WorldWideScience

Sample records for wind velocity profiles

  1. Passive A-band Wind Sounder (PAWS) for measuring tropospheric wind velocity profile

    Science.gov (United States)

    Miecznik, Grzegorz; Pierce, Robert; Huang, Pei; Slaymaker, Philip A.; Kaptchen, Paul; Roark, Shane; Johnson, Brian R.; Heath, Donald F.

    2007-09-01

    The Passive A-Band Wind Sounder (PAWS) was funded through NASA's Instrument Incubator Program (IIP) to determine the feasibility of measuring tropospheric wind speed profiles from Doppler shifts in absorption O II A-band. It is being pursued as a low-cost and low-risk alternative capable of providing better wind data than is currently available. The instrument concept is adapted from the Wind Imaging Interferometer (WINDII) sensor on the Upper Atmosphere Research Satellite. The operational concept for PAWS is to view an atmospheric limb over an altitude range from the surface to 20 km with a Doppler interferometer in a sun-synchronous low-earth orbit. Two orthogonal views of the same sampling volume will be used to resolve horizontal winds from measured line-of-sight winds. A breadboard instrument was developed to demonstrate the measurement approach and to optimize the design parameters for the subsequent engineering unit and future flight sensor. The breadboard instrument consists of a telescope, collimator, filter assembly, and Michelson interferometer. The instrument design is guided by a retrieval model, which helps to optimize key parameters, spectral filter and optical path difference in particular.

  2. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  3. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Sensing the wind profile

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining...... measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Høvsøre, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled...

  4. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  5. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  6. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  7. Quality assessment of weather radar wind profiles during bird migration

    NARCIS (Netherlands)

    Holleman, I.; van Gasteren, H.; Bouten, W.

    2008-01-01

    Wind profiles from an operational C-band Doppler radar have been combined with data from a bird tracking radar to assess the wind profile quality during bird migration. The weather radar wind profiles (WRWPs) are retrieved using the well-known volume velocity processing (VVP) technique. The X-band

  8. Lidar Wind Profiler for the NextGen Airportal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MassTech, Inc. proposes to develop a Lidar Wind Profiler for standoff sensing of concurrent 3-component wind velocities using an eye-safe, rugged, reliable optical...

  9. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  10. On the Escarpment Wind Profile

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Peterson, E. W.

    1978-01-01

    It is shown that miscellaneous theories for flow over low ridges give results consistent with each other and that these results can be used to quantify certain observed features of the wind profile downwind from an escarpment...

  11. On the Escarpment Wind Profile

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Peterson, E. W.

    1978-01-01

    It is shown that miscellaneous theories for flow over low ridges give results consistent with each other and that these results can be used to quantify certain observed features of the wind profile downwind from an escarpment......It is shown that miscellaneous theories for flow over low ridges give results consistent with each other and that these results can be used to quantify certain observed features of the wind profile downwind from an escarpment...

  12. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  13. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  14. Wind profiles for Space Shuttle loads analysis

    Science.gov (United States)

    Adelfang, S. I.

    1978-01-01

    The small scale wind velocity perturbations in vertical wind profiles at Cape Kennedy, Florida were analyzed in order to derive information for simulations of space shuttle ascent through the perturbed atmosphere. The available statistical data does not permit specification of various aspects of idealized singularities and wavelike perturbations with a reasonable degree of confidence. The information developed as a result of the analysis described in Section 3 of this report is suitable for the further development of idealized models. The term perturbation is used instead of the more common term, gust. According to the conventional approach, a gust profile is calculated by applying a high pass digital filter to a Jimsphere profile; all the speeds in the filtered profile are defined as gusts. The high pass filtered profile is defined as a residual profile and the maximum residual in the vicinity of a specified reference height is defined as the gust. Gusts defined in this manner represent the perturbation peaks. A detailed discussion of the calculation of residual profiles and gusts is given. The meteorological coordinate system, the data sample, and Jimsphere profiles are also described. Recommendations and conclusions are presented.

  15. Wind profiler installed in Antarctica

    Science.gov (United States)

    Balsley, B. B.; Carey, J.; Woodman, R. F.; Sarango, M.; Urbina, J.; Rodriguez, R.; Ragaini, E.

    A VHF (50 MHz) wind profiler was installed in Antarctica at the Peruvian Base “Machu Picchu” on King George Island from January 21 to 26. The wind profiler will provide a first look at atmospheric dynamics over the region.The profiler—the first of its kind in Antarctica—is a National Science Foundationsponsored cooperative project of the University of Colorado, the Geophysical Institute of Peru, the University of Piura (Peru), and the Peruvian Navy. This venture was also greatly facilitated by Peru's Comision Nacional de Asuntos Antartidos and Consejo Nacional de Ciencias y Tecnologia, with additional logis tics support provided by the Argentinean Navy and the Uruguayan Air Force.

  16. Wind Velocity Vertical Extrapolation by Extended Power Law

    Directory of Open Access Journals (Sweden)

    Zekai Şen

    2012-01-01

    Full Text Available Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard deviations and the cross-correlation coefficient between different elevations are taken into consideration. The application of the presented methodology is performed for wind speed measurements at Karaburun/Istanbul, Turkey. At this location, hourly wind speed measurements are available for three different heights above the earth surface.

  17. Velocity profiles and surface roughness under breaking waves

    Science.gov (United States)

    Craig, Peter D.

    1996-01-01

    Recent measurements under wave-breaking conditions in the ocean, lakes, and tanks reveal a layer immediately below the surface in which dissipation decays as depth to the power -2 to -4 and downwind velocities are approximately linear with depth. This behavior is consistent with predictions of a conventional, one-dimensional, level 2.5 turbulence closure model, in which the influence of breaking waves is parameterized as a surface source of turbulent kinetic energy. The model provides an analytic solution which describes the near-surface power law behavior and the deeper transition to the "law of the wall." The mixing length imposed in the model increases linearly away from a minimum value, the roughness length, at the surface. The surface roughness emerges as an important scaling factor in the wave-enhanced layer but is the major unknown in the formulation. Measurements in the wave-affected layer are still rare, but one exceptional set, both in terms of its accuracy and proximity to the surface, is that collected by Cheung and Street [1988] in the Stanford wind tunnel. Their velocity profiles first confirm the accuracy of the model, and, second, allow estimation, via a best fit procedure, of roughness lengths at five different wind speeds. Conclusions are tentative but indicate that the roughness length increases with wind speed and appears to take a value of approximately one sixth the dominant surface wavelength. A more traditional wall-layer model, which ignores the flux of turbulent kinetic energy, will also accurately reproduce the measured velocity profiles. In this case, enhanced surface turbulence is forced on the model by the assumption of a large surface roughness, three times that required by the full model. However, the wall-layer model cannot predict the enhanced dissipation near the surface.

  18. BOREAS AFM-06 Mean Wind Profile Data

    Science.gov (United States)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  19. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  1. Design and Performance of a Miniature Lidar Wind Profiler (MLWP)

    Science.gov (United States)

    Cornwell, Donald M., Jr.; Miodek, Mariusz J.

    1998-01-01

    The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars

  2. Modelling of the urban wind profile

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina

    2008-01-01

    Analysis of meteorological measurements from tall masts in rural and urban areas show that the height of the boundary layer influences the wind profile even in the lowest hundreds of meters. A parameterization of the wind profile for the entire boundary layer is formulated with emphasis...... on the lowest 200-300 m and presented here. Results are shown from applying the parameterization of the wind profile on independent measurements from an urban experimental campaign that was carried out in Sofia, Bulgaria in 2003....

  3. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  4. Velocity Measurement Systems for a Low-speed Wind Tunnel

    Science.gov (United States)

    2015-04-29

    SECURITY CLASSIFICATION OF: Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment and a Dantec particle- image...Velocity Measurement Systems for a Low-speed Wind Tunnel Report Title Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment...Funds were provided by the Army Research Office for the purchase of TSI hot-wire anemometer equipment and a Dantec particle-image velocimetry system

  5. Improved Estimates of Moments and Winds from Radar Wind Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Helmus, Jonathan [Argonne National Lab. (ANL), Argonne, IL (United States); Ghate, Virendra P. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-02

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates nine radar wind profilers (RWP) across its sites. These RWPs operate at 915 MHz or 1290 MHz frequency and report the first three moments of the Doppler spectrum. The operational settings of the RWP were modified in summer, 2015 to have single pulse length setting for the wind mode and two pulse length settings for the precipitation mode. The moments data collected during the wind mode are used to retrieve horizontal winds. The vendor-reported winds are available at variable time resolution (10 mins, 60 mins, etc.) and contain a significant amount of contamination due to noise and clutter. In this data product we have recalculated the moments and the winds from the raw radar Doppler spectrum and have made efforts to mitigate the contamination due to instrument noise in the wind estimates. Additionally, the moments and wind data has been reported in a harmonized layout identical for all locations and sites.

  6. A method for measuring mean wind velocities in a canyon with tracer balloons

    Science.gov (United States)

    Sheih, C. M.; Billman, B. J.; Depaul, F. T.

    1985-08-01

    A method using balloons as tracers for measuring mean wind velocity in street canyons or mountain valleys has been developed. Tests of the method with numerical experiments showed that the method reproduced an assumed wind field quite well provided that the buoyancy component of the balloon velocity was larger than the downward velocity component of the wind. Tests of the method with measurements of wind velocity in a street canyon of downtown Chicago showed that the method yielded flow patterns quite similar to photographic results of flow visualization of phisical simulations by other investigators. However, no direct measurements of wind velocity were available for quantitative comparison.

  7. Lidar for Wind and Optical Turbulence Profiling

    Directory of Open Access Journals (Sweden)

    Fastig Shlomo

    2018-01-01

    Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.

  8. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Directory of Open Access Journals (Sweden)

    Young-Moon Kim

    2014-01-01

    Full Text Available Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  9. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Science.gov (United States)

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small. PMID:25136681

  10. High-resolution humidity profiles retrieved from wind profiler radar measurements

    Science.gov (United States)

    Saïd, Frédérique; Campistron, Bernard; Di Girolamo, Paolo

    2018-03-01

    The retrieval of humidity profiles from wind profiler radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity profile is the necessity to combine measurements from the wind profiler and additional measurements (such as observations from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity profile from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity profile never exceeds 0.25 g kg-1. The second objective is to explore the capability of the algorithm to retrieve the humidity vertical profiles for an operational purpose by comparing the results with observations from a Raman lidar.

  11. Temperature and velocity profiles in sooting free boundary layer flames

    Science.gov (United States)

    Ang, J. A.; Pagni, P. J.; Mataga, T. G.; Margle, J. M.; Lyons, V. J.

    1986-01-01

    Temperature and velocity profiles are presented for cyclohexane, n-heptane, and iso-octane free, laminar, boundary layer, sooting, diffusion flames. Temperatures are measured with 3 mil Pt/Pt-13 percent Rh thermocouples. Corrected gas temperatures are derived by performing an energy balance of convection to and radiation from the thermocouple bead incorporating the variation of air conductivity and platinum emissivity with temperature. Velocities are measured using laser doppler velocimetry techniques. Profiles are compared with previously reported analytic temperature and velocity fields. Comparison of theoretical and experimental temperature profiles suggests improvement in the analytical treatment is needed, which accounts more accurately for the local soot radiation. The velocity profiles are in good agreement, with the departure of the theory from observation partially due to the small fluctuations inherent in these free flows.

  12. Wind profile radar for study of Antarctic air circulation. Progetto di un radar 'wind-profiler' per lo studio della circolazione atmosferica antartica

    Energy Technology Data Exchange (ETDEWEB)

    Ragaini, E.; Sarango, M.F.; Vasquez, E.H.

    1992-10-01

    After a brief discussion of meteorological methods used in the Antarctic, the paper gives an outline of a coordinated international research project whose objective is to set up a wind profiler radar station that would give meteorologists information regarding Antarctic atmospheric dynamics useful in their investigation of the causes and effects of the hole in the ozone layer. The radar instrumentation is to provide continuous readings of wind velocity at varying altitudes above the polar continent.

  13. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  14. The Effect of Wind Velocity on the Cooling Rate of Water

    OpenAIRE

    Shrey Aryan

    2016-01-01

    The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  15. Seismic Tomography and the Development of a State Velocity Profile

    Science.gov (United States)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  16. Radial profiles of velocity and pressure for condensation-induced hurricanes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2011-01-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  17. Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2014-01-01

    A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines .......A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines ....

  18. Quality and Impact of Indian Doppler Weather Radar Wind Profiles: A Diagnostic Study

    Science.gov (United States)

    Sandeep, A.; Prasad, V. S.; Johny, C. J.

    2017-07-01

    In the tropics, efficient weather forecasts require high-quality vertical profiles of winds to overcome improper coupling of mass and wind fields and balance relationships in the region. The India Meteorological Department (IMD) operates the network of Doppler Weather Radar (DWR) in microwave frequencies (S-band or C-band) at various locations in India. The National Centre for Medium Range Weather Forecasting (NCMRWF) receives the volume velocity processing (VVP) wind profiles from all DWRs through the Global Telecommunication System (GTS) network in near real time. The radar VVP wind is a mean horizontal wind derived at different heights from radial velocities suitable for numerical weather prediction applications. Three numerical experiments, CNTL (without VVP winds), 3DVAR and HYBRID with the assimilation of VVP winds by means of 3-dimensional variational (3dvar) and hybrid data assimilation systems were conducted using the NCMRWF Global Forecast System (NGFS) model. This study had two objectives: (1) quality assessment of VVP winds and (2) investigation of the impact of VVP wind profiles on NGFS model forecast. The quality of VVP wind profiles was assessed against the NGFS model background and radiosonde wind profiles. The absolute values of zonal and meridional wind observation minus background (O-B) increased with the pressure for all DWRs. All radars exhibited the accepted (rejected) ratio as a decreasing (increasing) function of pressure. The resemblance between the zonal and meridional O-B statistics for 3DVAR and HYBRID experiments is apparently remarkable. The accepted VVP winds and radiosonde winds in both experiments (3DVAR and HYBRID) were consistent. The correlation coefficient ( R) was higher at Patna (Patiala) for zonal (meridional) winds in the 3DVAR experiment and at Patna (Jaipur) in the HYBRID experiment. At Chennai, the R value was lower in both the experiments for both wind components. However, because of the assimilation of VVP winds by

  19. Friction velocity estimation using Reynolds shear stress profile data

    Science.gov (United States)

    Volino, Ralph; Schultz, Michael

    2017-11-01

    A method for using profiles of the mean streamwise velocity and the Reynolds shear stress to estimate the friction velocity, uτ, is presented. The Reynolds averaged two-dimensional streamwise momentum equation is solved for the Reynolds shear stress term. The remaining terms in the equation are separated into those which depend on the local gradient of the mean streamwise velocity profile and those which do not. Using only the terms retained with the Couette flow assumption, the Reynolds shear stress profile can be matched in the inner 10 percent of the boundary layer with the appropriate choice of uτ. Including the other terms which do not depend on the streamwise velocity profile gradient, the fit can be extended to the inner 30 percent of the boundary layer. Using all terms the full Reynolds shear stress profile can be fit. The method is verified using laminar solutions for zero and non-zero pressure gradient boundary layers, and with ZPG turbulent DNS results. It is then applied to zero, favorable and adverse pressure gradient experimental data from smooth and rough walls. Results obtained for local friction velocities agree well with those obtained by other techniques. The method may prove useful when other methods are not practical or fully appropriate. Sponsored by the Office of Naval Research.

  20. Retrieval of vertical wind profiles during monsoon from satellite ...

    Indian Academy of Sciences (India)

    algorithm which ensures the retrieval of vertical profiles of winds using satellite tracked cloud motion vector winds. Under the assumption that accurate measurements of wind are available at the above mentioned levels, the r.m.s. error of retrieval of each component of wind is estimated to range between. 2 msю1 and 6 ...

  1. Wind lidar profile measurements in the coastal boundary layer: comparison with WRF modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Pena Diaz, Alfredo; Vincent, Claire Louise

    2012-01-01

    We use measurements from a pulsed wind lidar to study the wind speed profile in the planetary boundary layer (PBL) up to 600 m above the surface at a coastal site. Due to the high availability and quality of wind lidar data and the high vertical range of the measurements, it is possible to study...... of the smooth-to-rough transition at the coastline. When using a more representative roughness than the default, the biases in the surface friction velocity and heat flux are reduced and the wind speed is slightly improved. Both PBL schemes show too much mixing during stable conditions and an underestimation...... in the amount of observed low level jet. The wind speed predicted by WRF does not improve when a higher resolution is used. Therefore, both the inhomogeneous (westerly) and homogeneous (easterly) flow contribute to a large negative bias in the mean wind speed profile at heights between 100 and 200 m....

  2. A Model for Determining the Effect of the Wind Velocity on 100 M Sprinting Performance

    Directory of Open Access Journals (Sweden)

    Janjic Natasa

    2017-06-01

    Full Text Available This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10-3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10-2 m/s and cannot be neglected.

  3. Scaling Effect on Velocity Profiles in Capillary Underfill Flow

    Science.gov (United States)

    Ng, Fei Chong; Abas, Aizat; Abdullah, M. Z.; Ishak, M. H. H.; Yuen Chong, Gean

    2017-05-01

    In this paper, the scaling effect of ball grid array (BGA) device on the capillary underfill (CUF) flow and its velocity profiles is thoroughly investigated by means of fluid-structure interaction (FSI) numerical simulation. It is found that generally the flows front profiles attained from device of different scale sizes are comparable to the actual miniature BGA, with relative error approximately under 10%. Based on dimensionless number analysis, the scaling limit is estimated at 20, to maintain low scaling error. The velocity profiles attained on the CUF flow in each models of different scales are relative similar in magnitude and trend. Although the increases in gap height reduces the strength of capillary flow, the flow’s velocity still be maintained and the scaling effect is counter-balance with the increases in driving pressure force. The magnitude of entrant velocity is higher at earlier stage of CUF (less than 40% filling); while higher magnitude of exit velocity is found at later stage of CUF (beyond 60% filling). Additionally, the pressure and velocity distributions of CUF flow in miniature device were also studied thoroughly.

  4. Height profile of particle concentration in an aeolian saltating cloud: A wind tunnel investigation by PIV MSD

    Science.gov (United States)

    Dong, Zhibao; Wang, Hongtao; Zhang, Xiaohang; Ayrault, Michael

    2003-10-01

    Attempt is made to define the particle concentration in an aeolian saltating cloud and its variation with height using artificial spherical quartz sand in a wind tunnel. The height profiles of the relative particle concentration in aeolian saltating cloud at three wind velocities were detected by the state of the art PIV (Particle Image Velocimetry) MSD (Mie Scattering Diffusion) technique, and converted to actual concentration based on sand transport rate and the variation with height of velocity of the saltating cloud. The particle concentration was found to decay exponentially with height and to increase with wind velocity. It decayed more rapidly when the wind velocity decreased. The volume/volume concentration in the near-surface layer was at the order of 10-4. The results obtained by PIV MSD technique were in good agreement with those derived from the sand flux and velocity profiles, the former being about 15% greater than the later.

  5. A bistatic sodar for precision wind profiling in complex terrain

    DEFF Research Database (Denmark)

    Bradley, Stuart; Hünerbein, Sabine Von; Mikkelsen, Torben

    2012-01-01

    A new ground-based wind profiling technology-a scanned bistatic sodar-is described. The motivation for this design is to obtain a "mastlike"wind vector profile in a single atmospheric column extending from the ground to heights of more than 200 m. The need for this columnar profiling arises from ...

  6. The influence of the Wind Speed Profile on Wind Turbine Performance Measurements

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Antoniou, Ioannis; Pedersen, Søren M.

    2009-01-01

    . Assuming a certain turbine hub height, the profiles with hub-height wind speeds between 6 m s-1 and 8 m s-1 are normalized at 7 m s-1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub-height wind speed. These profiles are then used as input...... the swept rotor area would allow the determination of the electrical power as a function of an equivalent wind speed where wind shear and turbulence intensity are taken into account. Electrical power is found to correlate significantly better to the equivalent wind speed than to the single point hub...

  7. Offshore wind profiling using light detection and ranging measurements

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hasager, Charlotte Bay; Gryning, Sven-Erik

    2009-01-01

    The advantages and limitations of the ZephlR (R), a continuous-wave, focused light detection and ranging (LiDAR) wind profiler, to observe offshore winds and turbulence characteristics were tested during a 6 month campaign at the tronsformer/platform of Hams Rev, the world's largest wind form....... The LiDAR system is a ground-based sensing technique which avoids the use of high and costly meteorological masts. Three different inflow conditions were selected to perform LiDAR wind profiling. Comparisons of LiDAR mean wind speeds against cup anemometers from different masts showed high correlations...... for the open sea sectors and good agreement with their longitudinal turbulence characteristics. Cup anemometer mean wind speed profiles were extended with LiDAR profiles up to 161 m on each inflow sector. The extension resulted in a good profile match for the three surrounding masts. These extended profiles...

  8. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    Science.gov (United States)

    Vacek, Austin

    2016-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  9. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  10. The wind profile up to 300 meters over flat terrain

    International Nuclear Information System (INIS)

    Gryning, S-E; Joergensen, H; Larsen, S; Batchvarova, E

    2007-01-01

    Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at Hoevsoere (rural, Denmark) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a height of 50 to 80 m. At higher levels deviations from the measurements progressively occur. The measurements also indicated that the height of the boundary layer influences the wind profile even in the lowest hundreds of meters. A parameterization of the wind profile for the entire boundary layer is formulated, with emphasis on the lowest 200 - 300 meters

  11. Wind and thermodynamic profiler observations of a late-mature gust ...

    Indian Academy of Sciences (India)

    Common meteoro- logical variables at surface were sampled with 1 Hz temporal resolution. A 12-channel Microwave Pro- filer Radiometer (MPR) was used to derive verti- cal profiles of temperature (T) and water vapour mixing ratio (rv), with 4 min temporal resolution. Vertical velocities and horizontal wind field (tem-.

  12. The Effect of Wind Velocity on the Cooling Rate of Water

    Directory of Open Access Journals (Sweden)

    Shrey Aryan

    2016-01-01

    Full Text Available The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  13. CAMEX-4 MIPS 915 MHZ DOPPLER WIND PROFILER V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 MIPS 915 MHZ Doppler Wind Profiler dataset was collected by the University of Alabama in Huntsville (UAH) Mobile Integrated Profiling System (MIPS),...

  14. Changes in Jupiter's Zonal Wind Profile Preceding and During the Juno Mission

    Science.gov (United States)

    Tollefson, Joshua; Wong, Michael H.; de Pater, Imke; Simon, Amy A.; Orton, Glenn S.; Rogers, John H.; Atreya, Sushil K.; Cosentino, Richard G.; Januszewski, William; Morales-Juberias, Raul; hide

    2017-01-01

    We present five epochs of WFC3 HST Jupiter observations taken between 2009-2016 and extract global zonal wind profiles for each epoch. Jupiter's zonal wind field is globally stable throughout these years, but significant variations in certain latitude regions persist. We find that the largest uncertainties in the wind field are due to vortices or hot-spots, and show residual maps which identify the strongest vortex flows. The strongest year-to-year variation in the zonal wind profiles is the 24 deg N jet peak. Numerous plume outbreaks have been observed in the Northern Temperate Belt and are associated with decreases in the zonal velocity and brightness. We show that the 24 deg N jet peak velocity and brightness decreased in 2012 and again in late 2016, following outbreaks during these years. Our February 2016 zonal wind profile was the last highly spatially resolved measurement prior to Juno s first science observations. The final 2016 data were taken in conjunction with Juno's perijove 3 pass on 11 December 2016, and show the zonal wind profile following the plume outbreak at 24 deg N in October 2016.

  15. Lidar Wind Profiler for the NextGen Airportal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a standoff sensor that can measure 3D components of wind velocity in the vicinity of an airport has the potential to improve airport throughput,...

  16. The influence of humidity fluxes on offshore wind speed profiles

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Sempreviva, Anna Maria; Pryor, Sara

    2010-01-01

    extrapolation from lower measurements. With humid conditions and low mechanical turbulence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability corrections are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected...... wind speed profiles. The effect on wind speed profiles is found to be important in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4% higher...... than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes....

  17. Long-Term Mean Wind Profiles Based on Similarity Theory

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Gryning, Sven-Erik

    2010-01-01

    We provide general forms for long-term mean wind profiles from similarity-based wind profiles, beginning with a probabilistic adaptation of Monin–Obukhov similarity theory. We develop an analytical formulation for the stability distributions prevailing in the atmospheric surface layer, which...

  18. Velocity profiles in idealized model of human respiratory tract

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  19. On the length-scale of the wind profile

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    We present the results of an analysis of simultaneous sonic anemometer observations of wind speed and velocity spectra over flat and homogeneous terrain from 10 up to 160 m height performed at the National Test Station for Wind Turbines at Høvsøre, Denmark. The mixing length, l, derived from the ...

  20. Velocity profiles of fluid flow close to a hydrophobic surface

    Science.gov (United States)

    Fialová, Simona; Pochylý, František; Kotek, Michal; Jašíková, Darina

    The results of research on viscous liquid flow upon a superhydrophobic surface are presented in the paper. In the introduction, the degrees of surface hydrophobicity in correlation with an adhesion coefficient are defined. The usage of the adhesion coefficient for the definition of a new boundary condition is employed for expressing the slip of the liquid over the superhydrophobic surface. The slip of the liquid was identified on a special experimental device. The essence of the device consists of a tunnel of rectangular cross section whose one wall is treated with a superhydrophobic layer. The other walls are made of transparent organic glass whose surface is hydrophilic. Velocity profiles are measured by PIV. The methodology is drawn so that it allows the speed determination at the closest point to the wall. The measurements were performed for different Reynolds numbers for both laminar and turbulent flow. Based on the measured velocity profiles, marginal terms of use have been verified, expressing slippage of the liquid on the wall. New forms of velocity profiles considering superhydrophobic surfaces are shown within the work.

  1. Pressure and velocity profiles in a static mechanical hemilarynx model

    Science.gov (United States)

    Alipour, Fariborz; Scherer, Ronald C.

    2002-12-01

    This study examined pressure and velocity profiles in a hemilarynx mechanical model of phonation. The glottal section had parallel walls and was fabricated from hard plastic. Twelve pressure taps were created in the vocal fold surface and connected to a differential pressure transducer through a pressure switch. The glottal gap was measured with feeler gauges and the uniform glottal duct was verified by use of a laser system. Eight pressure transducers were placed in the flat wall opposite the vocal fold. Hot-wire anemometry was used to obtain velocity profiles upstream and downstream of the glottis. The results indicate that the pressure distribution on the vocal fold surface was consistent with pressure change along a parallel duct, whereas the pressures on the opposite flat wall typically were lower (by 8%-40% of the transglottal pressure just past mid-glottis). The upstream velocity profiles were symmetric regardless of the constriction shape and size. The jet flow downstream of the glottis was turbulent even for laminar upstream conditions. The front of the jet was consistently approximately 1.5 mm from the flat wall for glottal gaps of 0.4, 0.8 and 1.2 mm. The turbulence intensity also remained approximately at the same location of about 4 mm from the flat wall for the two larger gaps.

  2. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  3. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  4. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    Science.gov (United States)

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  5. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    , installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean...

  6. Transition Marshall Space Flight Center Wind Profiler Splicing Algorithm to Launch Services Program Upper Winds Tool

    Science.gov (United States)

    Bauman, William H., III

    2014-01-01

    NASAs LSP customers and the future SLS program rely on observations of upper-level winds for steering, loads, and trajectory calculations for the launch vehicles flight. On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds and provide forecasts to the launch team via the AMU-developed LSP Upper Winds tool for launches at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station. This tool displays wind speed and direction profiles from rawinsondes released during launch operations, the 45th Space Wing 915-MHz Doppler Radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP, and output from numerical weather prediction models.The goal of this task was to splice the wind speed and direction profiles from the 45th Space Wing (45 SW) 915-MHz Doppler radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP at altitudes where the wind profiles overlap to create a smooth profile. In the first version of the LSP Upper Winds tool, the top of the 915-MHz DRWP wind profile and the bottom of the 50-MHz DRWP were not spliced, sometimes creating a discontinuity in the profile. The Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) created algorithms to splice the wind profiles from the two sensors to generate an archive of vertically complete wind profiles for the SLS program. The AMU worked with MSFC NE personnel to implement these algorithms in the LSP Upper Winds tool to provide a continuous spliced wind profile.The AMU transitioned the MSFC NE algorithms to interpolate and fill data gaps in the data, implement a Gaussian weighting function to produce 50-m altitude intervals in each sensor, and splice the data together from both DRWPs. They did so by porting the MSFC NE code written with MATLAB software into Microsoft Excel Visual Basic for Applications (VBA). After testing the new algorithms in stand-alone VBA modules, the AMU replaced the existing VBA code in the LSP Upper Winds tool with the new

  7. The role of wind field induced flow velocities in destratification and hypoxia reduction at Meiling Bay of large shallow Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud

    2018-01-01

    Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication

  8. Solar wind velocity and daily variation of cosmic rays

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.; Riker, J.F.

    1985-01-01

    Recently parameters applicable to the solar wind and the interplanetary magnetic field (IMF) have become much better defined. Superior quality of data bases that are now available, particularly for the post-1971 period, make it possible to believe the long-term trends in the data. These data are correlated with the secular changes observed in the diurnal variation parameters obtained from neutron monitor data at Deep River and underground muon telescope data at Embudo (30 MEW) and Socorro (82 MWE). The annual mean amplitudes appear to have large values during the epochs of high speed solar wind streams. Results are discussed

  9. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars

    DEFF Research Database (Denmark)

    Simley, Eric; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    9% and 3% of the freestream longitudinal wind speed were measured for the abovementioned high and low CP values, respectively. Turbulence statistics, calculated using 2.5-min time series, suggest that the standard deviation of the longitudinal wind component decreases close to the rotor, while...... Technical University’s Risø campus is investigated using a scanning Light Detection and Ranging (lidar) system. Three short-range continuous-wave “WindScanner” lidars are positioned in the field around the V27 turbine allowing detection of all three components of the wind velocity vectors within...... the induction zone. The time-averaged mean wind speeds at different locations in the upstream induction zone are measured by scanning a horizontal plane at hub height and a vertical plane centered at the middle of the rotor extending roughly 1.5 rotor diameters (D) upstream of the rotor. Turbulence statistics...

  10. Improved velocity law parameterization for hot star winds (Research Note)

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2011-01-01

    Roč. 534, October (2011), A97/1-A97/3 ISSN 0004-6361 R&D Projects: GA ČR GA205/08/0003 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  11. Profiling the regional wind power fluctuation in China

    International Nuclear Information System (INIS)

    Yu Dayang; Liang Jun; Han Xueshan; Zhao Jianguo

    2011-01-01

    As China starts to build 6 10-GW wind zones in 5 provinces by 2020, accommodating the wind electricity generated from these large wind zones will be a great challenge for the regional grids. Inadequate wind observing data hinders profiling the wind power fluctuations at the regional grid level. This paper proposed a method to assess the seasonal and diurnal wind power patterns based on the wind speed data from the NASA GEOS-5 DAS system, which provides data to the study of climate processes including the long-term estimates of meteorological quantities. The wind power fluctuations for the 6 largest wind zones in China are presented with both the capacity factor and the megawatt wind power output. The measured hourly wind output in a regional grid is compared to the calculating result to test the analyzing model. To investigate the offsetting effect of dispersed wind farms over large regions, the regional correlations of hourly wind power fluctuations are calculated. The result illustrates the different offsetting effects of minute and hourly fluctuations.

  12. Sodar data about wind profiles in Moscow city

    Directory of Open Access Journals (Sweden)

    Mikhail A. Lokoshchenko

    2009-06-01

    Full Text Available The results of wind measurements in the lowermost 500 m air layer above Moscow by Doppler sodar 'MODOS' produced by METEK firm are presented for the period from 2004 to 2008. General features both of the annual cycle of wind profiles and of the diurnal one are being discussed. In average, the highest wind speed values are observed in autumn and in winter, the least ones in spring and in summer. The recordable maximal value of the wind speed averaged over 10 minutes in Moscow city has been found as nearly 31 m/s. The distributions of wind speed values regularly show a positive asymmetry and are close to the logarithmically normal law. For the first time, seasonal dynamics of the skewness coefficient and of the kurtosis of wind distributions are analyzed. The most frequently detected wind directions are South-Western and Western-South-Western; the rarest are directions with an Eastern component. The crossover height of wind profiles varies in average from 60-80 m in autumn and in winter to nearly of 100 m in summer. For the first time, mean values of wind turning during the passing of atmospheric fronts have been received and are studied by sodar data. It was found that right-hand (clockwise turning of wind at cold fronts is more and occurs more quickly compared to warm fronts. The occlusion fronts show intermediate mean values of wind turning.

  13. In-vivo blood velocity and velocity gradient profiles downstream of stented and stentless aortic heart valves.

    Science.gov (United States)

    Funder, Jonas A; Frost, Markus W; Ringgaard, Steffen; Klaaborg, Kaj-Erik; Wierup, Per; Hjortdal, Vibeke; Nygaard, Hans; Hasenkam, J Michael

    2010-05-01

    Abnormal flow conditions across aortic bioprosthetic valves may result in degenerative processes. Thus, it is important to implant biological valve prostheses with velocity profiles similar to those of native valves. The study aim was to compare blood velocity and velocity gradient profiles downstream of stented and stentless aortic valves implanted in pigs, and in native porcine valves. Stented valve prostheses (Mitroflow, n = 7) or stentless valve prostheses (Solo, n = 5 or Toronto SPV, n = 7) were implanted into pigs; the native valve was retained in eight animals. After weaning the animals from cardiopulmonary bypass, cardiac magnetic resonance imaging was performed to determine the blood velocities and velocity gradient profiles. The native valves had a significantly lower peak velocity (92 +/- 26 cm/s) than the artificial valves (Solo: 247 +/- 107 cm/s; Toronto: 252 +/- 41 cm/s; Mitroflow: 229 +/- 18 cm/s). The native valves exhibited a flat velocity profile during systole, whereas the Solo valve, and especially the Toronto SPV valve, displayed more parabola-shaped velocity profiles; velocity profiles downstream of the Mitroflow valve exhibited a flat shape. The native valves had a lower mean velocity gradient at peak systole (p valve (0.14 +/- 0.11; p valve had a percentage of 0.57 +/- 0.09, which was lower than the Solo valve (0.69 +/- 0.12; p = 0.074), and significantly lower than the Toronto valve (0.70 +/- 0.08; p = 0.015). All valves displayed high velocity gradients adjacent to the aortic wall; in particular, the Toronto SPV which also had high velocity gradients at the center of the vessel. All of the artificial valves tested had a significantly higher mean velocity gradient and peak velocity than the native valves. However, the Mitroflow had a mean velocity and a velocity gradient percentage lower than the two stentless valves. The Solo and Mitroflow valves displayed velocity profiles most like native valves, while the Toronto valve had a more

  14. Artificial neural network approach to spatial estimation of wind velocity data

    International Nuclear Information System (INIS)

    Oztopal, Ahmet

    2006-01-01

    In any regional wind energy assessment, equal wind velocity or energy lines provide a common basis for meaningful interpretations that furnish essential information for proper design purposes. In order to achieve regional variation descriptions, there are methods of optimum interpolation with classical weighting functions or variogram methods in Kriging methodology. Generally, the weighting functions are logically and geometrically deduced in a deterministic manner, and hence, they are imaginary first approximations for regional variability assessments, such as wind velocity. Geometrical weighting functions are necessary for regional estimation of the regional variable at a location with no measurement, which is referred to as the pivot station from the measurements of a set of surrounding stations. In this paper, weighting factors of surrounding stations necessary for the prediction of a pivot station are presented by an artificial neural network (ANN) technique. The wind speed prediction results are compared with measured values at a pivot station. Daily wind velocity measurements in the Marmara region from 1993 to 1997 are considered for application of the ANN methodology. The model is more appropriate for winter period daily wind velocities, which are significant for energy generation in the study area. Trigonometric point cumulative semivariogram (TPCSV) approach results are compared with the ANN estimations for the same set of data by considering the correlation coefficient (R). Under and over estimation problems in objective analysis can be avoided by the ANN approach

  15. Velocity profiles of high-excitation molecular hydrogen lines

    International Nuclear Information System (INIS)

    Moorhouse, A.; Brand, P.W.J.L.; Burton, M.G.

    1990-01-01

    Profiles of three lines of molecular hydrogen near 2.2 μm, originating from widely spaced energy levels, have been measured at a resolution of 32 km s -1 at Peak 1 in the Orion molecular outflow. The three lines [1 - O S(1), 2 - 1 S(1) and 3 - 2 S(3)] are found to have identical profiles. This result rules out any significant contribution to the population of the higher energy levels of molecular hydrogen at Peak 1 by fluorescence, is inconsistent with multiple C-shock models which produce higher excitation temperatures at larger shock velocities, and is generally consistent with emission from multiple J-type shocks. (author)

  16. Retrieval of vertical wind profiles during monsoon from satellite ...

    Indian Academy of Sciences (India)

    large number of radiosonde observations of wind profiles over the Indian Ocean during the monsoon months. It has been found that the first ... include several sources of both systematic and random errors. Among them cloud top height .... highly correlated with the pseudo-winds at levels between 850mb and 600mb (r ј 0:8) ...

  17. Field test of a lidar wind profiler

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Wind speeds and wind directions are measured remotely using an incoherent backscatter lidar system operating at a wavelength of 1.06 mm with a maximum repetition rate of 13 Hz. The principle of the measurements is based on following detectable atmospheric structures, which are transported by the

  18. Hα LINE PROFILE ASYMMETRIES AND THE CHROMOSPHERIC FLARE VELOCITY FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kuridze, D.; Mathioudakis, M.; Kennedy, M.; Keenan, F. P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast BT7 1NN (United Kingdom); Simões, P. J. A.; Voort, L. Rouppe van der; Fletcher, L. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Carlsson, M.; Jafarzadeh, S. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Allred, J. C.; Kowalski, A. F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Graham, D. [INAF-Ossevatorio Astrofisico di Arcetri, I-50125 Firenze (Italy)

    2015-11-10

    The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Hα and Ca ii λ8542 lines are studied using high spatial, temporal, and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1 m Solar Telescope. The temporal evolution of the Hα line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum and excess in the blue wing (blue asymmetry) after maximum. However, the Ca ii λ8542 line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesize spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Hα is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modify the wavelength of the central reversal in the Hα line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.

  19. Imaging doppler lidar for wind turbine wake profiling

    Science.gov (United States)

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  20. Ocean Ekman Response to Wind Forcing in Frontal Regions and Implications for Vertical Velocity

    Science.gov (United States)

    Cronin, M. F.; Tozuka, T.

