increasing wavenumbers, larger discrepancies are, however, noticeable between the measured coherence and the theoretical predictions. The WindScanners are observed to slightly overestimate the integral length scales, which could not be explained by the laser beam averaging effect alone. On the other hand, the spatial averaging effect does not seem to have any significant effect on the coherence.

  12. Development and validation of a new two-dimensional wake model for wind turbine wakes

    DEFF Research Database (Denmark)

    Tian, Linlin; Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    , wind tunnel experiments, and results of an advanced k-ω turbulence model as well as large eddy simulations. From the comparisons, it is found that the proposed new wake model gives a good prediction in terms of both shape and velocity amplitude of the wake deficit, especially in the far wake which......A new two-dimensional (2D) wake model is developed and validated in this article to predict the velocity and turbulence distribution in the wake of a wind turbine. Based on the classical Jensen wake model, this model is further employing a cosine shape function to redistribute the spread...... of the wake deficit in the crosswind direction. Moreover, a variable wake decay rate is proposed to take into account both the ambient turbulence and the rotor generated turbulence, different from a constant wake decay rate used in the Jensen model. The obtained results are compared to field measurements...

  13. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, Marijn Floris; Campagnolo, Filippo; Sjöholm, Mikael

    2017-01-01

    to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The duallidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe...... as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hotwire probes are the larger measurement...... probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing...

  14. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.

    2016-01-01

    of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due......-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dualLidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were...... compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement...

  15. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    Science.gov (United States)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  16. Fatigue damage from random vibration pulse process of tubular structural elements subject to wind

    DEFF Research Database (Denmark)

    Christensen, Claus F.; Ditlevsen, Ove Dalager

    1997-01-01

    In a wide range of the Reynolds number an elastically suspended circular cylinder surrounded by a homogeneous wind velocity field will generate vortex shedding of a frequency that by and large is proportional to the far field wind velocity. However, if the cylinder is free to vibrate, resonance...... of turbulence observed in the natural wind the undisturbed local wind velocity directly upstream to the cylinder varies as a sample from a random process. Thus the local wind velocity will cross in and out of the "iock in"-intervals in a random fashion causing pulse like bursts of strong vibrations. The paper...... describes a random pulse process model of this vibration behavior supported on the experimental work of the first author. Moreover, it is shown how the mean accumulated material fatigue damage per time unit according to the Palmgren-Miner rule can be evaluated by simulation....

  17. A new turbulence-based model for sand transport

    Science.gov (United States)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical

  18. On the Evolution of the Integral Length Scale in the Wake of Wind Turbines and within Wind Farms

    Science.gov (United States)

    Liu, Huiwen; Jin, Yaqing; Hayat, Imran; Chamorro, Leonardo P.

    2017-11-01

    Wind tunnel experiments were performed to characterize the evolution of integral length scale in the wake of a single turbine, and around wind farms. Hotwire anemometry was used to obtain high-resolution measurements of the streamwise velocity fluctuation at various locations. Negligible and high freestream turbulence levels were considered in the case of single turbine. The integral length scale along the rotor axis is found to grow nearly linearly with distance independent of the incoming turbulence levels, and appears to reach the incoming level in the high turbulence case at about 35-40 rotor diameters downstream. In the wind farm, results suggest that the distribution of integral length scale can be roughly described by a power-law growth with distance within consecutive turbines. Approximately past the third row, the integral length scale appears to reach equilibrium of the spatial distribution.

  19. Variance Method to Determine Turbulent Fluxes of Momentum And Sensible Heat in The Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Debruin, H.A.R.; Hartogensis, O.K.