    2016-12-01

    Wind forcing is fundamental to the ocean circulation. According to the classic "Ekman" theory developed in the early twentieth century, wind-induced steady flow spirals to the right of the wind stress in the Northern Hemisphere and to the left in the Southern Hemisphere, resulting in a net wind-forced "Ekman" transport that is 90 degrees to the right of the wind stress in the Northern Hemisphere and to the left in the Southern Hemisphere. This theory, however, assumes that the near-surface ocean is uniform in density (i.e., has no fronts). In frontal regions the surface "geostrophic" currents have a vertical shear aligned with the density front and this oceanic "thermal wind" shear can balance a portion of the surface wind stress. In this study we show that in frontal regions, the classic Ekman response is altered. Surface ocean currents respond to the effective wind stress—the portion of the wind stress that is out of balance with the ocean's surface geostrophic shear. Consequently, the vertical velocity at the base of the mixed layer is better approximated by the curl of the effective wind stress, rather than the full wind stress. Wind blowing along a front can give rise to a local minimum in the effective wind stress and result in a secondary circulation with downwelling on the cold side of the front and upwelling on the warm side. Using data from the high-resolution Japanese Ocean general circulation model For the Earth Simulator (OFES), we show that these frontal effects cannot be ignored in the Tropics or in strong frontal regions in the extratropics, such as found in coastal regions and in western boundary currents of all basins. Furthermore, these frontal effects dominate the classic Ekman response in regions of both hemispheres where trade winds change to westerlies.

  1. Effect of Wind Velocity on Flame Spread in Microgravity

    Science.gov (United States)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  2. Use of ground-based wind profiles in mesoscale forecasting

    Science.gov (United States)

    Schlatter, Thomas W.

    1985-01-01

    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  3. Analysis of wind velocity and release angle effects on discus throw using computational fluid dynamics.

    Science.gov (United States)

    Rouboa, Abel I; Reis, Victor M; Mantha, Vishveshwar R; Marinho, Daniel A; Silva, António J

    2013-01-01

    The aim of this paper is to study the aerodynamics of discus throw. A comparison of numerical and experimental performance of discus throw with and without rotation was carried out using the analysis of lift and drag coefficients. Initial velocity corresponding to variation angle of around 35.5° was simulated. Boundary condition, on the top and bottom boundary edges of computational domain, was imposed in order to eliminate external influences on the discus; a wind resistance was calculated for the velocity values of 25 and 27 m/s. The results indicate that the flight distance (D) was strongly affected by the drag coefficient, the initial velocity, the release angle and the direction of wind velocity. It was observed that these variables change as a function of discus rotation. In this study, results indicate a good agreement of D between experimental values and numerical results.

  4. On a relation of geomagnetic activity, solar wind velocity and irregularity of daily rotation of the Earth

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Kiselev, V.M.

    1980-01-01

    A possibility of the presence of statistic relation between the changes of the Earth rotation regime and the mean velocity of solar wind is discussed. The ratio between the solar wind velocity observed and planetary index of geomagnetic activity am is used to determine the annual average values of solar wind velocity beyond the twentieth cycle of solar activity. The restored changes of solar wind velocity are compared with solar conditioned variations of the Earth day duration and it is shown that the correspondence takes place only at frequencies lower the frequency of 11-year cycle [ru

  5. Combining microwave radiometer and wind profiler radar measurements to improve accuracy and resolution of atmospheric humidity profiling

    Science.gov (United States)

    Bianco, L.; Cimini, D.; Ware, R.; Marzano, F.

    2003-04-01

    An algorithm to compute high-resolution atmospheric humidity profiling by synergetic use of microwave radiometer and wind profiler radar is illustrated. Wind profiler radar data are input for the computation of the potential refractivity gradient profiles, and combined with radiometer estimates of temperature profiles, which are needed to fully retrieve humidity gradient profiles. The algorithm makes use of recent developments in Wind Profiler Radar (WPR) signal processing, computing the zeroth, first, and second moments of WPR Doppler spectra via a fuzzy logic method (Bianco and Wilczak, 2002), which provides quality control of radar data in the spectral domain. The zeroth, first, and second moments are employed to compute the structure parameter of potential refractivity (C_φ^2), the horizontal wind (V_h), and the structure parameter of vertical velocity (C_w^2) respectively (Stankov et al. 2002). In addition, the algorithm uses a formula proposed by White (White et al. 1999) for the computation of C_w^2, to account for the spatial and temporal filtering effects on the Doppler spectrum. C_φ^2, V_h, and C_w^2 are then combined together to retrieve the potential refractivity gradient profiles. On the radiometric side, a first attempt is made using low resolution temperature profile estimates obtained following the algorithm described by Han and Westwater (1995), which make use of ground-based sensors, including a dual channel microwave radiometer (MWR), and other surface meteorological instruments. Then, the advantages of using estimates of temperature and humidity profiles from a multichannel microwave radiometer profiler (MWRP) are evaluated. Finally, the combined algorithm performances in retrieving humidity profiles are tested with simultaneous radiosonde "in situ" measurements. The empirical sets of WPR and MWR data were provided by the Atmospheric Radiation Measurement (ARM) Program, and collected at the ARM Southern Great Plains (SGP) site (latitude: 36^o

  6. Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, E. [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro (Mexico); Jaramillo, O.A.; Rivera, W. [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2010-05-15

    In this paper the analysis and forecasting of wind velocities in Chetumal, Quintana Roo, Mexico is presented. Measurements were made by the Instituto de Investigaciones Electricas (IIE) during two years, from 2004 to 2005. This location exemplifies the wind energy generation potential in the Caribbean coast of Mexico that could be employed in the hotel industry in the next decade. The wind speed and wind direction were measured at 10 m above ground level. Sensors with high accuracy and a low starting threshold were used. The wind velocity was recorded using a data acquisition system supplied by a 10 W photovoltaic panel. The wind speed values were measured with a frequency of 1 Hz and the average wind speed was recorded considering regular intervals of 10 min. First a statistical analysis of the time series was made in the first part of the paper through conventional and robust measures. Also the forecasting of the last day of measurements was made utilizing the single exponential smoothing method (SES). The results showed a very good accuracy of the data with this technique for an {alpha} value of 0.9. Finally the SES method was compared with the artificial neural network (ANN) method showing the former better results. (author)

  7. Filament formation in wind-cloud interactions- II. Clouds with turbulent density, velocity, and magnetic fields

    Science.gov (United States)

    Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2018-01-01

    We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.

  8. Wind profiles in Moscow city by the sodar data

    International Nuclear Information System (INIS)

    Lokoshchenko, M A; Yavlyaeva, E A

    2008-01-01

    The results of wind measurements in the low 500 m air layer above Moscow by Doppler sodar 'MODOS' have been presented for period from 2004 to 2008. General features of both annual course and the diurnal one of wind profiles have been discussed. The most wind speed values are observed in average in autumn and in winter, the least ones - in spring and in summer. The most frequent wind direction is south-western; the rarest one is northern. The crossover height of wind profiles has been analyzed. As it was found it consists of 60-80 m in average in warm period. For the first time, mean values of wind turning during passing of atmospheric fronts have been received and studied by sodar data. It was found that right-hand (clockwise) turning of wind at cold fronts is more and occurs more quickly in time in the comparison with warm fronts. The occlusion fronts demonstrate intermediate mean values of wind turning

  9. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; A. Christopher Oishi; Cheng-I Hsieh; Nathan Phillips; Kimberly A. Novick; Paul C. Stoy

    2014-01-01

    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to...

  10. Effects of tailing dam profiles on relative wind erosion rates

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, P.S.; Scott, W.D.; Summers, K.J.

    Erosion from mine treatment and associated residue areas can pose a significant environmental problem for surrounding locations from dust and other transported materials. The shape of such residue areas can influence windfield behavior by causing significant wind speed increases. Residue areas are often unprotected so that increasing the speed of wind passing over these areas will cause extra erosion. Values of wind speed-up predicted by an empirical model for wind flow over hills of low slope were compared with measured values over approach slopes to a tailings dam. Hunt's model used in this study relates wind speed from a point on the hill to that observed if there was no hill. Measured values are in agreement with those predicted by the model. Shear stress values calculated from the wind flow model are then used to determine the friction velocity which, in turn, predict the relative rates of erosion. This prediction is based on the cubic relation between the friction velocity and erosion rate observed by Bagnold. These calculations are repeated for the various possible hill shapes allowed by the plant layout and the need to integrate long term spoil heaps with existing topography. A strategy for minimizing erosion of mine tailings through shape selection can then form part of the environmental considerations associated with tailings dams.

  11. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.

  12. Computerized system for building 'the rose' of the winds and defining the velocity and the average density of the wind power for a given place

    International Nuclear Information System (INIS)

    Valkov, I.; Dekova, I.; Arnaudov, A.; Kostadinov, A.

    2002-01-01

    This paper considers the structure and the working principle of a computerized system for building 'the rose' of the winds. The behaviour of the system has been experimentally investigated and on the basis of the received data 'the rose' of the winds has been built, a diagram of the average wind velocity at a predefined step in the course of time has been made, and the average density of the wind power has been quantitatively defined. The proposed system enables possibilities for creating a data base of wind parameters, their processing and graphical visualizing of the received results. The system allows to improve the work of devices of wild's wind gauge type. (authors)

  13. Quality Control Algorithms for the Kennedy Space Center 50-Megahertz Doppler Radar Wind Profiler Winds Database

    Science.gov (United States)

    Barbre, Robert E., Jr.

    2012-01-01

    This paper presents the process used by the Marshall Space Flight Center Natural Environments Branch (EV44) to quality control (QC) data from the Kennedy Space Center's 50-MHz Doppler Radar Wind Profiler for use in vehicle wind loads and steering commands. The database has been built to mitigate limitations of using the currently archived databases from weather balloons. The DRWP database contains wind measurements from approximately 2.7-18.6 km altitude at roughly five minute intervals for the August 1997 to December 2009 period of record, and the extensive QC process was designed to remove spurious data from various forms of atmospheric and non-atmospheric artifacts. The QC process is largely based on DRWP literature, but two new algorithms have been developed to remove data contaminated by convection and excessive first guess propagations from the Median Filter First Guess Algorithm. In addition to describing the automated and manual QC process in detail, this paper describes the extent of the data retained. Roughly 58% of all possible wind observations exist in the database, with approximately 100 times as many complete profile sets existing relative to the EV44 balloon databases. This increased sample of near-continuous wind profile measurements may help increase launch availability by reducing the uncertainty of wind changes during launch countdown

  14. Effect of wind turbine surge motion on rotor thrust and induced velocity

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    velocity on a wind turbine rotor is investigated. Specifically, the performance of blade element momentum theory with a quasisteady wake as well as two widely used engineering dynamic inflow models is evaluated. A moving actuator disc model is used as reference, since the dynamics associated with the wake...... will be inherently included in the solution of the associated fluid dynamic problem. Through analysis of integrated rotor loads, induced velocities and aerodynamic damping, it is concluded that typical surge motions are sufficiently slow to not affect the wake dynamics predicted by engineering models significantly...

  15. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities

    Science.gov (United States)

    Levine, J. S.; Guerra, M.; Javan, A.

    1980-01-01

    The problem of laser energy extraction at a tunable monochromatic frequency from an energetic high pressure CO2 pulsed laser plasma, for application to remote sensing of atmospheric pollutants by Differential Absorption Lidar (DIAL) and of wind velocities by Doppler Lidar, was investigated. The energy extraction principle analyzed is based on transient injection locking (TIL) at a tunable frequency. Several critical experiments for high gain power amplification by TIL are presented.

  16. Controlled Velocity Testing of an 8-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Larwood, S.; Sencenbaugh, J.; Acker, B.

    2001-07-31

    This paper describes a case study of the controlled-velocity test of an 8-kW wind turbine. The turbine was developed in response to the U.S. Department of Energy's small wind turbine program. As background, the prototype development is discussed. The turbine mechanical and electrical components are described. The turbine was tested on a flatbed truck and driven down an airfield runway at constant relative wind speed. Horizontal furling was used to control over-speed. Various parameters were changed to determine their effects on furling. The testing showed that the machine had insufficient rotor offset for adequate furling. Also, a rotor resonance problem was discovered and remedied. Problems associated with taking the measurements made it difficult to determine if the truck test was a suitable method for code validation. However, qualitative observations gleaned from the testing justified the effort.

  17. 915-MHz Radar Wind Profiler (915RWP) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  18. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    Science.gov (United States)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  19. Simultaneous measurements with 3D PIV and Acoustic Doppler Velocity Profiler

    NARCIS (Netherlands)

    Blanckaert, K.J.F.; McLelland, S.J.

    2009-01-01

    Simultaneous velocity measurements were taken using Particle Image Velocimetry (PIV) and an Acoustic Doppler Velocity Profiler (ADVP) in a sharp open-channel bend with an immobile gravel bed. The PIV measures 3D velocity vectors in a vertical plane (~40cm x 20cm) at a frequency of 7.5 Hz, whereas

  20. Modified power law equations for vertical wind profiles. [in investigation of windpower plant siting

    Science.gov (United States)

    Spera, D. A.; Richards, T. R.

    1979-01-01

    In an investigation of windpower plant siting, equations are presented and evaluated for a wind profile model which incorporates both roughness and wind speed effects, while retaining the basic simplicity of the Hellman power law. These equations recognize the statistical nature of wind profiles and are compatible with existing analytical models and recent wind profile data. Predictions of energy output based on the proposed profile equations are 10% to 20% higher than those made with the 1/7 power law. In addition, correlation between calculated and observed blade loads is significantly better at higher wind speeds when the proposed wind profile model is used than when a constant power model is used.

  1. Velocity profile variations in granular flows with changing boundary conditions: insights from experiments

    Science.gov (United States)

    Schaefer, Marius; Bugnion, Louis

    2013-06-01

    We present results of detailed velocity profile measurements in a large series of granular flow experiments in a dam-break setup. The inclination angle, bead size, and roughness of the running surface were varied. In all experiments, the downstream velocity profiles changed continuously from the head to the tail of the avalanches. On rough running surfaces, an inflection point developed in the velocity profiles. These velocity profiles cannot be modeled by the large class of constitutive laws which relate the shear stress to a power law of the strain rate. The velocity profile shape factor increased from the head to the tail of the avalanches. Its maximum value grew with increasing roughness of the running surface. We conclude that flow features such as velocity profiles are strongly influenced by the boundary condition at the running surface, which depends on the ratio of bead size to the typical roughness length of the surface. Furthermore, we show that varying velocity profile shape factors inside gravitationally driven finite-mass flows give rise to an additional term in the depth-averaged momentum equation, which is normally solved in the simulation software of hazardous geophysical flows. We therefore encourage time dependent velocity profile measurements inside hazardous geophysical flows, to learn about the importance of this "new" term in the mathematical modeling of these flows.

  2. GPM Ground Validation High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) OLYMPEX V1a

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Altitude Wind and Rain Airborne Profiler (HIWRAP) instrument is a Doppler radar designed to measure tropospheric winds through deriving Doppler profiles...

  3. On the relationship between wind profiles and the STS ascent structural loads

    Science.gov (United States)

    Smith, Orvel E.; Adelfang, Stanley I.; Whitehead, Douglas S.

    1989-01-01

    The response of STS ascent structural load indicators to the wind profile is analyzed. The load indicator values versus Mach numbers are calculated with algorithms using trajectory information. The ascent load minimum margin concept is used to show that the detailed wind profile structure measured by the Jimsphere wind system is not needed to assess the STS rigid body structural wind loads.

  4. Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind

    Science.gov (United States)

    Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay

    2018-03-01

    In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).

  5. Measurement of sound velocity profiles in fluids for process monitoring

    International Nuclear Information System (INIS)

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  6. An Excel™-VBA programme for the analysis of current velocity profiles

    Science.gov (United States)

    Le Roux, J. P.; Brodalka, M.

    2004-10-01

    VPA is an Excel spreadsheet to facilitate the analysis of current velocity profiles and its application to sediment transport studies in steady, uniform, open-channel flows. The program requires input values such as the water temperature (from which the density and dynamic viscosity are calculated), the channel depth and slope, current velocities as measured at different heights above the bed, bedform length and height, as well as the sediment density and median size. The latter can be provided as sieve diameters, fall diameters or as phi values. The velocity profiles are plotted on two graphs, one being a traditional plot of velocity versus height or distance from the bed and the other comparing the observed profile with theoretical profiles for smooth, transitional and rough boundary conditions. VBA macros are provided to clear the spreadsheet before new profiles are analysed, update the formulas, straighten out the velocity profiles, calculate the shear velocity, and save the data on a separate sheet for further analysis. The programme is applied to a new and more accurate method to determine the shear velocity, which can be used to predict the bedload discharge over plane beds and is also incorporated into a dimensionally correct suspended load transport equation combining the parameters most important in sediment transport. A dimensionally correct bedload discharge equation based upon the mean excess flow velocity is also proposed for plane beds, ripples and dunes.

  7. Wavelet based methods for improved wind profiler signal processing

    Directory of Open Access Journals (Sweden)

    V. Lehmann

    2001-08-01

    Full Text Available In this paper, we apply wavelet thresholding for removing automatically ground and intermittent clutter (airplane echoes from wind profiler radar data. Using the concept of discrete multi-resolution analysis and non-parametric estimation theory, we develop wavelet domain thresholding rules, which allow us to identify the coefficients relevant for clutter and to suppress them in order to obtain filtered reconstructions.Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (remote sensing; signal processing

  8. Near-wall velocity profile measurement for nanofluids

    Directory of Open Access Journals (Sweden)

    Anoop Kanjirakat

    2016-01-01

    Full Text Available We perform near-wall velocity measurements of a SiO2–water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.

  9. Velocity profiles from borehole seismic in a methane hydrate bearing interval in the eastern Nankai Trough

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Katayama, A.; Yamamoto, H.; Armstrong, P. [Schlumberger, Sagamihara (Japan); Murray, D. [Schlumberger Oilfield Services, Beijing (China); Fukuhara, M. [Schlumberger Moscow Research, Moscow (Russian Federation); Inamori, T.; Saeki, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan)

    2008-07-01

    In this study, offset vertical seismic profile (OVSP) surveys were conducted to determine seismic velocity profiles for a gas hydrate-bearing interval in the eastern Nankai trough. The survey was used to acquire converted shear waves as well as a 0 offset (ZVSP) survey. The velocity profiles were used to identify and characterize the hydrate deposits in the interval. The study also evaluated the performance of a borehole seismic and sonic measuring tool. An analysis of the OVSP data demonstrated the presence of mode conversion points at the top of the interval as well as at the top and the bottom of a hydrate-concentrated zone. A travel time inversion and parametric inversion process was then used to estimate compressional and shear wave velocities from the shear and direct waves obtained from the ZVSP. Interval velocities from the VSP were then compared with velocities obtained from a sonic log. Results of the comparison indicated that interval velocity profiles increased in the hydrate-bearing zone and decreased at the base of the zone. Seismic and sonic velocities obtained using the tools showed good agreement with each other. However, significant differences were observed in compressional velocities. Velocity discrepancies in the seismic and sonic surveys were attributed to sensitivities related to existing free gas in the area. The borehole seismic tool also acquired additional information in the presence of low saturation gases. It was concluded that a combination of compressional and shear wave data can be used to characterize formation properties. 8 refs., 14 figs.

  10. Simulation of Wind Speed Effect on the Fall Velocity of Raindrops

    Directory of Open Access Journals (Sweden)

    Sefri Ayuliana

    2013-08-01

    causes the terminal velocities of raindrops to get larger, and so does their kinetic energy. In that condition, raindrops fall with certain inclination angle. The stronger wind speed, the larger raindrops’ inclination angle and their kinetic energy are when hitting soil surface. Therefore it increases the risk of soil erosion at place where the soil is unstable. Through this study, speed and direction of raindrop when hitting soil surface could be investigated in order to decrease the risk of avalanche at high risk area.

  11. High resolution measurement of the velocity profiles of channel flows using the particle image velocimetry technique

    International Nuclear Information System (INIS)

    Nor Azizi Mohamed

    2000-01-01

    The high resolution velocity profiles of a uniform steady channel flow and a flow beneath waves were obtained using the particle image velocimetry (PIV) technique. The velocity profiles for each flow were calculated for both components. It is shown that the profiles obtained are very precise, displaying the point velocities from a few millimeters from the bottom of the channel up to the water surface across the water depth. In the case of the wave-induced flow, the profiles are shown under the respective wave phases and given in a plane representation. High resolution measurement of point velocities in a flow is achievable using PIV and invaluable when applied to a complex flow. (Author)

  12. High-resolution Vertical Profiling of Ocean Velocity and Water Properties Under Hurricane Frances in September 2004

    Science.gov (United States)

    Sanford, T. B.; D'Asarp, E. A.; Girton, J. B.; Price, J. F.; Webb, D. C.

    2006-12-01

    In ONR's CBLAST Hurricane research program observations were made of the upper ocean's response to Hurricane Frances. Three EM-APEX floats (velocity sensing versions of Webb Research APEX floats) and two Lagrangian floats were deployed north of Hispaniola from a C-130 aircraft ahead of Hurricane Frances in September 2004. The EM-APEX floats measured T, S and V over the upper 500 m starting about a day before the storm's arrival. The Lagrangian floats measured temperature and salinity while following the three- dimensional boundary layer turbulence in the upper 40 m. One EM-APEX float was directly under the track of the storm's eye, another EM-APEX and two Lagrangian floats went in about 50 km to the right of the track (where the surface winds are strongest) and the third float was about 100 km to the right. The EM-APEX floats profiled for 10 hours from the surface to 200 m, then continued profiling between 35 and 200 m with excursions to 500 m every half inertial period. After 5 days, the EM-APEX floats surfaced and transmitted the accumulated processed observations, then the floats profiled to 500 m every half inertial period until recovered early in October aided by GPS and Iridium. The float array sampled in unprecedented detail the upper-ocean turbulence, momentum, and salt and heat changes in response to the hurricane. The buildup of surface gravity waves in advance of the storm was also observed in the velocity profiles, with significant wave heights of up to 11 m. Rapid acceleration of inertial currents in the surface mixing layer (SML) to over 1 m/s stimulated vertical mixing by shear instability at the SML base, as indicated by low Richardson numbers and SML deepening from about 40 m to 120 m under the strongest wind forcing. Surface cooling of about 2.5 C was primarily due to the SML deepening and entrainment of colder water, with a small contribution from surface heat flux. Intense inertial pumping was observed under the eye, with vertical excursions of

  13. Application of 50 MHz doppler radar wind profiler to launch operations at Kennedy Space Center and Cape Canaveral Air Station

    Science.gov (United States)

    Schumann, Robin S.; Taylor, Gregory E.; Smith, Steve A.; Wilfong, Timothy L.

    1994-01-01

    This paper presents a case study where a significant wind shift, not detected by jimspheres, was detected by the 50 MHz DRWP (Doppler Radar Wind Profiler) and evaluated to be acceptable prior to the launch of a Shuttle. This case study illustrates the importance of frequent upper air wind measurements for detecting significant rapidly changing features as well as for providing confidence that the features really exist and are not due to instrumentation error. Had the release of the jimsphere been timed such that it would have detected the entire wind shift, there would not have been sufficient time to release another jimsphere to confirm the existence of the feature prior to the scheduled launch. We found that using a temporal median filter on the one minute spectral estimates coupled with a constraining window about a first guess velocity effectively removes nearly all spurious signals from the velocity profile generated by NASA's 50 MHz DRWP while boosting the temporal resolution to as high as one profile every 3 minutes. The higher temporal resolution of the 50 MHz DRWP using the signal processing algorithm described in this paper ensures the detection of rapidly changing features as well as provides the confidence that the features are genuine. Further benefit is gained when the profiles generated by the DRWP are examined in relation to the profiles measured by jimspheres and/or rawinsondes. The redundancy offered by using two independent measurements can dispel or confirm any suspicion regarding instrumentation error or malfunction and wind profiles can be examined in light of their respective instruments' strengths and weaknesses.

  14. Accelerated and Decelerated Flows in a Circular Pipe : 1st Report, Velocity Profile and Friction Coefficient

    OpenAIRE

    Kurokawa, Junichi; Morikawa, Masahiro

    1986-01-01

    In order to determine the flow characteristics of a transient flow in a circular pipe, an accelerated and a decelerated flow are studied, and effects of acceleration upon the formation of a velocity profile, transition and a friction coefficient are determined for a wide range of accelerations. The results of the accelerated flow show that there are two patterns in the formation of a sectional velocity profile and transition, one of which is observed when the acceleration is relatively large ...

  15. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles.

    Science.gov (United States)

    Zhao, Wei; Ji, Songbai

    2017-04-01

    Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29-17.89 % in the whole brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9 %) but not pattern (correlation coefficient of 0.94-0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91 % on average, with a typical range of 0-6 %). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future.

  16. Velocity field and coherent structures in the near wake of a utility-scale wind turbine

    Science.gov (United States)

    Hong, Jiarong; Dasari, Teja; Wu, Yue; Liu, Yun

    2017-11-01

    Super-large-scale particle image velocity (SLPIV) and the associated flow visualization technique using natural snowfall have been shown as an effective tool to probe turbulent velocity field and coherent structures around utility-scale wind turbines (Hong et al. Nature Comm. 2014). Here we present a follow-up study using the data collected during multiple deployments from 2014 to 2016 around the 2.5 MW turbine at EOLOS field station. The data include SLPIV measurements in the near wake of the turbine in a field of view of 120 m (height) x 60 m (width), and the visualization of tip vortex behavior near the bottom blade tip over a broad range of turbine operational conditions. SLPIV results indicate a highly intermittent flow field in the near wake, consisting of both intense wake expansion and contraction events. Such intermittent states of the near wake are shown to be influenced by both the incoming wind conditions and the turbine operation. The visualization of tip vortex behavior demonstrates the presence of the state of consistent vortex formation as well as various types of disturbed vortex states. The occurrence of these states is statistically analyzed and is shown to be correlated with turbine operational and response parameters under different field conditions. National Science Foundation Fluid Dynamics Program.

  17. Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk

    Science.gov (United States)

    Cieślikiewicz, Witold; Dudkowska, Aleksandra; Gic-Grusza, Gabriela; Jędrasik, Jan

    2017-11-01

    The principal goal of this study is to get some preliminary insights about the intensity of water movement generated by wind waves, and due to the currents in the bottom waters of Gulf of Gdańsk, during severe storms. The Gulf of Gdańsk is located in the southern Baltic Sea. This paper presents the results of analysis of wave and current-induced velocities during extreme wind conditions, which are determined based on long-term historical records. The bottom velocity fields originated from wind wave and wind currents, during analysed extreme wind events, are computed independently of each other. The long-term wind wave parameters for the Baltic Sea region are derived from the 44-year hindcast wave database generated in the framework of the project HIPOCAS funded by the European Union. The output from the numerical wave model WAM provides the boundary conditions for the model SWAN operating in high-resolution grid covering the area of the Gulf of Gdańsk. Wind current velocities are calculated with the M3D hydrodynamic model developed in the Institute of Oceanography of the University of Gdańsk based on the POM model. The three dimensional current fields together with trajectories of particle tracers spreading out of bottom boundary layer are modelled, and the calculated fields of bottom velocities are presented in the form of 2D maps. During northerly winds, causing in the Gulf of Gdańsk extreme waves and most significant wind-driven circulation, the wave-induced bottom velocities are greater than velocities due to currents. The current velocities in the bottom layer appeared to be smaller by an order of magnitude than the wave-induced bottom orbital velocities. Namely, during most severe northerly storms analysed, current bottom velocities ranged about 0.1-0.15 m/s, while the root mean square of wave-induced near-seabed velocities reached maximum values of up to 1.4 m/s in the southern part of Gulf of Gdańsk.

  18. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    Science.gov (United States)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  19. Proposed method for reconstructing velocity profiles using a multi-electrode electromagnetic flow meter

    International Nuclear Information System (INIS)

    Kollár, László E; Lucas, Gary P; Zhang, Zhichao

    2014-01-01

    An analytical method is developed for the reconstruction of velocity profiles using measured potential distributions obtained around the boundary of a multi-electrode electromagnetic flow meter (EMFM). The method is based on the discrete Fourier transform (DFT), and is implemented in Matlab. The method assumes the velocity profile in a section of a pipe as a superposition of polynomials up to sixth order. Each polynomial component is defined along a specific direction in the plane of the pipe section. For a potential distribution obtained in a uniform magnetic field, this direction is not unique for quadratic and higher-order components; thus, multiple possible solutions exist for the reconstructed velocity profile. A procedure for choosing the optimum velocity profile is proposed. It is applicable for single-phase or two-phase flows, and requires measurement of the potential distribution in a non-uniform magnetic field. The potential distribution in this non-uniform magnetic field is also calculated for the possible solutions using weight values. Then, the velocity profile with the calculated potential distribution which is closest to the measured one provides the optimum solution. The reliability of the method is first demonstrated by reconstructing an artificial velocity profile defined by polynomial functions. Next, velocity profiles in different two-phase flows, based on results from the literature, are used to define the input velocity fields. In all cases, COMSOL Multiphysics is used to model the physical specifications of the EMFM and to simulate the measurements; thus, COMSOL simulations produce the potential distributions on the internal circumference of the flow pipe. These potential distributions serve as inputs for the analytical method. The reconstructed velocity profiles show satisfactory agreement with the input velocity profiles. The method described in this paper is most suitable for stratified flows and is not applicable to axisymmetric flows in

  20. Remote Sensing Data in Wind Velocity Field Modelling: a Case Study from the Sudetes (SW Poland)

    Science.gov (United States)

    Jancewicz, Kacper

    2014-06-01

    The phenomena of wind-field deformation above complex (mountainous) terrain is a popular subject of research related to numerical modelling using GIS techniques. This type of modelling requires, as input data, information on terrain roughness and a digital terrain/elevation model. This information may be provided by remote sensing data. Consequently, its accuracy and spatial resolution may affect the results of modelling. This paper represents an attempt to conduct wind-field modelling in the area of the Śnieżnik Massif (Eastern Sudetes). The modelling process was conducted in WindStation 2.0.10 software (using the computable fluid dynamics solver Canyon). Two different elevation models were used: the Global Land Survey Digital Elevation Model (GLS DEM) and Digital Terrain Elevation Data (DTED) Level 2. The terrain roughness raster was generated on the basis of Corine Land Cover 2006 (CLC 2006) data. The output data were post-processed in ArcInfo 9.3.1 software to achieve a high-quality cartographic presentation. Experimental modelling was conducted for situations from 26 November 2011, 25 May 2012, and 26 May 2012, based on a limited number of field measurements and using parameters of the atmosphere boundary layer derived from the aerological surveys provided by the closest meteorological stations. The model was run in a 100-m and 250-m spatial resolution. In order to verify the model's performance, leave-one-out cross-validation was used. The calculated indices allowed for a comparison with results of former studies pertaining to WindStation's performance. The experiment demonstrated very subtle differences between results in using DTED or GLS DEM elevation data. Additionally, CLC 2006 roughness data provided more noticeable improvements in the model's performance, but only in the resolution corresponding to the original roughness data. The best input data configuration resulted in the following mean values of error measure: root mean squared error of velocity

  1. Velocity-intermittency structure for wake flow of the pitched single wind turbine under different inflow conditions

    Science.gov (United States)

    Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael

    2017-11-01

    The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.

  2. Mixing height measurements from UHF wind profiling radar

    Energy Technology Data Exchange (ETDEWEB)

    Angevine, W.M.; Grimsdell, A.W. [CIRES, Univ. of Colorado, and NOAA Aeronomy Lab., Boulder, Colorado (United States)

    1997-10-01

    Mixing height in convective boundary layers can be detected by wind profiling radars (profilers) operating at or near 915 MHZ. We have made such measurements in a variety of settings including Alabama in 1992; Nova Scotia, Canada, during the North Atlantic Regional Experiment (NARE) 1993; Tennessee during the Southern Oxidant Study (SOS) 1994; near a 450 m tower in Wisconsin in 1995; and extensively in Illinois during the Flatland95, `96, and `97 experiments, as well as continuous operations at the Flatland Atmospheric Observatory. Profiler mixing height measurements, like all measurements, are subject to some limitations. The most important of these are due to rainfall, minimum height, and height resolution. Profilers are very sensitive to rain, which dominates the reflectivity and prevents the mixing height from being detected. Because the best height resolution is currently 60 m and the minimum height is 120-150 m AGL, the profiler is not suited for detecting mixing height in stable or nocturnal boundary layers. Problems may also arise in very dry or cold environments. (au) 12 refs.

  3. Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test

    Science.gov (United States)

    Aryan, Homayon; Boynton, Richard J.; Walker, Simon N.

    2013-02-01

    A correlation between solar wind velocity (VSW) and energetic electron fluxes (EEF) at the geosynchronous orbit was first identified more than 30 years ago. However, recent studies have shown that the relation between VSW and EEF is considerably more complex than was previously suggested. The application of process identification technique to the evolution of electron fluxes in the range 1.8 - 3.5 MeV has also revealed peculiarities in the relation between VSW and EEF at the geosynchronous orbit. It has been revealed that for a constant solar wind density, EEF increase with VSW until a saturation velocity is reached. Beyond the saturation velocity, an increase in VSW is statistically not accompanied with EEF enhancement. The present study is devoted to the investigation of saturation velocity and its dependency upon solar wind density using the reverse arrangement test. In general, the results indicate that saturation velocity increases as solar wind density decreases. This implies that solar wind density plays an important role in defining the relationship between VSW and EEF at the geosynchronous orbit.

  4. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) WIND PROFILER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada (EC) Wind Profiler GCPEx dataset provides post-processed consensus winds and daily quick look plots from the Vaisala...

  5. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...

  6. Ultrasonic Measurement of Velocity Profile on Bubbly Flow Using Fast Fourier Transform (FFT) Technique

    Science.gov (United States)

    Wongsaroj, W.; Hamdani, A.; Thong-un, N.; Takahashi, H.; Kikura, H.

    2017-10-01

    In two-phase bubbly flow, measurement of liquid and bubble velocity is a necessity to understand fluid characteristic. The conventional ultrasonic velocity profiler (UVP), which has been known as a nonintrusive measurement technique, can measure velocity profile of liquid and bubble simultaneously by applying a separation technique for both phases (liquid and bubble) and transparent test section is unnecessary. The aim of this study was to develop a new technique for separating liquid and bubble velocity data in UVP method to measure liquid and bubble velocity profiles separately. The technique employs only single resonant frequency transducer and a simple UVP system. An extra equipment is not required. Fast Fourier Transform (FFT) based frequency estimator paralleled with other signal processing techniques, which is called as proposed technique, was proposed to measure liquid and bubble velocity separately. The experimental facility of two-phase bubbly flow in the vertical pipe was constructed. Firstly, the Doppler frequency estimation by using the FFT technique was evaluated in single-phase liquid flow. Results showed that FFT technique showed a good agreement with autocorrelation and maximum likelihood estimator. Then, separation of liquid and bubble velocity was demonstrated experimentally in the two-phase bubbly flow. The proposed technique confirmed that liquid and bubble velocity could be measured efficiently.

  7. Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Maynes, D.; Webb, A.R. [Brigham Young Univ., Provo, UT (United States). Dept. of Mechanical Engineering

    2002-01-01

    Fluid flow through microtubes is of interest to many industries and there exists a need for detailed measurements of the velocity field. Velocity profile data are critical for momentum, mass, and heat transport analysis, and thus the design of devices utilizing microgeometries. This paper outlines a measurement technique that has led to time-resolved measurements of velocity profiles in microtubes (less than 1,000 {mu}m). The research program was experimental in nature and consisted of an extension of molecular tagging velocimetry to the microscale. Average velocity and rms profile data in the fully developed region, in addition to mass flow rate and pressure drop data, are presented for numerous Reynolds numbers ranging from 600 to 5,000 in a tube of diameter 705 {mu}m. (orig.)

  8. Application of Depth-Averaged Velocity Profile for Estimation of Longitudinal Dispersion in Rivers

    Directory of Open Access Journals (Sweden)

    Mohammad Givehchi

    2010-01-01

    Full Text Available River bed profiles and depth-averaged velocities are used as basic data in empirical and analytical equations for estimating the longitudinal dispersion coefficient which has always been a topic of great interest for researchers. The simple model proposed by Maghrebi is capable of predicting the normalized isovel contours in the cross section of rivers and channels as well as the depth-averaged velocity profiles. The required data in Maghrebi’s model are bed profile, shear stress, and roughness distributions. Comparison of depth-averaged velocities and longitudinal dispersion coefficients observed in the field data and those predicted by Maghrebi’s model revealed that Maghrebi’s model had an acceptable accuracy in predicting depth-averaged velocity.

  9. The Skipheia Wind Measurement Station. Instrumentation, Wind Speed Profiles and Turbulence Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Aasen, S.E.

    1995-10-01

    This thesis describes the design of a measurement station for turbulent wind and presents results from an analysis of the collected data. The station is located at Skipheia near the south-west end of Froeya, an island off the coast of Mid-Norway. The station is unique for studies of turbulent winds because of the large numbers of sensors, which are located at various heights above ground up to 100 m, a sampling rate of 0.85 Hz and storage of the complete time series. The frequency of lightning and atmospheric discharges to the masts are quite high and much effort has gone into minimizing the damage caused by lightning activity. A major part of the thesis deals with data analysis and modelling. There are detailed discussions on the various types of wind sensors and their calibration, the data acquisition system and operating experiences with it, the database, data quality control, the wind speed profile and turbulence. 40 refs., 78 figs., 17 tabs.

  10. Measurements of flow velocity and temperature profile in a propane-oxygen combustion MHD channel

    International Nuclear Information System (INIS)

    Aoki, Yoshiaki; Kayukawa, Naoyuki; Yamazaki, Hatsuo

    1986-01-01

    In a propane-oxygen combustion MHD channel, experimental measurements were made of the plasma flow velocity by means of a cross-correlation function analysis and of the boundary-layer temperature-profile by a newly-devised light-polarization line-reversal method. The following results were obtained: the velocity decreased gradually, the temperature profile of the boundary layer varied appreciably as the magnitude of the externally applied magnetic field increased, and the temperature increased from Joule heating, making the boundary layer profile steeper. (author)

  11. Diagnosis of hydrometeor profiles from area-mean vertical-velocity data

    Science.gov (United States)

    Braun, Scott A.; Houze, Robert A., Jr.

    1995-01-01

    A simple one-dimensional microphysical retrieval model is developed for estimating vertical profiles of liquid and frozen hydrometeor mixing ratios from observed vertical profiles of area-mean vertical velocity in regions of convective and/or stratiform precipitation. The mean vertical-velocity profiles can be obtained from Doppler radar (single and dual) or other means. The one-dimensional results are shown to be in good agreement with two-dimensional microphysical fields from a previous study. Sensitivity tests are performed.

  12. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer

    DEFF Research Database (Denmark)

    Paulson, C.A.

    1970-01-01

    Analytical expressions which specify non-dimensionalized wind speed and potential temperature gradients as functions of stability are integrated. The integrated equations are tested against Swinhank's wind and temperature profiles measured at Kerang, Australia. It is found that a representation...... suggested independently by Businger and by Dyer gives the best fit to temperature profiles and describes the wind profiles equally as well as a relation suggested by Panofsky et al....

  13. Measuring velocity profile in scaled CANDU6 moderator tank using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan, (Korea, Republic of); Kim, Hyoung Tae; Cha, Jae Eun [KAISt, Daejeon (Korea, Republic of)

    2012-10-15

    The Calandria vessel, which is called as CANDU6 moderator tank, is the actual reactor core including fuel channels and moderator in PHWR. The understanding of circulation patterns in Calandria vessel is important because the cooling capability is related to the moderator tank. Therefore, measuring velocity and temperature patterns in the Calandria vessel is the key factor for the safety of CANDU reactor. Various experimental and numerical efforts to predict and analyze the thermal hydraulic characteristic of Calandria vessel have been made. Yoon et al. developed a CFD model for the CANDU6 moderator analyzing the velocity profile and the temperature distribution. Khartabil et al. did an experiment to measure 3 dimensional velocity and temperature distribution in moderator circulation tests at a 1/4 scaled down facility. Laser Doppler Anememetry (LDA) was used to detect the velocity profile and thermocouples detect the temperature distribution. Previous study presented the velocity profile in a 1/40 scaled-down Calandria vessel and compared with CFD analysis. In the present work, Particle Image Velocimetry (PIV) technique is used to obtain velocity profiles in a 1/8 scaled down Calandria vessel.

  14. AXAOTHER XL -- A spreadsheet for determining doses for incidents caused by tornadoes or high-velocity straight winds

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    1996-09-01

    AXAOTHER XL is an Excel Spreadsheet used to determine dose to the maximally exposed offsite individual during high-velocity straight winds or tornado conditions. Both individual and population doses may be considered. Potential exposure pathways are inhalation and plume shine. For high-velocity straight winds the spreadsheet has the capability to determine the downwind relative air concentration, however for the tornado conditions, the user must enter the relative air concentration. Theoretical models are discussed and hand calculations are performed to ensure proper application of methodologies. A section has also been included that contains user instructions for the spreadsheet

  15. Influence of Rigid Body Motions on Rotor Induced Velocities and Aerodynamic Loads of a Floating Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    de Vaal, Jacobus B.; Hansen, Martin Otto Laver; Moan, Torgeir

    2014-01-01

    This paper discusses the influence of rigid body motions on rotor induced velocities and aerodynamic loads of a floating horizontal axis wind turbine. Analyses are performed with a simplified free wake vortex model specifically aimed at capturing the unsteady and non-uniform inflow typically......, and captures the essential influences of rigid body motions on the rotor loads, induced velocities and wake influence....... experienced by a floating wind turbine. After discussing the simplified model in detail, comparisons are made to a state of the art free wake vortex code, using test cases with prescribed platform motion. It is found that the simplified model compares favourably with a more advanced numerical model...

  16. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    Science.gov (United States)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  17. Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains repeated vertical profiles of ocean temperature and salinity versus pressure, as well as oxygen and velocity for some instruments. Data were...

  18. High resolution vertical profiles of wind, temperature and humidity obtained by computer processing and digital filtering of radiosonde and radar tracking data from the ITCZ experiment of 1977

    Science.gov (United States)

    Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.

    1980-01-01

    Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.

  19. Quality-Controlled Wind Data from the Kennedy Space Center 915 Megahertz Doppler Radar Wind Profiler Network

    Science.gov (United States)

    Dryden, Rachel L.

    2011-01-01

    The National Aeronautics and Space Administration s (NASA) Kennedy Space Center (KSC) has installed a five-instrument 915-Megahertz (MHz) Doppler Radar Wind Profiler (DRWP) system that records atmospheric wind profile properties. The purpose of these profilers is to fill data gaps between the top of the KSC wind tower network and the lowest measurement altitude of the KSC 50-MHz DRWP. The 915-MHz DRWP system has the capability to generate three-dimensional wind data outputs from approximately 150 meters (m) to 6,000 m at roughly 15-minute (min) intervals. NASA s long-term objective is to combine the 915-MHz and 50-MHz DRWP systems to create complete vertical wind profiles up to 18,300 m to be used in trajectory and loads analyses of space vehicles and by forecasters on day-of-launch (DOL). This analysis utilizes automated and manual quality control (QC) processes to remove erroneous and unrealistic wind data returned by the 915-MHz DRWP system. The percentage of data affected by each individual QC check in the period of record (POR) (i.e., January to April 2006) was computed, demonstrating the variability in the amount of data affected by the QC processes. The number of complete wind profiles available at given altitude thresholds for each profiler in the POR was calculated and outputted graphically, followed by an assessment of the number of complete wind profiles available for any profiler in the POR. A case study is also provided to demonstrate the QC process on a day of a known weather event.

  20. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    Science.gov (United States)

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  1. Monte Carlo simulations of the detailed iron absorption line profiles from thermal winds in X-ray binaries

    Science.gov (United States)

    Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki

    2018-05-01

    Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.

  2. Monte-Carlo simulations of the detailed iron absorption line profiles from thermal winds in X-ray binaries

    Science.gov (United States)

    Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki

    2018-02-01

    Blue-shifted absorption lines from highly ionised iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionisation state, then combine this with a Monte-Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.

  3. Skin friction and velocity profile family for compressible turbulent boundary layers

    Science.gov (United States)

    Huang, P. G.; Bradshaw, P.; Coakley, T. J.

    1993-01-01

    The paper presents a general approach to constructing mean velocity profiles for compressible turbulent boundary layers with isothermal or adiabatic walls. The theory is based on a density-weighted transformation that allows the extension of the incompressible similarity laws of the wall to the compressible regions. The velocity profile family is compared to a range of experimental data, and excellent agreement is obtained. A self-consistent skin friction law, which satisfies the proposed velocity profile family, is derived and compared with the well-known Van Driest II theory for boundary layers in zero pressure gradient. The results are found to be at least as good as those obtained by using the Van Driest II transformation.

  4. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  5. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    International Nuclear Information System (INIS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-01-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling. (paper)

  6. The MASSIVE survey - VIII. Stellar velocity dispersion profiles and environmental dependence of early-type galaxies

    Science.gov (United States)

    Veale, Melanie; Ma, Chung-Pei; Greene, Jenny E.; Thomas, Jens; Blakeslee, John P.; Walsh, Jonelle L.; Ito, Jennifer

    2018-02-01

    We measure the radial profiles of the stellar velocity dispersions, σ(R), for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude MK galaxies with sufficient radial coverage to determine γouter we find 36 per cent to have rising outer dispersion profiles, 30 per cent to be flat within the uncertainties and 34 per cent to be falling. The fraction of galaxies with rising outer profiles increases with M* and in denser galaxy environment, with 10 of the 11 most massive galaxies in our sample having flat or rising dispersion profiles. The strongest environmental correlations are with local density and halo mass, but a weaker correlation with large-scale density also exists. The average γouter is similar for brightest group galaxies, satellites and isolated galaxies in our sample. We find a clear positive correlation between the gradients of the outer dispersion profile and the gradients of the velocity kurtosis h4. Altogether, our kinematic results suggest that the increasing fraction of rising dispersion profiles in the most massive ETGs are caused (at least in part) by variations in the total mass profiles rather than in the velocity anisotropy alone.

  7. Robust Shear-Velocity Profiles Within Oceanic Lithosphere and Asthenosphere: Implications for Thermal and Compositional Structure

    Science.gov (United States)

    Lynch, P.; Schaeffer, A. J.; Lebedev, S.

    2011-12-01

    The temperature contrast between the cold oceanic lithosphere and the hot asthenosphere beneath it is reflected in the pronounced drop in seismic velocities at the lithosphere-asthenosphere boundary. In addition to the immediate effect of temperature, however, other factors may influence the observed seismic velocities, including partial melting or higher volatile content in the asthenosphere relative to the lithosphere. Because temperature changes, partial melting and volatile content all have a strong effect on viscosity as well, their characteristics and relative significance have important implications for the models of the dynamics of the oceanic plates. We measure phase velocities of surface waves across central Pacific using pairs of permanent seismic stations and a combination of cross-correlation and multimode-waveform-inversion approaches. Robust, accurate Rayleigh- and Love-wave dispersion curves in broad period ranges are averaged from tens to hundreds of one-event measurements. The dispersion curves are then inverted for isotropic-average shear-velocity profiles and radial anisotropy. Regional-scale stratification of azimuthal anisotropy can also be constrained. The high accuracy and broad period ranges of the phase-velocity measurements and the small size and simplicity of the inverse problems that relate them to shear velocities enable us to determine particularly robust shear-velocity profiles. We discuss the implications of the detailed models of isotropic and anisotropic layering for thermal and compositional models and, also, lateral variations in lithospheric properties, including those between the Hawaiian and normal-ocean lithosphere.

  8. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay

    2010-01-01

    Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed...

  9. Weibull-k Revisited: “Tall” Profiles and Height Variation of Wind Statistics

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Troen, Ib; Ejsing Jørgensen, Hans

    2014-01-01

    The Weibull distribution is commonly used to describe climatological wind-speed distributions in the atmospheric boundary layer. While vertical profiles of mean wind speed in the atmospheric boundary layer have received significant attention, the variation of the shape of the wind distribution wi...

  10. Relationships between Vertical Profiles of Radar Observed Vertical Velocity and Reflectivity in Convective Storms

    Science.gov (United States)

    Barnes, H.; Hagos, S. M.; Feng, Z.; Williams, C. R.; Protat, A.

    2017-12-01

    Complex relationships exist between vertical motions and microphysical processes. One source of data that provides insight into microphysical processes within convection is radar reflectivity. This study provides insight into the dynamical-microphysical interactions by evaluating several theoretical explanations that describe the relationship between vertical profiles of vertical velocity and radar reflectivity. These theoretical explanations are evaluated using data from convective storms observed near Darwin, Australia. This study first evaluates whether the vertical profile of vertical velocity can be used to describe characteristics of the vertical radar reflectivity profile. Then, the reverse is considered and this study investigates whether the vertical profile of radar reflectivity can be used to provide insight into the vertical profile of vertical velocity. These theoretical explanations are important since they provide a means to compare simulated and observed dynamical-microphysical interactions and aid in the development of future cumulus and microphysical parameterizations. Additionally, they may increase our ability observe the statistical characteristics of vertical velocity, which is highly desired by the modeling community.

  11. Constitutive Curve and Velocity Profile in Entangled Polymers during Start-Up of Steady Shear Flow

    KAUST Repository

    Hayes, Keesha A.

    2010-05-11

    Time-dependent shear stress versus shear rate, constitutive curve, and velocity profile measurements are reported in entangled polymer solutions during start-up of steady shear flow. By combining confocal microscopy and particle image velocimetry (PIV), we determine the time-dependent velocity profile in polybutadiene and polystyrene solutions seeded with fluorescent 150 nm silica and 7.5 μm melamine particles. By comparing these profiles with time-dependent constitutive curves obtained from experiment and theory, we explore the connection between transient nonmonotonic regions in the constitutive curve for an entangled polymer and its susceptibility to unstable flow by shear banding [Adams et al. Phys. Rev. Lett. 2009, 102, 067801-4]. Surprisingly, we find that even polymer systems which exhibit transient, nonmonotonic shear stress-shear rate relationships in bulk rheology experiments manifest time-dependent velocity profiles that are decidedly linear and show no evidence of unstable flow. We also report that interfacial slip plays an important role in the steady shear flow behavior of entangled polymers at shear rates above the reciprocal terminal relaxation time but has little, if any, effect on the shape of the velocity profile. © 2010 American Chemical Society.

  12. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    Science.gov (United States)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame

  13. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.

    2003-01-01

    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  14. Lidar Wind Profiler for the NextGen Airportal, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a standoff sensor that can measure 3D components of wind velocity in the vicinity of an airport has the potential to improve airport throughput,...

  15. Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall

    International Nuclear Information System (INIS)

    Skote, Martin

    2014-01-01

    Highlights: • Scaling analysis is used to derive a log-law for drag reduced flow. • The slope of the log layer is directly linked to the drag reduction. • The result is only valid for wall manipulated flows – not fluid altering methods. • Extensive comparison with data found in the literature is made. - Abstract: Scaling analysis of the velocity profiles in strongly drag reduced flows reveals that the slope of the logarithmic part depends on the amount of drag reduction (DR). Unlike DR due to polymeric fluids, the slope changes gradually and can be predicted by the analysis. Furthermore, the intercept of the profiles is found to vary linearly with the DR. Two velocity scales are utilized: the reference (undisturbed) and the actual friction velocity. The theory is based on the assumption that the near-wall linear region is only governed by the actual friction velocity, while the outer part is governed by the reference friction velocity. As a result, logarithmic part is influenced by both velocity scales and the slope of the velocity profile is directly linked to the DR. The theoretically obtained results are verified by data from six previously performed direct numerical simulations (DNSs) of boundary layers over spatial and temporal wall oscillations, with a wide range of resulting DR. The theory is further supported by data from numerous investigations (DNSs as well as experiments) of wall-bounded flows forced by various forms of oscillating wall-motion. The assumption that the outer part is unaffected by the actual friction velocity limits the validity of the proposed log-law to flows not fully adapted to the imposed wall forcing, hence the theory provides a measure of the level of adjustment. In addition, a fundamental difference in the applicability of the theory to spatially developing boundary flow and infinite channel flow is discussed

  16. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Brümmer, B.

    2007-01-01

    Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at H phi vs phi re (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to ...

  17. Charnock's Roughness Length Model and Non-dimensional Wind Profiles Over the Sea

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik

    2008-01-01

    An analysis tool for the study of wind speed profiles over the water has been developed. The profiles are analysed using a modified dimensionless wind speed and dimensionless height, assuming that the sea surface roughness can be predicted by Charnock's roughness length model. In this form, the r...

  18. Regional Analysis of Long-term Local and Synoptic Effects on Wind Velocity and Energy Patterns in Complex Terrain

    Science.gov (United States)

    Belu, R.; Koracin, D. R.

    2017-12-01

    Investments in renewable energy are justified in both environmental and economic terms. Climate change risks call for mitigation strategies aimed to reduce pollutant emissions, while the energy supply is facing high uncertainty by the current or future global economic and political contexts. Wind energy is playing a strategic role in the efforts of any country for sustainable development and energy supply security. Wind energy is a weather and climate-dependent resource, having a natural spatio-temporal variability at time scales ranging from fraction of seconds to seasons and years, while at spatial scales is strongly affected by the topography and vegetation. Main objective of the study is to investigate spatio-temporal characteristics of the wind velocity in the Southwest U.S., that are relevant to wind energy assessment, analysis, development, operation, and grid integration, by using long-term multiple meteorological tower observations. Wind velocity data and other meteorological parameters from five towers, located near Tonopah, Nevada, operated between 2003 to 2008, and from three towers are located in Carson Valley, Nevada, operated between 2006 and 2014 were used in this study. Multi-annual wind speed data collected did not show significant increase trends with increasing elevation; the differences are mainly governed by the topographic complexity, including local atmospheric circulations. Auto- and cross-correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multi-day periodicity with increasing lag periods. Besides pronounced diurnal periodicity at all locations, detrended fluctuation analysis also showed significant seasonal and annual periodicities, and long-memory persistence with similar characteristics. In spite of significant differences in mean wind speeds among the towers, due to location specifics, the relatively high auto- and cross-correlation coefficients among the towers indicate

  19. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    International Nuclear Information System (INIS)

    Krakauer, Nir Y.

    2006-01-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO 2 , between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14 C and 13 C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14 CO 2 and 13 CO 2 . While the atmosphere and ocean inventories of 14 CO 2 and 13 CO 2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14 C and 13 C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14 C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14 C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14 C in atmospheric CO 2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 ± 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 ± 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13 C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed

  20. Improved observations of turbulence dissipation rates from wind profiling radars

    Directory of Open Access Journals (Sweden)

    K. McCaffrey

    2017-07-01

    Full Text Available Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiple post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. The optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well (R2 = 0. 54 and 0. 41 with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.

  1. Estimation of two-dimensional velocity distribution profile using General Index Entropy in open channels

    Science.gov (United States)

    Shojaeezadeh, Shahab Aldin; Amiri, Seyyed Mehrab

    2018-02-01

    Estimation of velocity distribution profile is a challenging subject of open channel hydraulics. In this study, an entropy-based method is used to derive two-dimensional velocity distribution profile. The General Index Entropy (GIE) can be considered as the generalized form of Shannon entropy which is suitable to combine with the different form of Cumulative Distribution Function (CDF). Using the principle of maximum entropy (POME), the velocity distribution is defined by maximizing the GIE by treating the velocity as a random variable. The combination of GIE and a CDF proposed by Marini et al. (2011) was utilized to introduce an efficient entropy model whose results are comparable with several well-known experimental and field data. Consequently, in spite of less sensitivity of the related parameters of the model to flow conditions and less complexity in application of the model compared with other entropy-based methods, more accuracy is obtained in estimating velocity distribution profile either near the boundaries or the free surface of the flow.

  2. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  3. Weibull- k Revisited: "Tall" Profiles and Height Variation of Wind Statistics

    Science.gov (United States)

    Kelly, Mark; Troen, Ib; Jørgensen, Hans E.

    2014-07-01

    The Weibull distribution is commonly used to describe climatological wind-speed distributions in the atmospheric boundary layer. While vertical profiles of mean wind speed in the atmospheric boundary layer have received significant attention, the variation of the shape of the wind distribution with height is less understood. Previously we derived a probabilistic model based on similarity theory for calculating the effects of stability and planetary boundary-layer depth upon long-term mean wind profiles. However, some applications (e.g. wind energy estimation) require the Weibull shape parameter ( k), as well as mean wind speed. Towards the aim of improving predictions of the Weibull- profile, we develop expressions for the profile of long-term variance of wind speed, including a method extending our probabilistic wind-profile theory; together these two profiles lead to a profile of Weibull-shape parameter. Further, an alternate model for the vertical profile of Weibull shape parameter is made, improving upon a basis set forth by Wieringa (Boundary-Layer Meteorol, 1989, Vol. 47, 85-110), and connecting with a newly-corrected corollary of the perturbed geostrophic-drag theory of Troen and Petersen (European Wind Atlas, 1989, Risø National Laboratory, Roskilde). Comparing the models for Weibull- k profiles, a new interpretation and explanation is given for the vertical variation of the shape of wind-speed distributions. Results of the modelling are shown for a number of sites, with a discussion of the models' efficacy and applicability. The latter includes a comparative evaluation of Wieringa-type empirical models and perturbed-geostrophic forms with regard to surface-layer behaviour, as well as for heights where climatological wind-speed variability is not dominated by surface effects.

  4. Wind profiler observations of a monsoon low-level jet over a tropical Indian station

    Directory of Open Access Journals (Sweden)

    M. C. R. Kalapureddy

    2007-11-01

    Full Text Available Three-year high-resolution wind observations of the wind profiler have been utilized to characterize the diurnal and seasonal features of the monsoon Low-Level Jet (LLJ over a tropical station, Gadanki (13.5° N, 79.2° E, with a focus on the diurnal variability of low-level winds. The Boreal summer monsoon winds show a conspicuously strong westerly LLJ with average wind speed exceeding 20 m s−1. The L-band wind profiler measurements have shown an advantage of better height and time resolutions over the conventional radiosonde method for diurnal wind measurements. An interesting diurnal oscillation of LLJ core has been observed. It is varying in the height range of 1.8±0.6 km with the maximum and minimum intensity noticed during the early morning and afternoon hours, respectively. The jet core (wind maxima height is observed to coincide with the inversion height. Strong wind shears are normally located beneath the LLJ core. The sole wind profiler observations are capable of identifying the monsoon phases, such as onset, break and active spells, etc. The mutual influence between the LLJ and the boundary layer has been discussed. One notices that the observed LLJ diurnal structures depend on the local convective activity, wind shears and turbulence activity associated with boundary layer winds. The day-to-day change in the LLJ structure depends on the latitudinal position of the LLJ core.

  5. The Spanwise Distribution of Losses in Prismatic Turbine Cascade with Non-Uniform Inlet Velocity Profile

    Czech Academy of Sciences Publication Activity Database

    Fürst, J.; Luxa, Martin; Šimurda, David

    2014-01-01

    Roč. 21, č. 2 (2014), s. 135-141 ISSN 1802-1484 R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : prismatic turbine cascade * losses * velocity profile Subject RIV: BK - Fluid Dynamics http://www.engineeringmechanics.cz/obsahy.html?R=21&C=2

  6. Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models

    Science.gov (United States)

    Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.

    2011-01-01

    Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.

  7. The determination by coherent lidar of Doppler-velocity profiles in turbulent atmosphere

    Science.gov (United States)

    Gurdev, Luan L.; Dreischuh, Tanja N.

    2003-11-01

    The influence is investigated quantitatively of the velocity fluctuations in turbulent atmosphere on the formation of the autocovariance of coherent heterodyne aerosol lidar signals. A multishot, high pulse repetition rate lidar operation is supposed. The limit cases of long-term and short-term averaging are especially considered, when the observation (data accumulation) time is respectively much larger or much less than the correlation time of the fluctuation process. As a result, the intuitive conception is proved and illustrated quatitatively that a long-term averaging, under stationary conditions, allows one to obtain (on the basis of the autocovariance) a range-resolved estimate of the parent population mean Doppler-velocity profile; a short-term averaging allows one to determine a (near) instantaneous range-resolved Doppler-velocity profile.

  8. Vegetation as an indicator of high wind velocity. Annual progress report, June 15, 1978--March 14, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, E. W.; Wade, J. E.; Baker, R. W.

    1979-03-01

    The most important results are presented of work completed during the past year of the study Vegetation as an Indicator of High Wind Velocity. The most important achievement during the past year was the completion of a draft of a handbook on the use of trees as an indicator of wind power potential. This handbook describes relationships between mean annual wind speed and indices of wind deformation of two species of trees widely distributed in the western United States. Work during the past year on other species of trees indicates that the techniques calibrated initially for only Douglas-fir and Ponderosa Pine can also be calibrated on other trees including broadleaf trees such as oaks.

  9. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi

    2014-01-01

    the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so......We extend the functionality of a low-cost CW diode lasercoherent lidar from radial wind speed (scalar) sensing to wind velocity(vector) measurements. Both speed and horizontal direction of the wind at~80 m remote distance are derived from two successive radial speedestimates by alternately steering...... it either transmits throughor reflects off a polarization splitter. The room-temperature switching timebetween the two LOS is measured to be in the order of 100μs in one switchdirection but 16 ms in the opposite transition. Radial wind speedmeasurement (at 33 Hz rate) while the lidar beam is repeatedly...

  10. Measurement of bubbly flows in vertical channels using ultrasonic velocity profile monitor

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou Shirong; Takeda, Yasushi; Nakamura, Hideo; Kukita, Yutaka

    1998-01-01

    The authors have been developing measurement technique, using the Ultrasonic Doppler effect and applicable for a bubbly flow in vertical channels in order to understand their multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. Our developed measurement system is composed of an ultrasonic velocity profile monitor with a video data processing unit, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. In this paper, our proposed measurement system was applied to bubbly countercurrent flows in a vertical rectangular channel the followings are discussed: (1) the measurement principle, (2) the data processing process, (3) measurement accuracy and (4) further problems. (author)

  11. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  12. Generation of Random Wind Speed Profiles for Evaluation of Stress in WT Power Converters

    DEFF Research Database (Denmark)

    Pigazo, Alberto; Qin, Zian; Liserre, Marco

    2013-01-01

    Wind turbines are subjected to wind speed variations that cause a power profile that will stress the overall system. This stress is tranfered to the power converter, resulting in temperature variations of the power devices and, hence, causing the reduction of the lifetime. The lifetime expectation...... changes depending on the real wind speed once the wind turbine is operating. Usually, the real wind speed profiles are employed to evaluate this stress but they do not consider all possible operation conditions and require intensive computations. To solve these issues, this paper proposes the generation...... of random wind speed profiles, based on the measured ones, in order to evaluate the thermal stress of the power devices based on a simplified statistical approach....

  13. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  14. Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems

    Science.gov (United States)

    Decker, Ryan; Barbre, Robert E., Jr.

    2011-01-01

    Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.

  15. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    Science.gov (United States)

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  16. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    Science.gov (United States)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  17. Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation

    Directory of Open Access Journals (Sweden)

    Sperelakis Nicholas

    2006-08-01

    Full Text Available Abstract Background The effect of depth on propagation velocity within a bundle of cardiac muscle fibers is likely to be an important factor in the genesis of some heart arrhythmias. Model and methods The velocity profile of simulated action potentials propagated down a bundle of parallel cardiac muscle fibers was examined in a cross-section of the bundle using a PSpice model. The model (20 × 10 consisted of 20 chains in parallel, each chain being 10 cells in length. All 20 chains were stimulated simultaneously at the left end of the bundle using rectangular current pulses (0.25 nA, 0.25 ms duration applied intracellularly. The simulated bundle was symmetrical at the top and bottom (including two grounds, and voltage markers were placed intracellularly only in cells 1, 5 and 10 of each chain to limit the total number of traces to 60. All electrical parameters were standard values; the variables were (1 the number of longitudinal gap-junction (G-j channels (0, 1, 10, 100, (2 the longitudinal resistance between the parallel chains (Rol2 (reflecting the closeness of the packing of the chains, and (3 the bundle termination resistance at the two ends of the bundle (RBT. The standard values for Rol2 and RBT were 200 KΩ. Results The velocity profile was bell-shaped when there was 0 or only 1 gj-channel. With standard Rol2 and RBT values, the velocity at the surface of the bundle (θ1 and θ20 was more than double (2.15 × that at the core of the bundle (θ10, θ11. This surface:core ratio of velocities was dependent on the values of Rol2 and RBT. When Rol2 was lowered 10-fold, θ1 increased slightly and θ2decreased slightly. When there were 100 gj-channels, the velocity profile was flat, i.e. the velocity at the core was about the same as that at the surface. Both velocities were more than 10-fold higher than in the absence of gj-channels. Varying Rol2 and RBT had almost no effect. When there were 10 gj-channels, the cross-sectional velocity profile

  18. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  19. Semi-analytical method for calculating aeroelastic effect of profiled rod flying at high velocity

    Directory of Open Access Journals (Sweden)

    Hui-jun Ning

    2015-03-01

    Full Text Available The key technique of a kinetic energy rod (KER warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method (CFD/FEM, respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.

  20. Measurements and modeling of the wind profile up to 600 meters at a flat coastal site

    DEFF Research Database (Denmark)

    Batchvarova, Ekaterina; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    This study shows long-term ABL wind profile features by comparing long-range wind lidar measurements and the output from a mesoscale model. The study is based on one-year pulsed lidar (Wind Cube 70) measurements of wind speed and direction from 100 to 600 meters with vertical resolution of 50......) and shape (k) parameters of the Weibull dis-tribution above 100 m. The latter signifies that the model suggests a wider distri-bution in the wind speed compared to measurements....... meters and time resolution of 10 minutes at a coastal site on the West coast of Denmark and WRF ARW (NCAR) simulations for the same period. The model evaluation is performed based on wind speed, wind direction, as well as statistical parameters of the Weibull distribution of the wind speed time series...

  1. Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler

    Science.gov (United States)

    Thomas, R. E.; Schindfessel, L.; McLelland, S. J.; Creëlle, S.; De Mulder, T.

    2017-07-01

    This paper compiles the technical characteristics and operating principles of the Nortek Vectrino Profiler and reviews previously reported user experiences. A series of experiments are then presented that investigate instrument behaviour and performance, with a particular focus on variations within the profile. First, controlled tests investigate the sensitivity of acoustic amplitude (and Signal-to-Noise Ratio, SNR) and pulse-to-pulse correlation coefficient, R 2, to seeding concentration and cell geometry. Second, a novel methodology that systematically shifts profiling cells through a single absolute vertical position investigates the sensitivity of mean velocities, SNR and noise to: (a) emitted sound intensity and the presence (or absence) of acoustic seeding; and (b) varying flow rates under ideal acoustic seeding conditions. A new solution is derived to quantify the noise affecting the two perpendicular tristatic systems of the Vectrino Profiler and its contribution to components of the Reynolds stress tensor. Results suggest that for the Vectrino Profiler: 1. optimum acoustic seeding concentrations are ~3000 to 6000 mg L-1 2. mean velocity magnitudes are biased by variable amounts in proximal cells but are consistently underestimated in distal cells; 3. noise varies parabolically with a minimum around the ‘sweet spot’, 50 mm below the transceiver; 4. the receiver beams only intersect at the sweet spot and diverge nearer to and further from the transceiver. This divergence significantly reduces the size of the sampled area away from the sweet spot, reducing data quality; 5. the most reliable velocity data will normally be collected in the region between approximately 43 and 61 mm below the transceiver.

  2. Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler

    International Nuclear Information System (INIS)

    Thomas, R E; Schindfessel, L; Creëlle, S; De Mulder, T; McLelland, S J

    2017-01-01

    This paper compiles the technical characteristics and operating principles of the Nortek Vectrino Profiler and reviews previously reported user experiences. A series of experiments are then presented that investigate instrument behaviour and performance, with a particular focus on variations within the profile. First, controlled tests investigate the sensitivity of acoustic amplitude (and Signal-to-Noise Ratio, SNR) and pulse-to-pulse correlation coefficient, R 2 , to seeding concentration and cell geometry. Second, a novel methodology that systematically shifts profiling cells through a single absolute vertical position investigates the sensitivity of mean velocities, SNR and noise to: (a) emitted sound intensity and the presence (or absence) of acoustic seeding; and (b) varying flow rates under ideal acoustic seeding conditions. A new solution is derived to quantify the noise affecting the two perpendicular tristatic systems of the Vectrino Profiler and its contribution to components of the Reynolds stress tensor. Results suggest that for the Vectrino Profiler: 1. optimum acoustic seeding concentrations are ∼3000 to 6000 mg L −1 ; 2. mean velocity magnitudes are biased by variable amounts in proximal cells but are consistently underestimated in distal cells; 3. noise varies parabolically with a minimum around the ‘sweet spot’, 50 mm below the transceiver; 4. the receiver beams only intersect at the sweet spot and diverge nearer to and further from the transceiver. This divergence significantly reduces the size of the sampled area away from the sweet spot, reducing data quality; 5. the most reliable velocity data will normally be collected in the region between approximately 43 and 61 mm below the transceiver. (paper)

  3. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  4. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    Science.gov (United States)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  5. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  6. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Mérand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schöller, M.; Teodoro, M.; Wittkowski, M.

    2016-10-01

    Context. The mass loss from massive stars is not understood well. η Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims: We want to investigate the structure and kinematics of η Car's primary star wind and wind-wind collision zone with a high spatial resolution of ~6 mas (~14 au) and high spectral resolution of R = 12 000. Methods: Observations of η Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results: We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Brγ 2.166 μm emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to - 376 km s-1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of - 277 km s-1, the position angle of the symmetry axis of the fan is ~126°. The fan-shaped structure extends approximately 8.0 mas (~18.8 au) to the southeast and 5.8 mas (~13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  7. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  8. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.

    2016-01-01

    of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due......-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dualLidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were...... compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement...

  9. Visualisation of air–water bubbly column flow using array Ultrasonic Velocity Profiler

    Directory of Open Access Journals (Sweden)

    Munkhbat Batsaikhan

    2017-11-01

    Full Text Available In the present work, an experimental study of bubbly two-phase flow in a rectangular bubble column was performed using two ultrasonic array sensors, which can measure the instantaneous velocity of gas bubbles on multiple measurement lines. After the sound pressure distribution of sensors had been evaluated with a needle hydrophone technique, the array sensors were applied to two-phase bubble column. To assess the accuracy of the measurement system with array sensors for one and two-dimensional velocity, a simultaneous measurement was performed with an optical measurement technique called particle image velocimetry (PIV. Experimental results showed that accuracy of the measurement system with array sensors is under 10% for one-dimensional velocity profile measurement compared with PIV technique. The accuracy of the system was estimated to be under 20% along the mean flow direction in the case of two-dimensional vector mapping.

  10. Seasonality in onshore normalized wind profiles above the surface layer

    DEFF Research Database (Denmark)

    Nissen, Jesper Nielsen; Gryning, Sven-Erik

    2010-01-01

    This work aims to study the seasonal difference in normalized wind speed above the surface layer as it is observed at the 160 m high mast at the coastal site Høvsøre at winds from the sea (westerly). Normalized and stability averaged wind speeds above the surface layer are observed to be 20 to 50......% larger in the winter/spring seasons compared to the summer/autumn seasons at winds from west within the same atmospheric stability class. A method combining the mesoscale model, COAMPS, and observations of the surface stability of the marine boundary layer is presented. The objective of the method...... is to reconstruct the seasonal signal in normalized wind speed and identify the physical process behind. The method proved reasonably successful in capturing the relative difference in wind speed between seasons, indicating that the simulated physical processes are likely candidates to the observed seasonal signal...

  11. Relationship between Force-Velocity Profiles and 1,500-m Ergometer Performance in Young Rowers.

    Science.gov (United States)

    Giroux, Caroline; Maciejewski, Hugo; Ben-Abdessamie, Amal; Chorin, Frédéric; Lardy, Julien; Ratel, Sebastien; Rahmani, Abderrahmane

    2017-11-01

    Rowing races require developing high level of force and power output at high contraction velocity. This study determined the force-velocity and power-velocity (F-P-V) profiles of lower and upper limbs of adolescent rowers and their relationships with a 1,500-m rowing ergometer performance. The power developed during the 1,500-m (P 1500 ) was evaluated in fourteen national-level male rowers (age: 15.3±0.6 yrs). F-P-V profiles were assessed during bench pull (BP) and squat jump (SJ) exercises. The theoretical maximal values of force (F 0 ), velocity (V 0 ), power output (P max ) and the F-V relationship slope (S FV ) were determined. The body mass (BM) influence on these relationships was considered using an allometric approach. F 0 was 720±144 and 2146±405 N, V 0 was 1.8±0.1 and 1.8±0.3 m·s -1 , P max was 333±83 and 968±204 W and S FV was -391±54 and -1,200±260 N·s·m -1 for BP and SJ, respectively. Upper and lower limb F 0 and P max were significantly related. P 1500 was significantly ( P V 0-BP , F 0-BP , S FV-BP , P max-BP , F 0-SJ and P max-SJ (r²=0.29 to 0.79). BM accounted for more than 90% of these relationships. Rowers' F-P-V profiles reflect adaptations to chronic rowing practice. F-P-V profiles and rowing performance correlations suggest that BP and SJ exercises are relevant to evaluate young rowers' explosive abilities. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    Science.gov (United States)

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  13. GRIP HIGH ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a dual-frequency (Ka- and Ku-band) conical scan system, configured with a nadir viewing antenna...

  14. One Year of Vertical Wind Profiles Measurements at a Mediterranean Coastal Site of South Italy

    DEFF Research Database (Denmark)

    Calidonna, Claudia Roberta; Gullì, Daniel; Avolio, Elenio

    2015-01-01

    To exploit wind energy both onshore and offshore in coastal area the effect of the coastal discontinuity is important. The shape of the vertical wind profiles and the related c parameter of the Weibull distribution are impacted by the atmospheric internal boundary layers developing from the coast...

  15. Wind Profiles and Change of Terrain Roughness at Risø

    DEFF Research Database (Denmark)

    Panofsky, H. A.; Lundtang Petersen, Erik

    1972-01-01

    The Risø 125 m tower is situated on a narrow peninsula, surrounded by bays of varying width. The resulting surface roughness changes are clearly reflected by ‘kinks’ in the measured wind profiles, whose characteristics depend on the wind direction. The height of the lowest kink for water-to-land ...

  16. Field computation of winds-aloft velocities from single theodolite pilot balloon observations

    Science.gov (United States)

    Bill C. Ryan

    1976-01-01

    The ability to determine wind speeds and directions in the first few thousand meters of the atmosphere is important in many forestry operations such as smolce management, aircraft seeding and spraying, prescribed burning, and wildfire suppression. A hand-held electronic calculator can be used to compute winds aloft as balloon observations are taken. Calculations can...

  17. Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor

    Energy Technology Data Exchange (ETDEWEB)

    Beccali, M.; Marvuglia, A. [Dipartimento di Ricerche Energetiche ed Ambientali (DREAM), Universita degli Studi di Palermo, Viale delle Scienze - edificio 9, 90128 Palermo (Italy); Cirrincione, G. [Department de Genie Electrique, Universite de Picardie Jules Verne, 33, Rue Saint Leu, 80039 Amiens (France); Serporta, C. [ISSIA-CNR (Institute on Intelligent Systems for the Automation), Section of Palermo, Via Dante12, Palermo (Italy)

    2010-03-15

    Wind energy evaluation is an important goal in the conversion of energy systems to more environmentally friendly solutions. In this paper, we present a novel approach to wind speed spatial estimation on the isle of Sicily (Italy): an incremental self-organizing neural network (Generalized Mapping Regressor - GMR) is coupled with exploratory data analysis techniques in order to obtain a map of the spatial distribution of the average wind speed over the entire region. First, the topographic surface of the island was modelled using two different neural techniques and by exploiting the information extracted from a digital elevation model of the region. Then, GMR was used for automatic modelling of the terrain roughness. Afterwards, a statistical analysis of the wind data allowed for the estimation of the parameters of the Weibull wind probability distribution function. In the last sections of the paper, the expected values of the Weibull distributions were regionalized using the GMR neural network. (author)

  18. SIMULATION TOOL OF VELOCITY AND TEMPERATURE PROFILES IN THE ACCELERATED COOLING PROCESS OF HEAVY PLATES

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2014-10-01

    Full Text Available The aim of this paper was to develop and apply mathematical models for determining the velocity and temperature profiles of heavy plates processed by accelerated cooling at Usiminas’ Plate Mill in Ipatinga. The development was based on the mathematical/numerical representation of physical phenomena occurring in the processing line. Production data from 3334 plates processed in the Plate Mill were used for validating the models. A user-friendly simulation tool was developed within the Visual Basic framework, taking into account all steel grades produced, the configuration parameters of the production line and these models. With the aid of this tool the thermal profile through the plate thickness for any steel grade and dimensions can be generated, which allows the tuning of online process control models. The simulation tool has been very useful for the development of new steel grades, since the process variables can be related to the thermal profile, which affects the mechanical properties of the steels.

  19. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  20. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  1. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  2. Magnetic Geared Radial Axis Vertical Wind Turbine for Low Velocity Regimes

    Directory of Open Access Journals (Sweden)

    Wei Wei Teow

    2018-01-01

    Full Text Available In the 21st century, every country is seeking an alternative source of energy especially the renewable sources. There are considerable developments in the wind energy technology in recent years and in more particular on the vertical axis wind turbine (VAWT as they are modular, less installation cost and portable in comparison with that of the horizontal axis wind turbine (HAWT systems. The cut-in speed of a conventional wind turbine is 3.5 m/s to 5 m/s. Mechanical geared generators are commonly found in wind technology to step up power conversion to accommodate the needs of the generator. Wind turbine gearboxes suffer from overload problem and frequent maintenance in spite of the high torque density produced. However, an emerging alternative to gearing system is Magnetic Gear (MG as it offers significant advantages such as free from maintenance and inherent overload protection. In this project, numerical analysis is done on designed magnetic gear greatly affects the performance of the generator in terms of voltage generation. Magnetic flux density is distributed evenly across the generator as seen from the uniform sinusoidal output waveform. Consequently, the interaction of the magnetic flux of the permanent magnets has shown no disturbance to the output of the generator as the voltage generated shows uniform waveform despite the rotational speed of the gears. The simulation is run at low wind speed and the results show that the generator starts generating a voltage of 240 V at a wind speed of 1.04 m/s. This shows great improvement in the operating capability of the wind turbine.

  3. Time-resolved wave-profile measurements at impact velocities of 10 km/s

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L.C.; Furnish, M.D.; Reinhart, W.D.

    1998-06-01

    Development of well-controlled hypervelocity launch capabilities is the first step to understand material behavior at extreme pressures and temperatures not available using conventional gun technology. In this paper, techniques used to extend both the launch capabilities of a two-stage light-gas gun to 10 km/s and their use to determine material properties at pressures and temperature states higher than those ever obtained in the laboratory are summarized. Time-resolved interferometric techniques have been used to determine shock loading and release characteristics of materials impacted by titanium and aluminum fliers launched by the only developed three-stage light-gas gun at 10 km/s. In particular, the Sandia three stage light gas gun, also referred to as the hypervelocity launcher, HVL, which is capable of launching 0.5 mm to 1.0 mm thick by 6 mm to 19 mm diameter plates to velocities approaching 16 km/s has been used to obtain the necessary impact velocities. The VISAR, interferometric particle-velocity techniques has been used to determine shock loading and release profiles in aluminum and titanium at impact velocities of 10 km/s.