    2005-01-01

    Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, ¿u and ¿T respectively, measured at a single level. An attractive aspect of this method is that it

  20. UAV multirotor platform for accurate turbulence measurements in the atmosphere

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Wilhelm, Lionel; Sin, Kevin Edgar; Hofer, Matthias; Porté-Agel, Fernando

    2017-04-01

    One of the most challenging tasks in atmospheric field studies for wind energy is to obtain accurate turbulence measurements at any location inside the region of interest for a wind farm study. This volume would ideally include from several hundred meters to several kilometers around it and from ground height to the top of the boundary layer. An array of meteorological masts equipped with several sonic anemometers to cover all points of interest would be the best in terms of accuracy and data availability, but it is an obviously unfeasible solution. On the other hand, the evolution of wind LiDAR technology allows to measure at any point in space but unfortunately it involves two important limitations: the first one is the relatively low spatial and temporal resolution when compared to a sonic anemometer and the second one is the fact that the measurements are limited to the velocity component parallel to the laser beam (radial velocity). To overcome the aforementioned drawbacks, a UAV multirotor platform has been developed. It is based on a state-of-the-art octocopter with enough payload to carry laboratory-grade instruments for the measurement of time-resolved atmospheric pressure, three-component velocity vector and temperature; and enough autonomy to fly from 10 to 20 minutes, which is a standard averaging time in most atmospheric measurement applications. The UAV uses a gyroscope, an accelerometer, a GPS and an algorithm has been developed and integrated for the correction of any orientation and movement. This UAV platform opens many possibilities for the study of features that have been almost exclusively studied until now in wind tunnel such as wind turbine blade tip vortex characteristics, near-wake to far-wake transition, momentum entrainment from the higher part of the boundary layer in wind farms, etc. The validation of this new measurement technique has been performed against sonic anemometry in terms of wind speed and temperature time series as well as

  1. Surface Stress with Non-stationary Weak Winds and Stable Stratification

    Science.gov (United States)

    Mahrt, L.; Thomas, Christoph K.

    2016-04-01

    The behaviour of turbulent transport in the weak-wind, stably-stratified, boundary layer over land is examined in terms of the non-stationarity of the wind field using measurements from three field programs. These field programs include towers ranging from 12 to 20 m in height and an extensive horizontal network of sonic anemometers. The relationship of the friction velocity to the stratification and non-stationary submeso motions is investigated from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected partly due to enhancement of the turbulence by submeso motions. Cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases in the downward transport of momentum.

  2. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  3. Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence

    Science.gov (United States)

    Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.

    2017-12-01

    The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding

  4. Device for the acquisition and visualization in real time of the velocity and direction of wind in a radiological post stage

    International Nuclear Information System (INIS)

    Ledo P, L.M.; Guibert G, R.; Dominguez L, O.; Alonso A, D.; Ramos V, E.O.

    2006-01-01

    The work shows the development, construction and post stage of a device dedicated to the acquisition and transmission in real time of the information on the behavior of the meteorological variables: velocity and wind direction. It is introduced for the first time in an observation position the automatic monitoring, in real time, using the tools that it offers the digitalisation of the information and the computation. The obtained data are registered in a PC, its are visualized appropriately and can be objects of later analysis. It was developed the application program Autoclima for such purpose. (Author)

  5. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    Science.gov (United States)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame

  6. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  7. A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent inf...... applicable in other fields of CFD that use discrete body forces. Copyright © 2011 John Wiley & Sons, Ltd....... inflows. Many CFD codes are designed with collocated variables layout. Although this approach has many attractive features, it can generate a numerical decoupling between the pressure and the velocities. This issue is addressed by the Rhie–Chow control volume momentum interpolation. However......This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent...

  8. Numerical investigations on the influence of wind shear and turbulence on aircraft trailing vortices; Numerische Untersuchungen zum Einfluss von Windscherung und Turbulenz auf Flugzeugwirbelschleppen

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, T.