  4. LOCAL VELOCITY PROFILES MEASURED BY PIV IN AN VESSEL AGITATED BY RUSHTON TURBINE

    Directory of Open Access Journals (Sweden)

    Radek Šulc

    2014-12-01

    Full Text Available The hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV. The experiments were carried out in a fully baffled cylindrical flat bottom vessel 300 mm in inner diameter. The tank was agitated by a Rushton turbine 100 mm in diameter. The velocity fields were measured for three impeller rotation speeds 300 rpm, 450 rpm and 600 rpm and the corresponding Reynolds numbers in the range 50 000 < Re < 100 000, which means that the fully-developed turbulent flow was reached. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller rotational speed. The velocity profiles were averaged, and were expressed by Chebyshev polynomials of the 1st order. Although the experimentally investigated area was relatively far from the impeller, and it was located in upward flow to the impeller, no state of local isotropy was found. The ratio of the axial rms fluctuation velocity to the radial component was found to be in the range from 0.523 to 0.768. The axial turbulence intensity was found to be in the range from 0.293 to 0.667, which corresponds to a high turbulence intensity.

  5. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  6. The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements and Numerical Modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Vincent, Claire Louise; Gryning, Sven-Erik

    2013-01-01

    Traditionally it has been difficult to verify mesoscale model wind predictions against observations in the planetary boundary layer (PBL). Here we used measurements from a wind lidar to study the PBL up to 800 m above the surface at a flat coastal site in Denmark during a one month period in autu...

  7. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    International Nuclear Information System (INIS)

    Kim, D; Winkler, M; Muste, M

    2015-01-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats. (paper)

  8. Influence of wind velocity fluctuation on air temperature difference between the fan and ground levels and the effect of frost protective fan operation

    International Nuclear Information System (INIS)

    Araki, T.; Matsuo, K.; Miyama, D.; Sumikawa, O.; Araki, S.

    2008-01-01

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition

  9. CAMEX-4 MIPS 915 MHZ DOPPLER WIND PROFILER V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The University of Alabama in Huntsville (UAH) Mobile Integrated Profiling System (MIPS) is a mobile atmospheric profiling system. It includes a 915 MHz Doppler...

  10. Simultaneous measurements of the thermospheric wind profile at three separate positions in the dusk auroral oval

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Friis-Christensen, E.; Larsen, M.F.; Kelley, M.C.; Vickrey, J.; Meriwether, J.; Shih, P.

    1987-01-01

    On March 20, 1985, two rockets were launched from Soendre Stroemfjord, Greenland, into the dusk auroral oval. Three trimethyl aluminium trails were released to measure the neutral wind profiles between 95 and 190 km of altitude at two points separated by 190 km normal to the invariant latitude circles and at a third point separated from the first two by 300 km along the invariant latitude circles. Two barium/strontium clouds were released at 250 km of altitude, extending two of the neutral wind profiles to this altitude. In the E region the tip of the wind vector traced an ellipse as a function of increasing altitude with maximum wind speeds of 100-150 m/s in the southeastward and northwestward directions. The F region winds were southward with speeds of 100-200 m/s. The zonal wind component between 115 and 140 km of altitude had a horizontal gradient in the southeastward direction, whereas the meridional wind component at the same heights was constant over the spatial extent covered by the measurements. The authors interpret the observed E region wind field as being part of a gravity wave with a period of 3 hours as estimated from the ellipticity of the wind hodograms. The wind vectors rotated 540 degree clockwise with increasing height, indicating that the wave energy is propagating upward. The Fabry-Perot interferometer at Soendre Stroemfjord was first able to detect the F region winds 45 min after the releases and measured winds of 100-400 m/s mainly in the southeastward or antisunward direction. The geomagnetic conditions were quiet, with Kp not exceeding 2 for the 24 hours preceding the experiment. The incoherent scatter radar at Soendre Stroemfjord observed a contracted plasma convection pattern associated with positive B y and B z components of the interplanetary magnetic field

  11. Mixed convective-dynamic roll vortices and their effects on initial wind and temperature profiles

    Science.gov (United States)

    Haack, Tracy; Shirer, Hampton N.

    1992-01-01

    A new nonlinear 14-coefficient spectral model of two-dimensional shallow Boussinesq flow is developed and used to investigate the onset and development of both dynamically and convectively forced boundary-layer rolls. The model is developed to accept arbitrary basic-state wind profiles as dynamic forcing, using an Ekman profile to provide a means for easy comparison with other studies. The results are qualitatively compared with those of previous theoretical and observational investigations. The rolls are shown to significantly alter the initial wind profile in the sense found by Faller and Kaylor (1967) and Brown (1970), but via a mechanism independent of the Coriolis force.

  12. Simultaneous Determination of Source Wavelet and Velocity Profile Using Impulsive Point-Source Reflections from a Layered Fluid

    National Research Council Canada - National Science Library

    Bube, K; Lailly, P; Sacks, P; Santosa, F; Symes, W. W

    1987-01-01

    .... We show that a quasi-impulsive, isotropic point source may be recovered simultaneously with the velocity profile from reflection data over a layered fluid, in linear (perturbation) approximation...

  13. Deep River Velocity and Sediment Profiles and the Suspended Sand Load,

    Science.gov (United States)

    1963-02-01

    be noted from these data that the average vertical velocity profiles of the two streams are practi- cally identical at the respective locations. These...5.03 x IO~~ ATCHAFALAVA RIVER WIDTH : 1587 FT D 5, : 6.75 w 0 ~ FT SIMM ESPORT u : 6.66 FPS WATER TEMP. : 70 F d : 46.3 FT FINE SAND PORTION OP BED...1.34 * 10 3FT SIMM ESPORT ~ : 5.85 FPS WATCR TEMP. :69 ’F d : 47.7 FT FiNE SAND PORTION OP BED MATERIAL : 39.$ ~~ FIG. 16

  14. GPM GROUND VALIDATION HIGH ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) MC3E dataset was collected by the High-Altitude Imaging Wind and Rain...

  15. Three-dimensional visualization of velocity profiles in the ascending aorta in dogs, measured with a hot-film anemometer.

    Science.gov (United States)

    Paulsen, P K; Hasenkam, J M

    1983-01-01

    Three-dimensional blood velocity profiles were registered in the ascending aorta of dogs approximately 2 and 5 cm above the aortic valves by means of constant temperature hot-film anemometry. The velocity was measured at 41 predetermined points of measurement evenly distributed over the cross-sectional area. Later data analyses using a three-dimensional plotting system, visualized velocity profiles at 200 time intervals during one mean heart cycle. The overall appearance of the profiles was that of a flat transitional flow with a slight skewness. The highest velocity was found nearer to the posterior and left vessel wall. The skewness started during top systole and persisted to the beginning of diastole. Furthermore, many small velocity fluctuations were seen during top systole, but they might also be caused by secondary rotational flow phenomena. This new three-dimensional and dynamic method for visualizing velocity profiles seems to offer advantages, as it demonstrates the total velocity profile all over the cross-sectional area.

  16. Development of a procedure to model high-resolution wind profiles from smoothed or low-frequency data

    Science.gov (United States)

    Camp, D. W.

    1977-01-01

    The derivation of simulated Jimsphere wind profiles from low-frequency rawinsonde data and a generated set of white noise data are presented. A computer program is developed to model high-resolution wind profiles based on the statistical properties of data from the Kennedy Space Center, Florida. Comparison of the measured Jimsphere data, rawinsonde data, and the simulated profiles shows excellent agreement.

  17. Real-time Wind Profile Estimation using Airborne Sensors

    NARCIS (Netherlands)

    In 't Veld, A.C.; De Jong, P.M.A.; Van Paassen, M.M.; Mulder, M.

    2011-01-01

    Wind is one of the major contributors to uncertainty in continuous descent approach operations. Especially when aircraft that are flying low or idle thrust approaches are issued a required time of arrival over the runway threshold, as is foreseen in some of the future ATC scenarios, the on-board

  18. The shape of velocity dispersion profiles and the dynamical state of galaxy clusters

    Science.gov (United States)

    Costa, A. P.; Ribeiro, A. L. B.; de Carvalho, R. R.

    2018-01-01

    Motivated by the existence of the relationship between the dynamical state of clusters and the shape of the velocity dispersion profiles (VDPs), we study the VDPs for Gaussian (G) and non-Gaussian (NG) systems for a subsample of clusters from the Yang catalogue. The groups cover a redshift interval of 0.03 ≤ z ≤ 0.1 with halo mass ≥1014 M⊙. We use a robust statistical method, Hellinger Distance, to classify the dynamical state of the systems according to their velocity distribution. The stacked VDP of each class, G and NG, is then determined using either Bright or Faint galaxies. The stacked VDP for G groups displays a central peak followed by a monotonically decreasing trend which indicates a predominance of radial orbits, with the Bright stacked VDP showing lower velocity dispersions in all radii. The distinct features we find in NG systems are manifested not only by the characteristic shape of VDP, with a depression in the central region, but also by a possible higher infall rate associated with galaxies in the Faint stacked VDP.

  19. Measurement of the dark matter velocity anisotropy profile in galaxy clusters

    International Nuclear Information System (INIS)

    Host, Ole

    2009-01-01

    Dark matter halos contribute the major part of the mass of galaxy clusters and the formation of these cosmological structures have been investigated in numerical simulations. Observations have been found to be in good agreement with the numerical predictions regarding the spatial distribution of dark matter, i.e. the mass profile. However, the dynamics of dark matter in halos has so far proved a greater challenge to probe observationally. We have used observations of 16 relaxed galaxy clusters to show that the dark matter velocity dispersion is larger along the radial direction than along the tangential, and that the magnitude of this velocity anisotropy β varies with radius. This measurement implies that the collective behaviour of dark matter particles is fundamentally different from that of baryonic particles and constrains the self-interaction per unit mass. The radial variation of the anisotropy velocity agrees with the predictions so that, on cluster scales, there is now excellent agreement between numerical predictions and observations regarding the phase space of dark matter.

  20. Microscopic dynamics and velocity profiles of bacterial superfluids under oscillatory shear

    Science.gov (United States)

    Cheng, Xiang; Guo, Shuo; Samanta, Devranjan; Peng, Yi; Xu, Xinliang

    Bacterial suspensions a premier example of active fluids show an unusual response to shear stresses. Rather than increasing the viscosity of the suspending fluid, swimming bacteria can self-organize into collective flows under shear, turning the suspension into a ``superfluid'' with zero apparent viscosity. Although the existence of the bacterial superfluid has been demonstrated in bulk rheology measurements, little is known about the microscopic dynamics of such an exotic phase. Here, by combining sensitive rheology measurements with high-speed confocal microscopy, we study the detailed 3D dynamics of concentrated bacterial suspensions confined in narrow gaps under oscillatory shear. We find that sheared bacterial suspensions in the superfluidic phase exhibit velocity profiles with strong spatial heterogeneity, unexpected from the established hydrodynamic theory of active fluids. We quantitatively explain the observed velocity profiles by considering a balance of active stresses and shear stresses in an ensemble average. Our experiments reveal a profound influence of shear flows on bacterial locomotion and provide new insights to the origin of the unique flow behaviors of active fluids.

  1. Investigation of joule-heating flow using ultrasound velocity profiler-effect of cold cap condition

    International Nuclear Information System (INIS)

    Duong, T.T.; Tsuzuki, N.; Kikura, H.

    2015-01-01

    The High Level Radioactive Wastes (HLWs) are vitrified in a glass melter. However, sometimes the glass melter operation is not stable due to abnormal phenomena. If this happens, the glass melter has to be shut down. Understanding the flow behavior in glass melter is important to improve the applicability of the melter operation. Ultrasonic Velocity Profiler (UVP) is appropriate to observe the Joule-heating flow behavior which is scaled into experiment and conducted in Laboratory scale. The cubic cavity for Joule heating flow has dimension of 100 mm with a top surface condition is under cooling condition and the other walls is set as adiabatic condition. The effect of cold cap condition on the flow behavior is investigated by changing the top surface as fully or partly cooling as 50%, 75%. As a result, Joule-heating flow convection is observed by UVP and displayed in color scale (so-called spatio-temporal velocity profile). This information is very useful to observe the unstable flow convection. It is revealed that cold cap boundary conditions affect the flow field in the whole cavity. In case of full cooling on the top wall, the flow behavior is unstable by multi-vortex inside the cavity. However, the main vortex has a diameter of about 90 mm in both cases of 50% cooling and 75% cooling. These characteristics are also confirmed using a Computational Fluid Dynamic, named GSMAC-Finite Element Method that combined three fields: Flow field, Thermal field and electromagnetic field. (author)

  2. Mixed convective/dynamic roll vortices and their effects on initial wind and temperature profiles

    Science.gov (United States)

    Haack, Tracy; Shirer, Hampton N.

    1991-01-01

    The onset and development of both dynamically and convectively forced boundary layer rolls are studied with linear and nonlinear analyses of a truncated spectral model of shallow Boussinesq flow. Emphasis is given here on the energetics of the dominant roll modes, on the magnitudes of the roll-induced modifications of the initial basic state wind and temperature profiles, and on the sensitivity of the linear stability results to the use of modified profiles as basic states. It is demonstrated that the roll circulations can produce substantial changes to the cross-roll component of the initial wind profile and that significant changes in orientation angle estimates can result from use of a roll-modified profile in the stability analysis. These results demonstrate that roll contributions must be removed from observed background wind profiles before using them to investigate the mechanisms underlying actual secondary flows in the boundary layer. The model is developed quite generally to accept arbitrary basic state wind profiles as dynamic forcing. An Ekman profile is chosen here merely to provide a means for easy comparison with other theoretical boundary layer studies; the ultimate application of the model is to study observed boundary layer profiles. Results of the analytic stability analysis are validated by comparing them with results from a larger linear model. For an appropriate Ekman depth, a complete set of transition curves is given in forcing parameter space for roll modes driven both thermally and dynamically. Preferred orientation angles, horizontal wavelengths and propagation frequencies, as well as energetics and wind profile modifications, are all shown to agree rather well with results from studies on Ekman layers as well as with studies on near-neutral and convective atmospheric boundary layers.

  3. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    Science.gov (United States)

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates

  4. Mission-profile based multi-objective optimization of power electronics converter for wind turbines

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh; Teodorescu, Remus; Kerekes, Tamas

    2017-01-01

    To help mitigate some of the challenges associated with the wide spread adoption of the stochastic wind power, wind turbine with full-scale power converter (Type D) is preferred. Since full power is processed by the power converter in a type D wind turbine, it is important to improve its efficiency...... and reduce the cost per kW to achieve lower cost of energy. The power produced by the wind turbine varies in a wide range and the conventional design approach of optimizing converter at a specific loading condition may be sub-optimal. To overcome this challenge, a mission-profile based multi......-objective optimization approach for designing power converter is presented. The objective is to minimize the energy loss for a given load profile as against the conventional approach of minimizing power loss at specific loading conditions. The proposed approach is illustrated by designing a grid-side power converter...

  5. Hybrid simulations of the expanding solar wind: Temperatures and drift velocities

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel; Mangeney, A.; Grappin, R.

    2003-01-01

    Roč. 30, č. 5 (2003), s. 15-1-15-4 ISSN 0094-8276 R&D Projects: GA AV ČR IAB3042106 Grant - others:CNRS(FR) PICS 1175 Institutional research plan: CEZ:AV0Z3042911 Keywords : expanding solar wind * hybrid simulations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.422, year: 2003

  6. Wind and thermodynamic profiler observations of a late-mature gust ...

    Indian Academy of Sciences (India)

    High temporal and vertical resolutions of kinematic and thermodynamic characteristics of a late-mature gust front are presented using the Mobile Integrated Profiling System andWeather Surveillance Radar 88 Doppler data. As the gust front passed over the Mobile Integrated Profiling System vertical velocities and the ...

  7. Results of the NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    Science.gov (United States)

    Barbre', Robert E., Jr.; Decker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    This paper presents results of the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). The goal of the OAT was to verify the data quality of the new DRWP against the performance of the previous DRWP in order to use wind data derived by the new DRWP for space launch vehicle operations support at the Eastern Range. The previous DRWP was used as a situational awareness asset for mission operations to identify rapid changes in the wind environment that weather balloons cannot depict. The Marshall Space Flight Center's Natural Environments Branch assessed data from the new DRWP collected during Jan-Feb 2015 against a specified set of test criteria. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 49 concurrent DRWP and balloon profiles presented root mean square wind component differences around 2.0 m/s. Evaluation of the DRWP's coherence between five-minute wind pairs found the effective vertical resolution to be Nyquist-limited at 300 m for both wind components. In addition, the sensitivity to rejecting data that do not have adequate signal was quantified. This paper documents the data, quality control procedures, methodology, and results of each analysis.

  8. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    International Nuclear Information System (INIS)

    Pooja,; Ahluwalia, P. K.; Pathania, Y.

    2015-01-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow

  9. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Pooja,, E-mail: pupooja16@gmail.com; Ahluwalia, P. K., E-mail: pk-ahluwalia7@yahoo.com [Department. of Physics, Himachal Pradesh University, Shimla, H. P., 171005 (India); Pathania, Y. [GGDSD College Sec-32-C Chandigarh (India)

    2015-05-15

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.

  10. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  11. Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR

    Directory of Open Access Journals (Sweden)

    S. A. Cohn

    Full Text Available Spaced antenna (SA wind measurement techniques are applied to Multiple Antenna Profiler (MAPR data to evaluate its performance in clear air conditions. MAPR is a multiple antenna 915 MHz wind profiler developed at the National Center for Atmospheric Research (NCAR and described in Cohn et al. (1997, designed to make high resolution wind measurements. Previous reported measurements with MAPR were restricted to precipitation because of low signal to noise (SNR and signal to ground-clutter (SCR ratios. By using a standard pulse-coding technique and upgrading the profiler control software, increases in average power and SNR were achieved, making routine measurements in clear air possible. Comparison of winds measured by MAPR and by a sonic anemometer on a nearby 300 m tower show correlation coefficients in the range of R2 = 0.75 – 0.80, and an average absolute error of ~ 1.4 m s - 1 . This compares favorably with the agreement typically found in wind profiler comparisons. We also consider the use of the parameter ah , which is related to the value of the cross-correlation function at its zero crossing. This parameter is a data quality indicator and possibly a key component in a ground clutter removal technique.

    Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; instruments and techniques – Radio science (remote sensing

  12. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible...

  13. Improving 1D Site Specific Velocity Profiles for the Kik-Net Network

    Science.gov (United States)

    Holt, James; Edwards, Benjamin; Pilz, Marco; Fäh, Donat; Rietbrock, Andreas

    2017-04-01

    Ground motion predication equations (GMPEs) form the cornerstone of modern seismic hazard assessments. When produced to a high standard they provide reliable estimates of ground motion/spectral acceleration for a given site and earthquake scenario. This information is crucial for engineers to optimise design and for regulators who enforce legal minimum safe design capacities. Classically, GMPEs were built upon the assumption that variability around the median model could be treated as aleatory. As understanding improved, it was noted that the propagation could be segregated into the response of the average path from the source and the response of the site. This is because the heterogeneity of the near-surface lithology is significantly different from that of the bulk path. It was then suggested that the semi-ergodic approach could be taken if the site response could be determined, moving uncertainty away from aleatory to epistemic. The determination of reliable site-specific response models is therefore becoming increasingly critical for ground motion models used in engineering practice. Today it is common practice to include proxies for site response within the scope of a GMPE, such as Vs30 or site classification, in an effort to reduce the overall uncertainty of the predication at a given site. However, these proxies are not always reliable enough to give confident ground motion estimates, due to the complexity of the near-surface. Other approaches of quantifying the response of the site include detailed numerical simulations (1/2/3D - linear, EQL, non-linear etc.). However, in order to be reliable, they require highly detailed and accurate velocity and, for non-linear analyses, material property models. It is possible to obtain this information through invasive methods, but is expensive, and not feasible for most projects. Here we propose an alternative method to derive reliable velocity profiles (and their uncertainty), calibrated using almost 20 years of

  14. Measurement of ion velocity profiles in a magnetic reconnection layer via current sheet jogging

    Science.gov (United States)

    Stein, G.; Yoo, J.; Yamada, M.; Ji, H.; Dorfman, S.; Lawrence, E.; Myers, C.; Tharp, T.

    2011-10-01

    In many laboratory plasmas, constructing stationary Langmuir and Mach probe arrays with resolution on the order of electron skin depth is technically difficult, and can introduce significant plasma perturbations. However, complete two- dimensional profiles of plasma density, electron temperature, and ion flow are important for studying the transfer of energy from magnetic fields to particles during magnetic reconnection. Through the use of extra ``Shaping Field'' coils in the Magnetic Reconnection Experiment (MRX) at the Princeton Plasma Physics Laboratory, the inward motion of the current sheet in the reconnection layer can be accelerated, or ``jogged,'' allowing the measurement of different points across the sheet with stationary probes. By acquiring data from Langmuir probes and Mach probes at different locations in the MRX with respect to the current sheet center, profiles of electron density and temperature and a vector plot of two-dimensional ion velocity in the plane of reconnection are created. Results from probe measurements will be presented and compared to profiles generated from computer simulation.

  15. Effects of the wind profile at night on wind turbine sound

    NARCIS (Netherlands)

    van den Berg, GP

    2004-01-01

    Since the start of the operation of a 30 MW, 17 turbine wind park, residents living 500 in and more from the park have reacted strongly to the noise; residents up to 1900 in distance expressed annoyance. To assess actual sound immission, long term measurements (a total of over 400 night hours in 4

  16. QBO effects manifesting in ozone, temperature, and wind profiles

    OpenAIRE

    Sitnov, S. A.

    2004-01-01

    On the basis of ozonesonde records up to 1998 the responses on the equatorial quasi-biennial oscillation (QBO), manifesting in ozone, temperature, and wind (QBO effects) were isolated in the region from the ground to altitudes as high as 35km at 22 stations located in Europe (7), North America (7), Japan (4), Hawaii (1), Australia (2), and Antarctic (1).

    The vertical structures of the QBO effects of ozone are represented as an alternati...

  17. Least squares inversion of Stokes profiles in the presence of velocity gradients

    International Nuclear Information System (INIS)

    Skumanich, A.; Rees, D.E.; Lites, B.W.; Sacramento Peak Observatory, Sunspot, NM)

    1985-01-01

    The Auer, Heasley and House Stokes inversion procedure in use at High Altitude Observatory is based on the analytic solution of the equation of transfer for polarized light where the representation of the thermodynamic and magnetic structure of the atmosphere is assumed to have a high degree of invariance, namely, a Milne-Eddington (ME) structure with a constant magnetic field. In the presence of invariance breaking gradients the resultant Stokes profiles are represented only approximately, if at all, by analytic forms. The accuracy of the inversion parameters and their significance as measures of actual structure are explored for the ME and the Landman-Finn sunspot models under the effects of velocity gradients. The resulting field parameters are good to a few percent and prove to be insensitive to the errors committed by the use of a ME-representation, but the resulting ME parameters yield a less precise measure of thermal structure

  18. Changes in the Force-Velocity Mechanical Profile After Short Resistance Training Programs Differing in Set Configurations.

    Science.gov (United States)

    Iglesias-Soler, Eliseo; Fernández-Del-Olmo, Miguel; Mayo, Xián; Fariñas, Juan; Río-Rodríguez, Dan; Carballeira, Eduardo; Carnero, Elvis A; Standley, Robert A; Giráldez-García, Manuel A; Dopico-Calvo, Xurxo; Tuimil, Jose Luis

    2017-04-01

    The main aim of this study was to analyze the effect of resistance training programs differing in set configuration on mechanical force-velocity profiles. Thirteen participants performed 10 unilateral knee extension training sessions over 5 weeks. Each limb was randomized to one of the following set configurations: traditional (4 sets of 8 repetitions at maximum intended velocity, 10RM load, 3-min pause between sets) or interrepetition rest (32 maximum intended velocity repetitions, 10RM load, 17.4 s of rest between each repetition). Velocity of each repetition was recorded throughout the program. Before and after training, individual linear force velocities were calculated, and the following parameters were obtained: force and velocity axis intercept, slope, and estimated maximum power. Mean velocity was higher throughout the program for interrepetition rest configuration (0.54 ± 0.01 vs. 0.48 ± 0.01 m∙s -1 for interrepetition rest, and traditional configuration respectively; main effect of set configuration: P force and velocity intercepts, but a steeper negative slope after both training protocols (main effect of time: P resistance training velocity did not affect the adaptations. Our results suggest that, in a short-term program, maximum intended rather than actual velocity is a key factor to modulate strength adaptations.

  19. New developments in velocity profile measurement and pipe wall wear monitoring for hydrotransport lines

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, C.; Maron, R.J. [CiDRA Minerals Processing Inc., Wallingford, CT (United States); Fernald, M.; Bailey, T. [CiDRA Corporate Services, Wallingford, CT (United States); Van der Spek, A. [ZDOOR, Rotterdam (Netherlands)

    2009-07-01

    Sonar array flow measurement technology was initially developed a decade ago with the goal of non-invasively measuring multi-phase flows in the petroleum industry. The same technology was later adapted to the mineral processing industry where it has been rapidly adopted. The specific sensor technology, based on piezoelectric film sensors, provides unique measurement capabilities, including the ability to non-invasively measure localized strains in the walls of pipes. Combined with sonar array processing algorithms, an axial array of such sensors can measure flow velocities within a pipe. The sensors are useful for monitoring and managing slurry flow in horizontal pipes since they provide real-time velocity profiles measurement. The information is useful in determining the approach and onset of solid deposition on the bottom of the pipe. The sensors also provide a non-invasive measurement of pipe wear on slurry lines. Such measurements are currently made by hand-held portable ultrasonic thickness gages. The shortfalls associated with this manual method are overcome with a set of permanently or semi-permanently installed transducers clamped onto the outside of the pipe, where sensors measure the thickness of the pipe. This system and approach results in better repeatability and accuracy compared to manual methods. It also decreases inspection labor costs and pipe access requirements. It was concluded that the potential impact on personnel safety and environmental savings will be significant. 3 refs., 20 figs.

  20. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  1. Prediction of velocity of the wind generation in Kobe City College of Technology; Kobe Kosen ni okeru furyoku hatsuden no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, K.; Kanemura, M.; Amako, K.

    1997-11-25

    Wind conditions, such as average wind velocity for 10 minutes, maximum instantaneous wind velocity and wind directions, are measured by the anemometer and anemoscope installed 3m above the roof of the Kobe City College of Technology`s Information Processing Center building, to collect the data necessary to validate possibility of wind power generation, if the wind system is installed in the college site. Monthly availability of power is estimated from the output power characteristics curve for a generator having a rated capacity of 200W and wind velocity data collected for 9 months. It will generate power of only 144kWh, even when operated to give the rated output, or approximately 8.5kWh at the highest in a month, because of availability of wind power limited to around 30% of the total as estimated from the relative frequency distribution. It is therefore desirable to install a number of units having a rated capacity of 200W or else a smaller number of larger units. Assuming that days that give the highest output for 24 hours last 1 month, a power of 54.3kWh will be generated. It is estimated, based on these results, that a hybrid unit, in which a wind power generator installed at a high place is combined with a solar unit, can provide power required for nighttime lighting, if a wind power unit having a rated capacity of 2kW is field-controlled under an optimum condition. 13 figs., 3 tabs.

  2. QBO effects manifesting in ozone, temperature, and wind profiles

    Directory of Open Access Journals (Sweden)

    S. A. Sitnov

    2004-04-01

    Full Text Available On the basis of ozonesonde records up to 1998 the responses on the equatorial quasi-biennial oscillation (QBO, manifesting in ozone, temperature, and wind (QBO effects were isolated in the region from the ground to altitudes as high as 35km at 22 stations located in Europe (7, North America (7, Japan (4, Hawaii (1, Australia (2, and Antarctic (1. The vertical structures of the QBO effects of ozone are represented as an alternation of layers of well-developed quasi-biennial signals, whose phases gradually change with height and thin transitional layers of ill-developed signals, whose phases change abruptly with height. The amplitudes of the effects depend on height and reach the maxima of 3–6nbar in the lower stratosphere. At the majority of sites the effects are found to be approximately in phase between 20 and 23km. Two types of the vertical structures of the temperature QBO effects are found. At most of the sites located equatorward of about 50° the stratospheric temperature anomalies are characterized by downward propagation, whereas at sites situated poleward of about 50° they look as column-like structures. Near the tropopause the effects frequently reveal dipole-like structure, when the stratospheric and tropospheric anomalies are of opposite signs. The amplitudes of the effects are in the range of 0.5–1°C. The vertical structures of the QBO effects of horizontal wind components reveal a diversity of patterns. The amplitudes of the QBO effects of the meridional and zonal winds are comparable and lie in the range of 0.5–2m s–1. As a rule, the maxima of the effects are noticed slightly below the tropopause, as well as in the middle stratosphere. In general, a statistical assurance of the obtained QBO effects is rather poor. However, a considerable part of them reveal similarity, which can be hardly explained by chance. Furthermore, the results agree with possible physical mechanisms of off-equatorial influence of the QBO, as well

  3. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    Science.gov (United States)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  4. Aerodynamic roughness height for gravel-mantled megaripples, with implications for wind profiles near TARs on Mars

    Science.gov (United States)

    Zimbelman, J. R.; Scheidt, S. P.; de Silva, S. L.; Bridges, N. T.; Spagnuolo, M. G.; Neely, E. M.

    2016-03-01

    Aerodynamic roughness heights of 1-3 cm were obtained from measured wind profiles collected among fields of gravel-mantled megaripples in the high desert of the Puna region of northwestern Argentina. Roughness height appears to be relatively insensitive to the angle at which the wind was incident upon the bedforms throughout the study sites. The results represent the first wind profiling measurements for large megaripples, but they also demonstrate the importance of a careful evaluation of many potential effects that can influence the utility of wind profiling data. The same effects that influence collection of fieldwork data must also be considered in any prediction of wind profiles anticipated to occur near Transverse Aeolian Ridges and other aeolian features on Mars that are intermediate in scale between wind ripples and small sand dunes.

  5. Solutions of the Bogoliubov–de Gennes equation with position dependent Fermi-velocity and gap profiles

    Energy Technology Data Exchange (ETDEWEB)

    Presilla, M. [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Panella, O., E-mail: orlando.panella@pg.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Roy, P. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2017-02-19

    It is shown that bound state solutions of the one dimensional Bogoliubov–de Gennes (BdG) equation may exist when the Fermi velocity becomes dependent on the space coordinate. The existence of bound states in continuum (BIC) like solutions has also been confirmed both in the normal phase as well as in the super-conducting phase. We also show that a combination of Fermi velocity and gap parameter step-like profiles provides scattering solutions with normal reflection and transmission. - Highlights: • Bound states of BdG equation via Fermi velocity modulation. • Existence of bound states in continuum in both the normal and the superconducting phase. • Scattering solutions and bound states within a combination of step-like Fermi velocity and gap profiles.

  6. Tangential discontinuities in the solar wind: Correlated field and velocity changes in the Kelvin-Helmholtz Instability

    International Nuclear Information System (INIS)

    Neugebauer, M.; Alexander, C.J.; Schwenn, R.; Richter, A.K.

    1986-01-01

    Three-dimensional Helios plasma and field data are used to investigate the relative changes in direction of the velocity and magnetic field vectors across tangential discontinuities, (TDs) in the solar wind at solar distances of 0.29--0.50 AU. It is found for tangential discontinuities with both Δv and ΔB/B large that Δv and ΔB are closely aligned with each other, in agreement with the unexpected results of previous studies of tangential discontinuities observed at 1 AU and beyond. It is shown that this effect probably results from the destruction by the Kelvin-Helmholtz instability of TDs for which Δv and ΔB are not aligned. The observed decrease in the number of interplanetary discontinuities with increasing solar distance may be associated with the growth of the Kelvin-Helmholtz instability with decreasing Alfven speed

  7. Evaporation of Arabian light crude oil spilled on sea and on beach sands : influence of solar radiation and wind velocity

    International Nuclear Information System (INIS)

    Bergueiro, J.R.; Marti, A.; Fuertes, A.; Moreno, S.; Guijarro, S.

    1998-01-01

    The evaporation of crude oil resulting from a spill on sea water was studied to develop a simulation model. Evaporation takes place within a complex process of mass and energy transfer. The effects of physical and chemical variables (such as wind velocity and direct and diffused solar radiation) and the environmental conditions of the spillage were also considered. Arabian crude oil was used in the simulation model for crude oil spillage on sea water. An equation for the evaporation process was used to correlate the evaporated fraction of oil as a function of time. The area of spreading was determined as a function of the dominant stage at each moment of spreading. The evaporation of spilled crude oil on beach sand consisting of three different particle sizes was also studied and used for a simulation model for crude oil spillage on a polluted beach. 7 refs., 6 tabs., 10 figs

  8. Optimization design of airfoil profiles based on the noise of wind turbines

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2012-01-01

    Based on design theory of airfoil profiles and airfoil self-noise prediction model, a new method with the target of the airfoil average efficiency-noise ratio of design ranges for angle of attack had been developed for designing wind turbine airfoils. The airfoil design method was optimized for a...

  9. The influence of thermal effects on the wind speed profile of the coastal marine boundary layer

    DEFF Research Database (Denmark)

    Lange, B.; Larsen, Søren Ejling; Højstrup, Jørgen

    2004-01-01

    The wind speed profile in a coastal marine environment is investigated with observations from the measurement program Rodsand, where meteorological data are collected with a 50 m high mast in the Danish Baltic Sea, about 11 km from the coast. When compared with the standard Monin-Obukhov theory t...

  10. Indirect measurement of near-surface velocity and pressure fields based on measurement of moving free surface profiles

    International Nuclear Information System (INIS)

    Sibamoto, Yasuteru; Nakamura, Hideo

    2005-01-01

    A non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving fluid surface is developed. The technique is based on the measurement of fluid surface profile. The velocity and pressure fields are derived with use of the boundary element method (BEM) by seeking for an incompressible flow field that satisfies the kinematic boundary condition imposed by the time-dependent fluid surface profile. The proposed technique is tested by deriving the velocity and pressure fields inversely from the fluid surface profiles obtained by a forward BEM calculation of fluid surface response to externally-imposed pressure. The inverse calculation results show good agreement with the imposed pressure distribution in the forward calculation. (author)

  11. One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy

    Science.gov (United States)

    Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria

    2015-04-01

    In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.

  12. QBO effects manifesting in ozone, temperature, and wind profiles

    Directory of Open Access Journals (Sweden)

    S. A. Sitnov

    2004-04-01

    Full Text Available On the basis of ozonesonde records up to 1998 the responses on the equatorial quasi-biennial oscillation (QBO, manifesting in ozone, temperature, and wind (QBO effects were isolated in the region from the ground to altitudes as high as 35km at 22 stations located in Europe (7, North America (7, Japan (4, Hawaii (1, Australia (2, and Antarctic (1.

    The vertical structures of the QBO effects of ozone are represented as an alternation of layers of well-developed quasi-biennial signals, whose phases gradually change with height and thin transitional layers of ill-developed signals, whose phases change abruptly with height. The amplitudes of the effects depend on height and reach the maxima of 3–6nbar in the lower stratosphere. At the majority of sites the effects are found to be approximately in phase between 20 and 23km.

    Two types of the vertical structures of the temperature QBO effects are found. At most of the sites located equatorward of about 50° the stratospheric temperature anomalies are characterized by downward propagation, whereas at sites situated poleward of about 50° they look as column-like structures. Near the tropopause the effects frequently reveal dipole-like structure, when the stratospheric and tropospheric anomalies are of opposite signs. The amplitudes of the effects are in the range of 0.5–1°C.

    The vertical structures of the QBO effects of horizontal wind components reveal a diversity of patterns. The amplitudes of the QBO effects of the meridional and zonal winds are comparable and lie in the range of 0.5–2m s–1. As a rule, the maxima of the effects are noticed slightly below the tropopause, as well as in the middle stratosphere.

    In general, a statistical assurance of the obtained QBO effects is rather poor. However, a considerable part of them reveal similarity

  13. Probabilistic stability and "tall" wind profiles: theory and method for use in wind resource assessment

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Troen, Ib

    2016-01-01

    to the methodology. Results of the modeling are shown for a number of sites, with discussion of the models’ efficacy and the relative improvement shown by the new model, for situations where a user lacks local heat flux information, as well as performance of the new model using measured flux statistics. Further......, the uncertainty in vertical extrapolation is characterized for the EWA model contained in standard (i.e., WAsP) wind resource assessment, as well as for the new model. Copyright © 2015 John Wiley & Sons, Ltd....

  14. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    Science.gov (United States)

    Li, Junran; Flagg, Cody B.; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-01-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS–NIR, 350–2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400–700 nm) and the short-wavelength infrared (SWIR) area (1100–2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  15. Profile of the horizontal wind variance near the ground in near neutral flow – K-theory and the transport of the turbulent kinetic energy

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2009-05-01

    Full Text Available This paper deals with the characteristics of the atmospheric turbulent flow in the vicinity of the ground, and particularly with the profile of the horizontal wind variance. The study is based on experimental measurements performed with fast cup anemometers located near the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. The experiment was carried over two agricultural plots with various tillage treatments in a fallow semiarid area (Central Aragon, Spain. The results of this study reveal that near the ground surface and under moderate wind, the horizontal wind variance logarithmically increases with height, in direct relationship with the friction velocity and the roughness length scale. A theoretical development has allowed us to link this behaviour to the modeling of the turbulent kinetic energy (TKE transport through the eddy diffusivity. Thus, the study proposes a formulation of the similarity universal function of the horizontal wind variance. Besides, the formulation offers a new method for the determination of the friction velocity and the roughness length scale and can be used for the evaluation of the TKE transport rate.

  16. Optimization design of airfoil profiles based on the noise of wind turbines

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2012-01-01

    Based on design theory of airfoil profiles and airfoil self-noise prediction model, a new method with the target of the airfoil average efficiency-noise ratio of design ranges for angle of attack had been developed for designing wind turbine airfoils. The airfoil design method was optimized...... for a relative thickness of 21% and a new airfoil was obtained. To illustrate the optimization method, the aerodynamic characteristics and noise of the optimized airfoil were calculated and analyzed. Through performance comparison of a DU93-W-210 airfoil and a FFA-W3-211 airfoil which are widely used in wind...

  17. Complementarity of hydro and wind power: Improving the risk profile of energy inflows

    International Nuclear Information System (INIS)

    Denault, Michel; Dupuis, Debbie; Couture-Cardinal, Sebastien

    2009-01-01

    The complementarity of two renewable energy sources, namely hydro and wind, is investigated. We consider the diversification effect of wind power to reduce the risk of water inflow shortages, an important energy security concern for hydropower-based economic zones (e.g. Quebec and Norway). Our risk measure is based on the probability of a production deficit, in a manner akin to the value-at-risk, simulation analysis of financial portfolios. We examine whether the risk level of a mixed hydro-and-wind portfolio of generating assets improves on the risk of an all-hydro portfolio, by relaxing the dependence on water inflows and attenuating the impact of droughts. Copulas are used to model the dependence between the two sources of energy. The data considered, over the period 1958-2003, are for the province of Quebec, which possesses large hydro and wind resources. Our results indicate that for all scenarios considered, any proportion of wind up to 30% improves the production deficit risk profile of an all-hydro system. We can also estimate the value, in TW h, of any additional one percent of wind in the portfolio. (author)

  18. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    Science.gov (United States)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.

  19. Azimuthal velocity profiles in Rayleigh-stable Taylor–Couette flow and implied axial angular momentum transport

    NARCIS (Netherlands)

    Nordsiek, F.; Huisman, Sander Gerard; van der Veen, Roeland; Sun, Chao; Lohse, Detlef; Lathrop, D.P.

    2015-01-01

    We present azimuthal velocity profiles measured in a Taylor–Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of ${\\it\\eta}=0.716$η=0.716, an aspect ratio of ${\\it\\Gamma}=11.74$Γ=11.74, and the plates closing the

  20. Prandtl-Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Zhou, Quan; Stevens, Richard Johannes Antonius Maria; Sugiyama, K.; Grossmann, Siegfried; Lohse, Detlef; Xia, K.

    2010-01-01

    The shapes of the velocity and temperature profiles near the horizontal conducting plates' centre regions in turbulent Rayleigh–Bénard convection are studied numerically and experimentally over the Rayleigh number range 108 ≲ Ra ≲ 3 × 1011 and the Prandtl number range 0.7 ≲ Pr ≲ 5.4. The results

  1. Multiple different laminar velocity profiles in separate veins in the microvascular network of brain cortex in rats

    NARCIS (Netherlands)

    Mutalifu, Yalikun; Holm, Lovisa; Ince, Can; Theodorsson, Elvar; Sjöberg, Folke

    2011-01-01

    The orthogonal polarisation spectral (OPS) imaging technique is a method that enables intravital microscopy of the tissue microvasculature particularly including the erythrocytes and leucocytes. As a new finding we here report multi flow, i.e, several different laminar velocity profiles in each and

  2. Examination of objective analysis precision using wind profiler and radiosonde network data

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G.G.; Ackerman, T.P. [Penn State Univ., University Park, PA (United States)

    1996-04-01

    One of the principal research strategies that has emerged from the science team of the Atmospheric Radiation Measurement (ARM) Program is the use of a single column model (SCM). The basic assumption behind the SCM approach is that a cloud and radiation parameterization embedded in a general circulation model can be effectively tested and improved by extracting that column parameterization from the general circulation model and then driving this single column at the lateral boundaries of the column with diagnosed large-scale atmospheric forcing. A second and related assumption is that the large-scale atmospheric state, and hence the associated forcing, can be characterized directly from observations. One of the primary reasons that the Southern Great Plains (SGP) site is located in Lamont, Oklahoma, is because Lamont is at the approximate center of the NOM Wind Profiler Demonstration Array (WPDA). The assumption was that hourly average wind profiles provided by the 7 wind profilers (one Lamont and six surrounding it in a hexagon) coupled with radiosonde launches every three hours at 5 sites (Lamont plus four of the six profiler locations forming the hexagon) would be sufficient to characterize accurately the large-scale forcing at the site and thereby provide the required forcing for the SCM. The goal of this study was to examine these three assumptions.

  3. The effect of wind velocity, air temperature and humidity on NH 3 and SO 2 transfer into bean leaves ( phaseolus vulgaris L.)

    Science.gov (United States)

    van Hove, L. W. A.; Vredenberg, W. J.; Adema, E. H.

    The influence of wind velocity, air temperature and vapour pressure deficit of the air (VPD) on NH 3 and SO 2 transfer into bean leaves ( Phaseolus vulgaris L.) was examined using a leaf chamber. The measurements suggested a transition in the properties of the leaf boundary layer at a wind velocity of 0.3-0.4 ms -1 which corresponds to a Recrit value of about 2000. At higher wind velocities the leaf boundary layer resistance ( rb) was 1.5-2 times lower than can be calculated from the theory. Nevertheless, the assessed relationships between rb and wind velocity appeared to be similar to the theoretical derived relationship for rb. The NH 3 flux and in particular the SO 2 flux into the leaf strongly increased at a VPD decline. The increase of the NH 3 flux could be attributed to an increase of the stomatal conductance ( gs). However, the increase of the SO 2 flux could only partly be explained by an increase of gs. An apparent additional uptake was also observed for the NH 3 uptake at a low temperature and VPD. The SO 2 flux was also influenced by air temperature which could be explained by a temperature effect on gs. The results suggest that calculation of the NH 3 and SO 2 flux using data of gs gives a serious understimation of the real flux of these gases into leaves at a low temperature and VPD.

  4. RETRACTED: The influence of sand diameter and wind velocity on sand particle lift-off and incident angles in the windblown sand flux

    Science.gov (United States)

    Bo, Tian-Li; Zheng, Xiao-Jing; Duan, Shao-Zhen; Liang, Yi-Rui

    2013-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editors-in-Chief. This article also contains significant similarity with parts of text, written by the same author(s), that have appeared in Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, The influence of wind velocity and sand grain diameter on the falling velocities of sand particles, Powder Technology, Volume 241, June 2013, Pages 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux, Acta Mechanica Sinica, April 2013, Volume 29, Issue 2, pp 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles, The European Physical Journal E, May 2013, 36:50. Tian-Li Bo, Shao-Zhen Duan, Xiao-Jing Zheng, Yi-Rui Liang, The influence of sand bed temperature on lift-off and falling parameters in windblown sand flux, Geomorphology, Volume 204, 1 January 2014, Pages 477-484. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  5. KSC 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT) Report

    Science.gov (United States)

    Barbre, Robert E.

    2015-01-01

    This report documents analysis results of the Kennedy Space Center updated 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). This test was designed to demonstrate that the new DRWP operates in a similar manner to the previous DRWP for use as a situational awareness asset for mission operations at the Eastern Range to identify rapid changes in the wind environment that weather balloons cannot depict. Data examination and two analyses showed that the updated DRWP meets the specifications in the OAT test plan and performs at least as well as the previous DRWP. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 5,426 wind component reports from 49 concurrent DRWP and balloon profiles presented root mean square (RMS) wind component differences around 2.0 m/s. The DRWP's effective vertical resolution (EVR) was found to be 300 m for both the westerly and southerly wind component, which the best EVR possible given the DRWP's vertical sampling interval. A third analysis quantified the sensitivity to rejecting data that do not have adequate signal by assessing the number of first-guess propagations at each altitude. This report documents the data, quality control procedures, methodology, and results of each analysis. It also shows that analysis of the updated DRWP produced results that were at least as good as the previous DRWP with proper rationale. The report recommends acceptance of the updated DRWP for situational awareness usage as per the OAT's intent.

  6. Development of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)

    Science.gov (United States)

    Heymsfield, G. M.; Carswell, J. R.; Li, L.; Schaubert, D.; Heymsfield, J. C.

    2006-12-01

    A dual-wavelength (Ku and Ka band) High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is under development for measuring tropospheric winds within precipitation regions and ocean surface winds in rain-free to light rain regions. This instrument is being designed for operation on high-altitude manned aircraft and the Global Hawk UAV. Proposed lidar-based systems provide measurements in cloud-free regions globally. Since many of the weather systems are in disturbed regions that contain precipitation and clouds, microwave based techniques are more suitable in these regions. Airborne radars at NASA and elsewhere have shown the ability to measure winds in precipitation and clouds. These radars have not generally been suitable for deriving the full horizontal wind from above cloud systems (high-altitude or space) that would require conical scan. HIWRAP is conical scan radar that uses new technologies that utilize solid state rather than tube based transmitters. The presentation will discuss the motivation for the instrument, key system level technologies, status, and planned flight testing of the prototype sensor on the high-altitude WB-57 aircraft to demonstrate the system level performance of the instrument.

  7. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2015-01-01

    As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the re......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial....... Consequently, a relative more advanced approach is proposed in this paper, which is based on the loading and strength analysis of devices and takes into account different time constants of the thermal behaviors in power converter. With the established methods for loading and lifetime estimation for power...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....

  8. Seasonal and diurnal changes in wind variability from Flatland VHF profiler observations

    Energy Technology Data Exchange (ETDEWEB)

    Nastrom, G.D. [Saint Cloud State Univ., MN (United States). Dept. of Earth Sci.; Clark, W.L. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; Zandt, T.E. van [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; Warnock, J.M. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.

    1996-02-01

    Climatological results are presented on the hourly variance of the wind observed in the mid-troposphere (3 to 9 km MSL). This quantity roughly indicates the energy in the atmospheric wind field for variations with periods roughly less than 1 hour. Observations are from the Flatland VHF research wind profiler, located near Champaign/Urbana, Illinois, well away from significant orographic features. The period of record covers two years, September 1990 through August 1992. The values of the variance of the winds along vertical and oblique (15 degrees from zenith in the cardinal directions) beams are presented versus height, season, time-of-day, and beam pointing direction. It is found that the hourly variance values have approximately lognormal frequency distribution. The mean hourly variance is significantly larger for the oblique wind observations than for the vertical. Mean wind variances also tend to be larger in the east/west steering plane than in the north/south plane. The mean variance generally increases with height, but faster than would be expected if it were due solely to the decrease in atmospheric density, implying the presence of local source/sinks of wind energy. The rate of change with height is noticeably different for the vertical and oblique beams, being much less for the vertical beam, in some seasons even decreasing with height. With respect to season, the mean hourly variance is smallest in the summer and largest in the winter. With respect to diurnal changes, the variance is maximum during the afternoon for spring, summer, and autumn, with the maximum up to a factor of two larger than the minimum. In winter, the diurnal change is much smaller, with little indication of an afternoon maximum. (orig.)

  9. Predicting the liquefaction phenomena from shear velocity profiling: Empirical approach to 6.3 Mw, May 2006 Yogyakarta earthquake

    Science.gov (United States)

    Hartantyo, Eddy; Brotopuspito, Kirbani S.; Sismanto, Waluyo

    2015-04-01

    The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several different offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone's spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.

  10. Predicting the liquefaction phenomena from shear velocity profiling: Empirical approach to 6.3 Mw, May 2006 Yogyakarta earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Hartantyo, Eddy, E-mail: hartantyo@ugm.ac.id [PhD student, Physics Department, FMIPA, UGM. Sekip Utara Yogyakarta 55281 Indonesia (Indonesia); Brotopuspito, Kirbani S.; Sismanto; Waluyo [Geophysics Laboratory, FMIPA, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281 (Indonesia)

    2015-04-24

    The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several different offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone’s spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.

  11. Micro-PIV and CFD characterization of flows in a microchannel: Velocity profiles, surface roughness and Poiseuille numbers

    International Nuclear Information System (INIS)

    Silva, Goncalo; Leal, Nuno; Semiao, Viriato

    2008-01-01

    Microfluidics is a promising technology, although the governing physical mechanisms are still not quite understood due to the difficulties arising in measuring at such small scales. This work intends to bring some insight on the influence of surface phenomena in microscale flows by proposing a different method to quantify such influence. In this new method, detailed velocity measurements are performed to evaluate the influence on the flow of the surface phenomena instead of using measured bulk flow properties. For that micro-Particle Image Velocimetry (micro-PIV) is used to characterize the flow kinematics inside a DantecDynamics microchannel (with hydraulic diameter of 637 μm) that possesses rather rough walls (relative roughness of 1.6%) and a very irregular cross-section shape. Two-dimensional velocity profiles were measured in 61 horizontal planes to define the three-dimensional laminar flows (Re ≤ 50). Integration of the velocity profiles yielded volumetric flow rates with a maximum deviation of 3% from the measured volume of fluid discharged as function of time, which gives the magnitude of the bias error of the experimental technique. Effects of walls roughness were quantified by comparing Poiseuille numbers obtained from experimental velocity profiles against those obtained from CFD predictions for the same operating conditions but with hydrodynamically smooth walls, according to the new method proposed herein. Those Poiseuille numbers differed 11% demonstrating the need to account for wall roughness in microflows

  12. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    Science.gov (United States)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  13. Skeleton sled velocity profiles: a novel approach to understand critical aspects of the elite athletes' start phases.

    Science.gov (United States)

    Colyer, Steffi L; Stokes, Keith A; Bilzon, James L J; Salo, Aki I T

    2018-06-01

    The development of velocity across the skeleton start is critical to performance, yet poorly understood. We aimed to understand which components of the sled velocity profile determine performance and how physical abilities influence these components. Thirteen well-trained skeleton athletes (>85% of athletes in the country) performed dry-land push-starts alongside countermovement jump and sprint tests at multiple time-points. A magnet encoder attached to the sled wheel provided velocity profiles, which were characterised using novel performance descriptors. Stepwise regression revealed four variables (pre-load velocity, pre-load distance, load effectiveness, velocity drop) to explain 99% variance in performance (β weights: 1.70, -0.81, 0.25, -0.07, respectively). Sprint times and jump ability were associated (r ± 90% CI) with pre-load velocity (-0.70 ± 0.27 and 0.88 ± 0.14, respectively) and distance (-0.48 ± 0.39 and 0.67 ± 0.29, respectively), however, unclear relationships between both physical measures and load effectiveness (0.33 ± 0.44 and -0.35 ± 0.48, respectively) were observed. Athletes should develop accelerative ability to attain higher velocity earlier on the track. Additionally, the loading phase should not be overlooked and may be more influenced by technique than physical factors. Future studies should utilise this novel approach when evaluating skeleton starts or interventions to enhance performance.

  14. Richards Bay Mesometeorological Data – Vertical profiles of air temperature and wind velocity and surface wind statistics.

    CSIR Research Space (South Africa)

    Scholtz, MT

    1978-03-01

    Full Text Available This report details the experimental methods and data obtained in the course of a study of the movement of stable air over a complex region. The field work was carried out in the Richards Bay area on the Natal Coast during the period May to August...

  15. Ultrasound propagation in steel piping at electric power plant using clamp-on ultrasonic pulse doppler velocity-profile flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige

    2008-01-01

    Venturi nozzles are widely used to measure the flow rates of reactor feedwater. This flow rate of nuclear reactor feedwater is an important factor in the operation of nuclear power reactors. Some other types of flowmeters have been proposed to improve measurement accuracy. The ultrasonic pulse Doppler velocity-profile flowmeter is expected to be a candidate method because it can measure the flow profiles across the pipe cross sections. For the accurate estimation of the flow velocity, the incidence angle of ultrasonic entering the fluid should be carefully estimated by the theoretical approach. However, the evaluation of the ultrasound propagation is not straightforward for the several reasons such as temperature gradient in the wedge or mode conversion at the interface between the wedge and pipe. In recent years, the simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation in steel piping and water, using the 3D-FEM simulation code and the Kirchhoff method, as it relates to the flow profile measurements in power plants with the ultrasonic pulse Doppler velocity-profile flowmeter. (author)

  16. VELOCITY PROFILES OF GALAXIES WITH CLAIMED BLACK-HOLES .1. OBSERVATIONS OF M31, M32, NGC-3115 AND NGC-4594

    NARCIS (Netherlands)

    VANDERMAREL, RP; RIX, HW; CARTER, D; FRANX, M; WHITE, SDM; DEZEEUW, T

    1994-01-01

    The presence of a massive black hole has been invoked to match the observed rotation velocities and velocity dispersions at the centres of M31, M32, NGC 3115 and NGC 4594. Here we determine stellar line-of-sight velocity profiles of these galaxies, from high spatial resolution, high S/N spectra

  17. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han

    2016-04-26

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  18. GPM GROUND VALIDATION HIGH ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a dual-frequency (Ka- and Ku-band) conical scan system, configured with a nadir viewing antenna...

  19. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel

    Directory of Open Access Journals (Sweden)

    M. F. van Dooren

    2017-06-01

    Full Text Available This paper combines the research methodologies of scaled wind turbine model experiments in wind tunnels with short-range WindScanner lidar measurement technology. The wind tunnel at the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner lidars to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The dual-lidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u and v components of the wind speed, respectively, validating the 2-D measurement capability of the lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hot-wire probes are the larger measurement probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing techniques do not disturb the flow during measuring. The research campaign revealed a high potential for using short-range synchronised scanning lidars to measure the flow around wind turbines in a wind tunnel and increased the knowledge about the corresponding uncertainties.

  20. Velocity profiles of species ejected in ultraviolet laser ablation of several polymers examined by time-of-flight mass spectroscopy

    Science.gov (United States)

    Hansen, S. G.

    1989-10-01

    Velocity distributions of molecular species ejected by ˜80 mJ/cm2, 266-nm laser ablation of polycarbonate, polyimide, poly(ethylene terephthalate), and poly(α-methylstyrene) are presented and discussed. Time-of-flight mass spectroscopy in conjunction with both 248- and 193-nm laser ionization was used to probe the escaping vapor. Up to three distinct waves of material pass through the ionization zone. The fastest wave (6-8×105 cm/s) appears to consist of highly degraded species such as C3; the arrival profiles are well fit by a velocity offset Maxwell-Boltzmann distribution with offsets typically 3-6×105 cm/s and transverse temperatures above 10 000 K. The second wave has a characteristic velocity of 1-2×105 cm/s, and, except with the poly(α-methylstyrene) target, the associated material is not cleanly ionized to parent ions under our typical conditions. It is hypothesized that this wave consists of hot, fairly heavy (up to a few hundred amu) radicals. The slow wave (2-5×104 cm/s) is composed of stable molecules which do not readily condense on the chamber walls. Its arrival profile is too broad to be described by a simple Maxwell-Boltzmann velocity distribution. A mechanism involving a thermal velocity distribution combined with laser-associated background vapor might explain the broad profiles. Problems related to the largely unknown and highly variable ionization cross sections of diverse organic molecules with 193- and 248-nm light are briefly discussed.

  1. A simple method of calculating power-law velocity profile exponents from experimental data. [for boundary layer shape factor

    Science.gov (United States)

    Allen, J. M.

    1974-01-01

    Analytical expressions for the effects of compressibility and heat transfer on laminar and turbulent shape factors H have been developed. Solving the turbulent equation for the power law velocity profile exponent N has resulted in a simple technique by which the N values of experimental turbulent profiles can be calculated directly from the integral parameters. Thus the data plotting, curve fitting, and slope measuring, which is the normal technique of obtaining experimental N values, is eliminated. The N values obtained by this method should be within the accuracy with which they could be measured.

  2. Three-Dimensional Temperature and Wind Profiles Obtained Using UAV-Based Acoustic Atmospheric Tomography

    Science.gov (United States)

    Finn, A.

    2017-12-01

    The natural sound generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense atmospheric temperature and wind profiles simultaneously. Sound fields recorded onboard the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into vertical cross-sections and 3D volumes of virtual temperature and wind vectors, which enables the atmosphere to be visualised and monitored over time up to altitudes of 1,200m and over baselines of up to 600m. This paper reports on results from two short campaigns during which 2D and 3D profiles of wind and temperature obtained in this way were compared to: measurements taken by co-located mid-range Doppler SODAR and LIDAR; and temperature measurements made by instruments carried by unmanned aircraft flying through the intervening atmosphere. Large eddy simulation of daytime atmospheric boundary layers were also used to examine the anticipated performance of the instruments and the nature of any errors. The observations obtained using all systems are shown to correspond closely.

  3. Energy profiling of demersal fish: a case-study in wind farm artificial reefs.

    Science.gov (United States)

    De Troch, Marleen; Reubens, Jan T; Heirman, Elke; Degraer, Steven; Vincx, Magda

    2013-12-01

    The construction of wind farms introduces artificial hard substrates in sandy sediments. As Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) tend to aggregate in order to feed around these reefs, energy profiling and trophic markers were applied to study their feeding ecology in a wind farm in the Belgian part of the North Sea. The proximate composition (carbohydrates, proteins and lipids) differed significantly between liver and muscle tissue but not between fish species or between their potential prey species. Atlantic cod showed to consume more energy than pouting. The latter had a higher overall energy reserve and can theoretically survive twice as long on the available energy than cod. In autumn, both fish species could survive longer on their energy than in spring. Polyunsaturated fatty acids were found in high concentrations in fish liver. The prey species Jassa and Pisidia were both rich in EPA while Jassa had a higher DHA content than Pisidia. Energy profiling supported the statement that wind farm artificial reefs are suitable feeding ground for both fish species. Sufficient energy levels were recorded and there is no indication of competition.

  4. A novel cross-correlation technique for the determination of radial velocity profiles in two-phase flows

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1983-02-01

    A novel cross-correlation technique has been developed, which enables the determination of radial velocity profiles in two-phase flows with minimum disturbance of the flow. The method is based on cross-correlating the signals from a light beam source and a detector outside the flow, with the signals from a local light reflection probe which is located in the flow and can be moved to different radial positions in the tube. Subsequently, the local probe is 'switched' into a light detector, the light source diametrically opposite the probe is switched on, the two light beam signals modulated by the two-phase flow across the whole diameter of the tube are cross-correlated. Usually, during the latter measurements, there are two peaks in the cross-correlation function due to the existence of a radial velocity profile in the flow. The results of the latter measurements were reproduced by employing a computer simulation program, into which the radial velocity profile determined by this technique was input, and in the course of this simulation, the importance played by the radial void distribution in interpreting this kind of measurement was shown. The results presented in this investigation are to be considered of a preliminary nature; a much more detailed study of the advantages and limitations of the proposed technique is needed. (Auth.)

  5. A six-electrode local probe for measuring solids velocity and volume fraction profiles in solids-water flows

    Science.gov (United States)

    Lucas, G. P.; Cory, J. C.; Waterfall, R. C.

    2000-10-01

    This paper describes the design and construction of a local six-electrode conductivity probe which can be used in solids-water pipe flows to simultaneously measure the local solids volume fraction and the local solids axial velocity. Using finite element analysis, the probe electrode geometry was designed so that the regions of the solids-water mixture that were interrogated by the probe were optimal for measurement of the volume fraction and for cross correlation velocity measurement. The probe was used, in conjunction with a computer controlled traversing mechanism, to obtain distributions of the local solids volume fraction and the local solids axial velocity both in vertical upward and in upward inclined solids-water flows. Such distributions can be used to validate volume fraction and velocity profiles obtained using dual-plane electrical resistance tomography systems. Experimental results indicated that the six-electrode probe can be used to estimate the local solids volume fraction in vertical upward solids-water flows with a mean absolute error of approximately 0.01. Experimental results also indicated that the six-electrode probe can be used to measure the local axial solids velocity with a mean error of 2% of the reading.

  6. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  7. Long-Term Profiles of Wind and Weibull Distribution Parameters up to 600 m in a Rural Coastal and an Inland Suburban Area

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier Ralph

    2014-01-01

    An investigation of the long-term variability of wind profiles for wind energy applications is presented. The observations consists of wind measurements obtained from a ground-based wind lidar at heights between 100 and 600 m, in combination with measurements from tallmeteorological towers at a f...

  8. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Takeda, Motohiro; Tsubota, Ken-ichi; Yamaguchi, Takami

    2007-01-01

    A confocal microparticle image velocimetry (micro-PIV) system was used to obtain detailed information on the velocity profiles for the flow of pure water (PW) and in vitro blood (haematocrit up to 17%) in a 100-microm-square microchannel. All the measurements were made in the middle plane of the microchannel at a constant flow rate and low Reynolds number (Re=0.025). The averaged ensemble velocity profiles were found to be markedly parabolic for all the working fluids studied. When comparing the instantaneous velocity profiles of the three fluids, our results indicated that the profile shape depended on the haematocrit. Our confocal micro-PIV measurements demonstrate that the root mean square (RMS) values increase with the haematocrit implying that it is important to consider the information provided by the instantaneous velocity fields, even at low Re. The present study also examines the potential effect of the RBCs on the accuracy of the instantaneous velocity measurements.

  9. Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds

    Directory of Open Access Journals (Sweden)

    T. G. Bell

    2017-07-01

    Full Text Available Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS and carbon dioxide (CO2 were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw over a range of wind speeds up to 21 m s−1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.

  10. 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Giangrande, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds on the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.

  11. 915-Mhz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Bartholomew, M. J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Giangrande, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-03-01

    When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds on the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.

  12. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  13. A brief history of the development of wind-profiling or MST radars

    Directory of Open Access Journals (Sweden)

    T. E. Van Zandt

    2000-07-01

    Full Text Available The history of the development of the wind-profiling or MST radar technique is reviewed from its inception in the late 1960s to the present. Extensions of the technique by the development of boundary-layer radars and the radio-acoustic sounding system (RASS technique to measure temperature are documented. Applications are described briefly, particularly practical applications to weather forecasting, with data from networks of radars, and scientific applications to the study of rapidly varying atmospheric phenomena such as gravity waves and turbulence.Key words: Meteorology and atmospheric dynamics (instruments and techniques · Radio science (remote sensing; instruments and techniques

  14. Size effects in winding roll formed profiles: A study of carcass production for flexible pipes in offshore industry

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Storgaard; Bay, Niels

    2013-01-01

    Carcass production of flexible offshore oil and gas pipes implies winding and interlocking of a roll formed stainless steel profile around a mandrel in a spiral shape. The location of the dividing point between the left and right half of the s-shaped profile in the finished carcass is very...... important as it directly influences carcass flexibility. The target location of the dividing point can be difficult to achieve since undesired degrees of freedom in the winding stage allows the profile to change geometry. The present work investigates this issue by performing production tests of a single...

  15. A Universal Velocity Dispersion Profile for Pressure Supported Systems: Evidence for MONDian Gravity across Seven Orders of Magnitude in Mass

    Energy Technology Data Exchange (ETDEWEB)

    Durazo, R.; Hernandez, X.; Sánchez, S. F. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264 C.P. 04510 México D.F., México (Mexico); Sodi, B. Cervantes [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-03-10

    For any MONDian extended theory of gravity where the rotation curves of spiral galaxies are explained through a change in physics rather than the hypothesis of dark matter, a generic dynamical behavior is expected for pressure supported systems: an outer flattening of the velocity dispersion profile occurring at a characteristic radius, where both the amplitude of this flat velocity dispersion and the radius at which it appears are predicted to show distinct scalings with the total mass of the system. By carefully analyzing the dynamics of globular clusters and elliptical galaxies, we are able to significantly extend the astronomical diversity of objects in which MONDian gravity has been tested, from spiral galaxies to the much larger mass range covered by pressure supported systems. We show that a universal projected velocity dispersion profile accurately describes various classes of pressure supported systems, and further, that the expectations of extended gravity are met across seven orders of magnitude in mass. These observed scalings are not expected under dark matter cosmology, and would require particular explanations tuned at the scales of each distinct astrophysical system.

  16. Combined wind profiler-weather radar observations of orographic rainband around Kyushu, Japan in the Baiu season

    Directory of Open Access Journals (Sweden)

    Y. Umemoto

    2004-11-01

    Full Text Available A special observation campaign (X-BAIU, using various instruments (wind profilers, C-band weather radars, X-band Doppler radars, rawinsondes, etc., was carried out in Kyushu (western Japan during the Baiu season, from 1998 to 2002. In the X-BAIU-99 and -02 observations, a line-shaped orographic rainband extending northeastward from the Koshikijima Islands appeared in the low-level strong wind with warm-moist airs. The weather radar observation indicated that the rainband was maintained for 11h. The maximum length and width of the rainband observed in 1999 was ~200km and ~20km, respectively. The rainband observed in 2002 was not so developed compared with the case in 1999. The Froude number averaged from sea level to the top of the Koshikijima Islands (~600m was large (>1, and the lifting condensation level was below the tops of the Koshikijima Islands. Thus, it is suggested that the clouds organizing the rainband are formed by the triggering of the mountains on the airflow passing over them. The vertical profile of horizontal wind in/around the rainband was investigated in the wind profiler observations. In the downdraft region 60km from the Koshikijima Islands, strong wind and its clockwise rotation with increasing height was observed below 3km altitude. In addition, a strong wind component perpendicular to the rainband was observed when the rainband was well developed. These wind behaviors were related to the evolution of the rainband.

  17. Diversity in the stellar velocity dispersion profiles of a large sample of Brightest Cluster Galaxies z ≤ 0.3

    Science.gov (United States)

    Loubser, S. I.; Hoekstra, H.; Babul, A.; O'Sullivan, E.

    2018-02-01

    We analyse spatially-resolved deep optical spectroscopy of Brightest Cluster Galaxies (BCGs) located in 32 massive clusters with redshifts of 0.05 ≤z ≤ 0.30, to investigate their velocity dispersion profiles. We compare these measurements to those of other massive early-type galaxies, as well as central group galaxies, where relevant. This unique, large sample extends to the most extreme of massive galaxies, spanning MK between -25.7 to -27.8 mag, and host cluster halo mass M500 up to 1.7 × 1015 M⊙. To compare the kinematic properties between brightest group and cluster members, we analyse similar spatially-resolved long-slit spectroscopy for 23 nearby Brightest Group Galaxies (BGGs) from the Complete Local-Volume Groups Sample (CLoGS). We find a surprisingly large variety in velocity dispersion slopes for BCGs, with a significantly larger fraction of positive slopes, unique compared to other (non-central) early-type galaxies as well as the majority of the brightest members of the groups. We find that the velocity dispersion slopes of the BCGs and BGGs correlate with the luminosity of the galaxies, and we quantify this correlation. It is not clear whether the full diversity in velocity dispersion slopes that we see is reproduced in simulations.

  18. Effects of velocity profile and inclination on dual-jet-induced pressures on a flat plate in a crosswind

    Science.gov (United States)

    Jakubowski, A. L.; Schetz, J. A.; Moore, C. L.; Joag, R.

    1985-01-01

    An experimental study was conducted to determine surface pressure distributions on a flat plate with dual subsonic, circular jets exhausting from the surface into a crossflow. The jets were arranged in both side-by-side and tandem configurations and were injected at 90 deg and 60 deg angles to the plate, with jet-to-crossflow velocity ratio of 2.2 and 4. The major objective of the study was to determine the effect of a nonuniform (vs uniform) jet velocity profile, simulating the exhaust of a turbo-fan engine. Nonuniform jets with a high-velocity outer annulus and a low-velocity core induced stronger negative pressure fields than uniform jets with the same mass flow rate. However, nondimensional lift losses (lift loss/jet thrust lift) due to such nonuniform jets were lower than lift losses due to uniform jets. Changing the injection angle from 90 deg to 60 deg resulted in moderate (for tandem jets) to significant (for side-by-side jets) increases in the induced negative pressures, even though the surface area influenced by the jets tended to reduce as the angle decreased. Jets arranged in the side-by-side configuration led to significant jet-induced lift losses exceeding, in some cases, lift losses reported for single jets.

  19. Data Quality Assessment Methods for the Eastern Range 915 MHz Wind Profiler Network

    Science.gov (United States)

    Lambert, Winifred C.; Taylor, Gregory E.

    1998-01-01

    The Eastern Range installed a network of five 915 MHz Doppler Radar Wind Profilers with Radio Acoustic Sounding Systems in the Cape Canaveral Air Station/Kennedy Space Center area to provide three-dimensional wind speed and direction and virtual temperature estimates in the boundary layer. The Applied Meteorology Unit, staffed by ENSCO, Inc., was tasked by the 45th Weather Squadron, the Spaceflight Meteorology Group, and the National Weather Service in Melbourne, Florida to investigate methods which will help forecasters assess profiler network data quality when developing forecasts and warnings for critical ground, launch and landing operations. Four routines were evaluated in this study: a consensus time period check a precipitation contamination check, a median filter, and the Weber-Wuertz (WW) algorithm. No routine was able to effectively flag suspect data when used by itself. Therefore, the routines were used in different combinations. An evaluation of all possible combinations revealed two that provided the best results. The precipitation contamination and consensus time routines were used in both combinations. The median filter or WW was used as the final routine in the combinations to flag all other suspect data points.

  20. Machine Learing Applications on a Radar Wind Profiler Deployment During the ARM GoAmazon2014/5 Campaign

    Science.gov (United States)

    Giangrande, S. E.; WANG, D.; Hardin, J. C.; Mitchell, J.

    2017-12-01

    As part of the 2 year Department of Energy Atmospheric Radiation Measurement (ARM) Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, the ARM Mobile Facility (AMF) collected a unique set of observations in a region of strong climatic significance near Manacapuru, Brazil. An important example for the beneficial observational record obtained by ARM during this campaign was that of the Radar Wind Profiler (RWP). This dataset has been previously documented for providing critical convective cloud vertical air velocity retrievals and precipitation properties (e.g., calibrated reflectivity factor Z, rainfall rates) under a wide variety of atmospheric conditions. Vertical air motion estimates to within deep convective cores such as those available from this RWP system have been previously identified as critical constraints for ongoing global climate modeling activities and deep convective cloud process studies. As an extended deployment within this `green ocean' region, the RWP site and collocated AMF surface gauge instrumentation experienced a unique hybrid of tropical and continental precipitation conditions, including multiple wet and dry season precipitation regimes, convective and organized stratiform storm dynamics and contributions to rainfall accumulation, pristine aerosol conditions of the locale, as well as the effects of the Manaus, Brazil, mega city pollution plume. For hydrological applications and potential ARM products, machine learning methods developed using this dataset are explored to demonstrate advantages in geophysical retrievals when compared to traditional methods. Emphasis is on performance improvements when providing additional information on storm structure and regime or echo type classifications. Since deep convective cloud dynamic insights (core updraft/downdraft properties) are difficult to obtain directly by conventional radars that also observe radar reflectivity factor profiles similar to RWP systems, we also

  1. Sound velocity profiles collected by NOAA's Navigation Response Team No. 4 in the Great Lakes, July 5 - September 25, 2007 (NODC Accession 0020370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical oceanographic data were collected from NOAA Navigation Response Team-4 in the Great Lakes from 05 July 2007 to 25 September 2007. Sound velocity profiles...

  2. One sound velocity profile collected aboard the NAVIGATION RESPONSE TEAM 1 in Berwick Bay near Morgan City, Louisiana on October 4, 2006 (NODC Accession 0013777)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A sound velocity profile was collected using a sound velocimeter cast in Berwick Bay near Morgan City, Louisiana on 04 October 2006 as part of project number...

  3. Sound velocity profiles from velocimeter casts by NOAA Navigation Response Team-1 in the NW Atlantic from 09 May 2007 to 26 October 2007 (NODC Accession 0038808)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical oceanographic data were collected from NOAA Navigation Response Team-1 in the NW Atlantic from 09 May 2007 to 26 October 2007. Sound velocity profiles were...

  4. Sound velocity profiles from velocimeter casts by NOAA Navigation Response Team-1 in the Gulf of Mexico from 02 April 2008 to 22 May 2008 (NODC Accession 0051847)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical oceanographic data were collected from NOAA Navigation Response Team-1 in the Gulf of Mexico from 02 April 2008 to 22 May 2008. Sound velocity profiles were...

  5. The Effect of the Pre-Detonation Stellar Internal Velocity Profile on the Nucleosynthetic Yields in Type Ia Supernova

    OpenAIRE

    Kim, Yeunjin; Jordan IV, G. C.; Graziani, Carlo; Meyer, B. S.; Lamb, D. Q.; Truran, J. W.

    2013-01-01

    A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects...

  6. Mathematical Modeling for Lateral Displacement Induced by Wind Velocity Using Monitoring Data Obtained from Main Girder of Sutong Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2014-01-01

    Full Text Available Based on the health monitoring system installed on the main span of Sutong Cable-Stayed Bridge, GPS displacement and wind field are real-time monitored and analyzed. According to analytical results, apparent nonlinear correlation with certain discreteness exists between lateral static girder displacement and lateral static wind velocity; thus time series of lateral static girder displacement are decomposed into nonlinear correlation term and discreteness term, nonlinear correlation term of which is mathematically modeled by third-order Fourier series with intervention of lateral static wind velocity and discreteness term of which is mathematically modeled by the combined models of ARMA(7,4 and EGARCH(2,1. Additionally, stable power spectrum density exists in time series of lateral dynamic girder displacement, which can be well described by the fourth-order Gaussian series; thus time series of lateral dynamic girder displacement are mathematically modeled by harmonic superposition function. By comparison and verification between simulative and monitoring lateral girder displacements from September 1 to September 3, the presented mathematical models are effective to simulate time series of lateral girder displacement from main girder of Sutong Cable-Stayed Bridge.

  7. Wind profiler data in a mesoscale experiment from a meteorological perspective

    Science.gov (United States)

    Zipser, E. J.; Augustine, J.; Cunning, J.

    1986-01-01

    During May and June of 1985, the Oklahoma-Kansas Preliminary Regional Experiment of STORM-Central (OK PRE-STORM) was carried out, with the major objectives of learning more about mesoscale convective systems (MCSs) and gaining experience in the use of new sensing systems and measurement strategies that will improve the design of STORM-Central. Three 50-MHz wind profilers were employed in a triangular array with sides about 275 km. It is far too soon to report any results of this effort, for it has barely begun. The purpose here is to show some examples of the data, some of the surrounding conventional data, and to discuss some of the issues important to meteorologists in evaluating the contribution of the profiler data. The case of 10 to 11 June 1985, featuring a major squall line system which crossed the dense observing network from northwest to southeast, passing the Liberal site about 2230 GMT/10 June, the McPherson site about 0100 GMT/11 June, and Wichita about 0300 GMT/11 June is discussed. Radar and satellite data show that the system was growing rapidly when it passed Liberal, and was large and mature when it passed through McPherson and Wichita. The radar depiction of the system during this stage is given, with the McPherson site in the intense convective echoes near the leading edge at 01 GMT and in the stratiform precipitation at 03 GMT. The profiler wind data for a 9-hour period encompassing the squall line passage at each site are given.

  8. Advanced intermittent clutter filtering for radar wind profiler: signal separation through a Gabor frame expansion and its statistics

    Directory of Open Access Journals (Sweden)

    V. Lehmann

    2008-05-01

    Full Text Available A new signal processing method is presented for the suppression of intermittent clutter echoes in radar wind profilers. This clutter type is a significant problem during the seasonal bird migration and often results in large discrepancies between profiler wind measurements and independent reference data. The technique presented makes use of a discrete Gabor frame expansion of the coherently averaged time series data in combination with a statistical filtering approach to exploit the different signal characteristics between signal and clutter. The rationale of this algorithm is outlined and the mathematical methods used are presented in due detail. A first test using data obtained with an operational 482 MHz wind profiler indicates that the method outperforms the previously used clutter suppression algorithm.

  9. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    Science.gov (United States)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  10. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  11. Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations.

    Science.gov (United States)

    Spijker, Peter; Markvoort, Albert J; Nedea, Silvia V; Hilbers, Peter A J

    2010-01-01

    For understanding the behavior of a gas close to a channel wall it is important to model the gas-wall interactions as detailed as possible. When using molecular dynamics simulations these interactions can be modeled explicitly, but the computations are time consuming. Replacing the explicit wall with a wall model reduces the computational time but the same characteristics should still remain. Elaborate wall models, such as the Maxwell-Yamamoto model or the Cercignani-Lampis model need a phenomenological parameter (the accommodation coefficient) for the description of the gas-wall interaction as an input. Therefore, computing these accommodation coefficients in a reliable way is very important. In this paper, two systems (platinum walls with either argon or xenon gas confined between them) are investigated and are used for comparison of the accommodation coefficients for the wall models and the explicit molecular dynamics simulations. Velocity correlations between incoming and outgoing particles colliding with the wall have been used to compare explicit simulations and wall models even further. Furthermore, based on these velocity correlations, a method to compute the accommodation coefficients is presented, and these newly computed accommodation coefficients are used to show improved correlation behavior for the wall models.