    2003-07-01

    In several aspects, the behaviour of aircraft wake vortices under situations of vertical wind shear is significantly different from non-shear scenarios and its operational real-time forcast is challenging. By means of numerical investigations of idealized scenarios, the influence of wind shear on the lateral and vertical transport of vortices is analysed both, phenomenologically as well as in the scope of a sensitivity study. The results allow for the verification of controversial views and the benchmark of modelling approaches. Case studies of turbulent shear flows focus on the persistence of vortices. A detailed analysis of the flow fields evidence that unequal vortex decay rates can be attributed to the asymmetric distribution of secondary vorticity structures. The results moreover suggest that extended vortex lifespans can be expected under situations of wind shear. The unusual vortex behaviour observed by means of a LIDAR measurement is reproduced by realistic simulations and permits to reveal potential causes. (orig.) [German] Das Wirbelschleppenverhalten unterscheidet sich in Situationen vertikaler Windscherung in mehrfacher Hinsicht signifikant von scherungsfreien Szenarien und stellt eine besondere Herausforderung fuer eine operationelle Echtzeitvorhersage dar. Mittels numerischer Untersuchungen idealisierter Szenarien wird zunaechst der Einfluss von Windscherung auf den lateralen und vertikalen Wirbeltransport sowohl phaenomenologisch als auch quantitativ im Rahmen einer Sensitivitaetsstudie analysiert. Anhand der gewonnenen Ergebnisse werden auseinandergehende Erklaerungsansaetze geprueft und Modellierungsansaetze bewertet. Fallstudien turbulenter Scherstroemungen zur Wirbelpersistenz stellen einen weiteren Schwerpunkt dieser Arbeit dar. Durch die ausfuehrliche Analyse der Stroemungsfelder wird der Nachweis erbracht, dass sich unterschiedliche Zerfallsraten der Wirbel auf die asymmetrische Verteilung von sekundaeren Vorticity-Strukturen zurueckfuehren

  9. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT region

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-05-01

    Full Text Available Using a fully nonlinear two-dimensional (2-D numerical model, we simulated gravity waves (GWs breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT. An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's apparent horizontal phase velocity and decreases the GW's intrinsic frequency and vertical wavelength. Both the accelerated mean wind and the decreased GW vertical wavelength contribute to the enhancement of wind shears. This, in turn, creates a background condition that favors the occurrence of GW instability, breaking, and momentum deposition, as well as mean wind acceleration, which further enhances the wind shears. We find that GWs with longer vertical wavelengths and faster horizontal phase velocity can induce larger winds, but they may not necessarily induce larger wind shears. In addition, the background temperature can affect the time and height of GW breaking, thus causing accelerated mean winds and wind shears.

  10. Study on the Wake of a Miniature Wind Turbine Using the Reynolds Stress Model

    Directory of Open Access Journals (Sweden)

    Jianxiao Hu

    2016-09-01

    Full Text Available The Reynolds Stress Model (RSM is adopted to simulate the wind turbine wake and the simulation results are compared with the wind tunnel test data, simulation results from the standard k-ε model and a modified k-ε model. RSM shows good performance in predicting the turbine wakes velocity, turbulence intensity and the kinetic shear stress, while the k-ε based models fail to predict either wakes velocity or turbulence intensity. Simulation results show that the wake velocity will be recovered up to 90% at around 10 D downstream of the turbine (D denotes turbine rotor diameter and it stops at 91% at around 16 D downstream. The wake turbulence intensity reaches a maximum at around 5 D downstream of turbine. Further investigation shows that the horizontal profile of the wakes velocity can be approximated by a Gaussian distribution, and the turbulence intensity can be approximated by a bimodal distribution. The influence of the wakes effect is limited to within ±D in the across-wind direction. The turbine wakes show clear anisotropy, which could explain the incorrect estimation on the turbulence intensity with the extended k-ε model.

  11. CFD Wake Modelling with a BEM Wind Turbine Sub-Model

    Directory of Open Access Journals (Sweden)

    Anders Hallanger

    2013-01-01

    Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.

  12. Offshore wind resources at Danish measurement sites

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R.J.; Courtney, M.S.; Lange, B.; Nielsen, M.; Sempreviva, A.M. [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Svenson, J.; Olsen, F. [SEAS, Haslev (Denmark); Christensen, T. [Elsamprojekt, Fredericia (Denmark)

    1999-03-01

    In order to characterise wind and turbulence characteristics at prospective offshore wind energy sites, meteorological observations from a number of purpose-built offshore monitoring sites have been analyzed and compared with long wind speed time series. New analyses have been conducted on the data sets focussing on meteorology, turbulence, extreme winds and wind and wave interactions. Relationships between wind speed, turbulence and fetch are highly complex. Minimum turbulence intensity offshore is associated with wind speeds of about 12 m/s. At lower wind speeds, stability effects are important while at higher winds speeds wind and wave interactions appear to dominate. On average, turbulence intensity offshore at 48 m height is approximately 0.08 if no coastal effects are present. However, the effect of the coastal discontinuity persists in wind speed and turbulence characteristics for considerable distances offshore. The majority of the adjustment of appears to occur within 20 km of the coast. (au)