  12. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  13. Influence of a forest canopy on velocity and temperature profiles under synoptic conditions

    Science.gov (United States)

    Pattantyus, A.; Hocut, C. M.; Wang, Y.; Creegan, E.; Krishnamurthy, R.; Otarola-Bust, S.; Leo, L. S.; Fernando, H. J. S.

    2017-12-01

    Numerous field campaigns have found the importance of surface conditions on boundary layer evolution. Specifically, soil properties were found to control surface fluxes of heat, moisture, and momentum that significantly modulated the atmospheric boundary layer (ABL) over flat and sparsely vegetated surfaces. There have been increasing numbers of studies related to canopy impacts on the boundary layer, such as CHATS, however few canopy studies over complex terrain have been performed with limited instrumentation. The recent Perdigão campaign greatly augmented the previous datasets available by instrumenting a unique, parallel ridge mountain in Perdigão, Portugal in unprecedented spatial and temporal resolution using traditional mast mounted sensors, instrumented aerial platforms, and remote sensing instrumentation. To aid the canopy studies, the Army Research Laboratory deployed sonic anemometers within the canopy transecting the ridges perpendicularly and placed five additional heavily instrumented meteorological masts on the northeast facing slope to investigate detailed slope flows. At each of these towers, there was an average of six levels of temperature, relative humidity, and wind sensors located above & below the canopy height which allowed a detailed study of the sub-canopy layer. In addition to the towers, two scanning Doppler LiDARs were oriented such that they performed synchronized dual Doppler virtual tower scans, extending from the canopy interface to several hundred meters above. Synoptically forced periods were analyzed to examine: the ABL structure of temperature, moisture, wind, and turbulent kinetic energy. Of particular interest are the shear layer at the canopy interface, recirculation events, as well as ejection and sweep events within the canopy and how these modify surface fluxes along the slopes.

  14. Device for the acquisition and visualization in real time of the velocity and direction of wind in a radiological post stage

    International Nuclear Information System (INIS)

    Ledo P, L.M.; Guibert G, R.; Dominguez L, O.; Alonso A, D.; Ramos V, E.O.

    2006-01-01

    The work shows the development, construction and post stage of a device dedicated to the acquisition and transmission in real time of the information on the behavior of the meteorological variables: velocity and wind direction. It is introduced for the first time in an observation position the automatic monitoring, in real time, using the tools that it offers the digitalisation of the information and the computation. The obtained data are registered in a PC, its are visualized appropriately and can be objects of later analysis. It was developed the application program Autoclima for such purpose. (Author)

  15. Investigation of competition within the international wind power market. Supplementary report 1. Supplement 1: Actor profiles. Supplement 2: Note on India. Supplement 3: Statistics - tables

    International Nuclear Information System (INIS)

    1995-10-01

    The supplement to the report with the same title presents profiles of some wind turbine manufacturers located in European countries, U.S.A. and Japan, notes on wind power in India, and statistics and tables relevant to the wind power market. (AB)

  16. Summary of Jimsphere wind profiles: Programs, data, comments, part 1. [for use in aeronautical vehicle design and engineering

    Science.gov (United States)

    Willett, J. A.

    1979-01-01

    Jimsphere wind profiles are documented for the following ranges and installations: Eastern Test Range, Cape Kennedy, Florida; Western Test Range; Point Mugu, California; White Sands Missile Range, New Mexico; Wallops Island, Virginia; Green River, Utah; and Vandenberg Air Force Base, California. Profile information for 1964-1977 includes data summaries, computer formats, frequency distributions, composite listings, etc., for use in establishing and interpreting natural environment criteria for aeronautical vehicle design and engineering operations.

  17. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  18. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  19. Study of wind forces on low-rise hip-roof building

    African Journals Online (AJOL)

    DR OKE

    Wind pressures on buildings and structures depend upon the velocity profile and turbulence ... the interaction between wind and structures numerically offering an alternative technique to practical applications. Earlier the ..... Areas of research are masonry structures, Computational Fluid Dynamics and Wind engineering.

  20. Research on improved design of airfoil profiles based on the continuity of airfoil surface curvature of wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong

    2013-01-01

    Aerodynamic of airfoil performance is closely related to the continuity of its surface curvature, and airfoil profiles with a better aerodynamic performance plays an important role in the design of wind turbine. The surface curvature distribution along the chord direction and pressure distributio...

  1. Wind-Tunnel Investigations on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution Measurements

    Science.gov (United States)

    Krueger, W.

    1947-01-01

    Measurements are described which were taken in the large wind tunnel of the AVA on a rectangular wing "Mustang 2" with nose flap of a chord of 10 percent. Besides force measurements the results of pressure-distribution measurements are given and compared with those on the same profile "without" nose flap.

  2. Risø 1978: Further Investigations into the Effects of Local Terrain Irregularties on Tower-Measured Wind Profiles

    DEFF Research Database (Denmark)

    Peterson, E. W.; Taylor, P. A.; Højstrup, Jørgen

    1980-01-01

    Observations of flow over complex terrain taken at Risø during June–July 1978 and numerical studies confirm earlier findings that small variations in surface elevation have significant effects on mean wind profiles. Measured shear stresses in the nonequilibrium region of the flow are consistent w...

  3. Wind height distribution influence on offshore wind farm feasibility study

    Science.gov (United States)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern

  4. Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces

    Directory of Open Access Journals (Sweden)

    Begg Rezaul K

    2010-04-01

    Full Text Available Abstract Background Most falls in older adults are reported during locomotion and tripping has been identified as a major cause of falls. Challenging environments (e.g., walking on slopes are potential interventions for maintaining balance and gait skills. The aims of this study were: 1 to investigate whether or not distributions of two important gait variables [minimum toe clearance (MTC and foot velocity at MTC (VelMTC] and locomotor control strategies are altered during walking on sloped surfaces, and 2 if altered, are they maintained at two groups (young and elderly female groups. Methods MTC and VelMTC data during walking on a treadmill at sloped surfaces (+3°, 0° and -3° were analysed for 9 young (Y and 8 elderly (E female subjects. Results MTC distributions were found to be positively skewed whereas VelMTC distributions were negatively skewed for both groups on all slopes. Median MTC values increased (Y = 33%, E = 7% at negative slope but decreased (Y = 25%, E = 15% while walking on the positive slope surface compared to their MTC values at the flat surface (0°. Analysis of VelMTC distributions also indicated significantly (p th percentile (Q1 values in the elderly at all slopes. Conclusion The young displayed a strong positive correlation between MTC median changes and IQR (interquartile range changes due to walking on both slopes; however, such correlation was weak in the older adults suggesting differences in control strategies being employed to minimize the risk of tripping.

  5. LINKING MOTOR-RELATED BRAIN POTENTIALS AND VELOCITY PROFILES IN MULTI-JOINT ARM REACHING MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Julià L Amengual

    2014-04-01

    Full Text Available The study of the movement related brain potentials (MRPBs needs accurate technical approaches to disentangle the specific patterns of bran activity during the preparation and execution of movements. During the last forty years, synchronizing the electromiographic activation (EMG of the muscle with the electrophysiological recordings (EEG has been commonly ussed for these purposes. However, new clinical approaches in the study of motor diseases and rehabilitation suggest the demand of new paradigms that might go further into the study of the brain activity associated with the kinematics of movement. As a response to this call, we have used a 3-D hand tracking system with the aim to record continuously the position of an ultrasonic sender located on the hand during the performance of multi-joint self-pace movements. We synchronized the time-series of position of velocity of the sender with the EEG recordings, obtaining specific patterns of brain activity as a function of the fluctuations of the kinematics during the natural movement performance. Additionally, the distribution of the brain activity during the preparation and execution phases of movement was similar that reported previously using the EMG, suggesting the validity of our technique. We claim that this paradigm could be usable in patients because of its simplicity and the potential knowledge that can be extracted from clinical protocols.

  6. A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method

    Science.gov (United States)

    Aboelkassem, Yasser; Virag, Zdravko

    2016-11-01

    For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.

  7. A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B.; Senff, C. [Univ. of Colorado/NOAA Environmental Technology Lab., Cooperative Inst. for Research in Environmental Sciences, Boulder, CO (United States); Banta, R.M. [NOAA Environmental Technology Lab., Boulder, CO (United States)

    1997-10-01

    The mixing depth is one of the most important parameters in air pollution studies because it determines the vertical extent of the `box` in which pollutants are mixed and dispersed. During the 1995 Southern Oxidants Study (SOS95), scientists from the National Oceanic and Atmospheric Administration Environmental Technology Laboratory (NOAA/ETL) deployed four 915-MHz boundary-layer radar/wind profilers (hereafter radars) in and around the Nashville, Tennessee metropolitan area. Scientists from NOAA/ETL also operated an ultraviolet differential absorption lidar (DIAL) onboard a CASA-212 aircraft. Profiles from radar and DIAL can be used to derive estimates of the mixing depth. The methods used for both instruments are similar in that they depend on information derived from the backscattered power. However, different scattering mechanisms for the radar and DIAL mean that different tracers of mixing depth are measured. In this paper we compare the mixing depth estimates obtained from the radar and DIAL and discuss the similarities and differences that occur. (au)

  8. Offshore winds using remote sensing techniques

    International Nuclear Information System (INIS)

    Pena, Alfredo; Hasager, Charlotte Bay; Gryning, Sven-Erik; Courtney, Michael; Antoniou, Ioannis; Mikkelsen, Torben; Soerensen, Paul

    2007-01-01

    Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors

  9. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    Science.gov (United States)

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests.

  10. Study on the Optimal Number of Transducers for Pipe Flow Rate Measurement Downstream of a Single Elbow Using the Ultrasonic Velocity Profile Method

    Directory of Open Access Journals (Sweden)

    Sanehiro Wada

    2012-01-01

    Full Text Available This paper presents a new estimation method to determine the optimal number of transducers using an Ultrasonic Velocity Profile (UVP for accurate flow rate measurement downstream of a single elbow. Since UVP can measure velocity profiles over a pipe diameter and calculate the flow rate by integrating these velocity profiles, it is also expected to obtain an accurate flow rate using multiple transducers under nondeveloped flow conditions formed downstream of an elbow. The new estimation method employs a wave number of velocity profile fluctuations along a circle on a pipe cross-section using Fast Fourier Transform (FFT. The optimal number of transducers is estimated based on the sampling theorem. To evaluate this method, a preliminary experiment and numerical simulations using Computational Fluid Dynamics (CFD are conducted. The evaluating regions of velocity profiles are located at 3 times of a pipe diameter ( for the experiment, and 1 and for the simulations downstream of an elbow, respectively. Reynolds numbers for the experiment and simulations are set at and , respectively. These results indicate the efficiency of this new method.

  11. Dark Matter Profiles in Dwarf Galaxies: A Statistical Sample Using High-Resolution Hα Velocity Fields from PCWI

    Science.gov (United States)

    Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo

    2018-01-01

    We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.

  12. Assessing the force-velocity characteristics of the leg extensors in well-trained athletes: the incremental load power profile.

    Science.gov (United States)

    Sheppard, Jeremy M; Cormack, Stuart; Taylor, Kristie-Lee; McGuigan, Michael R; Newton, Robert U

    2008-07-01

    The purpose of this research project was to evaluate the methodology of an iso-inertial force-velocity assessment utilizing a range of loads and a group of high-performance athletes. A total of 26 subjects (19.8 +/- 2.6 years, 196.3 +/- 9.6 cm, 88.6 +/- 8.9 kg) participated in this study. Interday reliability of various force-time measures obtained during the performance of countermovement jumps with a range of loads was examined, followed by a validity assessment of the various measures' ability to discriminate among performance levels, while the ability of the test protocol to detect training-induced changes was assessed by comparing results before and after an intensive 12-week training period. Force and velocity variables were observed to be reliable (intraclass correlation coefficient 0.74-0.99). Large effect size statistic (ES > 0.50) differences among player groups were observed for peak power (1.36-2.25), relative peak power (1.57-2.42), and peak force (0.74-0.95). Significant (p 0.50) improvements were observed in the kinetic values after the intensive training period. The results of this study indicate that the incremental load power profile is an acceptably reliable, valid, and sensitive method of assessing force and power capabilities of the leg extensors in high-performance and elite volleyball players.

  13. Velocity and AVO analysis for the investigation of gas hydrate along a profile in the western continental margin

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Ramprasad, T.

    known overburden velocity we show that the accuracy of the estimated interval velocities also increases after downward continuation. While computing the interval velocities after downward continuation, two issues need to be addressed. The first... layers are equal. It is interesting to note that the standard deviation of the interval velocity does not depend on the overburden or target layer velocity. In the above formulation the error in travel times is ignored, which is valid when the velocity...

  14. Study on the Influence of Velocity, Turbulence Intensity and Temperature on Ammonia Emission Rate in a Wind Tunnel

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, P V; Zhang, Guo-Qiang

    2009-01-01

    Odor emissions from manure in livestock buildings are an important issue which concerns the human health and air quality as well as animals. Ammonia is one of the most important odors in pig houses. The objective of this paper is to investigate the influence of local velocity, turbulence intensit...

  15. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  16. Development of ultrasonic velocity profile method for flow rate measurements of power plant (effect of measurement volume on turbulent flow measurement)

    International Nuclear Information System (INIS)

    Hiroshige, Kikura; Gentaro, Yamanaka; Tsuyoshi, Taishi; Masanori, Aritomi; Yasushi, Takeda; Michitsugu, Mori

    2001-01-01

    Ultrasonic Velocity Profile method has many advantages for flow rate measurement of power plant over the conventional flow measurement methods, such as measurement of the instantaneous velocity profile along the measuring line and its applicability to opaque liquids. Furthermore, the method has an advantage of being non-intrusive. Hence, it is applicable to various flow conditions, although it requires a relatively large measurement volume. In this paper, the effects of the measurement volume on the mean velocity profile for flow rate measurements of power plant and the Reynolds stress measurement have been investigated for fully developed turbulent pipe flows in a vertical pipe. The results are then compared with data obtained by Direct Numerical Simulation (DNS). (authors)

  17. Measurements of turbulent velocity profiles in combined system of polymer additives and riblets; Kobunshi tenkazai to riblet tono fukugokei ni okeru ranryu sokudo bunpu no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Mizunuma, H. [Tokyo Metropolitan Univ., Tokyo (Japan); Ban, T. [Hino Motors, Ltd., Tokyo (Japan)

    2000-03-25

    In the combined system of polymer additives and riblets, the polymer additives expand the range of non-dimensionalized riblet width s{sup +} where the riblets reduce the frictional drag. Although in the higher region of s{sup +} the riblets increase the frictional drag as the rough surface, the polymer additives thicken the wall layer, which dumps the drag increase due to riblets and then gives the benefical combined effect in this higher region of s{sup +}. Based on this scinario, the velocity profile and the pipe frictional coefficient for the combined system were derived from the velocity profile of each system. The turbulent velocity profiles were measured for the combined system using a laser Doppler velocimetry. The measured results agreed well with the derived prediction for the combined system. (author)

  18. Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations

    Science.gov (United States)

    Singh, Narendra; Solanki, Raman; Ojha, Narendra; Janssen, Ruud H. H.; Pozzer, Andrea; Dhaka, Surendra K.

    2016-08-01

    We investigate the time evolution of the Local Boundary Layer (LBL) for the first time over a mountain ridge at Nainital (79.5° E, 29.4° N, 1958 m a.m.s.l.) in the central Himalayan region, using a radar wind profiler (RWP) during November 2011 to March 2012, as a part of the Ganges Valley Aerosol Experiment (GVAX). We restrict our analysis to clear-sunny days, resulting in a total of 78 days of observations. The standard criterion of the peak in the signal-to-noise ratio (S / N) profile was found to be inadequate in the characterization of mixed layer (ML) top at this site. Therefore, we implemented a criterion of S / N > 6 dB for the characterization of the ML and the resulting estimations are shown to be in agreement with radiosonde measurements over this site. The daytime average (05:00-10:00 UTC) observed boundary layer height ranges from 440 ± 197 m in November (late autumn) to 766 ± 317 m above ground level (a.g.l.) in March (early spring). The observations revealed a pronounced impact of mountain topography on the LBL dynamics during March, when strong winds (> 5.6 m s-1) lead to LBL heights of 650 m during nighttime. The measurements are further utilized to evaluate simulations from the Weather Research and Forecasting (WRF) model. WRF simulations captured the day-to-day variations up to an extent (r2 = 0.5), as well as the mean diurnal variations (within 1σ variability). The mean biases in the daytime average LBL height vary from -7 % (January) to +30 % (February) between model and observations, except during March (+76 %). Sensitivity simulations using a mixed layer model (MXL/MESSy) indicated that the springtime overestimation of LBL would lead to a minor uncertainty in simulated surface ozone concentrations. However, it would lead to a significant overestimation of the dilution of black carbon aerosols at this site. Our work fills a gap in observations of local boundary layer over this complex terrain in the Himalayas, and highlights the need for

  19. Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations

    Directory of Open Access Journals (Sweden)

    N. Singh

    2016-08-01

    Full Text Available We investigate the time evolution of the Local Boundary Layer (LBL for the first time over a mountain ridge at Nainital (79.5° E, 29.4° N, 1958 m a.m.s.l. in the central Himalayan region, using a radar wind profiler (RWP during November 2011 to March 2012, as a part of the Ganges Valley Aerosol Experiment (GVAX. We restrict our analysis to clear–sunny days, resulting in a total of 78 days of observations. The standard criterion of the peak in the signal-to-noise ratio (S ∕ N profile was found to be inadequate in the characterization of mixed layer (ML top at this site. Therefore, we implemented a criterion of S ∕ N > 6 dB for the characterization of the ML and the resulting estimations are shown to be in agreement with radiosonde measurements over this site. The daytime average (05:00–10:00 UTC observed boundary layer height ranges from 440 ± 197 m in November (late autumn to 766 ± 317 m above ground level (a.g.l. in March (early spring. The observations revealed a pronounced impact of mountain topography on the LBL dynamics during March, when strong winds (> 5.6 m s−1 lead to LBL heights of 650 m during nighttime. The measurements are further utilized to evaluate simulations from the Weather Research and Forecasting (WRF model. WRF simulations captured the day-to-day variations up to an extent (r2 = 0.5, as well as the mean diurnal variations (within 1σ variability. The mean biases in the daytime average LBL height vary from −7 % (January to +30 % (February between model and observations, except during March (+76 %. Sensitivity simulations using a mixed layer model (MXL/MESSy indicated that the springtime overestimation of LBL would lead to a minor uncertainty in simulated surface ozone concentrations. However, it would lead to a significant overestimation of the dilution of black carbon aerosols at this site. Our work fills a gap in observations of local boundary layer

  20. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    OpenAIRE

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power...

  1. Vegetation in drylands: Effects on wind flow and aeolian sediment transport

    Science.gov (United States)

    Drylands are characterised by patchy vegetation, erodible surfaces and erosive aeolian processes. Empirical and modelling studies have shown that vegetation elements provide drag on the overlying airflow, thus affecting wind velocity profiles and altering erosive dynamics on desert surfaces. However...

  2. Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2009-02-01

    Full Text Available Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and non-relativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model.

  3. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities, January 1976 to December 1977

    Science.gov (United States)

    Javan, A.

    1979-01-01

    A tunable multiatmospheric pulsed CO2 laser with emphasis on experimental features and supporting theoretical analyses important to differential absorption lidar and Doppler lidar measurement of pollutants and wind velocities is reported. The energy deposition and the means to produce the uniform high density plasma in the multiatmospheric medium, through UV preionization of an organic seed gas is discussed. Design features of the pulsed CO2 laser are presented. The radiative processes which are operative and prevent the laser from breaking into oscillations in a large number of modes over its broad amplification bandwidth are described. The mode competition for the transient pulsed laser oscillation in a standing wave and traveling wave ring laser configuration is discussed and contrasted with the approach to steady state oscillations. The latter findings are important to transient injection locking for production of a highly stable pulsed CO2 laser output.

  4. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea

    Science.gov (United States)

    Hsu, S. A.; Meindl, Eric A.; Gilhousen, David B.

    1994-01-01

    On the basis of 30 samples from near-simultaneous overwater measurements by pairs of anemometers located at different heights in the Gulf of Mexico and off the Chesapeake Bay, Virginia, the mean and standard deviation for the exponent of the power-law wind profile over the ocean under near-neutral atmospheric stability conditions were determined to be 0.11 +/- 0.03. Because this mean value is obtained from both deep and shallow water environments, it is recommended for use at sea to adjust the wind speed measurements at different heights to the standard height of 10 m above the mean sea surface. An example to apply this P value to estimate the momentum flux or wind stress is provided.

  5. Results of the Updated NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    Science.gov (United States)

    Barbre', Robert E., Jr.; Deker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    We present here the methodology and results of the Operational Acceptance Test (OAT) performed on the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP). On day-of-launch (DOL), space launch vehicle operators have used data from the DRWP to invalidate winds in prelaunch loads and trajectory assessments due to the DRWP's capability to quickly identify changes in the wind profile within a rapidly-changing wind environment. The previous DRWP has been replaced with a completely new system, which needs to undergo certification testing before being accepted for use in range operations. The new DRWP replaces the previous three-beam system made of coaxial cables and a copper wire ground plane with a four-beam system that uses Yagi antennae with enhanced beam steering capability. In addition, the new system contains updated user interface software while maintaining the same general capability as the previous system. The new DRWP continues to use the Median Filter First Guess (MFFG) algorithm to generate a wind profile from Doppler spectra at each range gate. DeTect (2015) contains further details on the upgrade. The OAT is a short-term test designed so that end users can utilize the new DRWP in a similar manner to the previous DRWP during mission operations at the Eastern Range in the midst of a long-term certification process. This paper describes the Marshall Space Flight Center Natural Environments Branch's (MSFC NE's) analyses to verify the quality and accuracy of the DRWP's meteorological data output as compared to the previous DRWP. Ultimately, each launch vehicle program has the responsibility to certify the system for their own use.

  6. Analysis on atmospheric pressure, temperature, and wind speed profiles during total solar eclipse 9 March 2016 using time series clustering

    Science.gov (United States)

    Septem Riza, Lala; Wihardi, Yaya; Nurdin, Enjang Ali; Dwi Ardi, Nanang; Puji Asmoro, Cahyo; Wijaya, Agus Fany Chandra; Aria Utama, Judhistira; Bayu Dani Nandiyanto, Asep

    2016-11-01

    Air temperature, pressure, and wind speed measurements on the surface taken during the Total Solar Eclipse (TSE) of March 9, 2016, are made. They were taken in Terentang Beach, Bangka Island, Indonesia. In this paper, we propose to analyze them by using time series clustering. The following steps are conducted: data collecting, splitting, smoothing, distance calculation, and clustering. The final results show cluster memberships of the three parameters on 3 time frames: one day before, the TSE day, and one day after. After doing some simulations, it can be seen that the profiles of temperature and pressure on the TSE day are on the same cluster while the wind-speed profile on the TSE day is the same as on the one day after.

  7. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  8. The Profile Envision and Splice Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    Science.gov (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Tropospheric winds are an important driver of the design and operation of space launch vehicles. Multiple types of weather balloons and Doppler Radar Wind Profiler (DRWP) systems exist at NASA's Kennedy Space Center (KSC), co-located on the United States Air Force's (USAF) Eastern Range (ER) at the Cape Canaveral Air Force Station (CCAFS), that are capable of measuring atmospheric winds. Meteorological data gathered by these instruments are being used in the design of NASA's Space Launch System (SLS) and other space launch vehicles, and will be used during the day-of-launch (DOL) of SLS to aid in loads and trajectory analyses. For the purpose of SLS day-of-launch needs, the balloons have the altitude coverage needed, but take over an hour to reach the maximum altitude and can drift far from the vehicle's path. The DRWPs have the spatial and temporal resolutions needed, but do not provide complete altitude coverage. Therefore, the Natural Environments Branch (EV44) at Marshall Space Flight Center (MSFC) developed the Profile Envision and Splice Tool (PRESTO) to combine balloon profiles and profiles from multiple DRWPs, filter the spliced profile to a common wavelength, and allow the operator to generate output files as well as to visualize the inputs and the spliced profile for SLS DOL operations. PRESTO was developed in Python taking advantage of NumPy and SciPy for the splicing procedure, matplotlib for the visualization, and Tkinter for the execution of the graphical user interface (GUI). This paper describes in detail the Python coding implementation for the splicing, filtering, and visualization methodology used in PRESTO.

  9. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliabi......As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...

  10. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    OpenAIRE

    Dooren, Marijn F.; Campagnolo, Filippo; Sjöholm, Mikael; Angelou, Nikolas; Mikkelsen, Torben; Kühn, Martin

    2017-01-01

    This paper combines the research methodologies of scaled wind turbine model experiments in wind tunnels with short-range WindScanner lidar measurement technology. The wind tunnel at the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner lidars to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The dual-lidar system can provide fully synchronised trajectory scans with sampling timescal...

  11. Measuring and modelling of the wind on the scale of tall wind turbines

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph

    and the friction velocity had a bias, which were related to the change in surface roughness. A higher-order boundary-layer scheme represented the wind profile of the westerly flow over sea better, while a first-order scheme modelled the flow from the east with low-level jets better. The wind profile shape...... to baroclinity. The variation of the resistance law constants in neutral, baroclinic conditions was approximately the same as in experiments that where assumed to be barotropic; part of the variation was explained by baroclinity showing the importance of including this effect when studying boundary-layer winds....

  12. Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton

    DEFF Research Database (Denmark)

    Starostenko, V.; Janik, T.; Kolomiyets, K.

    2013-01-01

    Results are presented of a seismic wide-angle reflection/refraction survey along a profile between the Pannonian Basin (PB) and the East European Craton (EEC) called PANCAKE. The P- and S-wave velocity model derived can be divided into three sectors: the PB; the Carpathians, including the Transca......Results are presented of a seismic wide-angle reflection/refraction survey along a profile between the Pannonian Basin (PB) and the East European Craton (EEC) called PANCAKE. The P- and S-wave velocity model derived can be divided into three sectors: the PB; the Carpathians, including...... the Transcarpathian Depression and the Carpathian Foredeep; and the south-western part of the EEC, including the Trans European Suture Zone (TESZ). Seismic data support a robust model of the Vp velocity structure of the crust. In the PB, the 22-23km thick crust consists of a 2-5km thick sedimentary layer (Vp=2...... of the lower crust towards the Ukrainian Shield, where a high velocity lower crust (Vp>7.2km/s) is observed. Two low-velocity lenses in the upper crust of the EEC are interpreted beneath major sedimentary troughs (Lviv and Volyn-Podolsk). Mantle reflectors are observed at depths of ~45km and ~75km below the PB...

  13. Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity

    Czech Academy of Sciences Publication Activity Database

    Deuring, P.; Kračmar, S.; Nečasová, Šárka

    2012-01-01

    Roč. 252, č. 1 (2012), s. 459-476 ISSN 0022-0396 R&D Projects: GA AV ČR IAA100190804; GA ČR(CZ) GAP201/11/1304 Institutional research plan: CEZ:AV0Z10190503 Keywords : viscous incompressible flow * rotating body * rundamental solution * decay * asymptotic profile * Navier-Stokes system Subject RIV: BA - General Mathematics Impact factor: 1.480, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022039611003573

  14. Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity

    Czech Academy of Sciences Publication Activity Database

    Deuring, P.; Kračmar, S.; Nečasová, Šárka

    2012-01-01

    Roč. 252, č. 1 (2012), s. 459-476 ISSN 0022-0396 R&D Projects: GA AV ČR IAA100190804; GA ČR(CZ) GAP201/11/1304 Institutional research plan: CEZ:AV0Z10190503 Keywords : viscous incompressible flow * rotating body * rundamental solution * decay * asymptotic profile * Navier-Stokes system Subject RIV: BA - General Math ematics Impact factor: 1.480, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022039611003573

  15. Simultaneous fine structure observation of wind and temperature profiles by the Arecibo 430-MHz radar and in situ measurements

    Science.gov (United States)

    Thomas, D.; Bertin, F.; Petitdidier, M.; Teitelbaum, H.; Woodman, R. F.

    1986-01-01

    A simultaneous campaign of balloon and radar measurements took place on March 14 to 16, 1984, above the Arecibo 430-MHz radar. This radar was operating with a vertical resolution of 150 m following two antenna beam directions: 15 deg. from the zenith, respectively, in the N-S and E-W directions. The main results concerning the comparison between the flight and simultaneous radar measurements obtained on March 15, 1984 are analyzed. The radar return power profile (S/N ratio in dB) exhibits maxima which are generally well correlated with step-like structures in the potential temperature profile. These structures are generally considered as the consequence of the mixing processes induced by the turbulence. A good correlation appears in the altitude range 12.5 to 19 km between wind shears induced by a wave structure observed in the meridional wind and the radar echo power maxima. This wave structure is characterized by a vertical wavelength of about 2.5 km, and a period in the range 30 to 40 hours. These characteristics are deduced from the twice daily rawinsonde data launched from the San Juan Airport by the National Weather Service. These results pointed out an example of the interaction between wave and turbulence in the upper troposphere and lower stratosphere. Turbulent layers are observed at locations where wind shears related to an internal inertia-gravity wave are maxima.

  16. On the relationship between hurricane cost and the integrated wind profile

    Science.gov (United States)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  17. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Science.gov (United States)

    Rüfenacht, Rolf; Kämpfer, Niklaus; Murk, Axel

    2013-04-01

    Today, the wind data for the upper stratosphere and lower mesosphere are commonly extrapolated using models or calculated from measurements of the temperature field, but are not measured directly. Still, such measurements would allow direct observations of dynamic processes and thus provide a better understanding of the circulation in this altitude region where the zonal wind speed reaches a maximum. Observations of middle-atmospheric winds are also expected to provide deeper insight in the coupling between the upper and the lower atmosphere, especially in the case of sudden stratospheric warming events. Furthermore, as the local chemical composition of the middle atmosphere can be measured with high accuracy, wind data could be beneficial for the interpretation of the associated transport processes. In future, middle-atmospheric wind measurements could help to improve atmospheric circulation models. Aiming to contribute to the closing of this data gap the Institute of Applied Physics of the University of Bern built a new ground-based 142 GHz Doppler-spectro-radiometer with the acronym WIRA (WInd RAdiometer) specifically designed for the measurement of middle-atmospheric wind. Until now wind speeds in five levels between 30 and 79 km can be retrieved what made WIRA the first instrument continuously measuring profiles of horizontal wind in this altitude range. On the altitude levels where our measurement can be compared to ECMWF very good agreement has been found in the long-term statistics, with WIRA = (0.98±0.02) × ECMWF + (0.44±0.91) m/s on average, as well as in short time structures with a duration of a few days. WIRA uses a passive heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a

  18. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.L.; Broennimann, Ch.; Eikenberry, E.F.; Ince-Cushman, A.; Lee, S.G.; Rice, J.E.; Scott, S.; Barnsley, R.

    2008-01-01

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of T i and ν φ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER

  19. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  20. Acoustic Doppler current profiler velocity data collected in the approach channel of Brandon Road Lock and Dam in 2015

    Data.gov (United States)

    Department of the Interior — Water velocities were measured in the Des Plaines River from approximately river mile 286 to river mile 284 on October 19–21, 2015 using Teledyne Rio Grande 1200 kHz...

  1. Imaging P- and S-wave velocity structures in hydrate bearing sediments along an OBS profile across the Yuan-An Ridge, off southwest Taiwan

    Directory of Open Access Journals (Sweden)

    Win-Bin Cheng

    2018-01-01

    Full Text Available In order to improve our understanding of the marine slope instability of hydrate-bearing sediments in the offshore southwestern Taiwan, P- and S-waves seismic data generated by P-S conversion on reflection from airgun shots recorded from a multi-component Ocean Bottom Seismometer (OBS survey were used to construct two-dimensional velocity model. The investigated profile lies above a structural high of the Yuan-An ridge, proposed as a high priority drilling site for gas hydrate investigations off southwest Taiwan. The locations of the OBSs were determined with high accuracy by an inversion based on the shot traveltimes. Traveltime inversion and forward modeling of seismic data result in general trends P- and S-wave velocities of sediments. Generally, P- and S-wave velocities are high beneath topographic ridges which might represent a series of thrust-cored anticlines develop in the accretionary wedge. P-wave velocities of the sea floor are about ~1.58 km s-1, increasing to the bottom simulating reflectors (BSR, reaching values of about ~2 km s-1. Below it, a low velocity layer (1.62 - 1.74 km s-1 is observed, which indicates the presence free gas in the sedimentary layer. S-wave velocities of the sediments over the entire section range from 0.3 to ~0.6 km s-1. Significant lateral velocity variations were found beneath the eastern flank of the Yuan-An ridge, probably represents thrust faults that extend from seafloor to hydrate-bearing layer. We suggest that the BSR has been disturbed by the thrust faults and further rupture of the fault could potentially trigger failures in the study area.

  2. Study of vertical wind profiles in an urban area with complex terrain ...

    Indian Academy of Sciences (India)

    periods, and may lead to severe air quality prob- lems as the valley may prevent horizontal ventila- tion. In an urban area the local slope winds when combined with the urban heat-island circulation may re-circulate the urban air, especially during winter and night-time, when vertical diffusion is small (Atkinson 1981).

  3. Observations of Downwind Development of Wind Speed and Variance Profiles at Bognaes and Comparison with Theory

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Højstrup, Jørgen; Peterson, E. W.

    1979-01-01

    Observations of atmospheric flow over a change in surface roughness are reported. Both wind speed and turbulence characteristics were measured. Although the observation site departed from the ideal assumed in roughness change models, it was found that the predictions of `second-order closure' mod...

  4. Solar line Lsub(α) profile and an interstellar wind dynamics

    International Nuclear Information System (INIS)

    Burgin, M.S.

    1978-01-01

    Analytical theory of interstellar hydrogen atom motion into the region of solar Lsub(α)-radiation is given. Hydrogen distribution in the Solar system is calculated with an account of the Lsub(α) solar line profile difference from a flat one. The effect of the profile form on the scattered radiation intensity is estimated. Calculation errors of the scattered radiation intensity, connected with the difference between a line profile and a flat one, do not exceed 5% for the real Lsub(α) solar line profile

  5. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    The effectiveness of vegetation in reducing wind ... Wind erosion; roughness length; shear velocity ratio; shear stress ratio; roughness density; wind tunnel. J. Earth .... flow direction induced by its kinematic viscosity. An increase in shear stress causes a proportional increase in the height-dependent change in wind velocity.

  6. Wind effects on collectors. Final report, October 1, 1978--October 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, H.C. Jr.; Griggs, E.I.

    1979-11-01

    Consideration was given to modeling wind speed data and to a scheme for correlating data between two separate stations. A sensor system was developed to measure the effect of wind on collector performance. The specifications for the sensor are presented, and a discussion of the calibration of the sensor is given. Four experiments were performed to determine wind flow patterns around buildings. The velocity profile over an actual collector was also measured as a function of free stream velocity. A mathematical model for a solar collector and three experimental efforts to measure the effect of wind on collector performance are reported. (MHR)

  7. Determination of the catalyst velocity profile along the riser of a fluidized bed reactor model by nuclear techniques

    International Nuclear Information System (INIS)

    Santos, V.A. dos; Dantas, C.C.

    1982-01-01

    A method adequated to industrial applications of flow measurements in fuidized bed reactor was developed. To measure the medium velocity of a catalyst, where the velocity is low, a radioactive tracer was used, 59 Fe and, to measure density by gamma attenuation, a standard source of 241 Am was used. The signals produced in NaI (Tl) scintilators detectors, were sent simultaneously to an electronic clock, to register the transit time, in the medium velocity measure of the catalyst whose reproductibility was 0.4%. The total estimated error for the method was a maximum of 4%. Important simplifications and pratical advantages are presented, if the method is compared to conventional measures with tracers. (E.G.) [pt

  8. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  9. The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model

    Directory of Open Access Journals (Sweden)

    C. Cammalleri

    2010-12-01

    Full Text Available For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%, typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977, Massman (1987 and Lalic et al. (2003. The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB model developed by Norman et al. (1995 and modified by Kustas and Norman (1999. High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15–50%. The TSEB model heat flux estimates are compared with micro

  10. Preliminary study of inphase gusts and moment force wind loads over the first 150 meters at KSC, Florida

    Science.gov (United States)

    Kaufman, J. W.

    1985-01-01

    A mathematical/statistical analysis of inphase gusts and wind velocity moment forces over the first 150 m at the Kennedy Space Center (KSC) is presented. The wind velocity profile data were acquired at the KSC 150 m ground wind tower. The results show that planetary boundary layer (PBL) winds can sustain near peak speeds for periods up to 60 sec and longer. This is proven from calculating the autocorrelation functions of moment forces for several 10 min cases of wind profile data. The results show that lower atmospheric planetary boundary layer winds have periodic variations for long periods of time. This flow characteristic is valuable as aerospace vehicle engineering and design criteria where wind loading must be determined.

  11. Characterizing the Velocity Profile of a Swirling Gas Experiment by Particle Imaging Velocimetry to Study Angular Momentum Transport in Accretion Disks

    Science.gov (United States)

    Greess, Samuel; Ji, Hantao; Merino, Enrique; Berrios, William

    2013-10-01

    The method by which angular momentum transfers between different sections of accretion disks is a matter of ongoing debate. One suggested answer is Magnetorotational instability (MRI), which would facilitate this transfer through the magnetic interactions between particles at different distances from the center of the disk. While ongoing experiments with MRI have focused on the use of liquid metals to test the effects of magnetic fields, we are developing a swirling gas experiment to study effects beyond incompressible hydrodynamics, including compressible gas dynamics and plasma effects when gas is ionized. A second-generation prototype swirling gas experiment has been built to test the principle and to establish favorable rotation profiles using a chamber of swirling fog to simulate the formation and movement of accretion disks about some gravitational center. The paths of the visible fog particles can then be analyzed with Particle Imaging Velocimetry (PIV) techniques; these velocity measurements can then be organized by a Python program. Anticipated results include a radial profile of velocities at different times during the gas injection process, as well as further refinement of the fog chamber design to improve the accuracy in controlling the profile.

  12. Uniformity control of the deposition rate profile of a-Si:H film by gas velocity and temperature distributions in a capacitively coupled plasma reactor

    Science.gov (United States)

    Kim, Ho Jun; Lee, Hae June

    2018-03-01

    The effect of neutral transport on the deposition rate profiles of thin films formed by plasma-enhanced chemical vapor deposition (PECVD) is investigated to improve the uniformity of amorphous hydrogenated silicon films. The PECVD reactor with a cylindrical showerhead is numerically simulated with a variation of the gas velocity and temperature in the capacitively coupled plasma with an intermediate-pressure SiH4/He gas mixture. The modulation of the gas velocity distribution results in a noticeable change in the density distributions of neutral molecules such as SiH4, SiH3, H, SiH2, and Si2H6, especially in the vicinity of the electrode edge. With the locally accelerated gas flow, the concomitant increase in Si2H6 density near the electrode edge induces increases in both the electron density and the deposition rate profile near the electrode edge. In addition, it is observed that changing the surface temperature distribution by changing the sidewall temperature can also effectively modulate the plasma density distributions. The simulated deposition rate profile matches the experimental data well, even under non-isothermal wall boundary conditions.

  13. Effect of spaceflight on the maximal shortening velocity, morphology, and enzyme profile of fast- and slow-twitch skeletal muscle fibers in rhesus monkeys

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; De La Cruz, L.; Widrick, J. J.; Desplanches, D.

    2000-01-01

    Weightlessness has been shown to cause limb muscle wasting and a reduced peak force and power in the antigravity soleus muscle. Despite a reduced peak power, Caiozzo et al. observed an increased maximal shortening velocity in the rat soleus muscle following a 14-day space flight. The major purpose of the present investigation was to determine if weightlessness induced an elevated velocity in the antigravity slow type I fibers of the rhesus monkey (Macaca mulatta), as well as to establish a cellular mechanism for the effect. Spaceflight or models of weightlessness have been shown to increase glucose uptake, elevate muscle glycogen content, and increase fatigability of the soleus muscle. The latter appears to be in part caused by a reduced ability of the slow oxidative fibers to oxidize fats. A second goal of this study was to establish the extent to which weightlessness altered the substrate profile and glycolytic and oxidative enzyme capacity of individual slow- and fast-twitch fibers.

  14. Temperature profile and sound velocity data using CTD casts from the US Naval Oceanographic Office as part of the Master Oceanographic Observation Data Set (MOODS) project, from 1975-04-11 to 1998-08-31 (NODC Accession 9900220)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and sound velocity data were collected using CTD, XCTD, and XBT casts in the Arctic Ocean, Mediterranean Sea - Eastern Basin, North Pacific...

  15. Sound velocity profiles from underway sound velocimeter casts from NOAA Ship FAIRWEATHER in coastal Alaskan waters from 2006-05-02 to 2006-10-28 (NODC Accession 0013954)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sound velocity profiles were collected from underway sound velocimeter casts from NOAA Ship FAIRWEATHER in coastal Alaskan waters. The National Ocean Service (NOS)...

  16. Temperature profile, sound velocity, and other data collected from the COLUMBUS ISELIN using inverted echo sounder and CTD casts in the TOGA Area - Atlantic Ocean from 24 January 1987 to 07 October 1991 (NODC Accession 9200059)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, sound velocity, and other data were collected using Inverted Echo Sounder (IES) and CTD casts from the COLUMBUS ISELIN in the TOGA Area -...

  17. A comparison of boundary-layer heights inferred from wind-profiler backscatter profiles with diagnostic calculations using regional model forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Baltink, H.K.; Holtslag, A.A.M. [Royal Netherlands Meteorological Inst., KNMI, De Bilt (Netherlands)

    1997-10-01

    From October 1994 through January 1997 the Tropospheric Energy Budget Experiment (TEBEX) was executed by KNMI. The main objectives are to study boundary layer processes and cloud variability on the sub-grid scale of present Global Climate Models and to improve the related sub-grid parametrizations. A suite of instruments was deployed to measure a large number of variables. Measurements to characterize ABL processes were focussed around the 200 m high meteorological observation tower of the KNMI in Cabauw. In the framework of TEBEX a 1290 MHz wind-profiler/RASS was installed in July 1994 at 300 m from tower. Data collected during TEBEX are used to assess the performance of a Regional Atmospheric Climate Model (RACMO). This climate model runs also in a operational forecast mode once a day. The diagnostic ABL-height (h{sub model}) is calculated from the RACMO forecast output. A modified Richardson`s number method extended with an excess parcel temperature is applied for all stability conditions. We present the preliminary results of a comparison of h{sub model} from forecasts with measured h{sub TS} derived from profiler and sodar data for July 1995. (au)

  18. A bayesian approach for determining velocity and uncertainty estimates from seismic cone penetrometer testing or vertical seismic profiling data

    Science.gov (United States)

    Pidlisecky, Adam; Haines, S.S.

    2011-01-01

    Conventional processing methods for seismic cone penetrometer data present several shortcomings, most notably the absence of a robust velocity model uncertainty estimate. We propose a new seismic cone penetrometer testing (SCPT) data-processing approach that employs Bayesian methods to map measured data errors into quantitative estimates of model uncertainty. We first calculate travel-time differences for all permutations of seismic trace pairs. That is, we cross-correlate each trace at each measurement location with every trace at every other measurement location to determine travel-time differences that are not biased by the choice of any particular reference trace and to thoroughly characterize data error. We calculate a forward operator that accounts for the different ray paths for each measurement location, including refraction at layer boundaries. We then use a Bayesian inversion scheme to obtain the most likely slowness (the reciprocal of velocity) and a distribution of probable slowness values for each model layer. The result is a velocity model that is based on correct ray paths, with uncertainty bounds that are based on the data error. ?? NRC Research Press 2011.

  19. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    Science.gov (United States)

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.

  20. Analysis of turbulent wake behind a wind turbine

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Andersen, Søren Juhl; Sørensen, Jens Nørkær

    2013-01-01

    The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and mome......The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass...... ambient wind velocities (higher thrust coefficients), this trend may be improved due to the faster recovery of the wake and therefore closer values to the theoretical approach may be obtained. In addition, the assumption of self-similarity behavior of the mean velocity profile, when scaled with center...

  1. Variable Winds in Early-B Hypergiants

    Science.gov (United States)

    Wolf, Bernhard; Rivinius, Thomas

    Early-B hypergiants belong to the most luminous stars in the Universe. They are characterized by high mass-loss rates (dot M≈ 10-5 M⊙yr-1) and low terminal wind velocities (v ∞≈400 km s-1) implying very dense winds. They represent a short-lived evolutionary phase and are of particular interest for evolutionary theories of massive stars with mass loss. Due to their high luminosity they play a key role in connection with the "wind momentum — luminosity relation". Among the main interesting characteristics of early-B hypergiants are the various kinds of photometric and spectroscopic variations. In several recent campaigns our group has performed extensive high dispersion spectroscopy of galactic early-B hypergiants with our fiber-fed echelle spectrograph Flash/Heros at the ESO-50 cm telescope. The main outcome was that their dense winds behave hydrodynamically differently to the less luminous supergiants of comparable spectral type. Outwardly accelerated propagating discrete absorption components of the P Cyg-type lines are the typical features rather than rotationally modulated line profile variations. These discrete absorptions could be traced in different spectral lines from photospheric velocities up to 75% of the terminal velocity. The stellar absorption lines show a pulsation-like radial velocity variability pattern lasting up to two weeks as the typical time scale. The radius variations connected with this pulsation-like motions are correlated with the emission height of the P Cyg-type profiles.

  2. Program to determine space vehicle response to wind turbulence

    Science.gov (United States)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  3. Development of a Spatially Resolving X-Ray Crystal Spectrometer (XCS) for Measurement of Ion-Temperature (Ti) and Rotation-Velocity (v) Profiles in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hill, K W; Delgado-Aprico, L; Johnson, D; Feder, R; Beiersdorfer,; Dunn, J; Morris, K; Wang, E; Reinke, M; Podpaly, Y; Rice, J E; Barnsley, R; O' Mullane, M; Lee, S G

    2010-05-21

    Imaging XCS arrays are being developed as a US-ITER activity for Doppler measurement of Ti and v profiles of impurities (W, Kr, Fe) with ~7 cm (a/30) and 10-100 ms resolution in ITER. The imaging XCS, modeled after a PPPL-MIT instrument on Alcator C-Mod, uses a spherically bent crystal and 2d x-ray detectors to achieve high spectral resolving power (E/dE>6000) horizontally and spatial imaging vertically. Two arrays will measure Ti and both poloidal and toroidal rotation velocity profiles. Measurement of many spatial chords permits tomographic inversion for inference of local parameters. The instrument design, predictions of performance, and results from C-Mod will be presented.

  4. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    2000-01-01

    ), Kegnaes (7 yr), Sprogo (20 yr), and Tystofte (16 yr). The measured data are wind speed, wind direction, temperature and pressure. The wind records are cleaned for terrain effects by means of WASP (Mortensew ct al., Technical Report I-666 (EN), Riso National Laboratory, 1993. Vol. 2. User's Guide......): assuming geostrophic balance, all the wind-velocity data are transformed to friction velocity u(*) and direction at standard conditions by means of the geostrophic drag law for neutral stratification. The basic wind velocity in 30 degrees sectors are obtained through ranking of the largest values...... of the friction velocity pressure pu(*)(2)/2 taken once every two months. The main conclusion is that the basic wind velocity is significantly larger at the west coast of Jutland (25 +/- 1 m/s) than at any of the other sites (22 +/- 1 m/s). These results are in agreement with those obtained by Jensen and Franck...

  5. Simulative Winding of Roll Formed Profile in Carcass Production for Flexible Pipes

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Ormstrup, Casper Alexander; Hartz, Benjamin Arnold Krekeler

    2015-01-01

    In carcass production for flexible pipe systems roll formed profiles are wound around a mandrel forming an interlocking, flexible structure able to withstand collapse from outside water pressure or mechanical crushing. Carcass is often produced in lengths of several kilometres, which implies...

  6. A Study on the Effect of Nudging on Long-Term Boundary Layer Profiles of Wind and Weibull Distribution Parameters in a Rural Coastal Area

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier

    2013-01-01

    By use of 1 yr of measurements performed with a wind lidar up to 600-m height, in combination with a tall meteorological tower, the impact of nudging on the simulated wind profile at a flat coastal site (Høvsøre) in western Denmark using the Advanced Research version of the Weather Research...... the scatter between the simulated and measured wind speeds, expressed by the root-mean-square error, by about 20% between altitudes of 100 and 500 m. The root-mean-square error was nearly constant with height for the nudged case (~2.2 m s−1) and slightly increased with height for the nonnudged one, reaching 2.......8 m s−1 at 300 and 500 m. In studying the long-term wind speed variability with the Weibull distribution, it was found that nudging had a minor effect on the scale parameter profile, which is closely connected to the mean wind speed. Improvement by nudging was seen on the profile of the shape...

  7. PMSE and wind profiles from observations above EISCAT Tromsø site

    Science.gov (United States)

    Mann, Ingrid; Nozawa, Satonori; Haeggstroem, Ingemar; Tjulin, Anders; Dalin, Peter; Hall, Chris; Anyairo, Charles; Rostami, Sina

    2017-04-01

    One of the processes that are linked to the entry of cosmic dust in atmosphere is the formation of Polar Mesospheric Summer Echoes (PMSE). PMSE are strong radar echoes that are observed in the polar summer mesosphere. They are caused by spatial variations in the plasma refractive index which arise in the presence of electrically charged ice particles. The ice particles that are linked to PMSE are often below the optically observable size range and are assumed to form by water ice condensing onto meteoric smoke particles at around 80 to 90 km altitude. The atmosphere at PMSE altitude is influenced by solar radiative forcing from above and gravity waves from below, and while ionization is small, it is highly variable due to a number of different processes. A straightforward quantitative description of the physics leading to PMSE formation is at present still missing. With one of the first tri-static PMSE observations with the EISCAT VHF radar we found signs of wind shear in PMSE. The observations suggest that the PMSE contains sublayers that move in different directions horizontally, and this points to Kelvin-Helmholtz instability possibly playing a role in PMSE process. We compare the EISCAT observations to wind observations carried with other radar at the same location and discuss implications for future observations. We acknowledge Chris Meek and Alan Manson who provided MF radar data. EISCAT is an international association supported by research organizations in Norway (NFR), Sweden (VR), Finland (SA), Japan (NIPR and STEL), China (CRIPR), and the United Kingdom (NERC); data are available under http://www. eiscat.se/madrigal/.

  8. Towards an automatic wind speed and direction profiler for Wide Field adaptive optics systems

    Science.gov (United States)

    Sivo, G.; Turchi, A.; Masciadri, E.; Guesalaga, A.; Neichel, B.

    2018-05-01

    Wide Field Adaptive Optics (WFAO) systems are among the most sophisticated adaptive optics (AO) systems available today on large telescopes. Knowledge of the vertical spatio-temporal distribution of wind speed (WS) and direction (WD) is fundamental to optimize the performance of such systems. Previous studies already proved that the Gemini Multi-Conjugated AO system (GeMS) is able to retrieve measurements of the WS and WD stratification using the SLOpe Detection And Ranging (SLODAR) technique and to store measurements in the telemetry data. In order to assess the reliability of these estimates and of the SLODAR technique applied to such complex AO systems, in this study we compared WS and WD values retrieved from GeMS with those obtained with the atmospheric model Meso-NH on a rich statistical sample of nights. It has previously been proved that the latter technique provided excellent agreement with a large sample of radiosoundings, both in statistical terms and on individual flights. It can be considered, therefore, as an independent reference. The excellent agreement between GeMS measurements and the model that we find in this study proves the robustness of the SLODAR approach. To bypass the complex procedures necessary to achieve automatic measurements of the wind with GeMS, we propose a simple automatic method to monitor nightly WS and WD using Meso-NH model estimates. Such a method can be applied to whatever present or new-generation facilities are supported by WFAO systems. The interest of this study is, therefore, well beyond the optimization of GeMS performance.

  9. The effect of unsteady and baroclinic forcing on predicted wind profiles in Large Eddy Simulations: Two case studies of the daytime atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2013-01-01

    and in relevant atmospheric fields (e.g. temperature) that occur at larger scales must be imposed through boundary conditions or as external forcing. In this work we study the influence of such variations on the wind profile in Large Eddy Simulations of daytime atmospheric boundary layers, by comparing...

  10. Millimeter Wave Radar for Atmospheric Turbulence Characterization and Wind Profiling for Improved Naval Operations

    Science.gov (United States)

    2016-12-29

    Profiling for Improved Naval Operations Benjamin Rock Bahman hafizi RichaRd fischeR Beam Physics Branch Plasma Physics Division antonio ting...Bahman Hafizi and Rich Fischer Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375 Tony Ting Research Support Instruments...which will be discussed in turn and then compared. A. Rayleigh Scattering In clear unperturbed air, the reflection of electromagnetic waves is

  11. Correlation of CCV Between In-Cylinder Swirl Ratio and Polar Velocity Profile in Valve Seat Region Using LES Under Motored Engine Condition★

    Directory of Open Access Journals (Sweden)

    Yang Xiaofeng

    2017-11-01

    Full Text Available An analysis of Transparent Combustion Chamber (TCC3 engine Large-Eddy Simulation (LES result was carried out to investigate Cycle-to-Cycle Variation (CCV correlation between in-cylinder swirl ratio and flow in the valve seat region of the intake port to address a challenging question on “What causes CCV of in-cylinder flow”. Polar Velocity (PV profile, mean velocities normal to a ring-shaped cutting surface in the valve seat region, is calculated to depict intake port flow. A Net Polar Velocity (NPV can be defined by performing the vector sum of the polar velocity around the intake valve. A standard deviation of PV is also calculated from azimuthal distribution of PV magnitudes relative to its mean value. The analysis of 18 LES cycles of TCC3 engine with a two-valve, pancake-shaped combustion chamber shows that similar CCV of in-cylinder swirl ratio patterns are observed at different crank angles from Intake Valve Opening (IVO to Exhaust Valve Opening (EVO. Further analysis shows clear correlations of CCV between in-cylinder swirl ratio and NPV magnitude and the standard deviation of PV at selected crank angles from IVO to EVO. The correlations get significantly better with the ring-shaped cutting surface moves from up-stream to downstream of the valve-seat region. This study reveals that the CCV of in-cylinder swirl ratio is built up gradually from upstream to downstream in the intake port and valve-seat region. Further evaluation of the analysis method is planned for a four-valve engine as an evaluation metric for better engine intake port design and combustion chamber optimization.

  12. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  13. 3-D MDT with spherical targets by bilinear interpolation for determining blood velocity profiles including the vessel wall effect

    Science.gov (United States)

    Choomphon-anomakhun, Natthaphon; Natenapit, Mayuree

    2018-02-01

    A numerical simulation of three-dimensional (3-D) implant assisted-magnetic drug targeting (IA-MDT) using ferromagnetic spherical targets, including the effect from the vessel wall on the blood flow, is presented. The targets were implanted within arterioles and subjected to an externally uniform applied magnetic field in order to increase the effectiveness of targeting magnetic drug carrier particles (MDCPs). The capture area (As) of the MDCPs was determined by inspection of the particle trajectories simulated from the particle equations of motion. The blood flow velocities at any particle position around the target were obtained by applying bilinear interpolation to the numerical blood velocity data. The effects on As of the type of ferromagnetic materials in the targets and MDCPs, average blood flow rates, mass fraction of the ferromagnetic material in the MDCPs, average radii of MDCPs (Rp) and the externally applied magnetic field strength (μ0H0) were evaluated. Furthermore, the appropriate μ0H0 and Rp for the IA-MDT design is suggested. In the case of the SS409 target and magnetite MDCPs, dimensionless capture areas ranging from 4.1- to 12.4 and corresponding to particle capture efficiencies of 31-94% were obtained with Rp ranging from 100- to 500 nm, weight fraction of 80%, μ0H0 of 0.6 T and an average blood flow rate of 0.01 ms-1. In addition, the more general 3-D modelling of IA-MDT in this work is applicable to IA-MDT using spherical targets implanted within blood vessels for both laminar and potential blood flows including the wall effect.

  14. Lidar profilers in the context of wind energy–a verification procedure for traceable measurements

    DEFF Research Database (Denmark)

    Gottschall, Julia; Courtney, Michael; Wagner, Rozenn

    2012-01-01

    for lidar profilers that enables us to achieve the required traceability. The procedure is based on a direct comparison of the measurements from the lidar and reference sensors mounted on a mast at various height levels. First, the data are corrected and filtered to obtain a representative data set ensuring......, the existing standards only permit the use of cup anemometers as standard instruments. The main issue preventing the use of remote sensors in such standards is the need to maintain the traceability of the measurements in the international standard system. In this paper, we describe a verification procedure...

  15. Techno-Economic and dynamic analysis of low velocity wind turbines for rural electrification in agricultural area of Ratchaburi Province, Thailand

    Science.gov (United States)

    Lipirodjanapong, Sumate; Namboonruang, Weerapol

    2017-07-01

    This paper presents the analysis of potential wind speed of electrical power generating using for agriculture in Ratchaburi province, Thailand. The total area is 1,900 square kilometers. First of all, the agriculture electrical load (AEL) data was investigated from all farming districts in Ratchaburi. Subsequently, the load data was analyzed and classified by the load power and energy consumption at individual district. The wind turbine generator (WTG) at capacity rate of 200w, 500w, 1,000w, and 2,000w were adopted to implement for the AEL in each area at wind speed range of 3 to 6 m/s. This paper shows the approach based on the wind speed at individual district to determine the capacity of WTG using the capacitor factor (CF) and the cost of energy (COE) in baht per unit under different WTG value rates. Ten locations for wind station installations are practical investigated. Results show that for instance, the Damnoen Sa-duak (DN-04) one of WTG candidate site is identically significant for economic investment of installing rated WTG. The results of COE are important to determine whether a wind site is good or not.

  16. A canopy-type similarity model for wind farm optimization

    Science.gov (United States)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2013-04-01

    The atmospheric boundary layer (ABL) flow through and over wind farms has been found to be similar to canopy-type flows, with characteristic flow development and shear penetration length scales (Markfort et al., 2012). Wind farms capture momentum from the ABL both at the leading edge and from above. We examine this further with an analytical canopy-type model. Within the flow development region, momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This spatial heterogeneity of momentum within the wind farm is characterized by large dispersive momentum fluxes. Once the flow within the farm is developed, the area-averaged velocity profile exhibits a characteristic inflection point near the top of the wind farm, similar to that of canopy-type flows. The inflected velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The new model is tested with results from wind tunnel experiments, which were conducted to characterize the turbulent flow in and above model wind farms in aligned and staggered configurations. The model is useful for representing wind farms in regional scale models, for the optimization of wind farms considering wind turbine spacing and layout configuration, and for assessing the impacts of upwind wind farms on nearby wind resources. Markfort CD, W Zhang and F Porté-Agel. 2012. Turbulent flow and scalar transport through and over aligned and staggered wind farms. Journal of Turbulence. 13(1) N33: 1-36. doi:10.1080/14685248.2012.709635.

  17. CFD analysis for siting of wind turbines on high-rise buildings

    Science.gov (United States)

    Veena, K.; Asha, V.; Arshad Shameem, C.; Venkatesh, T. N.

    2017-04-01

    Extracting energy from wind by placing wind turbines over tall buildings is an emerging idea for ”greener” cities. This paper discusses the best location for placing wind turbines based on numerical simulations. Different building geometries are considered by varying the dimension and number of buildings. Here real atmospheric boundary layer profiles are created with the help of the Weather Research and Forecasting model and also compared with the theoretical profiles from power law equation. Outputs from the simulations show the location where wind velocity is maximum and the possibility of placing wind turbines on the top as well as in the gap between the buildings. The paper also describes the significance of using realistic profiles instead of theoretical profiles.

  18. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  19. HURRICANE AND SEVERE STORM SENTINEL (HS3) HIGH-ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) High-Altitude Imaging Wind and Rain dataset was collected from the High-altitude Imaging Wind and Rain Airborne...

  20. Added damping of a wind turbine rotor : Two-dimensional discretization expressing the nonlinear wind-force dependency

    NARCIS (Netherlands)

    Van der Male, P.; Van Dalen, K.N.; Metrikine, A.

    2014-01-01

    In determining wind forces on wind turbine blades, and subsequently on the tower and the foundation, the blade response velocity cannot be neglected. This velocity alters the wind force, which depends on the wind velocity relative to that of the blades This blade response velocity component of the

  1. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  2. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...... modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...

  3. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity, defined as the 50-year wind speed (ten minute averages) under standard conditions, i.e. 10 meter over a homogeneous terrain with the roughness length 0.05 m. The sites are Skjern...

  4. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, Ole; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrainwith the roughness length 0.05 m. The sites...

  5. Peran Kecepatan Angin Terhadap Peningkatan Kenyamanan Termis Manusia Di Lingkungan Beriklim Tropis Lembab (the Role of Wind Velocity on Increasing Human Thermal Comfort in Hot and Humid Environment)

    OpenAIRE

    Sangkertadi, Sangkertadi

    2006-01-01

    The most important factors which influence the condition of thermal comfort are clothing, temperature, humidity, air velocity, and types of activities. In hot and humid climate, feeling of comfort are associated with sweating. Air velocity can cool building occupants by increasing convective and evaporative heat loses. This paper intends to explore the techniques for evaluating of thermal comfort especially with introduction of PMV and DISC scales for the tropical humid environment. The study...

  6. Distributed Acoustic Sensing (DAS) Array near a Highway for Traffic Monitoring and Near-Surface Shear-Wave Velocity Profiles

    Science.gov (United States)

    Wang, H. F.; Fratta, D.; Lancelle, C.; Ak, E. Ms; Lord, N. E.

    2017-12-01

    Monitoring traffic is important for many technical reasons. It allows for better design of future roads and assessment of the state of current roads. The number, size, weight, and speed of vehicles control deterioration rate. Also, real-time information supplies data to intelligent information systems to help control traffic. Recently there have been studies looking at monitoring traffic seismically as vibrations from traffic are not sensitive to weather and poor visibility. Furthermore, traffic noise can be used to image S-wave velocity distribution in the near surface by capturing and interpreting Rayleigh and Love waves (Nakata, 2016; Zeng et al. 2016). The capability of DAS for high spatial sampling (1 m), temporal sampling (up to 10 kHz), and distributed nature (tens of kilometers) allows for a closer look at the traffic as it passes and how the speed of the vehicle may change over the length of the array. The potential and difficulties of using DAS for these objectives were studied using two DAS arrays. One at Garner Valley in Southern California (a 700-meter array adjacent to CA Highway 74) and another in Brady Hot Springs, Nevada (an 8700-meter array adjacent to Interstate 80). These studies experimentally evaluated the use of DAS data for monitoring traffic and assessing the use of traffic vibration as non-localized sources for seismic imaging. DAS arrays should also be resilient to issues with lighting conditions that are problematic for video monitoring and it may be sensitive to the weight of a vehicle. This study along a major interstate provides a basis for examining DAS' potential and limitations as a key component of intelligent highway systems.

  7. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    of the wind field reconstruction methods. Two wind models were developed in this thesis. The first one employs lidar measurement at a single distance – but several heights –, accounts for shear through a power law profile, and estimates hub height wind speed, direction and the shear exponent. The second model...... combines the wind model with a simple one-dimensional induction model. The lidar inputs were line-of-sight velocity measurements taken at multiple distances close to the rotor, from 0.5 to 1.25 rotor diameters. Using the combined wind-induction model, hub height free stream wind characteristics...... uncertainties were also quantified. Further, the annual energy production (AEP) was computed for a range of annual mean wind speeds. At 8ms−1, the lidar-estimated AEP was within 1% to the one obtained with the cup anemometer. The combined wind-induction reconstruction technique represents a paradigm shift...

  8. Installation and Initial Operation of DOE's 449-MHz Wind Profiling Radars on the U.S. West Coast

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shaw, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, Victor R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilczak, J. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); White, A. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ayers, Tom [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jordan, Jim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, Clark W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-30

    The U.S. Department of Energy (DOE), in collaboration with the National Oceanic and Atmospheric Administration (NOAA), has recently completed the installation of three new wind profiling radars on the Washington and Oregon coasts. These systems operate at a frequency of 449 MHz and provide mean wind profiles to a height of roughly 8 km, with the maximum measurement height depending on time-varying atmospheric conditions. This is roughly half the depth of the troposphere at these latitudes. Each system is also equipped with a radio acoustic sounding system (RASS), which provides a measure of the temperature profile to heights of approximately 2 km. Other equipment deployed alongside the radar includes a surface meteorological station and GPS for column water vapor. This project began in fiscal year 2014, starting with equipment procurements and site selection. In addition, environmental reviews, equipment assembly and testing, site access agreements, and infrastructure preparations have been performed. Finally, with equipment deployment with data collection and dissemination, the primary tasks of this project have been completed. The three new wind profiling radars have been deployed at airports near Coos Bay, OR, and Astoria, OR, and at an industrial park near Forks, WA. Data are available through the NOAA Earth Systems Research Laboratory Data Display website, and will soon be made available through the DOE Atmosphere to Electrons data archive and portal as well.

  9. Gas dynamics in the inner few AU around the Herbig B[e] star MWC297. Indications of a disk wind from kinematic modeling and velocity-resolved interferometric imaging

    Science.gov (United States)

    Hone, Edward; Kraus, Stefan; Kreplin, Alexander; Hofmann, Karl-Heinz; Weigelt, Gerd; Harries, Tim; Kluska, Jacques

    2017-10-01

    Aims: Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods: We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results: The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of 99.6 ± 4.8°. The near-infrared continuum emission is 3.6 × more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue- and red-shifted emissions are displaced along a position angle of 24° ± 3° and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be

  10. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    Science.gov (United States)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  11. DOE's 449 MHz Wind Profiling Radars on the U.S. West Coast: Annual Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E.; Wilczak, J. M.; King, Clark W.; Shaw, William J.; White, A. B.; Ayers, Tom

    2016-09-30

    The three coastal wind profilers and associated meteorological instruments located in Forks, WA, Astoria, OR, and North Bend, OR, provide important observations at high temporal and vertical spatial resolution to characterize the meteorological inflow to the western region of the United States. These instruments have been operating for a year or more, and furnish boundary conditions for the modeling efforts of the WFIP2 project. The data have been delivered to archives at both NOAA and the DOE A2e DAP at a data recovery rate in excess of 98%. Site maintenance activities have been relatively minor, with a few component replacements and repairs to RASS foam. Bird mortality surveys have found no bird nests or carcasses, and the U.S. Fish and Wildlife Service has regularly been provided survey reports. This project represents a successful collaboration between PNNL and NOAA to procure, test, deploy, maintain, and operate three 449 MHz radar wind profilers.

  12. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  13. Some challenges of wind modelling for modern wind turbines: The Weibull distribution

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekatarina; Floors, Rogier

    2012-01-01

    Wind power assessments, as well as forecast of wind energy production, are key issues in wind energy and grid related studies. However the hub height of today’s wind turbines is well above the surface layer. Wind profiles studies based on mast data show that the wind profile above the surface layer...

  14. Turbulence Dissipation Rates in the Planetary Boundary Layer from Wind Profiling Radars and Mesoscale Numerical Weather Prediction Models during WFIP2

    Science.gov (United States)

    Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.

    2016-12-01

    When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.

  15. Wind Profile, Drag Coefficient and Cross-Section over the Coastal Zone for Quasi-Homogeneous Conditions

    DEFF Research Database (Denmark)

    Geernaert, G. L.; Astrup, P.

    1999-01-01

    Proceedings of the Symposium on the Wind-Driven Air-Sea Interface. Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes, Sydney, Australia, 11-15 January 1999.......Proceedings of the Symposium on the Wind-Driven Air-Sea Interface. Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes, Sydney, Australia, 11-15 January 1999....

  16. Thermal profile analysis of Doubly-Fed induction generator based wind power converter with air and liquid cooling methods

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2013-01-01

    Today, wind power generation system keeps on moving from onshore to offshore and also upscaling in size. As the lifetime of the wind power converter is prolonged to 20–25 years, this paper will investigate and compare different cooling methods for power modules — the air cooling and the liquid co...

  17. PERAN KECEPATAN ANGIN TERHADAP PENINGKATAN KENYAMANAN TERMIS MANUSIA DI LINGKUNGAN BERIKLIM TROPIS LEMBAB (The Role of Wind Velocity on Increasing Human Thermal Comfort in Hot and Humid Environment

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2006-07-01

    Full Text Available ABSTRAK Faktor utama yang mempengaruhi persepsi kenyamanan termis pada manusia adalah : pakaian, suhu, kelembaban dan kecepatan udara sekitar, serta jenis aktivitasnya. Di daerah beriklim panas dan lembab, rasa tidak nyaman berkaitan erat dengan keluarnya keringat. Angin dengan debit dan kecepatan tertentu dapat difungsikan untuk mendinginkan penghuni bangunan melalui proses evaporasi keringat dan proses perpindahan kalor secara konvektif. Tulisan ini menyajikan pendalaman tentang teknik mengevaluasi tingkat kenyamanan termis manusia di daerah beriklim tropis lembab khususnya dengan menggunakan skala DISC dan PMV. Studi ini difokuskan pada pengaruh kecepatan angin untuk meningkatkan kenyamanan termis manusia. Metode yang dipakai adalah simulasi numerik dengan menggunakan sejumlah persamaan praktis untuk penghitungan kenyamanan termis.   ABSTRACT The most important factors which influence the condition of thermal comfort are clothing, temperature, humidity, air velocity, and types of activities. In hot and humid climate, feeling of comfort are associated with sweating. Air velocity can cool building occupants by increasing convective and evaporative heat loses. This paper intends to explore the techniques for evaluating of thermal comfort especially with introduction of PMV and DISC scales for the tropical humid environment. The study is focused on the influence of air velocity to the scale number of both DSC and PMV. A simple numerical simulation with some of empirical correlations are used to estimate the index of thermal comfort

  18. Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea

    DEFF Research Database (Denmark)

    Sathe, Ameya; Gryning, Sven-Erik; Pena Diaz, Alfredo

    2011-01-01

    that represent long marine fetch are considered. It was observed that within a long marine fetch, the conditions in the North Sea are dominated by unstable [41% at Egmond aan Zee Offshore Wind Farm (OWEZ) and 33% at HR] and near-neutral conditions (49% at OWEZ and 47% at HR), and stable conditions (10% at OWEZ...... was not noticeable. Copyright © 2011 John Wiley & Sons, Ltd....

  19. Measurements of Martian dust devil winds with HiRISE

    Science.gov (United States)

    Choi, D.S.; Dundas, C.M.

    2011-01-01

    We report wind measurements within Martian dust devils observed in plan view from the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars. The central color swath of the HiRISE instrument has three separate charge-coupled devices (CCDs) and color filters that observe the surface in rapid cadence. Active features, such as dust devils, appear in motion when observed by this region of the instrument. Our image animations reveal clear circulatory motion within dust devils that is separate from their translational motion across the Martian surface. Both manual and automated tracking of dust devil clouds reveal tangential winds that approach 20-30 m s -1 in some cases. These winds are sufficient to induce a ???1% decrease in atmospheric pressure within the dust devil core relative to ambient, facilitating dust lifting by reducing the threshold wind speed for particle elevation. Finally, radial velocity profiles constructed from our automated measurements test the Rankine vortex model for dust devil structure. Our profiles successfully reveal the solid body rotation component in the interior, but fail to conclusively illuminate the profile in the outer regions of the vortex. One profile provides evidence for a velocity decrease as a function of r -1/2, instead of r -1, suggestive of surface friction effects. However, other profiles do not support this observation, or do not contain enough measurements to produce meaningful insights. Copyright 2011 by the American Geophysical Union.

  20. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas

    Directory of Open Access Journals (Sweden)

    F. Fécan

    1999-01-01

    Full Text Available Large-scale simulation of the soil-derived dust emission in semi-arid regions needs to account for the influence of the soil moisture on the wind erosion threshold. Soil water retention consists of molecular adsorption on the soil grain surface and capillary forces between the grain. Interparticle capillary forces (characterized by the moisture tension are the main factor responsible for the increase of the wind erosion threshold observed when the soil moisture increases. When the soil moisture content is close to but smaller than the maximum amount of adsorbed water, w' (depending on the soil texture, these capillary forces are considered as not strong enough to significantly increase the erosion threshold. An expression of the moisture tension as a function of soil moisture and w' is derived from retention curves. From this expression, a parametrization of the ratio of the wet to dry erosion thresholds has been developed as a function of soil moisture and soil texture. The coefficients of this parametrization have been determined by using experimental data from the literature. An empirical relationship between w' and soil clay content has been established. The erosion threshold ratios simulated for different soil textures were found to be in good agreement with the experimental data.Key words. Atmospheric composition and structure (Aerosols and particles · Hydrology (soil moisture

  1. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas

    Energy Technology Data Exchange (ETDEWEB)

    Fecan, F.; Marticorena, B.; Bergametti, G. [Paris-7 Univ. (France). Lab. Interuniversitaire des Systemes Atmospheriques

    1999-01-01

    Large-scale simulation of the soil-derived dust emission in semiarid regions needs to account for the influence of the soil moisture on the wind erosion threshold. Soil water retention consists of molecular adsorption on the soil grain surface and capillary forces between the grain. Interparticle capillary forces (characterized by the moisture tension) are the main factor responsible for the increase of the wind erosion threshold observed when the soil moisture increases. When the soil moisture content is close to but smaller than the maximum amount of adsorbed water, w` (depending on the soil texture), these capillary forces are considered as not strong enough to significantly increase the erosion threshold. An expression of the moisture tension as a function of soil moisture and w` is derived from retention curves. From this expression, a parametrization of the ratio of the wet to dry erosion thresholds has been developed as a function of soil moisture and soil texture. The coefficients of this parametrization have been determined by using experimental data from the literature. An empirical relationship between w` and soil clay content has been established. The erosion threshold ratios simulated for different soil textures were found to be in good agreement with the experimental data. (orig.) 24 refs.

  2. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas

    Directory of Open Access Journals (Sweden)

    F. Fécan

    Full Text Available Large-scale simulation of the soil-derived dust emission in semi-arid regions needs to account for the influence of the soil moisture on the wind erosion threshold. Soil water retention consists of molecular adsorption on the soil grain surface and capillary forces between the grain. Interparticle capillary forces (characterized by the moisture tension are the main factor responsible for the increase of the wind erosion threshold observed when the soil moisture increases. When the soil moisture content is close to but smaller than the maximum amount of adsorbed water, w' (depending on the soil texture, these capillary forces are considered as not strong enough to significantly increase the erosion threshold. An expression of the moisture tension as a function of soil moisture and w' is derived from retention curves. From this expression, a parametrization of the ratio of the wet to dry erosion thresholds has been developed as a function of soil moisture and soil texture. The coefficients of this parametrization have been determined by using experimental data from the literature. An empirical relationship between w' and soil clay content has been established. The erosion threshold ratios simulated for different soil textures were found to be in good agreement with the experimental data.

    Key words. Atmospheric composition and structure (Aerosols and particles · Hydrology (soil moisture

  3. Sedimentation velocity analysis of heterogeneous protein-protein interactions: sedimentation coefficient distributions c(s) and asymptotic boundary profiles from Gilbert-Jenkins theory.

    Science.gov (United States)

    Dam, Julie; Schuck, Peter

    2005-07-01

    Interacting proteins in rapid association equilibrium exhibit coupled migration under the influence of an external force. In sedimentation, two-component systems can exhibit bimodal boundaries, consisting of the undisturbed sedimentation of a fraction of the population of one component, and the coupled sedimentation of a mixture of both free and complex species in the reaction boundary. For the theoretical limit of diffusion-free sedimentation after infinite time, the shapes of the reaction boundaries and the sedimentation velocity gradients have been predicted by Gilbert and Jenkins. We compare these asymptotic gradients with sedimentation coefficient distributions, c(s), extracted from experimental sedimentation profiles by direct modeling with superpositions of Lamm equation solutions. The overall shapes are qualitatively consistent and the amplitudes and weight-average s-values of the different boundary components are quantitatively in good agreement. We propose that the concentration dependence of the area and weight-average s-value of the c(s) peaks can be modeled by isotherms based on Gilbert-Jenkins theory, providing a robust approach to exploit the bimodal structure of the reaction boundary for the analysis of experimental data. This can significantly improve the estimates for the determination of binding constants and hydrodynamic parameters of the complexes.

  4. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  5. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  6. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  7. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  8. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  9. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  10. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  11. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, Marijn Floris; Campagnolo, Filippo; Sjöholm, Mikael

    2017-01-01

    to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The duallidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe...... as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hotwire probes are the larger measurement...... probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing...

  12. Data-driven wind plant control

    NARCIS (Netherlands)

    Gebraad, P.M.O.

    2014-01-01

    Each wind turbine in a cluster of wind turbines (a wind power plant) can influence the performance of other turbines through the wake that forms downstream of its rotor. The wake has a reduced wind velocity, since the turbine extracts energy from the flow, and the obstruction by the wind turbine

  13. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    Science.gov (United States)

    Drew, J. E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory.

  14. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    International Nuclear Information System (INIS)

    Drew, J.E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory. 55 refs

  15. Estimated Drag Coefficients and Wind Structure of Hurricane Frances

    Science.gov (United States)

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.

    2006-12-01

    As part of the Coupled Boundary Layers Air Sea Transfer (CBLAST) experiment, an array of drifters and floats was deployed from an aircraft just ahead of Hurricane Frances during it's passage to the northwest side of the Caribbean Island chain in August, 2004. The ocean and surface air conditions prior to, during, and after Hurricane Frances were documented by multiple sensors. Two independent estimates of the surface wind field suggest different storm structures. NOAA H*WINDS, an objectively analyzed product using a combination of data collected at the reconnaissance flight level, GPS profilers (dropwindsondes), satellites, and other data, suggest a 40km radius of maximum wind. A product based on the radial momentum equation balance using \\ital{in-situ} surface pressure data and wind direction measurements from the CBLAST drifter array suggests that the radius of maximum winds was 15km. We used a regional version of the MITGCM model with closed boundaries and realistic temperature and salinity fields which was forced with these wind field products to determine which wind field leads to circulation and SST structures that are most consistent with observed sea surface temperature fields and float profile data. Best estimates of the surface wind structure are then used to estimate the appropriate drag coefficient corresponding to the maximum velocity. Our results are compared with those obtained previously.

  16. Migrating birds : assessment of impact on 915-MHz radar wind profiler performance at the Atmospheric Radiation Measurement Program's southern great plains

    International Nuclear Information System (INIS)

    Pekour, M. S.