  13. A user`s manual for the program TRES4: Random vibration analysis of vertical-axis wind turbines in turbulent winds

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    TRES4 is a software package that works with the MSC/NASTRAN finite element analysis code to conduct random vibration analysis of vertical-axis wind turbines. The loads on the turbine are calculated in the time domain to retain the nonlinearities of stalled aerodynamic loadings. The loads are transformed into modal coordinates to reduce the number of degrees of freedom. Power spectra and cross spectra of the loads are calculated in the modal coordinate system. These loads are written in NASTRAN Bulk Data format to be read and applied in a random vibration analysis by NASTRAN. The resulting response is then transformed back to physical coordinates to facilitate user interpretation.

  14. Acceleration and heating of the solar wind

    Science.gov (United States)

    Barnes, A.

    1978-01-01

    Some of the competing theories of solar wind acceleration and heating are reviewed, and the observations that are required to distinguish among them are discussed. In most cases what is required is measurement of plasma velocity and temperature and magnetic field, as near the sun as possible and certainly inside 20 solar radii; another critical aspect of this question is determining whether a turbulent envelope exists in this inner region, and if so, defining its properties. Plasma and magnetic observations from the proposed Solar Probe mission would thus yield a quantum jump in our understanding of the dynamics of the solar wind.

  15. Retrieving wind statistics from average spectrum of continuous-wave lidar

    DEFF Research Database (Denmark)

    Branlard, Emmanuel; Pedersen, Anders Tegtmeier; Mann, Jakob

    2013-01-01

    -order atmospheric turbulence statistics. An atmospheric field campaign and a wind tunnel experiment are carried out to show that the use of an average Doppler spectrum instead of a time series of velocities determined from individual Doppler spectra significantly reduces the differences with the standard deviation...

  16. Wind power development field test project under Japan Sea Museum program. Detailed wind characteristics survey; Nihonkai Museum koso ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted at Kaio-machi, Niiminato-shi, Toyama Prefecture, on the assumption that a wind power generation system would be constructed. The survey was a 1-year project from October 1998 through September 1999, and wind characteristics such as the average wind speed, average wind direction, standard deviation of wind velocity, and the maximum instantaneous wind speed were observed. The observation point was fixed at 20m above ground, the minimum time unit for observation was 10 minutes, and the 10-minute average value was defined as the measured value. For the maximum instantaneous wind speed, the minimum time unit for observation was set to be 2 seconds. The yearly average wind speed was 3.7m/s and the maximum wind speed in the period was 26m/s. Winds came prevalently from SW (17.5%), and then from WSW (11.4%) and NNE (10.2%). The wind axis was in the NE-SW direction with a total wind direction occurrence rate of 62.0%. Turbulence intensity was 0.15 at wind speed 2.0m/s or more and 0.14 at wind speed 4.0m/s or more. Estimated wind turbine yearly operating factors of 32-79% were obtained using rated values of a 150kW, 300kW, and 750kW-class wind turbines. (NEDO)

  17. Numerical modelling of wind effects on breaking waves in the surf zone

    Science.gov (United States)

    Xie, Zhihua

    2017-10-01

    Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.

  18. Effects of wind turbine wake on atmospheric sound propagation

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    In this paper, we investigate the sound propagation from a wind turbine considering the effects of wake-induced velocity deficit and turbulence. In order to address this issue, an advanced approach was developed in which both scalar and vector parabolic equations in two dimensions are solved. Flow...... field input was obtained using the actuator line (AL) technique with Large Eddy Simulation (LES) to model the wind turbine and its wake and from an analytical wake model. The effect of incoming wind speed and atmospheric stability was investigated with the analytical wake input using a single point...

  19. Coherence in Turbulence: New Perspective

    Science.gov (United States)

    Levich, Eugene

    2009-07-01

    It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows

  20. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    Science.gov (United States)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the