    2002-01-01

    The U. S. Department of Energy's Atmospheric Radiation Measurement Program is running a small network of 915-MHz radar wind profilers (RWPs) at its Southern Great Plains Cloud and Radiation Testbed site in northern Oklahoma and southern Kansas. Seasonal migration of passerines may cause significant interference with the operation of 915-MHz RWPs. The extent of this ''bird jamming'' depends on the radar's parameters, the place of deployment, the season, and the time of day. This poster presents a new diagnostic method for detecting possible bird contamination in RWP data, along with an evaluation of the method using a three-year data set for two RWPs

  17. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2012-11-01

    Full Text Available We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.

    WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.

    In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11

  18. Validation of mixing height determined from vertical profiles of wind and temperature from the DMI-HIRLAM NWP model in comparison with readiosoundings

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, A.; Soerensen, J.H.; Nielsen, N.W. [Danish Meteorological Inst., DMI, Copenhagen (Denmark)

    1997-10-01

    A sensitivity study is performed of vertical profiles from the numerical weather prediction model DMI-HIRLAM (DMI-HIgh Resolution Limited Area Model). The study involves profiles of horizontal wind, temperature and humidity in the lower troposphere up to 2500 meter. Detailed comparisons of analysed as well as forecast profiles are made with measured data from several radio-sonde stations throughout Europe. Methods for estimating the Mixing Height (MH) based on a bulk Richardson number method, the Vogelezang and Holtslag method and parcel methods are also studied. The methods are inter-compared, and MH based on data from DMI-HIRLAM are compared with the corresponding MH based on radiosonde data. For convective conditions the MH estimates are also compared with subjective estimates of the MH. In this paper preliminary results mainly based on data from Jaegersborg (Copenhagen) are presented. Results based on data from 1994-95 show that the resemblance between measured profiles and the DMI-HIRLAM profiles is fairly good in general. Also the estimates of the MH based on DMI-HIRLAM data is in general of nearly the same quality as estimations based on observed data. However, especially in convective conditions there is a tendency by DMI-HIRLAM to underestimate the strength of the mixing and thereby relatively large errors in the estimates of the MH can occur. (au)

  19. Laser Doppler detection systems for gas velocity measurement.

    Science.gov (United States)

    Huffaker, R M

    1970-05-01

    The velocity of gas flow has been remotely measured using a technique which involves the coherent detection of scattered laser radiation from small particles suspended in the fluid utilizing the doppler effect. Suitable instrumentation for the study of wind tunnel type and atmospheric flows are described. Mainly for reasons of spatial resolution, a function of the laser wavelength, the wind tunnel system utilizes an argon laser operating at 0.5 micro. The relaxed spatial resolution requirement of atmospheric applications allows the use of a carbon dioxide laser, which has superior performance at a wavelength of 10.6 micro, a deduction made from signal-to-noise ratio considerations. Theoretical design considerations are given which consider Mie scattering predictions, two-phase flow effects, photomixing fundamentals, laser selection, spatial resolution, and spectral broadening effects. Preliminary experimental investigations using the instrumentation are detailed. The velocity profile of the flow field generated by a 1.27-cm diam subsonic jet was investigated, and the result compared favorably with a hot wire investigation conducted in the same jet. Measurements of wind velocity at a range of 50 m have also shown the considerable promise of the atmospheric system.

  20. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  1. Profiles

    International Nuclear Information System (INIS)

    2004-01-01

    Profiles is a synthetic overview of more than 100 national energy markets in the world, providing insightful facts and key energy statistics. A Profile is structured around 6 main items and completed by key statistics: Ministries, public agencies, energy policy are concerned; main companies in the oil, gas, electricity and coal sectors, status, shareholders; reserve, production, imports and exports, electricity and refining capacities; deregulation of prices, subsidies, taxes; consumption trends by sector, energy market shares; main energy projects, production and consumption prospects. Statistical Profiles are present in about 3 pages the main data and indicators on oil, gas, coal and electricity. (A.L.B.)

  2. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z- M relationship

    Science.gov (United States)

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2018-02-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  3. The benefit of wind atlases in wind energy and their verification

    Science.gov (United States)

    Bethke, Julia; Kampmeyer, Jens; Mengelkamp, Heinz-Theo

    2014-05-01

    1 INTRODUCTION Wind atlases such as reanalysis data and downscaled data sets are widely used in the wind energy sector, e.g. for long-term correlation of short-term measurements or initial site search. Due to the financial impact of statements derived from wind atlases, their verification is of high importance. Here, different wind atlases are verified in-depth with numerous certified high-quality mast measurements covering a broad range of heights up to 200 m. In contrast to the commonly used weather stations, high masts allow for an evaluation of vertical profiles and atmospheric stability. The following questions will be addressed: What are wind atlases? How well are they performing? Which benefit do wind atlases have in wind energy? 2 APPROACH The performance of commonly used reanalysis data, e.g. MERRA, ERA-Interim, and two data sets downscaled from MERRA reanalysis data is investigated. The first downscaled data set is derived by the mesoscale model MM5 and has a spatial and temporal resolution of 20 km and 10 min, respectively. The second downscaled data set is derived by the WRF model and has a spatial and temporal resolution of 3 km and 10 min, respectively. Certified high-quality measurements of 45 met masts with 160 anemometers covering a range of complexity types, measurement heights between 30 m and 200 m and a time period of 2 years are compared to the wind atlases. Hourly values are analysed. 3 RESULTS The correlation with hourly measurements of wind speed is very good for all data sets. Correlation increases with decreasing terrain complexity. Wind directions are also met very well by all data sets. The frequency distributions of wind speed and therefore, the Weibull parameters are reproduced very well by the downscaled data sets for a broad range of velocities, however underestimating higher velocities. MERRA generally strongly overestimates wind speed. Diurnal and annual cycles as well as vertical profiles are reproduced more accurately by the

  4. Astronomical site survey report on dust measurement, wind profile, optical turbulence, and their correlation with seeing over IAO-Hanle. Astronomical site survey report over IAO-Hanle

    Science.gov (United States)

    Ningombam, Shantikumar S.; Kathiravan, S.; Parihar, P. S.; L. Larson, E. J.; Mohanan, Sharika; Angchuk, Dorje; Jorphel, Sonam; Rangarajan, K. E.; Prabhu, K.

    2017-04-01

    The present work discusses astronomical site survey reports on dust content, vertical distribution of atmospheric turbulence, precipitable water vapor (PWV), surface and upper-air data, and their effects on seeing over the Indian Astronomical Observatory (IAO) Hanle. Using Laser Particulate Counter, ambient dust measurements at various sizes (0.3 μm to 25 μm) were performed at various locations at the site during November 2015. Estimated volume concentration for the particle size at 0.5 μm was around 10,000 per cubic foot, which is equivalent to ten thousand class of clean room standard protocol. During the measurement, surface wind speed varied from 0-20 m s -1, while estimated aerosol optical depth (AOD) using Sky radiometer (Prede) varied from 0.02-0.04 at 500 nm, which indicates the site is fairly clean. The two independent measurements of dust content and aerosol concentrations at the site agreed well. The turbulence or wind gust at the site was studied with wind profiles at three different heights above the ground. The strength of the wind gust varies with time and altitude. Nocturnal temperature across seasons varied with a moderate at summer (6-8 ∘C) and lower in winter (4-5 ∘C). However, the contrast between the two is significantly small due to cold and extremely dry typical climatic conditions of the site. The present study also examined the effects of surface and upper-air data along with Planetary Boundary Layer (PBL) dynamics with seeing measurement over the site. Further, a comparative study of such observed parameters was conducted with other high altitude astronomical observatories across the globe.

  5. The Profile Envision and Splicing Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    Science.gov (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Launch vehicle programs require vertically complete atmospheric profiles. Many systems at the ER to make the necessary measurements, but all have different EVR, vertical coverage, and temporal coverage. MSFC Natural Environments Branch developed a tool to create a vertically complete profile from multiple inputs using Python. Forward work: Finish Formal Testing Acceptance Testing, End-to-End Testing. Formal Release

  6. Wake Development of a Model Vertical Axis Wind Turbine

    Science.gov (United States)

    Kadum, Hawwa; Friedman, Sasha; Camp, Elizabeth; Cal, Rau'l.

    2015-11-01

    At the Portland State University wind tunnel facility, an experiment is conducted to observe the downstream development of the wake past a model vertical axis wind turbine (VAWT). The flow domain is composed of streamwise-spanwise planes at mid-height of the VAWT rotor and data is obtained via particle image velocimetry (PIV). The flow field is assessed by analyzing contours of mean velocities and the full Reynolds stress tensor. Furthermore, profiles of the aforementioned quantities and flow parameters are discussed in the context of downstream evolution/flow development.

  7. Influence of curing profile and fibre architecture on the fatigue resistance of composite materials for wind turbine blades

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The fatigue performance of unidirectional glass fibre reinforced epoxy is found to be highly dependent on the manufacturing conditions, where a low manufacturing temperature, for the investigated wind turbine relevant composite material system, is found to improve the tension/tension fatigue life......-ray computer tomography. Thereby, it has been found during ex-situ fatigue studies, that the fatigue failure mechanism is highly influenced by transverse cracking in the so-called backing bundles which is present in order to ease the handling during the dry fabric layup during wind turbine blade manufacturing....... It is a failure mechanism which is judge to be highly influenced by the magnitude of the residual stresses exhibit in the matrix material and therefore also in the secondary oriented backing bundles. Using fibre Bragg grated optical fibres2; the build-up of the cure-induced strains in the fibre-reinforcement has...

  8. Complementary wind sensing techniques: sodar and RASS

    Directory of Open Access Journals (Sweden)

    G. Peters

    1994-05-01

    Full Text Available Radioacoustic sounding (RASS, normally used for temperature profiling, can also be applied for wind measurements. The RASS detects echoes of radar waves, which have been scattered at acoustic waves, and derives the sound velocity from the frequency shift. From the difference of sound velocities measured under different beam directions windprofiles can be determined. Ground clutter does not principally interfere with RASS echoes due to their big frequency shift. Therefore, RASS can supplement radar wind profilers at lower levels where clear-air echoes may be not detectable due to ground clutter. The upper measuring altitude of RASS is limited to a few thousand radar wavelengths by the sound absorption and by the drift of the focal spot of the RASS echo. A further alternative for low-level wind measurements is the Doppler sodar. It is less sensitive to ground clutter than radar, but the measuring height is also limited by sound absorption. It requires no frequency allocation and may therefore be the only choice at some locations. In Germany, Doppler sodars have been operating successfully on a routine basis for more than 10 years at several sites for environmental monitoring purposes.

  9. Sound velocity profile from velocimeter cast by NOAA Navigation Response Team-4 for Cleveland field examination survey in Lake Erie on 17 October 2007 (NODC Accession 0036139)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical oceanographic data were collected by NOAA Navigation Response Team-4 for Cleveland field examination survey in Lake Erie on 17 October 2007. Sound velocity...

  10. Numerical modelling of wind effects on breaking waves in the surf zone

    Science.gov (United States)

    Xie, Zhihua

    2017-10-01

    Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.

  11. Wind flow through shrouded wind turbines

    Science.gov (United States)

    2017-03-01

    velocity and model angle were varied . Additionally, static wall pressures and cross section flow were studied with the addition of a screen. The pressure...the geometry of a wind lens or flange on the shroud and a gradually diverging shape, proved to accelerate the flow through the duct. 14. SUBJECT...Tunnel velocity and model angle were varied . Additionally, static wall pressures and cross section flow were studied with the addition of a screen. The

  12. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    large wind tunnels simulating the actual flight conditions as nearly as possible. Often, several wind tunnels ... wind tunnel tests can be 'scaled' to the actual velocity and actual body size using suitable scaling laws. A typical wind tunnel consists ofa test section ... tion and control positions. Some of this instrumentation like six.

  13. Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan

    2016-01-01

    the insertion point. The presence of the wind turbine and its wake is found to have insignificant effect on upstream turbulence. Finally, the mean velocity profiles in the wake are found to be in good agreement with both lidar measurements and CFD simulations. (C) 2016 Elsevier Ltd. All rights reserved....

  14. Orbital velocity

    OpenAIRE

    Modestino, Giuseppina

    2016-01-01

    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  15. Laboratory modelling of the wind-wave interaction with modified PIV-method

    Directory of Open Access Journals (Sweden)

    Sergeev Daniil

    2017-01-01

    Full Text Available Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Flume of the Large Thermostratified Tank of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS, in conditions modeling the near water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The main modifications are: 1 the use of high-speed video recording (1000-10000 frames/sec with continuous laser illumination helps to obtain ensemble of the velocity fields in all phases of the wavy surface for subsequent statistical processing; 2 the development and application of special algorithms for obtaining form of the curvilinear wavy surface of the images for the conditions of parasitic images of the particles and the droplets in the air side close to the surface; 3 adaptive cross-correlation image processing to finding the velocity fields on a curved grid, caused by wave boarder; 4 using Hilbert transform to detect the phase of the wave in which the measured velocity field for subsequent appropriate binning within procedure obtaining the average characteristics.

  16. Laboratory modelling of the wind-wave interaction with modified PIV-method

    Science.gov (United States)

    Sergeev, Daniil; Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Bopp, Maximilian; Jaehne, Bernd

    Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Flume of the Large Thermostratified Tank of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), in conditions modeling the near water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV) was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The main modifications are: 1) the use of high-speed video recording (1000-10000 frames/sec) with continuous laser illumination helps to obtain ensemble of the velocity fields in all phases of the wavy surface for subsequent statistical processing; 2) the development and application of special algorithms for obtaining form of the curvilinear wavy surface of the images for the conditions of parasitic images of the particles and the droplets in the air side close to the surface; 3) adaptive cross-correlation image processing to finding the velocity fields on a curved grid, caused by wave boarder; 4) using Hilbert transform to detect the phase of the wave in which the measured velocity field for subsequent appropriate binning within procedure obtaining the average characteristics.

  17. Numerical simulation of energy losses in a wind turbine due to icing; Simulation numerique des pertes energetiques d'une eolienne dues au givrage

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrova, M.; Ibrahim, H. [TechnoCentre eolien Gaspesie-les Iles, Gaspe, PQ (Canada); Fortin, G.; Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada); Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada)

    2010-07-01

    This poster reported on a study that reproduced frost conditions measured on wind turbines in Murdochville, Quebec. Frost accumulation was measured on the NACA 63 415 blade profile of a Vesta V80, 1.8 MW wind turbine. The loss of mass was measured and the form of frost deposited was examined along with lift and drag. Several tests were conducted with various frost precipitation. Meteorological data such as wind velocity, wind direction, air temperature, relative humidity, barometric pressure and solar radiation were recorded along with icing events and their duration. The model was used to determine at which point the drag would cause the turbine to stop turning. refs., tabs., figs.

  18. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob

    2011-01-01

    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... for maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  19. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    Science.gov (United States)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  20. Diurnal Evolution and Annual Variability of Boundary Layer Height in the Columbia River Gorge through the `Eye' of Wind Profiling Radars

    Science.gov (United States)

    Bianco, L.; Djalalova, I.; Konopleva-Akish, E.; Kenyon, J.; Olson, J. B.; Wilczak, J. M.

    2016-12-01

    The Second Wind Forecast Improvement Project (WFIP2) is a DoE- and NOAA-sponsored program whose goal is to improve the accuracy of numerical weather prediction (NWP) forecasts in complex terrain. WFIP2 consists of an 18-month (October 2015 - March 2017) field campaign held in the Columbia River basin, in the Pacific Northwest of the U.S. As part of WFIP2 a large suite of in-situ and remote sensing instrumentation has been deployed, including, among several others, a network of eight 915-MHz wind profiling radars (WPRs) equipped with radio acoustic sounding systems (RASSs), and many surface meteorological stations. The diurnal evolution and annual variability of boundary layer height in the area of WFIP2 will be investigated through the `eye' of WPRs, employing state-of-the-art automated algorithms, based on fuzzy logic and artificial intelligence. The results will be used to evaluate possible errors in NWP models in this area of complex terrain.

  1. Absorption line profiles in a moving atmosphere - A single scattering linear perturbation theory

    Science.gov (United States)

    Hays, P. B.; Abreu, V. J.

    1989-01-01

    An integral equation is derived which linearly relates Doppler perturbations in the spectrum of atmospheric absorption features to the wind system which creates them. The perturbation theory is developed using a single scattering model, which is validated against a multiple scattering calculation. The nature and basic properties of the kernels in the integral equation are examined. It is concluded that the kernels are well behaved and that wind velocity profiles can be recovered using standard inversion techniques.

  2. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  3. Intermittent heating of the corona as an alternative to generate fast solar wind flows

    International Nuclear Information System (INIS)

    Grappin, R.; Mangeney, A.; Schwartz, S.J.; Feldman, W.C.

    1999-01-01

    We discuss a new alternative to the generation of fast streams which does not require momentum addition beyond the critical point. We consider the consequences on the solar wind of temporally intermittent heat depositions at the base of the wind. With the help of 1d hydrodynamic simulations we show that the instantaneous wind velocity profile fluctuates around an average profile well above the one corresponding to the Parker solution with a coronal temperature equal to the average coronal temperature imposed at the bottom of the numerical domain. The origin of this result lies in a previously overlooked phenomenon, the overexpansion of hot plasma regions in the subsonic wind. copyright 1999 American Institute of Physics

  4. Turbulence Driven by Common Non-stationary Weak Winds

    Science.gov (United States)

    Mahrt, L.

    2015-12-01

    Complications with analysis of turbulence in common non-stationary weak-wind conditions are briefly surveyed. The behavior of turbulent transport in the weak-wind stably stratified boundary layer is then examined in terms of the non-stationarity of the wind field using measurements from three field programs with towers ranging from 12 to 20 m and an extensive horizontal network of sonic anemometers. The relationship of the friction velocity to the stratification and small non-stationary submeso motions are studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso motions. Cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The relationship between the heat flux, wind speed and stratification is investigated. Weak wind conditions include frequent vertical convergence of the heat flux and implied temperature advection.

  5. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  6. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    Science.gov (United States)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  7. Single-sided natural ventilation driven by wind pressure and temperature difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Heiselberg, Per

    2008-01-01

    Even though opening a window for ventilation of a room seems very simple, the flow that occurs in this situation is rather complicated. The amount of air going through the window opening will depend on the wind speed near the building, the temperatures inside and outside the room, the wind direct...... on the ratio between the forces and the wind direction. This change is also found in the velocity profiles measured in the opening, which might change from wind dominated to temperature dominated under the same wind direction but with increasing temperature difference.......Even though opening a window for ventilation of a room seems very simple, the flow that occurs in this situation is rather complicated. The amount of air going through the window opening will depend on the wind speed near the building, the temperatures inside and outside the room, the wind......-scale wind tunnel experiments have been made with the aim of making a new expression for calculation of the airflow rate in single-sided natural ventilation. During the wind tunnel experiments it was found that the dominating driving force differs between wind speed and temperature difference depending...

  8. Small scale wind power harnessing in Colombian oil industry facilities: Wind resource and technology issues

    Energy Technology Data Exchange (ETDEWEB)

    Giraldo, Mauricio; Nieto, Cesar; Escudero, Ana C.; Cobos, Juan C.; Delgado, Fernando

    2010-07-01

    Full text: Looking to improve its national and international standing, Colombia's national oil company, Ecopetrol, has set its goal on becoming involved on the production of energy from multiple sources, most importantly, on having an important percentage of its installed capacity from renewable sources. Part of this effort entices the evaluation of wind power potential on its facilities, including production, transportation and administrative, as well as identifying those technologies most suitable for the specific conditions of an equatorial country such as Colombia. Due to the lack of adequate site information, the first step consisted in superimposing national data to the facilities map of the company; this allowed for the selection of the first set of potential sites. From this set, the terminal at Covenas-Sucre was selected taking into account not only wind resource, but ease of access and power needs, as well as having a more or less representative wind potential in comparison to the rest of the country. A weather station was then installed to monitor wind variables. Measurements taken showed high variations in wind direction, and relatively low velocity profiles, making most commercially available wind turbines difficult to implement. In light of the above, a series of iterative steps were taken, first considering a range of individual Vertical Axis Wind Turbines (VAWT), given their capacity to adapt to changing wind directions. However, wind speed variations proved to be a challenge for individual VAWT's, i.e. Darriues turbines do not work well with low wind speeds, and Savonius turbines are not efficient of high wind speeds. As a result, a combined Darrieus- Savonius VAWT was selected given the capacity to adapt to both wind regimes, while at the same time modifying the size and shape of the blades in order to adapt to the lower average wind speeds present at the site. The resulting prototype is currently under construction and is scheduled to

  9. An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R. J. [Cornell Univ., Ithaca, NY (United States). Sibley School of Mechanical & Aerospace Engineering; Pryor, S. C. [Cornell Univ., Ithaca, NY (United States). Dept. of Earth and Atmospheric Sciences

    2017-09-18

    This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At the National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to

  10. Analysis of Wind Energy Potential and Vibrations Caused by Wind Turbine on Its Basement

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Z.; Hanslian, David; Stolárik, M.; Pinka, M.

    2014-01-01

    Roč. 19, č. 3 (2014), s. 151-159 ISSN 1335-1788 Institutional support: RVO:68378289 Keywords : wind turbine * wind energy potential * wind map * wind map * experimental measurement * vibration velocity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.329, year: 2014 http://actamont.tuke.sk/pdf/2014/n3/6kalab.pdf

  11. Wind data for wind driven plant. [site selection for optimal performance

    Science.gov (United States)

    Stodhart, A. H.

    1973-01-01

    Simple, averaged wind velocity data provide information on energy availability, facilitate generator site selection and enable appropriate operating ranges to be established for windpowered plants. They also provide a basis for the prediction of extreme wind speeds.

  12. Performance evaluation and bias correction of DBS measurements for a 1290-MHz boundary layer profiler

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2018-02-01

    Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.

  13. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The optimization of airfoil profiles specifically designed for wind turbine application was initiated in the late 80’s [67, 68, 30, 15]. The first attempts to reduce airfoil noise for wind turbines made use of airfoil trailing edge serration. Themodification of airfoil shapes targeted at noise...... reduction is more recent. An important effort was produced in this direction within the SIROCCO project. This latter work involved measurements on full size wind turbines and showed that trailing edge serration may proved a viable solution for mitigating wind turbine noise though it has not been implemented...... on commercial wind turbine yet. It should be mentioned here that the attenuation of turbulent inflow noise using wavy leading edge has recently been investigated [55], but this technique has still to be further validated for practical applications. In this paper, it is proposed to optimize an airfoil which...

  14. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    Directory of Open Access Journals (Sweden)

    P. J. H. Volker

    2015-11-01

    Full Text Available We describe the theoretical basis, implementation, and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP, uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated for a neutral atmospheric boundary layer against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements, and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.

  15. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  16. Water Vapor, Temperature and Wind Profiles within Maize Canopy under in-Field Rainwater Harvesting with Wide and Narrow Runoff Strips

    Directory of Open Access Journals (Sweden)

    Weldemichael A. Tesfuhuney

    2013-11-01

    Full Text Available Micrometeorological measurements were used to evaluate heat and water vapor to describe the transpiration (Ev and soil evaporation (Es processes for wide and narrow runoff strips under in-field rainwater harvesting (IRWH system. The resulting sigmoid-shaped water vapor (ea in wide and narrow runoff strips varied in lower and upper parts of the maize canopy. In wide runoff strips, lapse conditions of ea extended from lowest measurement level (LP to the upper middle section (MU and inversion was apparent at the top of the canopy. The virtual potential temperature (θv profile showed no difference in middle section, but the lower and upper portion (UP had lower  in narrow, compared to wide, strips, and LP-UP changes of 0.6 K and 1.2 K were observed, respectively. The Ev and Es within the canopy increased the ea concentration as determined by the wind order of magnitude. The ea concentration reached peak at about 1.6 kPa at a range of wind speed value of 1.4–1.8 m∙s−1 and 2.0–2.4 m∙s−1 for wide and narrow treatments, respectively. The sparse maize canopy of the wide strips could supply more drying power of the air in response to atmospheric evaporative demand compared to narrow strips. This is due to the variation in air flow in wide and narrow runoff strips that change gradients in ea for evapotranspiration processes.

  17. Global Properties of M31’s Stellar Halo from the SPLASH Survey. III. Measuring the Stellar Velocity Dispersion Profile

    Science.gov (United States)

    Gilbert, Karoline M.; Tollerud, Erik; Beaton, Rachael L.; Guhathakurta, Puragra; Bullock, James S.; Chiba, Masashi; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Tanaka, Mikito

    2018-01-01

    We present the velocity dispersion of red giant branch stars in M31’s halo, derived by modeling the line-of-sight velocity distribution of over 5000 stars in 50 fields spread throughout M31’s stellar halo. The data set was obtained as part of the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) Survey, and covers projected radii of 9 to 175 kpc from M31’s center. All major structural components along the line of sight in both the Milky Way (MW) and M31 are incorporated in a Gaussian Mixture Model, including all previously identified M31 tidal debris features in the observed fields. The probability that an individual star is a constituent of M31 or the MW, based on a set of empirical photometric and spectroscopic diagnostics, is included as a prior probability in the mixture model. The velocity dispersion of stars in M31’s halo is found to decrease only mildly with projected radius, from 108 km s‑1 in the innermost radial bin (8.2 to 14.1 kpc) to ∼80 to 90 km s‑1 at projected radii of ∼40–130 kpc, and can be parameterized with a power law of slope ‑0.12 ± 0.05. The quoted uncertainty on the power-law slope reflects only the precision of the method, although other sources of uncertainty we consider contribute negligibly to the overall error budget. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  18. Application of a ray theory model to the prediction of noise emissions from isolated wind turbines and wind parks

    International Nuclear Information System (INIS)

    Prospathopoulos, John M.; Voutsinas, Spyros G.

    2006-01-01

    Various propagation models have been developed to estimate the level of noise near residential areas. Predictions and measurements have proven that proper modelling of the propagation medium is of particular importance. In the present work, calculations are performed using a ray theory methodology. The ray trajectory and transport equations are derived from the linear acoustics equations for a moving medium in three dimensions. Ground and atmospheric absorption, wave refraction and diffraction and atmospheric turbulence are taken into account by introducing appropriate coefficients in the equations. In the case of a wind turbine (W/T) it is assumed that noise is produced by a point source located at the rotor centre. Given the sound power spectrum, the noise spectrum at the receiver is obtained by solving the axisymmetric propagation problem. The procedure consists of (a) finding the eigenrays, (b) calculating the energy losses along the eigenrays and (c) synthesizing the sound pressure level (SPL) by superposing the contributions of the eigenrays. In the case of a wind park the total SPL is calculated by superposing the contributions of all W/Ts. Application is made to five cases of isolated W/Ts in terrains of varying complexity. In flat or even smooth terrain the predictions agree well with the measurements. In complex terrain the predictions can be considered satisfactory, taking into account the assumption of constant wind velocity profile. Application to a wind park shows clearly the influence of the terrain on the wind velocity and consequently on the SPL. (Author)

  19. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  20. Dependence of optimal wind turbine spacing on wind farm length

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria

    2016-01-01

    Recent large eddy simulations have led to improved parameterizations of the effective roughness height of wind farms. This effective roughness height can be used to predict the wind velocity at hub-height as function of the geometric mean of the spanwise and streamwise turbine spacings and the

  1. Delta-slow solution to explain B supergiant stars' winds

    Science.gov (United States)

    Haucke, M.; Araya, I.; Arcos, C.; Curé, M.; Cidale, L.; Kanaan, S.; Venero, R.; Kraus, M.

    2015-01-01

    A new radiation-driven wind solution called δ-slow was found by Curé et al. (2011) and it predicts a mass-loss rate and terminal velocity slower than the fast solution (m-CAK, Pauldrach et al. 1986). In this work, we present our first synthetic spectra based on the δ-slow solution for the wind of B supergiant (BSG) stars. We use the output of our hydrodynamical code HYDWIND as input in the radiative transport code FASTWIND (Puls et al. 2005). In order to obtain stellar and wind parameters, we try to reproduce the observed Hα, Hβ, Hγ, Hδ, Hei 4471, Hei 6678 and Heii 4686 lines. The synthetic profiles obtained with the new hydrodynamical solutions are in good agreement with the observations and could give us clues about the parameters involved in the radiation force.

  2. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.

    2014-05-04

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  3. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  4. Lidar Turbulence Measurements for Wind Energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Sathe, Ameya; Gottschall, Julia

    2012-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averaging...

  5. Lidar Turbulence Measurements for Wind Energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Sathe, Ameya; Gottschall, Julia

    2012-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averagi...

  6. Wind models for the NSTS ascent trajectory biasing for wind load alleviation

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.; Batts, G. W.

    1990-01-01

    New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.

  7. Asymmetry of wind waves studied in a laboratory tank

    Directory of Open Access Journals (Sweden)

    I. A. Leykin

    1995-01-01

    Full Text Available Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves. At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976. The phase shift between o. harmonics is found and shown to increase with the asymmetry of the waves.

  8. Asymmetry of wind waves studied in a laboratory tank

    Science.gov (United States)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  9. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  10. Differences in anthropometric characteristics in relation to throwing velocity and competitive level in professional male team handball: a tool for talent profiling.

    Science.gov (United States)

    Fieseler, Georg; Hermassi, Souhail; Hoffmeyer, Birgit; Schulze, Stephan; Irlenbusch, Lars; Bartels, Thomas; Delank, Karl-Stefan; Laudner, Kevin G; Schwesig, René

    2017-01-01

    The primary aim of the study was to examine the anthropometric characteristics as well as throwing and sprinting performance of professional handball players classified by playing position and competition level. 21 male players (age: 25.2±5.1 years) from the first German handball league (FGL) and 34 male players (age: 26.1±4.1 years) from the third German handball league (TGL) were categorized as backs, pivots, wings and goalkeepers. Measurements included anthropometric data (height, mass and body mass index (BMI)), throwing and sprinting performance selected out of a complex handball test (HBCT), which was conducted twice (2 rounds). During the HBCT, the subjects performed two sprints (10, 20 m), two standing throws with run-up (ST) and four vertical jump throws (VJT) over a hurdle (20 cm) with and without precision for goal shot. The anthropometric data revealed a significantly (P=0.038 and η2=0.079) shorter body height for TGL than for FGL players. In the cohort of first league athletes the pivots were the tallest (1.98±0.04 m), backs in the third league showed the maximum body height (1.90±0.05 m). Regarding body mass, pivots were the heaviest players independent from the league membership. The FGL players showed a significantly (P0.10) higher throwing velocity in all type of throws. Body height was significantly related to ST (r=0.53) and VJT (r=0.52) in the first round of HBCT but only for the FGL athletes. Throwing velocity was also correlated with BMI (r=-0.50) among the TGL players. Substantial differences of body characteristics, throwing and sprinting performance between playing positions and competitive levels underline the importance of a careful scouting and position-specific training for professional handball players.

  11. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  12. The Impact of Wind Speed Changes on the Surface Stress in the Weak-wind Stable Boundary Layer

    Science.gov (United States)

    Thomas, C. K.

    2015-12-01

    The behaviour of turbulent transport in the weak-wind stably stratified boundary layer is examined in terms of the non-stationarity of the wind field based upon field observations. Extensive sonic anemometer measurements from horizontal networks and vertical towers ranging from 12 to 20 m height were collected from three field programs in moderately sloped terrain with a varying degree of surface heterogeneity, namely the Shallow Cold Pool (SCP) and the Flow Over Snow Surfaces (FLOSS) II experiments in Colorado (USA), and the Advanced Canopy Resolution Experiment (ARCFLO) in Oregon (USA). The relationship of the friction velocity to the stratification and small non-stationary submeso motions is studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso-scale motions. Consequently, the roles of the wind speed and stratification are not adequately accommodated by a single non-dimensional combination, such as the bulk Richardson number. Howver, cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The latter may be significant in explaining the small-scale weak turbulence during stable stratification and deviations from conventional flux-profile relationships.

  13. Influence of the wind direction on the chloride profiles of structures close to the Caribbean Sea. The case of the Turiguanó- Coco Key Viaduct in Cuba

    Directory of Open Access Journals (Sweden)

    Pérez García, E. J.

    2005-03-01

    Full Text Available Interpretation of chlorides profiles is important to predict concrete structures service life, among other factors. However, reported results are, in general, from small specimens exposed to specific atmospheres instead of real structures. The objective of this work was the obtention and interpretation of the chlorides profiles forms from several bridges of the Turiguanó-Coco Key viaduct in Cuba. The results verified data from other authors but on different structural elements and similar atmospheres. The form of the chloride profile for structures similar to those in the viaduct bridges, exposed to tropical marine atmosphere, is consistent and changes in intensity with the winds direction and the blocking to them by parts of the structure. The possible effect of the wet and drying process is also discussed.

    En años recientes se le ha dado importancia a la interpretación de los perfiles de cloruros en el hormigón armado con fines de predicción de vida útil, entre otros. Sin embargo, los datos que se han constatado pertenecen, por lo general, a experimentos sobre probetas que han sido expuestas, por un tiempo determinado, a atmósferas específicas más que a estructuras reales. El objetivo de este trabajo fue la obtención e interpretación de la forma de los perfiles de cloruros de varios puentes del viaducto Turiguanó-Cayo Coco en Cuba. Los resultados ratificaron los datos encontrados por otros autores en otros elementos y ambientes similares, pero en un tipo de estructura diferente. En todos los casos estudiados se pudo verificar que, la forma del perfil de concentración de cloruros para estructuras similares a los puentes del viaducto estudiado expuestas a un ambiente tropical marino, es consistente y cambia de intensidad con la dirección de los vientos y del apantallamiento a los mismos por parte de la estructura y de sus partes. Se discute el posible efecto del mojado y secado.

  14. Observation of core sensitive phases: Constraints on the velocity and attenuation profile in the vicinity of the inner-core boundary

    Science.gov (United States)

    Adam, J. M.-C.; Ibourichène, A.; Romanowicz, B.

    2018-02-01

    We measured more than three thousand differential travel-times and amplitude ratios of PKPBC , PKPBC-diff , PKPAB and PKPDF phases in the epicentral distance range [149°-171°], from high quality records of globally distributed broadband stations. In particular, this is the largest collection of differential measurements of PKPBC-diff compared to PKPDF , extending by ∼ 10 ° the epicentral distance range in which the diffracted PKPBC phase has been observed globally. We used forward modelling of waveforms using the Direct Solution Method combined with a grid-search approach to explore attenuation and P-velocity structure in the vicinity of the inner core boundary (ICB) that can explain our observations. We find that, in order to simultaneously explain differential travel times and amplitude ratios of PKPBC , PKPBC-diff with respect to PKPDF out to distances of 165 ° , while fitting PKPAB /PKPDF within measurement errors, it is necessary to introduce a ∼ 450km zone of reduced bulk quality factor (Qκ ∼ 600) at the base of the outer core, while Qκ is close to 200 in a layer ∼ 150km thick at the top of the inner core. Concurrently, the P-velocity in the last 100 km of the outer-core is on average about 0.5 % slower than in the reference model AK 135 , while it is about 0.5 % faster in the top 150 km of the inner-core, resulting in a P-velocity jump at the inner core boundary slightly higher than in model AK 135 . However, this model underpredicts PKPBC-diff /PKPDF amplitude ratios at distances larger than 165 ° . Reducing Qκ even further in the last 100 km of the outer-core (down to Qκ = 50) provides a good fit to these data but it is not compatible with measurements of PKiKP/PKPDF amplitude ratios in the distance range 120-140°. We also considered a previously assembled global collection of "M phase" data. The M phase is a large energy in the coda of the PKPBC and PKPBC-diff that is not predicted by current 1 D reference seismic models, but most likely

  15. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  16. Wind turbine power and sound in relation to atmospheric stability

    NARCIS (Netherlands)

    van den Berg, G. P.

    2008-01-01

    Atmospheric stability cannot, with respect to modem, toll wind turbines, be viewed as a 'small perturbation to a basic neutral state' This can be demonstrated by comparison of measured wind velocity at the height of the rotor with the wind velocity expected in a neutral or 'standard' atmosphere.

  17. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... pute coronal hole radiative energy near the earth and it is found to be of similar order as that of ... hole and energy due to solar wind, it is conjectured that solar wind might have originated around the ..... velocity Vsw (assuming wind velocity is constant throughout from the source to the place of observation) ...

  18. Wind characteristics and energy potentialities of some selected sites ...

    African Journals Online (AJOL)

    The wind regime as observed in three meteorological stations in the north Cameroon are presented in form of velocity duration curves as well as in form of velocity frequency curves. Monthly average wind speed distributions were determined for each station. Based on the analysed data, the utilisation of wind for power ...

  19. Comparison of a simulated velocity profile of a turbulent boundary layer with measurements obtained by Femtosecond Laser Electronic Excitation Tagging (FLEET)

    Science.gov (United States)

    New-Tolley, Matthew; Zhang, Yibin; Shneider, Mikhail; Miles, Richard

    2017-11-01

    Accurate velocimetry measurements of turbulent flows are essential for improving our understanding of turbulent phenomena and validating numerical approaches. Femtosecond Laser Electronic Excitation Tagging (FLEET) is an unseeded molecular tagging method for velocimetry measurements in flows which contain nitrogen. A femtosecond laser pulse is used to ionize and dissociate nitrogen molecules within its focal zone. The decaying plasma fluoresces in the visible and infrared spectrum over a period of microseconds which allows the displacement of the tagged region to be photographed to determine velocity. This study compares the experimental and numerical advection of the tagged region in a turbulent boundary layer generated by a supersonic flow over a flat plate. The tagged region in the simulation is approximated as an infinitely thin cylinder while the flow field is generated using the steady state boundary layer equations with an algebraic turbulence model. This approximation is justified by previous computational analyses, using an unsteady three-dimensional Navier-Stokes solver, which indicate that the radial perturbations of the tagged region are negligible compared to its translation. This research was conducted with government support from the Air Force Office of Scientific Research under Dr. Ivett Leyva and the Army Research Office under Dr. Matthew Munson.

  20. High-resolution H -band Spectroscopy of Be Stars with SDSS-III/APOGEE. II. Line Profile and Radial Velocity Variability

    International Nuclear Information System (INIS)

    Chojnowski, S. Drew; Holtzman, Jon A.; Wisniewski, John P.; Whelan, David G.; Labadie-Bartz, Jonathan; Pepper, Joshua; Fernandes, Marcelo Borges; Lin, Chien-Cheng; Majewski, Steven R.; Stringfellow, Guy S.; Mennickent, Ronald E.; Tang, Baitian; Roman-Lopes, Alexandre; Hearty, Fred R.; Zasowski, Gail

    2017-01-01

    We report on the H -band spectral variability of classical Be stars observed over the course of the Apache Point Galactic Evolution Experiment (APOGEE), one of four subsurveys comprising SDSS-III. As described in the first paper of this series, the APOGEE B-type emission-line (ABE) star sample was culled from the large number of blue stars observed as telluric standards during APOGEE observations. In this paper, we explore the multi-epoch ABE sample, consisting of 1100 spectra for 213 stars. These “snapshots” of the circumstellar disk activity have revealed a wealth of temporal variability including, but not limited to, gradual disappearance of the line emission and vice versa over both short and long timescales. Other forms of variability include variation in emission strength, emission peak intensity ratios, and emission peak separations. We also analyze radial velocities (RVs) of the emission lines for a subsample of 162 stars with sufficiently strong features, and we discuss on a case-by-case basis whether the RV variability exhibited by some stars is caused by binary motion versus dynamical processes in the circumstellar disks. Ten systems are identified as convincing candidates for binary Be stars with as of yet undetected companions.